Science.gov

Sample records for kola superdeep borehole

  1. The Neutron Tomography Studies of the Rocks from the Kola Superdeep Borehole

    NASA Astrophysics Data System (ADS)

    Kichanov, S. E.; Kozlenko, D. P.; Ivankina, T. I.; Rutkauskas, A. V.; Lukin, E. V.; Savenko, B. N.

    The volume morphology of a gneiss sample K-8802 recovered from the deep of 8802 m of the Kola Superdeep Borehole and its surface homologue sample PL-36 have been studied by means of neutron radiography and tomography methods. The volumes and size distributions of a biotite-muscovite grains as well as grains orientation distribution have been obtained from experimental data. It was found that the average volumes of the biotite-muscovite grains in surface homologue sample is noticeably larger than the average volume of grains in the deep-seated gneiss sample K-8802. This drastically differences in grains volumes can be explained by the recrystallization processes in deep of the Kola Superdeep Borehole at high temperatures and high pressures.

  2. The superdeep well of the Kola Peninsula

    SciTech Connect

    Kozlovsky, Y.A.

    1986-01-01

    The structure of continental crusts is a subject of ever increasing importance in the geological sciences. Over 15 years ago, Soviet scientist began drilling a superdeep well on the Kola Peninsula near Murmansk. The well has reached a depth of 12 km and is thereby the deepest well in the world, yielding a vast amount of information on the structure of the continental crust. The geological, geophysical and technological data from the Kola well were initially published in a monographic account entitled ''Kol'skaja sverchglubokaja''. This English translation makes the results available to non-Soviet scientists as well.

  3. Experience in applying acoustopolarization method for rock samples from the Kola (SG-3), German (KTB) and Finnish (OKU) investigation boreholes

    NASA Astrophysics Data System (ADS)

    Gorbatsevich, Felix F.

    2013-04-01

    The Kola Superdeep Borehole (SG-3) was drilled in the NW-part of the Kola Peninsula [1]. The borehole intersected the lower Proterozoic complex (0-6848 m) of the Pechenga Formation and an Archaean granite and metamorphic complex (6848-12261 m). Our investigations show that rocks of the Archaean complex (paragneiss, metabasite, amphibolites) have high elastic anisotropy. It correlates with breakouts from the walls of the borehole and its inclination (deviation) from the vertical during drilling. Because of this when drilling SG-3 at a depth of 7.7 km to 10.1 km accidents occurred with the loss of the drill string part. Sinking the German drill hole ?-? (9101 m) was also accompanied by complications during its drilling [2]. The drill hole was drilled in the crystalline basement of the Bohemian massif in the south of Germany. The main rocks composing the massif are paragneiss, metabasite, granite and metasedimentary rocks. Our investigations of the ?-? samples from the 4.1-7.1 km interval also showed a high level of elastic anisotropy. The investigation drill hole Outokumpu (OKU) located in SE Finland, reached a final depth of 2516 m. The drill hole has passed through mica schists, biotite gneiss, serpentinite and pegmatite granite. Excluding pegmatite granite, all rocks have a high level of elastic anisotropy. Joint analyses of rock samples from SG-3, ?-? and OKU showed that the use of the acoustopolariscopy method can reveal intervals with breakouts and inclinations of the drill hole from the vertical. Elastic anisotropy monitoring of rocks performed by the acoustopolariscopy method will prevent accidents during sinking wells. 1. Gorbatsevich, F.F. & Smirnov, Yu.P. 2000. Kola Superdeep Borehole: 3-D model of elastic anisotropy of crystalline rocks in the upper and middle crust. In: The results of the study of the deep substance and physical processes in the Kola Superdeep Borehole section down to a depth of 12261 m. (Eds. F.P. Mitrofanov, F.F. Gorbatsevich). Apatity

  4. New Experimental Technique For Study of The Superdeep and Deep Boreholes

    NASA Astrophysics Data System (ADS)

    Khristoforova, M.

    As the search for hydrocarbons moves into areas of greater depth, it becomes increas- ingly important both to establish the presence of permeable zones in the granite-gneiss layer of the Earth's crust, and to sample these zones for discovery of deposits of com- mercial size and grade. Standard geophysics logging measurements into boreholes does not provide precise recognition and characteristics of permeable zones. Substan- tial anbiquity currently exists concerning the thickness, extent and the degree of frac- turing of the weak shear zones. Our advanced technique of temperature measurements made such observations possible. Our experiments in superdeep and deep boreholes beginning in 1990's have revealed temperature distribution in the crystalline basement to a depth of 5810 m. I made repeated temperature measurements in the Archean basement in the superdeep and deep boreholes located on the East European platform in 2001. They show that thermal regime have a greater tendency toward temperature inhomogeneity. The most important is the accumulating evidence that temperature anomaly configuration reflects variation in the behavior of dynamics processes within the unconsolidated zone, which, in turn, shows the origin of anomaly. The number, thickness and magnitude of temperature anomalies in the granite-gneiss layer of the Earth's crust that we interpreted as unconsolidated zones (zones in a loosely aggre- gated form) increase with increasing depth. There is evidence for the existence of long-time processes of convective heat-mass transfer in these localized weak zones.

  5. Electromagnetic sounding of the Earth's crust in the region of superdeep boreholes of Yamal-Nenets autonomous district using the fields of natural and controlled sources

    NASA Astrophysics Data System (ADS)

    Zhamaletdinov, A. A.; Petrishchev, M. S.; Shevtsov, A. N.; Kolobov, V. V.; Selivanov, V. N.; Barannik, M. B.; Tereshchenko, E. D.; Grigoriev, V. F.; Sergushin, P. A.; Kopytenko, E. A.; Biryulya, M. A.; Skorokhodov, A. A.; Esipko, O. A.; Damaskin, R. V.

    2013-11-01

    Electromagnetic soundings with the fields of natural (magnetotelluric (MT), and audio magnetotelluric (AMT)) and high-power controlled sources have been carried out in the region of the SG-6 (Tyumen) and SG-7 (En-Yakhin) superdeep boreholes in the Yamal-Nenets autonomous district (YaNAD). In the controlled-source soundings, the electromagnetic field was generated by the VL Urengoi-Pangody 220-kV industrial power transmission line (PTL), which has a length of 114 km, and ultralow-frequency (ULF) Zevs radiating antenna located at a distance of 2000 km from the signal recording sites. In the soundings with the Urengoi-Pangody PTL, the Energiya-2 generator capable of supplying up to 200 kW of power and Energiya-3 portable generator with a power of 2 kW were used as the sources. These generators were designed and manufactured at the Kola Science Center of the Russian Academy of Sciences. The soundings with the Energiya-2 generator were conducted in the frequency range from 0.38 to 175 Hz. The external generator was connected to the PTL in upon the agreement with the Yamal-Nenets Enterprise of Main Electric Networks, a branch of OAO FSK ES of Western Siberia. The connection was carried out by the wire-ground scheme during the routine maintenance of PTL in the nighttime. The highest-quality signals were recorded in the region of the SG-7 (En-Yakhin) superdeep borehole, where the industrial noise is lowest. The results of the inversion of the soundings with PTL and Zevs ULF transmitter completely agree with each other and with the data of electric logging. The MT-AMT data provide additional information about the deep structure of the region in the low-frequency range (below 1Hz). It is established that the section of SG-6 and SG-7 boreholes contains conductive layers in the depth intervals from 0.15 to 0.3 km and from 1 to 1.5 km. These layers are associated with the variations in the lithological composition, porosity, and fluid saturation of the rocks. The top of the

  6. Ultrasonic polarization measurements of elastic-anisotropic properties of metamorphized rocks on the slit of the German KTB superdeep well in the 4100-7100 m depth range

    NASA Astrophysics Data System (ADS)

    Kovalevskiy, Mikhail

    2013-04-01

    The KTB German Superdeep Well (Germany, Windischeschenbach) has limiting depth of 9101 m. It is one of the world deepest well among the continental boreholes. A study of physical parameters including elastic ones of the massif intersected by the well allowed to represent a real pattern of changing properties and the state of crystalline rocks in upper and middle part of the Earth crust. Such a deep section enables performing analyses of large spectrum of geological and geophysical objects, such as minerals, crystalline rocks, geological strata, formation complexes et al. Recently obtained results permit to get a general idea of elastic-anisotropic properties of crystalline rocks extracted from great depths. A study of properties and state of rocks along the KTB section will make it possible to most precisely determine regular changes of the Earth's rock properties within a large range of depths. Below are the results of investigation of elastic-anisotropic properties for 13 core samples of the KTB rocks in the range of 4.1 to 7.1 km. In this interval the well has penetrated metamorphosed rocks [1]. The measurements have been done by an acoustopolarization method with recent improvements and with devices for determination of sample elastic properties [2 3]. The data obtained are the result of extended study into the KTB rock samples by the method [4]. Study of rock samples from the KTB Superdeep Well in the 4100-7100 m depth range showed that they all are elastic anisotropic and pertain to a orthorhombic symmetry type. Virtually the degree of linear acoustic anisotropic absorption (LAAA) effect has been detected in all samples. Its appearance is likely related to directional orientation of mineral grains as well as to the generation of microcracks during drilling and lithostatic stress release. The several samples showed an angular unconformity between the LAAA orientation and elastic symmetry elements. The shear waves depolarization (DSW) effect was detected in

  7. Stishovite paradox in genesis of the superdeep diamond

    NASA Astrophysics Data System (ADS)

    Litvin, Yuriy

    2013-04-01

    Stishovite was experimentally discovered [1] as high-density polymorph of SiO2 stable at 9 - 50 GPa. A paradoxical paragenesis of stishovite and magnesiowustite (Mg,Fe)O was disclosed among primary inclusions in lower-mantle superdeep diamonds [2]. This contradicts to a common knowledge that SiO2 and MgO paragenesis is forbidden for low-pressure SiO2 polymorphs - quartz and coesite. The "stishovite paradox" does not manifest itself in the lower mantle ultrabasic compositions as is seen from experimental pyrolite assembly magnesiowustite+Mg-perovskite+Ca-perovskite at 50 GPa. In basic basalt composition stishovite is formed together with Ca-perovskite, Mg-perovskite and Al-bearing phases under the lower mantle PT-parameters [3]. In this case stishovite is taken as product of oceanic basalt subducted into lower mantle, but not in situ lower-mantle primary mineral. Paragenesis of stishovite and superdeep diamond has opened up fresh opportunity for detailed study. Magnesiowustite (Mg,Fe)O inclusions in superdeep diamonds are characterized by a wide variation of FeO content between 10 and 64 mol. % [2]. It is interesting that ringwoodite (Mg,Fe)2SiO4 solid solutions are decomposed into Mg-perovskite (Mg,Fe)SiO3 + magnesiowustite (Mg,Fe)O + SiO2 (within 30 - 42 mol. % Fe2SiO4) and magnesiowustite + stishovite (within 42 - 100 mol. % Fe2SiO4). Based on experimental data, melting phase diagram of MgO - SiO2 - FeO system at 30 GPa is constructed [4]. Subsolidus assembly includes solid solutions of (Mg,Fe)-perovskite and (Mg,Fe)O. With increase in FeO content in the system, liquidus relations are determined by two univariant cotectics L + (Mg,Fe)O + (Mg,Fe)SiO3 and L + SiO2 + (Mg,Fe)SiO3 having come to invariant peritectic L + (Mg,Fe)O + SiO2 + (Mg,Fe)SiO3. Mg-perovskite is eliminated by peritectic reaction L + (Mg,Fe)SiO3 = (Mg,Fe)O + SiO2 that gives rise to third univariant cotectic L + (Mg,Fe)O + SiO2. The physicochemical peritectic mechanism is also operating in the Mg

  8. Origin and nature of crystal reflections: Results from integrated seismic measurements at the KTB superdeep drilling site

    NASA Astrophysics Data System (ADS)

    Harjes, H.-P.; Bram, K.; Dürbaum, H.-J.; Gebrande, H.; Hirschmann, G.; Janik, M.; KlöCkner, M.; Lüschen, E.; Rabbel, W.; Simon, M.; Thomas, R.; Tormann, J.; Wenzel, F.

    1997-08-01

    For almost 10 years the KTB superdeep drilling project has offered an excellent field laboratory for adapting seismic techniques to crystalline environments and for testing new ideas for interpreting seismic reflections in terms of lithological or textural properties of metamorphic rock units. The seismic investigations culminated in a three-dimensional (3-D) reflection survey on a 19×19 km area with the drill site at its center. Interpretation of these data resulted in a detailed, structural model of the German Continental Deep Drilling Program (KTB) location with dominant, steep faults in the upper crust. The 3-D reflection survey was part of a suite of seismic experiments, ranging from wide-angle reflection and refraction profiles to standard vertical seismic profiles (VSP) and more sophisticated surface-to-borehole observations. It was predicted that the drill bit would meet the most prominent, steeply dipping, crustal reflector at a depth of about 6500-7000 m, and indeed, the borehole penetrated a major fault zone in the depth interval between 6850 and 7300 m. This reflector offered the rare opportunity to relate logging results, reflective properties, and geology to observed and modeled data. Post-Variscan thrusting caused cataclastic deformation, with partial, strong alterations within a steeply dipping reverse fault zone. This process generated impedance contrasts within the fault zone on a lateral scale large enough to cause seismic reflections. This was confirmed by borehole measurements along the whole 9.1 km deep KTB profile. The strongest, reflected signals originated from fluid-filled fractures and cataclastic fracture zones rather than from lithological boundaries (i.e., first-order discontinuities between different rock types) or from texture- and/or foliation-induced anisotropy. During the interpretation of seismic data at KTB several lessons were learned: Conventional processing of two-dimensional (2-D) reflection data from a presite survey

  9. Stable isotope evidence for crustal recycling as recorded by superdeep diamonds

    NASA Astrophysics Data System (ADS)

    Burnham, A. D.; Thomson, A. R.; Bulanova, G. P.; Kohn, S. C.; Smith, C. B.; Walter, M. J.

    2015-12-01

    Sub-lithospheric diamonds from the Juina-5 and Collier-4 kimberlites and the Machado River alluvial deposit in Brazil have carbon isotopic compositions that co-vary with the oxygen isotopic compositions of their inclusions, which implies that they formed by a mixing process. The proposed model for this mixing process, based on interaction of slab-derived carbonate melt with reduced (carbide- or metal-bearing) ambient mantle, explains these isotopic observations. It is also consistent with the observed trace element chemistries of diamond inclusions from these localities and with the experimental phase relations of carbonated subducted crust. The 18O-enriched nature of the inclusions demonstrates that they incorporate material from crustal protoliths that previously interacted with seawater, thus confirming the subduction-related origin of superdeep diamonds. These samples also provide direct evidence of an isotopically anomalous reservoir in the deep (≥350 km) mantle.

  10. Kimberlitic sources of super-deep diamonds in the Juina area, Mato Grosso State, Brazil

    NASA Astrophysics Data System (ADS)

    Kaminsky, Felix V.; Sablukov, Sergei M.; Belousova, Elena A.; Andreazza, Paulo; Tremblay, Mousseau; Griffin, William L.

    2010-01-01

    The Juina diamond field, in the 1970-80s, was producing up to 5-6 million carats per year from rich placer deposits, but no economic primary deposits had been found in the area. In 2006-2007, Diagem Inc. discovered a group of diamondiferous kimberlitic pipes within the Chapadão Plateau (Chapadão, or Pandrea cluster), at the head of a drainage system which has produced most of the alluvial diamonds mined in the Juina area. Diamonds from placer deposits and newly discovered kimberlites are identical; they have super-deep origins from the upper-mantle and transition zone. Field observations and petrographic studies have identified crater-facies kimberlitic material at seven separate localities. Kimberlitic material is represented by tuffs, tuffisites and various epiclastic sediments containing chrome spinel, picroilmenite, manganoan ilmenite, zircon and diamond. The diamond grade varies from 0.2-1.8 ct/m 3. Chrome spinel has 30-61 wt.% Cr 2O 3. Picroilmenite contains 6-14 wt.% MgO and 0.2-4 wt.% Cr 2O 3. Manganoan ilmenite has less than 3 wt.% MgO and 0.38-1.41 wt.% MnO. The 176Hf/ 177Hf ratio in kimberlitic zircons is 0.028288-0.28295 with ɛHf = 5.9-8.3, and lies on the average kimberlite trend between depleted mantle and CHUR. The previously known barren and weakly diamondiferous kimberlites in the Juina area have ages of 79-80 Ma. In contrast, zircons from the newly discovered Chapadão kimberlites have a mean 206Pb/ 238U age of 93.6 ± 0.4 Ma, corresponding to a time of magmatic activity related to the opening of the southern part of the Atlantic Ocean. The most likely mechanism of the origin of kimberlitic magma is super-deep subduction process that initiated partial melting of zones in lower mantle with subsequent ascent of proto-kimberlitic magma.

  11. Global mantle convection: Evidence from carbon and nitrogen isotopes in super-deep diamonds (Invited)

    NASA Astrophysics Data System (ADS)

    Palot, M.; Cartigny, P.; Harris, J.; Kaminsky, F. V.; Stachel, T.

    2009-12-01

    Constraining the convective regime of the Earth’s mantle has profound implications for our understanding of the Earth’s cooling and the geodynamics of plate tectonics. Although subducting plates seem to be occasionally deflected at 660 km, evidence from seismic tomography and fluid dynamics suggest that substantial amounts of material reach the core-mantle boundary. Most geochemists, on the other hand, based on evidence from noble gases, would argue for the presence of separate upper and lower mantle reservoirs. Diamond provides a unique opportunity to sample those parts of the mantle that remains inaccessible by any other means. Some mineral associations in diamond, such as majoritic garnet, calcic and magnesian perovskite and manganoan ilmenite with ferropericlase have been recognised as originated from the transition zone down to the lower mantle (Stachel et al., 1999; Kaminsky et al., 2001). In addition, nitrogen in these diamonds is potentially a good tracer for mantle geodynamics. Exchanges between an inner reservoir (characterised by negative δ15N) via degassing at oceanic ridges with an outer reservoir (characterised by positive δ15N) via recycling at a subduction zones can lead to isotopic contrast in a stratified mantle. Because of common super-deep mineral inclusion assemblages in diamonds from Juina (Brazil) and Kankan (Guinea), we carried out a detailed study of nitrogen and carbon isotopes. The Juina diamonds show broadly similar ranges of δ15N from +3.8‰ down to -8.8‰ for both upper (UM) and lower (LM) mantle diamonds. This important feature is also found for UM and LM diamonds from Kankan, although the range of δ15N differs with values from +9.6‰ down to -39.4‰. Both sets of results suggest extensive material-isotopic exchange through the 660km discontinuity, contrary to the idea of an isolated reservoir. Transition zone (TZ) diamonds are enriched in 13C with δ13C from -3.1‰ up to +3.8‰ at Kankan but those of Juina are depleted

  12. Super-deep diamonds from kimberlites in the Juina area, Mato Grosso State, Brazil

    NASA Astrophysics Data System (ADS)

    Kaminsky, Felix V.; Khachatryan, Galina K.; Andreazza, Paulo; Araujo, Debora; Griffin, William L.

    2009-11-01

    One thousand three hundred sixty-five diamonds from seven newly discovered kimberlitic pipes in the Juina area were comprehensively studied. These diamonds, like the ones from previously studied Juina placer deposits, are very homogeneous in their morphology and optical properties. Two diamond populations exist in the Pandrea pipes: the major population with a highly aggregated nitrogen impurity (% N B = 75-100%), and a secondary population with a moderately aggregated nitrogen impurity (% N B = 20-65%), while only one major population is present in the diamonds from placers. The diamonds from the pipes have a permanent, relatively high hydrogen impurity concentration. Among the mineral inclusions in diamonds from the Juina pipes, ferropericlase is predominant; chrome spinel, picroilmenite, Mn-ilmenite, MgCaSi-'perovskite' phase, rutile, sulphide, native iron, and iron-oxides were also identified. Most of the inclusions belong to the lower-mantle paragenesis; some (rutile and sulphide) are of eclogitic paragenesis. Mineral inclusions in diamonds from kimberlitic pipes are different in composition from the same minerals in placer diamonds. Both kimberlitic and placer diamonds belong to the same carbon isotopic population, but have differences in the δ13C distribution and were probably formed from different local carbon sources. These data indicate that diamonds from both groups, kimberlites and placer deposits, in the Juina area, belong to the same genetic population with most of the stones originating within the super-deep conditions. However, there are differences between these two groups, which indicate that besides the known Pandrea pipes which may have partly supplied diamonds to the placer deposits, there may be other, still unknown primary sources of diamonds in the Juina area.

  13. Some remarks on the estimation of fractal scaling parameters from borehole wire-line logs

    NASA Astrophysics Data System (ADS)

    Dolan, Seán S.; Bean, Christopher J.

    Well-logging provides a direct means of assessing fluctuations in petrophysical properties with depth, and thus allows for the statistical characterisation of crustal heterogeneity. Using records from three super-deep boreholes (KTB and Cajon Pass) and synthetic data, we assess three different techniques for estimating fractal dimension and correlation length. Inaccurate correlation lengths may result from the way in which the autocorrelation is calculated for well-logs, leading to an incorrect application of the von Kármán function. Analysis of the rescaled range, power spectra and autocorrelation allow us to model the data as k-β (where k = wavenumber and exponent β=5-2D, for fractal dimension D) process with values of fractal dimension displaying anti-persistence.

  14. On Boreholes and PBO Borehole Strain

    NASA Astrophysics Data System (ADS)

    Gladwin, M. T.; Mee, M. W.

    2003-12-01

    Borehole tensor strainmeters (GTSM) installed in Australia and California have established a baseline of data spanning more than twenty years. The current baseline of data allows characterisation of a moderate number of instruments in a range of very different environments in a way which defines reasonable performance expectations for the upcoming PBO deployments. A generic understanding of effects which result from the process of installation of the instrument in a stressed rock mass emerges. This indicates that, provided due allowance is made for experimentally determined borehole recovery effects, the contribution of borehole strain meters more than adequately fills the observational gap between high stability/long term geodetic measurements of strain and strain rates and high resolution/high frequency seismic observations of earth deformation processes. The various strain relief processes associated with the installation procedures and borehole recovery effects associated with pre-existing stress fields will be documented. Procedures for calibration of the total borehole inclusion and for progressive removal of effects due to rock anisotropy and visco-elastic creep of the grout and rock close to the borehole from far field tectonic effects will be defined and illustrated with examples. Observed deviations from these processes will be shown to be small and consistent with otherwise observed or implied fault motions. Full details of these borehole induced processes are, however, difficult to determine in the early years following installation, particularly if there is significant tectonic activity at the time. Once quantified for each site, the effects can be robustly removed from data streams.

  15. CaSiO3-walstromite inclusions in super-deep diamonds

    NASA Astrophysics Data System (ADS)

    Anzolini, Chiara; Nestola, Fabrizio; Milani, Sula; Brenker, Frank E.

    2015-04-01

    Diamonds are considered the unique way to trap and convey real fragments of deep material to the surface of our planet. Over the last thirty years, great strides have been made in understanding of Earth's lower mantle, mainly thanks to technological and instrumental advances; nevertheless, it is only in the last two decades that a whole range of inclusion parageneses derived from the lower mantle was discovered in diamonds from São Luiz (Brazil) (Kaminsky, 2008 and references therein), thereby establishing a 'window' into the lower mantle. These so-called super-deep diamonds form at depths greater than lithospheric diamonds, more precisely between 300 and 800 km depth, and contain mostly ferropericlase, enstatite (believed to be derived from MgSi-perovskite) and CaSiO3-walstromite (believed to be derived from CaSiO3-perovskite). Even though CaSiO3 not only adopts the perovskite structure with increased pressure and temperature, but also it is considered the dominant Ca-bearing phase in the Earth's lower mantle (Tamai and Yagi, 1989), at the present day there are no reliable literature data on the pressure at which CaSiO3 crystallizes within diamonds. In order to obtain for the first time a pressure of formation value for CaSiO3-walstromite, several inclusions still trapped in a diamond coming from Juina (Mato Grosso, Brazil) were investigated both by in-situ microRaman spectroscopy and in-situ single-crystal X-ray diffraction. First, we applied 'single-inclusion elastic barometry' as improved by Angel et al. (2014) to determine the pressure of formation of the diamond-inclusion pairs. Starting from the maximum remnant pressure value ever reported (Joswig et al., 2003) and adopting the thermoelastic parameters already present in literature (Swamy and Dubrovinsky, 1997; Liu et al., 2012), we obtained an apparent entrapment pressure of ~7.1 GPa, corresponding to ~250 km, at 1500 K. The presence of fractures around the inclusions indicates this is a minimum estimate

  16. Analysis of borehole breakouts

    SciTech Connect

    Zheng, Z.; Kemeny, J.; Cook, N. G. W.

    1989-06-10

    Boreholes drilled into rock, which is subjected to stresses that amount to a significant fraction of the strength of the rock, may cause the rock to fail adjacent to the borehole surface. Often this results in the elongation of the cross section of the borehole in the direction of the minimum principal (compressive) stress orthogonal to the borehole axis. Such breakouts are valuable indicators of the direction of the minimum compressive stress orthogonal to the axis of the borehole. Their shapes may provide information about the magnitudes of both the maximum and minimum stresses relative to the strength of the rock. Borehole breakouts also may be impediments to drilling and to in situ measurement techniques, such as hydraulic fracturing. Observations and analyses of borehole breakouts raise three important questions. First, how does the shape of the borehole breakout evolve Second, why are breakout shapes stable despite the very high compressive stress concentrations that they produce Third, how is the shape of the breakout related to the magnitudes of the stresses in the rock In this paper, extensile splitting of rock in unconfined, plane strain compression is assumed to be the process of rock failure adjacent to the circumference of the borehole, by which a breakout forms. To simulate the evolution of a borehole breakout, this process is combined with a numerical boundary element analysis of the stresses around a borehole as its cross section evolves from the originally circular shape to that of a stable breakout.

  17. Surface Ozone Dynamics in the Kola Peninsula Region

    NASA Astrophysics Data System (ADS)

    Beloglazov, M. I.; Karpechko, A. Yu.; Nikulin, G. N.; Roumjantsev, S. A.

    Measurements of surface ozone from the centre of the Murmansk Region (Apatity, Kola peninsula) and its southern part (Kovda, White Sea coast) give a picture of the behaviour of this air component on the Kola peninsula and surrounding vicinity. Simultaneous measurements in Apatity and Kovda have shown that the ozone concentration in Apatity is roughly twice as much as in Kovda. This fact may be explained by the local wind circulation and the presence of bromine near the coast of the Kola Peninsula. An inverse correlation is found between the ozone and nitrogen oxide concentrations from observations near motorways in Apatity. A decrease of nitrogen oxide concentration accompanies the growth of ozone on average. Thus, Apatity is a northern city in which the air pollution by traffic emissions decreases the ozone content.

  18. Mesoarchean Gabbroanorthosite Magmatism of the Kola Region

    NASA Astrophysics Data System (ADS)

    Kudryashov, N.; Mokrushin, A.

    2012-04-01

    The Kola peninsula is the region marked with development of anorthosite magmatism in the NE Baltic Shield. The Archaean gabbroanorthosites intrusions - Tsaginsky, Achinsky and Medvezhe-Schucheozersky - have the age of 2.7-2.6 Ga (Bayanova, 2004). The Patchemvarek and Severny gabbroanorthosites intrusions are located in the junction zone of the Kolmozero-Voronja greenstone belt and the Murmansk domain. Age data for sedimentaryvolcanogenic rocks of the Kolmozero-Voronja belt and Murmansk domain granitoids are 2.8-2.7 Ga. The gabbroanorthosites intrusions have more calcic composition (70-85% An) of normative plagioclase, and low contents of TiO2, FeO, and Fe2O3. In terms of chemical composition, the gabbroanorthosites of the studied massifs are close to the rocks of the Fiskenesset Complex (Greenland) and to the anorthosites of the Vermillion Lake Complex (Canada). U-Pb zircon dating established Mesoarchean ages of 29257 and 29358 Ma for the gabbroanorthosites of the Patchemvarek and Severny massifs, respectively. It was shown that the gabbroanorthosites of the studied massifs have fairly low REE contents (Cen = 2.2-4.2, Ybn = 1.6-2.6) and distinct positive Eu anomaly. Comagmatic ultrabasic differentiates have practically unfractionated REE pattern, low total REE contents (Cen = 1.2, Ybn = 1.1, La/Ybn = 1.32), and no Eu anomaly. The studied samples of the Archean gabbroanorthosites are characterized by positive "Nd= + 2.68 for the gabbroanorthosites of the Severny Massif and from + 2.77 to + 1.66 for the Patchemvarek Massif. The rocks of the Severny and Patchemvarek massifs has 87Sr/86Sri = 0.702048 and 87Sr/86Sri = 0.70258_8, respectively. The oldest U-Pb zircon ages for the gabbroanorthosites of the Patchemvarek and Severny massifs marking the Mesoarchean stage in the evolution of region. The differences in the initial 143Nd/144Nd ratios between the Neoarchean and the Mesoarchean gabbroanorthosites suggest the existence of two mantle sources. One of them produced

  19. Borehole data transmission apparatus

    DOEpatents

    Kotlyar, O.M.

    1993-03-23

    A borehole data transmission apparatus is described whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  20. Borehole data transmission apparatus

    DOEpatents

    Kotlyar, Oleg M.

    1993-01-01

    A borehole data transmission apparatus whereby a centrifugal pump impeller(s) is used to provide a turbine stage having substantial pressure characteristics in response to changing rotational speed of a shaft for the pressure pulsing of data from the borehole through the drilling mud to the surface of the earth.

  1. PBO Borehole Strainmeters

    NASA Astrophysics Data System (ADS)

    David, M.; Hasting, M.; Jackson, M.; Dittmann, S. T.; Johnson, W.; Venator, S.; Andersen, G.; Hodgkinson, K.; Mueller, B.; Prescott, W.

    2006-12-01

    UNAVCO is a non-profit, community-based organization funded by the National Science Foundation to install and operate the geodetic component of EarthScope called the Plate Boundary Observatory (PBO). UNAVCO will install 103 borehole tensor strainmeters/seismometers and 28 borehole tiltmeters These instruments will be used to study the three-dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States in hopes of increasing our understanding of the causes and mechanisms associated with earthquakes and volcanic activity. This represents almost a tripling of all installed borehole strainmeters in North America. Since the initial deployment of strainmeters in the early 1980's, borehole strainmeters have contributed valuable data at periods ranging from minutes to weeks with sensitivities two to three orders of magnitude better than continuous GPS at periods of days to weeks. Borehole strainmeters have been used to image earthquakes, slow earthquakes, creep events and volcanic eruptions in the US, Iceland and Japan. Initial PBO strainmeter deployments show promising results but there are still major hurdles to overcome in production, installation processes, data quality control, data processing and near real time delivery of calibrated strain data. PBO has made significant steps forward with the installation of 19 borehole strainmeters as of September 1st, 2006 with 28 total instruments planned by early December. In addition to strainmeters, each borehole contains a three-component geophone and a pore pressure transducer. A subset of the boreholes are also used for heat flow measurements. When completed the PBO borehole strainmeter network will be the largest network of strainmeters installed to date and one of the world's largest borehole seismic networks. These instruments will bridge the gap between seismology and space-geodetic techniques and represents the first dense

  2. Borehole seismic modeling

    NASA Astrophysics Data System (ADS)

    Zhen, Tao

    In many borehole seismic experiments, the velocity of the tube wave is higher than that of the surrounding rock shear wave. This fast tube wave creates a strong conical shear wave in the surrounding rock, similar to the Mach wave in supersonic aviation and the Cherenkov radiation in electrodynamics. Many geophysicists have tried to utilize the conical signal in VSP (vertical seismic profiling) and cross borehole data interpretation, using quasi static approximations to model the borehole effect. Two popular quasi static approximations are: the effective source array method for source borehole modeling and the squeeze strain method for receiver borehole modeling. These quasi static approximations are sensible as they qualitatively conform to Hueygen's principle and the typical wavelength of a VSP or a cross borehole seismic experiment is much larger than the borehole radius. However, they have not been quantitatively benchmarked against other non approximation method such as the frequency wave number method. The frequency wave number method is a rigorous, non approximation method for modeling straight boreholes without lengthwise variation. The boreholes may consist of many coaxial, homogeneous and axially symmetric shells. In this thesis, the results of the quasi static approximations are compared to the results obtained from the frequency wave number method. The comparison demonstrates that both the effective source array method and squeeze strain method gives the correct arrival time. The effective source array method gives incorrect amplitude and waveform for direct arrivals and tube waves due to its arbitrary assumption of the elementary source radiation pattern. The squeeze strain method gives fairly accurate amplitude and waveform for P and S direct arrivals but it fails to match the tube wave results obtained from the frequency wave number method. The omission of tube wave dispersion and amplitude loss by the quasi static approximation methods also

  3. Borehole induction coil transmitter

    DOEpatents

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  4. Technology for NPP decantate treatment realized at Kola NPP

    SciTech Connect

    Stakhiv, Michael; Avezniyazov, Slava; Savkin, Alexander; Fedorov, Denis; Dmitriev, Sergei; Kornev, Vladimir

    2007-07-01

    At Moscow SIA 'Radon' jointly with JSC 'Alliance Gamma', the technology for NPP Decantate Treatment was developed, tested and realized at Kola NPP. This technology consists of dissolving the salt residue and subsequent treatment by ozonization, separation of the deposits formed from ozonization and selective cleaning by ferro-cyanide sorbents. The nonactive salt solution goes to an industrial waste disposal site or a repository specially developed at NPP sites for 'exempt waste' products by IAEA classification. This technology was realized at Kola NPP in December 2006 year. At this time more than 1000 m{sup 3} of decantates log time stored are treated. It allows solving very old problem to empty decantates' tanks at NPPs in environmentally safe manner and with high volume reduction factor. (authors)

  5. Microexplosions in boreholes

    NASA Astrophysics Data System (ADS)

    Moren, P.

    1983-12-01

    At present micro explosions are the only known source that provides sufficient energy for large scale (about 0.5 to 1 km) seismic crosshole measurements. Results from a test of nondestructiveness on bore-hole walls from micro explosions are summarized. From geophysical well loggings in the holes it was found that only micro explosions with yields of 100 g and greater have a measurable effect on the bore-hole walls. However, the chemical properties of the bore-hole water changed as a result of collodial carbon of the explosive paste. Geophone-recordings from a series of shots with yields in the range 5 up to 200 g showed that the recorded maximum amplitude was linearly dependent of explosion yield.

  6. Neoproterozic Re-Os age of a sulfide inclusion in a superdeep diamond: Implications for mantle convection beneath Juina, Brazil

    NASA Astrophysics Data System (ADS)

    Shirey, S. B.; Smit, K.; Nestola, F.; Steele, A.; Bulanova, G.; Smith, C. B.

    2015-12-01

    Diamonds from the Juina area Brazil have long been known for their sublithospheric or superdeep (e.g. from depths of 300-800 km) origins. These diamonds have yielded new information about high pressure mantle mineralogy, deep crustal recycling, diamond source fluids, and mantle transition zone water content. A type II (low N) diamond (sample J1) from the 93.1±1.5 myr old (Heaman 7IKC 1998 ) Collier 4 kimberlite was studied previously (Walter et al. Nature 2008; Bulanova et al. CMP 2010) as part of a larger suite of eclogitic-composition, inclusion-bearing type II Collier 4 diamonds with complex internal growth structure. Major and trace element analyses of mineral inclusions in these diamonds include Ca-Ti-Si perovskite, Ca-rich majoritic-garnet, clinopyroxene, olivine, jeffbenite, minerals with stoichiometries of CAS and K-hollandite phases, SiO2, FeO, native iron, low-Ni sulfides, and Ca-Mg-carbonate. The C isotopic compositions of the diamond hosts range from a δ13C of -25 to -5‰ ( J1 being -15‰). Collier 4 diamonds have been interpreted to crystallize from carbonatitic melts derived from the recycling of oceanic lithosphere at TransitionZone depths (Walter et al. Nature 2008; Bulanova et al. CMP 2010). A rare Fe-sulfide inclusion in the core of diamond J1 has been dated with the Re-Os system in order to provide age and compositional constraints on the proposed oceanic slab recycling. The rim of J1 contained inclusions of Ca-Ti-Si perovskite that yielded U-Pb age of 101±7 Ma and eclogitic (low Cr, high Ca) majorite that yielded formation pressures (Si - Al+Cr geobarometry) >8 GPa (Bulanova et al. CMP 2010). The Fe-sulfide analyzed was low Ni pyrrhotite determined to be Fe10S11 of a rare 11T polytype by single-crystal X-ray diffraction. The 27 ug interior pyrrhotite had a high Re/Os (187Re/188Os = 854) typical of MORB (Re/Os ~100) and radiogenic Os isotopic composition (187Os/188Os = 8.50±1.38) that yields a 602±16 Ma model age relative to normal mantle

  7. Piezotube borehole seismic source

    SciTech Connect

    Daley, Tom M; Solbau, Ray D; Majer, Ernest L

    2014-05-06

    A piezoelectric borehole source capable of permanent or semipermanent insertion into a well for uninterrupted well operations is described. The source itself comprises a series of piezoelectric rings mounted to an insulative mandrel internally sized to fit over a section of well tubing, the rings encased in a protective housing and electrically connected to a power source. Providing an AC voltage to the rings will cause expansion and contraction sufficient to create a sonic pulse. The piezoelectric borehole source fits into a standard well, and allows for uninterrupted pass-through of production tubing, and other tubing and electrical cables. Testing using the source may be done at any time, even concurrent with well operations, during standard production.

  8. Micro borehole drilling platform

    SciTech Connect

    1996-10-01

    This study by CTES, L.C. meets two main objectives. First, evaluate the feasibility of using coiled tubing (CT) to drill 1.0 inches-2.5 inches diameter directional holes in hard rocks. Second, develop a conceptual design for a micro borehole drilling platform (MBDP) meeting specific size, weight, and performance requirements. The Statement of Work (SOW) in Appendix A contains detailed specifications for the feasibility study and conceptual design.

  9. Ice-Borehole Probe

    NASA Technical Reports Server (NTRS)

    Behar, Alberto; Carsey, Frank; Lane, Arthur; Engelhardt, Herman

    2006-01-01

    An instrumentation system has been developed for studying interactions between a glacier or ice sheet and the underlying rock and/or soil. Prior borehole imaging systems have been used in well-drilling and mineral-exploration applications and for studying relatively thin valley glaciers, but have not been used for studying thick ice sheets like those of Antarctica. The system includes a cylindrical imaging probe that is lowered into a hole that has been bored through the ice to the ice/bedrock interface by use of an established hot-water-jet technique. The images acquired by the cameras yield information on the movement of the ice relative to the bedrock and on visible features of the lower structure of the ice sheet, including ice layers formed at different times, bubbles, and mineralogical inclusions. At the time of reporting the information for this article, the system was just deployed in two boreholes on the Amery ice shelf in East Antarctica and after successful 2000 2001 deployments in 4 boreholes at Ice Stream C, West Antarctica, and in 2002 at Black Rapids Glacier, Alaska. The probe is designed to operate at temperatures from 40 to +40 C and to withstand the cold, wet, high-pressure [130-atm (13.20-MPa)] environment at the bottom of a water-filled borehole in ice as deep as 1.6 km. A current version is being outfitted to service 2.4-km-deep boreholes at the Rutford Ice Stream in West Antarctica. The probe (see figure) contains a sidelooking charge-coupled-device (CCD) camera that generates both a real-time analog video signal and a sequence of still-image data, and contains a digital videotape recorder. The probe also contains a downward-looking CCD analog video camera, plus halogen lamps to illuminate the fields of view of both cameras. The analog video outputs of the cameras are converted to optical signals that are transmitted to a surface station via optical fibers in a cable. Electric power is supplied to the probe through wires in the cable at a

  10. Borehole sealing method and apparatus

    DOEpatents

    Hartley, James N.; Jansen, Jr., George

    1977-01-01

    A method and apparatus is described for sealing boreholes in the earth. The borehole is blocked at the sealing level, and a sealing apparatus capable of melting rock and earth is positioned in the borehole just above seal level. The apparatus is heated to rock-melting temperature and powdered rock or other sealing material is transported down the borehole to the apparatus where it is melted, pooling on the mechanical block and allowed to cool and solidify, sealing the hole. Any length of the borehole can be sealed by slowly raising the apparatus in the borehole while continuously supplying powdered rock to the apparatus to be melted and added to the top of the column of molten and cooling rock, forming a continuous borehole seal. The sealing apparatus consists of a heater capable of melting rock, including means for supplying power to the heater, means for transporting powdered rock down the borehole to the heater, means for cooling the apparatus and means for positioning the apparatus in the borehole.

  11. Borehole survey method and apparatus for drilling substantially horizontal boreholes

    SciTech Connect

    Trowsdale, L.S.

    1982-11-30

    A borehole survey method and apparatus are claimed for use in drilling substantially horizontal boreholes through a mineral deposit wherein a dip accelerometer, a roll accelerometer assembly and a fluxgate are disposed near the drill bit, which is mounted on a bent sub, and connected to a surface computation and display unit by a cable which extends through the drill string. The dip angle of the borehole near the drill bit, the azimuth of the borehole near the drill bit and the roll angle or orientation of the bent sub are measured and selectively displayed at the surface while the drill string is in the borehole for utilization in guiding the drill bit through the mineral deposit along a predetermined path.

  12. Borehole survey instrument

    SciTech Connect

    Sharp, H.E.; Lin, J.W. III; Macha, E.S.; Smither, M.A.

    1984-12-04

    A borehole survey instrument is provided having a meniscus type floating compass member with indicia thereon for indicating azimuth and inclination. A light source is disposed below the indicia for illuminating the indicia upward through the liquid through which the meniscus type floating compass member floats. A lens system is provided for focusing the image of the illuminated compass member upon a film disposed below the compass member. This arrangement permits the centering post for the compass member to be of minimum diameter consistent with rigidity requirements and permits a high angle compass member to indicate angles of inclination approaching ninety degrees. A multiple light bulb light source is utilized and each light bulb is mounted in a manner which permits a single light bulb to illuminate the entire compass member. A hand-held programming and diagnostic unit is provided which may be momentarily electrically mated with the borehole survey tool to input a programmed timed delay and diagnostically test both the condition of the light bulbs utilized as the illumination source and the state of the batteries within the instrument. This hand-held programmable unit eliminates all the mechanical programming switches and permits the instrument to be completely sealed from the pressure, fluids and contaminants normally found in a well bore.

  13. Effect of dehusked Garcinia kola seeds on the overall pharmacokinetics of quinine in healthy Nigerian volunteers.

    PubMed

    Igbinoba, Sharon I; Onyeji, Cyprian O; Akanmu, Moses A; Soyinka, Julius O; Pullela, Srirama Sarma V V; Cook, James M; Nathaniel, Thomas I

    2015-03-01

    We investigated the effect of concurrent ingestion of Garcinia kola seed on the pharmacokinetics of quinine. In a randomized crossover study, 24 healthy Nigerian volunteers were assigned into 2 groups (A and B; n = 12 per group) on the basis of G. kola dose orally ingested. Each subject received 600 mg quinine sulfate before and after ingesting 12.5 g of G. kola once daily for 7 days (group A) or 12.5 g twice daily for 6 days and once on the seventh day (group B). Blood samples were collected and analyzed for plasma quinine and its metabolite (3-hydroxyquinine) using a validated high performance liquid chromatography method. Concurrent administration of quinine with G. kola reduced quinine tmax by 48% (group A), mean Cmax by 19% and 26% in groups A and B, respectively, and slight reduction in mean AUC0- ∞ of quinine in both groups. 3-hydroxyquinine Cmax also reduced by 29% and 32%; AUC0-∞ by 13% and 9%, respectively. The point estimates of the T/R ratio of the geometric means for all Cmax obtained and only the AUC0-∞ at a higher dose of G. kola were outside the 80%-125% bioequivalence range. In conclusion, an herb-drug interaction was noted with concurrent quinine and G. kola administration. PMID:25328082

  14. MEASUREMENTS OF THE CONFINEMENT LEAKTIGHTNESS AT THE KOLA NUCLEAR POWER STATION (UNIT 2) IN RUSSIA

    SciTech Connect

    GREENE,G.A.; GUPPY,J.G.

    1998-08-01

    This is the final report on the INSP project entitled, ``Kola Confinement Leaktightness'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.1. This project was initiated in February 1993 to assist the Russians to reduce risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Units 1 and 2, through upgrades in the confinement performance to reduce the uncontrolled leakage rate. The major technical objective of this-project was to improve the leaktightness of the Kola NPP VVER confinement boundaries, through the application of a variety of sealants to penetrations, doors and hatches, seams and surfaces, to the extent that current technology permitted. A related objective was the transfer, through training of Russian staff, of the materials application procedures to the staff of the Kola NPP. This project was part of an overall approach to minimizing uncontrolled releases from the Kola NPP VVER440/230s in the event of a serious accident, and to thereby significantly mitigate the consequences of such an accident. The US provided materials, application technology, and applications equipment for application of sealant materials, surface coatings, potting materials and gaskets, to improve the confinement leaktightness of the Kola VVER-440/23Os. The US provided for training of Russian personnel in the applications technology.

  15. Effect of dehusked Garcinia kola seed on the overall pharmacokinetics of quinine in healthy Nigerian volunteers

    PubMed Central

    Igbinoba, Sharon I.; Onyeji, Cyprian O.; Akanmu, Moses A.; Soyinka, Julius O.; Pullela, Srirama Sarma V.V; Cook, James M.; Nathaniel, Thomas I.

    2016-01-01

    We investigated the effect of concurrent ingestion of Garcinia kola seed on the pharmacokinetics of quinine. In a randomized crossover study, 24 healthy Nigerian volunteers were assigned into two groups (A and B; n = 12 per group) on the basis of G. kola dose orally ingested. Each subject received 600mg quinine sulphate before and after ingesting 12.5g of G. kola once daily for seven days (Group A) or 12.5g twice daily for six days and once on the seventh day (Group B). Blood samples were collected and analyzed for plasma quinine and its metabolite, (3-hydroxyquinine) using a validated HPLC method. Concurrent administration of quinine with G. kola reduced quinine tmax by 48% (group A), mean Cmax by 19% and 26% in groups A and B, and slight reduction in mean AUC0–∞ of quinine in both groups. 3-hydroxyquinine Cmax also reduced by 29% and 32%; AUC0–∞ by 13% and 9% respectively. The point estimates of the T/R ratio of the geometric means for all Cmax obtained and only the AUC0–∞ at a higher dose of G. kola were outside the 80–125% bioequivalence range. In conclusion, an herb-drug interaction was noted with concurrent quinine and G. kola administration. PMID:25328082

  16. Side hole drilling in boreholes

    NASA Technical Reports Server (NTRS)

    Collins, Jr., Earl R. (Inventor)

    1980-01-01

    Apparatus for use in a borehole or other restricted space to bore a side hole into the strata surrounding the borehole, including a flexible shaft with a drill at its end, and two trains of sheathing members that can be progressively locked together into a rigid structure around the flexible shaft as it is directed sidewardly into the strata.

  17. Tectonics of the Kola collision suture and adjacent Archaean and Early Proterozoic terrains in the northeastern region of the Baltic Shield

    NASA Astrophysics Data System (ADS)

    Berthelsen, Asger; Marker, Mogens

    1986-06-01

    As preparation for the deep-seismic and other geophysical experiments along the Polar Profile, which transects the Granulite belt and the Kola collision suture, structural field work has been performed in northernmost Finland and Norway, and published geological information including data from the neighbouring Soviet territory of the Kola Peninsula, have been compiled and reinterpreted. Based on these studies and a classification according to crustal and structural ages, the northeastern region of the Baltic Shield is divided into six major tectonic units. These units are separated and outlined by important low-angle, ductile shear or thrust zones of Late Archaean to Early Proterozoic age. The lateral extension of these units into Soviet territory and their involvement in large-scale crustal deformation structures, are described. Using the "view down the plunge" method, a generalised tectonic cross-section that predicts the crustal structures along the Polar Profile is compiled, and the structures around the Kola deep drill-hole are reinterpreted. The Kola suture belt, through parts of which the Kola deep bore-hole has been drilled, is considered to represent a ca. 1900 Ma old arc-continent and continent-continent collision suture. It divides the northeastern Shield region into two major crustal compartments: a Northern compartment (comprising the Murmansk and Sörvaranger units) and a Southern compartment (including the Inari unit, the Granulite belt and the Tanaelv belt, as well as the more southernly situated South Lapland-Karelia "craton" of the Karelian province of the Svecokarelian fold belt). The Kola suture belt is outlined by a 2-40 km wide and ca. 500 km long crustal belt composed of (1) Early Proterozoic (ca. 2400-2000 Ma old) metavolcanic and metasedimentary sequences which originally formed part of the attenuated margin of the Northern Archaean compartment, and (2) the remains of a ca. 2000-1900 Ma old, predominantly andesitic island-arc terrain. This

  18. Trace Elements in the Section of the Kievey PGE Deposit (Kola Peninsula, Russia)

    NASA Astrophysics Data System (ADS)

    Groshev, Nikolay; Rundkvist, Tatyana; Korchagin, Alexey

    2015-04-01

    The Kievey reef-type PGE deposit located in the Lower Layered Horizon (LLH) of the West-Pana intrusion was formed as a result of one or several additional magma injections (Korchagin & Mitrofanov, 2010). The composition of the magma was essentially similar to the saturated tholeiite basalt assumed to be a parental magma for the West-Pana layered intrusion in the Kola Peninsula (Latypov & Chistyakova, 2000). In the present study, whole-rock and ICP-MS trace-element data through a detailed borehole section (37 samples) of the LLH were obtained in an attempt to find some differences in the composition of the magmas. The section of the LLH includes four rhythmical units with a total thickness of 21.5 m lying on the mesocratic gabbronorite containing rare 5-cm interlayers of leucocratic rocks. The bottom of the first cycle is a layer of fine- to medium grained melanorite. Interlayering of gabbronorites and leucogabbronorites is observed in the middle of the cycle. Mottled rock of leucogabbronorite-anorthositic composition with relatively distinct spots caused by amphibolization and saussuritization occurs at the upper leucocratic part of the unit. In comparison to the first cycle of the LLH, the upper cycles are thinner and have more simple internal structures. Well-expressed thin layering is rare, and a mottled structure is weakly developed. Relatively thin (15-55 cm thick) coarse grained olivine melanorite layers at the base of these units are a characteristic feature. The overlying unit is represented by homogeneous fine-medium grained gabbronorites with rare interlayers of coarse and medium grained varieties. PGE mineralization (3 levels about 4-6 ppm Pt+Pd+Au) in the LLH occurs near the lower margins of the upper cycles and is associated with interstitial irregular disseminated sulfides (up to 0.5 vol. % of pentlandite, chalcopyrite and pyrrhotite). Disseminated sulfides are most abundant in the upper part of the first cycle, whereas they are hardly visible in the

  19. Cell-zonal textures of tinguaites from the Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Voitsekhovsky, Y. L.; Shpachenko, A. K.; Skiba, V. I.

    Textures of tinguaite dykes cutting the alkaline Khibiny massif in the Kola Peninsula, Russia, are described. They are characterized by a combination of a fractal microfracture network dividing rock into pencil-like cells and of a concentric rhythmical zonation in almost all of them. The latter is formed by interchange of volatile-enriched and volatile-depleted mineral zones. The location of the textures only where dykes contact host khibinites appears to point out the contraction nature of the microfracture network. The cooling time calculated agrees well with this hypothesis. The zonation appears to have arisen through autometamorphic processes with two main competing factors, namely (a) overall cooling of the system and (b) periodic depletion of it in some elements, mainly Na and K. Another mechanism which may be applied to explain the zonation is the known Marangoni Instability effect at the early stage of evolution of the volatile-saturated phonolite melt. Thus, tinguaite textures are caused by nonspecific influences external to the system and may be regarded as an example of self-organization in nature.

  20. Gotu Kola (Centella asiatica): Nutritional Properties and Plausible Health Benefits.

    PubMed

    Chandrika, Udumalagala Gamage; Prasad Kumarab, Peramune A A S

    2015-01-01

    Centella asiatica L. (Gotu Kola) is a nutritionally important plant and a valued traditional medicine in South East Asia. In this review, the chemical composition, nutritional values, and health benefits of C. asiatica have been discussed in detail to emphasize its usage as traditional food and medicine. C. asiatica is one of the most commonly used green leafy vegetables (GLVs) in some countries including Sri Lanka due to its high amounts of medicinally important triterpenoids and beneficial carotenoids. It is consumed in the form of GLVs and in the preparation of juice, drink, and other food products. It is also known to contain vitamins B and C, proteins, important minerals, and some other phytonutrients such as flavonoids, volatile oils, tannins, and polyphenol. In vitro and in vivo studies have shown important health benefits like antidiabetic, wound-healing, antimicrobial, memory-enhancing, antioxidant, and neuroprotecting activities. However, detailed scientific approaches on clinical trials regarding health benefits and nutritional values of C. asiatica are limited, hindering the perception of its benefits, mechanisms, and toxicity in order to develop new drug prototypes. In vitro studies have shown that the method of processing C. asiatica has an impact on its nutritional values and health-related beneficial compounds. The composition of its compounds is influenced by different biotic and abiotic factors which need to be studied in detail to provide information to the public in order to maximize the usage of this valuable plant. PMID:26602573

  1. Advanced Borehole Radar for Hydrogeology

    NASA Astrophysics Data System (ADS)

    Sato, M.

    2014-12-01

    Ground Penetrating Radar is a useful tool for monitoring the hydrogeological environment. We have developed GPR systems which can be applied to these purposes, and we will demonstrate examples borehole radar measurements. In order to have longer radar detection range, frequency lower than100MHz has been normally adopted in borehole radar. Typical subsurface fractures of our interests have a few mm aperture and radar resolution is much poorer than a few cm in this frequency range. We are proposing and demonstrating to use radar polarimetry to solve this problem. We have demonstrated that a full-polarimetry borehole radar can be used for characterization of subsurface fractures. Together with signal processing for antenna characteristic compensation to equalize the signal by a dipole antenna and slot antennas, we could demonstrate that polarimetric borehole radar can estimate the surface roughness of subsurface fractures, We believe the surface roughness is closely related to water permeability through the fractures. We then developed a directional borehole radar, which uses optical field sensor. A dipole antenna in a borehole has omni-directional radiation pattern, and we cannot get azimuthal information about the scatterers. We use multiple dipole antennas set around the borehole axis, and from the phase differences, we can estimate the 3-diemnational orientation of subsurface structures. We are using optical electric field sensor for receiver of borehole radar. This is a passive sensor and connected only with optical fibers and does not require any electric power supply to operate the receiver. It has two major advantages; the first one is that the receiver can be electrically isolated from other parts, and wave coupling to a logging cable is avoided. Then, secondary, it can operate for a long time, because it does not require battery installed inside the system. It makes it possible to set sensors in fixed positions to monitor the change of environmental

  2. Genesis of peat-bog soils in the northern taiga spruce forests of the Kola Peninsula

    SciTech Connect

    Nikonov, V.V.

    1981-01-01

    The characteristics of soil formation processes in the Peat-Bog soils of waterlogged spruce phytocenoses on the Kola Peninsula are investigated. It is found that the ash composition of the peat layer is determined primarily by the composition of the buried plant residues. The effect of the chemical composition of water feeding the peat bogs is determined. (Refs. 7).

  3. Maine Geological Survey Borehole Temperature Profiles

    DOE Data Explorer

    Marvinney, Robert

    2013-11-06

    This dataset includes temperature profiles from 30 boreholes throughout Maine that were selected for their depth, location, and lithologies encountered. Depths range from about 300 feet to 2,200 feet. Most of the boreholes selected for measurement were completed in granite because this lithology can be assumed to be nearly homogeneous over the depth of the borehole. Boreholes were also selected to address gaps in existing geothermal datasets. Temperature profiles were collected in October and November, 2012.

  4. Downhole Imaging With Borehole Radar

    NASA Astrophysics Data System (ADS)

    Fokkema, J. T.; van den Berg, P. M.; van Dongen, K. W. A.; Luthi, S. M.

    We describe a directional borehole radar system. The antennas are positioned in a bi-static set-up. In order to obtain a focused radiation pattern, the transmitting and receiving dipoles are shielded with a curved reflector. The radiation pattern of this scattered wavefield is computed by solving the integral equation for the unknown elec- tric surface current at the conducting surface. Based on these numerical simulations, a prototype was built. The effective radiation pattern is in good agreement with the computed pattern. We also present a three-dimensional imaging method for this bore- hole radar. The computed radiation pattern is used in such a way that deconvolution for the angular radiation pattern can be applied. Data from preliminary laboratory and field tests under controlled conditions are promising. The applications of this method include the detection of unexploded ordinance from boreholes, the detection of objects and layers in tunnels, and the determination of the diameter of concrete columns in the Jetgrout Diameter System. With appropriate modifications, this system may be appli- cable in the oil- and gas industry for the detection of layers and fractures in borehole. It covers a gap between conventional logging measurements in boreholes, and seismic surface surveys.

  5. 30 CFR 75.1322 - Stemming boreholes

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Stemming boreholes 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other...

  6. 30 CFR 75.1322 - Stemming boreholes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Stemming boreholes. 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes. (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other...

  7. 30 CFR 75.1322 - Stemming boreholes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Stemming boreholes. 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes. (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other...

  8. 30 CFR 75.1322 - Stemming boreholes

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Stemming boreholes 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other...

  9. 30 CFR 75.1322 - Stemming boreholes

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Stemming boreholes 75.1322 Section 75.1322... MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1322 Stemming boreholes (a) Only noncombustible material shall be used for stemming boreholes. (b) Stemming materials other...

  10. Waste Isolation Pilot Plant borehole data

    SciTech Connect

    1995-04-01

    Data pertaining to all the surface boreholes used at the WIPP site for site characterization hydrological testing and resource evaluation exist in numerous source documents. This project was initiated to develop a comprehensive data base that would include the data on all WIPP related surface boreholes from the Atomic Energy Commission, Waste Isolation Pilot Plant Energy Research and Development Administration, Department of Energy, and Hydrologic Test Borehole Programs. The data compiled from each borehole includes: operator, permit number, location, total depth, type of well, driller, drilling record, casing record, plugging schedule, and stratigraphic summary. There are six groups of boreholes contained in this data base, they are as follows: Commercially Drilled Potash Boreholes, Energy Department Wells, Geologic Exploration Boreholes, Hydrologic Test Boreholes, Potash Boreholes, and Subsurface Exploration Boreholes. There were numerous references which contained borehole data. In some cases the data found in one document was inconsistent with data in another document. In order to ensure consistency and accuracy in the data base, the same references were used for as many of the boreholes as possible. For example, all elevations and locations were taken from Compilation and Comparison of Test-Hole Location Surveys in the Vicinity of the WIPP Site. SAND 88-1065, Table 3-5. There are some sections where a data field is left blank. In this case, the information was either not applicable or was unavailable.

  11. Detecting a fluid-filled borehole using elastic waves from a remote borehole.

    PubMed

    Tang, Xiaoming; Cao, Jingji; Li, Zhen; Su, Yuanda

    2016-08-01

    The interaction of a fluid-filled borehole with incident elastic waves is an important topic for downhole acoustic measurements. By analyzing the wave phenomena of this problem, one can simulate the detection of a borehole target using a source-receiver system in a remote borehole. The analysis result shows that the wave signals from the target borehole are of sufficient amplitude even though the borehole size is small compared to wavelength. Consequently, the target borehole can be detected when the two boreholes are far away from each other. The result can be utilized to provide a method for testing downhole acoustic imaging tools. PMID:27586782

  12. Amino acid composition of two masticatory nuts (Cola acuminata and Garcinia kola) and a snack nut (Anacardium occidentale).

    PubMed

    Adeyeye, E I; Asaolu, S S; Aluko, A O

    2007-06-01

    The amino acid compositions of Cola acuminata, Garcinia kola and Anacardium occidentale were evaluated by ion-exchange chromatography. Glutamic acid was the most concentrated acid in the samples. In all the amino acids determined, A. occidentale had the most concentrated acid on a pairwise basis. The total amino acids were 356.24 mg/g protein, 112.90 mg/g protein and 659.17 mg/g protein for C. acuminata, G. kola and A. occidentale, respectively. The percentage total essential amino acids were 38.39% (C. acuminata), 47.05% (G. kola) and 51.04% (A. occidentale). Also the percentage total acidic amino acids were 38.16% (C. acuminata), 30.61% (G. kola) and 30.35% (A. occidentale). The calculated isoelectric points were 2.0 (C. acuminata), 0.7 (G. kola) and 3.9 (A. occidentale), showing they can all be precipitated at acidic pH. While threonine was the limiting amino acid in A. occidentale, it was valine in both C. acuminata and G. kola. The percentage cystine (Cys) levels in the total sulphur amino acid were 44.27% (C. acuminata), 37.75% (G. kola) and 50.51% (A. occidentale). The aim of this work was to compare the amino acid profile of the samples. It is recommended that C. acuminata and G. kola consumption be avoided by ulcer patients because of their high levels of acidic amino acids. A. occidentale amino acid scores ranged from 42% to 127%, suggesting that it could be used to enhance the protein quality of cereals through food complementation. PMID:17566886

  13. MWD tool for deep, small diameter boreholes

    SciTech Connect

    Buytaert, J.P.R.; Duckworth, A.

    1992-03-17

    This patent describes an apparatus for measuring a drilling parameters while drilling a borehole in an earth formation, wherein the borehole includes a small diameter deep borehole portion and a large diameter upper borehole portion. It includes small diameter drillstring means for drilling the deep borehole portion; sensor means, disposed within the small diameter drillstring means, for measuring a drilling parameter characteristic of the deep portion of the borehole while drilling the deep portion of the borehole and for providing sensor output signals indicative of the measured parameter; an upper drillstring portion extending between the surface of the formation and the small diameter drillstring means, the upper drillstring portion including a large diameter drillstring portion; data transmission means disposed within the large diameter drillstring portion and responsive to the sensor output.

  14. Borehole Effects in Triaxial Induction Logging

    SciTech Connect

    Bertete-Aguirre, H; Cherkaev, E; Tripp, A

    2000-09-15

    Traditional induction tools use source arrays in which both receiving and transmitting magnetic dipoles are oriented along the borehole axis. This orientation has been preferred for traditional isotropic formation evaluation in vertical boreholes because borehole effects are minimized by the source-receiver-borehole symmetry. However, this source-receiver geometry tends to minimize the response of potentially interesting geological features? such as bed resistivity anisotropy and fracturing which parallels the borehole. Traditional uniaxial tool responses are also ambiguous in highly deviated boreholes in horizontally layered formations. Resolution of these features would be enhanced by incorporating one or more source transmitters that are perpendicular to the borehole axis. Although these transmitters can introduce borehole effects, resistive oil-based muds minimize borehole effects for horizontal source data collection and interpretation. However, the use of oil based muds is contraindicated in environmentally sensitive areas. For this reason, it is important to be able to assess the influence of conductive water based muds on the new generation of triaxial induction tools directed toward geothermal resource evaluation and to develop means of ameliorating any deleterious effects. The present paper investigates the effects of a borehole on triaxial measurements. The literature contains a great deal of work on analytic expressions for the EM response of a magnetic dipole contained in a borehole with possible invasion zones. Moran and Gianzero (1979) for example investigate borehole effects using such an expression. They show that for conductive borehole fluids, the borehole response can easily swamp the formation response for horizontal dipoles. This is also true when the source dipoles are enclosed in a resistive cavity, as shown by Howard (1981) using a mode match modeling technique.

  15. Infrasound research at Kola Regional Seismological Centre, Russia

    NASA Astrophysics Data System (ADS)

    Asming, Vladimir; Kremenetskaya, Elena

    2013-04-01

    A small-aperture infrasound array has been installed in Kola Peninsula, Russia 17 km far from the town of Apatity in the year 2000. It comprises 3 Chaparral V microbarographs placed closely to the APA seismic array sensors and equipped with pipe wind reducing filters. The data are digitized at the array site and transmitted in real time to a processing center in Apatity. To search for infrasound events (arrivals of coherent signals) a beamforming-style detector has been developed. Now it works in near real time. We analyzed the detecting statistics for different frequency bands. Most man-made events are detected in 1-5 Hz band, microbaromes are typically detected in 0.2-1 Hz band. In lower frequencies we record mostly a wind noise. A data base of samples of infrasound signals of different natures has been collected. It contains recordings of microbaromes, industrial and military explosions, airplane shock waves, infrasound of airplanes, thunders, rocket launches and reentries, bolides etc. The most distant signals we have detected are associated with Kursk Magnetic Anomaly explosions (1700 km far from Apatity). We implemented an algorithm for association of infrasound signals and preliminary location of infrasound events by several arrays. It was tested with Apatity data together with data of Sweden - Finnish infrasound network operated by the Institute of Space Physics in Umea (Sweden). By agreement with NORSAR we have a real-time access to the data of Norwegian experimental infrasound installation situated in Karasjok (North Norway). Currently our detection and location programs work both with Apatity and Norwegian data. The results are available in Internet. Finnish militaries routinely destroy out-of-date weapon in autumns at the same compact site in North Finland. This is a great source of repeating infrasound signals of the same magnitude and origin. We recorded several hundreds of such explosions. The signals have been used for testing our location routines

  16. Slant Borehole Demonstration Summary Report

    SciTech Connect

    GARDNER, M.G.

    2000-07-19

    This report provides a summary of the demonstration project for development of a slant borehole to retrieve soil samples from beneath the SX-108 single-shell tank. It provides a summary of the findings from the demonstration activities and recommendations for tool selection and methods to deploy into the SX Tank Farm. Daily work activities were recorded on Drilling and Sampling Daily Work Record Reports. The work described in this document was performed during March and April 2000.

  17. Electromagnetic fields in cased borehole

    SciTech Connect

    Lee, Ki Ha; Kim, Hee Joon; Uchida, Toshihiro

    2001-07-20

    Borehole electromagnetic (EM) measurements, using fiberglass-cased boreholes, have proven useful in oil field reservoir characterization and process monitoring (Wilt et al., 1995). It has been presumed that these measurements would be impossible in steel-cased wells due to the very large EM attenuation and phase shifts. Recent laboratory and field studies have indicated that detection of EM signals through steel casing should be possible at low frequencies, and that these data provide a reasonable conductivity image at a useful scale. Thus, we see an increased application of this technique to mature oilfields, and an immediate extension to geothermal industry as well. Along with the field experiments numerical model studies have been carried out for analyzing the effect of steel casing to the EM fields. The model used to be an infinitely long uniform casing embedded in a homogeneous whole space. Nevertheless, the results indicated that the formation signal could be accurately recovered if the casing characteristics were independently known (Becker et al., 1998; Lee el al., 1998). Real steel-cased wells are much more complex than the simple laboratory models used in work to date. The purpose of this study is to develop efficient numerical methods for analyzing EM fields in realistic settings, and to evaluate the potential application of EM technologies to cross-borehole and single-hole environment for reservoir characterization and monitoring.

  18. Geoscience experiments in boreholes: instrumentation

    SciTech Connect

    Traeger, R.K.

    1984-05-01

    Drilling is the only method available to obtain unambiguous information on processes occurring in the earth's crust. When core and virgin formation fluid samples are available, the geological state of the formation may be defined in the vicinity of the borehole with little ambiguity. Unfortunately, core recovery is expensive and often not complete, and drilling muds contaminate formation fluids. Thus, investigations turn to downhole instrumentation systems to evaluate in situ formation parameters. Some such instruments and the associated interpretative techniques are well developed, especially if they find usage in the evaluation of hydrocarbon reservoirs. Other sytems, particularly those that yield geochemical information are, at best, shallow-hole devices, but they could be engineered for deep-hole applications. Interpretations of logs obtained in igneous and metamorphic systems are not well developed. Finally, measurements away from the immediate vicinity of the borehole are possible but the technology is primitive. In situ instrumentation capabilities and needs for research in boreholes will be reviewed; the review will include details from recent US and European discussions of instrumentation needs. The capability and availability of slim hole logging tools will be summarized. Temperature limitations of the overall logging system will be discussed (current limits are 300/sup 0/C) and options for measurements to 500/sup 0/C will be described.

  19. Borehole Stability in High-Temperature Formations

    NASA Astrophysics Data System (ADS)

    Yan, Chuanliang; Deng, Jingen; Yu, Baohua; Li, Wenliang; Chen, Zijian; Hu, Lianbo; Li, Yang

    2014-11-01

    In oil and gas drilling or geothermal well drilling, the temperature difference between the drilling fluid and formation will lead to an apparent temperature change around the borehole, which will influence the stress state around the borehole and tend to cause borehole instability in high geothermal gradient formations. The thermal effect is usually not considered as a factor in most of the conventional borehole stability models. In this research, in order to solve the borehole instability in high-temperature formations, a calculation model of the temperature field around the borehole during drilling is established. The effects of drilling fluid circulation, drilling fluid density, and mud displacement on the temperature field are analyzed. Besides these effects, the effect of temperature change on the stress around the borehole is analyzed based on thermoelasticity theory. In addition, the relationships between temperature and strength of four types of rocks are respectively established based on experimental results, and thermal expansion coefficients are also tested. On this basis, a borehole stability model is established considering thermal effects and the effect of temperature change on borehole stability is also analyzed. The results show that the fracture pressure and collapse pressure will both increase as the temperature of borehole rises, and vice versa. The fracture pressure is more sensitive to temperature. Temperature has different effects on collapse pressures due to different lithological characters; however, the variation of fracture pressure is unrelated to lithology. The research results can provide a reference for the design of drilling fluid density in high-temperature wells.

  20. Apros-based Kola 1 nuclear power plant compact training simulator

    SciTech Connect

    Porkholm, K.; Kontio, H.; Nurmilaukas, P.

    1996-11-01

    Imatran Voima Oy`s subsidiary IVO International Ltd (IVO IN) and the Technical Research Centre of Finland (VTT) in co-operation with Kola staff supplies the Kola Nuclear Power Plant in the Murmansk region of Russia with a Compact Training Simulator. The simulator will be used for the training of the plant personnel in managing the plant disturbance and accident situations. By means of the simulator is is also possible to test how the planned plant modifications will affect the plant operation. The simulator delivery is financed by the Finnish Ministry of Trade and Industry and the Ministry of Foreign Affairs. The delivery is part of the aid program directed to Russia for the improvement of the nuclear power plant safety.

  1. Electromagnetic sounding of the Kola Peninsula with a powerful extremely low frequency source

    NASA Astrophysics Data System (ADS)

    Velikhov, E. P.; Grigoriev, V. F.; Zhdanov, M. S.; Korotayev, S. M.; Kruglyakov, M. S.; Orekhova, D. A.; Popova, I. V.; Tereschenko, E. D.; Schors, Y. G.

    2011-05-01

    Experiment on electromagnetic sounding of the Kola Peninsula using unique mobile measuring complex of the low-frequency sounding was conducted, allowing to investigate a geoelectric section with a depth of several kilometers on distances up to 100 km from the stationary transmitting aerial. Excess on the order of amplitudes of the vertical component above the horizontal at all frequencies of sounding was registered in a number of points of measurements. This feature managed to be explained quantitatively by circulation of current on regional faults with the closure of current through the sea—before unknown galvanic coastal effect. Interpretation of the results of modeling and neural network solving of inverse problem essentially specifies the fault tectonics of the central part of the Kola Peninsula. Anomaly remote from the observation profile was found out—local pinch of a crustal conductive layer consisting of graphitized rocks and associated with the zone of overthrust.

  2. Hydraulically controlled discrete sampling from open boreholes

    USGS Publications Warehouse

    Harte, Philip T.

    2013-01-01

    Groundwater sampling from open boreholes in fractured-rock aquifers is particularly challenging because of mixing and dilution of fluid within the borehole from multiple fractures. This note presents an alternative to traditional sampling in open boreholes with packer assemblies. The alternative system called ZONFLO (zonal flow) is based on hydraulic control of borehole flow conditions. Fluid from discrete fractures zones are hydraulically isolated allowing for the collection of representative samples. In rough-faced open boreholes and formations with less competent rock, hydraulic containment may offer an attractive alternative to physical containment with packers. Preliminary test results indicate a discrete zone can be effectively hydraulically isolated from other zones within a borehole for the purpose of groundwater sampling using this new method.

  3. In Vitro and In Vivo Biochemical Evaluations of the Methanolic Leaf Extract of Garcinia kola.

    PubMed

    Badmus, Jelili A; Adedosu, Olaniyi T; Adeleke, Emmanuel G; Akinboro, Kehinde H; Odeyemi, Bayonle I; Ayoola, Bolanle I; Hiss, Donavon C

    2014-01-01

    Garcinia kola Heckel (Guttiferae) leaves have received limited scientific attention despite their traditionally acclaimed medicinal properties. The scavenging ability of the methanolic leaf extract (MLE) of G. kola was assayed for hydroxyl radical (OH(•)), superoxide anion (O2 (-)), 1,1-diphenyl-2-picrylhydrazyl (DPPH), azinobis-3-ethyl-benzothiazoline-6-sulfonic acid (ABTS(•+)), and lipid peroxidation (LP) activity in egg yolk, rat liver, and brain homogenates. Total phenolic and flavonoid contents of the extract were also evaluated. Group I animals were given oral doses of water, whereas Group II and Group III animals received 100 and 200 mg/kg body weight (bw) MLE, respectively, for 14 days. Plasma glucose, magnesium, γ-glutamyltransferase (GGT/γGT), alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine, and urea were evaluated. Hepatic reduced glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD), LP, and liver histopathological appearance were also assessed. The extract scavenged OH(•), O2 (-), DPPH, and ABTS(•+) and inhibited LP in egg yolk, rat liver, and brain homogenates. Furthermore, oral administration of the extract showed no adverse effects on hepatic and renal function tests. Increased hepatic GSH and nonsignificant changes in LP, GPx and SOD activities, and liver histology were observed. These results suggest that G. kola leaves have antioxidant activities which may have application in traditional medicine. PMID:27355075

  4. In Vitro and In Vivo Biochemical Evaluations of the Methanolic Leaf Extract of Garcinia kola

    PubMed Central

    Badmus, Jelili A.; Adedosu, Olaniyi T.; Adeleke, Emmanuel G.; Akinboro, Kehinde H.; Odeyemi, Bayonle I.; Ayoola, Bolanle I.; Hiss, Donavon C.

    2014-01-01

    Garcinia kola Heckel (Guttiferae) leaves have received limited scientific attention despite their traditionally acclaimed medicinal properties. The scavenging ability of the methanolic leaf extract (MLE) of G. kola was assayed for hydroxyl radical (OH•), superoxide anion (O2−), 1,1-diphenyl-2-picrylhydrazyl (DPPH), azinobis-3-ethyl-benzothiazoline-6-sulfonic acid (ABTS•+), and lipid peroxidation (LP) activity in egg yolk, rat liver, and brain homogenates. Total phenolic and flavonoid contents of the extract were also evaluated. Group I animals were given oral doses of water, whereas Group II and Group III animals received 100 and 200 mg/kg body weight (bw) MLE, respectively, for 14 days. Plasma glucose, magnesium, γ-glutamyltransferase (GGT/γGT), alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine, and urea were evaluated. Hepatic reduced glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD), LP, and liver histopathological appearance were also assessed. The extract scavenged OH•, O2−, DPPH, and ABTS•+ and inhibited LP in egg yolk, rat liver, and brain homogenates. Furthermore, oral administration of the extract showed no adverse effects on hepatic and renal function tests. Increased hepatic GSH and nonsignificant changes in LP, GPx and SOD activities, and liver histology were observed. These results suggest that G. kola leaves have antioxidant activities which may have application in traditional medicine.

  5. Shear wave transducer for boreholes

    DOEpatents

    Mao, N.H.

    1984-08-23

    A technique and apparatus is provided for estimating in situ stresses by measuring stress-induced velocity anisotropy around a borehole. Two sets each of radially and tangentially polarized transducers are placed inside the hole with displacement directions either parallel or perpendicular to the principal stress directions. With this configuration, relative travel times are measured by both a pulsed phase-locked loop technique and a cross correlation of digitized waveforms. The biaxial velocity data are used to back-calculate the applied stress.

  6. Borehole Summary Report for Core Hole C4998 – Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect

    Barnett, D. BRENT; Garcia, Benjamin J.

    2006-12-15

    Seismic borehole C4998 was cored through the upper portion of the Columbia River Basalt Group and Ellensburg Formation to provide detailed lithologic information and intact rock samples that represent the geology at the Waste Treatment Plant. This report describes the drilling of borehole C4998 and documents the geologic data collected during the drilling of the cored portion of the borehole.

  7. Reconstruction of early Holocene paleoclimate and environment in the SW Kola region, Russian Arctic

    NASA Astrophysics Data System (ADS)

    Grekov, Ivan; Kolka, Vasiliy; Syrykh, Liudmila; Nazarova, Larisa

    2016-04-01

    In the current period of the global climate change it becomes necessary to have a clear understanding of not only the changes taking place in the components of the natural environment, but also to understand development of all interactions between those components. Quaternary terrigenic sediments and lakes of the Kola Peninsula store information about the development of the region in the Late Glacial and Holocene: movements of the glacier, neotectonic activity, post-glacial rebound, formation and development of natural environments after deglaciation. Multi-proxy study of landscapes evolution of the Kola Peninsula in the Late Quaternary will help to establish a detailed reconstruction of climatic and environmental changes of this poor studied sector of the Arctic. Quaternary history on the Kola Peninsula is represented mainly by Late Pleistocene and Holocene sediments covering the Baltic Shield (Lavrova, 1960; Evzerov, 2015). Several palaeolimnological investigations in the Baltic Shield area have been performed earlier (Donner et al., 1977; Anundsen, 1985; Berglund, 2004). Studies of the southern coast of the Kola Peninsula have shown that marine transgression took place in the Late Pleistocene that was then replaced by a regression with variable speed. The slowdown of the uplift of the area took place between 8800 - 6800 BP (cal. years) and corresponded to the time of the Tapes transgression of the Arctic Ocean (Evzerov et al. 2010; Kolka, et al., 2013). Palaeoclimatic studies based on micro-paleontological analyzes indicate uneven development of the Kola Peninsula landscapes in the Late Glacial and Early Holocene. The northern coast of the Peninsula became free of ice first. In this area tundra-steppe vegetation was established for a short time and was later replaced by tundra (Snyder et al, 2000). Southern part of the Kola Peninsula was dependent on the conditions of deglaciation of the White Sea basin and cleared of ice much later (Evzerov et al., 2010; Kolka

  8. Coupled aquifer-borehole simulation.

    PubMed

    Clemo, Tom

    2010-01-01

    A model coupling fluid hydraulics in a borehole with fluid flow in an aquifer is developed in this paper. Conservation of momentum is used to create a one-dimensional steady-state model of vertical flow in an open borehole combined with radially symmetric flow in an aquifer and with inflow to the well through the wellbore screen. Both laminar and turbulent wellbore conditions are treated. The influence of inflow through the wellbore screen on vertical flow in the wellbore is included, using a relation developed by Siwoń (1987). The influence of inflow reduces the predicted vertical variation in head up to 15% compared to a calculation of head losses due to fluid acceleration and the conventional Colebrook-White formulation of friction losses in a circular pipe. The wellbore flow model is embedded into the MODFLOW-2000 ground water flow code. The nonlinear conservation of momentum equations are iteratively linearized to calculate the conductance terms for vertical flow in the wellbore. The resulting simulations agree favorably with previously published results when the model is adjusted to meet the assumptions of the previous coupled models. PMID:19682095

  9. Quantification of seismic scattering in situ with the conversion log method: A study from the KTB super-deep drill hole

    NASA Astrophysics Data System (ADS)

    Beilecke, Thies; Rabbel, Wolfgang

    2004-08-01

    The ``conversion log'' is a new approach to quantify seismic scattering in situ in terms of PS conversion in transmission along a vertical seismic profile (VSP): The amount of converted seismic energy is determined by slant-stacking and plotted as a function of depth, thus forming a borehole log of seismic conversion. We investigated seismic scattering of crystalline crust at the Continental Deep Drilling Site (KTB) in southern Germany where detailed knowledge exists of crustal parameters down to 9 km depth. In 1999 a deep VSP was acquired in the KTB main borehole. The experiment yielded high quality seismic data in terms of signal bandwidth, signal-to-noise ratio and stability of the source signal. The seismic data show varying levels of PS conversion along the borehole. The dip of layering and foliation is about 45° to 75° along the KTB drill hole. Under these conditions the conversion amplitudes depend only weakly on the angle between the incident seismic wave and the impedance contrast surface. The conversion log method was used to quantify energy loss by forward scattering. Field data were compared with finite-difference computations and with petrological and structural borehole information. It turned out that only 10-50% of PS forward scattering originates from conversion at lithological interfaces and structural complexity whereas 90-50% is due to velocity heterogeneity caused by fractures. The conversion log is correlated with the depth function of fracture density, and it is inversely correlated with the depth function of chlorite content, that seems to `heal' the influence of cracks and fissures.

  10. 30 CFR 75.1318 - Loading boreholes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... shall be the primer cartridge with the end of the cartridge containing the detonator facing the back of... between each cartridge in the borehole. (d) When loading other boreholes— (1) The primer cartridge shall... inserted shall face the back of the borehole; and (3) The primer cartridge and other explosives shall...

  11. 30 CFR 75.1318 - Loading boreholes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... shall be the primer cartridge with the end of the cartridge containing the detonator facing the back of... between each cartridge in the borehole. (d) When loading other boreholes— (1) The primer cartridge shall... inserted shall face the back of the borehole; and (3) The primer cartridge and other explosives shall...

  12. Cross-borehole and surface-to-borehole electromagnetic induction for reservoir characterization

    SciTech Connect

    Wilt, M.J.; Morrison, H.F.; Becker, A.; Lee, K.H.

    1991-08-01

    Audio-frequency cross-borehole and surface-to-borehole electromagnetics (EM) are interesting alternatives to existing techniques for petroleum reservoir characterization and monitoring. With these methods signals may be propagated several hundreds of meters through typical sand/shale reservoirs and data may be collected at high accuracy with a high sensitivity to the subsurface resistivity distribution. Field systems for cross-borehole and surface-to-borehole EM measurements have been designed and built by Lawrence Livermore and Lawrence Berkeley Laboratories for reservoir evaluation and monitoring. The cross-borehole system utilizes vertical axis induction coil antennas for transmission and detection of sinusoidal signals. Data are collected in profiles with the source coil moving continuously while its signal is detected by a stationary receiver coil located in a separate well. Subsequent profiles are collected using a different receiver depth and the same transmitter span until a suite of profiles is obtained that cover the desired interval in the borehole. The surface-to-borehole system uses a large diameter surface loop transmitter and a vertical axis borehole receiver. Due to its high signal strength this system operates using a sweep frequency transmitter waveform so that data may be simultaneously collected over several decades of frequency. Surface-to-borehole profiles are equally repeatable and although this data is less sensitive than cross-borehole EM, it can be fit to a resistivity section consistent with the borehole log. 8 refs., 14 figs.

  13. Backtracking urbanization from borehole temperature

    NASA Astrophysics Data System (ADS)

    Bayer, Peter; Rivera, Jaime A.; Blum, Philipp; Rybach, Ladislaus

    2016-04-01

    The thermal regime in shallow ground is influenced by various factors such as short and long term climatic variations, atmospheric urban warming, land use change and geothermal energy use. Temperature profiles measured in boreholes represent precious archives of the past thermal conditions at the ground surface. Changes at the ground surface induce time-dependent variations in heat transfer. Consequently, instantaneous and persistent changes such as recent atmospheric climate change or paving of streets cause perturbations in temperature profiles, which now can be found in depths of hundred meters and even more. In our work, we focus on the influence of urbanization on temperature profiles. We inspect profiles measured in borehole heat exchanger (BHE) tubes before start of energy extraction. These were obtained at four locations in the city and suburbs of Zurich, Switzerland, by lowering a specifically developed temperature logging sensor in the 200-400 m long tubes. Increased temperatures indicate the existence of a subsurface urban heat island (SUHI). At the studied locations groundwater flow can be considered negligible, and thus conduction is the governing heat transport process. These locations are also favorable, as long-term land use changes and atmospheric temperature variations are well documented for more than the last century. For simulating transient land use changes and their effects on borehole temperature profiles, a novel analytical framework based on the superposition of Green's functions is presented. This allows flexible and fast computation of the long term three-dimensional evolution of the thermal regime in shallow ground. It also facilitates calibration of unknown spatially distributed parameter values and their correlation. With the given spatial and temporal discretization of land use and background atmospheric temperature variations, we are able to quantify the heat contribution by asphalt and buildings. By Bayesian inversion it is

  14. Isolation and Characterization of Flavanone Glycoside 4I,5, 7-Trihydroxy Flavanone Rhamnoglucose from Garcinia kola Seed

    NASA Astrophysics Data System (ADS)

    Okwu, D. E.; Morah, F. N. I.

    The ethanolic extract of Garcinia kola, Heckel (Guttiferae), which had previously been shown to have biological activity were studied. Preliminary phytochemical screening of the plants showed the presence of flavonoids, phenolic compounds, tannins and saponins. The ethanolic extract of Garcinia kola seeds resulted in the isolation and characterization of flavanone glycoside 4I, 5, 7-trihydroxyflavonone rhamnoglucose (that is naringin-7-rharmnoglucoseside) from its spectral data. IHNMR spin system analysis and acid hydrolysis were performed to characterize the higher order rhamnoglucosyl moiety comprising glucose and rhamnose linked to carbon 7 of the flavanone ring system of the isolate. It is concluded that 4I, 5, 7-trihydroxyflavanone rhamnoglucose may be a contributor to the antioxidants, anti-inflammatory, anti-microbial, anti-tumor and anti-hepatotoxic properties exhibited by Garcinia kola seed.

  15. Kimama Well - Borehole Geophysics Database

    DOE Data Explorer

    Shervais, John

    2011-07-04

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimama drill site was set up to acquire a continuous record of basaltic volcanism along the central volcanic axis and to test the extent of geothermal resources beneath the Snake River aquifer. Data submitted by project collaborator Doug Schmitt, University of Alberta

  16. Kimberly Well - Borehole Geophysics Database

    DOE Data Explorer

    Shervais, John

    2011-07-04

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Kimberly drill hole was selected to document continuous volcanism when analysed in conjunction with the Kimama and is located near the margin of the plain. Data submitted by project collaborator Doug Schmitt, University of Alberta

  17. Comprehensive paleoseismic geological studies in a key site in southwestern Kola Peninsula (Northeast of the Fennoscandian Shield)

    NASA Astrophysics Data System (ADS)

    Nikolaeva, S. B.; Nikonov, A. A.; Shvarev, S. V.; Rodkin, M. V.

    2016-07-01

    This paper considers the results of detailed paleoseismic and geological investigations in a key site in the wall of the Imandra Lake depression (Kola Peninsula Region, Northeast of the Fennoscandian Shield). Study of different groups of paleoseismic deformations developed in the fault zone and the application of new methods and techniques made it possible to identify a large seismotectonic zone characterized by great earthquakes at the end of the Late Glacial and in the Holocene. The investigation data are indicative of the necessity to estimate the seismic potential in the Kola Atomic plant area in a different way.

  18. A Pb isotope investigation of the Lovozero Agpaitic Nepheline Syenite, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Zartman, R. E.; Kogarko, L. N.

    2014-01-01

    For the first time Pb isotope composition was established in Lovozero rocks and raremetal ores, which is important for identifying their sources. The world's largest layered intrusion of agpaitic nepheline syenite-the Lovozero alkaline massif—is located near the center of the Kola Peninsula in Russia. This superlarge complex plutonic body hosts the economically important loparite and eudiallyte deposits [1]. These deposits contain immense resources of REE, Nb, Ta, Zr, and constitute a world class mineral district. The Lovozero massif belongs to the Kola ultramafic alkaline and carbonatitic province (KACP) of Devonian age. Previous bulk rock studies have shown that the initial Sr and Nd isotope ratios of Lovozero rocks plot in the depleted mantle quadrant of Sr-Nd diagrams [2]. More recently, Hf isotope data obtained by Kogarko et al. (3) confirm that the Lovozero and Khibina massifs with ɛHf between 6 and 8 are derived predominantly from a depleted mantle source. It was shown that Sr, Nd, and Hf abundances are significantly elevated in the Kola alkaline rocks, and thus their isotopic compositions are relatively insensitive to minor contamination by the overlying crustal rocks. By contrast, Pb in the KACP rocks is a much more sensitive indicator of a crustal component. In this paper we investigate the lead isotopic signature of all resentative types of Lovozero rocks (Table 1) in order to further characterize their mantle sources. The Lovozero massif consists of four intrusive phases. Rocks of phase I (mostly nepheline syenites) comprise about 5% of the total volume, phase II (urtites, foyaite, lujavrites) forms the main portion of the massif comprising 77% in volume, and phase III (eudialyte lujavrites) contributes about 18%. Country rocks are represented by Devonian effusive rocks and Archean gneisses.

  19. PBO Borehole Strain and Siesmic Network

    NASA Astrophysics Data System (ADS)

    Mencin, D.; Jackson, M.; Anderson, G.; Hodgkinson, K.; Hasting, M.; Dittman, T.; Johnson, W.; Meertens, C.

    2007-05-01

    UNAVCO is a non-profit, community-based organization funded by the National Science Foundation to install and operate the geodetic component of EarthScope called the Plate Boundary Observatory (PBO). UNAVCO will install 103 borehole tensor strainmeters/seismometers and 28 borehole tiltmeters These instruments will be used to study the three-dimensional strain field resulting from deformation across the active boundary zone between the Pacific and North American plates in the western United States in hopes of increasing our understanding of the causes and mechanisms associated with earthquakes and volcanic activity. This represents almost a tripling of all installed borehole strainmeters in North America. Since the initial deployment of strainmeters in the early 1980's, borehole strainmeters have contributed valuable data at periods ranging from minutes to weeks with sensitivities two to three orders of magnitude better than continuous GPS at periods of days to weeks. Borehole strainmeters have been used to image earthquakes, slow earthquakes, creep events and volcanic eruptions in the US, Iceland and Japan. A brief history of US BSM program is presented. Initial PBO strainmeter deployments show promising results: imaging two slow slip events in the PNW along with excellent tele-siesmic imaging. Exciting work has been done in the PBO community relating modeled strain from the GPS network to observed strain from the BSM network. PBO also plans the installation of three volcanic arrays at Mt St Helens, Yellowstone and Long Valley. In addition to strainmeters, each borehole contains a three-component geophone and a pore pressure transducer. A subset of the boreholes are also used for heat flow measurements. When completed the PBO borehole strainmeter network will be the largest network of strainmeters installed to date and one of the world's largest borehole seismic networks. These instruments will bridge the gap between seismology and space-geodetic techniques and

  20. Advanced motor driven clamped borehole seismic receiver

    DOEpatents

    Engler, Bruce P.; Sleefe, Gerard E.; Striker, Richard P.

    1993-01-01

    A borehole seismic tool including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric meter in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  1. Advanced motor driven clamped borehole seismic receiver

    DOEpatents

    Engler, B.P.; Sleefe, G.E.; Striker, R.P.

    1993-02-23

    A borehole seismic tool is described including a borehole clamp which only moves perpendicular to the borehole. The clamp is driven by an electric motor, via a right angle drive. When used as a seismic receiver, the tool has a three part housing, two of which are hermetically sealed. Accelerometers or geophones are mounted in one hermetically sealed part, the electric motor in the other hermetically sealed part, and the clamp and right angle drive in the third part. Preferably the tool includes cable connectors at both ends. Optionally a shear plate can be added to the clamp to extend the range of the tool.

  2. Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4993

    SciTech Connect

    Rust, Colleen F.; Barnett, D. BRENT; Bowles, Nathan A.; Horner, Jake A.

    2007-02-28

    A core hole (C4998) and three boreholes (C4993, C4996, and C4997) were drilled to acquire stratigraphic and downhole seismic data to model potential seismic impacts and to refine design specifications and seismic criteria for the Waste Treatment Plant (WTP) under construction on the Hanford Site. Borehole C4993 was completed through the Saddle Mountains Basalt, the upper portion of the Wanapum Basalt, and associated sedimentary interbeds, to provide a continuous record of the rock penetrated by all four holes and to provide access to the subsurface for geophysical measure¬ment. Presented and compiled in this report are field-generated records for the deep mud rotary borehole C4993 at the WTP site. Material for C4993 includes borehole logs, lithologic summary, and record of rock chip samples collected during drilling through the months of August through early October. The borehole summary report also includes documentation of the mud rotary drilling, borehole logging, and sample collection.

  3. Which boreholes do we need to resolve the Common Era in borehole paleoclimatology?

    NASA Astrophysics Data System (ADS)

    Rath, V.; Smerdon, J. E.; Gonzalez-Rouco, F. J.; Beltrami, H.

    2011-12-01

    The global database of borehole temperature profiles used to estimate paleoclimatic ground surface temperature histories (GSTHs) has typically focused on the last 500 years. his is mainly due to the fact that the borehole database is dominated by shallow boreholes (~200-300 m). Nevertheless, it has been shown that these boreholes may be too shallow for proper separation of the downwelling climatic transient and the long-term background steady-state signal associated with heat loss from the earth's interior. The mere inclusion of deeper boreholes, however, does not necessarily mitigate the problem. Borehole temperature profiles of any depth show the signatures of earlier climatic changes, including the strong warming following the last glacial maximum (LGM). In shallow boreholes this effect is very similar to a linear trend, usually cannot be discriminated from a steady-state geotherm, and is unlikely to strongly impact estimates of GSTHs spanning common-era timescales. In deeper boreholes, however, the signature of the LGM cannot be approximated linearly, and biases associated with the LGM may impact GSTH reconstructions during the Common Era. The combined incentive to employ deep boreholes for reliable estimation of the background steady-state signal, while limiting the LGM impacts on reconstructions of Common-Era GSTHs thus leads to an multi-objective optimization problem seeking a trade-off between the impacts of the two effects. Such an optimization of the borehole maximum depth criterion is investigated in this study using numerical models. A Monte Carlo ensemble approach is used to quantify the impact of various reconstruction decisions as temperature histories, error characteristics, thermophysical properties, and maximum borehole depths. The findings have implications for interpretations of current global reconstruction products and future efforts to analyze the global borehole database for Common-Era GSTH reconstructions.

  4. Which boreholes do we need to resolve the Common Era in borehole paleoclimatology?

    NASA Astrophysics Data System (ADS)

    Rath, V.; Smerdon, J. E.; González-Rouco, J. F.; Beltrami, H.

    2012-04-01

    The global database of borehole temperature profiles used to estimate paleoclimatic ground surface temperature histories (GSTHs) has typically focused on the last 500 years. his is mainly due to the fact that the borehole database is dominated by shallow boreholes (~200-300 m). Nevertheless, it has been shown that these boreholes may be too shallow for proper separation of the downwelling climatic transient and the long-term background steady-state signal associated with heat loss from the earth's interior. The mere inclusion of deeper boreholes, however, does not necessarily mitigate the problem. Borehole temperature profiles of any depth show the signatures of earlier climatic changes, including the strong warming following the last glacial maximum (LGM). In shallow boreholes this effect is very similar to a linear trend, usually cannot be discriminated from a steady-state geotherm, and is unlikely to strongly impact estimates of GSTHs spanning common-era timescales. In deeper boreholes, however, the signature of the LGM cannot be approximated linearly, and biases associated with the LGM may impact GSTH reconstructions during the Common Era. The combined incentive to employ deep boreholes for reliable estimation of the background steady-state signal, while limiting the LGM impacts on reconstructions of Common-Era GSTHs thus leads to an multi-objective optimization problem seeking a trade-off between the impacts of the two effects. Such an optimization of the borehole maximum depth criterion is investigated in this study using numerical models. A Monte Carlo ensemble approach is used to quantify the impact of various reconstruction decisions as temperature histories, error characteristics, thermophysical properties, and maximum borehole depths. The findings have implications for interpretations of current global reconstruction products and future efforts to analyze the global borehole database for Common-Era GSTH reconstructions. (http://palma.fis.ucm.es/~volker/)

  5. Borehole Summary Report for Waste Treatment Plant Seismic Borehole C4996

    SciTech Connect

    Adams , S. C.; Ahlquist, Stephen T.; Fetters, Jeffree R.; Garcia, Ben; Rust, Colleen F.

    2007-01-28

    This report presents the field-generated borehole log, lithologic summary, and the record of samples collected during the recent drilling and sampling of the basalt interval of borehole C4996 at the Waste Treatment Plant (WTP) on the Hanford Site. Borehole C4996 was one of four exploratory borings, one core hole and three boreholes, drilled to investigate and acquire detailed stratigraphic and down-hole seismic data. This data will be used to define potential seismic impacts and refine design specifications for the Hanford Site WTP.

  6. In Vitro Antilisterial Properties of Crude Methanol Extracts of Garcinia kola (Heckel) Seeds

    PubMed Central

    Penduka, Dambudzo; Okoh, Anthony I.

    2012-01-01

    Crude methanol extracts of Garcinia kola (Heckel) seeds were screened for their antilisterial activities against 42 Listeria bacteria isolated from wastewater effluents. The extract had activity against 45% of the test bacteria and achieved minimum inhibitory concentrations (MICs) ranging between 0.157 and 0.625 mg/mL. The rate of kill of the extract was determined against four representative Listeria species in the study, and the results showed that the highest percentage of bacteria cells were killed after the maximum exposure time of 2 h at the highest concentration of 4 × MIC value, with the maximum number of bacteria cells killed being for L. ivanovii (LEL 30) 100%, L. monocytogenes (LAL 8) 94.686%, L. ivanovii (LEL 18) 60.330%, and L. grayi (LAL 15) 56.071% We therefore conclude that the nature of inhibition of the crude methanol extracts of Garcinia kola seeds can be either bactericidal or bacteriostatic depending on the target Listeria species and can also differ among same species as evidenced by L. ivanovii strains LEL 30 and LEL 18. PMID:22927786

  7. Structural setting and geochemistry of Devonian dikes in the Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Terekhov, E. N.; Baluev, A. S.; Przhiyalgovsky, E. S.

    2012-01-01

    The structural setting and geochemistry of the Devonian dikes in the Kola Peninsula are considered. The alkaline dikes are controlled by rift- and drift-related structural elements. The first type of structures is exemplified by the Khibiny-Kontozero Fault Zone, which is regarded as a propagation zone of the East Barents Rift. The second type comprises Early Precambrian structural elements reactivated during Devonian drift of the East European Plate. Alkaline dikes occur in the ring structures at the ends of rifts and in the accommodation zones where the polarity of the main fault plane changes. These are the sites of accumulation and abrupt relaxation of tectonic stresses. Despite the significant differences in the petrography and chemistry of alkaline dikes, all of them are enriched in REE, apparently due to the elevated concentrations of these elements in the fluids. The dolerite dikes at the Murmansk Coast are located in the outer zone of the vast, concentrically zoned plateau basalt province with the East Barents Trough as its center. According to geophysical data, basaltic flows are suggested within this trough. The dolerite dikes increase in number in the inland propagation zone of the East Barents Trough extending in the Baltic Shield. The alkaline igneous rocks of the Kola Peninsula were formed under local compression at the periphery of the plateau basalt province.

  8. Widespread tannin intake via stimulants and masticatories, especially guarana, kola nut, betel vine, and accessories.

    PubMed

    Morton, J F

    1992-01-01

    Tannins are increasingly recognized as dietary carcinogens and as antinutrients interfering with the system's full use of protein. Nevertheless, certain tannin-rich beverages, masticatories, and folk remedies, long utilized in African, Asiatic, Pacific, and Latin American countries, are now appearing in North American sundry shops and grocery stores. These include guarana (Paullinia cupana HBK.) from Brazil, kola nut (Cola nitida Schott & Endl. and C. acuminata Schott & Endl.) from West Africa, and betel nut (Areca catechu L.) from Malaya. The betel nut, or arecanut, has long been associated with oral and esophageal cancer because of its tannin content and the tannin contributed by the highly astringent cutch from Acacia catechu L. and Uncaria gambir Roxb. and the aromatic, astringent 'pan' (leaves of Piper betel L.) chewed with it. In addition to the constant recreational/social ingestion of these plant materials, they are much consumed as aphrodisiacs and medications. Guarana and kola nut enjoy great popularity in their native lands because they are also rich in caffeine, which serves as a stimulant. Research and popular education on the deleterious effects of excessive tannin intake could do much to reduce the heavy burden of early mortality and health care, especially in developing countries. PMID:1417698

  9. Using Boreholes as Windows into Groundwater Ecosystems

    PubMed Central

    Sorensen, James P. R.; Maurice, Louise; Edwards, François K.; Lapworth, Daniel J.; Read, Daniel S.; Allen, Debbie; Butcher, Andrew S.; Newbold, Lindsay K.; Townsend, Barry R.; Williams, Peter J.

    2013-01-01

    Groundwater ecosystems remain poorly understood yet may provide ecosystem services, make a unique contribution to biodiversity and contain useful bio-indicators of water quality. Little is known about ecosystem variability, the distribution of invertebrates within aquifers, or how representative boreholes are of aquifers. We addressed these issues using borehole imaging and single borehole dilution tests to identify three potential aquifer habitats (fractures, fissures or conduits) intercepted by two Chalk boreholes at different depths beneath the surface (34 to 98 m). These habitats were characterised by sampling the invertebrates, microbiology and hydrochemistry using a packer system to isolate them. Samples were taken with progressively increasing pumped volume to assess differences between borehole and aquifer communities. The study provides a new conceptual framework to infer the origin of water, invertebrates and microbes sampled from boreholes. It demonstrates that pumping 5 m3 at 0.4–1.8 l/sec was sufficient to entrain invertebrates from five to tens of metres into the aquifer during these packer tests. Invertebrates and bacteria were more abundant in the boreholes than in the aquifer, with associated water chemistry variations indicating that boreholes act as sites of enhanced biogeochemical cycling. There was some variability in invertebrate abundance and bacterial community structure between habitats, indicating ecological heterogeneity within the aquifer. However, invertebrates were captured in all aquifer samples, and bacterial abundance, major ion chemistry and dissolved oxygen remained similar. Therefore the study demonstrates that in the Chalk, ecosystems comprising bacteria and invertebrates extend from around the water table to 70 m below it. Hydrogeological techniques provide excellent scope for tackling outstanding questions in groundwater ecology, provided an appropriate conceptual hydrogeological understanding is applied. PMID:23936176

  10. Borehole stability in densely welded tuffs

    SciTech Connect

    Fuenkajorn, K.; Daemen, J.J.K.

    1992-07-01

    The stability of boreholes, or more generally of underground openings (i.e. including shafts, ramps, drifts, tunnels, etc.) at locations where seals or plugs are to be placed is an important consideration in seal design for a repository (Juhlin and Sandstedt, 1989). Borehole instability or borehole breakouts induced by stress redistribution could negate the effectiveness of seals or plugs. Breakout fractures along the wall of repository excavations or exploratory holes could provide a preferential flowpath for groundwater or gaseous radionuclides to bypass the plugs. After plug installation, swelling pressures exerted by a plug could induce radial cracks or could open or widen preexisting cracks in the rock at the bottom of the breakouts where the tangential compressive stresses have been released by the breakout process. The purpose of the work reported here is to determine experimentally the stability of a circular hole in a welded tuff sample subjected to various external boundary loads. Triaxial and biaxial borehole stability tests have been performed on densely welded Apache Leap tuff samples and Topopah Spring tuff samples. The nominal diameter of the test hole is 13.3 or 14.4 mm for triaxial testing, and 25.4 mm for biaxial testing. The borehole axis is parallel to one of the principal stress axes. The boreholes are drilled through the samples prior to applying external boundary loads. The boundary loads are progressively increased until breakouts occur or until the maximum load capacity of the loading system has been reached. 74 refs.

  11. Impact of acid and trace metals deposition on freshwater invertebrates in north-eastern Fennoscandia and Kola Peninsula

    SciTech Connect

    Yakovlev, V.

    1996-12-31

    Freshwater invertebrate communities in a total 400 lakes and streams in northeastern Norway, Finnish Lapland and the Kola Peninsula, subjected to the atmospheric deposition were studied. The severe influence of toxic heavy metals, dusts from smelters and mineral enrichment factories were found in the Kola Peninsula. The negative acidification effects on benthic communities were found in the Jarfjord (Norway), Enontekio, Ranua-Posio and Kittila-Kolari (Finnish Lapland) areas and in the Kola Peninsula (Russia). Taxa groups, known to be sensitive to acidification, such as gammarids, snails, mayflies, stone flies, were represented with few species and in a low abundance. Heavy metals accumulation in biota is recorded in areas surrounding nickel smelters in the Kola Peninsula. The metal concentration invertebrates in remote areas is rather wide and depend on an air deposition, characteristics of lake catchment areas, as well as water acidity. The environmental variables, such as lake hydrological type, altitude of lakes, dominant substratum type, abundance of macrophytes and mosses in sampling area, content of pollutants in water also show significant relationships with metal concentration in invertebrates. The most severe negative effects on biota were found in waters with low pH and simultaneously contaminated by heavy metals. The biological method for estimation of simultaneously water acidification and contamination is suggested.

  12. Comparative study on the efficacy of Garcinia kola in reducing some heavy metal accumulation in liver of Wistar rats.

    PubMed

    Nwokocha, C R; Owu, D U; Ufearo, C S; Iwuala, M O E

    2011-05-17

    Garcinia kola is regarded as an antidote and anti-hepatotoxic agent. We examined its protection ability against mercury (Hg), lead (Pb) and cadmium (Cd) accumulation in the liver. The ground seed was mixed with rat feed (5%, w/w) and fed to rats while Hg (10 ppm), Cd (200 ppm) and Pb (100 ppm) was given in drinking water. Garcinia kola was administered either at the same time with the metals (group 2), a week after exposure to heavy metals (group 3) or given a week before heavy metal exposure (group 4) for six weeks. The heavy metal accumulations in the liver were determined using AAS. Garcinia kola could not reverse the weight reduction in the heavy metal exposed groups although it offers more protection and aid greater elimination of heavy metals from the liver. There was a significant (P<0.01) increase in protection by Garcinia kola to Cd (72.4%) and Pb (56.2%) accumulation when compared to Hg (40%) at week 2 which was significantly (P<0.01) decreased at week 4 when compared to week 2. At week 6, the percentage protection to both Hg (64.2%) and Cd (62.2%) were comparable to each other while protection to Pb (49.9%) accumulation was significantly (P<0.01) reduced. The percentage protection was time-dependent in some groups but treatment during and after the exposure provided a greater protection. Garcinia kola has the highest hepatoprotective effect to Cd followed by Hg and least protection against Pb toxicity in rats and its administration is beneficial in reducing heavy metal accumulation in the liver. PMID:21458555

  13. Means and method for protecting apparatus situated in a borehole from closure of the borehole

    SciTech Connect

    Haberman, J.P.

    1983-08-16

    Apparatus, situated in a borehole traversing an earth formation, is protected from closure of the borehole by being encased in an inflatable device. Surface equipment inflates and maintains the inflatable device at a sufficient pressure so as to prevent the earth formation from closing in an contacting the apparatus.

  14. ABCGheritage project - promoting geotourism in northern Finland, northern Norway and the Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Pihlaja, Jouni; Johansson, Peter; Lauri, Laura S.

    2014-05-01

    Nature tourism has been a growing business sector in the Barents area during the recent decades. With the purpose to develop nature tourism in a sustainable way, a cooperation project ABCGheritage - Arctic Biological, Cultural and Geological Heritage has been carried out. Project has received partial funding from the EU Kolarctic ENPI program. In the geoheritage part of the project the main activities were aimed to develop pro-environmental ways of geotourism in the area. The three main participants in the geoheritage part of the project are the Geological Survey of Finland, Northern Finland Office, the Geological Institute of the Kola Science Centre of the Russian Academy of Sciences and Bioforsk Soil and Environment from northeastern Norway. The duration of the project is 2012-2014 and most of the work has already been completed even if most of the results are not published yet. Totally ten different tasks have been implemented in the geological part of the project. The largest task has been the preparation of a geological outdoor map and guide book of the Khibiny Tundra locating in the central part of the Kola Peninsula. In Finland already 11 such maps have been published, and the experiences gained during their production have been used in this project, too. Geological heritage trails to the Khibiny Tundra have also been created and they will be drawn on the map. The second concrete result is the Barents Tour for Geotourist -guide, which will be published as a guide book, web pages and an exhibition. The route comprises ca 35 best geological demonstration sites along the circle route from northern Finland to northeastern Norway, from there to Kola Peninsula and then back to Finland. Information of the route will be available for all interested travelers. In addition to the geological outdoor map of the Khibiny Tundra and "Barents Tour for Geotourists"-guide, the primary outputs of the project are the geological nature trails on the field, geological

  15. Seismoelectric Wave Measurements in Borehole Models

    NASA Astrophysics Data System (ADS)

    Wang, J.; Hu, H.; Guan, W.

    2014-12-01

    An experimental system was built in the laboratory based on the electrokinetic theory, which contains a small scaled seismoelectric detector and a high resolution digitizer ( 1 MS/s, 22 bits ). The electrokinetic measurements are carried out with seismoelectric well logging technique in borehole models at high frequency (90 kHz), and the localized electrokinetic fields that accompany compressional wave, shear wave and Stoneley wave are clearly observed with monopole source in two sandstone models that are saturated by tap water. The magnitudes of these seismoelectric waves are in the range of 1-100 microvolt, which is useful for designing the seismoelectric logging instruments. The experimental results also show that the seismoelectric well logging signals are related to the permeability of borehole formations. Their amplitudes become larger in the high permeability model, which can be used to measure the permeability of rock formation although no such relationship has ever been provided in existing theories. We also made seismoelectric measurements in a lucite borehole model, but no observable seismoelectric signals were recorded by the electrode. This is not out of our expectation because the lucite formation is not porous and no electrokinetic conversion occurs in such material. However, the electric signal recorded in the Lucite borehole represents the background noise of our measurement system, which is less than 0.5 microvolt. This study verifies the feasibility of seismoelectric well logging, and also presents the range of seismoelectric signals in borehole saturated by tap water that is much closer to the condition of actual formation.

  16. Inverse borehole coupling filters and their applications

    SciTech Connect

    Peng, C.

    1994-12-31

    This paper describes a new procedure for processing VSP and crosswell data acquired using an array of hydrophone. The procedure consists of three steps. In the first step the authors apply an inverse borehole coupling equation to convert hydrophone pressure data into borehole squeeze pressure data, by which the tube waves are significantly attenuated and the P-wave and S-wave are partially compensated for the borehole effects. In the second step, they make use of a partial differential equation that relates the borehole squeeze pressure to the pressure of the incident P-wave. In the third step, they show that one can also map the hydrophone pressure data into the geophone response, provided that both the P-wave and S-wave velocity profiles along the borehole are known. Several synthetic examples are used to demonstrate its accuracy. The Kent Cliffs hydrophone data are successfully processed using the above steps, and the data quality is found to be significantly improved.

  17. The primary circuit materials properties results analysis performed on archive material used in NPP V-1 and Kola NPP Units 1 and 2

    SciTech Connect

    Kupca, L.; Beno, P.

    1997-04-01

    A very brief summary is provided of a primary circuit piping material properties analysis. The analysis was performed for the Bohunice V-1 reactor and the Kola-1 and -2 reactors. Assessment was performed on Bohunice V-1 archive materials and primary piping material cut from the Kola units after 100,000 hours of operation. Main research program tasks included analysis of mechanical properties, corrosion stability, and microstructural properties. Analysis results are not provided.

  18. Gamma-ray spectral calculations for uranium borehole logging

    SciTech Connect

    Close, D.A.; Evans, M.L.; Jain, M.

    1980-06-01

    Gamma-ray transport calculations were performed to determine the energy distribution of gamma rays inside a borehole introduced into an infinite medium. The gamma rays from the naturally occurring radioactive isotopes of potassium, thorium, and uranium were uniformly distributed in a sandstone formation (having a porosity of 0.30 and a saturation of 1.0) surrounding the borehole. A sonde was placed coaxially inside the borehole. Parametric studies were done to determine how the borehole radius, borehole fluid, and borehole casing influence the gamma-ray flux inside the sonde.

  19. VTT test borehole for bedrock investigations

    NASA Astrophysics Data System (ADS)

    Okko, Olli; Hassinen, Pertti; Front, Kai

    1994-02-01

    A borehole of depth 150 m and diameter 56 mm has been drilled in the area adjacent to the premises of the Technical Research Center of Finland (VTT) at Otaniemi, Espoo, for the purposes of calibrating geophysical measurement devices. The report presents the test results obtained so far and illustrates the processing of these, in which the various measurements are plotted as curves and combinations of curves. The interpretations provided so far consist of analyses of lithological variations, bedrock fracturing, the nature and occurrence of fracture zones and groundwater flow patterns. Samples were taken from those parts of the core shown by the borehole measurements to be homogeneous and thin sections made from these for mineralogical determinations. The rock mechanical and petrophysical properties of the same points were examined. The core is in the possession of VTT, and the hole itself is available to outsiders for the calibration and testing of borehole measurement equipment.

  20. Development of a geothermal acoustic borehole televiewer

    SciTech Connect

    Heard, F.E.; Bauman, T.J.

    1983-08-01

    Most geothermal wells are drilled in hard rock formations where fluid flow is through systems of open fractures. Productivity of these wells is usually determined by the extent of intersection of the wellbore with the fracture system. A need exists for fracture mapping methods and tools which can operate in a geothermal environment. In less hostile environments, the acoustic borehole televiewer has been shown to be a useful tool for determining location, orientation, and characterization of fractures as they intersect the borehole and for general wellbore and casing inspection. The development conducted at Sandia National Laboratories to adapt an acoustic borehole televiewer for operation in a geothermal environment is described. The modified instrument has been successfully tested at temperatures as high as 280/sup 0/C and pressures up to 5000 psi, and used successfully to map fractures and casing damage in geothermal wells.

  1. Excess plutonium disposition: The deep borehole option

    SciTech Connect

    Ferguson, K.L.

    1994-08-09

    This report reviews the current status of technologies required for the disposition of plutonium in Very Deep Holes (VDH). It is in response to a recent National Academy of Sciences (NAS) report which addressed the management of excess weapons plutonium and recommended three approaches to the ultimate disposition of excess plutonium: (1) fabrication and use as a fuel in existing or modified reactors in a once-through cycle, (2) vitrification with high-level radioactive waste for repository disposition, (3) burial in deep boreholes. As indicated in the NAS report, substantial effort would be required to address the broad range of issues related to deep bore-hole emplacement. Subjects reviewed in this report include geology and hydrology, design and engineering, safety and licensing, policy decisions that can impact the viability of the concept, and applicable international programs. Key technical areas that would require attention should decisions be made to further develop the borehole emplacement option are identified.

  2. Using borehole geophysics and cross-borehole flow testing to define hydraulic connections between fracture zones in bedrock aquifers

    USGS Publications Warehouse

    Paillet, Frederick L.

    1993-01-01

    Nearly a decade of intensive geophysical logging at fractured rock hydrology research sites indicates that geophysical logs can be used to identify and characterize fractures intersecting boreholes. However, borehole-to-borehole flow tests indicate that only a few of the apparently open fractures found to intersect boreholes conduct flow under test conditions. This paper presents a systematic approach to fracture characterization designed to define the distribution of fractures along boreholes, relate the measured fracture distribution to structure and lithology of the rock mass, and define the nature of fracture flow paths across borehole arrays. Conventional electrical resistivity, gamma, and caliper logs are used to define lithology and large-scale structure. Borehole wall image logs obtained with the borehole televiewer are used to give the depth, orientation, and relative size of fractures in situ. High-resolution flowmeter measurements are used to identify fractures conducting flow in the rock mass adjacent to the boreholes. Changes in the flow field over time are used to characterize the hydraulic properties of fracture intersections between boreholes. Application of this approach to an array of 13 boreholes at the Mirror Lake, New Hamsphire site demonstrates that the transient flow analysis can be used to distinguish between fractures communicating with each other between observation boreholes, and those that are hydraulically isolated from each other in the surrounding rock mass. The Mirror Lake results also demonstrate that the method is sensitive to the effects of boreholes on the hydraulic properties of the fractured-rock aquifer. Experiments conducted before and after the drilling of additional boreholes in the array and before and after installation of packers in existing boreholes demonstrate that the presence of new boreholes or the inflation of packers in existing boreholes has a large effect on the measured hydraulic properties of the rock mass

  3. Climatic variations on longest tree-ring chronologies for Kola Peninsula and Finnish Lapland

    NASA Astrophysics Data System (ADS)

    Kasatkina, E. A.; Shumilov, O. I.; Timonen, M.; Mielikainen, K.; Helama, S.; Kanatjev, A. G.; Kirtsideli, I. Yu.

    2010-05-01

    We investigated the external factor (solar activity, volcanic eruptions) influence on tree growth at high latitudes. We analysed a 561-year tree-ring record of pine (Pinus sylvestris L.) and a 676-year juniper (Juniperus Sibirica Burgst.) tree-ring chronology collected nearby the northern timberline (67.77-68.63N; 33.25-36.52 E) at the Kola Peninsula, northwestern Russia. As well known the climatic impacts of solar and volcanic activity vary regionally, and major volcanic eruptions do not always result in regional cooling. A response of tree growth at the Kola Peninsula to climatic changes due to solar variability and volcanic eruptions was revealed. For example, Dalton minimum of solar activity (1801-1816 AD) and Laki (1783 AD) and Tambora (1815 AD) volcanic eruptions appeared to cause the greatest ring-width reduction and cooling. The minima of solar activity Sporer (1416-1534 AD) and Maunder (1645-1715 AD) were as well accompanied by temperature decreases. Intervals with an absence of significant volcanic eruptions correspond to intervals of increased ring-width values. A superposed epoch analysis of 19 large (Volcanic Explosivity Index, VEI>5) volcanic events revealed a significant suppression of tree growth for up to 8 years following volcanic eruptions. The similar effect (supression of tree growth after powerful volcanic eruptions) was obtained under analysis of the 7641-year supra-long pine tree-ring chronology for Finnish Lapland. Our results documenting the regional climatic impacts of solar and volcanic activity permit us to understand the dynamics of the climate system and its response to external forcing. This work is financially supported by grant from Russian Foundation for Basic Research (grant No. 09-04-98801), by the Program of the Russian Academy and by the Regional Scientific Program of Murmansk region.

  4. Borehole Summary Report for C4997 Rotary Drilling, WTP Seismic Boreholes Project, CY 2006

    SciTech Connect

    Difebbo, Thomas J.

    2007-02-28

    The following Final Geologic Borehole Report briefly describes the drilling of a single borehole at the Waste Treatment Plant (WTP) on the Hanford, Washington, U.S. Department of Energy (DOE) reservation. The location of the WTP is illustrated in Figure 1-1. The borehole was designated as “C4997”, and was drilled to obtain seismic and lithologic data for the Pretreatment Facility and High-Level Waste Vitrification Plant in the WTP. Borehole C4997 was drilled and logged to a total depth of 1428 ft below ground surface (bgs) on October 8, 2006, and was located approximately 150 ft from a recently cored borehole, designated as “C4998”. Pacific Northwest National Laboratory (PNNL) determined the locations for C4997, C4998, and other boreholes at the WTP in cooperation with the U.S. Army Corps of Engineers (USACE) Review Panel, and the Defense Nuclear Facilities Safety Board (DNFSB). The total depth of Borehole C4997 was also determined by PNNL.

  5. Borehole temperature variability at Hoher Sonnblick, Austria

    NASA Astrophysics Data System (ADS)

    Heinrich, Georg; Schöner, Wolfgang; Prinz, Rainer; Pfeiler, Stefan; Reisenhofer, Stefan; Riedl, Claudia

    2016-04-01

    The overarching aim of the project 'Atmosphere - permafrost relationship in the Austrian Alps - atmospheric extreme events and their relevance for the mean state of the active layer (ATMOperm)' is to improve the understanding of the impacts of atmospheric extreme events on the thermal state of the active layer using a combined measurement and modeling approach as the basis for a long-term monitoring strategy. For this purpose, the Sonnblick Observatory at the summit of Hoher Sonnblick (3106 m.a.s.l) is particularly well-suited due to its comprehensive long-term atmospheric and permafrost monitoring network (i.a. three 20 m deep boreholes since 2007). In ATMOperm, a robust and accurate permanent monitoring of active layer thickness at Hoher Sonnblick will be set up using innovative monitoring approaches by automated electrical resistivity tomography (ERT). The ERT monitoring is further supplemented by additional geophysical measurements such as ground penetrating radar, refraction seismic, electromagnetic induction and transient electromagnetics in order to optimally complement the gained ERT information. On the other hand, atmospheric energy fluxes over permafrost ground and their impact on the thermal state of permafrost and active layer thickness with a particular focus on atmospheric extreme events will be investigated based on physically-based permafrost modeling. For model evaluation, the borehole temperature records will play a key role and, therefore, an in-depth quality control of the borehole temperatures is an important prerequisite. In this study we will show preliminary results regarding the borehole temperature variability at Hoher Sonnblick with focus on the active layer. The borehole temperatures will be related to specific atmospheric conditions using the rich data set of atmospheric measurements of the site in order to detect potential errors in the borehole temperature measurements. Furthermore, we will evaluate the potential of filling gaps in

  6. Radiation pattern of a borehole radar antenna

    USGS Publications Warehouse

    Ellefsen, K.J.; Wright, D.L.

    2002-01-01

    To understand better how a borehole antenna radiates radar waves into a formation, this phenomenon is simulated numerically using the finite-difference, time-domain method. The simulations are of two different antenna models that include features like a driving point fed by a coaxial cable, resistive loading of the antenna, and a water-filled borehole. For each model, traces are calculated in the far-field region, and then, from these traces, radiation patterns are calculated. The radiation patterns show that the amplitude of the radar wave is strongly affected by its frequency, its propagation direction, and the resistive loading of the antenna.

  7. A borehole jack for deformability, strength, and stress measurements in a 2-inch borehole

    NASA Technical Reports Server (NTRS)

    Goodman, R. E.; Hovland, H. J.; Chirapuntu, S.

    1971-01-01

    A borehole jack devised for lunar exploration is described and results of its use in simulated lunar solids are presented. A hydraulic cylinder mounted between two stiff plates acts to spread the plates apart against the borehole walls when pressured. The spreading is measured by a displacement transducer and the load is measured hydraulically. The main improvement over previous instruments is the increased stroke, which allows large deformations of the borehole. Twenty-eight pistons are used to obtain a high hydraulic efficiency, and three return pistons are also provided. Pressure-deformation curves were obtained for each test on Lunar Soil Simulant No. 2, a light gray silty basalt powder.

  8. Method for isolating two aquifers in a single borehole

    DOEpatents

    Burklund, Patrick W.

    1985-10-22

    A method for isolating and individually instrumenting separate aquifers within a single borehole. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.

  9. Method for isolating two aquifers in a single borehole

    DOEpatents

    Burklund, P.W.

    1984-01-20

    A method for isolating and individually instrumenting separate aquifers within a single borehole is disclosed. A borehole is first drilled from the ground surface, through an upper aquifer, and into a separating confining bed. A casing, having upper and lower sections separated by a coupling collar, is lowered into the borehole. The borehole is grouted in the vicinity of the lower section of the casing. A borehole is then drilled through the grout plug and into a lower aquifer. After the lower aquifer is instrumented, the borehole is grouted back into the lower portion of the casing. Then the upper section of the casing is unscrewed via the coupling collar and removed from the borehole. Finally, instrumentation is added to the upper aquifer and the borehole is appropriately grouted. The coupling collar is designed to have upper right-hand screw threads and lower left-hand screw thread, whereby the sections of the casing can be readily separated.

  10. BOREHOLE FLOWMETERS: FIELD APPLICATION AND DATA ANALYSIS

    EPA Science Inventory

    This paper reviews application of borehole flowmeters in granular and fractured rocks. asic data obtained in the field are the ambient flow log and the pumping-induced flow log. hese basic logs may then be used to calculate other quantities of interest. he paper describes the app...

  11. BOREHOLE FLOWMETERS: FIELD APPLICATION AND DATA ANALYSIS

    EPA Science Inventory

    This paper reviews application of borehole flowmeters in granular and fractured rocks. Basic data obtained in the field are the ambient flow log and the pumping-induced flow log. These basic logs may then be used to calculate other quantities of interest. The paper describes the ...

  12. Radiation pattern of a borehole radar antenna

    USGS Publications Warehouse

    Ellefsen, K.J.; Wright, D.L.

    2005-01-01

    The finite-difference time-domain method was used to simulate radar waves that were generated by a transmitting antenna inside a borehole. The simulations were of four different models that included features such as a water-filled borehole and an antenna with resistive loading. For each model, radiation patterns for the far-field region were calculated. The radiation patterns show that the amplitude of the radar wave was strongly affected by its frequency, the water-filled borehole, the resistive loading of the antenna, and the external metal parts of the antenna (e.g., the cable head and the battery pack). For the models with a water-filled borehole, their normalized radiation patterns were practically identical to the normalized radiation pattern of a finite-length electric dipole when the wavelength in the formation was significantly greater than the total length of the radiating elements of the model antenna. The minimum wavelength at which this criterion was satisfied depended upon the features of the antenna, especially its external metal parts. ?? 2005 Society of Exploration Geophysicists. All rights reserved.

  13. Entry Boreholes Summary Report for the Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect

    Horner, Jake A.

    2007-02-28

    This report describes the 2006 fiscal year field activities associated with the installation of four cable-tool-drilled boreholes located within the boundary of the Waste Treatment Plant (WTP), DOE Hanford site, Washington. The cable-tool-drilled boreholes extend from surface to ~20 ft below the top of basalt and were utilized as cased entry holes for three deep boreholes (approximately 1400 ft) that were drilled to support the acquisition of sub-surface geophysical data, and one deep corehole (1400 ft) that was drilled to acquire continuous core samples from underlying basalt and sedimentary interbeds. The geophysical data acquired from these boreholes will be integrated into a seismic response model that will provide the basis for defining the seismic design criteria for the WTP facilities.

  14. The microstructural effects of aqueous extract of Garcinia kola (Linn) on the hippocampus and cerebellum of malnourished mice

    PubMed Central

    Ajayi, Sunday A; Ofusori, David A; Ojo, Gideon B; Ayoka, Oladele A; Abayomi, Taiwo A; Tijani, Adekilekun A

    2011-01-01

    Objective To assess the neuroprotective effects of aqueous extract of Garcinia kola on neurotoxin administered malnourished mice adopting histological procedure. Methods The study was carried out using thirty-two adult malnourished mice which were randomly assigned into four groups (n=8): A, B, C and D. Group A served as control, while the other groups served as the experimental groups. Animals in group A were fed malnourished diet ad libitum and given water liberally. Animals in group B were administered with 3-Nitropropionic acid (3-NP) (neurotoxin) only at 20 mg/kg body weight, group C were given only Garcinia kola extracts, and group D were pre-treated with Garcinia kola extracts at 200 mg/kg for seven days prior to administration of neurotoxin at 20 mg/kg body weight. After three days of neurotoxins administration in the relevant groups, the brains were excised and fixed in formal calcium for histological processing. Results The study showed that hippocampal and cerebellar neurons of animals in group B exhibited some cellular degeneration and blood vessel blockage, which were not seen in groups A, C and D. Cresyl violet staining was least intense in group B than in groups A, C and D. Despite the fact that animals in group D has equal administration of 3-Nitropropionic acid concentration, there were no traces of neural degeneration as it was evidenced in group B. Conclusions It is concluded that Garcinia kola has protective effects on the neurons of the hippocampus and cerebellum of malnourished mice. PMID:23569771

  15. Paleoclimate and Paleoenvironmental Reconstructions on the North Kola Peninsula during the Past 2000 Years According Pollen Data

    NASA Astrophysics Data System (ADS)

    Nosevich, Ekaterina; Sapelko, Tatjana; Anisimov, Mikhail

    2014-05-01

    Pollen data and radiocarbon data have enabled to reconstruct the periods of vegetation that depended on the climate changes. Records from different types of deposits allow to receive more information and to make paleoclimate reconstructions. Lake and bog sediments are the best sources for palaeoreconstruction. Palaeoclimatic changes, tectonic and coastline movement during Late Holocene caused vegetation changes on the North Kola Peninsula. Our data from pollen records from different sites on the north coast of the Kola Peninsula covers the Late Holocene about last 2000 years. We studied different types of sediment cores in the area between 69° N and 70° N, 31°12' E and 35° E. We have studied peat deposits, small lake sediments and archaeological site on the Bolshoy Oleniy Island in Kola fjord, Barents Sea, and peat bog deposits in the Teriberka area. All the cores are studied by different methods where the core was pollen analysis. It has allowed tracking the periods of vegetation history in the tundra zone. Pollen reconstructions are confirmed by radiocarbon data. Our data was compared with other researches and we made correlations between pollen records from different lake deposits. Modern vegetation presents south tundra type of associations. Teriberka area is unique: almost existing types of tundra landscapes are presented here in small territory, including "typical tundra" with subshrubs formations. For paleoclimate reconstructions we have studied surface samples by pollen analysis. Samples were collected in 3 regions of Kola Peninsula. Samples have been taken on the Sredniy and Rybachiy Peninsulas (Murman region) in the south tundra with rich associations and boreal species of herbs. In the Olenegorsk region we selected vegetation associations not damaged by human and we collected surface samples on the border of forest tundra and northern taiga. In Apatity region we studied pollen records in North taiga landscapes. This data characterize regional and

  16. 30 CFR 75.388 - Boreholes in advance of mining.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Boreholes in advance of mining. 75.388 Section 75.388 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.388 Boreholes in advance of mining. (a) Boreholes shall be drilled...

  17. 30 CFR 75.388 - Boreholes in advance of mining.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Boreholes in advance of mining. 75.388 Section 75.388 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.388 Boreholes in advance of mining. (a) Boreholes shall be drilled...

  18. 30 CFR 75.1315 - Boreholes for explosives.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Boreholes for explosives. 75.1315 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1315 Boreholes for explosives. (a) All explosives fired underground shall be confined in boreholes except— (1)...

  19. 30 CFR 75.1315 - Boreholes for explosives.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boreholes for explosives. 75.1315 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1315 Boreholes for explosives. (a) All explosives fired underground shall be confined in boreholes except— (1)...

  20. 30 CFR 75.1315 - Boreholes for explosives.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Boreholes for explosives. 75.1315 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1315 Boreholes for explosives. (a) All explosives fired underground shall be confined in boreholes except— (1)...

  1. 30 CFR 75.1315 - Boreholes for explosives.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Boreholes for explosives. 75.1315 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1315 Boreholes for explosives. (a) All explosives fired underground shall be confined in boreholes except— (1)...

  2. 30 CFR 75.1315 - Boreholes for explosives.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Boreholes for explosives. 75.1315 Section 75... HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Explosives and Blasting § 75.1315 Boreholes for explosives. (a) All explosives fired underground shall be confined in boreholes except— (1)...

  3. Cyclicity of forest fire occurrence at Kola Peninsula (North-Western Russia) in connection to meteorological and solar activity

    NASA Astrophysics Data System (ADS)

    Shumilov, O. I.; Kasatkina, E. A.; Knyazev, N. V.; Lukina, N. V.

    2010-05-01

    The cyclicity of forest fire number for the period 1958-2007 at Kola Peninsula was investigated. We used the data of regular aerial surveying. The frequency of forest fires was compared with regional meteorological and dendrochronological records. Spectral analysis with help of MEM and wavelet revealed a clear cyclic character of fire occurrence with two main maxima. The main one occurred at frequencies around 18-20 years and the other in the band 2.8-4 year. Detailed analysis showed that fire occurrence at Kola Peninsula was a result of a complicated mixture of both anthropogenic and climatic forcings (temperature and precipitation). Climatic forcing is influenced by variations of solar activity (solar radiation, cosmic rays, cosmic dust etc.). Two maxima in the fire occurrence spectrum seem to be connected to one of the main cycles of solar activity (22 y) and NAO oscillation (3-4 y). As it is well known the NAO variations are rather tightly connected to cyclonic activity in the North Atlantic region. The enhanced numbers of fires were observed close to minima of solar activity. These results may be applied for fire forecasting at Kola Peninsula. This work is financially supported by the Russian Foundation for Basic Research (grant No. 09-04-98801), by the Program of the Russian Academy and by the Regional Scientific Program of Murmansk region.

  4. Nutrient and phytochemical composition of two varieties of Monkey kola (Cola parchycarpa and Cola lepidota): An underutilised fruit.

    PubMed

    Ene-Obong, Henrietta N; Okudu, Helen O; Asumugha, Ukamaka V

    2016-02-15

    The nutrient and phytochemical composition of two varieties of Monkey kola: Cola parchycarpa and Cola lepidota were determined. The pulps were extracted, grated and dried using solar dryer. Dried pulps were milled into flour with attrition milling machine (0.5mm sieve size). The nutrient compositions were determined using standard AOAC methods. Gravimetric and spectrophotometric methods were used for phytochemical determinations. There were significant (p<0.05) differences in the proximate and some mineral and vitamin composition of the two varieties. Most abundant minerals were calcium (195-199mg for C. parchycarpa), potassium (204-209mg/100g for C. lepidota) and β-carotene (2755-5028μg/100g for C. parchycarpa). Calcium:phosphorus and sodium:potassium ratios were adequate (>1.0 and ⩽0.06, respectively). Monkey kola had substantial amounts of iron, zinc, and copper; the B-vitamins and vitamin C. The phytochemical contents were quiet high, the most abundant being flavonoids (415-494mg/100g). Monkey kola is a fruit that should be fully exploited for its potential health benefits. PMID:26433302

  5. Archean to Paleoproterozoic polymetamorphic history of the Salma eclogite in Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Imayama, Takeshi; Oh, Chang-Whan; Park, Chan-Soo; Yi, Keewook; Jung, Haemyeong

    2015-04-01

    One of the most important questions in the Earth Science is when and how plate tectonics operate in the Precambrian time. The tectonic and thermal evolution of the Precambrian eclogite is significant key for understanding the Precambrian geodynamic mechanisms. Eclogites in Kola Peninsula, Russia are some of the oldest eclogites of the world, but there has been much debate about the timing of eclogite-facies metamorphism: Archean (e.g. Volodichev et al. 2004; Mints et al., 2010) or Paleoproterozoic (e.g. Skublob et al., 2011, 2012). The controversy is mainly because of the lack of zircon dating coupled with the formation of garnet and omphacite. In this study, we present geochronological, petrographic, and geochemical data from the Salma eclogites in the Kola Peninsula, Russia to characterize subduction and collision processes in the Precambrian. Microstructural observations, P-T analyses, zircon inclusion analyses, and U-Pb zircon dating revealed multiple metamorphic stages that the Salma eclogite underwent. The amphibolite facies metamorphic event firstly occurred at 2.73-2.72 Ga during Archean. In the Paleoproterozoic period, the Salma eclogites underwent prograde stage of epidote-amphibolite facies metamorphism. The eclogite facies metamorphic event took place under the P-T condition of 16-18 kbar and 740-770 °C at 1.89-1.88 Ga, with a subsequent granulite facies metamorphism during decompression stage from 18 kbar to 9-12 kbar. Finally, later amphibolite facies metamorphism occurred at 8-10 kbar and 590-610 °C on cooling. The Archean metamorphic zircons that contain inclusions of Grt + Am + Bt + Pl + Qtz + Rt are unzoned grains with dark CL, and they are relatively enriched in HREE. In contrast, the 1.89-1.88 Ga sector or concentric zoned zircons with pale-grey CL include inclusions of Grt + Omp + Ca-Cpx + Am + Bt + Qtz + Rt, and they have the flat pattern of HREE due to the amounts of abundant garnet during the eclogite-facies metamorphism. Whole rock

  6. Electrical resistance tomography from measurements inside a steel cased borehole

    DOEpatents

    Daily, William D.; Schenkel, Clifford; Ramirez, Abelardo L.

    2000-01-01

    Electrical resistance tomography (ERT) produced from measurements taken inside a steel cased borehole. A tomographic inversion of electrical resistance measurements made within a steel casing was then made for the purpose of imaging the electrical resistivity distribution in the formation remotely from the borehole. The ERT method involves combining electrical resistance measurements made inside a steel casing of a borehole to determine the electrical resistivity in the formation adjacent to the borehole; and the inversion of electrical resistance measurements made from a borehole not cased with an electrically conducting casing to determine the electrical resistivity distribution remotely from a borehole. It has been demonstrated that by using these combined techniques, highly accurate current injection and voltage measurements, made at appropriate points within the casing, can be tomographically inverted to yield useful information outside the borehole casing.

  7. Dose- and time-dependent effects of Garcinia kola seed extract on sexual behaviour and reproductive parameters in male Wistar rats.

    PubMed

    Sewani-Rusike, C R; Ralebona, N; Nkeh-Chungag, B N

    2016-04-01

    The aim of the present study was to investigate the effects of a crude extract of Garcinia kola on male sexual function after subchronic and chronic treatment periods at different sublethal doses. Adult male Wistar rats were treated orally with 100, 200 and 400 mg kg(-1) of a 70% ethanolic extract of G. kola daily for 56 days. Sexual behaviour studies were performed on days 28 and 50. At termination on day 56, organ weights, sperm count, reproductive hormone levels and testicular histology were assessed. Subchronic and chronic treatment of normal male rats with G. kola extract resulted in overall increase in components of libido, erection and ejaculation in treated rats - with lower doses being more efficient than the higher dose. There was a slight reduction in some components of sexual behaviour with prolonged time of treatment. G. kola treatment at all doses resulted in increased testicular weights, increased sperm count with no change in motility and increased serum testosterone levels with no change in gonadotropin levels. Gross testicular histology was not affected by treatment. We conclude that G. kola seed extract possesses potent aphrodisiac activity in male albino rats with resultant increase in sperm count and testosterone levels. PMID:26123866

  8. BOREHOLE NEUTRON ACTIVATION: THE RARE EARTHS.

    USGS Publications Warehouse

    Mikesell, J.L.; Senftle, F.E.

    1987-01-01

    Neutron-induced borehole gamma-ray spectroscopy has been widely used as a geophysical exploration technique by the petroleum industry, but its use for mineral exploration is not as common. Nuclear methods can be applied to mineral exploration, for determining stratigraphy and bed correlations, for mapping ore deposits, and for studying mineral concentration gradients. High-resolution detectors are essential for mineral exploration, and by using them an analysis of the major element concentrations in a borehole can usually be made. A number of economically important elements can be detected at typical ore-grade concentrations using this method. Because of the application of the rare-earth elements to high-temperature superconductors, these elements are examined in detail as an example of how nuclear techniques can be applied to mineral exploration.

  9. Design parameters for borehole strain instrumentation

    NASA Astrophysics Data System (ADS)

    Gladwin, Michael T.; Hart, Rhodes

    1985-01-01

    The response of a borehole strain meter to hydrostatic and shear deformations in an isotropic medium is calculated to facilitate optimum instrument design and produce instrument response factors for parameters typically encountered in installed instruments. Results for an empty borehole are first compared with results for an instrument in intimate contact with the surrounding rock. The effects of the grout used to install the instrument are then examined. Where possible, analytic forms for the response factors are given. Results for typical installations are then presented in graphical form for optimizing instrument design in an environment of known elastic parameters. Alternatively, the results may be applied in the measurement of unknown strain signals, to correct for instrument response or to provide in-situ estimates of the elastic properties of the environment by examination of observed strain response to known strain signals.

  10. High-precision multicomponent borehole deformation monitoring

    NASA Astrophysics Data System (ADS)

    Gladwin, Michael T.

    1984-12-01

    An instrument capable of deep borehole measurement of vector plane strain to 0.3 nstrain and tilt to 1.0 nrad has been developed for deployment in crustal deformation and earthquake prediction studies. The instrument has been deployed in California where shear strains dominate the deformation. The 125-mm-diam package is grouted in 175-mm boreholes at depths of approximately 200 m. The wall thickness and the grout thickness are chosen to match instrument strength to expected rock parameters. The instrument is capable of flat response from dc to 10 Hz on any single channel. The electronics package is stable to three parts in 108 over the temperature range 10 to 45° C. Reliable shear strain data is available immediately on installation when simple volume strain meters show only bond curing effects or thermal recovery signals.

  11. Low Noise Borehole Triaxial Seismometer Phase II

    SciTech Connect

    Kerr, James D; McClung, David W

    2006-11-06

    This report describes the preliminary design and the effort to date of Phase II of a Low Noise Borehole Triaxial Seismometer for use in networks of seismic stations for monitoring underground nuclear explosions. The design uses the latest technology of broadband seismic instrumentation. Each parameter of the seismometer is defined in terms of the known physical limits of the parameter. These limits are defined by the commercially available components, and the physical size constraints. A theoretical design is proposed, and a preliminary prototype model of the proposed instrument has been built. This prototype used the sensor module of the KS2000. The installation equipment (hole locks, etc.) has been designed and one unit has been installed in a borehole. The final design of the sensors and electronics and leveling mechanism is in process. Noise testing is scheduled for the last quarter of 2006.

  12. Advances in borehole geophysics for hydrology

    SciTech Connect

    Nelson, P.H.

    1982-01-01

    Borehole geophysical methods provide vital subsurface information on rock properties, fluid movement, and the condition of engineered borehole structures. Within the first category, salient advances include the continuing improvement of the borehole televiewer, refinement of the electrical conductivity dipmeter for fracture characterization, and the development of a gigahertz-frequency electromagnetic propagation tool for water saturation measurements. The exploration of the rock mass between boreholes remains a challenging problem with high potential; promising methods are now incorporating high-density spatial sampling and sophisticated data processing. Flow-rate measurement methods appear adequate for all but low-flow situations. At low rates the tagging method seems the most attractive. The current exploitation of neutron-activation techniques for tagging means that the wellbore fluid itself is tagged, thereby eliminating the mixing of an alien fluid into the wellbore. Another method uses the acoustic noise generated by flow through constrictions and in and behind casing to detect and locate flaws in the production system. With the advent of field-recorded digital data, the interpretation of logs from sedimentary sequences is now reaching a sophisticated level with the aid of computer processing and the application of statistical methods. Lagging behind are interpretive schemes for the low-porosity, fracture-controlled igneous and metamorphic rocks encountered in the geothermal reservoirs and in potential waste-storage sites. Progress is being made on the general problem of fracture detection by use of electrical and acoustical techniques, but the reliable definition of permeability continues to be an elusive goal.

  13. Borehole fracture detection using magnetic powder

    SciTech Connect

    Smith, D.G.

    1985-01-01

    A method for detecting fractures in a formation penetrated by a borehole wherein the fracture is first filled with a magnetic material and the formation then logged with an instrument that responds to the earth's magnetic field. The fracture can be filled with a magnetic material by including it in the drilling mud when the well is drilled and changing the mud system before logging. The logging tool can comprise a simple compass or a magnetometer.

  14. Promising pneumatic punchers for borehole drilling

    SciTech Connect

    A.A. Lipin

    2005-03-15

    The state of borehole drilling by downhole pneumatic punchers and their potential use in open and underground mining as well as in exploration for reliable sampling are analyzed. Performance specification is presented for the new-generation pneumatic punchers equipped with a pin tool, effectively operating at a compressed-air pressure of 0.5-0.7 MPa, and with an additional extended exhaust from the power stroke chamber during working cycle.

  15. A borehole-to-surface electromagnetic survey

    SciTech Connect

    Tseng, Hung-Wen; Becker, A.; Wilt, M.; Descz-Pan, M.

    1995-12-31

    We have assessed the feasibility of borehole to surface electromagnetic measurements for fluid injection monitoring. To do this we performed a vertical electromagnetic profiling (VEMP) experiment at the University of California Richmond Field Station where a saline water injection zone was created at a subsurface depth of 30 meters. The methodology used is quite similar to the conventional seismic (VSP) procedure for surface to borehole measurements. In our case however, the transmitter was located in a PVC cased borehole while the receivers were deployed on the surface. With a carefully designed system operating at 9.6 kHz we were able to make measurements accurate to 1 % in amplitude and 1 degree in phase. The data profiles at surface were centered on the injection well and extended for 60 m on either side of it. Measurements were made at 5 m intervals. Although the VEMP process is quite vulnerable to near surface conductivity anomalies we readily detected the flat tabular target zone which was about 3 m thick and covered an area of about 120 M{sup 2}.

  16. Elpasolite from hyperalkaline pegmatite of the Khibiny pluton, Kola Peninsula. Symmetry of elpasolite

    NASA Astrophysics Data System (ADS)

    Pekov, I. V.; Chukanov, N. V.; Kononkova, N. N.; Zubkova, N. V.; Rabadanov, M. Kh.; Pushcharovsky, D. Yu.

    2008-12-01

    Elpasolite, K2NaAlF6, has been found for the first time in a pegmatite related to peralkaline foid syenite at Mt. Koashva, Khibiny alkaline pluton, Kola Peninsula, Russia, as pale pink octahedral crystals up to 2 mm in size within cavities in the natrolite core of pegmatite in association with amicite, sodalite, aegirine, pectolite, catapleiite, sitinakite, lemmleinite-K, and vinogradovite. The chemical composition determined with an electron microprobe is as follows, wt %: 31.53 K; 9.22 Na; 11.20 Al; 47.21 F; total is 99.16. The empirical formula is K1.96Na0.98Al1.01F6.05. The infrared spectrum is given. The crystal structure has been refined to R = 0.030, space group Fm bar 3 m, a = 8.092 Å. The result of a special X-ray powder diffraction study confirmed the suggestion made by Morss (1974) that reflections violating space group Fm bar 3 m in some published X-ray powder patterns of natural elpasolite are Kβ-lines.

  17. Time of formation and genesis of yttrium-zirconium mineralization in the Sakharjok massif, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Vetrin, V. R.; Skublov, S. G.; Balashov, Yu. A.; Lyalina, L. M.; Rodionov, N. V.

    2014-12-01

    The Kola geotectonic province in the northeastern Fennoscandian Shield accommodates a significant number of alkaline rock massifs differing in age. They are of mantle and mantle-crustal origin (alkali and nepheline syenites, carbonatites) and related to crustal sources (Neoarchean alkali granites). Among them, the Neoarchean Sakharjok nepheline syenite massif is related to the oldest intrusions of this kind bearing yttrium-zirconium mineralization. The crystallization of alkali syenite pertaining to the first intrusive phase of the intrusive Sakharjok massif is dated to 2645 ± 7 Ma, and this implies that this syenite postdated alkali granites (2.66-2.67 Ga). To date the yttrium-zirconium ore, we applied the local U-Pb method to zircon crystals occurring in the mineralized block hosted in nepheline syenite. The earliest fragments of zircon crystallized 1832 ± 7 Ma ago; the age of metamorphism is estimated at 1784 ± 13 Ma. These dates indicate the Paleoproterozoic age of the yttrium-zirconium mineralization, which was formed as a product of fluid reworking of the Neoarchean nepheline syenite of the Sakharjok massif.

  18. Gas chromatography-mass spectrometry characterisation of the anti-Listeria components of Garcinia kola seeds.

    PubMed

    Penduka, D; Basson, K A; Mayekiso, B; Buwa, L; Okoh, I A

    2014-01-01

    Adsorption chromatography was used to separate the bioactive constituents of the crude n-hexane extract of Garcinia kola seeds. The silica gel 60 column fractions were eluted using the solvent combination of benzene: ethanol : ammonium hydroxide (BEA) in the ratio combination of 36 : 4 : 0.4 v/v. The fractions were tested for anti-Listeria activities by determining their MIC50, MIC90 or MIC against 4 Listeria isolates. The fractions were labelled BEA1 to BEA5 and 3 out of the 5 fractions eluted were active against the test Listeria species with MIC's ranging from MIC 0.57 mg/mL to MIC50 0.625 mg/mL. The most active fractions, BEA2 and BEA3, were subjected to gas chromatography coupled to mass spectrometry (GC-MS) to identify their composition. Fraction BEA2 constituted of 18 compounds mostly sterols and the BEA3 fraction contained 27 compounds with the most abundant compounds being fatty acids derivatives. The BEA2 fraction's interactions with antibiotics proved to be 100% synergistic with ciprofloxacin and ampicillin whilst it exhibited 50% additivity and 50% synergism with penicillin G. However, all the interactions of the BEA2 fraction with each of the conventional antibiotics used were synergistic against the human listeriosis causative bacteria Listeria monocytogenes. PMID:25757343

  19. Heavy metals in surface lake sediments on the Kola Penninsula as an index of air quality

    SciTech Connect

    Dauvalter, V.

    1996-12-31

    The investigations of heavy metal (Ni, Cu, Co, Zn, Pb, Cd, Hg) distribution in sediments of more than 100 lakes were carried out between 1989 and 1994. The study lakes are situated at different distances from two main heavy metal pollution sources of the Kola Peninsula-smelters of the Pechenganickel and Severonickel Companies. To assess the pollution extent of investigated lakes, values of factor and degree of contamination were calculated according to the method suggested by Hakanson (1980). Heavy metal contamination factor (C{sub f}) for each heavy metal was calculated as the quotient of concentration from the uppermost (0-1 cm) sediment to the mean preindustrial background value (concentrations from 20-30 cm sediment layers) for the investigated region. Degree of contamination (C{sub d}) was defined as the sum of all contamination factors for studied heavy metals. To quantitatively express the potential ecological risk of given contaminants created for ecosystems, risk factor (Er) for each heavy metal has been calculated. Er takes into account the toxicity of a heavy metal and bioproduction index (BPI) of a lake. Risk index (RI) was determined as the sum of all ecological risk factor for studied heavy metals.

  20. Raman spectra of probably shock-metamorphosed zircon in structures of the Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Kaulina, Tatiana; Nerovich, Luidmila; Lialina, Luidmila; Il'chenko, Vadim; Bocharov, Vladimir; Kunakkuzin, Evgeny

    2016-04-01

    Zircon crystals were studied by means of Raman spectroscopy from certain structures of the Kola Peninsula, for which impact events are expected according to geological and geochemical data: circular structure in Javrozersky area of the Tanaelv belt and granophyres of Jarva-Varaka layered massif of the Monchegorsky ore district. Zircons from anorthosites of the Javrozersky area showed some features of impact zircons: wavy extinction, blurred "aurora-like" CL image and a presence of additional bands in the Raman spectrum, which may indicate the presence of ZrSiO4 with the scheelite-type structure (reidite) surrounded by zircon material. Zircon crystals of Yavra-Varaka granophyres showed variation of Raman spectra from the core part of crystals with typical zircon Raman pattern to complete absence of spectral bands in the marginal parts and rims. There was also a transition zone between cores and marginal parts of crystals, where the Raman spectrum is "blurred". Such pattern may be associated with the transformation of crystalline zircon to diaplectic glass under the influence of shock metamorphism, since the Jarva-Varaka massif according to geological and geochemical data is compared with the Sudbury structure, for which impact origin is assumed. The work is supported by RSF grant N 16-17-10051.

  1. Effect of borehole design on electrical impedance tomography measurements

    NASA Astrophysics Data System (ADS)

    Mozaffari, Amirpasha; Huisman, Johan Alexander; Treichel, Andrea; Zimmermann, Egon; Kelter, Matthias; Vereecken, Harry

    2015-04-01

    Electrical Impedance Tomography (EIT) is a sophisticated non-invasive tool to investigate the subsurface in engineering and environmental studies. To increase the depth of investigation, EIT measurements can be made in boreholes. However, the presence of the borehole may affect EIT measurements. Here, we aim to investigate the effect of different borehole components on EIT measurements using 2,5-D and 3D finite element modeling and unstructured meshes. To investigate the effect of different borehole components on EIT measurements, a variety of scenarios were designed. In particular, the effect of the water-filled borehole, the PVC casing, and the gravel filter were investigated relative to complex resistivity simulations for a homogenous medium with chain and electrode modules. It was found that the results of the complex resistivity simulations were best understood using the sensitivity distribution of the electrode configuration under consideration. In all simulations, the sensitivity in the vicinity of the borehole was predominantly negative. Therefore, the introduction of the water-filled borehole caused an increase in the real part of the impedance, and a decrease (more negative) in the imaginary part of the simulated impedance. The PVC casing mostly enhanced the effect of the water-filled borehole described above, although this effect was less clear for some electrode configuration. The effect of the gravel filter mostly reduced the effect of the water-filled borehole with PVC casing. For EIT measurements in a single borehole, the highest simulated phase error was 12% for a Wenner configuration with electrode spacing of 0.33 m. This error decreased with increasing electrode spacing. In the case of cross-well configurations, the error in the phase shit was as high as 6%. Here, it was found that the highest errors occur when both current electrodes are located in the same borehole. These results indicated that cross-well measurements are less affected by the

  2. Borehole Paleoclimatology: In search of a minimum depth criterion for terrestrial borehole temperature profiles

    NASA Astrophysics Data System (ADS)

    Beltrami, H.; Smerdon, J. E.; Matharoo, G.; Nickerson, N. R.

    2010-12-01

    One important uncertainty in borehole paleoclimatology that has been overlooked is the degree to which ground surface temperature (GST) reconstructions depend on the maximum depth of the profile. Because the vast majority of measured borehole temperature profiles are acquired from boreholes of opportunity, the maximum measurement depth in data used for paleoclimatic studies varies considerably (beginning at depths as shallow as 100-150 m and extending to depths of more than 1 km). The depth of the borehole is important because the downwelling climatic signal must be separated from the quasi-steady state thermal regime established by the energy in the Earth's interior. This component of the signal is estimated as a linear increase in temperature with depth from the lower section of a borehole temperature profile, which is assumed to be unperturbed by recent changes in climate at the surface. The validity of this assumption is dependent on both the subsurface thermophysical properties and the character of the downwelling climatic signal. Such uncertainties can significantly impact the determination of the quasi-steady state thermal regime, and consequently the magnitude of the temperature anomaly interpreted as a climatic signal. Here we illustrate how the minimum depth of a temperature-depth profile impacts the estimation of the climatic transient and the resultant GST reconstruction. In particular, we attempt to quantitatively illustrate the effects and uncertainties that arise from the analysis of borehole temperature logs of different depths. Our results demonstrate that widely different GST histories can be derived from a single temperature profile truncated at different depths. We show that borehole temperature measurements approaching 500-600 m depths provide the most robust GST reconstructions and are preferable for inferring past climatic variations at the ground surface. Furthermore, we find that the bias introduced by a temperature profile of depths

  3. Effects of the deviation characteristics of nuclear waste emplacement boreholes on borehole liner stresses; Yucca Mountain Project

    SciTech Connect

    Glowka, D.A.

    1990-09-01

    This report investigates the effects of borehole deviation on the useability of lined boreholes for the disposal of high-level nuclear waste at the proposed Yucca Mountain Repository in Nevada. Items that lead to constraints on borehole deviation include excessive stresses that could cause liner failure and possible binding of a waste container inside the liner during waste emplacement and retrieval operations. Liner stress models are developed for two general borehole configurations, one for boreholes drilled with a steerable bit and one for boreholes drilled with a non-steerable bit. Procedures are developed for calculating liner stresses that arise both during insertion of the liner into a borehole and during the thermal expansion process that follows waste emplacement. The effects of borehole curvature on the ability of the waste container to pass freely inside the liner without binding are also examined. Based on the results, specifications on borehole deviation allowances are developed for specific vertical and horizontal borehole configurations of current interest. 11 refs., 22 figs., 4 tabs.

  4. Feasibility of a borehole VHF radar technique for fracture mapping

    SciTech Connect

    Chang, H.T.

    1984-01-01

    Experiments were conducted to establish the feasibility of a downhole high-frequency electromagnetic technique for location of fractures in the vicinity of boreholes. An existing flame-cut slot in granite was filled with salt water to simulate a brine-filled fracture. A transmitter consisting of a phased dual-dipole array arranged to provide a directional signal toward the fracture was installed in a borehole opposite the fracture. A receiver operated at 30 to 300 MHz was also located in the same borehole. The radar returns from the simulated fracture were detectable in boreholes located at distances of up to 12 meters from the fracture. These results indicate for the first time the feasibility of a downhole VHF radar for use in a single borehole for detection of fractures located away from the borehole.

  5. Canister, Sealing Method And Composition For Sealing A Borehole

    DOEpatents

    Brown, Donald W.; Wagh, Arun S.

    2005-06-28

    Method and composition for sealing a borehole. A chemically bonded phosphate ceramic sealant for sealing, stabilizing, or plugging boreholes is prepared by combining an oxide or hydroxide and a phosphate with water to form slurry. The slurry is introduced into the borehole where the seal, stabilization or plug is desired, and then allowed to set up to form the high strength, minimally porous sealant, which binds strongly to itself and to underground formations, steel and ceramics.

  6. Borehole sounding device with sealed depth and water level sensors

    DOEpatents

    Skalski, Joseph C.; Henke, Michael D.

    2005-08-02

    A borehole device having proximal and distal ends comprises an enclosure at the proximal end for accepting an aircraft cable containing a plurality of insulated conductors from a remote position. A water sensing enclosure is sealingly attached to the enclosure and contains means for detecting water, and sending a signal on the cable to the remote position indicating water has been detected. A bottom sensing enclosure is sealingly attached to the water sensing enclosure for determining when the borehole device encounters borehole bottom and sends a signal on the cable to the remote position indicating that borehole bottom has been encountered.

  7. Method and apparatus for multipole acoustic wave borehole logging

    SciTech Connect

    Winbow, G.A.; Baker, L.J.

    1987-03-10

    A method is described for determining the radial thickness of an invaded zone of an earth formation surrounding a borehole where a virgin earth formation surrounds the borehole and is separated from the borehole by the invaded zone. The method comprises: (a) transmitting a 2/sup n/-pole P-wave from a point in the borehole into the earth formation surrounding the borehole, n being an integer greater than zero; (b) measuring the P-wave velocity of a zone of the earth formation located at a first radial distance from the borehole by detecting the arrival of the 2/sup n/-pole P-wave at a first location and at a second location in the borehole spaced longitudinally along the borehole from the point of transmission and from each other. The second location is spaced farther from the point of transmission than is the first location, the time arrival between the detections of the 2/sup n/-pole P-wave arrival is measured at the first location and the second location; and (c) repeating the steps (a) and (b) with successively increased longitudinal spacings between the point of transmission and the first location and between the point of transmission and the second location to measure the P-wave velocities of zones of the earth formation located successively radially farther away from the borehole.

  8. Perspectives of humic substances application in remediation of highly heavy metals contaminated soils in Kola Subarctic

    NASA Astrophysics Data System (ADS)

    Tregubova, Polina; Turbaevskaya, Valeria; Zakharenko, Andrey; Kadulin, Maksim; Smirnova, Irina; Stepanov, Andrey; Koptsik, Galina

    2016-04-01

    Northwestern part of Russia, the Kola Peninsula, is one of the most heavy metals (HM) contaminated areas in the northern hemisphere. The main polluters, mining-and-metallurgical integrated works "Pechenganikel" and "Severonikel", are surrounded by heavily damaged barren lands that require remediation. The main contaminating metals are Ni and Cu. Using of exogenous humic substances could be possible effective and cost-efficient solution of HM contamination problem. Rational application of humates (Na-K salts of humic acids) can result in improvement of soil properties, localization of contamination and decreasing bioavailability through binding HM in relatively immobile organic complexes. Our research aim was to evaluate the influence of increasing doses of different origin humates on i) basic properties of contaminated soils; ii) mobility and bioavailability of HMs; iii) vegetation state and chemistry. In summer 2013 a model field experiment was provided in natural conditions of the Kola Peninsula. We investigated the Al-Fe-humus abrazem, soil type that dominates in technogenic barren lands around the "Severonikel" work. These soils are strongly acid: pHH2O was 3.7-4.1; pHKCl was 3.4-4.0. The exchangeable acidity is low (0.8-1.6 cmol(+)/kg) due to the depletion of fine particles and organic matter, being the carriers of exchange positions. The abrazems of barrens had lost organic horizon. 12 sites were created in 1 km from the work. In those sites, except 2 controls, various amendments were added: i) two different by it's origin types of humates: peat-humates and coal-humates, the last were in concentrations 0.5% and 1%; ii) lime; iii) NPK-fertilizer; iv) biomates (organic degradable cover for saving warm and erosion protection). As a test-culture a grass mixture with predominance of Festuca rubra and Festuca ovina was sowed. As a result we concluded that humates of different origin have unequal influence on soil properties and cause decreasing as well as

  9. Fiber optic communication in borehole applications

    SciTech Connect

    Franco, R.J.; Morgan, J.R.

    1997-04-01

    The Telemetry Technology Development Department have, in support of the Advanced Geophysical Technology Department and the Oil Recovery Technology Partnership, developed a fiber optic communication capability for use in borehole applications. This environment requires the use of packaging and component technologies to operate at high temperature (up to 175{degrees}C) and survive rugged handling. Fiber optic wireline technology has been developed by The Rochester Corporation under contract to Sandia National Labs and produced a very rugged, versatile wireline cable. This development has utilized commercial fiber optic component technologies and demonstrated their utility in extreme operating environments.

  10. Mountain Home Well - Borehole Geophysics Database

    DOE Data Explorer

    Shervais, John

    2012-11-11

    The Snake River Plain (SRP), Idaho, hosts potential geothermal resources due to elevated groundwater temperatures associated with the thermal anomaly Yellowstone-Snake River hotspot. Project HOTSPOT has coordinated international institutions and organizations to understand subsurface stratigraphy and assess geothermal potential. Over 5.9km of core were drilled from three boreholes within the SRP in an attempt to acquire continuous core documenting the volcanic and sedimentary record of the hotspot: (1) Kimama, (2) Kimberly, and (3) Mountain Home. The Mountain Home drill hole is located along the western plain and documents older basalts overlain by sediment. Data submitted by project collaborator Doug Schmitt, University of Alberta

  11. A borehole-to-surface electromagnetic survey

    USGS Publications Warehouse

    Tseng, H.-W.; Becker, A.; Wilt, M.J.; Deszcz-Pan, M.

    1998-01-01

    The results of a limited field trial confirm the usefulness of borehole-to-surface electromagnetic (EM) measurements for monitoring fluid extraction. A vertical EM profiling experiment was done at the University of California Richmond Field Station, where we simulated a brine spill plume by creating a saline water injection zone at a depth of 30 m. The data acquisition mode was analogous to the reverse vertical seismic profiling (VSP) configuration used for seismic measurements in that the EM transmitter traversed the PVC-cased borehole used for fluid injection and extraction while the receivers were deployed on the surface. The EM measurements were made at 9.6 kHz with an accuracy of 1% in signal amplitude and 1??in signal phase. Observations were taken at 5-m intervals along two intersecting profiles that were centered on the injection well and extended for 60 m on either side of it. The presence of the injected salt water, at the expected 30 m depth, was indicated clearly by differences between the pre-extraction and postextraction data. A limited amount of numerical modeling showed that the experimental data were consistent with the presence of two superposed saline plumes. The uppermost of these, located at 26 m depth, was 2 m thick and had an area of 30 m2. The lower plume, located at 30 m, is the major cause of the observed anomally, as it has an areal extent of 120 m2 and a thickness of 3 m. Surprisingly, the measurements were very sensitive to the presence of cultural surficial conductivity anomalies. These spurious effect were reduced by spatial filtering of the data prior to interpretation.The results of a limited field trial confirm the usefulness of borehole-to-surface electromagnetic (EM) measurements for monitoring fluid extraction. A brine spill plume is simulated by creating a saline water injection zone at a depth of 30 m. The data acquisition mode was analogous to the reverse vertical seismic profiling (VSP) configuration used for seismic

  12. Phase Identification of Seismic Borehole Samples

    SciTech Connect

    Crum, Jarrod V.; Riley, Brian J.

    2006-11-01

    This report documents the phase identification results obtained by x-ray diffraction (XRD) analysis of samples taken from borehole C4998 drilled at the Waste Treatment Plant (WTP) on the Hanford Site (REF). XRD samples were taken from fractures and vesicles or are minerals of interest at areas of interest within the basalt formations cored. The samples were powder mounted and analyzed. Search-match software was used to select the best match from the ICDD mineral database based on peak locations and intensities.

  13. Spatiotemporal relationships of dike magmatism in the Kola region, the Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Fedotov, Zh. A.; Bayanova, T. B.; Serov, P. A.

    2012-11-01

    A brief geological and petrographic characterization of the Early Precambrian dike complexes of the Kola region is given along with data on new estimates of dike age and analysis of their distribution over the entire Fennoscandian Shield. The emplacement of dikes in the Archean core of the shield continued after consolidation of the sialic crust 2.74-1.76 Ga ago. After the Svecofennian Orogeny, dikes continued to form in the west in the area of newly formed crust, while the amagmatic period began in the Archean domain. The intense formation of dikes in the Svecofennian domain lasted approximately for 1 Ga (1.8-0.84 Ga). The younger igneous rocks in the crustal domains of different age are less abundant and localized at their margins. A similar distribution of dikes is characteristic of other shields in different continents. This implies that the formation of the sialic crust in the shields is not completed by its consolidation and formation of the craton. For 1 Ga after completion of this process, the crust is underplated by mantle-derived magmas. This process is reflected at the Earth's surface in the development of mantle-derived mafic and anorogenic granitoid magmatism. The process of crust formation is ended as the subcratonic lithosphere cools and the amagmatic period of the craton history is started. Beginning from this moment, the manifestations of cratonic magmatism were related either to the superposed tectonomagmatic reactivation of the cold craton under the effect of crust formation in the adjacent mobile belts or to the ascent of mantle plumes.

  14. In vivo evaluation of interaction between aqueous seed extract of Garcinia kola Heckel and ciprofloxacin hydrochloride.

    PubMed

    Esimone, Charles O; Nwafor, Sunday V; Okoli, Charles O; Chah, Kennedy F; Uzuegbu, David B; Chibundu, Chinedu; Eche, Mike A; Adikwu, Micheal U

    2002-01-01

    The effect of Garcinia kola seed extract (100 mg/kg) on the pharmacokinetic and antibacterial effects of ciprofloxacin hydrochloride (40 mg/kg) was studied. The results (mean +/- SEM) indicated that concurrent administration of both agents significantly (P < 0.05) decreased average serum concentration, peak serum concentration, and elimination rate of ciprofloxacin HCl, whereas the half-life and clearance rate were increased. The decrease in clearance rate was not significant. There was no difference in time to peak plasma concentration of ciprofloxacin HCl in both groups (n = 5), which occurred at 1 hour. However, the peak plasma concentration of ciprofloxacin HCl was 46.90 +/- 9.50 microg/mL in the group that received ciprofloxacin HCl alone as against 35.80 +/- 9.30 microg/mL noted in the group that received both agents (difference of 22.24%). At 2.5 hours and longer, the values were higher in the group that received both agents, but these were not statistically significant. The reciprocal serum inhibitory titer (SIT) was 33.33 and 50.00% higher in group that received ciprofloxacin HCl alone at 1 and 2.5 hours, respectively; the highest value for both groups being at 1 hour. In contrast, at 4 hours, the value of reciprocal SIT was 66.67% higher in the group that received both agents and at 24 hours, the value was zero for both groups. The observed pharmacokinetic and antibacterial interactions at various time interval indicate biphasic interaction. The interaction was antagonistic at 1 and 2.5 hours, but exhibited potentiation at 4 hours. The precise mechanism underlying the observed biphasic interaction is not fully understood. PMID:12115015

  15. Modelling and Evaluation of Environmental Impact due to Continuous Emissions of the Severonickel Plant (Kola Peninsula)

    NASA Astrophysics Data System (ADS)

    Mahura, A.; Gonzalez-Aparicio, I.; Nuterman, R.; Baklanov, A.

    2012-04-01

    In this study, evaluation of potential impact - through concentration, deposition and loadings patterns - on population and environment due to continuous anthropogenic emissions (on example of sulfates) of the Cu-Ni smelters of the Russian North is given. To estimate impact, the Danish Emergency Response Model for Atmosphere (DERMA) was employed to perform long-term simulations of air concentration, time integrated air concentration (TIAC), dry (DD) and wet (WD) deposition patterns resulting from continuous emissions of the Severonickel smelters located on the Kola Peninsula (Murmansk region, Russia). To perform such simulations the 3D meteorological fields (from the European Center for Medium-Range Weather Forecasts, ECMWF) for the year 2000 were used as input. For simplicity, it has been assumed that normalized releases of sulfates from smelters location occurred at a constant rate every day. For each daily release the atmospheric transport, dispersion, dry and wet deposition due to removal processes were estimated during 10 day interval. Output from these long-term simulations is an essential input for evaluation of impact, doses, risks, and short- and long-term consequences, etc. Detailed analyses of simulated concentration and deposition fields allowed evaluating the spatial and temporal variability of resulted patterns on different scales. Temporal variability of both wet and dry deposition as well as their contribution into total deposition have been estimated. On an annual scale, the concentration and deposition patterns were estimated for the most populated cities of the North-West Russia. The modeled annual fields were also integrated into GIS environment as well as layers with population density (from the Center for International Earth Science Information Network, CIESIN) and standard administrative division of the North-West Russia and bordering countries. Furthermore, the estimation of deposited amounts (loadings) of sulfates for selected regions of

  16. Repeat temperature measurements in borehole GC-1, northwestern Utah - Towards isolating a climate-change signal in borehole temperature profiles

    SciTech Connect

    Chapman, D.S.; Harris, R.N. )

    1993-09-01

    Temperature-depth profiles in borehole GC-1, northwestern Utah, were measured in 1978, 1990, and 1992. Borehole temperatures below 80 m depth are highly reproducible over the 14 year period indicating long term thermal stability. A slowly changing temperature field above 80 m depth has similiar characteristics to synthetic temperature profiles computed from a 100 year record of air temperature changes at Park Valley weather station 50 km northeast of the borehole site. 6 refs.

  17. The Role of Active Fractures on Borehole Breakout Development

    NASA Astrophysics Data System (ADS)

    Sahara, D.; Kohl, T.; Schoenball, M.; Müller, B.

    2013-12-01

    The properties of georeservoirs are strongly related to the stress field and their interpretation is a major target in geotechnical management. Borehole breakouts are direct indicators of the stress field as they develop due to the concentration of the highest compressional stress toward the minimum horizontal stress direction. However, the interaction with fractures might create local perturbations. Such weakened zones are often observed by localized anomalies of the borehole breakout orientation. We examined high-quality acoustic borehole televiewer (UBI) logs run in the entire granite sections at the deep well GPK4 at Soultz-sous-Forêts, France. The borehole is moderately inclined (15° - 35°) in its middle section. Detailed analysis of 1221 borehole elongation pairs in the vicinity of 1871 natural fractures observed in GPK4 well is used to infer the role of fractures on the borehole breakouts shape and orientation. Patterns of borehole breakout orientation in the vicinity of active fractures suggest that the wavelength of the borehole breakout orientation anomalies in this granite rock depend on the scale of the fracture while the rotation amplitude and direction is strongly influenced by the fracture orientation. In the upper and middle part of the well even a linear trend between fracture and breakout orientations could be established. In addition to the rotation, breakouts typically are found to be asymmetrically formed in zones of high fracture density. We find that major faults tend to create a systematic rotation of borehole breakout orientation with long spatial wavelength while abrupt changes are often observed around small fractures. The finding suggest that the borehole breakout heterogeneities are not merely governed by the principal stress heterogeneities, but that the effect of mechanical heterogeneities like elastic moduli changes, rock strength anisotropy and fracturing must be taken into account. Thus, one has to be careful to infer the

  18. Optical Seismometers: Borehole and Vault Applications

    NASA Astrophysics Data System (ADS)

    Otero, J. D.; Berger, J.; Wyatt, F. K.; Zumberge, M. A.

    2009-12-01

    We have developed an interferometric seismometer which uses optics instead of electronics to infer ground motion. The sensor, assembled exclusively from glass and metal materials, could be deployed into deep boreholes where temperatures often exceed 150 °C. Our first prototype consists of a leaf-spring suspension and an optical-fiber-linked interferometer, which monitors vertical displacement of the seismic mass. Several years of testing and improvements have increased its performance at both low (e.g., tidal) and high (tens of Hz) frequencies. The prototype sensor performs as well as or better than most observatory grade seismometers and has an overall observed dynamic range of 109 or 30 bits of resolution (based on its observed noise floor and its maximum mass velocity). We have also built a simple horizontal component prototype which consists of a mass suspended from a vertical pendulum whose flexure is fabricated from a single block of material. Just as our vertical seismometer can serve as a gravity meter, the horizontal prototype can serve as a tiltmeter (both of their responses are flat to DC). Tests are currently being conducted with the new sensor in our Piñon Flat Seismic Test Facility (California). One advantage of our optical displacement transducer is its dynamic range, which relaxes the requirement that the horizontal component sensor be level, simplifying borehole installations. We have already achieved a dynamic range of ±5° and we expect that a range of ±10° is possible with some effort.

  19. Hydrogeologic framework and borehole yields in Ghana

    NASA Astrophysics Data System (ADS)

    Dapaah-Siakwan, S.; Gyau-Boakye, P.

    2000-08-01

    In Ghana, 68% of the population live in rural communities, which are scattered and remote. Groundwater is the most feasible source of potable water supply for most of these dispersed and remote settlements. To meet the present and future challenges of population expansion vis-à-vis the observed declining rainfall in most parts of Africa including Ghana, it is necessary to assess, efficiently manage, and utilize the groundwater resources. The objective of this paper is therefore to describe the hydrogeologic framework and analyze borehole yields as part of the groundwater-resources assessment of Ghana. The hydrogeologic units are broadly categorized as: (1) the Basement Complex (crystalline rocks), which underlies about 54% of the country; (2) the Voltaian System, which underlies about 45%; and (3) the Cenozoic, Mesozoic, and Paleozoic sedimentary strata (Coastal Provinces), which underlie the remaining 1% of the country. The Basement Complex and the Coastal Provinces have higher groundwater potential than the Voltaian System. This is particularly significant, because the Basement Complex and the Coastal Provinces underlie the most densely populated areas of the country and can hence be tapped for human use. The average borehole yields of the Basement Complex, the Coastal Provinces and the Voltaian System range from 2.7-12.7, 3.9-15.6, and 6.2-8.5 m3/h, respectively.

  20. Second ILAW Site Borehole Characterization Plan

    SciTech Connect

    SP Reidel

    2000-08-10

    The US Department of Energy's Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford since 1944. Approximately 209,000 m{sup 3} (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low-activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized. The low-activity vitrified waste will be disposed of in the 200 East Area of the Hanford Site. This report is a plan to drill and characterize the second borehole for the Performance Assessment. The first characterization borehole was drilled in 1998. The plan describes data collection activities for determining physical and chemical properties of the vadose zone and saturated zone on the northeast side of the proposed disposal site. These data will then be used in the 2005 Performance Assessment.

  1. Three hydroxylated lupeol-based triterpenoid esters isolated from the Eastern Nigeria mistletoe parasitic on Kola acuminata.

    PubMed

    Omeje, Edwin Ogechukwu; Osadebe, Patience Ogoamaka; Esimone, Charles Okechukwu; Nworu, Chukwuemeka Sylvester; Kawamura, Akira; Proksch, Peter

    2012-01-01

    Column fractionation and purification of an n-hexane fraction led to the isolation of three lupeol-based triterpenoid esters from the leaves of the Eastern Nigeria mistletoe, Loranthus micranthus Linn parasitic on a local kola nut tree, Kola acuminata. These three compounds were adequately characterised using a combination of UV/visible, IR, NMR (¹³C-NMR and ¹H-NMR), DEPT, MS and two-dimensional correlation (H-H COSY, Hetero-nuclear Single Quantum Correlation (HSQC), HMBC, NOE and NOESY) studies as 7β,15α-dihydroxyl-lup-20(29)-ene-3β-esters of palmitic (I), stearic (II) and eicosanoic acids (III). The characterisation of other isolated compounds is ongoing. Remarkably, this is the first report of the existence of fatty acid esters of an unusual 7β,15α-dihydroxylated lupeol in the Eastern Nigeria mistletoe. These isolated compounds might contribute in part to the numerous established bio-activities of the Eastern Nigeria mistletoes. PMID:22007932

  2. Environmental impact assessment of the mining and concentration activities in the Kola Peninsula, Russia by multidate remote sensing.

    PubMed

    Rigina, Olga

    2002-04-01

    On the Kola Peninsula, the mining and concentration industry exerts anthropogenic impact on the environment. Tailing dumps cause airborne pollution through dusting, and waterborne pollution due to direct dumping and accidental releases. The objectives were: (1) to analyse multidate satellite images for 1964-1996 to assess the environmental pollution from the mining and concentration activity in the Kola in temporal perspective; (2) to evaluate remote sensing methods for integrated environmental impact assessment. The area of mining and industrial sites steadily expands and amounted to 94 km2 in 1996. The polluted water surface amounted to at least 150 km2 through dumping in 1978 and to 106 km2 in 1986 due to dusting. Thus, the impact from the mining and concentration activity should be reconsidered as more significant than it was officially anticipated. In the past the main mechanism of pollution was direct dumping into the lakes. Currently and in future, airborne pollution after dusting storms will dominate. The effective recultivation of the tailing dumps will be a long-term process. For effective assessment of impacts from the mining and concentration industry, remote sensing methods should be complemented by in-situ measurements, fieldwork, and mathematical modelling. PMID:15900663

  3. Preliminary Results of Marine Electromagnetic Sounding with a Powerful, Remote Source in Kola Bay off the Barents Sea

    NASA Astrophysics Data System (ADS)

    Kruglyakov, M.; Zhdanov, M. S.; Grigor'ev, V.; Korotaev, S.; Orekhova, D.; Scshors, Y.; Tereshchenko, E.; Tereshchenko, P.; Trofimov, I.

    2012-12-01

    The talk is devoted to a natural experiment conducted in Kola Bay off the Barents Sea in which new, six- component electromagnetic seafloor receivers were tested. Signals from a powerful, remote SLW transmitter at several frequencies on the order of tens Hz were recorded at the six sites along a profile across Kola Bay. In spite of the fact that, for technical reasons, not all the components were successfully recorded at every site, the quality of the experimental data was quite satisfactory. The experiment resulted in the successful simulation of an electromagnetic field by the integral equation method. An initial geoelectric model reflecting the main features of the regional geology produced field values that differed greatly from the experimental ones. However, step-by-step modification of the original model considerably improved the fit of the fields. This allowed to correct some features of the regional geology, the fault tectonics in particular. These preliminary results open the possibility of inverse problem solving with more reliable geological conclusions.

  4. A combined surface and borehole seismic survey at the COSC-1 borehole

    NASA Astrophysics Data System (ADS)

    Simon, Helge; Krauß, Felix; Hedin, Peter; Buske, Stefan; Giese, Rüdiger; Juhlin, Christopher

    2015-04-01

    The ICDP project COSC (Collisional Orogeny in the Scandinavian Caledonides) focuses on the mid Paleozoic Caledonide Orogen in Scandinavia in order to better understand orogenic processes, from the past and in recent active mountain belts. The Scandinavian Caledonides provide a well preserved example of a Paleozoic continent-continent collision. Surface geology in combination with geophysical data provide control of the geometry of the Caledonian structure, including the allochthon and the underlying autochthon, as well as the shallow W-dipping décollement surface that separates the two and consist of a thin skin of Cambrian black shales. During spring/summer 2014 the COSC-1 borehole was drilled to approx. 2.5 km depth near the town of Åre (western Jämtland/Sweden) with nearly 100 % of core recovery and cores in best quality. After the drilling was finished, a major seismic survey was conducted in and around the COSC-1 borehole which comprised both seismic reflection and transmission experiments. Besides a high resolution zero-offset VSP (Vertical Seismic Profiling) experiment also a multi-azimuthal walkaway VSP survey took place. For the latter the source points were distributed along three profile lines centered radially around the borehole. For the central part up to 2.5 km away from the borehole, a hydraulic hammer source was used, which hits the ground for about 20 s with an linear increasing hit rate. For the far offset shots up to 5 km, explosive sources were used. The wavefield of both source types was recorded in the borehole using an array of 15 three-component receivers with a geophone spacing of 10 m. This array was deployed at 7 different depth levels during the survey. At the same time the wavefield was also recorded at the surface by 180 standalone three-component receivers placed along each of the three up to 10 km long lines, as well as with a 3D array of single-component receivers in the central part of the survey area around the borehole. Here

  5. Development of a new borehole acoustic televiewer for geothermal applications

    SciTech Connect

    Moore, T.K.; Hinz, K.; Archuleta, J.

    1985-01-01

    Currently Westfalische Berggewerkschaftskasse (WBK) of West Germany and the Los Alamos National Laboratory of the United States are jointly developing a borehole acoustic televiewer for use in geothermal wellbores. The tool can be described as five subsystems working together to produce a borehole image. Each of the subsystems will be described. 2 refs., 2 figs.

  6. Geomechanical Considerations for the Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Park, B. Y.

    2015-12-01

    Deep borehole disposal of high-level radioactive waste is under consideration as a potential alternative to shallower mined repositories. The disposal concept consists of drilling a borehole into crystalline basement rocks to a depth of 5 km, emplacement of canisters containing solid waste in the lower 2 km, and plugging and sealing the upper 3 km of the borehole. Crystalline rocks such as granites are particularly attractive for borehole emplacement because of their low permeability and porosity at depth, and high mechanical strength to resist borehole deformation. In addition, high overburden pressures contribute to sealing of some of the fractures that provide transport pathways. We present geomechanical considerations during construction (e.g., borehole breakouts, disturbed rock zone development, and creep closure), relevant to both the smaller-diameter characterization borehole (8.5") and the larger-diameter field test borehole (17"). Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Evaluation of borehole electromagnetic and seismic detection of fractures

    SciTech Connect

    Chang, H.T.; Suhler, S.A.; Owen, T.E.

    1984-02-01

    Experiments were conducted to establish the feasibility of downhole high-frequency techniques for location of fractures in the vicinity of boreholes. An existing flame-cut slot in granite was filled with salt water to simulate a brine-filled fracture. The first method used an electromagnetic wave at 30 to 300 MHz, vhf frequencies. A transmitter consisting of a phased dual-dipole array arranged to provide a directional signal toward the fracture was installed in a borehole opposite the fracture. A receiver was also located in the same borehole. The radar returns from the simulated fracture were detectable in boreholes located at distances of up to 12 meters from the fracture. These results indicate for the first time the feasibility of a downhole vhf radar for use in a single borehole for detection of fractures located away from the borehole. Similar experiments were also conducted using seismic waves at 4.5 to 6 KHz. The transmitter and the receiver in this case were located in separate boreholes. During this experiment, reflections from the slot were obtained only with the transducers oriented for shear wave illumination and detection. These results suggest that a high-frequency shear wave can also be used to detect fractures away from a borehole.

  8. First quarter chemical borehole studies in the drift scale test

    SciTech Connect

    DeLoach, L., LLNL

    1998-05-19

    The chemistry boreholes of the Drift Scale Test (DST) have been designed to gather geochemical information and assess the impact of thermal perturbations on gas and liquid phases present in pore spaces and fractures within the rock. There are a total of ten boreholes dedicated to these chemical studies. Two arrays of five boreholes each were drilled from the access/observation drift (AOD) in planes which run normal to the heater drift and which are located approximately 15 and 45% of the way along the length of the drift as measured from the bulkhead. The boreholes each have a length of about 40 meters and have been drilled at low angles directed just above or just below the heater plane. In each array, three boreholes are directed at increasingly steeper angles (< 25-) above the line of wing heaters and two are directed at shallow angles below the wing heater plane.

  9. Dependence of Body Wave Velocity on Borehole Stress Concentration

    NASA Astrophysics Data System (ADS)

    Tian, Jiayong; Man, Yuanpeng; Qi, Hui

    In order to develop ultrasonic method for the quantitative measurement of in-situ rock stresses, we investigate the influence of stress concentration on the body-wave velocities around a borehole. First, the acoustoelasticity theory of finite-deformation solids yields a direct and explicit quantitative borehole acoustoelasticity, which reveals that the orientations of the maximum and minimum wave-velocity shifts at the borehole surface coincide with the directions of the minimum and maximum far-field principal stresses, respectively. Second, pulse-echo measurement of wave-velocity variations at the borehole surface in the sandstone sample under the biaxial compressional loadings is performed to validate the quantitative borehole acoustoelasticity. The consistence of the experimental results with the theoretical prediction means that the ultrasonic method based on acoustoelasticity theory could be a promising noncontact and non-destructive method for the quantitative measurement of in-situ rock stresses.

  10. Numerical Borehole Breakdown Investigations using XFEM

    NASA Astrophysics Data System (ADS)

    Beckhuis, Sven; Leonhart, Dirk; Meschke, Günther

    2016-04-01

    During pressurization of a wellbore a typical downhole pressure record shows the following regimes: first the applied wellbore pressure balances the reservoir pressure, then after the compressive circumferential hole stresses are overcome, tensile stresses are induced on the inside surface of the hole. When the magnitude of these stresses reach the tensile failure stress of the surrounding rock medium, a fracture is initiated and propagates into the reservoir. [1] In standard theories this pressure, the so called breakdown pressure, is the peak pressure in the down-hole pressure record. However experimental investigations [2] show that the breakdown did not occur even if a fracture was initiated at the borehole wall. Drilling muds had the tendency to seal and stabilize fractures and prevent fracture propagation. Also fracture mechanics analysis of breakdown process in mini-frac or leak off tests [3] show that the breakdown pressure could be either equal or larger than the fracture initiation pressure. In order to gain a deeper understanding of the breakdown process in reservoir rock, numerical investigations using the extended finite element method (XFEM) for hydraulic fracturing of porous materials [4] are discussed. The reservoir rock is assumed to be pre-fractured. During pressurization of the borehole, the injection pressure, the pressure distribution and the position of the highest flux along the fracture for different fracturing fluid viscosities are recorded and the influence of the aforementioned values on the stability of fracture propagation is discussed. [1] YEW, C. H. (1997), "Mechanics of Hydraulic Fracturing", Gulf Publishing Company [2] MORITA, N.; BLACK, A. D.; FUH, G.-F. (1996), "Borehole Breakdown Pressure with Drilling Fluids". International Journal of Rock Mechanics and Mining Sciences 33, pp. 39-51 [3] DETOURNAY, E.; CARBONELL, R. (1996), "Fracture Mechanics Analysis of the Breakdown Process in Minifrac or Leakoff Test", Society of Petroleum

  11. [Impact of industrial pollution on emission of carbon dioxide by soils in the Kola Subarctic Region].

    PubMed

    Koptsik, G N; Kadulin, M S; Zakharova, A I

    2015-01-01

    Soil emission of carbon dioxide, the key component of carbon cycle and the characteristic of soil biological activity, has been studied in background and polluted ecosystems in the Kola subarctic, the large industrial region of Russia. Long-term air pollution by emissions of "Pechenganikel" smelter, the largest source of sulphur dioxide and heavy metals in Northern Europe, has caused the technogenic digression of forest ecosystems. As a result of the digression, the tree layer was destructed, the number of plant species was diminished, the activity of soil biota was weakened, the soils were polluted and exhausted, biogeochemical cycles of elements were disturbed and productivity of ecosystems shrunk. Field investigations revealed the decrease of the in.situ soil respiration in average from 190-230 mg C-CO2/m2 x per h in background pine forests to 130-160, 100, and 20 mg C-CO2/m2.per h at the stages of pine defoliation, sparse pine forest and technogenic barrens of the technogenic succession, respectively. The soil respira- tion in birch forests was more intense than in pine forests and tended to decrease from about 290 mg C-CO2/m2 x per h in background forests to 210-220 and 170-190 mg C-CO2/m2 x per h in defoliating forests and technogenic sparse forests, respectively. Due to high spatial variability of soil respiration in both pine and birch forests significant differences from the background level were found only in technogenic sparse forests and barrens. Soil respiration represents total production of carbon dioxide by plant roots and soil microorganisms. The decrease in share of root respiration in the total soil respiration with the rise of pollution from 38-57% in background forests up to zero in technogenic barrens has been revealed for the first time for this region. This indicates that plants seem to be more sensitive to pollution as compared to relatively resistant microorganisms. Soil respiration and the contribution of roots to the total respiration

  12. Detection and Analysis of Near-Surface Explosions on the Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Gibbons, Steven J.; Ringdal, Frode

    2010-05-01

    Seismic and infrasonic observations of signals from a sequence of near-surface explosions at a site on the Kola Peninsula have been analyzed. NORSAR's automatic network processing of these events shows a significant scatter in the location estimates and, to improve the automatic classification of the events, we have performed full waveform cross-correlation on the data set. Although the signals from the different events share many characteristics, the waveforms do not exhibit a ripple-for-ripple correspondence and cross-correlation does not result in the classic delta-function indicative of repeating signals. Using recordings from the ARCES seismic array (250 km W of the events), we find that a correlation detector on a single channel or three-component station would not be able to detect subsequent events from this source without an unacceptable false alarm rate. However, performing the correlation on each channel of the full ARCES array, and stacking the resulting traces, generates a correlation detection statistic with a suppressed background level which is exceeded by many times its standard deviation on only very few occasions. Performing f- k analysis on the individual correlation coefficient traces, and rejecting detections indicating a non-zero slowness vector, results in a detection list with essentially no false alarms. Applying the algorithm to 8 years of continuous ARCES data identified over 350 events which we confidently assign to this sequence. The large event population provides additional confidence in relative travel-time estimates and this, together with the occurrence of many events between 2002 and 2004 when a temporary network was deployed in the region, reduces the variability in location estimates. The best seismic location estimate, incorporating phase information for many hundreds of events, is consistent with backazimuth measurements for infrasound arrivals at several stations at regional distances. At Lycksele, 800 km SW of the events

  13. Borehole-to-borehole geophysical methods applied to investigations of high level waste repository sites

    SciTech Connect

    Ramirez, A.L.

    1983-01-01

    This discussion focuses on the use of borehole to borehole geophysical measurements to detect geological discontinuities in High Level Waste (HLW) repository sites. The need for these techniques arises from: (a) the requirement that a HLW repository's characteristics and projected performance be known with a high degree of confidence; and (b) the inadequacy of other geophysical methods in mapping fractures. Probing configurations which can be used to characterize HLW sites are described. Results from experiments in which these techniques were applied to problems similar to those expected at repository sites are briefly discussed. The use of a procedure designed to reduce uncertainty associated with all geophysical exploration techniques is proposed; key components of the procedure are defined.

  14. Advances in crosswell electromagnetics steel cased boreholes

    SciTech Connect

    Harben, P E; Kirkendall, B A; Lewis, J P

    1999-03-01

    The Crosswell electromagnetic (EM) induction technique ideally measures the resistivity distribution between boreholes which may often be cased with carbon steel. Quantification of the effect of such steel casing on the induced field is the most significant limitation of the technique. Recent data acquired at a site in Richmond, California quantify the effect of steel casing on induction measurements and demonstrate this effect to be separable. This unique site contains adjacent steel and plastic wells in which frequency soundings demonstrate low spectrum (1.0 - 50 Hz) measurements an effective means of isolating the casing response from, the formation response. It is also shown that the steel casing effect on the induction coil is highly localized, and limited to less than 0.30 meters above and below the coil.

  15. Head assembly for multiposition borehole extensometer

    SciTech Connect

    Frank, D.N.

    1983-05-10

    A head assembly for a borehole extensometer and an improved extensometer for measuring subsurface subsidence. A plurality of inflatable anchors provide discrete measurement points. A metering rod is fixed to each of the anchors which are displaced when subsidence occurs, thereby translating the attached rod. The head assembly includes a sprocket wheel rotatably mounted on a standpipe and engaged by a chain which is connected at one end to the metering rod and at the other end to a counterweight. A second sprocket wheel connected to the standpipe also engages the chain and drives a connected potentiometer. The head assembly converts the linear displacement of the metering rod to the rotary motion of the second sprocket wheel, which is measured by the potentiometer, producing a continuous electrical output.

  16. Head assembly for multiposition borehole extensometer

    SciTech Connect

    Frank, D.N.

    1981-06-09

    A head assembly for a borehole extensometer and an improved extensometer for measuring subsurface subsidence. A plurality of inflatable anchors provide discrete measurement points. A metering rod is fixed to each of the anchors which are displaced when subsidence occurs, thereby translating the attached rod. The head assembly includes a sprocket wheel rotatably mounted on a standpipe and engaged by a chain which is connected at one end to the metering rod and at the other end to a counterweight. A second sprocket wheel connected to the standpipe also engages the chain and drives a connected potentiometer. The head assembly converts the linear displacement of the metering rod to the rotary motion of the second sprocket wheel, which is measured by the potentiometer, producing a continuous electrical output.

  17. Head assembly for multiposition borehole extensometer

    DOEpatents

    Frank, Donald N.

    1983-01-01

    A head assembly for a borehole extensometer and an improved extensometer for measuring subsurface subsidence. A plurality of inflatable anchors provide discrete measurement points. A metering rod is fixed to each of the anchors which are displaced when subsidence occurs, thereby translating the attached rod. The head assembly includes a sprocket wheel rotatably mounted on a standpipe and engaged by a chain which is connected at one end to the metering rod and at the other end to a counterweight. A second sprocket wheel connected to the standpipe also engages the chain and drives a connected potentiometer. The head assembly converts the linear displacement of the metering rod to the rotary motion of the second sprocket wheel, which is measured by the potentiometer, producing a continuous electrical output.

  18. Borehole hydraulic coal mining system analysis

    NASA Technical Reports Server (NTRS)

    Floyd, E. L.

    1977-01-01

    The borehole hydraulic coal mining system accesses the coal seam through a hole drilled in the overburden. The mining device is lowered through the hole into the coal seam where it fragments the coal with high pressure water jets which pump it to the surface as a slurry by a jet pump located in the center of the mining device. The coal slurry is then injected into a pipeline for transport to the preparation plant. The system was analyzed for performance in the thick, shallow coal seams of Wyoming, and the steeply pitching seams of western Colorado. Considered were all the aspects of the mining operation for a 20-year mine life, producing 2,640,000 tons/yr. Effects on the environment and the cost of restoration, as well as concern for health and safety, were studied. Assumptions for design of the mine, the analytical method, and results of the analysis are detailed.

  19. Multiple fracturing experiments: propellant and borehole considerations

    SciTech Connect

    Cuderman, J F

    1982-01-01

    The technology for multiple fracturing of a wellbore, using progressively burning propellants, is being developed to enhance natural gas recovery. Multiple fracturing appears especially attractive for stimulating naturally fractured reservoirs such as Devonian shales where it is expected to effectively intersect existing fractures and connect them to a wellbore. Previous experiments and modeling efforts defined pressure risetimes required for multiple fracturing as a function of borehole diameter, but identified only a weak dependence on peak pressure attained. Typically, from four to eight equally spaced major fractures occur as a function of pressure risetime and in situ stress orientation. The present experiments address propellant and rock response considerations required to achieve the desired pressure risetimes for reliable multiple fracturing.

  20. Waterborne cryptosporidiosis associated with a borehole supply.

    PubMed

    Morgan, D; Allaby, M; Crook, S; Casemore, D; Healing, T D; Soltanpoor, N; Hill, S; Hooper, W

    1995-06-23

    From 1 April to 31 May 1993, 64 cases of cryptosporidiosis were diagnosed within one district health authority. Forty were classified as primary cases, 35 of whom were clustered in an area supplied by a discrete public water supply that supplied the majority of homes in a large town. Most of the water in this supply is abstracted from boreholes and some is filtered before distribution. Households that received mains water from this supply were 15 times more likely to be affected than households nearby that received water from other sources. A case control study demonstrated a dose response relationship between consumption of water obtained from the town supply and risk of illness. Very low concentrations of cryptosporidial oocysts were detected in the water supply on four occasions several weeks after the outbreak. Environmental investigation failed to reveal a likely mechanism for contamination of the water supply. PMID:7613587

  1. Borehole plugging materials development program, report 2

    SciTech Connect

    Gulick, C.W. Jr.; Boa, J.A. Jr.; Walley, D.M.; Buck, A.D.

    1980-02-01

    The data for 2 yr of grout mixtures durability studies developed for the borehole plugging program of the Nuclear Waste Isolation Pilot Plant (WIPP) are reported. In addition, data for 1 yr of durability studies of grout mixture field samples used to plug the ERDA No. 10 exploratory drill hole near the WIPP site are included. The grout samples and the data do not show any evidence of deterioration during the durability studies that include exposure to brine at both ambient and elevated temperatures. The data include strength, compressional wave velocity, dynamic modulus, expansion, weight change, porosity, permeability, bond strength, chemical analysis of cements, and petrographic examinations. The work was performed at the Concrete Division of the Structures Laboratory of the US Army Engineer Waterways Experiments Station (WES), Vicksburg, Mississippi. The work is continuing at WES.

  2. Corrosion tests in the Marchwood geothermal borehole

    NASA Astrophysics Data System (ADS)

    Lawrence, P. F.

    1982-03-01

    Corrosion tests in the high salinity brine produced during a production test at the Marchwood borehole. These tests were intended to obtain preliminary information on the corrosion of a range of metals and alloys most likely to be used for downhole service, heat exchangers and associated equipment, if hot water from this aquifer is used to provide a long-term energy source. Specimens of appropriate candidate materials were exposed to flowing brine in the surface pipework and also downhole at a depth of 663 m. The brine was pumped to the surface by a multi-stage electric submersible pump. The downhole specimens, which were installed with the pump, were exposed for a period of 83 days. The surface specimens were exposed during the well production test for 33.3 days. The product brine was around three times sea water concentration, at a temperature of 72 C and pH 6.2.

  3. Development of a magnetostrictive borehole seismic source

    SciTech Connect

    Cutler, R.P.; Sleefe, G.E.; Keefe, R.G.

    1997-04-01

    A magnetostrictive borehole seismic source was developed for use in high resolution crosswell surveys in environmental applications. The source is a clamped, vertical-shear, swept frequency, reaction-mass shaker design consisting of a spring pre-loaded magnetostrictive rod with permanent magnet bias, drive coils to induce an alternating magnetic field, and an integral tungsten reaction mass. The actuator was tested extensively in the laboratory. It was then incorporated into an easily deployable clamped downhole tool capable of operating on a standard 7 conductor wireline in borehole environments to 10,000{degrees} deep and 100{degrees}C. It can be used in either PVC or steel cased wells and the wells can be dry or fluid filled. It has a usable frequency spectrum of {approx} 150 to 2000 Hz. The finished tool was successfully demonstrated in a crosswell test at a shallow environmental site at Hanford, Washington. The source transmitted signals with a S/N ratio of 10-15 dB from 150-720 Hz between wells spaced 239 feet apart in unconsolidated gravel. The source was also tested successfully in rock at an oil field test site, transmitting signals with a S/N ratio of 5-15 dB over the full sweep spectrum from 150-2000 Hz between wells spaced 282 feet apart. And it was used successfully on an 11,000{degrees} wireline at a depth of 4550{degrees}. Recommendations for follow-on work include improvements to the clamp, incorporation of a higher sample rate force feedback controller, and increases in the force output of the tool.

  4. Development of a hydraulic borehole seismic source

    SciTech Connect

    Cutler, R.P.

    1998-04-01

    This report describes a 5 year, $10 million Sandia/Industry project to develop an advanced borehole seismic source for use in oil and gas exploration and production. The development Team included Sandia, Chevron, Amoco, Conoco, Exxon, Raytheon, Pelton, and GRI. The seismic source that was developed is a vertically oriented, axial point force, swept frequency, clamped, reaction-mass vibrator design. It was based on an early Chevron prototype, but the new tool incorporates a number of improvements which make it far superior to the original prototype. The system consists of surface control electronics, a special heavy duty fiber optic wireline and draw works, a cablehead, hydraulic motor/pump module, electronics module, clamp, and axial vibrator module. The tool has a peak output of 7,000 lbs force and a useful frequency range of 5 to 800 Hz. It can operate in fluid filled wells with 5.5-inch or larger casing to depths of 20,000 ft and operating temperatures of 170 C. The tool includes fiber optic telemetry, force and phase control, provisions to add seismic receiver arrays below the source for single well imaging, and provisions for adding other vibrator modules to the tool in the future. The project yielded four important deliverables: a complete advanced borehole seismic source system with all associated field equipment; field demonstration surveys funded by industry showing the utility of the system; industrial sources for all of the hardware; and a new service company set up by their industrial partner to provide commercial surveys.

  5. Impact of maximum borehole depths on inverted temperature histories in borehole paleoclimatology

    NASA Astrophysics Data System (ADS)

    Beltrami, H.; Smerdon, J. E.; Matharoo, G. S.; Nickerson, N.

    2011-02-01

    A quantitative assessment is presented for the impact of the maximum depth of a temperature-depth profile on the estimate of the climatic transient and the resultant ground surface temperature (GST) reconstruction used in borehole paleoclimatology. The depth of the profile is important because the downwelling climatic signal must be separated from the quasi-steady state thermal regime established by the energy in the Earth's interior. This component of the signal is estimated as a linear increase in temperature with depth from the lower section of a borehole temperature profile, which is assumed to be unperturbed by recent changes in climate at the surface. The validity of this assumption is dependent on both the subsurface thermophysical properties and the character of the downwelling climatic signal. Such uncertainties can significantly impact the determination of the quasi-steady state thermal regime, and consequently the magnitude of the temperature anomaly interpreted as a climatic signal. The quantitative effects and uncertainties that arise from the analysis of temperature-depth profiles of different depths are presented. Results demonstrate that widely different GST histories can be derived from a single temperature profile truncated at different depths. Borehole temperature measurements approaching 500-600 m depths are shown to provide the most robust GST reconstructions spanning 500 to 1000 ybp. It is further shown that the bias introduced by a temperature profile of depths shallower than 500-600 m remains even if the time span of the reconstruction target is shortened.

  6. Impact of maximum borehole depths on inverted temperature histories in borehole paleoclimatology

    NASA Astrophysics Data System (ADS)

    Beltrami, H.; Smerdon, J. E.; Matharoo, G. S.; Nickerson, N.

    2011-07-01

    A quantitative assessment is presented for the impact of the maximum depth of a temperature-depth profile on the estimate of the climatic transient and the resultant ground surface temperature (GST) reconstruction used in borehole paleoclimatology. The depth of the profile is important because the downwelling climatic signal must be separated from the quasi-steady state thermal regime established by the energy in the Earth's interior. This component of the signal is estimated as a linear increase in temperature with depth from the lower section of a borehole temperature profile, which is assumed to be unperturbed by recent changes in climate at the surface. The validity of this assumption is dependent on both the subsurface thermophysical properties and the character of the downwelling climatic signal. Such uncertainties can significantly impact the determination of the quasi-steady state thermal regime, and consequently the magnitude of the temperature anomaly interpreted as a climatic signal. The quantitative effects and uncertainties that arise from the analysis of temperature-depth profiles of different depths are presented. Results demonstrate that widely different GST histories can be derived from a single temperature profile truncated at different depths. Borehole temperature measurements approaching 500-600 m depths are shown to provide the most robust GST reconstructions spanning 500 to 1000 yr BP. It is further shown that the bias introduced by a temperature profile of depths shallower than 500-600 m remains even if the time span of the reconstruction target is shortened.

  7. Apatite fission track thermochronology of Khibina Massif (Kola Peninsula, Russia): Implications for post-Devonian Tectonics of the NE Fennoscandia

    NASA Astrophysics Data System (ADS)

    Veselovskiy, Roman V.; Thomson, Stuart N.; Arzamastsev, Andrey A.; Zakharov, Vladimir S.

    2015-12-01

    The thermal history of the Kola Peninsula area of NE Fennoscandia remains almost fully unknown because of the absence of any thermochronological data such as apatite and/or zircon fission track or (Usbnd Th)/He ages. In order to fill this gap and to constrain the post-Devonian erosion and exhumation history of this region, we present the results of apatite fission track (AFT) dating of eleven samples selected from the cores taken from different depths of the northern part of the Khibina intrusive massif. The Rbsbnd Sr isochron age of this alkaline magmatic complex which is located at the center of Kola Peninsula is 368 + 6 Ma (Kramm and Kogarko, 1994). Samples were analyzed from depths between + 520 and - 950 m and yielded AFT ages between 290 and 268 Ma with an age uncertainty (1σ) of between ± 19 Ma (7%) and ± 42 Ma (15%). Mean track lengths (MTL) lie between 12.5 and 14.4 μm. Inverse time-temperature modeling was conducted on the age and track length data from seven samples of the Khibina massif. Thermal histories that best predict the measured data from three samples with the most reliable data show three stages: (1) 290-250 Ma-rapid cooling from > 110 °C to 70 °C/50 °C for lower/upper sample correspondingly; (2) 250-50 Ma-a stable temperature stage; (3) 50-0 Ma-slightly increased cooling rates down to modern temperatures. We propose that the first cooling stage is related to late-Hercynian orogenesis; the second cooling stage may be associated with tectonics accompanying with opening of Arctic oceanic basin. The obtained data show that geothermal gradient at the center of Kola Peninsula has remained close to the modern value of 20 °C/km for at least the last 250 Myr. AFT data show that the Khibina massif has been exhumed not more then 5-6 km in the last 290 Myr.

  8. Geomechanical Engineering Concepts Applied to Deep Borehole Disposal Wells

    NASA Astrophysics Data System (ADS)

    Herrick, C. G.; Haimson, B. C.; Lee, M.

    2015-12-01

    Deep borehole disposal (DBD) of certain defense-generated radioactive waste forms is being considered by the US Department of Energy (DOE) as an alternative to mined repositories. The 17 inch diameter vertical boreholes are planned to be drilled in crystalline basement rock. As part of an initial field test program, the DOE will drill a demonstration borehole, to be used to test equipment for handling and emplacing prototype nonradioactive waste containers, and a second smaller diameter borehole, to be used for site characterization. Both boreholes will be drilled to a depth of 5 km. Construction of such boreholes is expected to be complex because of their overall length, large diameter, and anticipated downhole conditions of high temperatures, pore pressures, and stress regimes. It is believed that successful development of DBD boreholes can only be accomplished if geologic and tectonic conditions are characterized and drill activities are designed based on that understanding. Our study focuses primarily on using the in situ state of stress to mitigate borehole wall failure, whether tensile or compressive. The measured stresses, or their constrained estimates, will include pore pressure, the vertical stress, the horizontal stresses and orientations, and thermally induced stresses. Pore pressure will be measured directly or indirectly. Horizontal stresses will be estimated from hydraulic fracturing tests, leak off tests, and breakout characteristics. Understanding the site stress condition along with the rock's strength characteristics will aid in the optimization of mud weight and casing design required to control borehole wall failure and other drilling problems.Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2015-6552A

  9. Sampling and Analysis Plan - Waste Treatment Plant Seismic Boreholes Project

    SciTech Connect

    Reidel, Steve P.

    2006-05-26

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the basalt, up to three new deep rotary boreholes through the basalt and sedimentary interbeds, and one corehole through the basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities.

  10. BoreholeAR: A mobile tablet application for effective borehole database visualization using an augmented reality technology

    NASA Astrophysics Data System (ADS)

    Lee, Sangho; Suh, Jangwon; Park, Hyeong-Dong

    2015-03-01

    Boring logs are widely used in geological field studies since the data describes various attributes of underground and surface environments. However, it is difficult to manage multiple boring logs in the field as the conventional management and visualization methods are not suitable for integrating and combining large data sets. We developed an iPad application to enable its user to search the boring log rapidly and visualize them using the augmented reality (AR) technique. For the development of the application, a standard borehole database appropriate for a mobile-based borehole database management system was designed. The application consists of three modules: an AR module, a map module, and a database module. The AR module superimposes borehole data on camera imagery as viewed by the user and provides intuitive visualization of borehole locations. The map module shows the locations of corresponding borehole data on a 2D map with additional map layers. The database module provides data management functions for large borehole databases for other modules. Field survey was also carried out using more than 100,000 borehole data.

  11. Minerals of zirconolite group from fenitized xenoliths in nepheline syenites of Khibiny and Lovozero plutons, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Menshikov, Yu. P.; Mikhailova, Yu. A.; Pakhomovsky, Ya. A.; Yakovenchuk, V. N.; Ivanyuk, G. Yu.

    2015-12-01

    Zirconolite, its Ce-, Nd-, and Y-analogs, and laachite, another member of the zirconolite group, are typomorphic minerals of the fenitized xenoliths in nepheline syenite and foidolite of the Khibiny-Lovozero Complex, Kola Peninsula, Russia. All these minerals are formed at the late stage of fenitization as products of ilmentie alteration under the effect of Zr-bearing fluids. The diversity of these minerals is caused by the chemical substitutions of Na and Ca for REE, Th, and U compensated by substitution of Ti and Zr for Nb, Fe and Ta, as well as by the redistribution of REE between varieties enriched in Ti (HREE) or Nb (LREE). The results obtained can be used in the synthesis of Synroc-type titanate ceramics assigned for the immobilization of actinides.

  12. Effectiveness of Gotu Kola Extract 750 mg and 1000 mg Compared with Folic Acid 3 mg in Improving Vascular Cognitive Impairment after Stroke

    PubMed Central

    Wibowo, Samekto

    2016-01-01

    This study aimed to determine the effectiveness of gotu kola (Centella asiatica) in improving cognitive function in patients with vascular cognitive impairment (VCI). This study uses a quasi-experimental design. Subjects in this study were patients with poststroke cognitive impairment who were treated at two hospitals in Yogyakarta, Indonesia. The number of subjects was 48: 17 subjects were treated with 1000 mg/day of gotu kola extract, 17 subjects treated with 750 mg/day of gotu kola extract, and 14 subjects treated with 3 mg/day of folic acid for 6 weeks. A Montreal Cognitive Assessment-Indonesian version (MoCA-Ina) was conducted at the beginning of treatment and after 6 weeks of therapy. It was found that all trials effectively improved poststroke VCI based on MoCA-Ina scores over the course of the study. There is no significant difference in ΔMoCA-Ina (score at the 6th week of treatment − score at the beginning) mean score among the three groups, indicating that gotu kola is as effective as folic acid in improving poststroke VCI. Gotu kola was shown to be more effective than folic acid in improving memory domain. This study suggested that gotu kola extract is effective in improving cognitive function after stroke. PMID:27340413

  13. Electromagnetic studies on the Kola peninsula and in Northern Finland by means of a powerful controlled source

    NASA Astrophysics Data System (ADS)

    Velikhov, Ye. P.; Zhamaletdinov, A. A.; Belkov, I. V.; Gorbunov, G. I.; Hjelt, S. E.; Lisin, A. S.; Vanyan, L. L.; Zhdanov, M. S.; Demidova, T. A.; Korja, T.; Kirillov, S. K.; Kuksa, Yu. I.; Poltanov, A. Ye.; Tokarev, A. D.; Yevstigneyev, V. V.

    1986-07-01

    Station "Khibiny", equipped with a powerful magnetohydrodynamic (MHD) generator and/or diesel generator, has been successfully used since 1976 to study the electrical conductivity of the Earth's crust in the northern part of the Baltic Shield. The present paper describes the techniques of measurement, data processing and interpretation of the five-component electromagnetic fields created by this source. A longitudinal conductance map for the upper 10 km of the Earth's crust has been constructed. Several blocks, with conductances varying from 0.1 to some thousands of Siemens, have been revealed on the Kola Peninsula, in northern Karelia and in northern Finland. The blocks of high conductance are connected with relatively young complexes of Early Proterozoic and Late Archean ages. In some places, they create thick and extensive conductive belts such as the Imandra-Varzuga and the Pechenga zones. More often, they appear in the shape of vast regions with enhanced conductivity (e.g., the granulite belts and the Allarechen region). The geoelectric cross-section of the Imandra-Varzuga ore-critical structure has been studied in detail, using the method of electromagnetic field migration. Its depth extent is approximately 10 km. Highly resistant blocks are associated with the most ancient geological units, of early Archean age. Resistant regions have been found in the Murmansk and Central Kola regions, as well as in the Kovdor massif and in the Central Finland granite area. These regions are the most promising ones for deep electromagnetic sounding of the lower crust and the upper mantle of the Earth.

  14. Induced seismicity in large-scale mining in the kola peninsula and monitoring to reveal informative precursors

    NASA Astrophysics Data System (ADS)

    Melnikov, N. N.; Kozyrev, A. A.; Panin, V. I.

    1996-07-01

    Large volumes of rock mass, mined-out and moved within these deposits, resulted in irreversible changes in the geodynamic regime in the upper earth's crust of the adjacent territory. These changes manifest themselves in a more frequent occurrence of such intensive dynamic phenomena as tectonic rock bursts due to fault movement adjacent to the area which is mined-out and man-made earthquakes which sharply decrease mining safety and result in great material losses. To develop the prediction techniques of such phenomena, a monitoring system is created, based on the program of the Kola Complex of geodynamic measuring stations. Most of this system is realized in the region of the Khibiny apatite mines. The system provides regional seismological monitoring, local prediction of seismicity in separate areas of a rock mass and, determination of stress and strain in rock masses, local geophysical monitoring over the state of rocks in a rock mass as well as physical and mathematical modelling of geodynamic processes in the upper earth's crust. The investigations have resulted in the distinguishing of some regularities in manifestations of induced seismicity and tectonic rock bursts and in the determination of strain precursors of intensive seismic events in the Khibiny mines. The mechanism is provided by the induced seismicity which resulted from the anthropogenic impact on the geological medium. A geodynamic monitoring complex is described, which is used to reveal the precursors of powerful seismic events in situ, and monitoring results are shown, obtained in the Kola Complex of geodynamic stations. Methods of preventing tectonic rock bursts and induced earthquakes are presented.

  15. Accumulation and distribution of heavy metals in sediments and fish in the Kola Peninsula lakes under airborne contamination

    SciTech Connect

    Dauvalter, V.A.; Kashulin, N.A.; Lukin, A.A.

    1996-12-31

    The copper-nickel smelter complexes of Kola Peninsula are powerful sources of atmospheric contamination by heavy metals (Ni, Cu, Co, Cd, etc.) and acidic oxides (SO{sub 2}) deposited in precipitation and caused negative effects on local freshwater ecosystems. The rise of background levels occurs over large areas in the region. The aim of the investigations is to assess effects of the air contamination on lake ecosystems at different distances (from 15 to 120 km) from one of the main heavy metal pollution sources of the Kola Peninsula - smelters of the Pechenganickel Company. Negative effects of air pollution by the smelters on the freshwater ecosystems were recorded. Lake sediments accumulate very intensively heavy metals. Heavy metal contamination factors calculated as the quotient of concentration from the uppermost (0-1 cm) sediment to the mean preindustrial background value (concentrations from 20-30 cm sediment layers) for the investigated region reach up 120 for Ni and 76 for Cu in the lakes within a distance of 40 km from the smelters. The lakes in this region have very high contamination degree according classification by Hakanson (1980). Concentrations of Ni in organs and tissues of all studied fishes (whitefish, pike, perch, arctic char, brown trout) were considerably higher in the investigated lakes than in remote unpolluted lakes. There is tight positive correlation between Ni concentrations in surficial sediment (0-1 cm) and fish kidney (r = +0.854), as well as between values of contamination degree and Ni content in fish (r = +0.871).

  16. In Vitro Anti-Listerial Activities of Crude n-Hexane and Aqueous Extracts of Garcinia kola (heckel) Seeds

    PubMed Central

    Penduka, Dambudzo; Okoh, Anthony I.

    2011-01-01

    We assessed the anti-Listerial activities of crude n-hexane and aqueous extracts of Garcinia kola seeds against a panel of 42 Listeria isolates previously isolated from wastewater effluents in the Eastern Cape Province of South Africa and belonging to Listeria monocytogenes, Listeria grayi and Listeria ivanovii species. The n-hexane fraction was active against 45% of the test bacteria with zones of inhibition ranging between 8–17 mm, while the aqueous fraction was active against 29% with zones of inhibition ranging between 8–11 mm. The minimum inhibitory concentrations (MIC) were within the ranges of 0.079–0.625 mg/mL for the n-hexane extract and 10 to >10 mg/mL for the aqueous extract. The rate of kill experiment carried out for the n-hexane extract only, revealed complete elimination of the initial bacterial population for L. grayi (LAL 15) at 3× and 4× MIC after 90 and 60 min; L. monocytogenes (LAL 8) at 3× and 4× MIC after 60 and 15 min; L. ivanovii (LEL 18) at 3× and 4× MIC after 120 and 15 min; L. ivanovii (LEL 30) at 2, 3 and 4× MIC values after 105, 90 and 15 min exposure time respectively. The rate of kill activities were time- and concentration-dependant and the extract proved to be bactericidal as it achieved a more than 3log10 decrease in viable cell counts after 2 h exposure time for all of the four test organisms at 3× and 4× MIC values. The results therefore show the potential presence of anti-Listerial compounds in Garcinia kola seeds that can be exploited in effective anti-Listerial chemotherapy. PMID:22072929

  17. Voloshinite, a new rubidium mica from granitic pegmatite of Voron'i Tundras, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Pekov, I. V.; Kononkova, N. N.; Agakhanov, A. A.; Belakovsky, D. I.; Kazantsev, S. S.; Zubkova, N. V.

    2010-12-01

    Voloshinite, a new mineral of the mica group, a rubidium analogue of lepidolite, has been found from the rare-element granitic pegmatite at Mt. Vasin-Myl'k, Voron'i Tundras, Kola Peninsula, Russia. It is closely associated with pollucite and lepidolite and commonly with muscovite, albite, and quartz; K,Rb-feldspar, rubicline, spodumene, montebrasite, and elbaite are among associated minerals as well. Voloshinite, a late mineral that formed after pollucite, commonly fills polymineralic veinlets and pods within the pollucite aggregates. It occurs as rims up to 0.05 mm thick around lepidolite, as intergrowths of tabular crystals up to 0.25 mm in size, and occasionally replaces lepidolite. The new mineral is colorless, transparent, with vitreous luster. Cleavage is eminent parallel to {001}; flakes are flexible. The calculated density is 2.95 g/cm3. The new mineral is biaxial (-), with 2 V = 25°, α calc = 1.511, β = 1.586, and γ = 1.590. The optical orientation is Y = b, Z = a. The chemical composition of the type material determined by electron microprobe (average of five point analyses; Li has been determined with ICP-OES) is as follows (wt %): 0.03 Na2O, 3.70 K2O, 12.18 Rb2O, 2.02 Cs2O, 4.0 Li2O, 0.03 CaO, 0.02 MgO, 0.14 MnO, 21.33 Al2O3, 53.14 SiO2, 6.41 F, -O = F2 2.70, total is 100.30. The empirical formula is: (Rb0.54K0.33Cs0.06)Σ0.93(Al1.42Li1.11Mn0.01)Σ2.54(Si3.68Al0.32)Σ4O10 (F1.40(OH)0.60)Σ2. The idealized formula is as follows: Rb(LiAl1.5□0.5)[Al0.5Si3.5O10]F2. Voloshinite forms a continuous solid solution with lepidolite. According to X-ray single crystal study, voloshinite is monoclinic, space group C2/ c. The unit-cell dimensions are: a = 5.191, b = 9.025, c = 20.40 Å, β = 95.37°, V= 951.5 Å3, Z = 4. Polytype is 2 M 1. The strongest reflections in the X-ray powder diffraction pattern ( d, Å- I[ hkl]) are: 10.1-60[001]; 4.55-80[020, 110, 11 bar 1 ]; 3.49-50[11 bar 4 ]; 3.35-60[024, 006]; 3.02-45[025]; 2.575-100[11 bar 6 , 131, 20 bar 2 , 13

  18. Digital relief 3D model of the Khibiny massive (Kola peninsula)

    NASA Astrophysics Data System (ADS)

    Chesalova, Elena; Asavin, Alex

    2015-04-01

    at the bottom and at the edge of the valley. Changing these parameters for different climatic seasons allows us to estimate the duration of the existence of gas in homogeneities in the aerial under soil and up soil layers. Complex ring structure site and manifestations of recent tectonic movements allow it to allocate more closed areas with different plant-land cover and different geomorphological features. In particular stand out - bogs, forest area on the slopes and riparian forest zone, the zone of mountain tundra and rocky plateau. Designated areas should be considered together with the full history of the evolution relief Khibin, processes of decrease glaciers and their occurrence. One of the results of the work performed is the allocation within the array of closed circuses, paleo-ice landforms drumlin and moraine ridges. These landforms represent the latest stage of the glacial history of glaciation on the Kola Peninsula and the Arctic coast. Estimated areal characteristics of different forms. In some cases it was possible to separate a sequence of glacial relief forms, which suggests staging a retreat of glaciers in the area. The project highlighted areas open mining apatite ores in Khibiny massif. Career located in the inner part of the massif form a closed area drain mine water pollution and wind. While the new career located on the border of the array and the forest zone characterized by a single watershed and accordingly included in the ecological life support cycle of residential villages and towns of Kirovsk and Apatity. This fact forces us to view mining activity as a powerful source of contamination. Designed GIS project thus can be used to solve a number of problems geomorphological orientation. In addition a number of application issues - the environment, paleoclimatology, geotectonic can be successfully addressed on the basis of the digital 3D model.

  19. Geophysical borehole logging in the unsaturated zone, Yucca Mountain, Nevada

    USGS Publications Warehouse

    Schimschal, Ulrich; Nelson, Philip H.

    1991-01-01

    Borehole geophysical logging for site characterization in the volcanic rocks at the proposed nuclear waste repository at Yucca Mountain, Nevada, requires data collection under rather unusual conditions. Logging tools must operate in rugose, dry holes above the water table in the unsaturated zone. Not all logging tools will operate in this environment, therefore; careful consideration must be given to selection and calibration. A sample suite of logs is presented that demonstrates correlation of geological formations from borehole to borehole, the definition of zones of altered mineralogy, and the quantitative estimates of rock properties. We show the results of an exploratory calculation of porosity and water saturation based upon density and epithermal neutron logs. Comparison of the results with a few core samples is encouraging, particularly because the logs can provide continuous data in boreholes where core samples are not available.

  20. Canister, sealing method and composition for sealing a borehole

    DOEpatents

    Brown, Donald W.; Wagh, Arun S.

    2003-05-13

    Canister, sealing method and composition for sealing a borehole. The canister includes a container with slurry inside the container, one or more slurry exits at one end of the container, a pump at the other end of the container, and a piston inside that pushes the slurry though the slurry exit(s), out of the container, and into a borehole. An inflatable packer outside the container provides stabilization in the borehole. A borehole sealing material is made by combining an oxide or hydroxide and a phosphate with water to form a slurry which then sets to form a high strength, minimally porous material which binds well to itself, underground formations, steel and ceramics.

  1. SURFACE AND BOREHOLE ELECTROMAGNETIC IMAGING OF CONDUCTING CONTAMINANT PLUMES

    EPA Science Inventory

    Electromagnetic induction tomography is a promising new tool for imaging electrical conductivity variations in the earth. The EM source field is produced by induction coil (magnetic dipole) transmitters deployed at the surface or in boreholes. Vertical and horizontal component ma...

  2. Method and apparatus for suppressing waves in a borehole

    DOEpatents

    West, Phillip B.

    2005-10-04

    Methods and apparatus for suppression of wave energy within a fluid-filled borehole using a low pressure acoustic barrier. In one embodiment, a flexible diaphragm type device is configured as an open bottomed tubular structure for disposition in a borehole to be filled with a gas to create a barrier to wave energy, including tube waves. In another embodiment, an expandable umbrella type device is used to define a chamber in which a gas is disposed. In yet another embodiment, a reverse acting bladder type device is suspended in the borehole. Due to its reverse acting properties, the bladder expands when internal pressure is reduced, and the reverse acting bladder device extends across the borehole to provide a low pressure wave energy barrier.

  3. Methods for use in detecting seismic waves in a borehole

    DOEpatents

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2007-02-20

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  4. Data Qualification Report: Borehole Straigraphic Contacts

    SciTech Connect

    R.W. Clayton; C. Lum

    2000-04-18

    The data set considered here is the borehole stratigraphic contacts data (DTN: M09811MWDGFM03.000) used as input to the Geologic Framework Model. A Technical Assessment method used to evaluate these data with a two-fold approach: (1) comparison to the geophysical logs on which the contacts were, in part, based; and (2) evaluation of the data by mapping individual units using the entire data set. Qualification of the geophysical logs is being performed in a separate activity. A representative subset of the contacts data was chosen based on importance of the contact and representativeness of that contact in the total data set. An acceptance window was established for each contact based on the needs of the data users. Data determined to be within the acceptance window were determined to be adequate for their intended use in three-dimensional spatial modeling and were recommended to be Qualified. These methods were chosen to provide a two-pronged evaluation that examines both the origin and results of the data. The result of this evaluation is a recommendation to qualify all contacts. No data were found to lie outside the pre-determined acceptance window. Where no geophysical logs are available, data were evaluated in relation to surrounding data and by impact assessment. These data are also recommended to be qualified. The stratigraphic contact data contained in this report (Attachment VII; DTN: M00004QGFMPICK.000) are intended to replace the source data, which will remain unqualified.

  5. Application of Borehole SIP Technique to Sulfide Mineral Exploration

    NASA Astrophysics Data System (ADS)

    Kim, Changryol; Park, Mi Kyung; Park, Samgyu; Sung, Nak Hoon; Shin, Seung Wook

    2016-04-01

    In the study, SIP (Spectral Induced Polarization) well logging probe system was developed to rapidly locate the metal ore bodies with sulfide minerals in the boreholes. The newly developed SIP logging probe employed the non-polarizable electrodes, consisting of zinc chloride (ZnCl2), sodium chloride (NaCl), gypsum (CaSO4·2H2O), and water (H2O), instead of existing copper electrodes, leading to eliminating the EM coupling effect in the IP surveys as much as possible. In addition, the SIP logging system is designed to make measurements down to maximum 500 meters in depth in the boreholes. The SIP well logging was conducted to examine the applicability of the SIP probe system to the boreholes at the ore mine in Jecheon area, Korea. The boreholes used in the SIP logging are known to have penetrated the metal ore bodies with sulfide minerals from the drilling investigations. The ore mine of the study area is the scarn deposits surrounded by the limestone or lime-silicate rocks in Ordovician period. The results of the SIP well logging have shown that the borehole segments with limestone or lime-silicate rocks yielded the insignificant SIP responses while the borehole segments with sulfide minerals (e.g. pyrite) provided the significant phase shifts of the SIP responses. The borehole segments penetrating the metal ore body, so-called cupola, have shown very high response of the phase shift, due to the high contents of the sulfide mineral pyrite. The phase shifts of the SIP response could be used to estimate the grade of the ore bodies since the higher contents of the sulfide minerals, the higher magnitudes of the phase shifts in the SIP responses. It is, therefore, believed that the borehole SIP technique can be applied to investigate the metal ore bodies with sulfide minerals, and that could be used to estimate the ore grades as a supplementary tool in the future.

  6. Bond strength of cementitious borehole plugs in welded tuff

    SciTech Connect

    Akgun, H.; Daemen, J.J.K.

    1991-02-01

    Axial loads on plugs or seals in an underground repository due to gas, water pressures and temperature changes induced subsequent to waste and plug emplacement lead to shear stresses at the plug/rock contact. Therefore, the bond between the plug and rock is a critical element for the design and effectiveness of plugs in boreholes, shafts or tunnels. This study includes a systematic investigation of the bond strength of cementitious borehole plugs in welded tuff. Analytical and numerical analysis of borehole plug-rock stress transfer mechanics is performed. The interface strength and deformation are studied as a function of Young`s modulus ratio of plug and rock, plug length and rock cylinder outside-to-inside radius ratio. The tensile stresses in and near an axially loaded plug are analyzed. The frictional interface strength of an axially loaded borehole plug, the effect of axial stress and lateral external stress, and thermal effects are also analyzed. Implications for plug design are discussed. The main conclusion is a strong recommendation to design friction plugs in shafts, drifts, tunnels or boreholes with a minimum length to diameter ratio of four. Such a geometrical design will reduce tensile stresses in the plug and in the host rock to a level which should minimize the risk of long-term deterioration caused by excessive tensile stresses. Push-out tests have been used to determine the bond strength by applying an axial load to cement plugs emplaced in boreholes in welded tuff cylinders. A total of 130 push-out tests have been performed as a function of borehole size, plug length, temperature, and degree of saturation of the host tuff. The use of four different borehole radii enables evaluation of size effects. 119 refs., 42 figs., 20 tabs.

  7. Optical instruments for a combined seismic and geodetic borehole observatory

    NASA Astrophysics Data System (ADS)

    Zumberge, Mark; Agnew, Duncan; Berger, Jonathan; Hatfield, William; Wyatt, Frank

    2016-04-01

    Optical interferometry offers displacement sensing with the unusual combination of high sensitivity, linearity, and wide dynamic range, and it can be adapted to high temperature environments. We have applied interferometric technology to inertial seismic instruments and to optical fibers for strain measurements. When combining these methods into a single borehole package the result is a system that provides three components of observatory quality seismic recordings, two components of tilt, gravity, and vertical strain. The borehole package is entirely passive with the need for only optical fibers to connect the sensor sonde with surface electronics. One of the sensors in the system is an optical fiber strainmeter, which consists of an optical fiber cable elastically stretched between two borehole anchor points separated by 100 m or more. The fiber's length is recorded optically, enabling sub-nanostrain detection of crustal deformations. A second sensor system uses laser interferometry to record the displacements of inertial mechanical suspensions - spring-mass for the vertical component and pendulums for the horizontal components - housed in a borehole sonde. The combined system is able to measure vertical and horizontal ground velocities, gravity, and tilt with sensitivities that compare favorably with any existing borehole system over time scales from 10 Hz to many days; because the downhole components are entirely passive, the instrument will have a long lifetime and could be made usable at high downhole temperatures. The simplicity and longevity of the metal and glass borehole sonde make it suitable for permanent cementation into a borehole to achieve good coupling and stability. Several versions of the borehole inertial system have been deployed on land with excellent results, and a number of our optical fiber strainmeters have been deployed - both onshore and offshore. The combined system is currently under development.

  8. Thermobaric calculation of a steam-thermal borehole

    NASA Astrophysics Data System (ADS)

    Alishaev, M. G.; Azizov, G. A.

    2011-07-01

    A procedure is proposed for carrying out an approximate analytical calculation of pressure and temperature along a vertical borehole for thermal water with a temperature of 150-320°C taking into account its phase transition into steam. It is shown that both a single-phase flow mode for water and a two-phase flow mode for a mixture of water and steam can appear in the borehole under certain conditions.

  9. Observations of joint persistence and connectivity across boreholes

    SciTech Connect

    Thapa, B.B.; Karasaki, K.

    1996-01-01

    Observations of joint persistence and connectivity are made by comparison of digital borehole wall images of fractures, fluid conductivity logs and hydraulic injections test results. The fractures were found to be generally impersistent across vertical boreholes about 8 m apart. Many hydraulic connections were found in the same volume of rock. Direct connections through single fractures seem to be rare and connectivity appears to be controlled by fracture networks, even over small volumes.

  10. Deformation Monitoring by Borehole Geodetic Strainmeter in Turkey

    NASA Astrophysics Data System (ADS)

    Ozener, Haluk; Aktug, Bahadir; Karabulut, Hayrullah; Ergintav, Semih; Dogru, Asli; Yilmaz, Onur; Mencin, David; Mattioli, Glen; Johnson, Wade; Gottlieb, Mike; Van Boskirik, Liz

    2015-04-01

    This project is aimed to study three-dimensional strain field resulting from deformation through North Anatolian Fault System (NAFS) in Marmara Region, Turkey. Within this project, two borehole observatories consisting of borehole strainmeters, borehole seismometers, tiltmeters, and pore pressure sensors have been deployed in Istanbul. These installations have been supported by Istanbul Development Agency (ISTKA) (financially) and UNAVCO (technically). Istanbul, located near the most active parts of the North Anatolian Fault, has been monitored by different observing techniques such as seismic networks and continuous/survey-mode GPS networks for decades. Borehole strainmeters are very sensitive to deformation in the range of less than a month and can capture signals with superior precision at local spatial scales. In this project, it will be possible to determine the movements precisely which can not be monitored with available measurement systems in the middle and the eastern part of Marmara Sea through NAFS. Our long term objective is to build a borehole monitoring system in the region. By integrating various data obtained from borehole observatories, we expect to get a better understanding of dynamics in the western NAF. In this presentation, we introduce data and ongoing analysis obtained with strainmeters.

  11. The experimental results and analysis of a borehole radar prototype

    NASA Astrophysics Data System (ADS)

    Liu, Sixin; Wu, Junjun; Dong, Hang; Fu, Lei; Wang, Fei

    2012-04-01

    A prototype of borehole radar has been successfully tested in three sites for different purposes under a field condition. The objective of the prototype is providing an effective down-hole tool for detecting targets in deep boreholes situated in a relatively high conductivity area such as the metal ores. The first testing site is at a geothermal field. The fractures extending more than 20 m from the borehole are delineated by the borehole radar in the single-hole reflection mode. The second testing site is located in a jade mine for basement evaluation. The cross-hole measurement mode was used to detect the cavities made by previous unorganized mining activities. Several high-velocity anomalies were found in the velocity profile and presumably the targets of the mine shafts and tunnels. The third test site is located in a mineralized belt characterized by low resistivity less than 1000 Ohm m, the surface-borehole measurement was carried out and the data were processed with velocity tomography. The low-velocity zone corresponds to a mineralized zone from geological records. The three testing results proved the readiness of this borehole radar prototype for further deployment in more complicated and realistic field situations.

  12. Borehole sampling of fracture populations - compensating for borehole sampling bias in crystalline bedrock aquifers, Mirror Lake, Grafton County, New Hampshire

    USGS Publications Warehouse

    McDonald, G.D.; Paillet, Frederick L.; Barton, C.C.; Johnson, C.D.

    1997-01-01

    The clustering of orientations of hydraulically conductive fractures in bedrock at the Mirror Lake, New Hampshire fractured rock study site was investigated by comparing the orientations of fracture populations in two subvertical borehole arrays with those mapped on four adjacent subvertical roadcuts. In the boreholes and the roadcuts, the orientation of fracture populations appears very similar after borehole data are compensated for undersampling of steeply dipping fractures. Compensated borehole and pavement fracture data indicate a northeast-striking population of fractures with varying dips concentrated near that of the local foliation in the adjacent rock. The data show no correlation between fracture density (fractures/linear meter) and distance from lithologic contacts in both the boreholes and the roadcuts. The population of water-producing borehole fractures is too small (28 out of 610 fractures) to yield meaningful orientation comparisons. However, the orientation of large aperture fractures (which contains all the producing fractures) contains two or three subsidiary clusters in orientation frequency that are not evident in stereographic projections of the entire population containing all aperture sizes. Further, these subsidiary orientation clusters do not coincide with the dominant (subhorizontal and subvertical) regional fracture orientations.

  13. An unusually rich scuttle fly fauna (Diptera, Phoridae) from north of the Arctic Circle in the Kola Peninsula, N. W. Russia.

    PubMed

    Disney, R H L

    2013-01-01

    64 species of Phoridae, in 6 genera, are reported from the Kola Peninsula, north of the Arctic Circle. The new species Megaselia elenae and Megaselia kozlovi are described. 33 species of Megaselia, only known from females, are given code numbers. Keys to the species of all the females of Megaselia and Phora are provided; and also a key to the males European Megaselia species with a notopleural cleft. PMID:24194655

  14. An unusually rich scuttle fly fauna (Diptera, Phoridae) from north of the Arctic Circle in the Kola Peninsula, N. W. Russia

    PubMed Central

    Disney, R. H. L.

    2013-01-01

    Abstract 64 species of Phoridae, in 6 genera, are reported from the Kola Peninsula, north of the Arctic Circle. The new species Megaselia elenae and Megaselia kozlovi are described. 33 species of Megaselia, only known from females, are given code numbers. Keys to the species of all the females of Megaselia and Phora are provided; and also a key to the males European Megaselia species with a notopleural cleft. PMID:24194655

  15. The Plate Boundary Observatory Borehole Seismic Network

    NASA Astrophysics Data System (ADS)

    Hasting, M.; Eakins, J.; Anderson, G.; Hodgkinson, K.; Johnson, W.; Mencin, D.; Smith, S.; Jackson, M.; Prescott, W.

    2006-12-01

    As part of the NSF-funded EarthScope Plate Boundary Observatory, UNAVCO will install and operate 103 borehole seismic stations throughout the western United States. These stations continuously record three- component seismic data at 100 samples per second, using Geo-Space HS-1-LT 2-HZ geophones in a sonde developed by SONDI and Consultants (Duke University). Each seismic package is connected to an uphole Quanterra Q330 data logger and Marmot external buffer, from which UNAVCO retrieves data in real time. UNAVCO uses the Antelope software suite from Boulder Real-Time Technologies (BRTT) for all data collection and transfer, metadata generation and distribution, and monitoring of the network. The first stations were installed in summer 2005, with 19 stations installed by September 2006, and a total of 28 stations expected by December 2006. In a prime example of cooperation between the PBO and USArray components of EarthScope, the USArray Array Network Facility (ANF), operated by UC San Diego, handled data flow and network monitoring for the PBO seismic stations in the initial stages of network operations. We thank the ANF staff for their gracious assistance over the last several months. Data flow in real time from the remote stations to the UNAVCO Boulder Network Operations Center, from which UNAVCO provides station command and control; verification and distribution of metadata; and basic quality control for all data. From Boulder, data flow in real time to the IRIS DMC for final quality checks, archiving, and distribution. Historic data are available from June 2005 to the present, and are updated in real time with typical latencies of less than ten seconds. As of 1 September 2006, the PBO seismic network had returned 60 GB of raw data. Please visit http://pboweb.unavco.org for additional information on the PBO seismic network.

  16. The electrical resistivity method in cased boreholes

    SciTech Connect

    Schenkel, C.J.

    1991-05-01

    The use of downhole current sources in resistivity mapping can greatly enhance the detection and delineation of subsurface features. The purpose of this work is to examine the resistivity method for current sources in wells cased with steel. The resistivity method in cased boreholes with downhole current sources is investigated using the integral equation (IE) technique. The casing and other bodies are characterized as conductivity inhomogeneities in a half-space. For sources located along the casing axis, an axially symmetric Green's function is used to formulate the surface potential and electric field (E-field) volume integral equations. The situations involving off-axis current sources and three-dimensional (3-D) bodies is formulated using the surface potential IE method. The solution of the 3-D Green's function is presented in cylindrical and Cartesian coordinate systems. The methods of moments is used to solve the Fredholm integral equation of the second kind for the response due to the casing and other bodies. The numerical analysis revealed that the current in the casing can be approximated by its vertical component except near the source and the axial symmetric approximation of the casing is valid even for the 3-D problem. The E-field volume IE method is an effective and efficient technique to simulate the response of the casing in a half-space, whereas the surface potential approach is computationally better when multiple bodies are involved. Analyzing several configurations of the current source indicated that the casing response is influenced by four characteristic factors: conduction length, current source depth,casing depth, and casing length. 85 refs., 133 figs., 11 tabs.

  17. The Holocene vegetation history of the Khibiny Mountains: implications for the post-glacial expansion of spruce and alder on the Kola Peninsula, northwestern Russia

    NASA Astrophysics Data System (ADS)

    Kremenetski, Constantin; Vaschalova, Tatiana; Sulerzhitsky, Leopold

    1999-02-01

    Pollen and peat botanical investigations of the Lutnermayok peat bog, Kola Peninsula, northwestern Russia, were carried out, and 21 surface pollen samples were studied. Combined with previous studies our data form the basis for the vegetation history over the last 7000 yr of the Khibiny Mountains. Pinus sylvestris was the dominant species between 7000 and 5000 yr BP and Picea obovata penetrated to the Khibiny Mountains ca. 5500/5300 yr BP. Since 4500 yr BP, Picea replaced Pinus in major parts of the area and dominated the forest cover. Picea immigrated to the Kola Peninsula after 7000 yr BP. There were two paths of spruce migration: from the southeast and the southwest. Grey alder, Alnusincana, immigrated to the Kola Peninsula from the southwest and northwest about ca. 8000 yr BP. Grey alder has been restricted to its modern range since 4000 yr BP. The range of vertical movement of the treeline in Khibiny Mountains during the last 700 yr was 240-260 m, which corresponds to an amplitude of summer temperature change of 2°C.

  18. Fingerprinting and validation of a LC-DAD method for the analysis of biflavanones in Garcinia kola-based antimalarial improved traditional medicines.

    PubMed

    Tshibangu, P Tshisekedi; Kapepula, P Mutwale; Kapinga, M J Kabongo; Lupona, H Kabika; Ngombe, N Kabamba; Kalenda, Dibungi T; Jansen, O; Wauters, J N; Tits, M; Angenot, L; Rozet, E; Hubert, Ph; Marini, R D; Frédérich, M

    2016-09-01

    African populations use traditional medicines in their initial attempt to treat a range of diseases. Nevertheless, accurate knowledge of the composition of these drugs remains a challenge in terms of ensuring the health of population and in order to advance towards improved traditional medicines (ITMs). In this paper chromatographic methods were developed for qualitative and quantitative analyses of a per os antimalarial ITM containing Garcinia kola. The identified analytical markers were used to establish TLC and HPLC fingerprints. G. kola seeds were analysed by HPLC to confirm the identity of the extract used by the Congolese manufacturer in the ITM. The main compounds (GB1, GB2, GB-1a and Kolaflavanone) were isolated by preparative TLC and identified by UPLC-MS and NMR. For the quantification of the major compound GB1, a simple and rapid experimental design was applied to develop an LC method, and then its validation was demonstrated using the total error strategy with the accuracy profile as a decision tool. The accurate results were observed within 0.14-0.45mg/mL range of GB1 expressed as naringenin. The extracts used in several batches of the analysed oral solutions contained GB1 (expressed as naringenin) within 2.04-2.43%. Both the fingerprints and the validated LC-DAD were found suitable for the quality control of G. kola-based raw material and finished products, respectively. PMID:27343901

  19. INSTALLATION OF A POST-ACCIDENT CONFINEMENT HIGH-LEVEL RADIATION MONITORING SYSTEM IN THE KOLA NUCLEAR POWER STATION (UNIT 2) IN RUSSIA

    SciTech Connect

    GREENE,G.A.; GUPPY,J.G.

    1998-09-01

    This is the final report on the INSP project entitled, ``Post-Accident Confinement High-Level Radiation Monitoring System'' conducted by BNL under the authorization of Project Work Plan WBS 1.2.2.6 (Attachment 1). This project was initiated in February 1993 to assist the Russians in reducing risks associated with the continued operation of older Soviet-designed nuclear power plants, specifically the Kola VVER-440/230 Unit 2, through improved accident detection capability, specifically by the installation of a dual train high-level radiation detection system in the confinement of Unit 2 of the Kola NPP. The major technical objective of this project was to provide, install and make operational the necessary hardware inside the confinement of the Kola NPP Unit 2 to provide early and reliable warning of the release of radionuclides from the reactor into the confinement air space as an indication of the occurrence of a severe accident at the plant. In addition, it was intended to provide hands-on experience and training to the Russian plant workers in the installation, operation, calibration and maintenance of the equipment in order that they may use the equipment without continued US assistance as an effective measure to improve reactor safety at the plant.

  20. The results of marine electromagnetic sounding with a high-power remote source in the Kola Bay in the Barents Sea

    NASA Astrophysics Data System (ADS)

    Grigoriev, V. F.; Korotaev, S. M.; Kruglyakov, M. S.; Orekhova, D. A.; Popova, I. V.; Tereshchenko, E. D.; Tereshchenko, P. E.; Schors, Yu. G.

    2013-05-01

    The first Russian six-component seafloor electromagnetic (EM) receivers were tested in an experiment carried out in Kola Bay in the Barents Sea. The signals transmitted by a remote high-power ELF source at several frequencies in the decahertz range were recorded by six receivers deployed on the seafloor along the profile crossing the Kola Bay. Although not all the stations successfully recorded all the six components due to technical failures, the quality of the data overall is quite suitable for interpretation. The interpretation was carried out by the three-dimensional (3D) modeling of an electromagnetic field with neural network inversion. The a priori geoelectrical model of Kola Bay, which was reconstructed by generalizing the previous geological and geophysical data, including the data of the ground magnetotelluric sounding and magnetovariational profiling, provided the EM fields that are far from those measured in the experiment. However, by a step-by-step modification of the initial model, we achieved quite a satisfactory fit. The resulting model provides the basis for introducing the corrections into the previous notions concerning the regional geological and geophysical structure of the region and particularly the features associated with fault tectonics.

  1. Methane Emissions from Abandoned Boreholes in South Eastern Australia

    NASA Astrophysics Data System (ADS)

    Day, S. J.; Fry, R.; Dell'Amico, M.; Williams, D.; Halliburton, B.; Element, A.

    2015-12-01

    The Surat Basin in south-eastern Queensland is one of Australia's main coal bed methane production areas. It has also been subject to coal exploration over many years and consequently there are thousands of abandoned exploration boreholes throughout the region. Here, we present some results of field measurements aimed at locating leaking legacy exploration boreholes in the Surat Basin and to quantify their emission rates. We also discuss emission measurements made on abandoned CBM wells in Queensland and NSW that have been decommissioned according to modern practices. Leaking boreholes were located using a Picarro 2301 CH4 analyser mounted in a vehicle that was driven through gas fields in the Surat Basin. Where surface emissions were indicated by elevated ambient CH4 levels, the emission rate was measured using soil flux chambers at each site. For comparison, soil gas flux measurements were also made on natural surfaces and agricultural land throughout the study areas. Ten borehole sources were located during the surveys, yielding emission rates from less than 0.1 kg CH4 day-1 to more than 100 kg CH4 day-1. A number of other known exploration borehole sites were examined which had no detectable CH4 emissions. Plugged and abandoned CBM wells showed no CH4 emissions except in two cases where emission rates of about 0.07 g CH4 day-1 were detected, which were comparable to natural wetland CH4 emissions. Preliminary results suggest that modern decommissioning practices appear to be effective in preventing CH4 leakage from CBM abandoned wells. However, legacy coal exploration boreholes may represent a significant source of CH4 in the Surat Basin, although the proportion of these holes leaking CH4 is yet to be determined. Moreover, it is not yet clear if emissions from boreholes are affected by changes in groundwater induced by water extraction associated with gas production and agriculture. This is an area requiring further research.

  2. Experimental Investigation of Near-Borehole Crack Plugging with Bentonite

    NASA Astrophysics Data System (ADS)

    Upadhyay, R. A.; Islam, M. N.; Bunger, A.

    2015-12-01

    The success of the disposal of nuclear waste in a deep borehole (DBH) is determined by the integrity of the components of the borehole plug. Bentonite clay has been proposed as a key plugging material, and its effectiveness depends upon its penetration into near-borehole cracks associated with the drilling process. Here we present research aimed at understanding and maximizing the ability of clay materials to plug near-borehole cracks. A device was constructed such that the borehole is represented by a cylindrical chamber, and a near-borehole crack is represented by a slot adjacent to the center chamber. The experiments consist of placing bentonite clay pellets into the center chamber and filling the entire cavity with distilled water so that the pellets hydrate and swell, intruding into the slot because the cell prohibits swelling in the vertical direction along the borehole. Results indicate that the bentonite clay pellets do not fully plug the slot. We propose a model where the penetration is limited by (1) the free swelling potential intrinsic to the system comprised of the bentonite pellets and the hydrating fluid and (2) resisting shear force along the walls of the slot. Narrow slots have a smaller volume for the clay to fill than wider slots, but wider slots present less resistive force to clay intrusion. These two limiting factors work against each other, leading to a non-monotonic relationship between slot width and intrusion length. Further experimental results indicate that the free swelling potential of bentonite clay pellets depends on pellet diameter, "container" geometry, and solution salinity. Smaller diameter pellets possess more relative volumetric expansion than larger diameter pellets. The relative expansion of the clay also appears to decrease with the container size, which we understand to be due to the increased resistive force provided by the container walls. Increasing the salinity of the solution leads to a dramatic decrease in the clay

  3. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect

    Barnett, D. BRENT; Bjornstad, Bruce N.; Fecht, Karl R.; Lanigan, David C.; Reidel, Steve; Rust, Colleen F.

    2007-02-28

    In 2006, DOE-ORP initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct Vs measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) confirmation of the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the corehole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt was also penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of movement and less than 15 feet of repeated section. Most of the

  4. Three-component borehole wall-locking seismic detector

    DOEpatents

    Owen, Thomas E.

    1994-01-01

    A seismic detector for boreholes is described that has an accelerometer sensor block for sensing vibrations in geologic formations of the earth. The density of the seismic detector is approximately matched to the density of the formations in which the detector is utilized. A simple compass is used to orient the seismic detector. A large surface area shoe having a radius approximately equal to the radius of the borehole in which the seismic detector is located may be pushed against the side of the borehole by actuating cylinders contained in the seismic detector. Hydraulic drive of the cylinders is provided external to the detector. By using the large surface area wall-locking shoe, force holding the seismic detector in place is distributed over a larger area of the borehole wall thereby eliminating concentrated stresses. Borehole wall-locking forces up to ten times the weight of the seismic detector can be applied thereby ensuring maximum detection frequency response up to 2,000 hertz using accelerometer sensors in a triaxial array within the seismic detector.

  5. Uemachi flexure zone investigated by borehole database and numeical simulation

    NASA Astrophysics Data System (ADS)

    Inoue, N.; Kitada, N.; Takemura, K.

    2014-12-01

    The Uemachi fault zone extending north and south, locates in the center of the Osaka City, in Japan. The Uemachi fault is a blind reverse fault and forms the flexure zone. The effects of the Uemachi flexure zone are considered in constructing of lifelines and buildings. In this region, the geomorphological survey is difficult because of the regression of transgression. Many organizations have carried out investigations of fault structures. Various surveys have been conducted, such as seismic reflection survey in and around Osaka. Many borehole data for construction conformations have been collected and the geotechnical borehole database has been constructed. The investigation with several geological borehole data provides the subsurface geological information to the geotechnical borehole database. Various numerical simulations have been carried out to investigate the growth of a blind reverse fault in unconsolidated sediments. The displacement of the basement was given in two ways. One is based on the fault movement, such as dislocation model, the other is a movement of basement block of hanging wall. The Drucker-Prager and elastic model were used for the sediment and basement, respectively. The simulation with low and high angle fault movements, show the good agree with the actual distribution of the marine clay inferred from borehole data in the northern and southern Uemachi fault flexure zone, respectively. This research is partly funded by the Comprehensive Research on the Uemachi Fault Zone (from FY2010 to FY2012) by The Ministry of Education, Culture, Sports, Science and Technology (MEXT).

  6. Deep Borehole Field Test Requirements and Controlled Assumptions.

    SciTech Connect

    Hardin, Ernest

    2015-07-01

    This document presents design requirements and controlled assumptions intended for use in the engineering development and testing of: 1) prototype packages for radioactive waste disposal in deep boreholes; 2) a waste package surface handling system; and 3) a subsurface system for emplacing and retrieving packages in deep boreholes. Engineering development and testing is being performed as part of the Deep Borehole Field Test (DBFT; SNL 2014a). This document presents parallel sets of requirements for a waste disposal system and for the DBFT, showing the close relationship. In addition to design, it will also inform planning for drilling, construction, and scientific characterization activities for the DBFT. The information presented here follows typical preparations for engineering design. It includes functional and operating requirements for handling and emplacement/retrieval equipment, waste package design and emplacement requirements, borehole construction requirements, sealing requirements, and performance criteria. Assumptions are included where they could impact engineering design. Design solutions are avoided in the requirements discussion. Deep Borehole Field Test Requirements and Controlled Assumptions July 21, 2015 iv ACKNOWLEDGEMENTS This set of requirements and assumptions has benefited greatly from reviews by Gordon Appel, Geoff Freeze, Kris Kuhlman, Bob MacKinnon, Steve Pye, David Sassani, Dave Sevougian, and Jiann Su.

  7. Long-term aerosol and trace gas measurements in Eastern Lapland, Finland: the impact of Kola air pollution to new particle formation and potential CCN

    NASA Astrophysics Data System (ADS)

    Kyrö, Ella-Maria; Väänänen, Riikka; Kerminen, Veli-Matti; Virkkula, Aki; Asmi, Ari; Nieminen, Tuomo; Dal Maso, Miikka; Petäjä, Tuukka; Keronen, Petri; Aalto, Pasi; Riipinen, Ilona; Lehtipalo, Katrianne; Hari, Pertti; Kulmala, Markku

    2014-05-01

    Sulphur and primary emissions have been decreasing largely all over Europe, resulting in improved air quality and decreased direct radiation forcing by aerosols. The smelter industry in Kola Peninsula is one of largest sources of anthropogenic SO2 within the Arctic domain and since late 1990s the sulphur emissions have been decreasing rapidly (Paatero et al., 2008; Prank et al., 2010). New particle formation (NPF) is tightly linked with the oxidizing product of SO2, namely sulphuric acid (H2SO4), since it is known to be the key component in atmospheric nucleation (Sipilä et al., 2010). Thus, decreasing sulphur pollution may lead to less NPF. However, low values of condensation sink (CS), which is determined by the amount of pre-existing particles, favours NPF. We used 14 years (1998-2011) of aerosol number size distribution and trace gas data from SMEAR I station in Eastern Lapland, Finland, to investigate these relationships between SO2, NPF and CS. The station is a clean background station with occasional sulphur pollution episodes when the air masses arrive over Kola Peninsula. We found that while SO2 decreased by 11.3 % / year, the number of clear NPF event days was also decreasing by 9.9 % / year. At the same time, CS was decreasing also (-8.0 % / year) leading to formation of more particles per single NPF event (J3 increased by 29.7 % / year in 2006-2011) but the low vapour concentrations of H2SO4 (proxy decreased by 6.2 % / year) did not allow them to grow into climatically relevant sizes. Over the time, concentrations of potential CCN (cloud condensing nuclei) were also decreasing with more moderate pace, -4.0 % / year. The events started on average earlier after sunrise when the SO2 concentration during the start of the event was higher and NPF occurred more frequently in air masses which were travelling over Kola. Despite the total decrease in sulphur pollution originating from Kola there is currently no evidence of cleaning of the emissions, rather the

  8. Analysis of borehole-radar reflection logs from selected HC boreholes at the Project Shoal area, Churchill County, Nevada

    USGS Publications Warehouse

    Lane, J.W., Jr.; Joesten, P.K.; Pohll, G.M.; Mihevic, Todd

    2001-01-01

    Single-hole borehole-radar reflection logs were collected and interpreted in support of a study to characterize ground-water flow and transport at the Project Shoal Area (PSA) in Churchill County, Nevada. Radar logging was conducted in six boreholes using 60-MHz omni-directional electric-dipole antennas and a 60-MHz magnetic-dipole directional receiving antenna.Radar data from five boreholes were interpreted to identify the location, orientation, estimated length, and spatial continuity of planar reflectors present in the logs. The overall quality of the radar data is marginal and ranges from very poor to good. Twenty-seven reflectors were interpreted from the directional radar reflection logs. Although the range of orientation interpreted for the reflectors is large, a significant number of reflectors strike northeast-southwest and east-west to slightly northwest-southeast. Reflectors are moderate to steeply dipping and reflector length ranged from less than 7 m to more than 133 m.Qualitative scores were assigned to each reflector to provide a sense of the spatial continuity of the reflector and the characteristics of the field data relative to an ideal planar reflector (orientation score). The overall orientation scores are low, which reflects the general data quality, but also indicates that the properties of most reflectors depart from the ideal planar case. The low scores are consistent with reflections from fracture zones that contain numerous, closely spaced, sub-parallel fractures.Interpretation of borehole-radar direct-wave velocity and amplitude logs identified several characteristics of the logged boreholes: (1) low-velocity zones correlate with decreased direct-wave amplitude, indicating the presence of fracture zones; (2) direct-wave amplitude increases with depth in three of the boreholes, suggesting an increase in electrical resistivity with depth resulting from changes in mineral assemblage or from a decrease in the specific conductance of ground

  9. Electrical resistivity borehole measurements: application to an urban tunnel site

    NASA Astrophysics Data System (ADS)

    Denis, A.; Marache, A.; Obellianne, T.; Breysse, D.

    2002-06-01

    This paper shows how it is possible to use wells drilled during geotechnical pre-investigation of a tunneling site to obtain a 2-D image of the resistivity close to a tunnel boring machine. An experimental apparatus is presented which makes it possible to perform single and borehole-to-borehole electrical measurements independent of the geological and hydrogeological context, which can be activated at any moment during the building of the tunnel. This apparatus is first demonstrated through its use on a test site. Numerical simulations and data inversion are used to analyse the experimental results. Finally, electrical resistivity tomography and single-borehole measurements on a tunneling site are presented. Experimental results show the viability of the apparatus and the efficiency of the inverse algorithm, and also highlight the limitations of the electrical resistivity tomography as a tool for geotechnical investigation in urban areas.

  10. Deep borehole disposal of high-level radioactive waste.

    SciTech Connect

    Stein, Joshua S.; Freeze, Geoffrey A.; Brady, Patrick Vane; Swift, Peter N.; Rechard, Robert Paul; Arnold, Bill Walter; Kanney, Joseph F.; Bauer, Stephen J.

    2009-07-01

    Preliminary evaluation of deep borehole disposal of high-level radioactive waste and spent nuclear fuel indicates the potential for excellent long-term safety performance at costs competitive with mined repositories. Significant fluid flow through basement rock is prevented, in part, by low permeabilities, poorly connected transport pathways, and overburden self-sealing. Deep fluids also resist vertical movement because they are density stratified. Thermal hydrologic calculations estimate the thermal pulse from emplaced waste to be small (less than 20 C at 10 meters from the borehole, for less than a few hundred years), and to result in maximum total vertical fluid movement of {approx}100 m. Reducing conditions will sharply limit solubilities of most dose-critical radionuclides at depth, and high ionic strengths of deep fluids will prevent colloidal transport. For the bounding analysis of this report, waste is envisioned to be emplaced as fuel assemblies stacked inside drill casing that are lowered, and emplaced using off-the-shelf oilfield and geothermal drilling techniques, into the lower 1-2 km portion of a vertical borehole {approx}45 cm in diameter and 3-5 km deep, followed by borehole sealing. Deep borehole disposal of radioactive waste in the United States would require modifications to the Nuclear Waste Policy Act and to applicable regulatory standards for long-term performance set by the US Environmental Protection Agency (40 CFR part 191) and US Nuclear Regulatory Commission (10 CFR part 60). The performance analysis described here is based on the assumption that long-term standards for deep borehole disposal would be identical in the key regards to those prescribed for existing repositories (40 CFR part 197 and 10 CFR part 63).

  11. Low-sulfide PGE ore in the Volchetundra gabbro-anorthosite pluton, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Chashchin, V. V.; Petrov, S. V.

    2013-09-01

    The internal structure of the Volchetundra gabbro-anorthosite massif is considered, including localization of low-sulfide PGE mineralization and its mineralogy. The Volchetundra massif 24 km long and 0.5-4.0 km wide occupies the middle part of the Main Range complex, which extends for 75 km in the nearly meridional direction. The main and marginal zones are distinguished in the massif. The marginal zone 20-400 m wide extends along the entire eastern contact of the massif and is primarily composed of mediumgrained meso- and leucocratic norite, gabbronorite, plagioclasite, and less fequent orthopyroxenite. The main zone consists of coarse-grained leucogabbro and gabbronorite with an anorthosite zone in the axial part of the massif. The PGE mineralization of the Volchetundra massif is distinctly subdivided into two types substantially differing in localization, mineralogy, geochemistry, and economic importance. Mineralization of the first type is localized in the marginal zone and characterized by the highest resource potential. Mineralization hosted in the main zone belongs to the second type. The PGE ore of marginal zone is spatially and genetically related to the pyrite-pentlandite-chalcopyrite-pyrrhotite sulfide mineralization (1-5%) in the form of fine inequigranular interstitial disseminations, and less frequent larger grains and pockets localized within two ore zones each up to 2 km in extent. The thickness of separate mineralized layers varies from 0.5 to 3.0 m and up to 45 m in bulges. The average Pt + Pd grade is 1.37 gpt at Pd/Pt = 3.1. The mineralization of the second type has been penetrated by boreholes. Separate intersections do not correlate with one another and are limited in extent both along the strike and down the dip. The PGE mineralization is related to finely dispersed pentlandite-pyrite-pyrrhotite-chalcopyrite sulfides, sulfide emulsions, and less abundant stringer-disseminated sulfide ore. The orebodies vary from 2 to 7 m in thickness. The

  12. Elements of a continuous-wave borehole radar. Final report

    SciTech Connect

    Caffey, T.W.H.

    1997-08-01

    The theory is developed for the antenna array for a proposed continuous-wave, ground-penetrating radar for use in a borehole, and field measurements are presented. Accomplishments include the underground measurement of the transmitting beam in the azimuth plane, active azimuth-steering of the transmitting beam, and the development of a range-to-target algorithm. The excellent performance of the antenna array supports the concept of a continuous-wave borehole radar. A field-prototype should be developed for use in both geothermal zones and for the exploration and recovery of oil and gas.

  13. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    SciTech Connect

    Cochran, John R.; Hardin, Ernest

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portions of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has

  14. Reclamation report, Basalt Waste Isolation Project, boreholes 1990

    SciTech Connect

    Brandt, C.A.; Rickard, W.H. Jr.; Cadoret, N.A.

    1991-01-01

    The restoration of areas disturbed activities of the Basalt Waste Isolation Project (BWIP) has been undertaken by the US Department of Energy (DOE) in fulfillment of obligations and commitments made under the National Environmental Policy Act and the Nuclear Waste Policy Act. This restoration program comprises three separate projects: borehole reclamation, Near Surface Test Facility reclamation, and Exploratory Shaft Facility reclamation. Detailed descriptions of these reclamation projects may be found in a number of previous reports. This report describes the second phase of the reclamation program for the BWIP boreholes and analyzes its success relative to the reclamation objective. 6 refs., 14 figs., 13 tabs.

  15. Holocene climate variability on the Kola Peninsula, Russian Subarctic, based on aquatic invertebrate records from lake sediments

    NASA Astrophysics Data System (ADS)

    Ilyashuk, Elena A.; Ilyashuk, Boris P.; Kolka, Vasily V.; Hammarlund, Dan

    2013-05-01

    Sedimentary records of invertebrate assemblages were obtained from a small lake in the Khibiny Mountains, Kola Peninsula. Together with a quantitative chironomid-based reconstruction of mean July air temperature, these data provide evidence of Holocene climate variability in the western sector of the Russian Subarctic. The results suggest that the amplitude of climate change was more pronounced in the interior mountain area than near the White Sea coast. A chironomid-based temperature reconstruction reflects a warming trend in the early Holocene, interrupted by a transient cooling at ca. 8500-8000 cal yr BP with a maximum drop in temperature (ca. 1°C) around 8200 cal yr BP. The regional Holocene Thermal Maximum, characterized by maximum warmth and dryness occurred at ca. 7900-5400 cal yr BP. During this period, July temperatures were at least 1°C higher than at present. The relatively warm and dry climate persisted until ca. 4000 cal yr BP, when a pronounced neoglacial cooling was initiated. Minimum temperatures, ca. 1-2°C lower than at present, were inferred at ca. 3200-3000 cal yr BP. Faunal shifts in the stratigraphic profile imply also that the late-Holocene cooling was followed by a general increase in effective moisture.

  16. Emission of CO2 by soils in the impact zone of the Severonikel smelter in the Kola subarctic region

    NASA Astrophysics Data System (ADS)

    Kadulin, M. S.; Koptsik, G. N.

    2013-11-01

    The intensity of the in situ soil respiration in the background northern taiga spruce forests of the Kola subarctic region reaches 120-290 mg C-CO2/m2 per h. In the impact zone of the Severonikel smelter, it decreases to 90-140, 30, and 15-30 mg C-CO2/m2 per h at the stages of spruce defoliation, spruce-birch woodland, and technogenic barrens of the technogenic succession, respectively. For the first time, the impact of the industrial pollution on root respiration has been assessed, and the dependences of the CO2 emission, the contribution of mineral soil horizons to this process, the microbial biomass, and root respiration on the concentrations of available nickel and copper compounds have been determined. The efficiency of two remediation technologies applied to technogenic barrens near the smelter has been evaluated on the basis of four parameters of the soil biological activity. The results indicate that remediation with the creation of a new filled soil layer is more efficient than chemical and phytoremediation methods.

  17. Emissions from the copper-nickel industry on the Kola Peninsula and at Noril'sk, Russia

    USGS Publications Warehouse

    Boyd, Ron; Barnes, S.-J.; De Caritat, P.; Chekushin, V.A.; Melezhik, V.A.; Reimann, C.; Zientek, M.L.

    2009-01-01

    Published estimates for base metal emissions from the copper-nickel industry on the Kola Peninsula are re-examined in the light of (a) chemical data on the composition of the ores; (b) official emission figures for 1994; and (c) modelled emissions based on dry and wet deposition estimates derived from data for snow and rain samples collected in 1994. The modelled emissions, official emission figures and chemical data are mutually compatible for Ni, Cu and Co and show that previously published figures underestimated the emissions of the major elements, Ni and Cu (though within the same order of magnitude) and overestimated the emissions of As, Pb, Sb and Zn by up to several orders of magnitude, in some cases exceeding the calculated total input to the plants. Published estimates have neglected information on the nature and chemistry of the ores processed in metallurgical industries in the Noril'sk area of Siberia and the Urals. Revised emission estimates for 1994, using knowledge of the chemistry of the ores, are proposed: taken with published information on total emissions up to 2000 these data give an indication of emission levels in more recent years. ?? 2008 Elsevier Ltd. All rights reserved.

  18. Autumn migration and wintering areas of Peregrine Falcons Falco peregrinus nesting on the Kola Peninsula, northern Russia

    USGS Publications Warehouse

    Ganusevich, S.A.; Maechtle, T.L.; Seegar, W.S.; Yates, M.A.; McGrady, M.J.; Fuller, M.; Schueck, L.; Dayton, J.; Henny, C.J.

    2004-01-01

    Four female Peregrine Falcons Falco peregrinus breeding on the Kola Peninsula, Russia, were fitted with satellite-received transmitters in 1994. Their breeding home ranges averaged 1175 (sd = ??714) km2, and overlapped considerably. All left their breeding grounds in September and migrated generally south-west along the Baltic Sea. The mean travel rate for three falcons was 190 km/day. Two Falcons wintered on the coasts of France and in southern Spain, which were, respectively, 2909 and 4262 km from their breeding sites. Data on migration routes suggested that Falcons took a near-direct route to the wintering areas. No prolonged stopovers were apparent. The 90% minimum convex polygon winter range of a bird that migrated to Spain encompassed 213 km2 (n = 54). The area of the 50% minimum convex polygon was 21.5 km2 (n = 29). Data from this study agree with others from North America that show that Falcons breeding in a single area do not necessarily follow the same migratory path southward and do not necessarily use the same wintering grounds.

  19. Pressure-induced brine migration into an open borehole in a salt repository

    SciTech Connect

    Hwang, Y.; Chambre, P.L.; Lee, W.W.L.; Pigford, T.H.

    1987-06-01

    This report provides some solutions to models that predict the brine accumulation in an open borehole. In this model, brine flow rates are controlled by pressure differences between the salt and the borehole. (TEM)

  20. TRENDS IN BOREHOLE GEOPHYSICS FOR MINERAL EXPLORATION: ASSAYING AND REMOTE DETECTION.

    USGS Publications Warehouse

    Daniels, Jeffrey J.

    1985-01-01

    Several borehole geophysical techniques have been developed in recent years. Assaying technique development has been concentrated on nuclear methods, with some progress being made on using electrical and magnetic properties for mineral identification. Adaptation of conventional surface geophysical techniques to the borehole for locating near-misses of mineralized zones has led to the development of borehole resistivity, electromagnetic (EM), gravity and magnetic methods to the borehole environment. This paper discusses some of the applications and pitfalls of these new techniques.

  1. Method and system for advancement of a borehole using a high power laser

    SciTech Connect

    Moxley, Joel F.; Land, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Zediker, Mark S.

    2014-09-09

    There is provided a system, apparatus and methods for the laser drilling of a borehole in the earth. There is further provided with in the systems a means for delivering high power laser energy down a deep borehole, while maintaining the high power to advance such boreholes deep into the earth and at highly efficient advancement rates, a laser bottom hole assembly, and fluid directing techniques and assemblies for removing the displaced material from the borehole.

  2. Methods for enhancing the efficiency of creating a borehole using high power laser systems

    DOEpatents

    Zediker, Mark S.; Rinzler, Charles C.; Faircloth, Brian O.; Koblick, Yeshaya; Moxley, Joel F.

    2014-06-24

    Methods for utilizing 10 kW or more laser energy transmitted deep into the earth with the suppression of associated nonlinear phenomena to enhance the formation of Boreholes. Methods for the laser operations to reduce the critical path for forming a borehole in the earth. These methods can deliver high power laser energy down a deep borehole, while maintaining the high power to perform operations in such boreholes deep within the earth.

  3. Intrinsic germanium detector used in borehole sonde for uranium exploration

    USGS Publications Warehouse

    Senftle, F.E.; Moxham, R.M.; Tanner, A.B.; Boynton, G.R.; Philbin, P.W.; Baicker, J.A.

    1976-01-01

    A borehole sonde (~1.7 m long; 7.3 cm diameter) using a 200 mm2 planar intrinsic germanium detector, mounted in a cryostat cooled by removable canisters of frozen propane, has been constructed and tested. The sonde is especially useful in measuring X- and low-energy gamma-ray spectra (40–400 keV). Laboratory tests in an artificial borehole facility indicate its potential for in-situ uranium analyses in boreholes irrespective of the state of equilibrium in the uranium series. Both natural gamma-ray and neutron-activation gamma-ray spectra have been measured with the sonde. Although the neutron-activation technique yields greater sensitivity, improvements being made in the resolution and efficiency of intrinsic germanium detectors suggest that it will soon be possible to use a similar sonde in the passive mode for measurement of uranium in a borehole down to about 0.1% with acceptable accuracy. Using a similar detector and neutron activation, the sonde can be used to measure uranium down to 0.01%.

  4. Conversion of borehole Stoneley waves to channel waves in coal

    SciTech Connect

    Johnson, P.A.; Albright, J.N.

    1987-01-01

    Evidence for the mode conversion of borehole Stoneley waves to stratigraphically guided channel waves was discovered in data from a crosswell acoustic experiment conducted between wells penetrating thin coal strata located near Rifle, Colorado. Traveltime moveout observations show that borehole Stoneley waves, excited by a transmitter positioned at substantial distances in one well above and below a coal stratum at 2025 m depth, underwent partial conversion to a channel wave propagating away from the well through the coal. In an adjacent well the channel wave was detected at receiver locations within the coal, and borehole Stoneley waves, arising from a second partial conversion of channel waves, were detected at locations above and below the coal. The observed channel wave is inferred to be the third-higher Rayleigh mode based on comparison of the measured group velocity with theoretically derived dispersion curves. The identification of the mode conversion between borehole and stratigraphically guided waves is significant because coal penetrated by multiple wells may be detected without placing an acoustic transmitter or receiver within the waveguide. 13 refs., 6 figs., 1 tab.

  5. 30 CFR 75.388 - Boreholes in advance of mining.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Boreholes in advance of mining. 75.388 Section 75.388 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... and the mine workings; (3) The concentrations of methane, oxygen, carbon monoxide, and carbon...

  6. 30 CFR 75.388 - Boreholes in advance of mining.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Boreholes in advance of mining. 75.388 Section 75.388 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... and the mine workings; (3) The concentrations of methane, oxygen, carbon monoxide, and carbon...

  7. 30 CFR 75.388 - Boreholes in advance of mining.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Boreholes in advance of mining. 75.388 Section 75.388 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY... and the mine workings; (3) The concentrations of methane, oxygen, carbon monoxide, and carbon...

  8. Borehole logging method for fracture detection and evaluation

    SciTech Connect

    Hornby, B.E.; Johnson, D.L

    1989-05-16

    A method is describe for locating a fracture in a subsurface earth formation traversed by a borehole, the method using an acoustic source and at lest one acoustic detector traversing the borehole at a plurality of depths, the fracture positioned outside the direct path from the acoustic source to the at least acoustic detector, the method consists of the steps of: generating a first signal from the acoustic source, the first signal representative of Stoneley wave propagating in the borehole, receiving the first signal at the at least one detector, the first signal representative of Stoneley waves propagating in the borehole from the acoustic source to the at least one detector, receiving a second signal at the at least one detector, the second signal representative of reflections of the Stoneley wave, the reflections arising from an interaction of the Stoneyle waves and the fracture; and combining the first and second received signals to derive a fracture signal indicative of a characteristic of the fracture.

  9. Borehole televiewer for fracture detection and cement evaluation

    SciTech Connect

    Rambow, F.H.K.; Clerke, E.A.

    1991-02-12

    This patent describes a method for acoustically logging a borehole in the earth to detect anomalies in the earth formation beyond the wall of the borehole. It comprises generating a plurality of narrow beam acoustic pulses with a rotating transducer at a first location in the borehole, wherein the complete circumference of the borehole at the first location is scanned by the pulses; receiving at the first location the reflected responses of the acoustic pulses and producing a first electrical signal; receiving at a second location vertically spaced from the first location the reflected responses of the acoustic pulses with a single element annular thin film omnidirectional receiver and producing a second electrical signal; recording the first and second electrical signals to provide a visual display of the elapsed time between the generating of the acoustic pulses and the occurrence of reflection events from the anomalies in the first and second electrical signals; and analyzing the display to locate the position of the anomalies.

  10. DEVELOPMENT AND APPLICATION OF BOREHOLE FLOWMETERS FOR ENVIRONMENTAL ASSESSMENT

    EPA Science Inventory

    In order to understand the origin of contaminant plumes and infer their future migration, one requires a knowledge of the hydraulic conductivity (K) distribution. n many aquifers, the borehole flowmeter offers the most direct technique available for developing a log of hydraulic ...

  11. Deep Borehole Disposal Remediation Costs for Off-Normal Outcomes

    SciTech Connect

    Finger, John T.; Cochran, John R.; Hardin, Ernest

    2015-08-17

    This memo describes rough-order-of-magnitude (ROM) cost estimates for a set of off-normal (accident) scenarios, as defined for two waste package emplacement method options for deep borehole disposal: drill-string and wireline. It summarizes the different scenarios and the assumptions made for each, with respect to fishing, decontamination, remediation, etc.

  12. Development of a mobile borehole investigation software using augmented reality

    NASA Astrophysics Data System (ADS)

    Son, J.; Lee, S.; Oh, M.; Yun, D. E.; Kim, S.; Park, H. D.

    2015-12-01

    Augmented reality (AR) is one of the most developing technologies in smartphone and IT areas. While various applications have been developed using the AR, there are a few geological applications which adopt its advantages. In this study, a smartphone application to manage boreholes using AR has been developed. The application is consisted of three major modules, an AR module, a map module and a data management module. The AR module calculates the orientation of the device and displays nearby boreholes distributed in three dimensions using the orientation. This module shows the boreholes in a transparent layer on a live camera screen so the user can find and understand the overall characteristics of the underground geology. The map module displays the boreholes on a 2D map to show their distribution and the location of the user. The database module uses SQLite library which has proper characteristics for mobile platforms, and Binary XML is adopted to enable containing additional customized data. The application is able to provide underground information in an intuitive and refined forms and to decrease time and general equipment required for geological field investigations.

  13. Application of linear inverse theory to borehole gravity data

    SciTech Connect

    Burkhard, N.R.

    1991-09-01

    Traditional borehole gravity interpretations are based upon an earth model which assumes horizontal, laterally infinite, uniformly thick, and constant density layers. I apply discrete stabilized linear inverse theory to determine the density distribution directly from borehole gravity observations that have been corrected for drift, tide, and terrain. The stabilization is the result of including a priori data about the free-air gradient and the density structure in the inversion process. The discrete generalized linear inverse approach enables one to solve for a density distribution using all of the borehole gravity data. Moreover, the data need not be free-air corrected. An important feature of the approach is that density estimates are not required to be density averages between adjacent borehole gravity observations as in the traditional method. This approach further permits the explicit incorporation of independent density information from gamma-gamma logging tools or laboratory core measurements. Finally, explicit linear constraints upon the density and/or free-air gradient can also be handled. The non-uniqueness of the density structure determined by the inversion process is represented in a resolution matrix. 12 refs., 11 figs.

  14. A study of sonic logging in a cased borehole

    SciTech Connect

    Chang, S.; Everhart, A.

    1982-09-01

    A study was undertaken to investigate the feasibility of sonic logging in a cased borehole. Results were obtained from a scaled-model laboratory experiment and from computer simulations. The waveforms from the computer model indicate that sonic logging can be successful in bonded and unbonded cased holes. A slowness-time semblance signal processing technique is used to obtain wave velocities from waveforms.

  15. A study of sonic logging in a cased borehole

    SciTech Connect

    Chang, S.K.; Everhart, A.H.

    1983-09-01

    A study was undertaken to investigate the feasibility of sonic logging in a cased borehole. Results were obtained from a scale-model laboratory experiment and from computer simulations. The waveforms from the computer model indicate that sonic logging can be successful in bonded and unbonded cased holes. A slowness/timesemblance signal-processing technique is used to obtain wave velocities from waveforms.

  16. Sampling and Analysis Plan Waste Treatment Plant Seismic Boreholes Project.

    SciTech Connect

    Brouns, Thomas M.

    2007-07-15

    This sampling and analysis plan (SAP) describes planned data collection activities for four entry boreholes through the sediment overlying the Saddle Mountains Basalt, up to three new deep rotary boreholes through the Saddle Mountains Basalt and sedimentary interbeds, and one corehole through the Saddle Mountains Basalt and sedimentary interbeds at the Waste Treatment Plant (WTP) site. The SAP will be used in concert with the quality assurance plan for the project to guide the procedure development and data collection activities needed to support borehole drilling, geophysical measurements, and sampling. This SAP identifies the American Society of Testing Materials standards, Hanford Site procedures, and other guidance to be followed for data collection activities. Revision 3 incorporates all interim change notices (ICN) that were issued to Revision 2 prior to completion of sampling and analysis activities for the WTP Seismic Boreholes Project. This revision also incorporates changes to the exact number of samples submitted for dynamic testing as directed by the U.S. Army Corps of Engineers. Revision 3 represents the final version of the SAP.

  17. Electrical resistance tomography using steel cased boreholes as electrodes

    DOEpatents

    Daily, W.D.; Ramirez, A.L.

    1999-06-22

    An electrical resistance tomography method is described which uses steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constrain the models. 2 figs.

  18. Electrical resistance tomography using steel cased boreholes as electrodes

    DOEpatents

    Daily, William D.; Ramirez, Abelardo L.

    1999-01-01

    An electrical resistance tomography method using steel cased boreholes as electrodes. The method enables mapping the electrical resistivity distribution in the subsurface from measurements of electrical potential caused by electrical currents injected into an array of electrodes in the subsurface. By use of current injection and potential measurement electrodes to generate data about the subsurface resistivity distribution, which data is then used in an inverse calculation, a model of the electrical resistivity distribution can be obtained. The inverse model may be constrained by independent data to better define an inverse solution. The method utilizes pairs of electrically conductive (steel) borehole casings as current injection electrodes and as potential measurement electrodes. The greater the number of steel cased boreholes in an array, the greater the amount of data is obtained. The steel cased boreholes may be utilized for either current injection or potential measurement electrodes. The subsurface model produced by this method can be 2 or 3 dimensional in resistivity depending on the detail desired in the calculated resistivity distribution and the amount of data to constain the models.

  19. Calibration facilities for borehole and surface environmental radiation measurements

    SciTech Connect

    Stromswold, D.C.

    1994-04-01

    Measuring radiation from contaminated soil and buildings is important in the cleanup of land areas and facilities. It provides the means for quantifying the amount of contamination and assessing the success of efforts to restore areas to acceptable conditions for public use. Instruments that measure in situ radiation from natural or radiochemically-contaminated earth formations must be calibrated in appropriate facilities to provide quantitative assessments of concentrations of radionuclides. For instruments that are inserted into boreholes, these calibration facilities are typically special models having holes for probe insertion and having sufficient size to appear radiometrically ``infinite`` in extent. The US Department of Energy (DOE) has such models at Hanford, Washington, and Grand Junction, Colorado. They are concrete cylinders having a central borehole and containing known, enhanced amounts of K, U, and Th for spectral gamma-ray measurements. Additional models contain U for calibrating neutron probes for fissile materials and total-count gamma-ray probes. Models for calibrating neutron probes for moisture measurements in unsaturated formations exist for steel-cased boreholes at Hanford and for uncased boreholes at the DOE`s Nevada Test Site. Large surface pads are available at Grand Junction for portable, vehicle-mounted, or airplane-mounted spectral gamma-ray detectors.

  20. Zero-Offset VSP in the COSC-1 borehole

    NASA Astrophysics Data System (ADS)

    Krauß, Felix; Simon, Helge; Giese, Rüdiger; Buske, Stefan; Hedin, Peter; Juhlin, Christopher; Lorenz, Henning

    2015-04-01

    As support for the COSC drilling project (Collisional Orogeny in the Scandinavian Caledonides), an extensive seismic survey took place during September and October 2014 in and around the newly drilled borehole COSC-1. The main aim of the COSC project is to better understand orogenic processes in past and recently active mountain belts. For this an approx. 2.5 km deep borehole, with nearly 100% core recovery, was drilled in the Scandinavian Caledonides, close to the town of Åre in western Jämtland/Sweden. The seismic survey consisted of a high resolution zero-offset VSP (vertical seismic profiling) and a multi-azimuthal walkaway VSP experiment with receivers at the surface and in the borehole. For the zero-offset VSP (ZVSP) a hydraulic hammer source (VIBSIST 3000) was used and activated over a period of 20 seconds as a sequence of impacts with increasing hit frequency. For each source point, 25 seconds of data were recorded. The wavefield was recorded in the borehole by 15 three-component receivers using a Sercel Slimwave geophone chain with an inter-tool spacing of 10 meters. The ZVSP was designed to result in a geophone spacing of 2 meters over the whole borehole length. The source was about 30 meters away from the borehole and thus, provides a poor geometry to rotate 3C-data in greater depths. For this reason, a check shot position was defined in about 1.9 km distance to the borehole. With this offset shots, it is possible to rotate the components of the 3C receivers and to concentrate the S-wave energy on one component and thus, increase the signal-to-noise ratio of S-wave events. This offset source point was activated periodically for certain depth positions of the geophone chain. The stacked ZVSP-data show a high signal-to-noise ratio and good data quality. Frequencies up to 150 Hz were recorded. On the vertical component, clear direct P-wave arrivals are visible. Several P-wave reflections occur below 1600 meters depth. After rotating the components

  1. Horizontal stress anisotropy determined from acoustic full waveforms in borehole

    NASA Astrophysics Data System (ADS)

    Rousseau, A.

    2003-04-01

    Drilling inside competent formations, such as crystalline rocks, hard carbonated rocks or sandstones, involves stable stress modifications around the hole. For vertical boreholes, these modifications depend essentially on the horizontal state of stress, particularly on its anisotropy. They may significantly spread up to more than 0.5 meter from the hole. As the usual frequencies of the borehole acoustic waveforms are about 20 KHz, these modified stress areas should be taken into account in order to interpret the records of the body waves, because their corresponding wavelengths range between 0.25 m for P waves and 0.175 m for S waves. The observation of the borehole acoustic body waves which propagate inside gneisses and metabasites (KTB borehole in Bavaria), granites (boreholes of Soultz-sous-forest in Alsace, and those in Vendée), and compact sandstones and dolomites (Balazuc1 borehole in the South of France), allows us to determine two or sometimes three successive arrivals of P and S waves, although the formations are homogeneous and there is no reflector, such as a fracture. The hypothesis that the double P and S waves may be the result of the reflection of the body waves inside the stress modified areas is consistent with the calculated sizes of the paths of the supposed reflected waves. The theory of borehole rock mechanics does not predict sharp changes in the sizes of these areas as overburdened pressure increases ; but the values of the supposed sizes of the modified areas are, as a function of depth, scattered above and steady below the depth where the overburdened pressure appears equal to the maximum horizontal stress. The squeezing of micro-cracks by pressure is assumed to homogenise formation rheology, and therefore, only the steady values may be considered as representative. Matching the calculated steady values with the possible models of stress deformation can be managed from the horizontal stress anisotropy values, but the solutions are not

  2. Geology of the Waste Treatment Plant Seismic Boreholes

    SciTech Connect

    Barnett, D. Brent; Fecht, Karl R.; Reidel, Stephen P.; Bjornstad, Bruce N.; Lanigan, David C.; Rust, Colleen F.

    2007-05-11

    In 2006, the U.S. Department of Energy initiated the Seismic Boreholes Project (SBP) to emplace boreholes at the Waste Treatment Plant (WTP) site in order to obtain direct shear wave velocity (Vs) measurements and other physical property measurements in Columbia River basalt and interbedded sediments of the Ellensburg Formation. The goal was to reduce the uncertainty in the response spectra and seismic design basis, and potentially recover design margin for the WTP. The characterization effort within the deep boreholes included 1) downhole measurements of the velocity properties of the suprabasalt, basalt, and sedimentary interbed sequences, 2) downhole measurements of the density of the subsurface basalt and sediments, and 3) geologic studies to confirm the geometry of the contact between the various basalt and interbedded sediments through examination of retrieved core from the core hole and data collected through geophysical logging of each borehole. This report describes the results of the geologic studies from three mud-rotary boreholes and one cored borehole at the WTP. All four boreholes penetrated the entire Saddle Mountains Basalt and the upper part of the Wanapum Basalt where thick sedimentary interbeds occur between the lava flows. The basalt flows penetrated in Saddle Mountains Basalt included the Umatilla Member, Esquatzel Member, Pomona Member, and the Elephant Mountain Member. The underlying Priest Rapids Member of the Wanapum Basalt also was penetrated. The Ellensburg Formation sediments consist of the Mabton Interbed, the Cold Creek Interbed, the Selah Interbed, and the Rattlesnake Ridge Interbed; the Byron Interbed occurs between two flows of the Priest Rapids Member. The Mabton Interbed marks the contact between the Wanapum and Saddle Mountains Basalts. The thicknesses of the basalts and interbedded sediments were within expected limits. However, a small reverse fault was found in the Pomona Member flow top. This fault has three periods of

  3. 30 CFR 57.22241 - Advance face boreholes (I-C mines).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Advance face boreholes (I-C mines). 57.22241... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22241 Advance face boreholes (I-C mines). (a) Boreholes shall be drilled at least 25 feet in advance of a face whenever the work place...

  4. 30 CFR 57.22241 - Advance face boreholes (I-C mines).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Advance face boreholes (I-C mines). 57.22241... Standards for Methane in Metal and Nonmetal Mines Ventilation § 57.22241 Advance face boreholes (I-C mines). (a) Boreholes shall be drilled at least 25 feet in advance of a face whenever the work place...

  5. Methods and apparatus for removal and control of material in laser drilling of a borehole

    DOEpatents

    Rinzler, Charles C; Zediker, Mark S; Faircloth, Brian O; Moxley, Joel F

    2014-01-28

    The removal of material from the path of a high power laser beam during down hole laser operations including drilling of a borehole and removal of displaced laser effected borehole material from the borehole during laser operations. In particular, paths, dynamics and parameters of fluid flows for use in conjunction with a laser bottom hole assembly.

  6. Optimization of Deep Borehole Systems for HLW Disposal

    SciTech Connect

    Driscoll, Michael; Baglietto, Emilio; Buongiorno, Jacopo; Lester, Richard; Brady, Patrick; Arnold, B. W.

    2015-09-09

    This is the final report on a project to update and improve the conceptual design of deep boreholes for high level nuclear waste disposal. The effort was concentrated on application to intact US legacy LWR fuel assemblies, but conducted in a way in which straightforward extension to other waste forms, host rock types and countries was preserved. The reference fuel design version consists of a vertical borehole drilled into granitic bedrock, with the uppermost kilometer serving as a caprock zone containing a diverse and redundant series of plugs. There follows a one to two kilometer waste canister emplacement zone having a hole diameter of approximately 40-50 cm. Individual holes are spaced 200-300 m apart to form a repository field. The choice of verticality and the use of a graphite based mud as filler between the waste canisters and the borehole wall liner was strongly influenced by the expectation that retrievability would continue to be emphasized in US and worldwide repository regulatory criteria. An advanced version was scoped out using zinc alloy cast in place to fill void space inside a disposal canister and its encapsulated fuel assembly. This excludes water and greatly improves both crush resistance and thermal conductivity. However the simpler option of using a sand fill was found adequate and is recommended for near-term use. Thermal-hydraulic modeling of the low permeability and porosity host rock and its small (≤ 1%) saline water content showed that vertical convection induced by the waste’s decay heat should not transport nuclides from the emplacement zone up to the biosphere atop the caprock. First order economic analysis indicated that borehole repositories should be cost-competitive with shallower mined repositories. It is concluded that proceeding with plans to drill a demonstration borehole to confirm expectations, and to carry out priority experiments, such as retention and replenishment of in-hole water is in order.

  7. Site Characterization for a Deep Borehole Field Test

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. L.; Hardin, E. L.; Freeze, G. A.; Sassani, D.; Brady, P. V.

    2015-12-01

    The US Department of Energy Office of Nuclear Energy is at the beginning of 5-year Deep Borehole Field Test (DBFT) to investigate the feasibility of constructing and characterizing two boreholes in crystalline basement rock to a depth of 5 km (16,400 ft). The concept of deep borehole disposal for radioactive waste has some advantages over mined repositories, including incremental construction and loading, the enhanced natural barriers provided by deep continental crystalline basement, and reduced site characterization. Site characterization efforts need to determine an eligible site that does not have the following disqualifying characteristics: greater than 2 km to crystalline basement, upward vertical fluid potential gradients, presence of economically exploitable natural resources, presence of high permeability connection to the shallow subsurface, and significant probability of future seismic or volcanic activity. Site characterization activities for the DBFT will include geomechanical (i.e., rock in situ stress state, and fluid pressure), geological (i.e., rock and fracture infill lithology), hydrological (i.e., quantity of fluid, fluid convection properties, and solute transport mechanisms), and geochemical (i.e., rock-water interaction and natural tracers) aspects. Both direct (i.e., sampling and in situ testing) and indirect (i.e., borehole geophysical) methods are planned for efficient and effective characterization of these site aspects and physical processes. Borehole-based characterization will be used to determine the variability of system state (i.e., stress, pressure, temperature, and chemistry) with depth, and interpretation of material and system parameters relevant to numerical site simulation. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE

  8. Borehole climatology: a discussion based on contributions from climate modeling

    NASA Astrophysics Data System (ADS)

    González-Rouco, J. F.; Beltrami, H.; Zorita, E.; Stevens, M. B.

    2008-01-01

    Progress in understanding climate variability through the last millennium leans on simulation and reconstruction efforts. Exercises blending both approaches present a great potential for answering questions relevant both for the simulation and reconstruction of past climate, and depend on the specific peculiarities of proxies and methods involved in climate reconstructions, as well as on the realism and limitations of model simulations. This paper explores research specifically related to paleoclimate modeling and borehole climatology as a branch of climate reconstruction that has contributed significantly to our knowledge of the low frequency climate evolution during the last five centuries. The text flows around three main issues that group most of the interaction between model and geothermal efforts: the use of models as a validation tool for borehole climate reconstructions; comparison of geothermal information and model simulations as a means of either model validation or inference about past climate; and implications of the degree of realism on simulating subsurface climate on estimations of future climate change. The use of multi-centennial simulations as a surrogate reality for past climate suggests that within the simplified reality of climate models, methods and assumptions in borehole reconstructions deliver a consistent picture of past climate evolution at long time scales. Comparison of model simulations and borehole profiles indicate that borehole temperatures are responding to past external forcing and that more realism in the development of the soil model components in climate models is desirable. Such an improved degree of realism is important for the simulation of subsurface climate and air-ground interaction; results indicate it could also be crucial for simulating the adequate energy balance within climate change scenario experiments.

  9. Borehole climatology: a discussion based on contributions from climate modeling

    NASA Astrophysics Data System (ADS)

    González-Rouco, J. F.; Beltrami, H.; Zorita, E.; Stevens, M. B.

    2009-03-01

    Progress in understanding climate variability through the last millennium leans on simulation and reconstruction efforts. Exercises blending both approaches present a great potential for answering questions relevant both for the simulation and reconstruction of past climate, and depend on the specific peculiarities of proxies and methods involved in climate reconstructions, as well as on the realism and limitations of model simulations. This paper explores research specifically related to paleoclimate modeling and borehole climatology as a branch of climate reconstruction that has contributed significantly to our knowledge of the low frequency climate evolution during the last five centuries. The text flows around three main issues that group most of the interaction between model and geothermal efforts: the use of models as a validation tool for borehole climate reconstructions; comparison of geothermal information and model simulations as a means of either model validation or inference about past climate; and implications of the degree of realism on simulating subsurface climate on estimations of future climate change. The use of multi-centennial simulations as a surrogate reality for past climate suggests that within the simplified reality of climate models, methods and assumptions in borehole reconstructions deliver a consistent picture of past climate evolution at long time scales. Comparison of model simulations and borehole profiles indicate that borehole temperatures are responding to past external forcing and that more realism in the development of the soil model components in climate models is desirable. Such an improved degree of realism is important for the simulation of subsurface climate and air-ground interaction; results indicate it could also be crucial for simulating the adequate energy balance within climate change scenario experiments.

  10. Structural characterization and composition of Y-rich hainite from Sakharjok nepheline syenite pegmatite (Kola Peninsula, Russia)

    NASA Astrophysics Data System (ADS)

    Lyalina, L.; Zolotarev, A.; Selivanova, E.; Savchenko, Ye.; Zozulya, D.; Krivovichev, S.; Mikhailova, Yu.

    2015-08-01

    Y-rich hainite occurs in nepheline syenite pegmatite of the Sakharjok massif (Kola Peninsula, Russia). It forms euhedral prismatic crystals up to 2 mm in length as well as rims around an unidentified mineral phase (silicate of Ca, Y, Zr and Ti). The mineral is triclinic, space group P-1, a 9.6054(10), b 5.6928(6), c 7.3344(7) Å, α 89.903(2), β 101.082(2), γ 100.830(2)°, V 386.32(7) Å3, Z = 1. The calculated density is 3.39 g/cm3. Chemical composition of Sakharjok hainite is different from the previously published data by much higher Y and Nb contents up to 0.72 and 0.20 atoms per formula unit, respectively, by the two- to five-fold depletion in the LREEs and by the strong enrichment of the HREEs. From the single-crystal X-ray diffraction data, there is a significant amount of Y in the M1 site associated with the absence of Zr in it. Nb and Zr are concentrated in the M5 site substituting Ti. Combination of single-crystal X-ray diffraction data and electron microprobe data give the empirical formula (Ca1.04Y0.63REE0.24Mn0.02)∑1.93(Na0.92Ca0.77)∑1.69Ca2.00(Na0.65Ca0.10)∑0.75(Ti0.60Zr0.21Nb0.15Fe0.03)∑0.99((Si4.00Al0.02)∑4.02O14) (F2.61O1.39)∑4.00.

  11. Organochlorine pesticides, chlorinated dioxins and furans, and PCBs in peregrine falcon Falco peregrinus eggs from the Kola peninsula, Russia

    USGS Publications Warehouse

    Henny, C.J.; Ganusevich, S.A.; Ward, F.P.; Schwartz, T.R.

    1994-01-01

    Nesting of a bog-associated population of mlgfatory Peregrine Falcons, Falco peregrinus, along the Ponoy River depression, Kola Peninsula, Russia, has been studied since 1977. In 1987 91 production rates averaged 1.94 young per active nest and the number of breeding pairs increased from 4 to 10. In 1991, most eyrie sites were visited during the egg stage and a 'sample' egg was collected for contaminant analysis. Eight Peregrine Falcon eggs contained relatively low concentrations of p,p' -DOE (DOE) (geometric mean 3.5 g/g) and of other organochlorine pesticides. These DOE concentrations are similar to those reported in Peregrine Falcon eggs from an Alaskan population that had also showed a recent population increase. Eggshell thinning (11.4%) was similar to that found in Alaska. Concentrations of polychlorinated biphenyls (PCBs) were higher than DOE concentrations, comparable to the contamination profile shown by Peregrine Falcon populations in Fennoscandia, and were higher than those found in Alaskan birds. Before this study, no Peregrine Falcon eggs from Russia had 'been analyzed for PCB congeners, polychlorinated dibenzo- p-dioxins (PCDDs), or pol ychlorinated dibenzofurans (PCD Fs). Conversions of analytical concentrations of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), other PCDDs, PCDFs and PCB congeners based on relative aryl hydrocarbon hydroxylase induction potencies allowed the estimation of total 2,3,7,8- TCDD equivalents (TEQs). The TEQs are in the range that is associated with embryonic mortality in other species. Even though the Peregrine Falcon population now seems to be released from decades of a DOT problem, exposure to other contaminant continues. There is an obvious need to assess further the sources and longer-term trends of the PCBs. We also report residue concentrations from one White-tailed Eagle, Haliaeetus albicilla, egg.

  12. Long-term consequences for Northern Norway of a hypothetical release from the Kola nuclear power plant.

    PubMed

    Howard, B J; Wright, S M; Salbu, B; Skuterud, K L; Hove, K; Loe, R

    2004-07-01

    The spatial and temporal variation in radiocaesium and (90)Sr doses to two population groups of the two Northernmost counties of Norway, Troms and Finnmark, following a hypothetical accident at the Kola nuclear power plant (KNPP) have been estimated using a model implemented within a geographical information system. The hypothetical accident assumes a severe loss of coolant accident at the KNPP coincident with meteorological conditions causing significant radionuclide deposition in the two counties. External doses are estimated from ground deposition and the behaviour of the different population groups, and internal doses from predicted food product activity concentrations and dietary consumption data. Doses are predicted for reindeer keepers and other Norwegian inhabitants, taking account of existing (137)Cs and (90)Sr deposition but not including the remedial effect of any countermeasures that might be used. The predicted doses, arising mainly from radiocaesium, confirm the Arctic Monitoring and Assessment Programme assessment that residents of the Arctic are particularly vulnerable to radiocaesium contamination, which could persist for many years. External doses are predicted to be negligible compared to ingestion doses. Ingestion doses for reindeer keepers are predicted to exceed 1 mSv y(-1) for several decades primarily due to their high consumption of reindeer meat. Other Norwegians would also be potentially exposed to doses exceeding 1 mSv y(-1) for several years, especially if they consume many local products. Whilst reindeer production is the most important exposure pathway, freshwater fish, lamb meat, dairy products, mushrooms and berries are also significant contributors to predicted ingestion doses. Radionuclide fluxes, defined as the total output of radioactivity in food from an area for a unit time, are dominated by reindeer meat. The results show the need for an effective emergency response, with appropriate countermeasures, should an accident of the

  13. Borehole prototype for seismic high-resolution exploration

    NASA Astrophysics Data System (ADS)

    Giese, Rüdiger; Jaksch, Katrin; Krauß, Felix; Krüger, Kay; Groh, Marco; Jurczyk, Andreas

    2014-05-01

    Target reservoirs for the exploitation of hydrocarbons or hot water for geothermal energy supply can comprise small layered structures, for instance thin layers or faults. The resolution of 2D and 3D surface seismic methods is often not sufficient to determine and locate these structures. Borehole seismic methods like vertical seismic profiling (VSP) and seismic while drilling (SWD) use either receivers or sources within the borehole. Thus, the distance to the target horizon is reduced and higher resolution images of the geological structures can be achieved. Even these methods are limited in their resolution capabilities with increasing target depth. To localize structures more accuracy methods with higher resolution in the range of meters are necessary. The project SPWD -- Seismic Prediction While Drilling aims at s the development of a borehole prototype which combines seismic sources and receivers in one device to improve the seismic resolution. Within SPWD such a prototype has been designed, manufactured and tested. The SPWD-wireline prototype is divided into three main parts. The upper section comprises the electronic unit. The middle section includes the upper receiver, the upper clamping unit as well as the source unit and the lower clamping unit. The lower section consists of the lower receiver unit and the hydraulic unit. The total length of the prototype is nearly seven meters and its weight is about 750 kg. For focusing the seismic waves in predefined directions of the borehole axis the method of phased array is used. The source unit is equipped with four magnetostrictive vibrators. Each can be controlled independently to get a common wave front in the desired direction of exploration. Source signal frequencies up to 5000 Hz are used, which allows resolutions up to one meter. In May and September 2013 field tests with the SPWD-wireline prototype have been carried out at the KTB Deep Crustal Lab in Windischeschenbach (Bavaria). The aim was to proof the

  14. Laboratory investigation of borehole breakouts and Multi-step failure model

    NASA Astrophysics Data System (ADS)

    Ruan, Xiao-Ping; Mao, Ji-Zheng; Cui, Zhan-Tao

    1993-05-01

    Based on our experiment of borehole breakouts with a group of sandstone samples described in this paper, a multi-step failure model of borehole breakouts are proposed to quantitatively explain the relationship between the section shape of borehole breakouts and the state of crustal stress. In this model the borehole spalling is not only related to the state of stress at a single point but also the state of stress on its neighboring area. The comparison between the experimental results of borehole breakouts and the calculation results shows a good agreement.

  15. Attenuation of free spheroidal oscillations of the Earth after the M = 9 Earthquake in Sumatra and the super-deep Earthquake in the Sea of Okhotsk: I. the Admissible Q-factor range for the fundamental mode and overtones of the free spheroidal oscillations

    NASA Astrophysics Data System (ADS)

    Molodenskii, S. M.; Molodenskaya, M. S.

    2015-11-01

    The problem of reconstructing the depth distribution of density and the depth and frequency dependences of the mechanical Q-factor in the Earth's mantle from the entire set of the present-day seismic and astrometric data on the travel times and periods of seismic waves and the amplitudes and phases of forced nutations is considered. The solution of the problem is refined by including the new data about the attenuation of the free oscillations of the Earth excited by the Sumatra earthquake ( M = 9) and super-deep earthquake in the Sea of Okhotsk. The actual accuracy of the Q-factor is studied in the first part of the paper. To this end, we analyze (1) the convergence of the Q-factor estimated from the time series of different length shifted along the time axis and (2) the convergence of the results based on the different data. Since the accuracy of identifying all the periods and attenuation factors for the free oscillations from the Sumatra earthquake is significantly higher than for the earthquake with M = 9 in Japan, the data are only compared for the Sumatra and Okhotsk events. The signal-to-noise ratio (SNR) is analyzed based on the records from different Global Seismographic Network (GSN) stations including the station in Obninsk, the Kurchatov station in Kazakhstan, and the main ERM and MAJO stations in Japan. It is found that the highest SNR was observed in Obninsk. The inverse problem of reconstructing the density and Q-factor is solved for the frequency dependent real parts of the shear moduli with allowance for the most accurate data about the attenuation factors for the fundamental spheroidal modes of the free oscillations of the Earth.

  16. Borehole Measurements of Interfacial and Co-seismic Seismoelectric Effects

    NASA Astrophysics Data System (ADS)

    Butler, K. E.; Dupuis, J. C.; Kepic, A. W.; Harris, B. D.

    2006-12-01

    We have recently carried out a series of seismoelectric field experiments employing various hammer seismic sources on surface and a multi-electrode `eel' lowered into slotted PVC-cased boreholes penetrating porous sediments. Deploying grounded dipole receivers in boreholes has a number of advantages over surface-based measurements. Ambient noise levels are reduced because earth currents from power lines and other sources tend to flow horizontally, especially near the surface. The earth also provides natural shielding from higher frequency spherics and radio frequency interference while the water-filled borehole significantly decreases the electrode contact impedance which in turn reduces Johnson noise and increases resilience to capacitively- coupled noise sources. From a phenomenological point of view, the potential for measuring seismoelectric conversions from various geological or pore fluid contacts at depth can be assessed by lowering antennas directly through those interfaces. Furthermore, co-seismic seismoelectric signals that are normally considered to be noise in surface measurements are of interest for well logging in the borehole environment. At Fredericton, Canada, broadband co-seismic effects, having a dominant frequency of 350-400 Hz were measured at quarter meter intervals in a borehole penetrating glacial sediments including tills, sands, and a silt/clay aquitard. Observed signal strengths of a few microvolts/m were found to be consistent with the predictions of a simplified theoretical model for the co-seismic effect expected to accompany the regular `fast' P-wave. In Australia we have carried out similar vertical profiling experiments in hydrogeological monitoring boreholes that pass through predominantly sandy sediments containing fresh to saline water near Ayr, QLD and Perth, WA. While co-seismic effects are generally seen to accompany P-wave and other seismic arrivals, the most interesting result has been the observation, at three sites, of

  17. PARTICLE DISPLACEMENTS ON THE WALL OF A BOREHOLE FROM INCIDENT PLANE WAVES.

    USGS Publications Warehouse

    Lee, M.W.

    1987-01-01

    Particle displacements from incident plane waves at the wall of a fluid-filled borehole are formulated by applying the seismic reciprocity theorem to far-field displacement fields. Such displacement fields are due to point forces acting on a fluid-filled borehole under the assumption of long wavelengths. The displacement fields are analyzed to examine the effect of the borehole on seismic wave propagation, particularly for vertical seismic profiling (VSP) measurements. When the shortest wavelength of interest is approximately 25 times longer than the borehole's diameter, the scattered displacements are proportional to the first power of incident frequency and borehole diameter. When the shortest wavelength of interest is about 40 times longer than the borehole's diameter, borehole effects on VSP measurements using a wall-locking geophone are negligible.

  18. Deep Borehole Emplacement Mode Hazard Analysis Revision 0

    SciTech Connect

    Sevougian, S. David

    2015-08-07

    This letter report outlines a methodology and provides resource information for the Deep Borehole Emplacement Mode Hazard Analysis (DBEMHA). The main purpose is identify the accident hazards and accident event sequences associated with the two emplacement mode options (wireline or drillstring), to outline a methodology for computing accident probabilities and frequencies, and to point to available databases on the nature and frequency of accidents typically associated with standard borehole drilling and nuclear handling operations. Risk mitigation and prevention measures, which have been incorporated into the two emplacement designs (see Cochran and Hardin 2015), are also discussed. A key intent of this report is to provide background information to brief subject matter experts involved in the Emplacement Mode Design Study. [Note: Revision 0 of this report is concentrated more on the wireline emplacement mode. It is expected that Revision 1 will contain further development of the preliminary fault and event trees for the drill string emplacement mode.

  19. Coseismic Offsets on PBO Borehole Strainmeters: Real, or Spurious?

    NASA Astrophysics Data System (ADS)

    Barbour, A. J.; Agnew, D. C.

    2010-12-01

    We have observed coseismic strain offsets during many significant earthquakes, at all locations in the 74-instrument PBO borehole strainmeter (BSM) network. The M7.2 El Mayor-Cucapah earthquake of April 4, 2010 induced the largest offsets thus far, on BSMs located within the San Jacinto fault zone - the "Anza cluster". Here we present analyses of trends in the observed offsets for the Anza cluster, as well as inspection of their inferred borehole lithology. We find that offsets rarely agree with elastic dislocation theory in magnitude and sign, and speculate that they are controlled more by localized geologic constraints than by triggered fault slip, as has been suggested in previous studies (e.g. Linde and Johnson, 1989).

  20. Performance of a Borehole XRF Spectrometer for Planetary Exploration

    NASA Technical Reports Server (NTRS)

    Kelliher, Warren C.; Carlberg, Ingrid A.; Elam, W. T.; WIllard-Schmoe, Ella

    2007-01-01

    We have designed and constructed a borehole XRF Spectrometer (XRFS) as part of the Mars Subsurface Access program. It will be used to determine the composition of the Mars regolith at various depths by insertion into a pre-drilled borehole. The primary performance metrics for the instrument are the lower limits of detection over a wide range of the periodic table. Power consumption during data collection was also measured. The prototype instrument is complete and preliminary testing has been performed. Terrestrial soil Standard Reference Materials were used as the test samples. Detection limits were about 10 weight parts-per-million for most elements, with light elements being higher, up to 1.4 weight percent for magnesium. Power consumption (excluding ground support components) was 12 watts.

  1. Deriving historical total solar irradiance from lunar borehole temperatures

    NASA Astrophysics Data System (ADS)

    Miyahara, Hiroko; Wen, Guoyong; Cahalan, Robert F.; Ohmura, Atsumu

    2008-01-01

    We study the feasibility of deriving historical TSI (Total Solar Irradiance) from lunar borehole temperatures. As the Moon lacks Earth's dynamic features, lunar borehole temperatures are primarily driven by solar forcing. Using Apollo observed lunar regolith properties, we computed present-day lunar regolith temperature profiles for lunar tropical, mid-latitude, and polar regions for two scenarios of solar forcing reconstructed by Lean (2000) and Wang et al. (2005). Results show that these scenarios can be distinguished by small but potentially detectable differences in temperature, on the order of 0.01 K and larger depending on latitude, within ~10 m depth of the Moon's surface. Our results provide a physical basis and guidelines for reconstructing historical TSI from data obtainable in future lunar exploration.

  2. Borehole observations of continuous strain and fluid pressure: Chapter 9

    USGS Publications Warehouse

    Roeloffs, Evelyn A.; Linde, A.T.

    2007-01-01

    Strain is expansion, contraction, or distortion of the volcanic edifice and surrounding crust. As a result of magma movement, volcanoes may undergo enormous strain prior to and during eruption. Global Positioning System (GPS) observations can in principle be used to determine strain by taking the difference between two nearby observations and dividing by the distance between them. Two GPS stations 1 km apart, each providing displacement information accurate to the nearest millimeter, could detect strain as small as 2 mm km-1, or 2 × 10-6. It is possible, however, to measure strains at least three orders of magnitude smaller using borehole strainmeters. In fact, it is even possible to measure strains as small as 10-8 using observations of groundwater levels in boreholes.

  3. The influence of wellbore inflow on electromagnetic borehole flowmeter measurements.

    PubMed

    Clemo, Tom; Barrash, Warren; Reboulet, Edward C; Johnson, Timothy C; Leven, Carsten

    2009-01-01

    This paper describes a combined field, laboratory, and numerical study of electromagnetic borehole flowmeter measurements acquired without the use of a packer or skirt to block bypass flow around the flowmeter. The most significant finding is that inflow through the wellbore screen changes the ratio of flow through the flowmeter to wellbore flow. Experiments reveal up to a factor of two differences in this ratio for conditions with and without inflow through the wellbore screen. Standard practice is to assume the ratio is constant. A numerical model has been developed to simulate the effect of inflow on the flowmeter. The model is formulated using momentum conservation within the borehole and around the flowmeter. The model is embedded in the MODFLOW-2000 ground water flow code. PMID:19341370

  4. New UK in-situ stress orientation for northern England and controls on borehole wall deformation identified using borehole imaging

    NASA Astrophysics Data System (ADS)

    Kingdon, Andrew; Fellgett, Mark W.; Waters, Colin N.

    2016-04-01

    The nascent development of a UK shale gas industry has highlighted the inadequacies of previous in-situ stress mapping which is fundamental to the efficacy and safety of potential fracturing operations. The limited number of stress inversions from earthquake focal plane mechanisms and overcoring measurements of in-situ stress in prospective areas increases the need for an up-to-date stress map. Borehole breakout results from 36 wells with newly interpreted borehole imaging data are presented. Across northern England these demonstrate a consistent maximum horizontal stress orientation (SHmax) orientation of 150.9° and circular standard deviation of 13.1°. These form a new and quality assured evidence base for both industry and its regulators. Widespread use of high-resolution borehole imaging tools has facilitated investigation of micro-scale relationships between stress and lithology, facilitating identification of breakouts as short as 25 cm. This is significantly shorter than those identified by older dual-caliper logging (typically 1-10+ m). Higher wall coverage (90%+ using the highest resolution tools) and decreasing pixel size (down to 4mm vertically by 2° of circumference) also facilitates identification of otherwise undetectable sub-centimetre width Drilling Induced Tensile Fractures (DIFs). Examination of borehole imaging from wells in North Yorkshire within the Carboniferous Pennine Coal Measures Group has showed that even though the stress field is uniform, complex micro-stress relationships exist. Different stress field indicators (SFI) are significantly affected by geology with differing failure responses from adjacent lithologies, highlighted by borehole imaging on sub-metre scales. Core-log-borehole imaging integration over intervals where both breakouts and DIFs have been identified allows accurate depth matching and thus allows a synthesis of failure for differing lithology and micro-structures under common in-situ conditions. Understanding these

  5. Rare gas isotopes and parent trace elements in ultrabasic-alkaline-carbonatite complexes, Kola Peninsula: identification of lower mantle plume component

    NASA Astrophysics Data System (ADS)

    Tolstikhin, I. N.; Kamensky, I. L.; Marty, B.; Nivin, V. A.; Vetrin, V. R.; Balaganskaya, E. G.; Ikorsky, S. V.; Gannibal, M. A.; Weiss, D.; Verhulst, A.; Demaiffe, D.

    2002-03-01

    During the Devonian magmatism (370 Ma ago) ˜20 ultrabasic-alkaline-carbonatite complexes (UACC) were formed in the Kola Peninsula (north-east of the Baltic Shield). In order to understand mantle and crust sources and processes having set these complexes, rare gases were studied in ˜300 rocks and mineral separates from 9 UACC, and concentrations of parent Li, K, U, and Th were measured in ˜70 samples. 4He/ 3He ratios in He released by fusion vary from pure radiogenic values ˜10 8 down to 6 × 10 4. The cosmogenic and extraterrestrial sources as well as the radiogenic production are unable to account for the extremely high abundances of 3He, up to 4 × 10 -9 cc/g, indicating a mantle-derived fluid in the Kola rocks. In some samples helium extracted by crushing shows quite low 4He/ 3He = 3 × 10 4, well below the mean ratio in mid ocean ridge basalts (MORB), (8.9 ± 1.0) × 10 4, indicating the contribution of 3He-rich plume component. Magnetites are principal carriers of this component. Trapped 3He is extracted from these minerals at high temperatures 1100°C to 1600°C which may correspond to decrepitation or annealing primary fluid inclusions, whereas radiogenic 4He is manly released at a temperature range of 500°C to 1200°C, probably corresponding to activation of 4He sites degraded by U, Th decay. Similar 4He/ 3He ratios were observed in Oligocene flood basalts from the Ethiopian plume. According to a paleo-plate-tectonic reconstruction, 450 Ma ago the Baltica (including the Kola Peninsula) continent drifted not far from the present-day site of that plume. It appears that both magmatic provinces could relate to one and the same deep-seated mantle source. The neon isotopic compositions confirm the occurrence of a plume component since, within a conventional 20Ne/ 22Ne versus 21Ne/ 22Ne diagram, the regression line for Kola samples is indistinguishable from those typical of plumes, such as Loihi (Hawaii). 20Ne/ 22Ne ratios (up to 12.1) correlate well with 40

  6. The paleoproterozoic vurechuaivench layered Pt-bearing pluton, Kola Peninsula: New results of the U-Pb (ID-TIMS, SHRIMP) dating of baddeleytte and zircon

    NASA Astrophysics Data System (ADS)

    Rundkvist, T. V.; Bayanova, T. B.; Sergeev, S. A.; Pripachkin, P. V.; Grebnev, R. A.

    2014-01-01

    The Vurechuaivench layered PGE-bearing pluton (VP) is located in the central part of the Kola Peninsula, at the southeastern contact of the Monchegorsk layered complex with the Paleoproterozoic Imandra-Varzuga rift structure. The VP is composed of gabbronorites with a layered horizon of intercalated gabbronorites and anorthosites, containing sulfide and PGE-bearing mineralization. The U-Pb (ID-TIMS) age of baddeleytte from gabbronorite of the ore zone (sample M-42) was determined on a Finningan MAT-262 (RPQ) seven-channel mass-spectrometer in the Laboratory of Geochronology at the Geological Institute, Kola Scientific Center, Russian Academy of Sciences. Zircons from anorthosites and gabbronorites of the ore zone (samples B-1 and B-2, respectively) were studied on a SHRIMP-II secondary-ionic microprobe in the Center of Isotopic Studies of the Federal State Unitary Enterprise VSEGEI (St. Petersburg). The reliable age of formation of various VP rocks was determined by single grains of accessory baddeleytte and zircon based on additional studies of sample M-42 (2498.2 ± 6.7 Ma) and new studies of samples B-1 and B-2 (2507.9 ± 6.6 and 2504.8.4 Ma). The identical U-Pb ages of anorthosites and gabbronorites from the ore reef indicate that anorthosites are a dependent phase and were formed along with gabbronorites during the intrachamber melt differentiation and crystallization.

  7. Enhancement of Network Performance through Integration of Borehole Stations

    NASA Astrophysics Data System (ADS)

    Korger, Edith; Plenkers, Katrin; Clinton, John; Kraft, Toni; Diehl, Tobias; Husen, Stephan; Schnellmann, Michael

    2014-05-01

    In order to improve the detection and characterisation of weak seismic events across northern Switzerland/southern Germany, the Swiss Digital Seismic Network has installed 10 new seismic stations during 2012 and 2013. The newly densified network was funded within a 10-year project by NAGRA and is expected to monitor seismicity with a magnitude of completeness Mc (ML) below 1.3 and provide high quality locations for all these events. The goal of this project is the monitoring of areas surrounding potential nuclear waste repositories, in order to gain a thorough understanding of the seismotectonic processes and consequent evaluation of the seimsic hazard in the region. Northern Switzerland lies in a molasse basin and is densely populated. Therefore it is a major challenge in this region to find stations with noise characteristics low enough to meet the monitoring requirements. The new stations include three borehole sites equipped with 1 Hz Lennartz LE3D-BH velocity sensors (depths between 120 and 160 m), which are at critical locations for the new network but at areas where the ambient noise at the surface is too high for convential surface stations. At each borehole, a strong motion seismometer is also installed at the surface. Through placing the seismometers at depth, the ambient noise level is significantly lowered - which means detection of smaller local and larger regional events is enhanced. We present here a comparison of the performance of each of the three borehole stations, reflecting on the improvement in noise compared to surface installations at these sites, as well as with other conventional surface stations within the network. We also demonstrate the benefits in the operation network performance, in terms of earthquakes detected and located, which arise from installing borehole stations with lower background noise.

  8. 24 CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect

    Erik C. Westman

    2002-07-01

    This report describes the technical progress on a project to design and construct a multi-channel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method of emplacing the array in a long, horizontal borehole. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  9. Non-contact infrared temperature measurements in dry permafrost boreholes

    NASA Astrophysics Data System (ADS)

    Junker, Ralf; Grigoriev, Mikhail N.; Kaul, Norbert

    2008-04-01

    While planning the COAST Expedition to the Siberian Laptev Sea in 2005, the question of how to make a short equilibrium temperature measurement in a dry borehole arose. As a result, an infrared borehole tool was developed and used in three dry boreholes (up to 60.2 m deep) in the coastal transition zone from terrestrial to sub-sea permafrost near Mamontovy Klyk in the western Laptev Sea. A depth versus temperature profile was acquired with equilibration times of 50 × 10-3 s at each depth interval. Comparison with a common resistor string revealed an offset due to limitations of accuracy of the infrared technique and the influence of the probe's massive steel housing. Therefore it was necessary to calibrate the infrared sensor with a high precision temperature logger in each borehole. The results of the temperature measurements show a highly dynamic transition zone with temperature gradients up to -0.092°C/m and heat flow of -218 mW/m. A period of submergence of only 600 years the drilled sub-sea permafrost is approaching the overlying seawater temperature at -1.61°C with a temperature gradient of 0.021°C/m and heat flow of 49 mW/m. Further offshore, 11 km from the coastline, a temperature gradient of 0.006°C/m and heat flow of 14 mW/m occur. Thus the sub-sea permafrost in the Mamontovy Klyk region has reached a critical temperature for the presence of interstitial ice. The aim of this article is to give a brief feasibility study of infrared downhole temperature measurements and to present experiences and results of its successful application.

  10. Shear wave transducer for stress measurements in boreholes

    DOEpatents

    Mao, Nai-Hsien

    1987-01-01

    A technique and apparatus for estimating in situ stresses by measuring stress-induced velocity anisotropy around a borehole. Two sets each of radially and tangentially polarized transducers are placed inside the hole with displacement directions either parallel or perpendicular to the principal stress directions. With this configuration, relative travel times are measured by both a pulsed phase-locked loop technique and a cross correlation of digitized waveforms. The biaxial velocity data is used to back-calculate the applied stress.

  11. Research on One Borehole Hydraulic Coal Mining System

    NASA Astrophysics Data System (ADS)

    XIA, Bairu; ZENG, Xiping; MAO, Zhixin

    The Borehole Hydraulic Coal Mining System (BHCMS) causes fragmentation of coal seams and removes coal slump through a drilled hole using high-pressure water jet. Then the mixture of coal and water as slurry are driven out of the borehole by hydraulic or air-lifting method, and are separated at the surface. This paper presents a case study of hydraulic borehole coal mining. The three key techniques of the BHCMS, namely, hydraulic lift of jet pump, air lift, and water jet disintegration are discussed and analyzed in this paper based on theoretical analysis and field experiments. Some useful findings have been obtained: (1) The design of jet pump, air lift system, and water jet has to be integrated appropriately in order to improve mining efficiency and coal recovery rate, and to decrease energy consumption. The design of hydraulic lift jet pump must meet the requirement of the minimum floating speed of coal particles. The optimization of nondimensional parameters and prevention of cavitation have to be considered in the design; (2) With regard to selecting the nozzle types of jet pump, center nozzle or annular nozzle can be selected according to the size of the removed particles; (3) Through air-lift and back pressure, the water head can be decreased to improve the lift capacity of jet pump and decrease the power loss. The air lift has great limitation if it is used solely to extract coal, but if it is employed in conjunction with jet pump, the lift capacity of jet pump can be increased greatly; (4) With water jets, the air lift can improve the fragmentation radius and capacity. The main factors that affect the effect of water jet are the submergible status of jet, jet pressure, and flowrate. The ideal jet of the monitor in the borehole hydraulic coal-mining system is a nonsubmergible free jet. Through air lift, the nonsubmergible free jet can be set up in the mining hole.

  12. Chemical energy system for a borehole seismic source. [Final report

    SciTech Connect

    Engelke, R.; Hedges, R.O.

    1996-03-01

    We describe a detonation system that will be useful in the seismological examination of geological structures. The explosive component of this system is produced by the mixing of two liquids; these liquids are classified as non-explosive materials by the Department of Transportation. This detonation system could be employed in a borehole tool in which many explosions are made to occur at various points in the borehole. The explosive for each explosion would be mixed within the tool immediately prior to its being fired. Such an arrangement ensures that no humans are ever in proximity to explosives. Initiation of the explosive mixture is achieved with an electrical slapper detonator whose specific parameters are described; this electrical initiation system does not contain any explosive. The complete electrical/mechanical/explosive system is shown to be able to perform correctly at temperatures {le}120{degrees}C and at depths in a water-filled borehole of {le} 4600 ft (i.e., at pressures of {le}2000 psig).

  13. A fast inversion method for interpreting borehole electromagnetic data

    NASA Astrophysics Data System (ADS)

    Kim, H. J.; Lee, K. H.; Wilt, M.

    2003-05-01

    A fast and stable inversion scheme has been developed using the localized nonlinear (LN) approximation to analyze electromagnetic fields obtained in a borehole. The medium is assumed to be cylindrically symmetric about the borehole, and to maintain the symmetry a vertical magnetic dipole is used as a source. The efficiency and robustness of an inversion scheme is very much dependent on the proper use of Lagrange multiplier, which is often provided manually to achieve a desired convergence. We utilize an automatic Lagrange multiplier selection scheme, which enhances the utility of the inversion scheme in handling field data. In this selection scheme, the integral equation (IE) method is quite attractive in speed because Green's functions, the most time consuming part in IE methods, are repeatedly re-usable throughout the selection procedure. The inversion scheme using the LN approximation has been tested to show its stability and efficiency using synthetic and field data. The inverted result from the field data is successfully compared with induction logging data measured in the same borehole.

  14. Experimental measurements of seismoelectric signals in borehole models

    NASA Astrophysics Data System (ADS)

    Wang, Jun; Hu, Hengshan; Guan, Wei

    2015-12-01

    An experimental system is built for the electrokinetic measurements with a small scaled seismoelectric detector and a high resolution digitizer (1 MS s-1, 22 bits). The acoustic and seismoelectric experiments are carried out in different borehole models at the high frequency of 90 kHz in the laboratory. All the localized seismoelectric signals that accompany compressional wave, shear wave and Stoneley wave are first clearly observed with a monopole source in sandstone boreholes that are saturated by tap water. The amplitudes of these signals are measured in the range of 1-120 μV, which is useful for designing the seismoelectric logging instruments. Then the amplitude ratio of electric signal to acoustic pressure (REP) for each of the three waves is calculated and compared with the theoretical simulations. Based on the experimental data, we find that seismoelectric logging signals as well as REP become stronger at the more permeable borehole model. We also find that seismoelectric logging signals are more sensitive to permeability and porosity compared with acoustic logging signals. Therefore, this study verifies the feasibility of seismoelectric well logging, and further indicates that the seismoelectric logging technique might be a preferable method to estimate formation parameters in the field measurements.

  15. Hydraulic conductivity explored by factor analysis of borehole geophysical data

    NASA Astrophysics Data System (ADS)

    Szabó, Norbert Péter

    2015-08-01

    A multivariate statistical method is presented for providing hydrogeological information on groundwater formations. Factor analysis is applied to borehole logs in Hungary and the USA to estimate the vertical distribution of hydraulic conductivity of rocks intersected by the borehole. Earlier studies showed a strong correlation between a statistical variable extracted by factor analysis and shale volume in primary porosity rocks. Hydraulic conductivity as a related quantity can be derived directly by factor analysis. In the first step, electric and nuclear logs are transformed into factor logs, which are then correlated to hydraulic properties of aquifers. It is shown that a factor explaining the major part of variance of the measured variables is inversely proportional to hydraulic conductivity. By revealing the regression relation between the above quantities, an estimate for hydraulic conductivity can be given along the entire length of the borehole. Synthetic modeling experiments and field cases demonstrate the feasibility of the method, which can be applied both in primary and secondary porosity aquifers. The results of factor analysis show consistence with those of the Kozeny-Carman method and hydraulic aquifer tests. The application of the statistical analysis of well logs together with independent ground geophysical and hydrogeological methods serves a more efficient exploration of groundwater resources.

  16. Comparison of climate model simulated and observed borehole temperature profiles

    NASA Astrophysics Data System (ADS)

    Gonzalez-Rouco, J. F.; Stevens, M. B.; Beltrami, H.; Goosse, H.; Rath, V.; Zorita, E.; Smerdon, J.

    2009-04-01

    Advances in understanding climate variability through the last millennium lean on simulation and reconstruction efforts. Progress in the integration of both approaches can potentially provide new means of assessing confidence on model projections of future climate change, of constraining the range of climate sensitivity and/or attributing past changes found in proxy evidence to external forcing. This work addresses specifically possible strategies for comparison of paleoclimate model simulations and the information recorded in borehole temperature profiles (BTPs). First efforts have allowed to design means of comparison of model simulated and observed BTPs in the context of the climate of the last millennium. This can be done by diffusing the simulated temperatures into the ground in order to produce synthetic BTPs that can be in turn assigned to collocated, real BTPs. Results suggest that there is sensitivity of borehole temperatures at large and regional scales to changes in external forcing over the last centuries. The comparison between borehole climate reconstructions and model simulations may also be subjected to non negligible uncertainties produced by the influence of past glacial and Holocene changes. While the thermal climate influence of the last deglaciation can be found well below 1000 m depth, such type of changes can potentially exert an influence on our understanding of subsurface climate in the top ca. 500 m. This issue is illustrated in control and externally forced climate simulations of the last millennium with the ECHO-G and LOVECLIM models, respectively.

  17. Brine resistance of window materials for a Borehole Televiewer tool

    SciTech Connect

    Arnold, C. Jr.

    1982-02-01

    The Borehole Televiewer is a data logging tool that was developed to inspect boreholes and evaluate geological formations. Window failures were observed after the manufacturer of the tool replaced the elastomeric windows with windows made from polyimide (Vespel), a plastic material noted for its high thermal stability. In this work, it was demonstrated that while Vespel was quite stable thermally at 250/sup 0/C in an inert environment (argon), stress cracking occurred in the presence of brine at these temperatures over a period of 2 to 3 hours. Somewhat longer exposures to brine (24 hours) at 260/sup 0/C and 20.7 MPa resulted in extensive chemical reversion of polyimides. Acids and amines were detected by infrared analysis. In contrast, the mechanical and chemical properties of Teflon (poly(tetrafluorethylene)) were unaffected after exposure to brine under the same conditions. On the basis of these results, it was recommended that acoustic windows for the Borehole Televiewer be made of Teflon. It was also recommended that the configuration of the window be modified to allow for the tendency of Teflon to flow under stress.

  18. Characterization of magnetized ore bodies based on three-component borehole magnetic and directional borehole seismic measurements

    NASA Astrophysics Data System (ADS)

    Virgil, Christopher; Neuhaus, Martin; Hördt, Andreas; Giese, Rüdiger; Krüger, Kay; Jurczyk, Andreas; Juhlin, Christopher; Juhojuntti, Niklas

    2016-04-01

    In the last decades magnetic prospecting using total field data was used with great success for localization and characterization of ferromagnetic ore bodies. Especially borehole magnetic measurements reveal important constraints on the extent and depth of potential mining targets. However, due to the inherent ambiguity of the interpretation of magnetic data, the resulting models of the distribution of magnetized material, such as iron ore bodies, are not entirely reliable. Variations in derived parameters like volume and estimated ore content of the expected body have significant impact on the economic efficiency of a planned mine. An important improvement is the introduction of three-component borehole magnetic sondes. Modern tools comprise orientation modules which allow the continuous determination of the tool's heading regardless of the well inclination and independent of the magnetic field. Using the heading information the recorded three-component magnetic data can be transferred from the internal tool's frame to the geographic reference frame. The vector information yields a more detailed and reliable description of the ore bodies compared to total field or horizontal and vertical field data. Nevertheless complementary information to constrain the model is still advisable. The most important supplementary information for the interpretation of magnetic data is the knowledge of the structural environment of the target regions. By discriminating dissimilar rock units, a geometrical starting model can be derived, constraining the magnetic interpretation and leading to a more robust estimation of the rock magnetizations distribution. The most common approach to reveal the lithological setting rests upon seismic measurements. However, for deep drilling targets surface seismic and VSP lack the required spatial resolution of 10s of meters. A better resolution is achieved by using directed sources and receivers inside the borehole. Here we present the application of

  19. Third Party Borehole Seismic Experiments During the Ocean Drilling Program

    NASA Astrophysics Data System (ADS)

    Swift, S. A.; Stephen, R. A.; Hoskins, H.; Bolmer, T.

    2003-12-01

    Third party borehole seismic experiments on the Ocean Drilling Program began with an oblique seismic experiment on Leg 102 at Site 418 in the Western Atlantic. Upper ocean crust here is characterized by a normal seismic layer 2 vertical velocity gradient, lateral velocity variations, azimuthal anisotropy, and azimuth dependent scattering. A normal incidence VSP was run on Leg 118 in the gabbro sequence at Hole 735B on the Southwest Indian Ridge. The vertical seismic velocity inferred from arrival times is similar to that observed horizontally by refraction in ocean layer 3, but attenuation is anomalously high, which prompted the hypothesis that the gabbro cored may not actually represent the bulk of Layer 3 material. The VSP data acquired at Hole 504B in the eastern equatorial Pacific on Legs 111 and 148 helped to constrain the P and S velocity structure at the site and showed that upper layer 3 at this site, at a depth of over 2 km into the crust, consisted of the lower portion of the sheeted dikes rather than gabbro. Both offset and normal incidence VSPs were run on Leg 164 to study the seismic velocity structure of gas hydrates on the Blake Ridge. A new innovation on ODP was the deployment of broadband seismometers in boreholes. Whereas the conventional VSPs and offset VSPs mentioned above operate in the frequency range from 1 to 100Hz, broadband seismometers are used in earthquake seismology and operate in the range from 0.001 to 10Hz. The first broadband seismometer test was carried out from the drill ship on Leg 128 in the Japan Sea. Subsequently 4 permanent broadband borehole seismic observatories were installed in the Western Pacific and Japan Trench on Legs 186, 191 and 195. The ODP era also saw the development of systems for re-entering boreholes from conventional research vessels after the drill ship left the site. Borehole seismic experiments and installations that used this wireline re-entry technology were carried out in DSDP Holes 534 (Blake

  20. Anisotropy-induced coupling in borehole acoustic modes

    NASA Astrophysics Data System (ADS)

    Norris, Andrew N.; Sinha, Bikash K.

    1996-07-01

    The guided wave modes of a circular borehole in a weakly anisotropic formation are composed of linear superpositions of the associated modes for an isotropic formation. At moderate frequencies the major modes of concern are the quasi-Stoneley and quasi-flexural modes. These guided modes in anisotropic formations can be estimated from a perturbation analysis in terms of the unperturbed solutions for an isotropic formation. When the formation anisotropy is of monoclinic or lower symmetry, the normal and shear stresses become functions of both normal and shear strains through some additional anisotropic constants that are not present in materials with orthorhombic or higher symmetry. These additional elastic constants cause a coupling between the Stoneley and flexural modes. Under these circumstances, an on-axis monopole or dipole source excites both modes. Coupling coefficients account for the excitation of quasi-flexural motion by a monopole source, and of the quasi-Stoneley mode by a dipole. A transversely isotropic (TI) formation with its symmetry axis obliquely inclined with the borehole exhibits monoclinic symmetry in its rotated constants referred to the borehole axis. The monoclinic symmetry of the surrounding formation in such cases causes a coupling between the Stoneley and flexural modes. Computational results show that a borehole inclined at an angle of 60° from the symmetry axis of Austin chalk, a slow TI medium, exhibits coupling between the Stoneley and qSV-polarized flexural mode acceleration amplitudes of the order of 20 dB or less in the frequency range of interest. A similar obliquely inclined borehole in Bakken shale, a fast TI formation, exhibits a far weaker coupling between the Stoneley and qSV-polarized flexural modes. The stronger coupling in the case of Austin chalk is a result of relatively large anisotropic constants together with close proximity of the Stoneley and qSV-polarized flexural dispersions. On the other hand, weaker coupling in

  1. Soil organic carbon sequestration as affected by afforestation: the Darab Kola forest (north of Iran) case study.

    PubMed

    Kooch, Yahya; Hosseini, Seyed Mohsen; Zaccone, Claudio; Jalilvand, Hamid; Hojjati, Seyed Mohammad

    2012-09-01

    Following the ratification of the Kyoto Protocol, afforestation of formerly arable lands and/or degraded areas has been acknowledged as a land-use change contributing to the mitigation of increasing atmospheric CO(2) concentration in the atmosphere. In the present work, we study the soil organic carbon sequestration (SOCS) in 21 year old stands of maple (Acer velutinum Bioss.), oak (Quercus castaneifolia C.A. Mey.), and red pine (Pinus brutia Ten.) in the Darab Kola region, north of Iran. Soil samples were collected at four different depths (0-10, 10-20, 20-30, and 30-40 cm), and characterized with respect to bulk density, water content, electrical conductivity, pH, texture, lime content, total organic C, total N, and earthworm density and biomass. Data showed that afforested stands significantly affected soil characteristics, also raising SOCS phenomena, with values of 163.3, 120.6, and 102.1 Mg C ha(-1) for red pine, oak and maple stands, respectively, vs. 83.0 Mg C ha(-1) for the control region. Even if the dynamics of organic matter (OM) in soil is very complex and affected by several pedo-climatic factors, a stepwise regression method indicates that SOCS values in the studied area could be predicted using the following parameters, i.e., sand, clay, lime, and total N contents, and C/N ratio. In particular, although the chemical and physical stabilization capacity of organic C by soil is believed to be mainly governed by clay content, regression analysis showed a positive correlation between SOCS and sand (R = 0.86(**)), whereas a negative correlation with clay (R = -0.77(**)) was observed, thus suggesting that most of this organic C occurs as particulate OM instead of mineral-associated OM. Although the proposed models do not take into account possible changes due to natural and anthropogenic processes, they represent a simple way that could be used to evaluate and/or monitor the potential of each forest plantation in immobilizing organic C in soil (thus

  2. Method and apparatus for coupling seismic sensors to a borehole wall

    DOEpatents

    West, Phillip B.

    2005-03-15

    A method and apparatus suitable for coupling seismic or other downhole sensors to a borehole wall in high temperature and pressure environments. In one embodiment, one or more metal bellows mounted to a sensor module are inflated to clamp the sensor module within the borehole and couple an associated seismic sensor to a borehole wall. Once the sensing operation is complete, the bellows are deflated and the sensor module is unclamped by deflation of the metal bellows. In a further embodiment, a magnetic drive pump in a pump module is used to supply fluid pressure for inflating the metal bellows using borehole fluid or fluid from a reservoir. The pump includes a magnetic drive motor configured with a rotor assembly to be exposed to borehole fluid pressure including a rotatable armature for driving an impeller and an associated coil under control of electronics isolated from borehole pressure.

  3. Method of correlating a core sample with its original position in a borehole

    SciTech Connect

    Vinegar, H. J.; Wellington, S. L.

    1985-09-24

    A method of correlating a core sample with its original position in a borehole. The borehole is logged to determine the bulk density of the formation surrounding the borehole. The core sample is scanned with a computerized axial tomographic scanner (CAT) to determine the attenuation coefficients at a plurality of points in a plurality of cross sections along the core sample. The bulk density log is then compared with the attenuation coefficients to determine the position to which the core sample correlates in the borehole. Alternatively, the borehole can be logged to determine the photoelectric absorption of the formation surrounding the borehole, and this log can be compared with data derived from scanning the core sample with a CAT at two different energy levels.

  4. Kolaviron, Biflavonoid Complex from the Seed of Garcinia kola Attenuated Angiotensin II- and Lypopolysaccharide-induced Vascular Smooth Muscle Cell Proliferation and Nitric Oxide Production

    PubMed Central

    Oyagbemi, Ademola Adetokunbo; Omobowale, Temidayo Olutayo; Adedapo, Adeolu Alex; Yakubu, Momoh Audu

    2016-01-01

    Introduction: Kolaviron (KV), a biflavonoid extract from Garcinia kola seeds has been reported to possess anti-inflammatory, anti-oxidant, hepato-protective, cardio-protective, nephro-protective and other arrays of chemopreventive capabilities but the mechanism of action is still not completely understood. Materials and Methods: In this study, we investigated the anti-proliferative, anti-inflammatory and anti-oxidative potential of KV in cultured Vascular Smooth Muscle Cells (VSMCs). Effects of KV (25-100 μg/mL) on VSMC proliferation alone or following treatments with mitogen and proinflammatory agents Angiotensin II (Ag II, 10-6 M) and lipopolysaccharide (LPS, 100 μg/mL) and effects on NO production were determined. Cellular proliferations were determined by MTT assay, nitric oxide (NO) level was determined by Griess assay. KV dose-and time dependently attenuated VSMC growth. Results: Treatment of VSMCs with Ag II and LPS significantly enhanced proliferation of the cell which was significantly attenuated by the treatment with KV. Treatment of VSMC with LPS significantly increased nitric oxide (NO) level in the media which was attenuated by KV. These results demonstrated anti-proliferative anti-inflammatory properties of KV as it clearly inhibited cellular proliferation induced by mitogens as well as LPS-induced inflammatory processes. Conclusion: Therefore, KV may mitigate cardiovascular conditions that involve cell proliferation, free radical generation and inflammatory processes such as hypertension, diabetes and stroke. However, the molecular mechanism of action of KV needs to be investigated. SUMMARY Angiotensin-induced cell proliferationKolaviron mitigates angiotensin-induced cell proliferationKolaviron ameliorates nitric oxide productionKolaviron offers antioxidant activity. Abbreviations Used: VSMCs: Vascular Smooth Muscle Cells, Ag II: Angiotensin II, KV: Kolaviron, LPS: lypopolysaccharide, NO: Nitric Oxide, DMEM: Dulbecco's modified Eagle's medium, MTT

  5. Borehole Geophysical Logging Program: Incorporating New and Existing Techniques in Hydrologic Studies

    USGS Publications Warehouse

    Wacker, Michael A.; Cunningham, Kevin J.

    2008-01-01

    The borehole geophysical logging program at the U.S. Geological Survey (USGS)-Florida Integrated Science Center (FISC) provides subsurface information needed to resolve geologic, hydrologic, and environmental issues in Florida. The program includes the acquisition, processing, display, interpretation, and archiving of borehole geophysical logs. The borehole geophysical logging program is a critical component of many FISC investigations, including hydrogeologic framework studies, aquifer flow-zone characterization, and freshwater-saltwater interface delineation.

  6. A strategy to seal exploratory boreholes in unsaturated tuff; Yucca Mountain Site Characterization Project

    SciTech Connect

    Fernandez, J.A.; Case, J.B.; Givens, C.A.; Carney, B.C.

    1994-04-01

    This report presents a strategy for sealing exploratory boreholes associated with the Yucca Mountain Site Characterization Project. Over 500 existing and proposed boreholes have been considered in the development of this strategy, ranging from shallow (penetrating into alluvium only) to deep (penetrating into the groundwater table). Among the comprehensive list of recommendations are the following: Those boreholes within the potential repository boundary and penetrating through the potential repository horizon are the most significant boreholes from a performance standpoint and should be sealed. Shallow boreholes are comparatively insignificant and require only nominal sealing. The primary areas in which to place seals are away from high-temperature zones at a distance from the potential repository horizon in the Paintbrush nonwelded tuff and the upper portion of the Topopah Spring Member and in the tuffaceous beds of the Calico Hills Unit. Seals should be placed prior to waste emplacement. Performance goals for borehole seals both above and below the potential repository are proposed. Detailed construction information on the boreholes that could be used for future design specifications is provided along with a description of the environmental setting, i.e., the geology, hydrology, and the in situ and thermal stress states. A borehole classification scheme based on the condition of the borehole wall in different tuffaceous units is also proposed. In addition, calculations are presented to assess the significance of the boreholes acting as preferential pathways for the release of radionuclides. Design calculations are presented to answer the concerns of when, where, and how to seal. As part of the strategy development, available technologies to seal exploratory boreholes (including casing removal, borehole wall reconditioning, and seal emplacement) are reviewed.

  7. Challenges and opportunities for fractured rock imaging using 3D cross-borehole electrical resistivity

    SciTech Connect

    Robinson, Judith; Johnson, Timothy C.; Slater, Lee D.

    2015-02-02

    There is an increasing need to characterize discrete fractures away from boreholes to better define fracture distributions and monitor solute transport. We performed a 3D evaluation of static and time-lapse cross-borehole electrical resistivity tomography (ERT) data sets from a limestone quarry in which flow and transport are controlled by a bedding-plane feature. Ten boreholes were discretized using an unstructured tetrahedral mesh, and 2D panel measurements were inverted for a 3D distribution of conductivity. We evaluated the benefits of 3D versus 2.5D inversion of ERT data in fractured rock while including the use of borehole regularization disconnects (BRDs) and borehole conductivity constraints. High-conductivity halos (inversion artifacts) surrounding boreholes were removed in static images when BRDs and borehole conductivity constraints were implemented. Furthermore, applying these constraints focused transient changes in conductivity resulting from solute transport on the bedding plane, providing a more physically reasonable model for conductivity changes associated with solute transport at this fractured rock site. Assuming bedding-plane continuity between fractures identified in borehole televiewer data, we discretized a planar region between six boreholes and applied a fracture regularization disconnect (FRD). Although the FRD appropriately focused conductivity changes on the bedding plane, the conductivity distribution within the discretized fracture was nonunique and dependent on the starting homogeneous model conductivity. Synthetic studies performed to better explain field observations showed that inaccurate electrode locations in boreholes resulted in low-conductivity halos surrounding borehole locations. These synthetic studies also showed that the recovery of the true conductivity within an FRD depended on the conductivity contrast between the host rock and fractures. Our findings revealed that the potential exists to improve imaging of fractured

  8. Condensed listing of surface boreholes at the Waste Isolation Pilot Plant Project through 31 December 1995

    SciTech Connect

    Hill, L.R.; Aguilar, R.; Mercer, J.W.; Newman, G.

    1997-01-01

    This report contains a condensed listing of Waste Isolation Pilot Plant (WIPP) project surface boreholes drilled for the purpose of site selection and characterization through 31 December 1995. The US Department of Energy (DOE) sponsored the drilling activities, which were conducted primarily by Sandia National Laboratories. The listing provides physical attributes such as location (township, range, section, and state-plane coordinates), elevation, and total borehole depth, as well as the purpose for the borehole, drilling dates, and information about extracted cores. The report also presents the hole status (plugged, testing, monitoring, etc.) and includes salient findings and references. Maps with borehole locations and times-of-drilling charts are included.

  9. In-situ borehole seismic monitoring of injected CO2 at the FrioSite

    SciTech Connect

    Daley, Thomas M.; Korneev, Valeri A.

    2006-06-01

    The U.S. Dept. of Energy funded Frio Brine Pilot provided an opportunity to test borehole seismic monitoring techniques in a saline formation in southeast Texas. A relatively small amount of CO{sub 2} was injected (about 1600 tons) into a thin injection interval (about 6 m thick at 1500 m depth). Designed tests included time-lapse vertical seismic profile (VSP) and crosswell surveys which investigated the detectability of CO{sub 2} with surface-to-borehole and borehole-to-borehole measurement.

  10. Flow modeling and permeability estimation using borehole flow logs in heterogeneous fractured formations

    USGS Publications Warehouse

    Paillet, Frederick L.

    1998-01-01

    A numerical model of flow in the vicinity of a borehole is used to analyze flowmeter data obtained with high-resolution flowmeters. The model is designed to (1) precisely compute flow in a borehole, (2) approximate the effects of flow in surrounding aquifers on the measured borehole flow, (3) allow for an arbitrary number (N) of entry/exit points connected to M < N far-field aquifers, and (4) be consistent with the practical limitations of flowmeter measurements such as limits of resolution, typical measurement error, and finite measurement periods. The model is used in three modes: (1) a quasi-steady pumping mode where there is no ambient flow, (2) a steady flow mode where ambient differences in far-field water levels drive flow between fracture zones in the borehole, and (3) a cross-borehole test mode where pumping in an adjacent borehole drives flow in the observation borehole. The model gives estimates of transmissivity for any number of fractures in steady or quasi-steady flow experiments that agree with straddle-packer test data. Field examples show how these cross-borehole-type curves can be used to estimate the storage coefficient of fractures and bedding planes and to determine whether fractures intersecting a borehole at different locations are hydraulically connected in the surrounding rock mass.

  11. A numerical investigation of head waves and leaky modes in fluid- filled boreholes.

    USGS Publications Warehouse

    Paillet, Frederick L.; Cheng, C.H.

    1986-01-01

    Although synthetic borehole seismograms can be computed for a wide range of borehole conditions, the physical nature of shear and compressional head waves in fluid-filled boreholes is poorly understood. Presents a series of numerical experiments designed to explain the physical mechanisms controlling head-wave propagation in boreholes. These calculations demonstrate the existence of compressional normal modes equivalent to shear normal modes, or pseudo-Rayleigh waves, with sequential cutoff frequencies spaced between the cutoff frequencies for the shear normal modes.-from Authors

  12. Borehole Breakouts in Berea Sandstone Reveal a New Fracture Mechanism

    NASA Astrophysics Data System (ADS)

    Haimson, B. C.

    - Vertical drilling experiments in high-porosity (22% and 25%) Berea sandstone subjected to critical true triaxial far-field stresses, in which σH (maximum horizontal stress) >σv (vertical stress) >σh (least horizontal stress), revealed a new and non-dilatant failure mechanism that results in thin and very long tabular borehole breakouts that have the appearance of fractures, and which counterintuitively develop orthogonally to σH. These breakouts are fundamentally different from those induced in crystalline rocks, as well as limestones and medium-porosity Berea sandstone. Breakouts in these rocks are typically dog-eared in shape, a result of dilatant multi-cracking tangential to the hole and subparallel to the maximum far-field horizontal stress σH, followed by progressive buckling and shearing of detached rock flakes created by the cracks. In the high-porosity sandstone a narrow layer of grains compacted normal to σH is observed just ahead of the breakout tip. This layer is nearly identical to ``compaction bands'' observed in the field. It is suggested that when a critical tangential stress concentration is reached along the σh spring line at the borehole wall, grain bonding breaks down and a compaction band is formed normal to σH. Debonded loose grains are expelled into the borehole, assisted by the circulating drilling fluid. As the breakout tip advances, the stress concentration ahead of it persists or may even increase, extending the compaction band, which in turn leads to breakout lengthening.

  13. One Year of Data of Scimpi Borehole Measurements

    NASA Astrophysics Data System (ADS)

    Insua, T. L.; Moran, K.; Kulin, I.; Farrington, S.; Newman, J. B.; Riedel, M.; Scherwath, M.; Heesemann, M.; Pirenne, B.; Iturrino, G. J.; Masterson, W.; Furman, C.

    2014-12-01

    The Simple Cabled Instrument for Measuring Parameters In-Situ (SCIMPI) is a new subseafloor observatory designed to study dynamic processes in the subseabed using a simple and low-cost approach compared to a Circulation Obviation Retrofit Kit (CORK). SCIMPI was successfully installed at the Integrated Ocean Drilling Program (IODP) Site U1416 during IODP Expedition 341S in May 2013. SCIMPI is designed to measure pore pressure, temperature and electrical resistivity over time in a borehole. The first SCIMPI prototype comprises nine modules joined in a single array by flexible cables. Multiple floats keep the system taut against a sinker bar weight located on SCIMPI and resting on the bottom of the borehole. All the modules record temperature and electrical resistivity, and three are also equipped with pressure sensors. Currently, SCIMPI operates as an autonomous instrument with a data logger that is recovered using an ROV. The second recovery of the SCIMPI data logger took place during the Ocean Networks Canada maintenance cruise, Wiring the Abyss 2014, on May 25th, 2014. The pressure sensor data show a stable trend in which tidal effects are observed in through the one year deployment. The temperature measurements in all the modules became stable over time with smaller variations over the last several months. The only temperature sensor differing from this trend is the shallowest, located at 8 meters below seafloor. This module shows a sudden spike of ~20°C that on April 5th, 2014, an event that was repeated several times from April 25th until recovery of modules. The electrical resistivity sensors show variations over time that could be related to gas hydrate dynamics at the Site. Interpretation of these data is speculative at this time but borehole-sealing processes as well as the formation of gas hydrate are potential processes influencing the recordings. SCIMPI will soon be connected to Ocean Networks Canada's NEPTUNE observatory at Clayoquot Slope node to

  14. Ceramic Borehole Seals for Nuclear Waste Disposal Applications

    NASA Astrophysics Data System (ADS)

    Lowry, B.; Coates, K.; Wohletz, K.; Dunn, S.; Patera, E.; Duguid, A.; Arnold, B.; Zyvoloski, G.; Groven, L.; Kuramyssova, K.

    2015-12-01

    Sealing plugs are critical features of the deep borehole system design. They serve as structural platforms to bear the weight of the backfill column, and as seals through their low fluid permeability and bond to the borehole or casing wall. High hydrostatic and lithostatic pressures, high mineral content water, and elevated temperature due to the waste packages and geothermal gradient challenge the long term performance of seal materials. Deep borehole nuclear waste disposal faces the added requirement of assuring performance for thousands of years in large boreholes, requiring very long term chemical and physical stability. A high performance plug system is being developed which capitalizes on the energy of solid phase reactions to form a ceramic plug in-situ. Thermites are a family of self-oxidized metal/oxide reactions with very high energy content and the ability to react under water. When combined with engineered additives the product exhibits attractive structural, sealing, and corrosion properties. In the initial phase of this research, exploratory and scaled tests demonstrated formulations that achieved controlled, fine grained, homogeneous, net shape plugs composed predominantly of ceramic material. Laboratory experiments produced plug cores with confined fluid permeability as low as 100 mDarcy, compressive strength as high as 70 MPa (three times the strength of conventional well cement), with the inherent corrosion resistance and service temperature of ceramic matrices. Numerical thermal and thermal/structural analyses predicted the in-situ thermal performance of the reacted plugs, showing that they cooled to ambient temperature (and design strength) within 24 to 48 hours. The current development effort is refining the reactant formulations to achieve desired performance characteristics, developing the system design and emplacement processes to be compatible with conventional well service practices, and understanding the thermal, fluid, and structural

  15. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect

    Erik C. Westman

    2002-08-01

    This report describes the technical progress on a project to design and construct a multi-channel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method for clamping the sensor once it is emplaced in the borehole. If the sensors (geophones) are not adequately coupled to the surrounding rock mass, the resulting data will be of very poor quality. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  16. 24 CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect

    Erik C. Westman

    2003-06-01

    This report describes the technical progress on a project to design and construct a multichannel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method for clamping the sensor once it is emplaced in the borehole. If the sensors (geophones) are not adequately coupled to the surrounding rock mass, the resulting data will be of very poor quality. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  17. Subsurface structure around Omi basin using borehole database

    NASA Astrophysics Data System (ADS)

    Kitada, N.; Ito, H.; Takemura, K.; Mitamura, M.

    2015-12-01

    Kansai Geo-informatics Network (KG-NET) is organized as a new system of management of GI-base in 2005. This organization collects the geotechnical and geological information of borehole data more than 60,000 data. GI-base is the database system of the KG-NET and platform to use these borehole data. Kansai Geo-informatics Research Committee (KG-R) is tried to explain the geotechnical properties and geological environment using borehole database in Kansai area. In 2014, KG-R established the 'Shin-Kansai Jiban Omi plain', and explain the subsurface geology and characteristics of geotechnical properties. In this study we introduce this result and consider the sedimental environment and characteristics in this area. Omi Basin is located in the central part of Shiga Prefecture which includes the largest lake in Japan called Lake Biwa. About 15,000 borehole data are corrected to consider the subsurface properties. The outline of topographical and geological characteristics of the basin is divided into west side and east side. The west side area is typical reverse fault called Biwako-Seigan fault zone along the lakefront. From Biwako-Seigan fault, the Omi basin is tilting down from east to west. Otherwise, the east areas distribute lowland and hilly area comparatively. The sedimentary facies are also complicate and difficult to be generally evaluated. So the discussion has been focused about mainly the eastern and western part of Lake Biwa. The widely dispersed volcanic ash named Aira-Tn (AT) deposited before 26,000-29,000 years ago (Machida and Arai, 2003), is sometimes interbedded the humic layers in the low level ground area. However, because most of the sediments are comprised by thick sand and gravels whose deposit age could not be investigated, it is difficult to widely identify the boundary of strata. Three types of basement rocks are distributed mainly (granite, sediment rock, rhyolite), and characteristics of deposit are difference of each backland basement rock

  18. Method and apparatus for detecting and evaluating borehole wall fractures

    SciTech Connect

    Danbury, K.H.; Brie, A.; Plumb, R.A.

    1989-09-26

    This patent describes a method for forming a display log of an acoustic investigation of an earth formation penetrated by a borehole with a tool which generates sonic pulses and produces different receiver waveforms respectively representative of sonic waves passed through a common interval alongside the tool. It comprises: measuring from the different waveforms values of a parameter that is representative of a characteristic of the earths formation; assigning predetermined lateral display log position for the parameter values measured from waveforms attributable to a common interval; and recording the parameter values on the display log.

  19. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect

    Erik C. Westman

    2002-07-01

    This report describes the technical progress on a project to design and construct a multi-channel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method for clamping the sensor once it is emplaced in the borehole. If the sensors (geophones) are not adequately coupled to the surrounding rock mass, the resulting data will be of very poor quality. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  20. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect

    Erik C. Westman

    2002-07-01

    This report describes the technical progress on a project to design and construct a multi-channel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method for orienting the sensor once it is emplaced in the borehole. If the sensors (geophones) do not have the same orientation, the data will be essentially worthless. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  1. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect

    Erik C. Westman

    2003-01-01

    This report describes the technical progress on a project to design and construct a multichannel geophone array that improves tomographic imaging capabilities in both surface and underground mines. Especially important in the design of the array is sensor placement. One issue related to sensor placement is addressed in this report: the method for clamping the sensor once it is emplaced in the borehole. If the sensors (geophones) are not adequately coupled to the surrounding rock mass, the resulting data will be of very poor quality. Improved imaging capabilities will produce energy, environmental, and economic benefits by increasing exploration accuracy and reducing operating costs.

  2. Free Oscillations of the Earth Observed by Closed Borehole Wells

    NASA Astrophysics Data System (ADS)

    Yanagidani, T.; Kano, Y.

    2007-12-01

    We have made observations of pore pressure under undrained condition by an airtight borehole penetrating an artesian, or a confined aquifer in the Atotsu tunnel excavated in the Kamioka Mine, central Japan. We confirmed that the relation between pore pressure change and stress change is a zero-order system for a wide range of frequency and that stress change, strictly speaking strain change, induced within the rock mass shared by the skeletal framework of rock and pore fluid. Examining the pore pressure measured using closed borehole wells, we detected free oscillations of the Earth excited by earthquakes such as the 26 December 2004 Mw = 9.1 Sumatra-Andaman Islands earthquake (epicentral distance Δ= 51.1°) and other M7 to 8 events. We made a Fourier analysis of the pore pressure record produced by the earthquakes. We examined (1) whether the closed borehole has sufficient sensitivity to identify free oscillations, and (2) how the closed borehole responds to spheroidal modes and troidal modes. The poroelastic theory predicts that pore pressure should respond only to spheroidal modes since pore pressure change is proportional to volumetric strain change. No pore pressure response is expected from shear strain that is produced by troidal modes. However, it is controversial whether pore pressure responds to shear strain, since phases corresponding S- and Love waves have been usually detected on hydroseismograms. We calculated the spectrum of the 24 hours time windows (86400 points) with shifting the time window by 1 hour from 24 hours before the origin time of the event to 24 hours after that. The spectrum peaks correspond to entire fundamental spheroidal modes were clearly observed. The Q of each mode is calculated by fitting the decay of the amplitude of each peak. The peaks whose eigenfrequencies are less than 1 mHz (0S0, 0S2, 0S3, 0S4, and 0S5) clearly appear 5 hours after the event. On the other hand, no spectrum peak corresponding troidal modes was observed

  3. Reversible rigid coupling apparatus and method for borehole seismic transducers

    SciTech Connect

    Owen, T.E.; Parra, J.O.

    1992-01-14

    This patent describes a seismic detector for high resolution reverse vertical seismic profile measurements when placed in a shallow borehole in a geological formation of interest that contains a seismic source and connected to a seismograph. It comprises a framework; accelerometer sensors for X, Y, and Z axis, means for electrically connecting the accelerometers to the seismograph to record seismic waves received by the accelerometer sensors form the seismic source; heating elements secured to, but electrically insulated from, the framework; power means for supplying power to the heating elements; and meltable substance encapsulating the seismic detector.

  4. Analysis of evaporation in nuclear waste boreholes in unsaturated tuff

    SciTech Connect

    Zhou, W.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.L.

    1993-12-31

    We present an analysis of evaporation in a nuclear waste borehole in unsaturated tuff. In unsaturated tuff, water in contact with a waste container will evaporate due to the difference in vapor pressure between water in a flat film and water held in rock pores with curved interfaces. Decay heat will also enhance evaporation. It is important to study evaporation in a potential geologic repository of nuclear waste in unsaturated rock because the corrosion of waste containers is increased with liquid water. For radionuclides other than gaseous ones, their release from waste solids requires liquid water.

  5. Geochronology of the Archaean Kolmozero-Voron'ya Greenstone Belt: U-Pb dating of zircon, titanite, tourmaline and tantalite (Kola Region, North-Eastern BAltic Shield)

    NASA Astrophysics Data System (ADS)

    Kudryashov, N.; Gavrilenko, B.; Apanasevich, E.

    2003-04-01

    The Archaean Kolmozero-Voron’ya greenstone belt is one of the most ancient geological structures of the Kola Peninsula. It is located between Upper Archaean terrains: Murmansk, Central Kola and Keivy. Within the Kolmozero-Voron'ya greenstone belt there are rare metal (Li, Cs with accessory Nb, Ta, and Be), Cu, Mo, and Au deposits. All rocks were metamorphosed under amphibolite facies conditions and intruded by granodiorites, plagiomicrocline and tourmaline granites and pegmatite veins. Four suites are distinguished within the belt: lower terrigenous formation, komatiite-tholeite, basalt-andesite-dacite and upper terrigenous formation. The U-Pb age of 2925±6 Ma on magmatic zircon was obtained for leucogabbro of differentiated gabbro-anorthosite massif Patchemvarak, situated at the boundary between volcanic-sedimentary units and granitoids of the Murmansk block. This age is the oldest for gabbro-anorthosites of the Kola Peninsula. Sm-Nd age of komatiites is ca. 2.87 Ga (Vrevsky, 1996). U-Pb age of zircon from biotite schist, which belongs to acid volcanites is 2865+/-5 Ma. Quartz porphyries, which are considered to be an intrusive vein analogous of acid volcanites has an age of 2828+/-8 Ma, that marks the final stage of the belt development. Dating of titanite from ovoid plagioamphibolites yielded an U-Pb age of 2595+/-20 Ma that probably is connected with the closure of the U-Pb isotopic titanite system during the regional metamorphism. The Porosozero granodioritic complex with an age of 2733+/-6 Ma is located between granites of the Murmansk domain, migmatites and gneisses of the Central Kola terrain and the Keivy alkaline granites. Tourmaline granites are found all over the Kolmozero-Voron’ya belt occurring among volcanogenic-sedimentary rocks of the belt. Their Pb-Pb age of 2520+/-70 Ma appears to denote the tourmaline crystallization at a post-magmatic stage of the complex formation. U-Pb zircon age from rare metal pegmatites is 1.9-1.8 Ga. Zircons from

  6. Transformation of the chemical composition of the waters of small lakes on Kola Peninsula owing to a decrease in technogenic air pollution and to climate warming

    NASA Astrophysics Data System (ADS)

    Moiseenko, T. I.; Bazova, M. M.; Efimova, L. E.

    2014-05-01

    The emission of sulfur dioxide and metals from copper-nickel melting plants on Kola Peninsula (Russia) decreased pronouncedly over the last two decades. The decrease in the sulfate content and increase in the acid-neutralizing capability of waters were proven on the basis of the data of surveys on 75 small lakes repeated once every five years from 1990 to 2010. The variations of other parameters of the chemical composition of the waters of small lakes depend on the geological and landscape conditions of the formation of waters. The alkalinity and pH values increased in 46% of the lakes; 24% of them showed a further decrease of these parameters; and no reliable changes were traced in 31% of the lakes. The concentrations of Cu and Ni in the lacustrine water decreased 5-to 10-fold over the last two decades.

  7. Late pleistocene and holocene history of the lakes in the Kola Peninsula, Karelia and the North-Western part of the East European plain

    NASA Astrophysics Data System (ADS)

    Davydova, N.; Servant-Vildary, S.

    The paper reviews the work on paleolimnology in parts of the FSU over the last 40 years. It presents a short review of The History of the Lakes of the East European Plain, one of the books of the series The History of Lakes published by the Institute of Lake Research of the Russian Academy of Sciences. It describes the Late Pleistocene and Holocene history of these lakes based mainly on the study of lacustrine sediments. Amongst the samples Lake Nero near Moscow which is located near the marginal zone of the last glaciation, and includes records that go back as early as 190,000 BP. The main elements of lake evolution are shown in different territories: Byelorussia; Baltic countries; Karelia; and the Kola Peninsula. Special attention is given to palaeolimnological data because its use for Holocene and Late Pleistocene palaeoclimate reconstructions.

  8. Identification of the AntiListerial Constituents in Partially Purified Column Chromatography Fractions of Garcinia kola Seeds and Their Interactions with Standard Antibiotics

    PubMed Central

    Penduka, D.; Buwa, L.; Mayekiso, B.; Basson, A. K.; Okoh, A. I.

    2014-01-01

    Partially purified fractions of the n-hexane extract of Garcinia kola seeds were obtained through column chromatography and their constituents were identified through the use of gas chromatography coupled to mass spectrometry (GC-MS). Three fractions were obtained by elution with benzene as the mobile phase and silica gel 60 as the stationery phase and these were named Benz1, Benz2, and Benz3 in the order of their elution. The antiListerial activities of these fractions were assessed through MIC determination and only Benz2 and Benz3 were found to be active with MIC's ranging from 0.625 to 2.5 mg/mL. The results of the GC-MS analysis showed Benz2 to have 9 compounds whilst Benz3 had 7 compounds, with the major compounds in both fractions being 9,19-Cyclolanost-24-en-3-ol, (3.β.) and 9,19-Cyclolanostan-3-ol,24-methylene-, (3.β.). The Benz2 fraction was found to have mainly indifferent interactions with ampicillin and penicillin G whilst mainly additive interactions were observed with ciprofloxacin. The Benz3 fraction's interactions were found to be 50% synergistic with penicillin G and 25% synergistic with ciprofloxacin and ampicillin. A commercially available 9,19-Cyclolanost-24-en-3-ol, (3.β.) was found not to exhibit any antiListerial activities at maximum test concentrations of 5 mg/mL, suggesting that the compound could be acting in synergy with the other compounds in the eluted fractions of Garcinia kola seeds. PMID:24527056

  9. Identification of the AntiListerial Constituents in Partially Purified Column Chromatography Fractions of Garcinia kola Seeds and Their Interactions with Standard Antibiotics.

    PubMed

    Penduka, D; Buwa, L; Mayekiso, B; Basson, A K; Okoh, A I

    2014-01-01

    Partially purified fractions of the n-hexane extract of Garcinia kola seeds were obtained through column chromatography and their constituents were identified through the use of gas chromatography coupled to mass spectrometry (GC-MS). Three fractions were obtained by elution with benzene as the mobile phase and silica gel 60 as the stationery phase and these were named Benz1, Benz2, and Benz3 in the order of their elution. The antiListerial activities of these fractions were assessed through MIC determination and only Benz2 and Benz3 were found to be active with MIC's ranging from 0.625 to 2.5 mg/mL. The results of the GC-MS analysis showed Benz2 to have 9 compounds whilst Benz3 had 7 compounds, with the major compounds in both fractions being 9,19-Cyclolanost-24-en-3-ol, (3. β .) and 9,19-Cyclolanostan-3-ol,24-methylene-, (3. β .). The Benz2 fraction was found to have mainly indifferent interactions with ampicillin and penicillin G whilst mainly additive interactions were observed with ciprofloxacin. The Benz3 fraction's interactions were found to be 50% synergistic with penicillin G and 25% synergistic with ciprofloxacin and ampicillin. A commercially available 9,19-Cyclolanost-24-en-3-ol, (3. β .) was found not to exhibit any antiListerial activities at maximum test concentrations of 5 mg/mL, suggesting that the compound could be acting in synergy with the other compounds in the eluted fractions of Garcinia kola seeds. PMID:24527056

  10. The features of element concentration in natural waters of the Kola North in conditions of environmental contamination

    NASA Astrophysics Data System (ADS)

    Bazova, Mariya; Moiseenko, Tatyana

    2016-04-01

    The intensive use of fossil fuels and industrial development in last century led to the formation of acid rain and water acidification. The problem of water acidification greatly was denoted in the middle of last century in North America and in Europe as a result of air emissions of acid gases, primarily sulfur dioxide. The process of water acidification due to the interaction of two factors: 1) the high deposition of acidifying substances, taking into account the duration of exposure; 2) the sensitivity of the natural catchment area of geological, landscape, geographic and climatic characteristics (Moiseenko, 2005). The effects of acid rains on metal migration and cycling were discussed in a number of previous studies (Jeffries, 1997; Moiseenko, 1999; Manio, 2001; Moiseenko, Gashkina, 2007). The distribution of elements in water lakes has been mixed and due to the change of geochemical cycles of elements occurring in the catchment area and in water. On the Kola Peninsula as a result of long-term operation of the copper-nickel smelter was the anthropogenic acidification and water pollution metals. Increased contents of elements due to the combined effect of three factors: 1) landscape-geochemical characteristics of watersheds; 2) dispersion with flue emissions; 3) leaching elements and bonding of metals with organic matter, especially in forested watersheds and wetlands. This region is subject to long-term effects of mining and smelting industries, and therefore difficult to find of water bodies, which can serve as a background lakes. It is proved that manmade acid rain lead to leach into the water of a large group of elements entering the water as a result of man-made streams, as well as the elements that consist of the rocks forming the watersheds. In order to identify the relationships between the components of the elemental composition of the water in the lake was made a factor analysis using a computer program «STATISTICA 10". Factor analysis revealed the

  11. Uranium-lead dating of perovskite from the Afrikanda plutonic complex (Kola Peninsula, Russia) using LA-ICP-MS.

    NASA Astrophysics Data System (ADS)

    Reguir, E.; Camacho, A.; Yang, P.; Chakhmouradian, A. R.; Halden, N. M.

    2009-04-01

    ) The application of laser ablation-inductively coupled plasma-mass spectrometry to in situ U-Pb zircon geochronology. Chem. Geol.,211, 47-69. Kramm, U., Kogarko, L.N., Kononova, V.A. and Vartiainen, H. (1993) The Kola alkaline province of the CIS and Finland. Lithos, 30, 33-44. Tera, F. and Wasserburg, G.J. (1972) U-Th-Pb systematics in three Apollo 14 basalts and the problem of initial Pb in lunar rocks. Earth Planet. Sci. Lett., 14, 281-304.

  12. Kyanoxalite, a new cancrinite-group mineral species with extraframework oxalate anion from the Lovozero alkaline pluton, Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Chukanov, N. V.; Pekov, I. V.; Olysych, L. V.; Massa, W.; Yakubovich, O. V.; Zadov, A. E.; Rastsvetaeva, R. K.; Vigasina, M. F.

    2010-12-01

    Kyanoxalite, a new member of the cancrinite group, has been identified in hydrothermally altered hyperalkaline rocks and pegmatites of the Lovozero alkaline pluton, Kola Peninsula, Russia. It was found at Mount Karnasurt (holotype) in association with nepheline, aegirine, sodalite, nosean, albite, lomonosovite, murmanite, fluorapatite, loparite, and natrolite and at Mt. Alluaiv. Kyanoxalite is transparent, ranging in color from bright light blue, greenish light blue and grayish light blue to colorless. The new mineral is brittle, with a perfect cleavage parallel to (100). Mohs hardness is 5-5.5. The measured and calculated densitiesare 2.30(1) and 2.327 g/cm3, respectively. Kyanoxalite is uniaxial, negative, ω = 1.794(1), ɛ = 1.491(1). It is pleochroic from colorless along E to light blue along O. The IR spectrum indicates the presence of oxalate anions C2O{4/2-} and water molecules in the absence of CO{3/2-} Oxalate ions are confirmed by anion chromatography. The chemical composition (electron microprobe; water was determined by a modified Penfield method and carbon was determined by selective sorption from annealing products) is as follows, wt %: 19.70 Na2O, 1.92 K2O, 0.17 CaO, 27.41 Al2O3, 38.68 SiO2, 0.64 P2O5, 1.05 SO3, 3.23 C2O3, 8.42 H2O; the total is 101.18. The empirical formula (Z = 1) is (Na6.45K0.41Ca0.03)Σ6.89(Si6.53Al5.46O24)[(C2O4)0.455(SO4)0.13(PO4)0.09(OH)0.01]Σ0.68 · 4.74H2O. The idealized formula is Na7(Al5-6Si6-7O24)(C2O4)0.5-1 · 5H2O. Kyanoxalite is hexagonal, the space group is P63, a = 12.744(8), c = 5.213(6) -ray powder diffraction pattern are as follows, [ d, [A] ( I, %)( hkl)]: 6.39(44) (110), 4.73 (92) (101), 3.679 (72) (300), 3.264 (100) (211, 121), 2.760 (29) (400), 2.618 (36) (002), 2.216, (29) (302, 330). According to the X-ray single crystal study ( R = 0.033), two independent C2O4 groups statistically occupy the sites on the axis 63. The new mineral is the first natural silicate with an additional organic anion and is the most

  13. Reversible rigid coupling apparatus and method for borehole seismic transducers

    DOEpatents

    Owen, Thomas E.; Parra, Jorge O.

    1992-01-01

    An apparatus and method of high resolution reverse vertical seismic profile (VSP) measurements is shown. By encapsulating the seismic detector and heaters in a meltable substance (such as wax), the seismic detector can be removably secured in a borehole in a manner capable of measuring high resolution signals in the 100 to 1000 hertz range and higher. The meltable substance is selected to match the overall density of the detector package with the underground formation, yet still have relatively low melting point and rigid enough to transmit vibrations to accelerometers in the seismic detector. To minimize voids in the meltable substance upon solidification, the meltable substance is selected for minimum shrinkage, yet still having the other desirable characteristics. Heaters are arranged in the meltable substance in such a manner to allow the lowermost portion of the meltable substance to cool and solidify first. Solidification continues upwards from bottom-to-top until the top of the meltable substance is solidified and the seismic detector is ready for use. To remove, the heaters melt the meltable substance and the detector package is pulled from the borehole.

  14. Resolving the Younger Dryas Event Through Borehole Thermometry

    NASA Astrophysics Data System (ADS)

    Firestone, John Francis

    One of the most striking features of the ice core records from Greenland is a sudden drop in oxygen isotope values (delta O-18) between approximately 11,500 and 10,700 years ago. This Younger Dryas event was an intense return to ice age conditions during a time of general de-glaciation. As recorded in the ice cores, temperatures in Greenland cooled by roughly seven degrees Kelvin. W. Broecker and R. Fairbanks have proposed competing explanations for the cooling and cause of this "aborted ice age." One supposes that the seven degree cooling is real and results from a shutdown in the North Atlantic ocean circulation; the other, that it is largely fictitious and records an intrusion of isotopically light glacial meltwater into the ice core records. Using optimal control methods and heat flow modelling, the author makes a valiant but ultimately futile attempt to distinguish the Younger Dryas event in the ice sheet temperatures measured at Dye 3, South Greenland. The author discusses the prospects for attempting the same in the new Summit boreholes in Central Greenland: how that will require more accurate temperature measurements, a coupled thermo-mechanical model, and a refined uncertainty analysis. He concludes by discussing how borehole temperature analysis may improve the climate histories determined from ice cores.

  15. Borehole measurement of NMR characteristics of earth formations

    SciTech Connect

    Kleinberger, R.L.; Griffin, D.D.; Fukuhara, M.; Sezginer, A.

    1991-10-08

    This paper describes an apparatus for investigating a characteristic of earth formation traversed by a borehole, comprising a body adapted for longitudinal movement in the borehole. It comprises: first means for producing a static and substantially homogeneous magnetic field in a volume of the formation directed to one side of the body; second means for radiating the volume of formation with oscillating magnetic fields and for detecting signals representative of nuclear magnetic precession of a population of particles in the formation, the second means including: antenna means; circuit means for driving the antenna means to produce oscillating magnetic fields at a frequency in the neighborhood of the NMR precession frequency of the population of particles in the volume of the formation; and Q-switching means for rapidly switching the Q value of the antenna means form a very high value to a low value, the Q-switching means comprising a field effect transistor, and optical-electronic means for switching the transistor on and off.

  16. Development of a borehole directional antenna at VHF

    SciTech Connect

    Chang, H.T.; Scott, L.

    1984-03-01

    The feasibility of constructing a directional VHF (30 MH/sub z/ to 300 MH/sub z/) antenna to physically fit into a small borehole is investigated. The study was carried out in a test chamber containing a 15 cm diameter borehole surrounded by sand which can be moistened with water or brine to adjust the dielectric constant and electrical conductivity. Electric field measurements were made for an eccentrically positioned monopole, a corner reflector and a two-element array for a number of possible configurations. Using an eccentric monopole, the best beamwidth obtained was 78/sup 0/ and the front-to-back ratio was 3.5 db. The front-to-back ratio was increased to 8.5 db when two element arrays were arranged in such a way as to provide the optimum radiation pattern. However, the best results were achieved using a corner reflector: 60/sup 0/ beamwidth and 13 db front-to-back ratio. It is concluded that a directional VHF antenna can be designed for downhole application.

  17. Characterization plan for the immobilized low-activity waste borehole

    SciTech Connect

    Reidel, S.P.; Reynolds, K.D.

    1998-03-01

    The US Department of Energy`s (DOE`s) Hanford Site has the most diverse and largest amounts of radioactive tank waste in the US. High-level radioactive waste has been stored at Hanford in large underground tanks since 1944. Approximately 209,000 m{sup 3} (54 Mgal) of waste are currently stored in 177 tanks. Vitrification and onsite disposal of low activity tank waste (LAW) are embodied in the strategy described in the Tri-Party Agreement. The tank waste is to be retrieved, separated into low- and high-level fractions, and then immobilized by private vendors. The DOE will receive the vitrified waste from private vendors and dispose of the low-activity fraction in the Hanford Site 200 East Area. The Immobilized Low-Activity Waste Disposal Complex (ILAWDC) is part of the disposal complex. This report is a plan to drill the first characterization borehole and collect data at the ILAWDC. This plan updates and revises the deep borehole portion of the characterization plan for the ILAWDC by Reidel and others (1995). It describes data collection activities for determining the physical and chemical properties of the vadose zone and the saturated zone at and in the immediate vicinity of the proposed ILAWDC. These properties then will be used to develop a conceptual geohydrologic model of the ILAWDC site in support of the Hanford ILAW Performance Assessment.

  18. Multi-barrier borehole canister designs for a tuff repository

    SciTech Connect

    James, D.E.; Skaggs, R.L.; Mohansingh, S.

    1994-05-01

    Initial dimensions are presented for proposed multi-barrier spent fuel borehole canisters using coated shells combined with sacrificial anodes and alkaline, oxide barriers to adjust potential and pH of the exterior shell into thermodynamically passive or immune regions of the Pourbaix diagram. Configuration of the 3 PWR canister is similar to the 1983 Site Characterization Project (SCP) borehole design. Canister dimensions were determined by using material performance data to calculate wall thickness, criticality, and sacrificial anode life. For the 3-PWR canister. Incoloy 825 is the preferred exterior canister shell material; copper-nickel alloy CDA 715 is the preferred interior canister shell material. High-lime concrete or alumina is preferred for the alkaline filler. Magnesium alloy is the preferred sacrificial anode material. Coating the canister exterior would be necessary to reduce corrosion current density to the point where a 10,000 year design life is possible. A 1 PWR canister has lower mass, thinner walls and lower criticality than the 3 PWR design. Equilibrium calculations for the historical average composition of J-13 water using the aquatic chemical speciation program WQ4F show positive saturation indices for several minerals, indicating potential for deposition on the canister exterior over long time periods. Uniform deposition could reduce corrosion rate by hindering transport of corrosion products from the canister surface. If deposition is non-uniform, local corrosion could increase through development of differential oxygen concentration cells.

  19. Experimental assessment of borehole wall drilling damage in basaltic rocks

    SciTech Connect

    Fuenkajorn, K.; Daemen, J.J.K.

    1986-06-01

    Ring tension tests, permeability tests, and microscopic fracture studies have been performed to investigate the borehole damage induced at low confining pressure by three drilling techniques (diamond, percussion and rotary). Specimens are drilled with three hole sizes (38, 76, and 102 mm diameter) in Pomona basalt and Grande basaltic andesite. The damaged zone is characterized in terms of fractures and fracture patterns around the hole, and in terms of tensile strength reduction of the rock around the holes. Experimental results show that the thickness of the damaged zone around the hole ranges from 0.0 to 1.7 mm. A larger drill bit induces more wall damage than does a smaller one. Different drilling techniques show different damage characteristics (intensity and distribution). Damage characteristics are governed not only by drilling parameters (bit size, weight on bit, rotational speed, diamond radius, and energy), but also by properties of the rock. The weaker rock tends to show more intense damage than does the stronger one. Cracks within grains or cleavage fractures are predominant in slightly coarser grained rock (larger than 0.5 mm grain size) while intergranular cracks are predominant in very fine grained rock (smaller than 0.01 mm grain size). The damaged zones play no significant role in the flow path around a borehole plug.

  20. Interim reclamation report, Basalt Waste Isolation project: Boreholes, 1989

    SciTech Connect

    Brandt, C.A.; Rickard, W.H. Jr.; Hefty, M.G.

    1990-03-01

    In 1968, a program was started to assess the feasibility of storing Hanford Site defense waste in deep caverns constructed in basalt. This program was expanded in 1976 to include investigations of the Hanford Site as a potential location for a mined commercial nuclear waste repository. An extensive site characterization program was begun to determine the feasibility of using the basalts beneath the Hanford Site for the repository. Site research focused primarily on determining the direction and speed of groundwater movement, the uniformity of basalt layers, and tectonic stability. Some 98 boreholes were sited, drilled, deepened, or modified by BWIP between 1977 and 1988 to test the geologic properties of the Site. On December 22, 1987, President Reagan signed into law the Nuclear Waste Policy Amendments Act of 1987, which effectively stopped all repository-related activities except reclamation of disturbed lands at the Hanford Site. This report describes the development of the reclamation program for the BWIP boreholes, its implementation, and preliminary estimates of its success. The goal of the reclamation program is to return sites disturbed by the repository program as nearly as practicable to their original conditions using native plant species. 48 refs., 28 figs., 14 tabs.

  1. Simple, Affordable and Sustainable Borehole Observatories for Complex Monitoring Objectives

    NASA Astrophysics Data System (ADS)

    Kopf, A.; Hammerschmidt, S.; Davis, E.; Saffer, D.; Wheat, G.; LaBonte, A.; Meldrum, R.; Heesemann, M.; Villinger, H.; Freudenthal, T.; Ratmeyer, V.; Renken, J.; Bergenthal, M.; Wefer, G.

    2012-04-01

    Around 20 years ago, the scientific community started to use borehole observatories, so-called CORKs or Circulation Obviation Retrofit Kits, which are installed inside submarine boreholes, and which allow the re-establishment and monitoring of in situ conditions. From the first CORKs which allowed only rudimentary fluid pressure and temperature measurements, the instruments evolved to multi-functional and multi-level subseafloor laboratories, including, for example, long-term fluid sampling devices, in situ microbiological experiments or strainmeter. Nonetheless, most boreholes are still left uninstrumented, which is a major loss for the scientific community. In-stallation of CORKs usually requires a drillship and subsequent ROV assignments for data download and instru-ment maintenance, which is a major logistic and financial effort. Moreover, the increasing complexity of the CORK systems increased not only the expenses but led also to longer installation times and a higher sensitivity of the in-struments to environmental constraints. Here, we present three types of Mini-CORKs, which evolved back to more simple systems yet providing a wide range of possible in situ measurements. As a regional example the Nankai Trough is chosen, where repeated subduction thrust earthquakes with M8+ occurred. The area has been investigated by several drilling campaigns of the DSDP, ODP and IODP, where boreholes were already instrumented by different CORKs. Unfortunately, some of the more complex systems showed incomplete functionality, and moreover, the increased ship time forced IODP to rely on third party funds for the observatories. Consequently, the need for more affordable CORKs arose, which may be satisfied by the systems presented here. The first type, the so-called SmartPlug, provides two pressure transducers and four temperature sensors, and monitors a hydrostatic reference section and an isolated zone of interest. It was already installed at the Nankai Trough accretionary

  2. Tectonic Stress at IODP Site C0002, Nankai, Indicated by Borehole Resistivity Images of Two Boreholes Drilled under Different Annulus Pressures

    NASA Astrophysics Data System (ADS)

    Chang, C.; Song, I.; Lee, H.

    2014-12-01

    We constrain tectonic stresses at IODP Site C0002 in Nankai accretionary prism, SW Japan, using two boreholes drilled under different annular borehole pressures (APRS). The two vertical boreholes (C0002A and C0002F drilled in 2007 and 2012, respectively) are located at the southern margin of Kumano forearc, respectively drilled to depths of 1402 and 2006 mbsf. The two holes were drilled in different drilling modes: riserless drilling for C0002A and riser drilling for C0002F. Both holes were image-logged soon after drill bit penetration using the logging-while-drilling resistivity-at-the-bit tool, from which we detected borehole wall stress indicators (borehole breakouts and drilling-induced tensile fractures (DITFs)). We assume that there should be little difference in tectonic stress between the two drill sites (70 m apart) and between the two time frames (5 years apart). The resistivity images show that the patterns of borehole wall failures are dramatically contrast between the two boreholes, i.e., clear and continuous breakouts and no DITFs in C0002A, whereas intermittent breakouts and DITFs in C0002F, which is due to the difference in APRS between the two holes. Such different APRS and associated distinct borehole wall failure patterns enable us to constrain possible tectonic stress states that can produce observed borehole wall failures for given APRS conditions. Our analysis shows that while the stress states in the forearc sediments are predominantly in favor of normal faulting, those in the deeper accretionary prism are favorable for either strike-slip or reverse faulting although the differential stresses (between least and major horizontal principal stresses) are not significantly large. Throughout the drill depths, the borehole wall failures indicate that the maximum horizontal principal stress direction is NE-SW (perpendicular to subduction direction). However, a series of borehole wall failure zones at 1930-1980 mbsf, if they are breakouts, may

  3. Strengthening borehole configuration from the retaining roadway for greenhouse gas reduction: a case study.

    PubMed

    Xue, Fei; Zhang, Nong; Feng, Xiaowei; Zheng, Xigui; Kan, Jiaguang

    2015-01-01

    A monitoring trial was carried out to investigate the effect of boreholes configuration on the stability and gas production rate. These boreholes were drilled from the retaining roadway at longwall mining panel 1111(1) of the Zhuji Coalmine, in China. A borehole camera exploration device and multiple gas parameter measuring device were adopted to monitor the stability and gas production rate. Research results show that boreholes 1~8 with low intensity and thin casing thickness were broken at the depth of 5~10 m along the casing and with a distance of 2~14 m behind the coal face, while boreholes 9~11 with a special thick-walled high-strength oil casing did not fracture during the whole extraction period. The gas extraction volume is closely related to the boreholes stability. After the stability of boreholes 9~11 being improved, the average gas flow rate increased dramatically 16-fold from 0.13 to 2.21 m3/min, and the maximum gas flow rate reached 4.9 m3/min. Strengthening boreholes configuration is demonstrated to be a good option to improve gas extraction effect. These findings can make a significant contribution to the reduction of greenhouse gas emissions from the coal mining industry. PMID:25633368

  4. Seismoelectric waves in a borehole excited by an external explosive source

    NASA Astrophysics Data System (ADS)

    Zhou, Jiu-Guang; Cui, Zhi-Wen; Lü, Wei-Guo; Zhang, Yu-Jun; Wang, Ke-Xie

    2014-01-01

    The conversion of energy between seismic and electromagnetic wave fields has been described by Pride's coupled equations in porous media. In this paper, the seismoelectric field excited by the explosive point source located at the outside of the borehole is studied. The scattering fields inside and outside a borehole are analyzed and deduced under the boundary conditions at the interface between fluid and porous media. The influences of the distance of the point source, multipole components of the eccentric explosive source, and the receiving position along the axis of vertical borehole, on the converted waves inside the borehole are all investigated. When the distance from the acoustic source to the axis of a borehole is far enough, the longitudinal and coseismic longitudinal wave packets dominate the acoustic and electric field, respectively. The three components of both electric field and magnetic field can be detected, and the radial electric field is mainly excited and converted by the dipole component. Owing to the existence of borehole, the electric fields and magnetic fields in the borehole are azimuthal. The distance from the point where the maximum amplitude of the axial components of electric field is recorded, to the origin of coordinate indicates the horizontal distance from the explosive source to the axis of vertical borehole.

  5. Borehole-to-surface electromagnetic methods -- System design and field examples

    SciTech Connect

    Bartel, L.C.; Wilt, M.J.; Tseng, H.W.

    1995-05-01

    Borehole-to-surface electromagnetic (EM) methods are an attractive alternative to Surface-based EM methods for a variety of environmental and engineering applications. They have improved sensitivity to the subsurface resistivity distribution because of the closer proximity to the area of interest offered by the borehole for the source or the receiver. For the borehole-to-surface measurements the source is in the borehole and the receivers are on the surface. On the other hand, for the surface-to-borehole methods, the source is on the surface and the receiver is in a borehole. The surface-to-borehole method has an added advantage since measurements are often more accurate due to the lower noise environment for the receiver. For these methods, the source can be a grounded electric dipole or a vertical magnetic dipole source. An added benefit of these techniques is field measurements are made using a variety of arrays where the system is tailored to the application and where one can take advantage of some new imaging methods. In this short paper the authors describe the application of the borehole-to-surface method, discuss benefits and shortcomings, and give two field examples where they have been used for underground imaging. The examples were the monitoring of a salt water flooding of an oil well and the characterization of a fuel oil spill.

  6. Immobilized low-activity waste site borehole 299-E17-21

    SciTech Connect

    Reidel, S.P.; Reynolds, K.D.; Horton, D.G.

    1998-08-01

    The Tank Waste Remediation System (TWRS) is the group at the Hanford Site responsible for the safe underground storage of liquid waste from previous Hanford Site operations, the storage and disposal of immobilized tank waste, and closure of underground tanks. The current plan is to dispose of immobilized low-activity tank waste (ILAW) in new facilities in the southcentral part of 200-East Area and in four existing vaults along the east side of 200-East Area. Boreholes 299-E17-21, B8501, and B8502 were drilled at the southwest corner of the ILAW site in support of the Performance Assessment activities for the disposal options. This report summarizes the initial geologic findings, field tests conducted on those boreholes, and ongoing studies. One deep (480 feet) borehole and two shallow (50 feet) boreholes were drilled at the southwest corner of the ILAW site. The primary factor dictating the location of the boreholes was their characterization function with respect to developing the geohydrologic model for the site and satisfying associated Data Quality Objectives. The deep borehole was drilled to characterize subsurface conditions beneath the ILAW site, and two shallow boreholes were drilled to support an ongoing environmental tracer study. The tracer study will supply information to the Performance Assessment. All the boreholes provide data on the vadose zone and saturated zone in a previously uncharacterized area.

  7. Influence of Bedding Angle on Borehole Stability: A Laboratory Investigation of Transverse Isotropic Oil Shale

    NASA Astrophysics Data System (ADS)

    Meier, T.; Rybacki, E.; Backers, T.; Dresen, G.

    2015-07-01

    The stability of wells drilled into bedded formations, e.g., shales, depends on the orientation between the bedding and the borehole axis. If the borehole is drilled sub-parallel to bedding, the risk of borehole instabilities increases significantly. In this study, we examined the formation of stress-induced borehole breakouts in Posidonia shale by performing a series of thick-walled hollow cylinder experiments with varying orientations of the bedding plane with respect to the borehole axis. The thick-walled hollow cylinders (40 mm in diameter and 80 mm in length containing an 8 mm diameter borehole) were loaded isostatically until formation of breakouts. The onset of borehole breakout development was determined by means of acoustic emission activity, strain measurements, ultrasonic velocities and amplitudes. The critical pressure for breakout initiation decreased from 151 MPa by approximately 65 % as the bedding plane inclination changed from normal to parallel to the borehole axis. The finely bedded structure in the shale resulted in an anisotropy in elasticity and strength from which the variation in strength dominated the integrity of the thick-walled hollow cylinders.

  8. 10 CFR 60.134 - Design of seals for shafts and boreholes.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Design of seals for shafts and boreholes. 60.134 Section....134 Design of seals for shafts and boreholes. (a) General design criterion. Seals for shafts and... closure. (b) Selection of materials and placement methods. Materials and placement methods for seals...

  9. 10 CFR 60.134 - Design of seals for shafts and boreholes.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Design of seals for shafts and boreholes. 60.134 Section....134 Design of seals for shafts and boreholes. (a) General design criterion. Seals for shafts and... closure. (b) Selection of materials and placement methods. Materials and placement methods for seals...

  10. 10 CFR 60.134 - Design of seals for shafts and boreholes.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Design of seals for shafts and boreholes. 60.134 Section....134 Design of seals for shafts and boreholes. (a) General design criterion. Seals for shafts and... closure. (b) Selection of materials and placement methods. Materials and placement methods for seals...

  11. 10 CFR 60.134 - Design of seals for shafts and boreholes.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Design of seals for shafts and boreholes. 60.134 Section....134 Design of seals for shafts and boreholes. (a) General design criterion. Seals for shafts and... closure. (b) Selection of materials and placement methods. Materials and placement methods for seals...

  12. 10 CFR 60.134 - Design of seals for shafts and boreholes.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Design of seals for shafts and boreholes. 60.134 Section....134 Design of seals for shafts and boreholes. (a) General design criterion. Seals for shafts and... closure. (b) Selection of materials and placement methods. Materials and placement methods for seals...

  13. 30 CFR 250.907 - Where must I locate foundation boreholes?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false Where must I locate foundation boreholes? 250... Approval Program § 250.907 Where must I locate foundation boreholes? (a) For fixed or bottom-founded platforms and tension leg platforms, your maximum distance from any foundation pile to a soil boring...

  14. 30 CFR 250.907 - Where must I locate foundation boreholes?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 2 2011-07-01 2011-07-01 false Where must I locate foundation boreholes? 250... Platforms and Structures Platform Approval Program § 250.907 Where must I locate foundation boreholes? (a... foundation pile to a soil boring must not exceed 500 feet. (b) For deepwater floating platforms which...

  15. Borehole Miner - Extendible Nozzle Development for Radioactive Waste Dislodging and Retrieval from Underground Storage Tanks

    SciTech Connect

    CW Enderlin; DG Alberts; JA Bamberger; M White

    1998-09-25

    This report summarizes development of borehole-miner extendible-nozzle water-jetting technology for dislodging and retrieving salt cake, sludge} and supernate to remediate underground storage tanks full of radioactive waste. The extendible-nozzle development was based on commercial borehole-miner technology.

  16. Fracture-frequency prediction from borehole wireline logs using artificial neural networks

    SciTech Connect

    FitzGerald, E.M.; Bean, C.J.; Reilly, R.

    1999-11-01

    Borehole-wall imaging is currently the most reliable means of mapping discontinuities within boreholes. As these imaging techniques are expensive and thus not always included in a logging run, a method of predicting fracture frequency directly from traditional logging tool responses would be very useful and cost effective. Artificial neural networks (ANNs) show great potential in this area. ANNs are computational systems that attempt to mimic natural biological neural networks. They have the ability to recognize patterns and develop their own generalizations about a given data set. Neural networks are trained on data sets for which the solution is known and tested on data not previously seen in order to validate the network result. The authors show that artificial neural networks, due to their pattern recognition capabilities, are able to assess the signal strength of fracture-related heterogeneity in a borehole log and thus fracture frequency within a borehole. A combination of wireline logs (neutron porosity, bulk density, P-sonic, S-sonic, deep resistivity and shallow resistivity) were used as input parameters to the ANN. Fracture frequency calculated from borehole televiewer data was used as the single output parameter. The ANN was trained using a back-propagation algorithm with a momentum learning function. In addition to fracture frequency within a single borehole, an ANN trained on a subset of boreholes in an area could be used for prediction over the entire set of boreholes, thus allowing the lateral correlation of fracture zones.

  17. Strengthening Borehole Configuration from the Retaining Roadway for Greenhouse Gas Reduction: A Case Study

    PubMed Central

    Xue, Fei; Zhang, Nong; Feng, Xiaowei; Zheng, Xigui; Kan, Jiaguang

    2015-01-01

    A monitoring trial was carried out to investigate the effect of boreholes configuration on the stability and gas production rate. These boreholes were drilled from the retaining roadway at longwall mining panel 1111(1) of the Zhuji Coalmine, in China. A borehole camera exploration device and multiple gas parameter measuring device were adopted to monitor the stability and gas production rate. Research results show that boreholes 1~8 with low intensity and thin casing thickness were broken at the depth of 5~10 m along the casing and with a distance of 2~14 m behind the coal face, while boreholes 9~11 with a special thick-walled high-strength oil casing did not fracture during the whole extraction period. The gas extraction volume is closely related to the boreholes stability. After the stability of boreholes 9~11 being improved, the average gas flow rate increased dramatically 16-fold from 0.13 to 2.21 m3/min, and the maximum gas flow rate reached 4.9 m3/min. Strengthening boreholes configuration is demonstrated to be a good option to improve gas extraction effect. These findings can make a significant contribution to the reduction of greenhouse gas emissions from the coal mining industry. PMID:25633368

  18. Borehole Geologic Data for the 216-Z Crib Facilities, A Status of Data Assembled through the Hanford Borehole Geologic Information System (HBGIS)

    SciTech Connect

    Last, George V.; Mackley, Rob D.; Lanigan, David C.

    2006-09-25

    The Pacific Northwest National Laboratory (PNNL) is assembling existing borehole geologic information to aid in determining the distribution and potential movement of contaminants released to the environment and to aid selection of remedial alternatives. This information is being assembled via the Hanford Borehole Geologic Information System (HBGIS), which is being developed as part of the Characterization of Systems Project, managed by PNNL, and the Remediation Decision Support Task of the Groundwater Remediation Project, managed by Fluor Hanford, Inc. The purpose of this particular study was to assemble the existing borehole geologic data pertaining to sediments underlying the 216-Z Crib Facilities and the Plutonium Finishing Plant Closure Zone. The primary objective for Fiscal Year 2006 was to assemble the data, complete log plots, and interpret the location of major geologic contacts for each major borehole in and around the primary disposal facilities that received carbon tetrachloride. To date, 154 boreholes located within or immediately adjacent to 19 of the 216-Z crib facilities have been incorporated into HBGIS. Borehole geologic information for the remaining three Z-crib facilities is either lacking (e.g. 216-Z-13, -14, and -15), or has been identified as a lesser priority to be incorporated at a later date.

  19. Borehole geophysical and flowmeter data for eight boreholes in the vicinity of Jim Woodruff Lock and Dam, Lake Seminole, Jackson County, Florida

    USGS Publications Warehouse

    Clarke, John S.; Hamrick, Michael D.; Holloway, O. Gary

    2011-01-01

    Borehole geophysical logs and flowmeter data were collected in April 2011 from eight boreholes to identify the depth and orientation of cavernous zones within the Miocene Tampa Limestone in the vicinity of Jim Woodruff Lock and Dam in Jackson County, Florida. These data are used to assess leakage near the dam. Each of the eight boreholes was terminated in limestone at depths ranging from 84 to 104 feet. Large cavernous zones were encountered in most of the borings, with several exceeding 20-inches in diameter. The cavernous zones generally were between 1 and 5 feet in height, but a cavern in one of the borings reached a height of about 6 feet. The resistivity of limestone layers penetrated by the boreholes generally was less than 1,000 ohm-meters. Formation resistivity near the cavernous zones did not show an appreciable contrast from surrounding bedrock, probably because the bedrock is saturated, owing to its primary permeability. Measured flow rates in the eight boreholes determined using an electromagnetic flowmeter were all less than ±0.1 liter per second. These low flow rates suggest that vertical hydraulic gradients in the boreholes are negligible and that hydraulic head in the various cavernous zones shows only minor, if any, variation.

  20. Decompaction mechanism of deep crystalline rocks under stress relief

    NASA Astrophysics Data System (ADS)

    Gorbatsevich, F. F.

    2003-07-01

    Within a geological massif in a stable geodynamical situation contacts on the grain boundaries in polycrystalline rocks at great depths are continuous and firm. The stress release of those rocks during drilling and excavation to the surface is accompanied by their disintegration (decompaction). The reason for the decompaction is generation of microcracks during stress release due to the difference between the elastic moduli of crystalline grains at their contacts. The mechanism of decompaction may occur not only in polymineral but in polycrystalline rocks as well. The method of decompaction evaluation of deep crystalline rocks under stress relief is presented. According to the calculations the initial manifestation of the decompaction effect in biotite gneisses will occur when they are extracted from the deep range of 0.8-1 km. The first microcracks arise on the grain borders between quartz-biotite and oligoclase-biotite. It is shown that the uplift of gneiss-granite varities of the rocks cut by the Kola superdeep borehole from depths exceeding 13-15 km will be possible in a form of separate mineral grains. Practical importance of the presented method is in an opportunity to evaluate the level of excavated decompaction. The method allow estimating the depth, from which the rock will be extracted only in a sludge form.

  1. Pulsed-wave perturbation in a borehole during the pneumohydraulic method of coal extraction

    SciTech Connect

    Zorin, A.N.; Didenko, A.T.; Kolesnikov, V.G.; Pirich, Y.T.

    1985-05-01

    One recent trend in coal extraction includes methods based on the artificial creation of a blowout-hazard situation, and the use of the phenomenon of blowout for the extraction of coal through boreholes in the form of coal pulp or friable material. The blowout-hazard situation and blowout are produced by the injection into the borehole of liquid and gas under high pressure, with subsequent sharp pressure drop, leading to the generation of demolition waves and the removal of the coal through the borehole. To apply these methods it is necessary to carry out an assessment of the conditions and parameters of the pulsed action on the seam through the borehole, leading to demolition of the coal. The authors study here the conditions of propagation of the pulse generated by the pressure drop, along the gas-liquid column, in the borehole.

  2. Low-frequency radiation from point sources in a fluid-filled borehole.

    USGS Publications Warehouse

    Lee, M.W.

    1986-01-01

    Far-field displacement fields have been derived for an impulsive point force acting on a fluid-filled borehole wall under the assumption that the borehole diameter is small compared to the wavelength involved. The displacements due to an arbitrary source can be computed easily by combining the solutions for the impulsive sources. In general, the borehole source generates not only longitudinal and vertically polarized shear waves, but also horizontally polarized shear waves. This study also indicates that only the axisymmetric motion around the borehole due to normal stress is affected by the fluid in the borehole. In the long-wavelength limit, the presence of the fluid does not affect the radiation from tangential sources into the surrounding medium. -Author

  3. Accurate directional borehole drilling: A case study at Navajo Dam, New Mexico

    SciTech Connect

    Kravits, S.J.; Sainato, A.; Finfinger, G.L.

    1987-01-01

    The project was conducted at Navajo Dam in northern New Mexico at the request of the Bureau of Reclamation. The trajectory of the demonstration borehole was designed to intercept a 5-ft-radius target at the final or ''punchout'' distance of 885 ft. The elevation of the borehole at this distance was within the target; the borehole punchout coordinates were 8.81 ft southwest of the target. As a result of the demonstrated accuracy, the Bureau of Reclamation has contracted the accurate drilling of boreholes as long as 600 ft from the inside of a short tunnel, to control water seepage in the right abutment. This resulted in a substantial cost savings compared to the original plan of constructing a longer tunnel and drilling 150-ft boreholes.

  4. An experimental study of the mechanism of failure of rocks under borehole jack loading

    NASA Technical Reports Server (NTRS)

    Van, T. K.; Goodman, R. E.

    1971-01-01

    Laboratory and field tests with an experimental jack and an NX-borehole jack are reported. The following conclusions were made: Under borehole jack loading, a circular opening in a brittle solid fails by tensile fracturing when the bearing plate width is not too small. Two proposed contact stress distributions can explain the mechanism of tensile fracturing. The contact stress distribution factor is a material property which can be determined experimentally. The borehole tensile strength is larger than the rupture flexural strength. Knowing the magnitude and orientation of the in situ stress field, borehole jack test results can be used to determine the borehole tensile strength. Knowing the orientation of the in situ stress field and the flexural strength of the rock substance, the magnitude of the in situ stress components can be calculated. The detection of very small cracks is essential for the accurate determination of the failure loads which are used in the calculation of strengths and stress components.

  5. Site characterization data from the Area 5 science boreholes, Nevada Test Site, Nye County, Nevada

    SciTech Connect

    Blout, D.O.; Hammermeister, P.; Zukosky, K.A.

    1995-02-01

    The Science Borehole Project consists of eight boreholes that were drilled (from 45.7 m [150 ft] to 83.8 m [275 ft] depth) in Area 5 of the Nevada Test Site, Nye County, Nevada, on behalf of the US Department of Energy. These boreholes are part of the Area 5 Site Characterization Program developed to meet data needs associated with regulatory requirements applicable to the disposal of low-level and mixed waste at this site. This series of boreholes was specifically designed to characterize parameters controlling near-surface gas transport and to monitor changes in these and liquid flow-related parameters over time. These boreholes are located along the four sides of the approximately 2.6-km{sup 2} (1-mi{sup 2}) Area 5 Radioactive Waste Management Site to provide reasonable spatial coverage for sampling and characterization. Laboratory testing results of samples taken from core and drill cuttings are reported.

  6. Device and method for imaging of non-linear and linear properties of formations surrounding a borehole

    SciTech Connect

    Johnson, Paul A; Tencate, James A; Le Bas, Pierre-Yves; Guyer, Robert; Vu, Cung Khac; Skelt, Christopher

    2013-10-08

    In some aspects of the disclosure, a method and an apparatus is disclosed for investigating material surrounding the borehole. The method includes generating within a borehole an intermittent low frequency vibration that propagates as a tube wave longitudinally to the borehole and induces a nonlinear response in one or more features in the material that are substantially perpendicular to a longitudinal axis of the borehole; generating within the borehole a sequence of high frequency pulses directed such that they travel longitudinally to the borehole within the surrounding material; and receiving, at one or more receivers positionable in the borehole, a signal that includes components from the low frequency vibration and the sequence of high frequency pulses during intermittent generation of the low frequency vibration, to investigate the material surrounding the borehole.

  7. Simple, Affordable and Sustainable Borehole Observatories for Complex Monitoring Objectives

    NASA Astrophysics Data System (ADS)

    Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Wefer, G.

    2014-12-01

    Seafloor drill rigs are remotely operated systems that provide a cost effective means to recover sedimentary records of the upper sub-seafloor deposits. Recent increases in their payload included downhole logging tools or autoclave coring systems. We here report on another milestone in using seafloor rigs: The development and installation of shallow borehole observatories. Three different systems have been developed for the MeBo seafloor drill, which is operated by MARUM, Univ. Bremen, Germany. A simple design, the MeBoPLUG, separates the inner borehole from the overlying ocean by using o-ring seals at the conical threads of the drill pipe. The systems are self-contained and include data loggers, batteries, thermistors and a differential pressure sensor. A second design, the so-called MeBoCORK, is more sophisticated and also hosts an acoustic modem for data transfer and, if desired, fluid sampling capability using osmotic pumps. Of these MeBoCORKs, two systems have to be distinguished: The CORK-A (A = autonomous) can be installed by the MeBo alone and monitors pressure and temperature inside and above the borehole (the latter for reference). The CORK-B (B = bottom) has a higher payload and can additionally be equipped with geochemical, biological or other physical components. Owing to its larger size, it is installed by ROV and utilises a hotstab connection in the upper portion of the drill string. Either design relies on a hostab connection from beneath which coiled tubing with a conical drop weight is lowered to couple to the formation. These tubes are fluid-saturated and either serve to transmit pore pressure signals or collect pore water in the osmo-sampler. The third design, the MeBoPUPPI (Pop-Up Pore Pressure Instrument), is similar to the MeBoCORK-A and monitors pore pressure and temperature in a self-contained manner. Instead of transferring data upon command using an acoustic modem, the MeBoPUPPI contains a pop-up telemetry with Iridium link. After a

  8. Preliminary results from hot-water drilling and borehole instrumentation on Store Glacier, West Greenland

    NASA Astrophysics Data System (ADS)

    Doyle, S. H.; Christoffersen, P.; Hubbard, B. P.; Young, T. J.; Hofstede, C. M.; Box, J.; Todd, J.; Bougamont, M. H.; Hubbard, A.

    2015-12-01

    As part of the Subglacial Access and Fast Ice Research Experiment (SAFIRE) pressurised hot water was used to drill four 603-616 m-long boreholes to the bed of the Greenland Ice Sheet at a site located 30 km from the calving front of fast-flowing, marine-terminating Store Glacier (70° N, ~1000 m elevation). Despite the boreholes freezing within hours, 4 wired sensor strings were successfully deployed in three of the boreholes. These included a thermistor string to obtain the englacial temperature profile installed in the same borehole as a string of tilt sensors to measure borehole deformation, and two sets of water pressure, electrical conductivity and turbidity sensors installed just above the bed in separate, adjacent boreholes. The boreholes made a strong hydrological connection to the bed during drilling, draining rapidly to ~80 m below the ice surface. The connection of subsequent boreholes was observed as a perturbation in water pressure and temperature recorded in neighbouring boreholes, indicating an effective hydrological sub- or en-glacial connection between them. The sensors, which were all connected to loggers at the surface by cables, operated for between ~30 and 80+ days before indications suggest that the cables stretched and then snapped - with the lowermost sensors failing first. The records obtained from these sensors reveal (i) high and increasing water pressure varying diurnally close to overburden albeit of a small magnitude (~ 0.3 m H2O), (ii) a minimum extrapolated englacial temperature of -21°C with above-freezing temperatures at the bed, and (iv) high rates of internal deformation and strain increasing towards the bed as evinced by increasing tilt with depth. These borehole observations are complemented by GPS measurements of ice motion, meteorological data, and seismic and radar surveys.

  9. Borehole-plugging-materials development program report 3

    SciTech Connect

    Gulick, C.W. Jr.; Boa, J.A.; Buck, A.D.

    1982-03-01

    This report gives data for up to 4 yr of durability studies of grout mixtures developed for the borehole plugging program of the Nuclear Waste Isolation Pilot Plant (WIPP). Samples from field plugging oprations for the Bell Canyon Test and ERDA-10 drill hole are included in the durability studies. Specimens of all mixtures had phase compositions and microstructures that were considered normal for these mixtures at these ages. All of the specimens of the various grout mixtures (including fresh and salt water) have maintained acceptable physical properties as measured by compressive strength, compressional wave velocity, dynamic modulus of elasticity, and permeability to water. Porosity and expansion data under differing exposure conditions have been collected for continuing study evaluation. The work was performed and is continuing at the Structures Laboratory of the US Army Engineer Waterways Experiment Station (WES), Vicksburg, Mississippi.

  10. Borehole-to-tunnel seismic measurements for monitoring radioactive waste

    NASA Astrophysics Data System (ADS)

    Manukyan, Edgar; Maurer, Hansruedi; Marelli, Stefano; Greenhalgh, Stewart A.; Green, Alan A.

    2010-05-01

    Countries worldwide are seeking solutions for the permanent removal of high-level radioactive waste (HLRW) from the environment. A critical aspect of the disposal process is the need to be confident that the deposited waste is safely isolated from the biosphere. Seismic monitoring represents a potentially powerful option for non-intrusive monitoring. We conducted a series of seismic experiments in the Mont Terri underground rock laboratory, where a 1-m-diameter microtunnel simulates a HLRW repository downsized by a factor of ~2.5. The host rock at the laboratory is Opalinus clay. We had access to two water-filled boreholes, each approximately 25 m long (diameter 85 mm), with one inclined upwards and the other downwards. Both were oriented perpendicular to the microtunnel axis. Seismic signals were generated in the down-dipping borehole with a high frequency P-wave sparker source every 25 cm and received every 25 cm in the upward-dipping borehole on a multi-channel hydrophone chain. Additionally, the seismic waves were recorded on eight (100 Hz natural frequency) vertical-component geophones, mounted and distributed around the circumference of the microtunnel wall within the plane of the boreholes. The experiment was repeated with different material filling the microtunnel and under different physical conditions. So far, six experiments have been performed when the microtunnel was: a. air-filled with a dry excavation damage zone (EDZ), b. dry sand-filled with a dry EDZ, c. 50 % water-saturated sand-filled with partially water-saturated EDZ (experiments were conducted immediately after half water-saturation), d. water-saturated sand-filled with partially water-saturated EDZ (immediately after full water-saturation), e. water-saturated sand-filled with water-saturated EDZ (water was in the microtunnel for about 9.5 months), and f. water-saturated sand-filled and pressurized to 6 bars with water-saturated EDZ. The results of our seismic experiments yield several

  11. Elastic wave scattering to characterize heterogeneities in the borehole environment

    NASA Astrophysics Data System (ADS)

    Tang, Xiao-Ming; Li, Zhen; Hei, Chuang; Su, Yuan-Da

    2016-04-01

    Scattering due to small-scale heterogeneities in the rock formation surrounding a wellbore can significantly change the acoustic waveform from a logging measurement which in turn can be used to characterize the formation heterogeneities. This study simulates the elastic heterogeneity scattering in monopole and dipole acoustic logging and analyse the resulting effects on the waveforms. The results show that significant coda waves are generated in both monopole and dipole waveforms and the dipole coda is dominated by S-to-S scattering, which can be effectively utilized to diagnose the heterogeneity in the rock formation. The coda wave modelling and analysis were used to characterize dipole acoustic data logged before and after fracturing a reservoir interval, with significant coda wave in the after-fracturing data indicating fracturing-induced heterogeneous property change in the rock volume surrounding the borehole.

  12. Exploring the oceanic crust deep biosphere through subsurface borehole observatories

    NASA Astrophysics Data System (ADS)

    Orcutt, Beth

    2015-04-01

    During Integrated Ocean Drilling Program Expeditions 327 and 336, several new subsurface borehole observatories were installed in oceanic crust, with a primary motivation to access the deep biosphere in these poorly understood environments. These new observatories have enabled unprecedented opportunities to collect high-quality samples for microbiological analysis, including metagenomic and single cell genomic investigations of the unique microbial communities living "on the rocks." This presentation will provide an overview of recent discoveries, focusing on the observatories on the Juan de Fuca Ridge flank and highlighting adaptations to life in the subsurface gleaned from genomic approaches. The presentation will also highlight opportunities for continued observatory-based research within the International Ocean Discovery Program.

  13. COSC-1 technical operations: drilling and borehole completion

    NASA Astrophysics Data System (ADS)

    Rosberg, Jan-Erik; Bjelm, Leif; Larsson, Stellan; Juhlin, Christopher; Lorenz, Henning; Almqvist, Bjarne

    2015-04-01

    COSC-1, the first out of the two planned fully cored boreholes within the COSC-project, was completed in late August 2014. Drilling was performed using the national scientific drilling infrastructure, the so called Riksriggen, operated by Lund University, and resulted in a 2495.8 m deep borehole with almost 100 % core recovery. The rig is an Atlas Copco CT20C diamond core-drill rig, a rig type commonly used for mineral exploration. A major advantage with this type of drill rig compared to conventional rotary rigs is that it can operate on very small drill sites. Thus, it leaves a small environmental footprint, in this case around 1000 m2. The rig was operated by 3 persons over 12 hour shifts. Before the core drilling started a local drilling company installed a conductor casing down to 103 m, which was required for the installation of a Blow Out Preventer (BOP). The core drilling operation started using H-size and a triple tube core barrel (HQ3), resulting in a hole diameter of 96 mm and a core diameter of 61.1 mm down to 1616 m. In general, the drilling using HQ3 was successful with 100 % core recovery and core was acquired at rate on the order 30-60 m/day when the drilling wasn't interrupted by other activities, such as bit change, servicing or testing. The HRQ-drill string was installed as a temporary casing from surface down to 1616 m. Subsequently, drilling was conducted down to 1709 m with N-size and a triple tube core barrel (NQ3), resulting in a hole diameter of 75.7 mm and a core diameter of 45 mm. At 1709 m the coring assembly was changed to N-size double tube core barrel (NQ), resulting in a hole diameter of 75.7 mm and a core diameter of 47.6 mm and the core barrel extended to 6 m. In this way precious time was saved and the good rock quality ensured high core recovery even with the double tube. In general, the drilling using NQ3 and NQ was successful with 100 % core recovery at around 36 m/day by the end of the drilling operation. The main problem

  14. Analysis of Borehole-Radar Reflection Data from Machiasport, Maine, December 2003

    USGS Publications Warehouse

    Johnson, Carole D.; Joesten, Peter K.

    2005-01-01

    In December 2003, the U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, collected borehole-radar reflection logs in two boreholes in Machiasport, Maine. These bedrock boreholes were drilled as part of a hydrogeologic investigation of the area surrounding the former Air Force Radar Tracking Station site on Howard Mountain near Bucks Harbor. The boreholes, MW09 and MW10, are located approximately 50 meters (m) from, and at the site of, respectively, the locations of former buildings where trichloroethylene was used as part of defense-site operations. These areas are thought to be potential source areas for contamination that has been detected in downgradient bedrock wells. This investigation focused on testing borehole-radar methods at this site. Single-hole radar-reflection surveys were used to identify the depth, orientation, and spatial continuity of reflectors that intersect and surround the boreholes. In addition, the methods were used to (1) identify the radial depth of penetration of the radar waves in the electrically resistive bimodal volcanic formation at the site, (2) provide information for locating additional boreholes at the site, and (3) test the potential applications of borehole-radar methods for further aquifer characterization and (or) evaluation of source-area remediation efforts. Borehole-radar reflection logging uses a pair of downhole transmitting and receiving antennas to record the reflected wave amplitude and transit time of high-frequency electromagnetic waves. For this investigation, 60- and 100-megahertz antennas were used. The electromagnetic waves emitted by the transmitter penetrate into the formation surrounding the borehole and are reflected off of a material with different electromagnetic properties, such as a fracture or change in rock type. Single-hole directional radar surveys indicate the bedrock surrounding these boreholes is highly fractured, because several reflectors were identified in the radar

  15. OSL-thermochronometry of feldspar from the KTB borehole, Germany

    NASA Astrophysics Data System (ADS)

    Guralnik, Benny; Jain, Mayank; Herman, Frédéric; Ankjærgaard, Christina; Murray, Andrew S.; Valla, Pierre G.; Preusser, Frank; King, Georgina E.; Chen, Reuven; Lowick, Sally E.; Kook, Myungho; Rhodes, Edward J.

    2015-08-01

    The reconstruction of thermal histories of rocks (thermochronometry) is a fundamental tool both in Earth science and in geological exploration. However, few methods are currently capable of resolving the low-temperature thermal evolution of the upper ∼2 km of the Earth's crust. Here we introduce a new thermochronometer based on the infrared stimulated luminescence (IRSL) from feldspar, and validate the extrapolation of its response to artificial radiation and heat in the laboratory to natural environmental conditions. Specifically, we present a new detailed Na-feldspar IRSL thermochronology from a well-documented thermally-stable crustal environment at the German Continental Deep Drilling Program (KTB). There, the natural luminescence of Na-feldspar extracted from twelve borehole samples (0.1-2.3 km depth, corresponding to 10-70 °C) can be either (i) predicted within uncertainties from the current geothermal gradient, or (ii) inverted into a geothermal palaeogradient of 29 ± 2 °C km-1, integrating natural thermal conditions over the last ∼65 ka. The demonstrated ability to invert a depth-luminescence dataset into a meaningful geothermal palaeogradient opens new venues for reconstructing recent ambient temperatures of the shallow crust (<0.3 Ma, 40-70 °C range), or for studying equally recent and rapid transient cooling in active orogens (<0.3 Ma, >200 °C Ma-1 range). Although Na-feldspar IRSL is prone to field saturation in colder or slower environments, the method's primary relevance appears to be for borehole and tunnel studies, where it may offer remarkably recent (<0.3 Ma) information on the thermal structure and history of hydrothermal fields, nuclear waste repositories and hydrocarbon reservoirs.

  16. Completion summary for borehole USGS 136 near the Advanced Test Reactor Complex, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Twining, Brian V.; Bartholomay, Roy C.; Hodges, Mary K.V.

    2012-01-01

    In 2011, the U.S. Geological Survey, in cooperation with the U.S. Department of Energy, cored and completed borehole USGS 136 for stratigraphic framework analyses and long-term groundwater monitoring of the eastern Snake River Plain aquifer at the Idaho National Laboratory. The borehole was initially cored to a depth of 1,048 feet (ft) below land surface (BLS) to collect core, open-borehole water samples, and geophysical data. After these data were collected, borehole USGS 136 was cemented and backfilled between 560 and 1,048 ft BLS. The final construction of borehole USGS 136 required that the borehole be reamed to allow for installation of 6-inch (in.) diameter carbon-steel casing and 5-in. diameter stainless-steel screen; the screened monitoring interval was completed between 500 and 551 ft BLS. A dedicated pump and water-level access line were placed to allow for aquifer testing, for collecting periodic water samples, and for measuring water levels. Geophysical and borehole video logs were collected after coring and after the completion of the monitor well. Geophysical logs were examined in conjunction with the borehole core to describe borehole lithology and to identify primary flow paths for groundwater, which occur in intervals of fractured and vesicular basalt. A single-well aquifer test was used to define hydraulic characteristics for borehole USGS 136 in the eastern Snake River Plain aquifer. Specific-capacity, transmissivity, and hydraulic conductivity from the aquifer test were at least 975 gallons per minute per foot, 1.4 × 105 feet squared per day (ft2/d), and 254 feet per day, respectively. The amount of measureable drawdown during the aquifer test was about 0.02 ft. The transmissivity for borehole USGS 136 was in the range of values determined from previous aquifer tests conducted in other wells near the Advanced Test Reactor Complex: 9.5 × 103 to 1.9 × 105 ft2/d. Water samples were analyzed for cations, anions, metals, nutrients, total organic

  17. Use of Digital Elevation Models to understand map landforms and history of the magmatism Khibiny Massif (Kola Peninsula, Russia)

    NASA Astrophysics Data System (ADS)

    Chesalova, Elena; Asavin, Alex

    2016-04-01

    most intense free gas emission. The technical possibilities that are offered by Remote Sensing (RS) and Geographical Information Systems (GIS) facilitate the geomorphological investigation of inhospitable and inaccessible mountain areas Digital Elevation Models (DEMs) are valuable tools for approximation of the real world's continuous surface. They allow a visual analysis of the earth's surface morphology, quanti?cation of sediment volumes and the calculation of topographic derivatives such as the slope gradient, slope aspect and pro?le curvature that consume ?eld investigations and optimize time The project has been sponsored by programmm Presidium of RAS P44. Reference Ivanyuk G, Kalashnikov A, Mikhailova J, Konoplyova N, Goryainov P, Yakovenchuk V, Pakhomovsky Y. Self-Organization of the Khibiny Alkaline Massif (Kola Peninsula, Russia). In Earth Sciences, Dr. Imran Ahmad Dar(Ed.), ISBN: 978-953-307-861-8, InTech, Available from: http://www.intechopen.com/books/earth-sciences/self-organization-of-the-khibiny-alkaline -massif -kolapeninsula-russia INTECH Open Access Publisher; 2012, Head7, P.131-156.

  18. Stress-induced borehole elongation: A comparison between the four-arm dipmeter and the borehole televiewer in the Auburn geothermal well

    SciTech Connect

    Plumb, R.A.; Hickman, S.H.

    1985-06-10

    The nature and origin of borehole elongation recorded by the four-arm dipmeter calipers is studied utilizing information obtained from hydraulic fracturing stress measurements and borehole televiewer data taken in a well located in Auburn, New York. A preferred orientation N10/sup 0/W-S10/sup 0/E, +- 10/sup 0/ and a less prominant E-W orientation of borehole elongation, was observed on two runs of the dipmeter. Comparisons of borehole geometry determined using the televiewer and the dipmeter show that both tools give the same orientation of borehole elongation provided that the zone of elongation is longer than 30 cm. Comparisons of dipmeter caliper data with orientation of in situ stress and natural fractures, obtained from hydrofracturing tests and televiewer data show that the N10/sup 0/W-S10/sup 0/E borehole elongations (1) are axisymmetric, (2) are aligned with the minimum horizontal stress S/sub h/, and (3) are not associated with natural fractures intersecting the well. These elongations are interpreted as stress-induced well bore breakouts. The E-W elongation direction is characterized by an asymmetric borehole cross section in thinly bedded rocks and is not caused by breakouts. This asymmetric geometry can be discriminated from breakouts using the oriented electric measurements provided by the dipmeter. This study demonstrates that the dipmeter can be used to determine the orientation of S/sub h/ (by mapping breakouts), confirming the results of earlier less detailed studies, and provides a firm basis for mapping regional stress patterns using existing dipmeter data.

  19. Thermal-mechanical modeling of deep borehole disposal of high-level radioactive waste.

    SciTech Connect

    Arnold, Bill Walter; Hadgu, Teklu

    2010-12-01

    Disposal of high-level radioactive waste, including spent nuclear fuel, in deep (3 to 5 km) boreholes is a potential option for safely isolating these wastes from the surface and near-surface environment. Existing drilling technology permits reliable and cost-effective construction of such deep boreholes. Conditions favorable for deep borehole disposal in crystalline basement rocks, including low permeability, high salinity, and geochemically reducing conditions, exist at depth in many locations, particularly in geologically stable continental regions. Isolation of waste depends, in part, on the effectiveness of borehole seals and potential alteration of permeability in the disturbed host rock surrounding the borehole. Coupled thermal-mechanical-hydrologic processes induced by heat from the radioactive waste may impact the disturbed zone near the borehole and borehole wall stability. Numerical simulations of the coupled thermal-mechanical response in the host rock surrounding the borehole were conducted with three software codes or combinations of software codes. Software codes used in the simulations were FEHM, JAS3D, Aria, and Adagio. Simulations were conducted for disposal of spent nuclear fuel assemblies and for the higher heat output of vitrified waste from the reprocessing of fuel. Simulations were also conducted for both isotropic and anisotropic ambient horizontal stress in the host rock. Physical, thermal, and mechanical properties representative of granite host rock at a depth of 4 km were used in the models. Simulation results indicate peak temperature increases at the borehole wall of about 30 C and 180 C for disposal of fuel assemblies and vitrified waste, respectively. Peak temperatures near the borehole occur within about 10 years and decline rapidly within a few hundred years and with distance. The host rock near the borehole is placed under additional compression. Peak mechanical stress is increased by about 15 MPa (above the assumed ambient

  20. Thermal-Mechanical Modeling of Deep Borehole Disposal of High-Level Radioactive Waste

    NASA Astrophysics Data System (ADS)

    Arnold, B. W.; Clayton, D. J.; Herrick, C. G.; Hadgu, T.

    2010-12-01

    Disposal of high-level radioactive waste, including spent nuclear fuel, in deep (3 to 5 km) boreholes is a potential option for safely isolating these wastes from the surface and near-surface environment. Existing drilling technology permits reliable and cost-effective construction of such deep boreholes. Conditions favorable for deep borehole disposal in crystalline basement rocks, including low permeability, high salinity, and geochemically reducing conditions, exist at depth in many locations, particularly in geologically stable continental regions. Isolation of waste depends, in part, on the effectiveness of borehole seals and potential alteration of permeability in the disturbed host rock surrounding the borehole. Coupled thermal-mechanical-hydrologic processes induced by heat from the radioactive waste may impact the disturbed zone near the borehole and borehole wall stability. Numerical simulations of the coupled thermal-mechanical response in the host rock surrounding the borehole were conducted with three software codes or combinations of software codes. Software codes used in the simulations were FEHM, JAS3D, Aria, and Adagio. Simulations were conducted for disposal of spent nuclear fuel assemblies and for the higher heat output of vitrified waste from the reprocessing of fuel. Simulations were also conducted for both isotropic and anisotropic ambient horizontal stress in the host rock. Physical, thermal, and mechanical properties representative of granite host rock at a depth of 4 km were used in the models. Simulation results indicate peak temperature increases at the borehole wall of about 30 °C and 180 °C for disposal of fuel assemblies and vitrified waste, respectively. Peak temperatures near the borehole occur within about 10 years and decline rapidly within a few hundred years and with distance. The host rock near the borehole is placed under additional compression. Peak mechanical stress is increased by about 15 MPa (above the assumed ambient

  1. Room Q data report: Test borehole data from April 1989 through November 1991

    SciTech Connect

    Jensen, A.L.; Howard, C.L.

    1993-03-01

    Pore-pressure and fluid-flow tests were performed in 15 boreholes drilled into the bedded evaporites of the Salado Formation from within the Waste Isolation Pilot Plant (WIPP). The tests measured fluid flow and pore pressure within the Salado. The boreholes were drilled into the previously undisturbed host rock around a proposed cylindrical test room, Room Q, located on the west side of the facility about 655 m below ground surface. The boreholes were about 23 m deep and ranged over 27.5 m of stratigraphy. They were completed and instrumented before excavation of Room Q. Tests were conducted in isolated zones at the end of each borehole. Three groups of 5 isolated zones extend above, below, and to the north of Room Q at increasing distances from the room axis. Measurements recorded before, during, and after the mining of the circular test room provided data about borehole closure, pressure, temperature, and brine seepage into the isolated zones. The effects of the circular excavation were recorded. This data report presents the data collected from the borehole test zones between April 25, 1989 and November 25, 1991. The report also describes test development, test equipment, and borehole drilling operations.

  2. Method and apparatus for investigating stand-off in a borehole

    SciTech Connect

    Ekstrom, M.P.; Havira, R.M.

    1987-09-08

    A method is described for investigating an earth formation penetrated by a borehole with a tool having a segment which is provided with a laterally extending array of small current emitting electrodes arranged to make resistivity measurements. A contiguous lateral area of the borehole is investigated as the tool segment, while being pressed towards the borehole wall, is operatively moved along the borehole wall. The electrodes are sized to enable a high resolution resistivity investigation of the earth formation with a resolution of the order of millimeters, comprising the steps of: generating high resolution beams of acoustic energy in the form of pulses and directing these at segments of the borehole wall from places that are from at least laterally separated places that are generally in vertical alignment with the array of electrodes and are pressed with the array towards the borehole wall; detecting at the places acoustic reflections originating from the borehole wall segments and caused by the pulses of acoustic energy; and deriving from the detected acoustic reflections acoustic travel times indicative of the magnitude of tool standoff at the places as well as lateral tool lift-off at the array of electrodes with an accuracy and resolution sufficient to resolve, in the resistivity measurements, ambiguities attributable to stand-off, and vertical and lateral tool tilt.

  3. Groundwater flow characterization in a fractured bedrock aquifer using active DTS tests in sealed boreholes

    NASA Astrophysics Data System (ADS)

    Coleman, Thomas I.; Parker, Beth L.; Maldaner, Carlos H.; Mondanos, Michael J.

    2015-09-01

    In recent years, wireline temperature profiling methods have evolved to offer new insight into fractured rock hydrogeology. Important advances in wireline temperature logging in boreholes make use of active line source heating alone and then in combination with temporary borehole sealing with flexible impervious fabric liners to eliminate the effects of borehole cross-connection and recreate natural flow conditions. Here, a characterization technique was developed based on combining fiber optic distributed temperature sensing (DTS) with active heating within boreholes sealed with flexible borehole liners. DTS systems provide a temperature profiling method that offers significantly enhanced temporal resolution when compared with conventional wireline trolling-based techniques that obtain a temperature-depth profile every few hours. The ability to rapidly and continuously collect temperature profiles can better our understanding of transient processes, allowing for improved identification of hydraulically active fractures and determination of relative rates of groundwater flow. The advantage of a sealed borehole environment for DTS-based investigations is demonstrated through a comparison of DTS data from open and lined conditions for the same borehole. Evidence for many depth-discrete active groundwater flow features under natural gradient conditions using active DTS heat pulse testing is presented along with high resolution geologic and geophysical logging and hydraulic datasets. Implications for field implementation are discussed.

  4. Experimental studies of electrokinetic conversions in fluid-saturated borehole models

    SciTech Connect

    Zhu, Z.; Haartsen, M.W.; Toksoez, M.N.

    1999-10-01

    Experimental and theoretical studies show that there are electromagnetic (EM) fields generated by seismic waves with two kinds of conversion mechanisms in a fluid-saturated, porous medium. Within a homogeneous formation, the seismic wave generates a seismoelectric field that exists only in the area disturbed by the seismic wave and whose apparent velocity is that of the seismic wave. At an interface between differing formation properties, the generated seismoelectric wave is a propagating EM wave that can be detected everywhere, An electrode, used as a receiver on the ground surface, can detect the propagating EM wave generated at an interface, but cannot detect the seismoelectric field generated in a homogeneous formation. When the electrode is in a borehole and close to a porous formation, it can detect both the EM waves and the seismoelectric field. In this paper, electrokinetic measurements are performed with borehole models made of natural rocks or artificial materials. Experimental results show that the Stoneley wave and other acoustic modes, excited by a monopole source in the borehole models, generate seismoelectric fields in fluid-saturated formations. The electric components of the seismoelectric fields can be detected by an electrode in the borehole or on the borehole wall. The amplitude and frequency of the seismoelectric fields are related not only to the seismic wave, but also to formation properties such as permeability, conductivity, etc. Comparison between the waveforms of the seismoelectric signals and acoustic logging waves suggests that seismoelectric well logging may explore the different properties of the formation. Electroseismic measurements are also performed with these borehole models. The electric pulse through the electrode in the borehole or on the borehole wall induces Stoneley waves in fluid-saturated models that can be received by a monopole transducer in the same borehole. These measurement methods (seismoelectric logging or

  5. Summary Report of Geophysical Logging For The Seismic Boreholes Project at the Hanford Site Waste Treatment Plant.

    SciTech Connect

    Gardner, Martin G.; Price, Randall K.

    2007-02-01

    During the period of June through October 2006, three deep boreholes and one corehole were drilled beneath the site of the Waste Treatment Plant (WTP) at the U.S. Department of Energy (DOE) Hanford Site near Richland, Washington. The boreholes were drilled to provide information on ground-motion attenuation in the basalt and interbedded sediments underlying the WTP site. This report describes the geophysical logging of the deep boreholes that was conducted in support of the Seismic Boreholes Project, defined below. The detailed drilling and geological descriptions of the boreholes and seismic data collected and analysis of that data are reported elsewhere.

  6. Cymrite as an indicator of high barium activity in the formation of hydrothermal rocks related to carbonatites of the Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Sorokhtina, N. V.; Chukanov, N. V.; Voloshin, A. V.; Pakhomovsky, Ya. A.; Bogdanova, A. N.; Moiseev, M. M.

    2008-12-01

    Cymrite, BaAl2Si2O8 · nH2O, is a rare mineral formed during low-grade dynamothermal metamorphism ( T = 250-300°C, P = 1-3 kbar). Cymrite has been described from many metasedimentary ores and hydrothermal rocks. In carbonatites, it has been found for the first time. Cymrite has been identified in the Kovdor and Seblyavr massifs, Kola Peninsula. In Kovdor, this mineral has been described from one of the hydrothermal veins cutting the pyroxenite-melilitite-ijolite complex at the Phlogopite deposit; cymrite is associated with thomsonite, calcite, and stivensite. In the Seblyavr pluton, cymrite occurs in thin veins of calcite carbonatite that cut pyroxenite contacting with ijolite. Cymrite from the Seblyavr pluton is associated with calcite, natrolite, pyrite, and chalcopyrite. The mineral is optically negative and uniaxial, with extinction parallel to elongation; ω ˜ 1.607(1). According to X-ray diffraction data, cymrite from Seblyavr is monoclinic, space group P1 m1; unit-cell dimensions are: a = 5.33, b = 36.96, c = 7.66 Å, β = 90°, V = 1510.55 Å3. According to the results of IR spectroscopy, in the series of samples from different massifs (in the running order Kovdor-Voishor-Seblyavr), the double-layer deformation is enhanced and accompanied by a decrease in the Si-O-Si angle and weakening of hydrogen bonds of interlayer water. The empirical formulas of cymrite calculated from electron microprobe analyses are Ba0.93-0.95Ca0.01-0.02K0.00-0.05Na0.02-0.04Al1.97-2.01Si1.99-2.03O8(H2O) and Ba1.00-1.02Ca0.00-0.01Sr0.00-0.01Fe0.00-0.01Al1.94-2.00Si1.98-2.03O8(H2O) at Seblyavr and Kovdor, respectively. Cymrite from the carbonatite massifs of the Kola Peninsula was formed under hydrothermal conditions at low temperature (200-300°C), high activity of Ba and Si, and high water pressure. At Kovdor, the mineral crystallized directly from the residual solution enriched in Ba. The sequence of mineral deposition is as follows: thomsonite-cymrite-calcite-stevensite. Cymrite

  7. Effects of borehole design on complex electrical resistivity measurements: laboratory validation and numerical experiments

    NASA Astrophysics Data System (ADS)

    Treichel, A.; Huisman, J. A.; Zhao, Y.; Zimmermann, E.; Esser, O.; Kemna, A.; Vereecken, H.

    2012-12-01

    Geophysical measurements within a borehole are typically affected by the presence of the borehole. The focus of the current study is to quantify the effect of borehole design on broadband electrical impedance tomography (EIT) measurements within boreholes. Previous studies have shown that effects on the real part of the electrical resistivity are largest for boreholes with large diameters and for materials with a large formation factor. However, these studies have not considered the effect of the well casing and the filter gravel on the measurement of the real part of the electrical resistivity. In addition, the effect of borehole design on the imaginary part of the electrical resistivity has not been investigated yet. Therefore, the aim of this study is to investigate the effect of borehole design on the complex electrical resistivity using laboratory measurements and numerical simulations. In order to do so, we developed a high resolution two dimensional axisymmetric finite element model (FE) that enables us to simulate the effects of several key borehole design parameters (e.g. borehole diameter, thickness of PVC well casing) on the measurement process. For the material surrounding the borehole, realistic values for complex resistivity were obtained from a database of laboratory measurements of complex resistivity from the test site Krauthausen (Germany). The slotted PVC well casing is represented by an effective resistivity calculated from the water-filled slot volume and the PVC volume. Measurements with and without PVC well casing were made with a four-electrode EIT logging tool in a water-filled rain barrel. The initial comparison for the case that the logging tool was inserted in the PVC well casing showed a considerable mismatch between measured and modeled values. It was required to consider a complete electrode model instead of point electrodes to remove this mismatch. This validated model was used to investigate in detail how complex resistivity

  8. Method and apparatus for investigating a borehole using an array of elements

    SciTech Connect

    Marzetta, T.L.; Chew, W.C.

    1989-07-25

    This patent describes an apparatus for investigating an earth formation, penetrated by a borehole, with a tool which is moved along the borehole axis. It comprises: means including an array of spaced-apart elements mounted on the tool to produce spatially sampled measurements related to a segment of the borehole; and means for combining measurements derived from successively spaced elements in the array to obtain measurements that overlap each other by at least a desired amount to reduce artifacts attributable to the special sampling.

  9. A Deterministic Approach to Analyzing Audiomagnetotelluric Models and Borehole Data in a Hydrological Environment

    NASA Astrophysics Data System (ADS)

    Pellerin, L.; McPhee, D. K.

    2009-05-01

    We present a three-step deterministic approach to understand the relationship between borehole data and surface geophysics using audiomagnetotelluric (AMT) data. Traditionally, geoscientists have used borehole data as ground truth, but it is not clear how representative a point measurement is for laterally extensive or regional areas. Furthermore, it is unclear when and where it is valid to compare borehole and surface data. Geophysics is used to site wells, but the borehole data are often used to calibrate the geophysics, and it is the relationship between the two data sets that we quantitatively investigate here. As part of a hydrological study of the Basin and Range province, an arid, mountainous, sparsely populated region of the western United States, many AMT surveys were conducted. AMT soundings were typically collected along profiles at stations spaced roughly 200-400 m. The resulting two-dimensional resistivity models successfully imaged subsurface faults and structures down to roughly 500 m depth. These faults are a primary structural control on the hydrogeology of many valleys in this region. Borehole data, including both lithological and geophysical logs, were available from several water monitoring and testing wells close to our AMT stations. Wells were located between 10m and 1.6 km from our AMT profiles, and extended down to 600 m below the surface. Although borehole data, whether lithological or geophysical logs, have excellent vertical resolution they are essentially point source data, and there are many reasons that the borehole data may not faithfully represent the survey area. The borehole can be unfortunately sited so that it is located in an anomalous area, or problems with instrumentation can cause inaccuracies with the logs. In addition, there is a great deal of borehole data that has been poorly archived and may be difficult to decipher or use. Our approach to quantitatively compare the AMT and borehole data involves three steps: 1) One

  10. Borehole Geophysical Data From Eastland Woolen Mill Superfund Site, Corinna, Maine, March 1999

    USGS Publications Warehouse

    Hansen, Bruce P.; Nichols, William J.; Dudley, Robert W.

    2001-01-01

    Borehole-geophysical data were collected in cooperation with the U.S. Environmental Protection Agency in seven bedrock wells at the Eastland Woolen Mill Superfund site, Penobscot County, Corinna, Maine, in March, 1999. The data were collected as part of a reconnaissance investigation to provide information needed to address concerns about the distribution and fate of contaminants in ground-water at the site. The borehole geophysical data were also needed to guide subsequent data collection associated with the development of a remediation workplan. The borehole geophysical logs collected included: natural gamma, caliper, fluid temperature, fluid conductivity, electromagnetic conductivity, electromagnetic resistivity, spontaneous potential, and single-point resistivity.

  11. Geologic and geochemical results from boreholes drilled in Yellowstone National Park, Wyoming, 2007 and 2008

    USGS Publications Warehouse

    Jaworowski, Cheryl; Susong, David; Heasler, Henry; Mencin, David; Johnson, Wade; Conrey, Rick; Von Stauffenberg, Jennipher

    2016-01-01

    After drilling the seven PBO boreholes, cuttings were examined and selected for preparation of grain mounts, thin sections, and geochemical analysis. Major ions and trace elements (including rare earth elements) of selected cuttings were determined by x-ray fluorescence (XRF) and inductively coupled plasma-mass spectrometry (ICP-MS); the ICP-MS provided more precise trace-element analysis than XRF. A preliminary interpretation of the results of geochemical analyses generally shows a correlation between borehole cuttings and previously mapped geology. The geochemical data and borehole stratigraphy presented in this report provide a foundation for future petrologic, geochemical, and geophysical studies.

  12. Catalog of borehole lithologic logs from the 600 Area, Hanford Site

    SciTech Connect

    Fecht, K R; Lillie, J T

    1982-03-01

    Rockwell Hanford Operations (Rockwell) geoscientists are studying the Hanford Site subsurface environment to assure safe management operations, disposal, and storage of radioactive waste. As part of this effort, geoscientists have collected geotechnical data from about 3000 boreholes drilled on the Hanford Site since the early 1900s. These boreholes have been used for subsurface geologic, hydrologic, and engineering investigation, water supply, ground-water monitoring, and natural gas production. This report is a catalog of all obtainable (about 800) lithologic logs from boreholes in a portion of the Hanford Site known as the 600 Area.

  13. Experimental research on sealing of boreholes, shafts and ramps in welded tuff

    SciTech Connect

    Fuenkajorn, K.

    1996-04-01

    Laboratory and in-situ experiments have been conducted to determine the mechanical and hydraulic performance of cement borehole seals in densely welded Apache Leap tuff. Test results indicate that under saturated conditions, commercial expansive cement can provide good bond strength and adequate hydraulic performance for borehole seal under changing stress conditions. The cement seal should be installed at the intact portion of the opening, and should have a length-to-diameter ratio greater than four. Drying increases borehole plug permeability and decreases mechanical and hydraulic bonds at the plug-rock interface. In-situ testing indicates that installation procedure may significantly affect the cement plug performance.

  14. Borehole field calibration and measurement of low-concentration manganese by decay gamma rays ( Maryland, USA).

    USGS Publications Warehouse

    Mikesell, J.L.; Senftle, F.E.; Lloyd, T.A.; Tanner, A.B.; Merritt, C.T.; Force, E.R.

    1986-01-01

    The Mn concentration in the Arundel clay formation, Prince Georges County, Maryland, was determined from a borehole by using delayed neutron activation. Then neutrons were produced by a 100 mu g 252Cf source. The 847 keV gamma ray of Mn was detected continuously, and its counting rate was measured at intervals of 15 s as the measuring sonde was moved at a rate of 0.5 cm/s. The borehole measurements compared favourably with a chemical core analysis and were unaffected by water in the borehole.-from Authors

  15. Borehole-geophysical investigation of the University of Connecticut landfill, Storrs, Connecticut

    USGS Publications Warehouse

    Johnson, Carole D.; Haeni, F.P.; Lane, Jr., John W.; White, Eric A.

    2002-01-01

    A borehole-geophysical investigation was conducted to help characterize the hydrogeology of the fractured-rock aquifer and the distribution of unconsolidated glacial deposits near the former landfill and chemical waste-disposal pits at the University of Connecticut in Storrs, Connecticut. Eight bedrock boreholes near the landfill and three abandoned domestic wells located nearby were logged using conventional and advanced borehole-geophysical methods from June to October 1999. The conventional geophysical-logging methods included caliper, gamma, fluid temperature, fluid resistivity, and electromagnetic induction. The advanced methods included deviation, optical and acoustic imaging of the borehole wall, heat-pulse flowmeter, and directional radar reflection. Twenty-one shallow piezometers (less than 50-feet deep) were logged with gamma and electromagnetic induction tools to delineate unconsolidated glacial deposits. Five additional shallow bedrock wells were logged with conventional video camera, caliper, electromagnetic induction, and fluid resistivity and temperature tools. The rock type, foliation, and fracturing of the site were characterized from high-resolution optical-televiewer (OTV) images of rocks penetrated by the boreholes. The rocks are interpreted as fine- to medium-grained quartz-feldspar-biotite-garnet gneiss and schist with local intrusions of quartz diorite and pegmatite and minor concentrations of sulfide mineralization similar to rocks described as the Bigelow Brook Formation on regional geologic maps. Layers containing high concentrations of sulfide minerals appear as high electrical conductivity zones on electromagnetic-induction and borehole-radar logs. Foliation in the rocks generally strikes to the northeast-southwest and dips to the west, consistent with local outcrop observations. The orientation of foliation and small-scale gneissic layering in the rocks, however, varies locally and with depth in some of the boreholes. In two of the

  16. Borehole density on the surface of living Porites corals as an indicator of sedimentation in Hong Kong.

    PubMed

    Xie, James Y; Wong, Jane C Y; Dumont, Clement P; Goodkin, Nathalie; Qiu, Jian-Wen

    2016-07-15

    Borehole density on the surface of Porites has been used as an indicator of water quality in the Great Barrier Reef. We assessed the relationship between borehole density on Porites and eight water quality parameters across 26 sites in Hong Kong. We found that total borehole densities on the surface of Porites at 16 of the studied sites were high (>1000individualsm(-2)), with polychaetes being the dominant bioeroders. Sedimentation rate was correlated positively with total borehole density and polychaete borehole density, with the latter relationship having a substantially higher correlation of determination. None of the environmental factors used were significantly correlated with bivalve borehole density. These results provide a baseline for assessing future changes in coral bioerosion in Hong Kong. This present study also indicates that polychaete boreholes can be used as a bioindicator of sedimentation in the South China Sea region where polychaetes are numerically dominant bioeroders. PMID:27179996

  17. Drilling, logging, and testing information from borehole UE-25 UZ{number_sign}16, Yucca Mountain, Nevada

    SciTech Connect

    Thamir, F.; Thordarson, W.; Kume, J.; Rousseau, J.; Long, R.; Cunningham, D.M. Jr.

    1998-09-01

    Borehole UE-25 UZ{number_sign}16 is the first of two boreholes that may be used to determine the subsurface structure at Yucca Mountain by using vertical seismic profiling. This report contains information collected while this borehole was being drilled, logged, and tested from May 27, 1992, to April 22, 1994. It does not contain the vertical seismic profiling data. This report is intended to be used as: (1) a reference for drilling similar boreholes in the same area, (2) a data source on this borehole, and (3) a reference for other information that is available from this borehole. The reference information includes drilling chronology, equipment, parameters, coring methods, penetration rates, completion information, drilling problems, and corrective actions. The data sources include lithology, fracture logs, a list of available borehole logs, and depths at which water was recorded. Other information is listed in an appendix that includes studies done after April 22, 1994.

  18. Conceptual waste packaging options for deep borehole disposal

    SciTech Connect

    Su, Jiann -Cherng; Hardin, Ernest L.

    2015-07-01

    This report presents four concepts for packaging of radioactive waste for disposal in deep boreholes. Two of these are reference-size packages (11 inch outer diameter) and two are smaller (5 inch) for disposal of Cs/Sr capsules. All four have an assumed length of approximately 18.5 feet, which allows the internal length of the waste volume to be 16.4 feet. However, package length and volume can be scaled by changing the length of the middle, tubular section. The materials proposed for use are low-alloy steels, commonly used in the oil-and-gas industry. Threaded connections between packages, and internal threads used to seal the waste cavity, are common oilfield types. Two types of fill ports are proposed: flask-type and internal-flush. All four package design concepts would withstand hydrostatic pressure of 9,600 psi, with factor safety 2.0. The combined loading condition includes axial tension and compression from the weight of a string or stack of packages in the disposal borehole, either during lower and emplacement of a string, or after stacking of multiple packages emplaced singly. Combined loading also includes bending that may occur during emplacement, particularly for a string of packages threaded together. Flask-type packages would be fabricated and heat-treated, if necessary, before loading waste. The fill port would be narrower than the waste cavity inner diameter, so the flask type is suitable for directly loading bulk granular waste, or loading slim waste canisters (e.g., containing Cs/Sr capsules) that fit through the port. The fill port would be sealed with a tapered, threaded plug, with a welded cover plate (welded after loading). Threaded connections between packages and between packages and a drill string, would be standard drill pipe threads. The internal flush packaging concepts would use semi-flush oilfield tubing, which is internally flush but has a slight external upset at the joints. This type of tubing can be obtained with premium, low

  19. Simple, affordable and sustainable borehole observatories for complex monitoring objectives

    NASA Astrophysics Data System (ADS)

    Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Bergenthal, M.; Lange, M.; Fleischmann, T.; Hammerschmidt, S.; Seiter, C.; Wefer, G.

    2014-12-01

    Seafloor drill rigs are remotely operated systems that provide a cost effective means to recover sedimentary records of the upper sub-seafloor deposits. Recent increases in their payload included downhole logging tools or autoclave coring systems. We here report on another milestone in using seafloor rigs: the development and installation of shallow borehole observatories. Three different systems have been developed for the MARUM-MeBo seafloor drill, which is operated by MARUM, University of Bremen, Germany. A simple design, the MeBoPLUG, separates the inner borehole from the overlying ocean by using o-ring seals at the conical threads of the drill pipe. The systems are self-contained and include data loggers, batteries, thermistors and a differential pressure sensor. A second design, the so-called MeBoCORK, is more sophisticated and also hosts an acoustic modem for data transfer and, if desired, fluid sampling capability using osmotic pumps. Of these MeBoCORKs, two systems have to be distinguished: the CORK-A (A = autonomous) can be installed by the MeBo alone and monitors pressure and temperature inside and above the borehole (the latter for reference). The CORK-B (B = bottom) has a higher payload and can additionally be equipped with geochemical, biological or other physical components. Owing to its larger size, it is installed by ROV and utilises a hotstab connection in the upper portion of the drill string. Either design relies on a hotstab connection from beneath which coiled tubing with a conical drop weight is lowered to couple to the formation. These tubes are fluid-saturated and either serve to transmit pore pressure signals or collect pore water in the osmo-sampler. The third design, the MeBoPUPPI (Pop-Up Pore Pressure Instrument), is similar to the MeBoCORK-A and monitors pore pressure and temperature in a self-contained manner. Instead of transferring data upon command using an acoustic modem, the MeBoPUPPI contains a pop-up telemetry with Iridium link

  20. Simple, affordable, and sustainable borehole observatories for complex monitoring objectives

    NASA Astrophysics Data System (ADS)

    Kopf, A.; Freudenthal, T.; Ratmeyer, V.; Bergenthal, M.; Lange, M.; Fleischmann, T.; Hammerschmidt, S.; Seiter, C.; Wefer, G.

    2015-05-01

    Seafloor drill rigs are remotely operated systems that provide a cost-effective means to recover sedimentary records of the upper sub-seafloor deposits. Recent increases in their payload included downhole logging tools or autoclave coring systems. Here we report on another milestone in using seafloor rigs: the development and installation of shallow borehole observatories. Three different systems have been developed for the MARUM-MeBo (Meeresboden-Bohrgerat) seafloor drill, which is operated by MARUM, University of Bremen, Germany. A simple design, the MeBoPLUG, separates the inner borehole from the overlying ocean by using o-ring seals at the conical threads of the drill pipe. The systems are self-contained and include data loggers, batteries, thermistors and a differential pressure sensor. A second design, the so-called MeBoCORK (Circulation Obviation Retrofit Kit), is more sophisticated and also hosts an acoustic modem for data transfer and, if desired, fluid sampling capability using osmotic pumps. In these MeBoCORKs, two systems have to be distinguished: the CORK-A (A stands for autonomous) can be installed by the MeBo alone and monitors pressure and temperature inside and above the borehole (the latter for reference); the CORK-B (B stands for bottom) has a higher payload and can additionally be equipped with geochemical, biological or other physical components. Owing to its larger size, it is installed by a remotely operated underwater vehicle (ROV) and utilises a hot-stab connection in the upper portion of the drill string. Either design relies on a hot-stab connection from beneath in which coiled tubing with a conical drop weight is lowered to couple to the formation. These tubes are fluid-saturated and either serve to transmit pore pressure signals or collect porewater in the osmo-sampler. The third design, the MeBoPUPPI (Pop-Up Pore Pressure Instrument), is similar to the MeBoCORK-A and monitors pore pressure and temperature in a self-contained manner

  1. Breakthroughs in Seismic and Borehole Characterization of Basalt Sequestration Targets

    SciTech Connect

    Sullivan, E. C.; Hardage, Bob A.; McGrail, B. Peter; Davis, Klarissa N.

    2011-04-01

    Mafic continental flood basalts form a globally important, but under-characterized CO2 sequestration target. The Columbia River Basalt Group (CRBG) in the northwestern U.S. is up to 5 km thick and covers over 168,000 km2. In India, flood basalts are 3 km thick and cover greater than 500,000 km2. Laboratory experiments demonstrate that the CRBG and other basalts react with formation water and super critical (sc) CO2 to precipitate carbonates, thus adding a potential mineral trapping mechanism to the standard trapping mechanisms of most other types of CO2 sequestration reservoirs. Brecciated tops of individual basalt flows in the CRBG form regional aquifers that locally have greater than 30% porosity and three Darcies of permeability. Porous flow tops are potential sites for sequestration of gigatons of scCO2 in areas where the basalts contain unpotable water and are at depths greater than 800 m. In this paper we report on the U.S. DOE Big Sky Regional Carbon Sequestration Partnership surface seismic and borehole geophysical characterization that supports a field test of capacity, integrity, and geochemical reactivity of CRBG reservoirs in eastern Washington, U.S.A. Traditional surface seismic methods have had little success in imaging basalt features in on-shore areas where the basalt is thinly covered by sediment. Processing of the experimental 6.5 km, 5 line 3C seismic swath included constructing an elastic wavefield model, identifying and separating seismic wave modes, and processing the swath as a single 2D line. Important findings include: (1) a wide variety of shear wave energy modes swamp the P-wave seismic records; (2) except at very short geophone offsets, ground roll overprints P-wave signal; and (3) because of extreme velocity contrasts, P-wave events are refracted at incidence angles greater than 7-15 degrees. Subsequent removal of S-wave and other noise during processing resulted in tremendous improvement in image quality. The application of wireline

  2. Borehole Array Observations of Non-Volcanic Tremor at SAFOD

    NASA Astrophysics Data System (ADS)

    Ellsworth, W. L.; Luetgert, J. H.; Oppenheimer, D. H.

    2005-12-01

    We report on the observation of non-volcanic tremor made in the San Andreas Fault Observatory at Depth in May, 2005 during the deployment of a multi-level borehole seismic array in the SAFOD main hole. The seismic array consisted of 80 levels of hydraulically-clamped 3-component, 15 Hz omni-directional geophones spaced 15.24 m apart along a 1200 m section of the inclined borehole between 1538 and 2363 m below the ground surface. The array was provided by Paulsson Geophysical Services, Inc. (P/GSI), and recorded at a sample rate of 4000 sps on 24-bit Geode digital recorders provided by Geometrics, Inc. More than 2 TB of continuous data were recorded during the 2-week deployment. Selected local earthquakes and explosions recorded by the array are available at the Northern California Earthquake Data Center, and the entire unedited data set is available as assembled data at the IRIS Data Management Center. Both data sets are currently in the industry standard SEG2 format. Episodes of non-volcanic tremor are common along this reach of the San Andreas Fault according to Nadeau and Dolenc [2004, DOI: 10.1126/science.1107142], with many originating about 30 km southeast of SAFOD beneath the southern end of the Parkfield segment and northern end of the Simmler segment of the fault. We identified tremor episodes using spectrograms routinely produced by the Northern California Seismic Network (http://quake.usgs.gov/cgi-bin/sgrampark.pl) on which they appear as periods of elevated noise relative to the background. A particularly strong tremor episode occurred on May 10, 2005 between 19:39 and 20:00 UTC. In SAFOD, tremor spectral levels exceed the instrumental noise floor to at least 40 Hz. The spatially unaliased recording of the tremor wavefield on the P/GSI array reveal individual phases that can be tracked continuously across the array. The wavefield is composed of both up- and down-going shear waves that form quasi-stationary interference patterns in which areas of

  3. Numerical Modeling of a Shallow Borehole Thermal Energy Storage System

    NASA Astrophysics Data System (ADS)

    Catolico, N.; Ge, S.; Lu, N.; McCartney, J. S.

    2014-12-01

    Borehole thermal energy storage (BTES) combined with solar thermal energy harvesting is an economic technological system to garner and store energy as well as an environmentally-sustainable alternative for the heating of buildings. The first community-scale BTES system in North America was installed in 2007 in the Drake Landing Solar Community (DLSC), about 35 miles south of Calgary, Canada. The BTES system involves direct circulation of water heated from solar thermal panels in the summer into a storage tank, after which it is circulate within an array of 144 closed-loop geothermal heat exchangers having a depth of 35 m and a spacing of 2.5 m. In the winter the circulation direction is reversed to supply heat to houses. Data collection over a six year period indicates that this system can supply more than 90% of the winter heating energy needs for 52 houses in the community. One major challenge facing the BTES system technology is the relatively low annual efficiency, i.e., the ratio of energy input and output is in the range of 15% to 40% for the system in Drake Landing. To better understand the working principles of BTES and to improve BTES performance for future applications at larger scales, a three-dimensional transient coupled fluid and heat transfer model is established using TOUGH2. The time-dependent injection temperatures and circulation rate measured over the six years of monitoring are used as model input. The simulations are calibrated using soil temperature data measured at different locations over time. The time-dependent temperature distributions within the borehole region agree well with the measured temperatures for soil with an intrinsic permeability of 10e-19 m2, an apparent thermal conductivity of 2.03 W/m°C, and a volumetric heat capacity of 2.31 MJ/m-3°C. The calibrated model serves as the basis for a sensitivity analysis of soil and operational parameters on BTES system efficiency preformed with TOUGH2. Preliminary results suggest 1) BTES

  4. Surface and borehole electromagnetic imaging of conducting contaminant plumes

    SciTech Connect

    Berryman, J. G., LLNL

    1998-07-01

    Electromagnetic induction tomography is a promising new tool for imaging electrical conductivity variations in the earth. The EM source field is produced by induction coil (magnetic dipole) transmitters deployed at the surface or in boreholes. Vertical and horizontal component magnetic field detectors are deployed in other boreholes or on the surface. Sources and receivers are typically deployed in a configuration surrounding the region of interest. The goal of this procedure is to image electrical conductivity variations in the earth, much as x-ray tomography is used to image density variations through cross-sections of the body. Although such EM field techniques have been developed and applied, the algorithms for inverting the magnetic field data to produce the desired images of electrical conductivity have not kept pace. One of the main reasons for the lag in the algorithm development has been the fact that the magnetic induction problem is inherently three dimensional; other imaging methods such as x-ray and seismic can make use of two-dimensional approximations that are not too far from reality, but we do not have this luxury in EM induction tomography. In addition, previous field experiments were conducted at controlled test sites that typically do not have much external noise or extensive surface clutter problems often associated with environmental sites. To use the same field techniques in environments more typical of cleanup sites requires a new set of data processing tools to remove the effects of both noise and clutter. The goal of this project is to join theory and experiment to produce enhanced images of electrically conducting fluids underground, allowing better localization of contaminants and improved planning strategies for the subsequent remediation efforts. After explaining the physical context in more detail, this report will summarize the progress made in the first 18 months of this project: (1) on code development and (2) on field tests of

  5. Observation and Scaling of Microearthquakes from TCDP Borehole Seismometers

    NASA Astrophysics Data System (ADS)

    Lin, Y.; Ma, K.; Oye, V.; Tanaka, H.

    2009-12-01

    Microearthquakes with magnitude down to 0.5 were detected by the Taiwan Chelungpu-ault Drilling Project Borehole Seismometers (TCDPBHS). A location software (MIMO) was used to determine P- and S-wave onset times, incidence and azimuth angles for the locations of the microevents. Regardless of the large co-seismic slip of 12 m at the drill site during the 1999 Chi-Chi earthquake, our studies show very less seismicity near the drill site from the TCDPBHS recording. The microevents clustered at a depth of 8-10 km, where the 30 degree dipping of the Chelungpu thrust fault becomes flat to a decollement of the Taiwan fold-and-thrust tectonic structure. As a continuous GPS survey did not observe post-slip at the large slip region, and as no seismicity was observed near the drill site, we suggest that the thrust belt above the decollement during the interseismic period is locked. A Fluid Injection Test (FIT) pumping high pressure fluid into hole C with hole A as observation well was carried out at the TCDP boreholes in November 2006, and January, March and April 2007. Compared with background seismicity in November 2007, the observation did not show significant correlation of the FIT related seismicity, despite the distinct observations on the arrival of gas and chemical monitoring through FIT. It is possible that the injected fluid rate of FIT experiments is too deficient to trigger microevents. The low fluid rate indicated the low permeability of the fault zone. We also examined the scaling of the source parameters of the small earthquakes in stress drops and seismic moments. The source parameters of 150 microevents were examined from the source spectra using Brune ω-2 model for a constant Q model. The scaling of the magnitude to the Brune stress drop is a significant positive correlation. However, there has been a debate that this positive relationship might be biased for without Q correction. Fortunately, we had observed 65 clusters showing similar waveforms. The path

  6. Borehole Gravity Measurements in the Salton Sea Scientific Drilling Program Well State 2-14

    SciTech Connect

    Kasameyer, P. W.; Hearst, J. R.

    1988-01-01

    Borehole gravity measurements over a depth range from 1737 to 1027 m, and the vertical gradient of gravity above ground were measured at the Salton Sea Scientific Drilling Program well State 2-14. Uncorrected borehole gravimetric densities match values from gamma-gamma logs, indicating that the high densities seen in State 2-14 in the depth range 0.5 to 3 km extend for a few kilometers from the well. The above-ground gradient was found to be 4.1 {micro}gal/m higher than expected; correcting for this value increases the gravimetric density in the borehole. Combining the borehole gravity and estimated vertical gravity gradients on the surface, they find that this densified zone coincides with much of a broad thermal anomaly that has been found to the northeast of the Salton Sea Geothermal Field.

  7. Classification of hydraulic borehole mining technological processes during pay zone development

    NASA Astrophysics Data System (ADS)

    Bondarchuk, I. B.; Shenderova, I. V.

    2015-02-01

    Relevance of the work is defined by the need of solid mineral deposits development by hydraulic borehole mining. The main advantage of the method is that the extraction of minerals could be carried out in difficult geological conditions, excluding tunneling of mine workings and quarries construction. The article presents a generalized and systematic classification of hydraulic borehole mining technological processes during pay zones development. According to the classification three groups of technological processes were defined: main, auxiliary and hydraulic borehole cutting head monitoring. The main technological processes are: rocks fracturing, suction and lifting of the slurry to the surface, delivery of the slurry to the slurry pump. Auxiliary processes include: cleaning of intake ports of slurry retrieval device, drilling of pilot hole and maintenance of mining chambers roof sustainability. To hydraulic borehole cutting head monitoring processes refer: operation modes control, tripping operation and rotation.

  8. Acoustic and optical borehole-wall imaging for fractured-rock aquifer studies

    USGS Publications Warehouse

    Williams, J.H.; Johnson, C.D.

    2004-01-01

    Imaging with acoustic and optical televiewers results in continuous and oriented 360?? views of the borehole wall from which the character, relation, and orientation of lithologic and structural planar features can be defined for studies of fractured-rock aquifers. Fractures are more clearly defined under a wider range of conditions on acoustic images than on optical images including dark-colored rocks, cloudy borehole water, and coated borehole walls. However, optical images allow for the direct viewing of the character of and relation between lithology, fractures, foliation, and bedding. The most powerful approach is the combined application of acoustic and optical imaging with integrated interpretation. Imaging of the borehole wall provides information useful for the collection and interpretation of flowmeter and other geophysical logs, core samples, and hydraulic and water-quality data from packer testing and monitoring. ?? 2003 Elsevier B.V. All rights reserved.

  9. New developments in high resolution borehole seismology and their applications to reservoir development and management

    SciTech Connect

    Paulsson, B.N.P.

    1997-08-01

    Single-well seismology, Reverse Vertical Seismic Profiles (VSP`s) and Crosswell seismology are three new seismic techniques that we jointly refer to as borehole seismology. Borehole seismic techniques are of great interest because they can obtain much higher resolution images of oil and gas reservoirs than what is obtainable with currently used seismic techniques. The quality of oil and gas reservoir management decisions depend on the knowledge of both the large and the fine scale features in the reservoirs. Borehole seismology is capable of mapping reservoirs with an order of magnitude improvement in resolution compared with currently used technology. In borehole seismology we use a high frequency seismic source in an oil or gas well and record the signal in the same well, in other wells, or on the surface of the earth.

  10. Borehole data package for the 100-K area ground water wells, CY 1994

    SciTech Connect

    Williams, B.A.

    1994-12-27

    Borehole, hydrogeologic and geophysical logs, drilling, as-built diagrams, sampling, and well construction information and data for RCRA compliant groundwater monitoring wells installed in CY 1994 at the 100-K Basins.

  11. Methods and apparatus for evaluating formation characteristics while drilling a borehole through earth formations

    SciTech Connect

    Wraight, P.D.

    1991-05-21

    This patent describes a method for determining at least one characteristic of an earth formation penetrated by a borehole and irradiated by radiation. It comprises: positioning a directional radiation sensor in the borehole adjacent to the irradiated formation and rotating the radiation sensor for obtaining a series of successive measurements that are representative of the radiation returning from circumferentially-spaced locations around the borehole; determining the mean as well as the measured standard deviation of the series of successive measurements; and correlating the mean and the measured standard deviation of the successive measurements for providing indications which are representative of the one formation characteristic as well as the transverse cross-sectional configuration of the borehole.

  12. Estimation of percolation flux from borehole temperature data at Yucca Mountain, Nevada.

    PubMed

    Bodvarsson, G S; Kwicklis, E; Shan, C; Wu, Y S

    2003-01-01

    Temperature data from the unsaturated zone (UZ) at Yucca Mountain are analyzed to estimate percolation-flux rates and overall heat flux. A multilayer, one-dimensional analytical solution is presented for determining percolation flux from temperature data. Case studies have shown that the analytical solution agrees very well with results from the numerical code, TOUGH2. The results of the analysis yield percolation fluxes in the range from 0 to 20 mm/year for most of the deep boreholes. This range is in good agreement with the results of infiltration studies at Yucca Mountain. Percolation flux for the shallower boreholes, however, cannot be accurately determined from temperature data alone because large gas flow in the shallow system alters the temperature profiles. Percolation-flux estimates for boreholes located near or intersecting major faults are significantly higher than those for other boreholes. These estimates may be affected by gas flow in the faults. PMID:12714282

  13. The effect of error in theoretical Earth tide on calibration of borehole strainmeters

    USGS Publications Warehouse

    Langbein, John

    2010-01-01

    Since the installation of borehole strainmeters into the ground locally distorts the strain in the rock, these strainmeters require calibration from a known source which typically is the Earth tide. Consequently, the accuracy of the observed strain changes from borehole strainmeters depends upon the calibration derived from modeling the Earth tide. Previous work from the mid-1970s, which is replicated here, demonstrate that the theoretical tide can differ by 30% from the tide observed at surface-mounted, long-baseline strainmeters. In spite of possible inaccurate tidal models, many of the 74 borehole strainmeters installed since 2005 can be “calibrated”. However, inaccurate tidal models affect the amplitude and phase of observed transient strain changes which needs to be considered along with the precision of the data from the inherent drift of these borehole instruments. In particular, the error from inaccurate tidal model dominates the error budget in the observation of impulsive, sub-daily, strain-transients.

  14. Importance of neutron energy distribution in borehole activation analysis in relatively dry, low-porosity rocks

    USGS Publications Warehouse

    Senftle, F.E.; Moxham, R.M.; Tanner, A.B.; Philbin, P.W.; Boynton, G.R.; Wager, R.E.

    1977-01-01

    To evaluate the importance of variations in the neutron energy distribution in borehole activation analysis, capture gamma-ray measurements were made in relatively dry, low-porosity gabbro of the Duluth Complex. Although sections of over a meter of solid rock were encountered in the borehole, there was significant fracturing with interstitial water leading to a substantial variation of water with depth in the borehole. The linear-correlation coefficients calculated for the peak intensities of several elements compared to the chemical core analyses were generally poor throughout the depth investigated. The data suggest and arguments are given which indicate that the variation of the thermal-to-intermediate-to-fast neutron flux density as a function of borehole depth is a serious source of error and is a major cause of the changes observed in the capture gamma-ray peak intensities. These variations in neutron energy may also cause a shift in the observed capture gamma-ray energy.

  15. Borehole geophysical investigation of a formerly used defense site, Machiasport, Maine, 2003-2006

    USGS Publications Warehouse

    Johnson, Carole D.; Mondazzi, Remo A.; Joesten, Peter K.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, collected borehole geophysical logs in 18 boreholes and interpreted the data along with logs from 19 additional boreholes as part of an ongoing, collaborative investigation at three environmental restoration sites in Machiasport, Maine. These sites, located on hilltops overlooking the seacoast, formerly were used for military defense. At each of the sites, chlorinated solvents, used as part of defense-site operations, have contaminated the fractured-rock aquifer. Borehole geophysical techniques and hydraulic methods were used to characterize bedrock lithology, fractures, and hydraulic properties. In addition, each geophysical method was evaluated for effectiveness for site characterization and for potential application for further aquifer characterization and (or) evaluation of remediation efforts. Results of borehole geophysical logging indicate the subsurface is highly fractured, metavolcanic, intrusive, metasedimentary bedrock. Selected geophysical logs were cross-plotted to assess correlations between rock properties. These plots included combinations of gamma, acoustic reflectivity, electromagnetic induction conductivity, normal resistivity, and single-point resistance. The combined use of acoustic televiewer (ATV) imaging and natural gamma logs proved to be effective for delineating rock types. Each of the rock units in the study area could be mapped in the boreholes, on the basis of the gamma and ATV reflectivity signatures. The gamma and mean ATV reflectivity data were used along with the other geophysical logs for an integrated interpretation, yielding a determination of quartz monzonite, rhyolite, metasedimentary units, or diabase/gabbro rock types. The interpretation of rock types on the basis of the geophysical logs compared well to drilling logs and geologic mapping. These results may be helpful for refining the geologic framework at depth. A stereoplot of all fractures

  16. Paleohydrological mixing portions in one deep borehole at the Swedish Aspo Hard Rock Laboratory

    SciTech Connect

    Laaksoharju, M.; Sharman, C.

    1995-12-01

    A borehole 1700.5 m deep near the AESPOE Hard Rock Laboratory represents the deepest borehole drilled for the project. In order to establish the paleohydrological mixing portions in the present water, a mixing model was constructed using Principal Component Analysis. This multivariate method used both conservative and non-conservative tracers. The mixing model can describe how large portions of a particular type of water are needed in order to explain the chemical composition of the observed water. Six end-members were identified which are believed to represent waters that interact in different degrees in the sampling area. Mixing ratios were calculated for each end-member at various borehole depths. The multivariate calculation technique established the tracers of paleohydrological water in the borehole with greater resolution than univariate analysis.

  17. 30 CFR 75.1319 - Weight of explosives permitted in boreholes in bituminous and lignite mines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... and Blasting § 75.1319 Weight of explosives permitted in boreholes in bituminous and lignite mines. (a... 3 pounds except when blasting solid rock in its natural deposit. (b) The total weight of...

  18. The extent of temporal smearing in surface-temperature histories derived from borehole temperature measurements

    USGS Publications Warehouse

    Clow, G.D.

    1992-01-01

    The ability of borehole temperature data to resolve past climatic events is investigated using Backus-Gilbert inversion methods. Two experimental approaches are considered: (1) the data consist of a single borehole temperature profile, and (2) the data consist of climatically-induced temperature transients measured within a borehole during a monitoring experiment. The sensitivity of the data's resolving power to the vertical distribution of the measurements, temperature measurement errors, the inclusion of a local meteorological record, and the duration of a monitoring experiment, are investigated. The results can be used to help interpret existing surface temperature histories derived from borehole temperature data and to optimize future experiments for the detection of climatic signals. ?? 1992.

  19. Methods and apparatus for use in detecting seismic waves in a borehole

    DOEpatents

    West, Phillip B.; Fincke, James R.; Reed, Teddy R.

    2006-05-23

    The invention provides methods and apparatus for detecting seismic waves propagating through a subterranean formation surrounding a borehole. In a first embodiment, a sensor module uses the rotation of bogey wheels to extend and retract a sensor package for selective contact and magnetic coupling to casing lining the borehole. In a second embodiment, a sensor module is magnetically coupled to the casing wall during its travel and dragged therealong while maintaining contact therewith. In a third embodiment, a sensor module is interfaced with the borehole environment to detect seismic waves using coupling through liquid in the borehole. Two or more of the above embodiments may be combined within a single sensor array to provide a resulting seismic survey combining the optimum of the outputs of each embodiment into a single data set.

  20. Multi-array borehole resistivity and induced polarization method with mathematical inversion of redundant data

    DOEpatents

    Ward, Stanley H.

    1989-01-01

    Multiple arrays of electric or magnetic transmitters and receivers are used in a borehole geophysical procedure to obtain a multiplicity of redundant data suitable for processing into a resistivity or induced polarization model of a subsurface region of the earth.

  1. An analysis of the lithology to resistivity relationships using airborne EM and boreholes

    NASA Astrophysics Data System (ADS)

    Barfod, Adrian A. S.; Christiansen, Anders V.; Møller, Ingelise

    2014-05-01

    We present a study of the relationship between dense airborne SkyTEM resistivity data and sparse lithological borehole data. Understanding the geological structures of the subsurface is of great importance to hydrogeological surveys. Large scale geological information can be gathered directly from boreholes or indirectly from large geophysical surveys. Borehole data provides detailed lithological information only at the position of the borehole and, due to the sparse nature of boreholes, they rarely provide sufficient information needed for high-accuracy groundwater models. Airborne geophysical data, on the other hand, provide dense spatial coverage, but are only indirectly bearing information on lithology through the resistivity models. Hitherherto, the integration of the geophysical data into geological and hydrogeological models has been often subjective, largely un-documented and painstakingly manual. This project presents a detailed study of the relationships between resistivity data and lithological borehole data. The purpose is to objectively describe the relationships between lithology and geophysical parameters and to document these relationships. This project has focused on utilizing preexisting datasets from the Danish national borehole database (JUPITER) and national geophysical database (GERDA). The study presented here is from the Norsminde catchment area (208 sq. km), situated in the municipality of Odder, Denmark. The Norsminde area contains a total of 758 boreholes and 106,770 SkyTEM soundings. The large amounts of data make the Norsminde area ideal for studying the relationship between geophysical data and lithological data. The subsurface is discretized into 20 cm horizontal sampling intervals from the highest elevation point to the depth of the deepest borehole. For each of these intervals a resistivity value is calculated at the position of the boreholes using a kriging formulation. The lithology data from the boreholes are then used to

  2. Multi-scale groundwater modelling for the assessment of sustainable borehole yields under drought

    NASA Astrophysics Data System (ADS)

    Upton, Kirsty; Butler, Adrian; Jackson, Chris; Jones, Mike

    2014-05-01

    A new multi-scale groundwater modelling methodology is presented for simulating abstraction boreholes in regional groundwater models. This provides a robust tool for assessing the sustainable yield of supply boreholes, thus improving our understanding of groundwater availability during droughts. The yield of an abstraction well is dependent on a number of factors. These include antecedent recharge and groundwater conditions; the properties of a regional aquifer system; requirements on a groundwater system to maintain river flows or sites of ecological significance; the properties of an individual abstraction borehole; small-scale aquifer heterogeneity around a borehole; the rate of abstraction; and the way in which neighboring abstraction boreholes interact. These factors can all be represented in the multi-scale model, which couples a small-scale radial flow model of an abstraction borehole with a regional-scale groundwater model. The regional groundwater model, ZOOMQ3D, represents the large-scale groundwater system, including lateral and vertical aquifer heterogeneity, rivers, and spatially varying recharge. The 3D radial flow model, SPIDERR, represents linear and non-linear flow to a borehole, local vertical heterogeneity, well storage and pump location. The multi-scale model is applied to a supply borehole (operated by Thames Water) located in the Chalk aquifer within the catchment of the River Thames in southern England. Groundwater abstraction from the Chalk aquifer accounts for 40-70% of the total public water supply in this region. Drought is a recurring feature of the UK climate, and in particular the south and east of England. Since 1850, nine major groundwater droughts have occurred, all of which lasted longer than one year. The most recent occurred in 2010-2012, during which seven water supply companies introduced water usage restrictions, affecting over 20 million people. The radial flow model is initially calibrated against pumping test data from the

  3. Towards improved 3D cross-borehole electrical resistivity imaging of discrete fracture networks

    NASA Astrophysics Data System (ADS)

    Robinson, J.; Slater, L. D.; Johnson, T. J.; Ntarlagiannis, D.; Lacombe, P.; Johnson, C. D.; Tiedeman, C. R.; Goode, D.; Day-Lewis, F. D.; Shapiro, A. M.; Lane, J. W.

    2012-12-01

    There is a need to better characterize discrete fractures in contaminated bedrock aquifers to determine the migration of injected remediation amendments away from boreholes. A synthetic cross-borehole electrical resistivity study was conducted assuming a discrete fracture model of an existing contaminated site with known fracture locations. Four boreholes and two discrete fracture zones, assumed to be the dominant electrical and hydraulically conductive pathways, were explicitly modeled within an unstructured tetrahedral finite-element mesh. To simulate field conditions, 5% random Gaussian noise was added to all synthetic datasets. We first evaluated different regularization constraints starting with an uninformed smoothness-constrained inversion, to which a priori information was incrementally added. We found major improvements when (1) smoothness regularization constraints were relaxed (or disconnected) along boreholes and fractures, (2) a homogeneous conductivity was assumed along boreholes, and (3) borehole conductivity constraints, which could be determined from a fluid specific-conductance log, were applied. We also evaluated the effect of including borehole packers on the fracture-zone model recovery. We found the estimated fracture-zone conductivities with the inclusion of packers were comparable to similar trials excluding the use of packers regardless of electrical potential changes. The misplacement of fracture regularization disconnects easily can be misinterpreted as actual fracture locations. Conductivities within misplaced disconnects were near the starting model value and removing smoothing between boreholes and assumed fracture locations helped in identifying incorrectly located fracture regularization disconnects. Model sensitivity structure improved when regularization disconnects were (1) applied along the boreholes and fracture zones, and (2) fracture-zone regularization disconnects were placed where actual fractures existed. A field study

  4. Resolution of sea ice microstructure using cross borehole resistivity tomography

    NASA Astrophysics Data System (ADS)

    Ingham, M.; Jones, K.; Pringle, D. J.; Eicken, H.

    2009-12-01

    As an inhomogeneous mixture of pure ice, brine, air and solid salts, the physical properties of sea ice depend on its highly temperature-dependent microstructure. Understanding the microstructure and the way it responds to variations not only in temperature but also salinity, is crucial in developing an improved understanding of the role that sea ice plays in climate. However progress in this is hindered by the difficulty in obtaining meaningful measurements of sea ice physical properties without disturbing the natural state of the ice. We have recently developed an application of cross-borehole dc resistivity tomography to make in-situ measurements which resolve the anisotropic resistivity structure of first-year landfast sea ice. We present results from measurements made in 2008 at Barrow, Alaska which demonstrate the evolution of the ice microstructure over the period of spring warming. Key conclusions are that a much greater degree of vertical electrical connectivity of brine channels appears to exist even when the ice is very cold, whereas a much higher horizontal component of resistivity indicates that horizontal connectivity is only established as the ice warms and brine inclusions expand.

  5. Method for measurement of azimuth of a borehole while drilling

    SciTech Connect

    DiPersio, R.D.; Cobern, M.E.

    1989-03-21

    A method is described for determining the azimuth angle of a borehole being drilled by instruments contained downhole in the drillstring, including the steps of: sensing with accelerometer means, during a period of nonrotation of the drillstring, the components of Gx, Gy and Gz of the total gravity field Go at the location of the instrument; sensing with magnetometer means, during a period of nonrotation of the drillstring, the components of Hx, Hy and Hz of the total magnetic field Ho at the location of the instrument; the components Gz and Hz being along the axis of the drillstring, the components Gx and the components and Gy being orthogonal to Gz and the components Hx and Hy being orthogonal to Hz; rotating the magnetometer means with the drillstring and obtaining the parameter Hzr which is the Hz component of the magnetic field at the location of the instrument during rotation of the drillstring; determining Ho from values Hx, Hy and Hz sensed during nonrotation of the drillstring; determining the inclination angle of the drillstring; determining the dip angle of the magnetic field; determining the angle between the direction of the magnetic field and the axis of the drillstring at the location of the instrument from Ho and Hzr; and determining the azimuth angle.

  6. Hydrologic testing methodology and results from deep basalt boreholes

    SciTech Connect

    Strait, S R; Spane, F A; Jackson, R L; Pidcoe, W W

    1982-05-01

    The objective of the hydrologic field-testing program is to provide data for characterization of the groundwater systems wihin the Pasco Basin that are significant to understanding waste isolation. The effort is directed toward characterizing the areal and vertical distributions of hydraulic head, hydraulic properties, and hydrochemistry. Data obtained from these studies provide input for numerical modeling of groundwater flow and solute transport. These models are then used for evaluating potential waste migration as a function of space and time. The groundwater system beneath the Hanford Site and surrounding area consists of a thick, accordantly layered sequence of basalt flows and associated sedimentary interbed that primarily occur in the upper part of the Columbia River basalt. Permeable horizons of the sequence are associated with the interbeds and the interflow zones within the basalt. The columnar interiors of a flow act as low-permeability aquitards, separating the more-permeable interflows or interbeds. This paper discusses the hydrologic field-gathering activities, specifically, field-testing methodology and test results from deep basalt boreholes.

  7. Method, system, and tool for investigating borehole casings

    SciTech Connect

    Davies, D.

    1988-12-27

    A system is described which investigates a casing fitted into a borehole traversing an earth formation, comprising: (a) a downhole tool capable of investigating the casing along the length of the casing; (b) a measurement control unit located in proximity to the surface of the earth formation; and (c) a cable having one end connected to the downhole tool and the other end connected to the measurement control unit, the cable including at least a plurality of first connection lines, the downhole tool comprising: (1) at least a first pair of longitudinally spaced electrodes, (2) means for causing the pair of electrodes to be contacted with the inner peripheral surface of the casing, (3) at least a pair of second connection lines, each of the second connection lines having one end connected to a corresponding one of the electrodes, and (4) relay means interposed between the first connection lines of the cable and the second connection lines of the downhole tool, the relay means being arranged to be positioned in first and second positions, wherein when the relay means is in the first position, the first connection lines of the cable are short-circuited by the relay means, and when the relay means is in the second position, the first connection lines are connected to their corresponding second connection lines thereby establishing an electrical connection between the measurement control unit and the electrodes.

  8. Borehole-inclusion stressmeter measurements in bedded salt

    SciTech Connect

    Cook, C.W.; Ames, E.S.

    1980-07-01

    Sandia purchased borehole-inclusion stressmeters from a commercial supplier to measure in situ stress changes in bedded salt. However, the supplied stressmeters were difficult to set in place and gave erratic results in bedded salt. These problems were overcome with a new extended platen design. Also a straingaged transducer was designed which can be read with a conventional data logger. Due to the nonlinear behavior of bedded salt under uniaxial loading, a new empirical calibration scheme was devised. In essence, the stressmeters are calibrated as force transducers and this calibration curve is then used to determine the relationship between uniaxial stress changes in bedded salt and the gage's output. The stressmeter and calibration procedures have been applied under mine conditions and produced viable results. Future work will involve finite element analysis to calculate the observed behavior of the stressmeters. The response of the stressmeters in bedded salt is neither that of a true stressmeter or of a true strainmeter. However, repeatable calibrations make the gages very useful.

  9. Calibration models for density borehole logging - construction report

    SciTech Connect

    Engelmann, R.E.; Lewis, R.E.; Stromswold, D.C.

    1995-10-01

    Two machined blocks of magnesium and aluminum alloys form the basis for Hanford`s density models. The blocks provide known densities of 1.780 {plus_minus} 0.002 g/cm{sup 3} and 2.804 {plus_minus} 0.002 g/cm{sup 3} for calibrating borehole logging tools that measure density based on gamma-ray scattering from a source in the tool. Each block is approximately 33 x 58 x 91 cm (13 x 23 x 36 in.) with cylindrical grooves cut into the sides of the blocks to hold steel casings of inner diameter 15 cm (6 in.) and 20 cm (8 in.). Spacers that can be inserted between the blocks and casings can create air gaps of thickness 0.64, 1.3, 1.9, and 2.5 cm (0.25, 0.5, 0.75 and 1.0 in.), simulating air gaps that can occur in actual wells from hole enlargements behind the casing.

  10. Response of borehole extensometers to explosively generated dynamic loads

    SciTech Connect

    Patrick, W.C.; Brough, W.G.

    1980-08-25

    Commercially available, hydraulically anchored, multiple-point borehole extensometers (MPBX) were evaluated with respect to response to dynamic loads produced by explosions. This study is part of the DOE-funded Spent Fuel Test-Climax (SFT-C), currently being conducted in the Climax granitic stock at the Nevada Test Site. The SFT-C is an investigation of the feasibility of short-term storage and retrieval of spent nuclear reactor fuel assemblies at a plausible repository depth in granitic rock. Eleven spent fuel assemblies are stored at a depth of 420 m for three to five years, and will then be retrieved. MPBX units are used in the SFT-C to measure both excavation-induced and thermally induced rock displacements. Long-term reliability of extensometers in this hostile environment is essential in order to obtain valid data during the course of this test. Research to date shows conclusively that extensometers of this type continue to function reliably even though subjected to accelerations of 1.8 g; research also implies that they function well though subjected to accelerations in excess of 100 g. MPBX survivability during the first four months of testing at ambient temperatures was about 90 percent.

  11. Electromagnetic Borehole Flowmeter Testing in R-Area

    SciTech Connect

    Flach, G.P.

    2000-10-12

    Six constant-rate, multiple-well aquifer tests were recently conducted in R-area to provide site-specific in situ hydraulic parameters for assessing groundwater flow and contaminant transport models of R-Reactor Seepage Basins (RRSB) plume migration and RRSB remedial alternatives. The pumping tests were performed in the Upper Three Runs and Gordon aquifers between December 1999 and February 2000. The tests provide reliable estimates of horizontal conductivity averaged over aquifer thickness, and a relatively large horizontal zone of influence. To complement these results, Electromagnetic Borehole Flowmeter (EBF) testing was subsequently performed to determine the vertical variation of horizontal conductivity for RPC-2PR, RPC-3PW, RPT-2PW, RPT-3PW, RPT-4PW and RPT-30PZ. The EBF data generally indicate significant aquifer heterogeneity over the tested screen intervals (Figures 14, 16-18, 20, 22, 24, 26 and 27-31). The vertical variation of groundwater flow in or out of the well screen under ambient conditions was also measured (Figures 13, 15, 19, 21, 23 and 25). These data have implications for contaminant monitoring.

  12. Geophysical siting of boreholes in crystalline basement areas of Africa

    NASA Astrophysics Data System (ADS)

    Olayinka, A. I.

    1992-02-01

    This paper assesses the effectiveness of surface geophysical methods namely electrical resistivity, electromagnetic, seismic refraction, magnetic, gravity and induced polarization for groundwater exploration in crystalline basement complex areas. Most of these geophysical techniques can provide quantitative information on the characteristics of the weathered zone which relate to the occurrence of an economic aquifer. The critical factors in the choice of a particular method include the local geological setting, the initial and maintenance costs of the equipment, the speed of surveying, the manpower required as field crew, the degree of sophistication entailed in data processing to enable a geologically meaningful interpretation, and anomaly resolution. The particular advantages and limitations of each technique are highlighted. Several case histories from Nigeria and the rest of Africa indicate that electrical resistivity (both vertical sounding and horizontal profiling) is the most widely used, followed by electromagnetic traversing. These are often employed in combination to improve upon the percentage of successful boreholes. Due to the high cost of equipment, large scale of the field operations and difficulties in data interpretation, seismic refraction is not widely adopted in commercial-type surveys. Similarly, magnetic, gravity and induced polarization are used only sparingly.

  13. Application of borehole geophysics to water-resources investigations

    USGS Publications Warehouse

    Keys, W.S.; MacCary, L.M.

    1971-01-01

    This manual is intended to be a guide for hydrologists using borehole geophysics in ground-water studies. The emphasis is on the application and interpretation of geophysical well logs, and not on the operation of a logger. It describes in detail those logging techniques that have been utilized within the Water Resources Division of the U.S. Geological Survey, and those used in petroleum investigations that have potential application to hydrologic problems. Most of the logs described can be made by commercial logging service companies, and many can be made with small water-well loggers. The general principles of each technique and the rules of log interpretation are the same, regardless of differences in instrumentation. Geophysical well logs can be interpreted to determine the lithology, geometry, resistivity, formation factor, bulk density, porosity, permeability, moisture content, and specific yield of water-bearing rocks, and to define the source, movement, and chemical and physical characteristics of ground water. Numerous examples of logs are used to illustrate applications and interpretation in various ground-water environments. The interrelations between various types of logs are emphasized, and the following aspects are described for each of the important logging techniques: Principles and applications, instrumentation, calibration and standardization, radius of investigation, and extraneous effects.

  14. Advances in directional borehole radar data analysis and visualization

    USGS Publications Warehouse

    Smith, D.V.G.; Brown, P.J., II

    2002-01-01

    The U.S. Geological Survey is developing a directional borehole radar (DBOR) tool for mapping fractures, lithologic changes, and underground utility and void detection. An important part of the development of the DBOR tool is data analysis and visualization, with the aim of making the software graphical user interface (GUI) intuitive and easy to use. The DBOR software system consists of a suite of signal and image processing routines written in Research Systems' Interactive Data Language (IDL). The software also serves as a front-end to many widely accepted Colorado School of Mines Center for Wave Phenomena (CWP) Seismic UNIX (SU) algorithms (Cohen and Stockwell, 2001). Although the SU collection runs natively in a UNIX environment, our system seamlessly emulates a UNIX session within a widely used PC operating system (MicroSoft Windows) using GNU tools (Noer, 1998). Examples are presented of laboratory data acquired with the prototype tool from two different experimental settings. The first experiment imaged plastic pipes in a macro-scale sand tank. The second experiment monitored the progress of an invasion front resulting from oil injection. Finally, challenges to further development and planned future work are discussed.

  15. Tidal Amplitude Changes over Time Observed in Borehole Strainmeters

    NASA Astrophysics Data System (ADS)

    Lu, Z.; Wen, L.

    2013-12-01

    Global warming, by thermally expanding sea water and increasingly melting land-based ice, raises the sea level by 2-3 millimeters per year in the past few years. The solid tide, one of the most important activities of the Earth, is sensitive to the change of sea level. We carry out an analysis of tidal amplitude in the east coast of Pacific using the Plate Boundary Observatory (PBO) borehole strainmeter data. We extract the tidal amplitude and meteorological effects from the data using the package BAYTAP, which uses a Bayesian modeling procedure to analyze strainmeter data. In the analysis, we first interpolate the missing data, cut off bad data, and then resample the data to 2 samples per hour. We analyze the data with a one-month moving window with a 5-hour shift, and obtain variation of tidal amplitude over time. The results show two interesting phenomena. 1) Almost all stations show an annual variation in their tidal amplitude, 2) tidal amplitudes at some stations, such as B009, B011, B057, increase over time. We will discuss implications of these variations to weather and sea level change.

  16. Stakeholder acceptance analysis: Passive soil vapor extraction using borehole flux

    SciTech Connect

    Peterson, T.S.

    1995-12-01

    This report presents evaluations, recommendations, and requirements concerning passive soil vapor extraction (PSVE) derived from a three-year program of stakeholder involvement. PSVE takes advantage of the naturally occurring tendency of soil vapor to leave the subsurface during periods of low barometric pressure. PSVE seeks to expedite the release of volatile contaminants through the use of boreholes and technological enhancements. This report is for technology developers and those responsible for making decisions about the use of technology to remediate contamination by volatile organic compounds. Stakeholders` perspectives help those responsible for technology deployment to make good decisions concerning the acceptability and applicability of PSVE to the remediation problems they face. The report provides: stakeholders` final evaluation of the acceptability of PSVE in light of the technology`s field test; stakeholders` principal comments concerning PSVE; requirements that stakeholders have of any remediation technology. Technology decision makers should take these conclusions into account in evaluating the effectiveness and acceptability of any remedial method proposed for their site. In addition, the report presents data requirements for the technology`s field demonstration defined by stakeholders associated with the Hanford site in Washington State, as well as detailed comments on PSVE from stakeholders from Sandia National Laboratory, Rocky Flats, Idaho National Engineering Laboratory, and Los Alamos National Laboratory.

  17. 24-CHANNEL GEOPHONE ARRAY FOR HORIZONTAL OR VERTICAL BOREHOLES

    SciTech Connect

    Erik C. Westman

    2003-10-24

    Improved ground-imaging capabilities have enormous potential to increase energy, environmental, and economic benefits by improving exploration accuracy and reducing energy consumption during the mining cycle. Seismic tomography has been used successfully to monitor and evaluate geologic conditions ahead of a mining face. A primary limitation to existing seismic tomography, however, is the placement of sensors. The goal of this project is to develop an array of 24 seismic sensors capable of being mounted in either a vertical or horizontal borehole. Development of this technology reduces energy usage in excavation, transportation, ventilation, and processing phases of the mining operation because less waste is mined and the mining cycle suffers fewer interruptions. This new technology benefits all types of mines, including metal/nonmetal, coal, and quarrying. The primary research tasks focused on sensor placement method, sensor housing and clamping design, and cabling and connector selection. An initial design is described in the report. Following assembly, a prototype was tested in the laboratory as well as at a surface stone quarry. Data analysis and tool performance were used for subsequent design modifications. A final design is described, of which several components are available for patent application. Industry partners have shown clear support for this research and demonstrated an interest in commercialization following project completion.

  18. Borehole Gravity Meter Surveys at the Waste Treatment Plant, Hanford, Washington.

    SciTech Connect

    MacQueen, Jeffrey D.; Mann, Ethan

    2007-04-06

    Microg-LaCoste (MGL) was contracted by Pacfic Northwest National Laboratories (PNNL) to record borehole gravity density data in 3 wells at the HanfordWaste Treatment Plant (WTP) site. The survey was designed to provide highly accurate density information for use in seismic modeling. The borehole gravity meter (BHGM) tool has a very large depth of investigation (hundreds of feet) compared to other density tools so it is not influenced by casing or near welbore effects, such as washouts.

  19. Alarm means for use with apparatus protecting a device situated in a borehole

    SciTech Connect

    Gillespie, R.G.

    1983-11-08

    Apparatus situated in a borehole traversing an earth formation is protected from closing of the borehole by being encased in an inflatable device. Surface equipment inflates and maintains the inflatable device at a sufficient pressure so as to prevent the earth formation from closing in and contacting the apparatus. A pressure sensor senses the maintenance pressure and provides a corresponding signal. An alarm circuit provides an alarm when the pressure decreases below the sufficient maintenance pressure level.

  20. Closed form flow model of a damped slug test in a fractured bedrock borehole

    NASA Astrophysics Data System (ADS)

    Ostendorf, David W.; Lukas, William G.; Hinlein, Erich S.

    2015-10-01

    An existing closed form model is modified to describe the damped response of groundwater in a fractured bedrock borehole with variable apertures and dips to a slug test. The existing theory, which requires single sized horizontal fractures, is accurately calibrated by slug test data from three uncased bedrock boreholes in the Dedham Granite and an observation well screened just below the contact surface with a till drumlin. Apertures and dips vary however, so the ability of the modified theory to accommodate different sizes and inclinations improves upon the physical validity of its predecessor when fracture information accompanies slug test data. Geophysical logs identify a large number and dip of fractures in the uncased boreholes in the Dedham Granite in this regard. A lognormally distributed, horizontal aperture calibration of the slug tests in the uncased boreholes retains the accuracy of the single size model, and yields aperture statistics more consistent with literature values. The slug test in the screened observation well is accurately calibrated with the modified horizontal theory for discrete (two) sizes, based upon the average fracture spacing found in the uncased boreholes. All four results yield comparable compressibility estimates, which depend on fracture spacing but not size or dip. The calibrated aperture size and calculated fracture porosity and permeability decrease with length of the borehole into the Dedham Granite. The measured dip and aperture for flowing and nonflowing fractures in one of the boreholes accurately calibrates the modified theory. The inclusion of dip reduces the calibrated permeability because of the increased ellipsoidal area at the interface of the borehole and the inclined fractures.

  1. Determining resistivity of a geological formation using circuitry located within a borehole casing

    DOEpatents

    Vail III, William Banning

    2006-01-17

    Geological formation resistivity is determined. Circuitry is located within the borehole casing that is adjacent to the geological formation. The circuitry can measure one or more voltages across two or more voltage measurement electrodes associated with the borehole casing. The measured voltages are used by a processor to determine the resistivity of the geological formation. A common mode signal can also be reduced using the circuitry.

  2. Challenges for Induced Polarization Measurements in Single and Cross Borehole Configurations

    NASA Astrophysics Data System (ADS)

    Ntarlagiannis, D.; Slater, L. D.; Curatola, F.; Evdokimov, K.

    2013-12-01

    Induced polarization (IP) surveys have been traditionally used for mineral exploration. These surveys involve large surface arrays, cover wide areas and target strong signals from metallic minerals (e.g. sulfides). In recent years, the IP method has increasingly been used for environmental applications where smaller arrays are employed to measure smaller signals. Due to its unique sensitivity to interfacial properties, the IP method might be used to track and identify processes associated with remediation efforts, and also characterize and delineate contaminant plumes. Recent laboratory experiments have significantly advanced the IP method, improving the detection and interpretation of relatively small signals. However, IP data acquisition from a borehole, either as a vertical profile down a string of electrodes installed in a well or in a cross borehole configuration is more challenging. This is in part due to higher noise levels associated with coupling effects between wiring and earth in the borehole. In this study, we simulated borehole conditions in the laboratory and examined sources of noise during borehole IP measurements. We simulated a vertical array of electrodes, with electrodes placed around a PVC pipe, and performed measurements in a 3D tank. While in traditional single borehole configurations (e.g. Wenner, Schlumberger) the IP data were contaminated with low frequency errors associated with electrode arrangement. Modifications on the electrode configurations and the potential electrode design, led to acquisition of high quality data comparable to that obtained in the laboratory. We show that, while borehole IP measurements can be challenging, appropriate consideration of electrode placement and design permits acquisition of high quality data that can be used to sense variations in interfacial properties around a borehole.

  3. Seismic monitoring with a shallow borehole-geophone array at the COSC-1 drilling site

    NASA Astrophysics Data System (ADS)

    Schmelzbach, Cedric; Juhlin, Christopher; Giese, Rüdiger; Malin, Peter; Maurer, Hansruedi; Robertsson, Johan; Reiser, Fabienne; Greenhalgh, Stewart; Bärlocher, Christoph

    2015-04-01

    An array of borehole geophones was installed at the COSC-1 drilling site with the aim to continuously monitor seismic signals originating from controlled source experiments, ambient and drill-bit noise as well as natural seismicity. These seismic data can provide detailed information on the structure of the elastic parameter distribution around the COSC-1 borehole at the 10's to 100's of meter scale. For this monitoring experiment, nine three-component seismic sensors were deployed in the depth interval from 20 to 100 m below the surface in two shallow boreholes next to the COSC-1 main borehole and the output signals were continuously recorded over five months from late April to late September 2014. This time period includes a short 'quiet' time interval just before the start of the drilling in May, the entire drilling activities until August, and the subsequent vertical-seismic profiling (VSP) experiment in September. In total, around 2.6 terabytes of seismic data were recorded and will be jointly analyzed with other seismic data and supporting geological information. The seismic-data analysis of the five-month records will focus on several aspects. For example, we will explore, what information on the geological structure along the main borehole can be extracted by continuously listening to the drill-bit noise. The data acquired with the shallow monitoring array during the VSP experiments complements the VSP recordings with a geophone chain located at greater depths in the main borehole. The VSP data recorded with the monitoring array can aid in, for example, the seismic-reflection and seismic-refraction processing to image the shallow structure around the borehole (top most few 100's of meters). In addition, recordings of ambient noise from the borehole array may provide information on the shallow subsurface structure at the COSC-1 drilling site. Finally, signals from local earthquakes may be identified, providing information on the natural seismicity of the

  4. Quantification of Natural Gradient Flow Using Active Fiber Optic DTS in Sealed Boreholes

    NASA Astrophysics Data System (ADS)

    Coleman, T. I.; Parker, B. L.; Munn, J. D.; Chalari, A.; Mondanos, M.

    2014-12-01

    Temperature has been used for many years to characterize flow in fractured rock systems. Fiber-optic distributed temperature sensing (DTS) was adopted by the oil/gas industry over two decades ago for monitoring processes in deep fractured rock environments. Improvements in DTS system resolutions, methodology advancements, and improved data processing techniques have caused recent popularity for shallow fractured rock hydrogeologic applications. A powerful advance in DTS methodology is the use of response data collected during active cable heating. When applied to borehole applications active heating creates a thermal disequilibrium in the aquifer system that enhances the detection of groundwater flow. Active DTS has been applied to open borehole environments; however, characterization methods based on open borehole measurements are limited in that only the effects of unnatural flow (i.e. vertical cross-connection and redistribution of flow creating local, induced flows) can be observed. To characterize natural gradient flow processes borehole effects need to be minimized.The literature shows borehole sealing using flexible impervious fabric liners creates a static water column in the well that eliminates the negative effects of cross-connection. Measurements in this sealed environment have been shown by others to be representative of natural gradient flow conditions, rather than the conditions created by the borehole short circuiting units or fractures with varying hydraulic head. A new method for flow system characterization using active DTS in sealed boreholes has been developed with excellent prospects for quantitation of natural gradient groundwater fluxes and related hydraulic properties. This project demonstrates the utility of using an analytical solution for calculating apparent thermal conductivities and natural gradient groundwater fluxes at depth-discrete intervals observed continuously along a borehole using active DTS. Groundwater flux data can then be

  5. Applications of a downhole programmable microprocessor for a geothermal borehole inspection tool

    SciTech Connect

    Jermance, R.L.; Moore, T.K.; Archuleta, J.; Hinz, K.

    1987-01-01

    The high-temperature scanning borehole inspection system is currently being developed jointly by the Los Alamos National Laboratory (LANL) and Westfalische Berggewerkschaftskasse (WBK) of West Germany. The downhole instrument is a digital televiewer that utilized a microprocessor to digitize, process and transmit the acoustic information to the surface acquisition and control system. The primary operation of the downhole acoustic assembly uses a piezoelectric crystal acting as a receiver-transmitter which is mounted on the rotating head. The crystal emits a burst of acoustic energy that propagates through the borehole fluid with a portion of the energy reflected by the borehole wall back to the crystal. The time of travel and the amplitude of the reflected signal are conditioned by the microprocessor and transmitted along with other pertinent data to the surface data processing center. This instrument has been designed specifically for use in geothermal borehole environments to determine the location of fractures intersecting the borehole and provide information concerning overall borehole conditions. It may also be used for definitive casing inspection. The instrument essentially eliminates operator interaction for downhole control and simplifies assembly and maintenance procedures.

  6. Development of the Borehole 2-D Seismic Tomography Software Using MATLAB

    NASA Astrophysics Data System (ADS)

    Nugraha, A. D.; Syahputra, A.; Fatkhan, F.; Sule, R.; Hendriyana, A.

    2011-12-01

    We developed 2-D borehole seismic tomography software that we called "EARTHMAX-2D TOMOGRAPHY" to image subsurface physical properties including P-wave and S-wave velocities between two boreholes. We used Graphic User Interface (GUI) facilities of MATLAB programming language to create the software. In this software, we used travel time of seismic waves from source to receiver by using pseudo bending ray tracing method as input for tomography inversion. We can also set up a model parameterization, initial velocity model, ray tracing processes, conduct borehole seismic tomography inversion, and finally visualize the inversion results. The LSQR method was applied to solve of tomography inversion solution. We provided the Checkerboard Test Resolution (CTR) to evaluate the model resolution of the tomography inversion. As validation of this developed software, we tested it for geotechnical purposes. We then conducted data acquisition in the "ITB X-field" that is located on ITB campus. We used two boreholes that have a depth of 39 meters. Seismic wave sources were generated by impulse generator and sparker and then they were recorded by borehole hydrophone string type 3. Later on, we analyzed and picked seismic arrival time as input for tomography inversion. As results, we can image the estimated weathering layer, sediment layer, and basement rock in the field depicted by seismic wave structures. More detailed information about the developed software will be presented. Keywords: borehole, tomography, earthmax-2D, inversion

  7. Four-Component Borehole Strain Meter: Observation and in-situ Calibration

    NASA Astrophysics Data System (ADS)

    Qiu, Z.; Shi, Y.; Ouyang, Z.

    2004-12-01

    Borehole strain meters are a key component of some important geo-scientific projects, such as PBO, to monitor seismic and aseismic tectonic strain phenomena. Observation using a four-component borehole strain meter, namely Ouyang borehole strain meter, has been kept continuous at Changping station, Beijing, for years. The plane strain changes are obtained at the depth of 120m and from 4 horizontal measurements, spaced 45 degrees apart, of the radial deformation of the borehole in which the instrument is installed. The challenge is that, according to the theory of elasticity, the sum of any two measurements perpendicular to each other should be the same as related to areal strain. The observation at Changping agrees pretty well with this rule and, with a relative in-situ calibration correction to the transducer factors based on the rule, the agreements can be yet much improved. Since the transducers were arranged well in the orientations of North, East, North West and North East, respectively, instrument shear strains can be simply given as the differences of the two correspondent perpendicular measurements. By applying theoretic Earth strain tide as a reference signal, in-situ absolute calibration can be carried out and the proportionality constants c and d, and the orientation error as well, can be calculated separately. Fore-component borehole strain meter has the advantages of giving more accurate and more reliable data for Earth strain and of easier processing as compared to three-component borehole strain meter.

  8. Evaluation of borehole geophysical logs at the Sharon Steel Farrell Works Superfund site, Mercer County, Pennsylvania

    USGS Publications Warehouse

    McAuley, Steven D.

    2004-01-01

    On April 14?15, 2003, geophysical logging was conducted in five open-borehole wells in and adjacent to the Sharon Steel Farrell Works Superfund Site, Mercer County, Pa. Geophysical-logging tools used included caliper, natural gamma, single-point resistance, fluid temperature, and heatpulse flowmeter. The logs were used to determine casing depth, locate subsurface fractures, identify water-bearing fractures, and identify and measure direction and rate of vertical flow within the borehole. The results of the geophysical logging were used to determine the placement of borehole screens, which allows monitoring of water levels and sampling of water-bearing zones so that the U.S. Environmental Protection Agency can conduct an investigation of contaminant movement in the fractured bedrock. Water-bearing zones were identified in three of five boreholes at depths ranging from 46 to 119 feet below land surface. Borehole MR-3310 (MW03D) showed upward vertical flow from 71 to 74 feet below land surface to a receiving zone at 63-68 feet below land surface, permitting potential movement of ground water, and possibly contaminants, from deep to shallow zones. No vertical flow was measured in the other four boreholes.

  9. Permeameter studies of water flow through cement and clay borehole seals in granite, basalt and tuff

    SciTech Connect

    South, D.L.; Daemen, J.J.K.

    1986-10-01

    Boreholes near a repository must be sealed to prevent rapid migration of radionuclide-contaminated water to the accessible environment. The objective of this research is to assess the performance of borehole seals under laboratory conditions, particularly with regard to varying stress fields. Flow through a sealed borehole is compared with flow through intact rock. Cement or bentonite seals have been tested in granite, basalt, and welded tuff. The main conclusion is that under laboratory conditions, existing commercial materials can form high quality seals. Triaxial stress changes about a borehole do not significantly affect seal performance if the rock is stiffer than the seal. Temperature but especially moisture variations (drying) significantly degrade the quality of cement seals. Performance partially recovers upon resaturation. A skillfully sealed borehole may be as impermeable as the host rock. Analysis of the influence of relative seal-rock permeabilities shows that a plug with permeability one order of magnitude greater than that of the rock results in a flow increase through the hole and surrounding rock of only 1-1/2 times compared to the undisturbed rock. Since a borehole is only a small part of the total rock mass, the total effect is even less pronounced. The simplest and most effective way to decrease flow through a rock-seal system is to increase the seal length, assuming it can be guaranteed that no dominant by-pass flowpath through the rock exists.

  10. Repeat temperature measurements in boreholes from northwestern Utah link ground and air temperature changes at the decadal time scale

    NASA Astrophysics Data System (ADS)

    Davis, Michael G.; Harris, Robert N.; Chapman, David S.

    2010-05-01

    Borehole temperature profiles provide a record of ground surface temperature (GST) change at the decadal to centennial time scale. GST histories reconstructed from boreholes are particularly useful in climate reconstruction if changes in GST and surface air temperature (SAT) are effectively coupled at decadal and longer time periods and it can be shown that borehole temperatures respond faithfully to surface temperature changes. We test these assumptions using three boreholes in northwestern Utah that have been repeatedly logged for temperature over a time span of 29 years. We report 13 temperature-depth logs at the Emigrant Pass Observatory borehole GC-1, eight at borehole SI-1 and five at borehole DM-1, acquired between 1978 and 2007. Systematic subsurface temperature changes of up to 0.6°C are observed over this time span in the upper sections of the boreholes; below approximately 100 m any temperature transients are within observational noise. We difference the temperature logs to highlight subsurface transients and to remove any ambiguity resulting from steady state source of curvature. Synthetic temperature profiles computed from SAT data at nearby meteorological stations reproduce both the amplitude and pattern of the transient temperature observations, fitting the observations to within 0.03°C or better. This observational confirmation of the strong coupling between surface temperature change and borehole temperature transients lends further support to the use of borehole temperatures to complement SAT and multiproxy reconstructions of climate change.

  11. Evaluation of fiber optic distributed temperature sensing in characterization of borehole fractures: a laboratory experiment

    NASA Astrophysics Data System (ADS)

    Roshan, Hamid; Queen, Gabriella; Andersen, Martin S.; Acworth, Ian R.

    2014-05-01

    Mapping of bedrock fractures in boreholes and the contribution of main fractures to groundwater flow have long been a significant challenge in the geosciences field. Advanced techniques such as formation micro-imager (FMI) are able to detect the location of downhole fractures and to characterise their properties, such as aperture and orientation. However, these techniques have not been designed to estimate flow from individual fractures and are, in many cases, economically unjustified. In recent years, Fiber Optic Distributed Temperature Sensing (DTS) has been used to detect the location of active fractures and their contribution to groundwater flow, however; the technique has not been evaluated in a controlled environment and the limitations of the technique have yet to be identified. For that reason, a fractured rock borehole with active fractures was simulated in a lab-scale experiment. A structure with two fractures was built in a cylindrical configuration around the borehole and placed inside a cylindrical reservoir. A coiled fibre optic cable was inserted in the centre of the borehole. In order to simulate groundwater interactions, water with distinct temperature was added to the reservoir. During tests, water from the borehole in the centre was pumped out of the system, while the fiber optic DTS recorded the temperature response. The location of the artificial fractures and their contribution to the flow rate were determined through analysis of the measured temperature data. The results show that for the experimental setup, the locations of the fractures are most easily detected from the early times of the temperature response. As the water with different temperature from the reservoir flows into the borehole, it changes the borehole temperature starting from around the fracture locations. With time, this anomaly disappears and the borehole temperature reaches a new steady state condition. The contribution of each fracture to the pumping flow can then be

  12. Cyclic high temperature heat storage using borehole heat exchangers

    NASA Astrophysics Data System (ADS)

    Boockmeyer, Anke; Delfs, Jens-Olaf; Bauer, Sebastian

    2016-04-01

    The transition of the German energy supply towards mainly renewable energy sources like wind or solar power, termed "Energiewende", makes energy storage a requirement in order to compensate their fluctuating production and to ensure a reliable energy and power supply. One option is to store heat in the subsurface using borehole heat exchangers (BHEs). Efficiency of thermal storage is increasing with increasing temperatures, as heat at high temperatures is more easily injected and extracted than at temperatures at ambient levels. This work aims at quantifying achievable storage capacities, storage cycle times, injection and extraction rates as well as thermal and hydraulic effects induced in the subsurface for a BHE storage site in the shallow subsurface. To achieve these aims, simulation of these highly dynamic storage sites is performed. A detailed, high-resolution numerical simulation model was developed, that accounts for all BHE components in geometrical detail and incorporates the governing processes. This model was verified using high quality experimental data and is shown to achieve accurate simulation results with excellent fit to the available experimental data, but also leads to large computational times due to the large numerical meshes required for discretizing the highly transient effects. An approximate numerical model for each type of BHE (single U, double U and coaxial) that reduces the number of elements and the simulation time significantly was therefore developed for use in larger scale simulations. The approximate numerical model still includes all BHE components and represents the temporal and spatial temperature distribution with a deviation of less than 2% from the fully discretized model. Simulation times are reduced by a factor of ~10 for single U-tube BHEs, ~20 for double U-tube BHEs and ~150 for coaxial BHEs. This model is then used to investigate achievable storage capacity, injection and extraction rates as well as induced effects for

  13. Characterization of Vadose Zone Sediments Below the T Tank Farm: Boreholes C4104, C4105, 299-W10-196, and RCRA Borehole 299-W11-39

    SciTech Connect

    Serne, R. Jeffrey; Bjornstad, Bruce N.; Horton, Duane G.; Lanigan, David C.; Schaef, Herbert T.; Lindenmeier, Clark W.; Lindberg, Michael J.; Clayton, Ray E.; Legore, Virginia L.; Geiszler, Keith N.; Baum, Steven R.; Valenta, Michelle M.; Kutnyakov, Igor V.; Vickerman, Tanya S.; Orr, Robert D.; Brown, Christopher F.

    2008-09-11

    This report was revised in September 2008 to remove acid-extractable sodium data from Tables 4.8, 4.28, and 4.52. The sodium data was removed due to potential contamination introduced during the acid extraction process. The rest of the text remains unchanged from the original report issued in September 2004. The overall goal of the Tank Farm Vadose Zone Project, led by CH2M HILL Hanford Group, Inc., is to define risks from past and future single-shell tank farm activities at Hanford. To meet this goal, CH2M HILL Hanford Group, Inc. tasked scientists from Pacific Northwest National Laboratory to perform detailed analyses on vadose zone sediments from within Waste Management Area (WMA) T-TX-TY. This report is the second of two reports written to present the results of these analyses. Specifically, this report contains all the geologic, geochemical, and selected physical characterization data collected on vadose zone sediment recovered from boreholes C4104 and C4105 in the T Tank Farm, and from borehole 299-W-11-39 installed northeast of the T Tank Farm. Finally, the measurements on sediments from borehole C4104 are compared with a nearby borehole drilled in 1993, 299- W10-196, through the tank T-106 leak plume.

  14. Borehole dilatometer installation, operation, and maintenance at sites in Hawaii

    USGS Publications Warehouse

    Myren, G.D.; Johnston, M.J.S.; Mueller, R.J.

    2006-01-01

    In response to concerns about the potential hazard of Mauna Loa volcano in Hawaii, the USGS began efforts in 1998 to add four high-resolution borehole sites. Located at these sites are; strainmeters, tiltmeters, seismometers, accelerometers and other instrumentation. These instruments are capable of providing continuous monitoring of the magma movement under Mauna Loa. Each site was planned to provide multi-parameter monitoring of volcanic activity. In June of 2000, a contract was let for the core drilling of three of these four sites. They are located at Hokukano (west side of Mauna Loa) above Captain Cook, Hawaii; at Mauna Loa Observatory (11,737 feet near the summit), and at Mauna Loa Strip Road (east side of Mauna Loa). Another site was chosen near Halema'uma u' and Kilauea's summit, in the Keller deep well. (See maps). The locations of these instruments are shown in Figure 1 with their latitude and longitude in Table 1. The purpose of this network is to monitor crustal deformation associated with volcanic intrusions and earthquakes on Mauna Loa and Kilauea volcanoes. This report describes the methods used to locate sites, install dilatometers, other instrumentation, and telemetry. We also provide a detailed description of the electronics used for signal amplification and telemetry, plus techniques used for instrument maintenance. Instrument sites were selected in regions of hard volcanic rock where the expected signals from magmatic activity were calculated to be a maximum and the probability of earthquakes with magnitude 4 or greater is large. At each location, an attempt was made to separate tectonic and volcanic signals from known noise sources for each instrument type.

  15. Multiple-aquifer characterization from single borehole extensometer records.

    PubMed

    Pope, Jason P; Burbey, Thomas J

    2004-01-01

    Measurement and analysis of aquifer-system compaction have been used to characterize aquifer and confining unit properties when other techniques such as flow modeling have been ineffective at adequately quantifying storage properties or matching historical water levels in environments experiencing land subsidence. In the southeastern coastal plain of Virginia, high-sensitivity borehole pipe extensometers were used to measure 24.2 mm of total compaction at Franklin from 1979 through 1995 (1.5 mm/year) and 50.2 mm of total compaction at Suffolk from 1982 through 1995 (3.7 mm/year). Analysis of the extensometer data reveals that the small rates of aquifer-system compaction appear to be correlated with withdrawals of water from confined aquifers. One-dimensional vertical compaction modeling indicates measured compaction is the result of nonrecoverable hydrodynamic consolidation of the fine-grained confining units and interbeds, as well as recoverable compaction and expansion of coarse-grained aquifer units. The calibrated modeling results indicate that nonrecoverable specific storage values decrease with depth and range from 1.5 x 10(-5)/m for aquifer units to 1.5 x 10(-4)/m for confining units and interbeds. The aquifer and Potomac system recoverable specific storage values were all estimated to be 4.5 x 10(-6)/m, while the confining units and interbeds had values of 6.0 x 10(-6)/m. The calibrated vertical hydraulic conductivity values of the confining units and interbeds ranged from 6.6 x 10(-4) m/year to 2.0 x 10(-3) m/year. These parameter values will be useful in future management and modeling of ground water in the Virginia Coastal Plain. PMID:14763616

  16. Enhanced Observations with Borehole Seismographic Networks. The Parkfield, California Experiment

    SciTech Connect

    McEvilly, T.V.; Karageorgi, E.; Nadeau, R.M.

    1997-01-02

    The data acquired in the Parkfield, California experiment are unique and they are producing results that force a new look at some conventional concepts and models for earthquake occurrence and fault-zone dynamics. No fault-zone drilling project can afford to neglect installation of such a network early enough in advance of the fault-zone penetration to have a well-defined picture of the seismicity details (probably at least 1000 microearthquakes--an easy 2-3 year goal for the M<0 detection of a borehole network). Analyses of nine years of Parkfield monitoring data have revealed significant and unambiguous departures from stationarity both in the seismicity characteristics and in wave propagation details within the S-wave coda for paths within the presumed M6 nucleation zone where we also have found a high Vp/Vs anomaly at depth, and where the three recent M4.7-5.0 sequences have occurred. Synchronous changes well above noise levels have also been seen among several independent parameters, including seismicity rate, average focal depth, S-wave coda velocities, characteristic sequence recurrence intervals, fault creep and water levels in monitoring wells. The significance of these findings lies in their apparent coupling and inter-relationships, from which models for fault-zone process can be fabricated and tested with time. The more general significance of the project is its production of a truly unique continuous baseline, at very high resolution, of both the microearthquake pathology and the subtle changes in wave propagation.

  17. Borehole geophysics applied to ground-water investigations

    USGS Publications Warehouse

    Keys, W.S.

    1990-01-01

    The purpose of this manual is to provide hydrologists, geologists, and others who have the necessary background in hydrogeology with the basic information needed to apply the most useful borehole-geophysical-logging techniques to the solution of problems in ground-water hydrology. Geophysical logs can provide information on the construction of wells and on the character of the rocks and fluids penetrated by those wells, as well as on changes in the character of these factors over time. The response of well logs is caused by petrophysical factors, by the quality, temperature, and pressure of interstitial fluids, and by ground-water flow. Qualitative and quantitative analysis of analog records and computer analysis of digitized logs are used to derive geohydrologic information. This information can then be extrapolated vertically within a well and laterally to other wells using logs. The physical principles by which the mechanical and electronic components of a logging system measure properties of rocks, fluids, and wells, as well as the principles of measurement, must be understood if geophysical logs are to be interpreted correctly. Plating a logging operation involves selecting the equipment and the logs most likely to provide the needed information. Information on well construction and geohydrology is needed to guide this selection. Quality control of logs is an important responsibility of both the equipment operator and the log analyst and requires both calibration and well-site standardization of equipment. Logging techniques that are widely used in ground-water hydrology or that have significant potential for application to this field include spontaneous potential, resistance, resistivity, gamma, gamma spectrometry, gamma-gamma, neutron, acoustic velocity, acoustic televiewer, caliper, and fluid temperature, conductivity, and flow. The following topics are discussed for each of these techniques: principles and instrumentation, calibration and standardization

  18. Description of borehole geophysical and geologist logs, Berks Sand Pit Superfund Site, Longswamp Township, Berks County, Pennsylvania

    USGS Publications Warehouse

    Low, Dennis J.; Conger, Randall W.

    2003-01-01

    Between October 2002 and January 2003, geophysical logging was conducted in six boreholes at the Berks Sand Pit Superfund Site, Longswamp Township, Berks County, Pa., to determine (1) the waterproducing zones, water-receiving zones, zones of vertical borehole flow, orientation of fractures, and borehole and casing depth; and (2) the hydraulic interconnection between the six boreholes and the site extraction well. The boreholes range in depth from 61 to 270 feet. Geophysical logging included collection of caliper, natural-gamma, single-point-resistance, fluid-temperature, fluid-flow, and acoustic-televiewer logs. Caliper and acoustic-televiewer logs were used to locate fractures, joints, and weathered zones. Inflections on fluid-temperature and single-point-resistance logs indicated possible water-bearing fractures, and flowmeter measurements verified these locations. Single-point-resistance, natural-gamma, and geologist logs provided information on stratigraphy. Flowmeter measurements were conducted while the site extraction well was pumping and when it was inactive to determine the hydraulic connections between the extraction well and the boreholes. Borehole geophysical logging and heatpulse flowmetering indicate active flow in the boreholes. Two of the boreholes are in ground-water discharge areas, two boreholes are in ground-water recharge areas, and one borehole is in an intermediate regime. Flow was not determined in one borehole. Heatpulse flowmetering, in conjunction with the geologist logs, indicates highly weathered zones in the granitic gneiss can be permeable and effective transmitters of water, confirming the presence of a two-tiered ground-water-flow system. The effort to determine a hydraulic connection between the site extraction well and six logged boreholes was not conclusive. Three boreholes showed decreases in depth to water after pumping of the site extraction well; in two boreholes, the depth to water increased. One borehole was cased its

  19. Device and method for imaging of non-linear and linear properties of formations surrounding a borehole

    DOEpatents

    Johnson, Paul A; Tencate, James A; Le Bas, Pierre-Yves; Guyer, Robert; Vu, Cung Khac; Skelt, Christopher

    2013-11-05

    In some aspects of the disclosure, a method and an apparatus is disclosed for investigating material surrounding the borehole. The method includes generating a first low frequency acoustic wave within the borehole, wherein the first low frequency acoustic wave induces a linear and a nonlinear response in one or more features in the material that are substantially perpendicular to a radius of the borehole; directing a first sequence of high frequency pulses in a direction perpendicularly with respect to the longitudinal axis of the borehole into the material contemporaneously with the first acoustic wave; and receiving one or more second high frequency pulses at one or more receivers positionable in the borehole produced by an interaction between the first sequence of high frequency pulses and the one or more features undergoing linear and nonlinear elastic distortion due to the first low frequency acoustic wave to investigate the material surrounding the borehole.

  20. Reference design and operations for deep borehole disposal of high-level radioactive waste.

    SciTech Connect

    Herrick, Courtney Grant; Brady, Patrick Vane; Pye, Steven; Arnold, Bill Walter; Finger, John Travis; Bauer, Stephen J.

    2011-10-01

    A reference design and operational procedures for the disposal of high-level radioactive waste in deep boreholes have been developed and documented. The design and operations are feasible with currently available technology and meet existing safety and anticipated regulatory requirements. Objectives of the reference design include providing a baseline for more detailed technical analyses of system performance and serving as a basis for comparing design alternatives. Numerous factors suggest that deep borehole disposal of high-level radioactive waste is inherently safe. Several lines of evidence indicate that groundwater at depths of several kilometers in continental crystalline basement rocks has long residence times and low velocity. High salinity fluids have limited potential for vertical flow because of density stratification and prevent colloidal transport of radionuclides. Geochemically reducing conditions in the deep subsurface limit the solubility and enhance the retardation of key radionuclides. A non-technical advantage that the deep borehole concept may offer over a repository concept is that of facilitating incremental construction and loading at multiple perhaps regional locations. The disposal borehole would be drilled to a depth of 5,000 m using a telescoping design and would be logged and tested prior to waste emplacement. Waste canisters would be constructed of carbon steel, sealed by welds, and connected into canister strings with high-strength connections. Waste canister strings of about 200 m length would be emplaced in the lower 2,000 m of the fully cased borehole and be separated by bridge and cement plugs. Sealing of the upper part of the borehole would be done with a series of compacted bentonite seals, cement plugs, cement seals, cement plus crushed rock backfill, and bridge plugs. Elements of the reference design meet technical requirements defined in the study. Testing and operational safety assurance requirements are also defined. Overall

  1. Simulation of poro-elastic seismic wave propagation in axis-symmetric open and cased boreholes

    NASA Astrophysics Data System (ADS)

    Sidler, R.; Holliger, K.; Carcione, J. M.

    2012-04-01

    Geophysical constraints with regard to permeability are particularly valuable because they tend to bridge the gap in terms of spatial coverage and resolution that exists for corresponding conventional hydrological techniques, such as laboratory measurements and pumping tests. A prominent geophysical technique for estimating the permeability along boreholes is based on the inversion of Stoneley waves. This technique is by now well established for the hydrocarbon exploration purposes, where the corresponding measurements are carried out in open boreholes and in consolidated sediments. Conversely, the sensitivity and potential of Stoneley-wave-based permeability estimates for shallow hydrological applications is still largely unknown. As opposed to their counterparts in hydrocarbon exploration, shallow boreholes tend to be located in unconsolidated alluvial sediments and hence tend to be cased with perforated or non-perforated plastic tubes. The corresponding effects on Stoneley wave attenuation and its sensitivity to in situ permeability of the formation behind the casing are largely unknown and can only be assessed through realistic modeling. To this end, we present a pseudo-spectral numerical modeling code in cylindrical coordinates that allows for the accurate simulation of complex seismic wave propagation phenomena in realistic surficial borehole environments. We employ Fourier operators along the borehole axis and Chebyshev operators in the radial direction. The Chebyshev operators allows for the use of individual computational sub-domains for the fluid-filled, acoustic borehole, the poro-elastic casing, and the poro-elastic formation surrounding the borehole. These computational sub-domains are connected through a domain decomposition method, which is needed to correctly account for the governing boundary conditions and also allows for substantially enhancing the computational efficiency of our simulations.

  2. Monitoring borehole flow dynamics using heated fiber optic DTS in a fractured rock aquifer

    NASA Astrophysics Data System (ADS)

    Coleman, Thomas; Chalari, Athena; Parker, Beth; Munn, Jonathan; Mondanos, Michael

    2014-05-01

    Temperature profiles in fractured rock have long been used to identify and characterize flow in the rock formation or in the borehole. Fiber optic distributed temperature sensing (DTS) is a tool that allows for continuous borehole temperature profiling in space and time. Recent technology advancements in the spatial, temperature, and temporal resolutions of DTS systems now allow temperature profiling methods to offer improved insight into fractured rock hydrogeologic processes. An innovation in shallow borehole temperature logging utilizes high resolution DTS temperature profiling in sealed and heated boreholes to identify fractures with natural gradient groundwater flow by creating a thermal disequilibrium and monitoring the temperature response. This technique can also be applied to open well conditions to monitor borehole flow distributions caused by hydraulic perturbations such as pumping or injection. A field trial was conducted in Guelph, Ontario, Canada to determine the capabilities of heated DTS for flow monitoring in both open and sealed wells. Intelligent distributed acoustic sensing (iDAS) measurements for vertical seismic profiling were carried out simultaneously with the DTS measurements to assist with characterization of the fractured aquifer system. DTS heat pulse tests were conducted in a single well under sealed conditions for natural gradient flow measurements and open conditions to monitor flow distributions during injection and pumping. The results of these tests indicate that borehole flow distributions can be monitored using DTS and that active heating allows for further information about the hydrogeologic system to be determined than from the passive measurements alone. Depth-continuous transmissivity data from the borehole correlate well with the DTS testing results. DTS based flow monitoring systems may be useful for monitoring transient production and injection processes for a variety of applications including groundwater remediation

  3. Vadose Zone Characterization and Monitoring Beneath Waste Disposal Pits Using Horizontal Boreholes

    NASA Astrophysics Data System (ADS)

    McLin, S. G.; Newman, B. D.; Broxton, D. E.

    2004-12-01

    Vadose zone characterization and monitoring immediately below landfills using horizontal boreholes is an emerging technology. However, this topic has received little attention in the peer-reviewed literature. The value of this approach is that activities are conducted below the waste, providing clear and rapid verification of containment. Here we report on two studies that examined the utility of horizontal boreholes for environmental characterization and monitoring under radioactive waste disposal pits. Both studies used core sample analyses to determine the presence of various radionuclides, organics, or metals. At one borehole site, water content and pore-water chloride concentrations were also used to interpret vadose zone behavior. At another site, we examined the feasibility of using flexible membrane liners in uncased boreholes for periodic monitoring. For this demonstration, these retrievable liners were air-injected into boreholes on multiple occasions carrying different combinations of environmental surveillance equipment. Instrument packages included a neutron logging device to measure volumetric water at regular intervals, high-absorbency collectors that wicked available water from borehole walls, or vent tubes that were used to measure air permeability and collect air samples. The flexible and retrievable liner system was an effective way to monitor water content and collect air permeability data. The high-absorbency collectors were efficient at extracting liquid water for contaminant analyses even at volumetric water contents below 10 percent, and revealed vapor-phase tritium migration at one disposal pit. Both demonstration studies proved that effective characterization and periodic monitoring in horizontal boreholes is both feasible and adaptable to many waste disposal problems and locations.

  4. Borehole Flow and Contaminant Distribution in Sedimentary-Bedrock Recharge Areas

    NASA Astrophysics Data System (ADS)

    Williams, J. H.

    2005-12-01

    Borehole flow and contaminant distribution has been investigated at a series of VOC-impacted sites in New York, New Jersey, and California that are recharge areas for sandstone, mudstone, and carbonate-bedrock aquifers. At the investigated sites, downward flow occurs through open boreholes that intersect shallow and deep fracture zones having differing hydraulic heads. Detected flows span the dynamic measurement range of 0.03 to 30 liters per minute for high-resolution flowmeters that employ heat-pulse and electromagnetic technologies. Estimated head differences between shallow and deep zones from model simulation of ambient and stressed flow profiles range from one to more than 10 meters, and are in close agreement with differences measured between zones isolated by straddle packers or by multiple-depth well completions. The presence of boreholes that are open temporarily during installation or completed as open holes impacts contaminant distribution and adversely affects the results of ground-water quality sampling programs. In boreholes open to shallow contaminated zones and deep non-contaminated zones, ambient flow diverts dissolved VOCs from the shallow zones down the borehole and into the deep zones. Samples obtained from such boreholes at purge and sampling rates less than the ambient downward flow represent the water quality of the shallow zones regardless of the depths where samples are collected. This can lead to the erroneous interpretation of a deep contaminant plume. Sampling by use of straddle-packer systems with low purge and sampling rates and short-term zone isolation also may indicate deep contamination because of inadequate flushing. Even in deep zones isolated by multiple-depth completions, elevated VOC concentrations linger for many months because of contaminant diffusion into and out of the bedrock matrix. Conversely, in boreholes open to shallow non-contaminated zones and deep contaminated zones, samples collected at rates less than the

  5. Evolution of stress-induced borehole breakout in inherently anisotropic rock: Insights from discrete element modeling

    NASA Astrophysics Data System (ADS)

    Duan, K.; Kwok, C. Y.

    2016-04-01

    The aim of this study is to better understand the mechanisms controlling the initiation, propagation, and ultimate pattern of borehole breakouts in shale formation when drilled parallel with and perpendicular to beddings. A two-dimensional discrete element model is constructed to explicitly represent the microstructure of inherently anisotropic rocks by inserting a series of individual smooth joints into an assembly of bonded rigid discs. Both isotropic and anisotropic hollow square-shaped samples are generated to represent the wellbores drilled perpendicular to and parallel with beddings at reduced scale. The isotropic model is validated by comparing the stress distribution around borehole wall and along X axis direction with analytical solutions. Effects of different factors including the particle size distribution, borehole diameter, far-field stress anisotropy, and rock anisotropy are systematically evaluated on the stress distribution and borehole breakout propagation. Simulation results reveal that wider particle size distribution results in the local stress perturbations which cause localization of cracks. Reduction of borehole diameter significantly alters the crack failure from tensile to shear and raises the critical pressure. Rock anisotropy plays an important role on the stress state around wellbore which lead to the formation of preferred cracks under hydrostatic stress. Far-field stress anisotropy plays a dominant role in the shape of borehole breakout when drilled perpendicular to beddings while a secondary role when drilled parallel with beddings. Results from this study can provide fundamental insights on the underlying particle-scale mechanisms for previous findings in laboratory and field on borehole stability in anisotropic rock.

  6. Stress Analysis in Boreholes Drag Bh and Leknes Bh, Nordland, North Norway

    NASA Astrophysics Data System (ADS)

    Ask, Maria V. S.; Ask, Daniel; Elvebakk, Harald; Olesen, Odleiv

    2015-07-01

    Nordland in northern Norway is characterized by enhanced seismicity and uplift that makes it the most tectonically active area in Norway. This study is part of a project entitled Neotectonics in Norway—Implications for Petroleum Exploration, which aims at enhancing the understanding of regional-scale stress and strain dynamics in Nordland, and to impact risk and hazard assessment and petroleum exploration. This paper attempts to constrain the orientation of in situ horizontal stress using high-resolution acoustic televiewer logging data. The Geological Survey of Norway has drilled two 0.8 km deep near-vertical boreholes on opposite sides of the Vestfjord in Nordland, the open bight of sea that separates the Lofoten archipelago from the Norwegian mainland. Both boreholes are drilled just North of 68°N, with borehole Leknes Bh located near the geographic center of the Lofoten archipelago, and borehole Drag Bh located on approximate equal distance from the shore, on the Norwegian mainland. The results of this study are in most practical aspects inconclusive, mainly due to poor data quality. The data analysis has revealed erroneously high-borehole diameter, and several artifacts such as eccentric logging tool, rugose borehole wall, spiral hole, tool sticking and missing data. Four intervals with passive in situ stress indicators (borehole breakout and drilling-induced fractures) were found in travel time and amplitude images of the Drag Bh, suggesting approximately N-S orientation of maximum horizontal stress. However, these intervals are not found in cross-plots. Either result yields the lowest World Stress Map ranking quality (E).

  7. Field Demonstration of Slim-hole Borehole Nuclear Magnetic Resonance (NMR) Logging Tool for Groundwater Investigations

    NASA Astrophysics Data System (ADS)

    Walsh, D.; Turner, P.; Frid, I.; Shelby, R.; Grunewald, E. D.; Magnuson, E.; Butler, J. J.; Johnson, C. D.; Cannia, J. C.; Woodward, D. A.; Williams, K. H.; Lane, J. W.

    2010-12-01

    Nuclear magnetic resonance (NMR) methods provide estimates of free and bound water content and hydraulic conductivity, which are critically important for groundwater investigations. Borehole NMR tools have been available and widely used in the oil industry for decades, but only recently have been designed for small diameter boreholes typical of groundwater investigations. Field tests of an 89-mm-diameter borehole NMR logging tool are presented. This borehole NMR logging tool was developed for economical NMR logging of 100- to 200-mm-diameter boreholes, and specifically for characterizing hydraulic properties in the top 200 m of the subsurface. The tool has a vertical resolution of 0.5 m, a minimum echo spacing of 2.0 ms, and a radial depth of investigation of 178 to 203 mm, which typically is beyond the annulus of observation wells. It takes about 15 minutes to collect a data sample for each 0.5-m interval. The borehole NMR logging tool was field tested during spring 2010, in PVC-cased wells at sites in East Haddam and Storrs, Connecticut; Cape Cod, Massachusetts; Lexington, Nebraska; Lawrence, Kansas; and Rifle, Colorado. NMR logging yielded estimates of bound water, free water, and total-water content, as well as continuous distributions of water content versus transverse relaxation time (T2) at all depth levels. The derived water-content data were compared to the available ground-truth hydrogeologic data from each well, including drilling logs, neutron and other geophysical logs, and direct measurements of hydraulic conductivity. The results indicate that the borehole NMR logging tool provides information on porosity, pore-size distribution, and estimated hydraulic conductivity that cannot be duplicated by any other single geophysical logging tool.

  8. New data on the U-Pb (SHRIMP II) age of zircons from aluminous gneisses of the Archean Kola Group of the Baltic shield and the problem of their interpretation

    NASA Astrophysics Data System (ADS)

    Myskova, T. A.; Mil'kevich, R. I.; Glebovitskii, V. A.; L'vov, P. A.; Berezhnaya, N. G.

    2015-07-01

    New data on the U-Pb (SHRIMP II) age are obtained for aluminous gneisses of the Kola Group of the Baltic shield. Gneisses are typically ascribed to metasedimentary rocks with detrital zircons. Our work interprets the isotopic data based on the magmatic (tonalite) origin of gneisses and zircon that was established from study of the morphology and geochemistry of zircons. The age of crystallization of the protolith is 2.9 Ga. The existence of two stages of Archean granulite metamorphism is confirmed: an early stage (2.9 Ga) and later granulite metamorphism (2707-2656 Ma).

  9. Summary of lithologic logging of new and existing boreholes at Yucca Mountain, Nevada, March 1994 to June 1994

    SciTech Connect

    Geslin, J.K.; Moyer, T.C.

    1995-04-01

    This report summarizes lithologic logging of core from boreholes at Yucca Mountain, Nevada, conducted from March 1994 to June 1994. Units encountered during logging include Quaternary-Tertiary alluvium and colluvium, Tertiary Rainier Mesa Tuff, all units in the Tertiary Paintbrush Group, and Tertiary Calico Hills Formation. Logging results are presented in a table of contact depths for core from unsaturated zone neutron (UZN) boreholes and graphic lithologic logs for core from north ramp geology (NRG) boreholes.

  10. Research of the acoustic influence on residual magnetization of rocks containing magnetite from the various geological structures of the Kola Peninsula

    NASA Astrophysics Data System (ADS)

    Zhirova, Anzhela

    2015-04-01

    The aim of the study is influence of acoustic waves on the magnetization of rocks of Kola Peninsula under different experimental parameters. The results and further research in this field are of interest in the development of problems of nonlinear geophysics, as well as address some issues in materials science. To study the acoustic influence on the residual magnetization of rocks we used the samples of magnetite-calcite rocks with a high content of magnetite from the Kovdor massif, and weakly magnetic rocks: (a) ultramafic rock of the Kola composite terrane; (b) gabbro-norite from layered intrusions of Pana; c) metagabbro-norite of the Belomorsky mobile belt. The samples previously demagnetized by the time-variable magnetic field, subjected to three cycles of ultrasonic influence with increasing time of influence and further measurement of the residual magnetization. The dependence of the residual magnetization of the magnetite-calcite rock from the time of testing is determined. As a result of multiple influences on the samples of gabbro-norit, ultramafic rock and metagabbro-norit was obtained a weak change of the vector of the residual magnetization. Thus the study of the residual magnetization of the samples with different content of ferromagnetic mineral found a significant difference in the nature of the magnetic response of rocks. So the high magnetic magnetite-calcite rock from the Kovdor massif detects a significant increase of the magnetization from the first seconds of the ultrasound influence. The magnetic response of other rocks to external influence is weaker. The dependence of the residual magnetization of these rocks from the time of influence either not observed or observed on the last cycle of the experiment in terms of a significant increase of time of the acoustic influence. Magnetic properties of rocks associated with the ferromagnetic minerals. These minerals are usually dispersed in the form of small grains in total dia - and paramagnetic

  11. Kolaviron, a biflavonoid complex of Garcinia kola seeds modulates apoptosis by suppressing oxidative stress and inflammation in diabetes-induced nephrotoxic rats.

    PubMed

    Ayepola, Omolola R; Cerf, Marlon E; Brooks, Nicole L; Oguntibeju, Oluwafemi O

    2014-12-15

    Diabetic nephropathy is a complex disease that involves increased production of free radicals which is a strong stimulus for the release of pro-inflammatory factors. We evaluated the renal protective effect of kolaviron (KV) - a Garcinia kola seed extract containing a mixture of 5 flavonoids, in diabetes-induced nephrotoxic rats. Male Wistar rats were divided into 4 groups: untreated controls (C); normal rats treated with kolaviron (C+KV); untreated diabetic rats (D); kolaviron treated diabetic rats (D+KV). A single intraperitoneal injection of streptozotocin (STZ, 50mg/kg) was used for the induction of diabetes. Renal function parameters were estimated in a clinical chemistry analyzer. Markers of oxidative stress in the kidney homogenate were analyzed in a Multiskan Spectrum plate reader and Bio-plex Promagnetic bead-based assays was used for the analysis of inflammatory markers. The effect of kolaviron on diabetes-induced apoptosis was assessed by TUNEL assay. In the diabetic rats, alterations in antioxidant defenses such as an increase in lipid peroxidation, glutathione peroxidase (GPX) activity and a decrease in catalase (CAT) activity, glutathione (GSH) levels and oxygen radical absorbance capacity (ORAC) were observed. There was no difference in superoxide dismutase (SOD) activity. Diabetes induction increased apoptotic cell death and the levels of interleukin (IL)-1β and tumor necrosis factor (TNF)-α with no effect on IL-10. Kolaviron treatment of diabetic rats restored the activities of antioxidant enzymes, reduced lipid peroxidation and increased ORAC and GSH concentration in renal tissues. Kolaviron treatment of diabetic rats also suppressed renal IL-1β. The beneficial effects of kolaviron on diabetes-induced kidney injury may be due to its inhibitory action on oxidative stress, IL-1β production and apoptosis. PMID:25481391

  12. Geological structure and ore mineralization of the South Sopchinsky and Gabbro-10 massifs and the Moroshkovoe Lake target, Monchegorsk area, Kola Peninsula, Russia

    NASA Astrophysics Data System (ADS)

    Pripachkin, Pavel V.; Rundkvist, Tatyana V.; Miroshnikova, Yana A.; Chernyavsky, Alexey V.; Borisenko, Elena S.

    2015-08-01

    The South Sopchinsky massif (SSM), Gabbro-10 (G-10) massif, and Moroshkovoe Lake (ML) target Monchegorsk area, Kola Peninsula, are located at the junction of the Monchepluton and Monchetundra layered intrusions. The intrusions were studied in detail as they are targets for platinum-group element (PGE) mineralization. The rocks in these targets comprise medium- to coarse-grained mesocratic to leucocratic gabbronorites, medium-grained mesocratic to melanocratic norites and pyroxenites, and various veins mainly comprising norite, plagioclase-amphibole-magnetite rocks, and quartz-magnetite rocks. The veins contain Ni-Cu-PGE mineralization associated with magnetite and chromite. In all targets, the contacts between gabbronorite and norite-pyroxenite are undulating, and the presence of magmatic (intrusive) breccias suggests that these rocks formed through mingling of two distinct magmatic pulses. In places, the gabbronorites clearly crosscut the modal layering of the norites and pyroxenites. Trace element data indicate that the gabbronorites have similar compositions to rocks of the upper part of the Monchetundra intrusion, whereas the norites and pyroxenites resemble rocks from the lower to intermediate stratigraphic levels of the Monchepluton, such as in the Nude-Poaz and Sopcha massifs. Sulfide mineralization in the studied targets principally consists of secondary bornite, millerite, and chalcopyrite. In contrast, the primary sulfide assemblage within the layered sequence of the adjacent Monchepluton is characterized by pentlandite, chalcopyrite, and pyrrhotite. Therefore, the mineralization in the studied targets is interpreted to be of a contact style. We argue that the studied area represents the contact zone between gabbronorites of the Monchetundra intrusion and norites and pyroxenites of the Monchepluton. In addition, the rocks were overprinted by postmagmatic veining and remobilization of contact style sulfide and PGE mineralization.

  13. Trace-element study and uranium-lead dating of perovskite from the Afrikanda plutonic complex, Kola Peninsula (Russia) using LA-ICP-MS

    NASA Astrophysics Data System (ADS)

    Reguir, Ekaterina P.; Camacho, Alfredo; Yang, Panseok; Chakhmouradian, Anton R.; Kamenetsky, Vadim S.; Halden, Norman M.

    2010-11-01

    The U-Pb geochronology of perovskite is a powerful tool in constraining the emplacement age of silica-undersaturated rocks. The trace-element and U-Pb isotopic compositions of perovskite from clinopyroxenite and silicocarbonatite from the Afrikanda plutonic complex (Kola, Russia) were determined by laser-ablation inductively-coupled mass-spectrometry (LA-ICP-MS). In addition, the Sr isotopic composition of perovskite was measured by isotope-dilution mass-spectrometry to better constrain the relations between its host rocks. Perovskite from the two rock types shows a different degree of enrichment in Na, Mg, Mn, Pb, Fe, Al, V, rare-earth elements, Zr, Hf, Th, U and Ta. The perovskite 87Sr/86Sr values are within analytical uncertainty of one another and fall within the range of mantle values. The 206Pb/238U ages (corrected for common lead using 207Pb-method) of perovskite from silicocarbonatite statistically yield a single population with a weighted mean of 371 ± 8 Ma (2σ; MSWD = 0.071). This age is indistinguishable, within uncertainty, to the clinopyroxenite weighted mean 206Pb/238U age of 374 ± 10 Ma (2σ; MSWD = 0.18). Our data are in good agreement with the previous geochronological study of the Afrikanda complex. The observed variations in trace-element composition of perovskite from silicocarbonatite and clinopyroxenite indicate that these rocks are not related by crystal fractionation. The Sr isotopic ratios and the fact that the two rocks are coeval suggest that they were either produced from a single parental melt by liquid immiscibility, or from two separate magmas derived at different degrees of partial melting from an isotopically equilibrated, but modally complex mantle source.

  14. Paleomagnetism of Devonian dykes in the northern Kola Peninsula and its bearing on the apparent polar wander path of Baltica in the Precambrian

    NASA Astrophysics Data System (ADS)

    Veselovskiy, Roman V.; Bazhenov, Mikhail L.; Arzamastsev, Andrey A.

    2016-04-01

    Mafic dykes and large alkaline and carbonatite intrusions of Middle-Late Devonian age are widespread on the Kola Peninsula in NE Fennoscandia. These magmatic rocks are well characterized with petrographic, geochemical and geochronological data but no paleomagnetic results have been reported yet. We studied dolerite dykes from the northern part of the Peninsula and isolated three paleomagnetic components in these rocks. A low-temperature component is aligned along the present-day field, while a major constituent of natural remanent magnetization is an intermediate-temperature component (Decl. = 79.6°, Inc. = 78.5°, α95 = 5,9°, N = 17 sites) that is present in most Devonian dykes but is found in some baked metamorphic rocks and Proterozoic dykes too. Finally, a primary Devonian component could be reliably isolated from two dykes only. Rock-magnetic studies point to presumably primary low-Ti titanomagnetite and/or pure magnetite as the main remanence carriers but also reveal alteration of the primary minerals and the formation of new magnetic phases. The directions of a major component differ from the Middle Paleozoic reference data for Baltica but closely match those for the 190 ± 10 Ma interval recalculated from the apparent polar wander path of the craton. We assume that this Early Jurassic component is a low-temperature overprint of chemical origin. The main impact of the new results is not to mid-Paleozoic or Early Mesozoic times but to much older epochs. Analysis of paleomagnetic data shows that the directionally similar remanences are present in objects with the ages ranging from 500 Ma to ~ 2 Ga over entire Fennoscandia. Hence we argue that an Early Jurassic remagnetization is of regional extent but cannot link it to a certain process and a certain tectonic event. If true, this hypothesis necessitates a major revision of the APWP for Baltica over a wide time interval.

  15. Drag-out effect of piezomagnetic signals due to a borehole: The Mogi source as an example

    USGS Publications Warehouse

    Sasai, Y.; Johnston, M.J.S.; Tanaka, Y.; Mueller, R.; Hashimoto, T.; Utsugi, M.; Sakanaka, S.; Uyeshima, M.; Zlotnicki, J.; Yvetot, P.

    2007-01-01

    We show that using borehole measurements in tectonomagnetic experiments allows enhancement of the observed signals. New magnetic dipoles, which vary with stress changes from mechanical sources, are produced on the walls of the borehole. We evaluate such an effect quantitatively. First we formulate a general expression for the borehole effect due to any arbitrary source models. This is valid everywhere above the ground surface as well as within the cylindrical hole. A first-order approximate solution is given by a line of horizontal dipoles and vertical quadrupoles along the central axis of the borehole, which is valid above the ground surface and a slightly away (several tens of cm) from the top of the borehole. Selecting the Mogi model as an example, we numerically evaluated the borehole effect. It turned out that the vertical quadrupoles produce two orders of magnitude more intense magnetic field than the horizontal dipoles. The borehole effect is very local, i.e. detectable only within a few m from its outlet, since it is of the same order or more than the case without a borehole. However, magnetic lines of force cannot reach the ground surface from a deeper portion (> 10 m) of a borehole.

  16. Cross-borehole flow analysis to characterize fracture connections in the Melechov Granite, Bohemian-Moravian Highland, Czech Republic

    USGS Publications Warehouse

    Paillet, Frederick L.; Williams, John H.; Urik, Joseph; Lukes, Joseph; Kobr, Miroslav; Mares, Stanislav

    2012-01-01

    Application of the cross-borehole flow method, in which short pumping cycles in one borehole are used to induce time-transient flow in another borehole, demonstrated that a simple hydraulic model can characterize the fracture connections in the bedrock mass between the two boreholes. The analysis determines the properties of fracture connections rather than those of individual fractures intersecting a single borehole; the model contains a limited number of adjustable parameters so that any correlation between measured and simulated flow test data is significant. The test was conducted in two 200-m deep boreholes spaced 21 m apart in the Melechov Granite in the Bohemian-Moravian Highland, Czech Republic. Transient flow was measured at depth stations between the identified transmissive fractures in one of the boreholes during short-term pumping and recovery periods in the other borehole. Simulated flows, based on simple model geometries, closely matched the measured flows. The relative transmissivity and storage of the inferred fracture connections were corroborated by tracer testing. The results demonstrate that it is possible to assess the properties of a fracture flow network despite being restricted to making measurements in boreholes in which a local population of discrete fractures regulates the hydraulic communication with the larger-scale aquifer system.

  17. Test plan for in situ stress measurement by the hydraulic fracturing method in boreholes RRL-6 and DC-4

    SciTech Connect

    Rundle, T.A.

    1983-10-07

    Hydrofracturing tests are to be performed to obtain experimental data regarding the magnitudes and orientations of the principal stresses in candidate repository horizons within the reference repository location (RRL). The tests are to be conducted in boreholes RRL-6 and DC-4 located in the reference repository location on the Hanford Site. This series of tests is to be limited to the performance of a maximum of 16 tests in each borehole. Basalt flows to be tested in borehole RRL-6 include the Rocky Coulee, Cohassett, McCoy Canyon, and Umtanum. Testing in borehole DC-4 will be in the Rocky Coulee and Cohassett basalt flows.

  18. Borehole instability analysis for IODP Site C0002 of the NanTroSEIZE Project, Nankai Trough subduction zone

    NASA Astrophysics Data System (ADS)

    Wu, H.; Kido, Y. N.; Kinoshita, M.; Saito, S.

    2013-12-01

    Wellbore instability is a major challenge for the engineer evaluating borehole and formation conditions. Instability is especially important to understand in areas with high stress variations, significant structure anisotropy, or pre-existing fracture systems. Borehole (in)stability is influenced by rock strength, structural properties, and near-field principal stresses. During drilling, the borehole conditions also impact borehole integrity. Factors that we can measure in the borehole during with logging while drilling (LWD) to understand these conditions include mud weight, mud loss, ROP (Rate of Penetration), RPM (Rotation Per Minute), WOB (Weight on Bit), and TORQ (Power swivel torque value). We conducted borehole instability analysis for Site C0002 of the Nankai Trough transect based on riser and riserless drilling during IODP Expedition 338. The borehole shape, determined from LWD resistivity images, indicates that most of drilling occurred in stable environments, however, in a few instances the bottom hole assembly became stuck. We used our stress profile model to evaluate the mud weight required to drill a stable borehole for the estimated rock strength and physical properties. Based on our analysis, we interpret that borehole instability during IODP Expedition 338 may have been caused by weak bedding plane and fluid overpressure state. Future work with this model will investigate the roles of these conditions.

  19. Borehole Geophysics, Hydraulic Characteristics and Chemistry of Groundwater Flow in Fractured Granite With Very Low Permeability

    NASA Astrophysics Data System (ADS)

    Lukes, J.; Rukavickova, L.; Paces, T.

    2005-12-01

    Three test boreholes 10.9 and 10.5 meters apart were drilled in a compact granite at locality Podles' in the Bohemian Massif of central Europe. The depths of the drill boreholes were 349, 300 and 296 m. The location of the boreholes form a triangle. The main goal of this study was to determine the degree to which the very compact granite is fractured and what is the hydraulic conductivity of the fracture system. A combination of neutron log, electrical resistivity logs, gama gama log, fluid-resistivity log, and acoustic log was used to test the function of the fracture system. The hydraulic connection among the boreholes was determined from the fluid-resistivity log using injected salt as a tracer. The pressure communication through fractures among boreholes was investigated by a set of water pressure tests (WPT) in one borehole with simultaneous monitoring of responses in the other two holes equipped by a multipacker system. The connection of selected permeable fracture systems was verified by a combination of hydraulic stress tests in one borehole and simultaneous fluid-resistivity logging in other two boreholes. Indication of salt in water in adjoining boreholes was registered as anomalies on curves of the fluid-resistivity record. Several communications between boreholes were along a horizontal level, however, some connections were through combination of both horizontal and vertical fractures. The hydraulic connection between two of the boreholes was fast and straightforward. The connection with the third borehole was inexpressive. This difference was due to the position of the boreholes with regard to the direction of main fractures and the direction of natural groundwater flow. All fractures were identified using acoustic tele-viewer and inspection of core. The density of the fractures varied with depth. The density was 3 fractures per meter near surface, the density dropped to 0.9 fractures per meter at the depth of 80 m. Between 80 and 300 m, the density

  20. Mapping permeable fractures at depth in crystalline metamorphic shield rocks using borehole seismic, logging, and imaging

    NASA Astrophysics Data System (ADS)

    Chan, J.; Schmitt, D. R.; Nieuwenhuis, G.; Poureslami Ardakani, E.; Kueck, J.; Abasolo, M. R.

    2012-04-01

    The presence of major fluid pathways in subsurface exploration can be identified by understanding the effects of fractures, cracks, and microcracks in the subsurface. Part of a feasibility study of geothermal development in Northern Alberta consists of the investigation of subsurface fluid pathways in the Precambrian basement rocks. One of the selected sites for this study is in the Fort McMurray area, where the deepest well drilled in the oilsands region in Northeastern Alberta is located. This deep borehole has a depth of 2.3 km which offers substantial depth coverage to study the metamorphic rocks in the Precambrian crystalline basement of this study area. Seismic reflection profiles adjacent to the borehole reveal NW-SE dipping reflectors within the metamorphic shield rocks some of which appear to intersect the wellbore. An extensive logging and borehole seismic program was carried out in the borehole in July, 2011. Gamma ray, magnetic susceptibility, acoustic televiewer, electrical resistivity, and full-waveform sonic logs were acquired to study the finer scale structure of the rock formations, with vertical resolutions in the range of 0.05 cm to 80 cm. These logs supplement earlier electrical microscanner images obtained by the well operator when it was drilled. In addition, we are also interested in identifying other geological features such as zones of fractures that could provide an indication of enhanced fluid flow potential - a necessary component for any geothermal systems to be viable. The interpretation of the borehole logs reveals a highly conductive 13 m thick zone at 1409 m depth that may indicate communication of natural brines in fractures with the wellbore fluid. The photoelectric factor and magnetic susceptibility also appear anomalous in this zone. Formation MicroImager (FMI) log was used to verify the presence of fractures in the borehole in this conductive zone. This fracture zone may coincide with the dipping seismic reflectors in the

  1. Estimation of the sustainable yields of boreholes in fractured rock formations

    NASA Astrophysics Data System (ADS)

    van Tonder, G. J.; Botha, J. F.; Chiang, W.-H.; Kunstmann, H.; Xu, Y.

    2001-01-01

    The simplest way to derive an estimate for the sustainable yield of a borehole is to study the behaviour of drawdowns observed during a hydraulic (also known as a pumping test) of the borehole, through an appropriate conceptual model. The choice of this model is probably the most difficult choice that the analyst of such a hydraulic test has to make, since a wrong model can only lead to the wrong conclusions and failure of the borehole. This paper discusses a semi-analytical and two numerical methods that can be used to simplify the analyses of hydraulic tests in fractured rock formations. The first method, called the Method of Derivative Fitting (MDF), uses a new approach to identify the conceptual model needed in such analyses. This is achieved by characterizing the various flow periods in fractured rock aquifers with numerical approximations of the first logarithmic derivative of the observed drawdown (the derivative of the drawdown with respect to the logarithm of the time). Semi-analytical expressions are used to estimate the influence that boundaries may have on the observed drawdown and the sustainable yield of a borehole — the rate at which a borehole can be pumped without lowering the water level below a prescribed limit. An effort has also been made to quantify errors in the estimates introduced by uncertainties in the parameters, such as the transmissivity and storativity, through a Gaussian error propagation analysis. These approximations and the MDF, called the Flow Characteristics Method (FCM) have been implemented in a user-friendly EXCEL notebook, and used to estimate the sustainable yield of a borehole on the Campus Test Site at the University of the Orange Free State. The first numerical method, a two-dimensional radial flow model, is included here because it allows the user more freedom than the FCM, although it requires more information. One particular advantage of the method is that it allows one to obtain realistic estimates of the

  2. Initial Borehole Accelerometer Array Observations Near the North Portal of the ESF

    SciTech Connect

    David von Seggern

    2005-08-17

    This report addresses observed ground motions at the site of the proposed surface facilities associated with the designated repository for high-level nuclear waste at Yucca Mountain, Nevada. In 2003 an accelerometer array was installed at three boreholes on the pad of the north portal of the ESF (Exploratory Studies Facility) at Yucca Mountain, Nevada, by the Nevada Seismological Laboratory (NSL). These boreholes, roughly 150 m apart and initially used for extensive geological and geophysical surveys, were ideal locations to measure the subsurface ground motions at the proposed site of surface facilities such as the Waste Handling Building. Such measurements will impact the design of the facilities. Accelerometer emplacement depths of approximately 15 m from the surface and then at the bottom of the boreholes, roughly 100 m, were chosen. Accelerometers were also placed at the surface next to the boreholes, for a total of nine accelerometers, all three-component. Data recording was accomplished with onsite recorders, with the onsite data transmitted to a central computer at a trailer on the pad. All requirements were met to qualify these data as ''Q''. Due to the lack of significant recordings during 2003, several low signal-to-noise (S/N) quality events were chosen for processing. The maximum horizontal peak ground acceleration (PGA) recorded at the pad was approximately 1 cm/s2 in 2003; the corresponding peak ground velocity (PGV) was approximately 0.01 cm/s. PGA and PGV were obtained at all nine accelerometers for most of these events, and spectra were computed. Ground motion amplitudes varied significantly across the boreholes. Higher ground amplifications were observed at the surface for the two boreholes that penetrated a thick amount ({approx} 30 m) of fill and Quaternary alluvium compared to the one that had less than 2 m of such. Additionally, surface-to-deep recordings showed as much as a factor of five amplification at these two boreholes. Signal

  3. Geostatistical Borehole Image-Based Mapping of Karst-Carbonate Aquifer Pores.

    PubMed

    Sukop, Michael C; Cunningham, Kevin J

    2016-03-01

    Quantification of the character and spatial distribution of porosity in carbonate aquifers is important as input into computer models used in the calculation of intrinsic permeability and for next-generation, high-resolution groundwater flow simulations. Digital, optical, borehole-wall image data from three closely spaced boreholes in the karst-carbonate Biscayne aquifer in southeastern Florida are used in geostatistical experiments to assess the capabilities of various methods to create realistic two-dimensional models of vuggy megaporosity and matrix-porosity distribution in the limestone that composes the aquifer. When the borehole image data alone were used as the model training image, multiple-point geostatistics failed to detect the known spatial autocorrelation of vuggy megaporosity and matrix porosity among the three boreholes, which were only 10 m apart. Variogram analysis and subsequent Gaussian simulation produced results that showed a realistic conceptualization of horizontal continuity of strata dominated by vuggy megaporosity and matrix porosity among the three boreholes. PMID:26174850

  4. Borehole logging for radium-226: recommended procedures and equipment. Final report

    SciTech Connect

    Olsen, K.B.; Thomas, V.W.

    1984-10-01

    Field investigations and a literature review were conducted to determine whether existing well-logging techniques are suitable for measuring /sup 226/Ra at remedial action sites. These methods include passive gamma-ray measurement techniques using NaI(Tl) and, occasionally, intrinsic germanium detectors. Parameters that must be considered when logging boreholes at remedial action sites include: (1) casing material and thickness, (2) water in the borehole, (3) borehole diameter, (4) disequilibrium between uranium and its daughters when using scintillation detectors, and (5) spatial distribution of the tailings material. Information from the uranium exploration industry demonstrates that borehole logging is a better method for estimating radionuclide concentrations in subsurface soils than core and drill cutting analysis. Field measurements using NaI(Tl) and IG detectors at Edgemont, South Dakota, have shown that NaI(Tl) detectors log boreholes faster than IGs. However, if NaI(Tl) detectors are used, additional time is required after logging to obtain representative samples of any anomalies found during logging, conform those samples to a constant geometry, and then count the samples using IG detectors to determine if the materials are tailings. 16 references, 13 figures.

  5. Cement technology for borehole plugging: an interim report on permeability measurements of cementitious solids

    SciTech Connect

    McDaniel, E.W.

    1980-01-01

    The permeability of borehole plug solids and plug-wall rock junctions is a property of major interest in the Borehole Plugging Program. This report describes the equipment and techniques used to determine the permeabilities of possible borehole plugging materials and presents results from tests on various cementitious solids and plug-rock combinations. The cementitious solids were made from mixtures of cement, sand, salt, fly ash, and water. Three different types of cement and four different fly ashes were used. Permeabilities ranged from a high value of 3 x 10/sup -4/ darcy for a neat cement paste to a low of 5 x 10/sup -8/ darcy for a saltcrete containing 30 wt % sodium chloride. Miniature boreholes were made in the following four different types of rock: Westerly granite, Dresser basalt, Sioux quartzite, and St. Cloud granodiorite. These small holes were plugged with a mix consisting of 23 wt % Type I Portland cement, 20 wt % bituminous fy ash, 43.2 wt % sand, and 13.8 wt % water. After curing for 91 days at ambient temperature, the permeability of the plug-wall rock junctions ranged from 3 x 10/sup -5/ to < 1 x 10/sup -8/ darcy. Three of the four miniature plugged boreholes exhibited permeabilities of < 10 microdarcys.

  6. Numerical Modeling of Deep Borehole Disposal Performance: Influence of Regional Hydrology

    NASA Astrophysics Data System (ADS)

    Stein, E. R.; Hammond, G. E.; Freeze, G. A.; Hadgu, T.

    2015-12-01

    Long-term waste isolation at a deep borehole disposal facility is most favorable at a site where the crystalline basement is hydraulically isolated and groundwater flow is negligible. Site suitability guidelines include evidence of lack of fluid flow in basement, for example lack of significant topographic relief, or evidence of ancient and/or saline groundwater at depth. However, lack of local topographic relief does not preclude regional hydraulic gradients created by recharge and discharge at distant outcrops; and precisely because of hydraulic isolation, the crystalline basement has the potential to be over- or under-pressured relative to overlying units. In the absence of previous boreholes in the area of a potential site, hydraulic gradients at depth are difficult to predict, and the possibility remains that a deep borehole drilled for the disposal of waste will encounter vertical or lateral driving forces for fluid flow. This study asks the question: How large a driving force can be tolerated while still maintaining repository performance? We use PFLOTRAN (an open source, massively parallel subsurface flow and reactive transport code) and a 3-D model domain (representing a disposal borehole in crystalline basement overlain by sedimentary strata) to examine the influence of horizontal and vertical hydraulic gradients on the long-term performance of a deep borehole radioactive waste repository. Simulations include steady-state lateral hydraulic gradients and transient vertical hydraulic gradients, and predict radionuclide concentrations in an overlying aquifer to quantify the potential influence of regional hydraulic gradients on repository performance.

  7. Geostatistical borehole image-based mapping of karst-carbonate aquifer pores

    USGS Publications Warehouse

    Michael Sukop; Cunningham, Kevin J.

    2016-01-01

    Quantification of the character and spatial distribution of porosity in carbonate aquifers is important as input into computer models used in the calculation of intrinsic permeability and for next-generation, high-resolution groundwater flow simulations. Digital, optical, borehole-wall image data from three closely spaced boreholes in the karst-carbonate Biscayne aquifer in southeastern Florida are used in geostatistical experiments to assess the capabilities of various methods to create realistic two-dimensional models of vuggy megaporosity and matrix-porosity distribution in the limestone that composes the aquifer. When the borehole image data alone were used as the model training image, multiple-point geostatistics failed to detect the known spatial autocorrelation of vuggy megaporosity and matrix porosity among the three boreholes, which were only 10 m apart. Variogram analysis and subsequent Gaussian simulation produced results that showed a realistic conceptualization of horizontal continuity of strata dominated by vuggy megaporosity and matrix porosity among the three boreholes.

  8. In situ capture gamma-ray analysis of coal in an oversize borehole

    USGS Publications Warehouse

    Mikesell, J.L.; Dotson, D.W.; Senftle, F.E.; Zych, R.S.; Koger, J.; Goldman, L.

    1983-01-01

    In situ capture gamma-ray analysis in a coal seam using a high resolution gamma-ray spectrometer in a close-fitting borehole has been reported previously. In order to check the accuracy of the method under adverse conditions, similar measurements were made by means of a small-diameter sonde in an oversize borehole in the Pittsburgh seam, Greene County, Pennsylvania. The hole was 5 times the diameter of the sonde, a ratio that substantially increased the contribution of water (hydrogen) to the total spectral count and reduced the size of the sample measured by the detector. The total natural count, the 40K,count, and the intensities of capture gamma rays from Si, Ca, H, and Al were determined as a function of depth above, through, and below the coal seam. From these logs, the depth and width of the coal seam and its partings were determined. Spectra were accumulated in the seam for 1 h periods by using neutron sources of different strengths. From the spectra obtained by means of several 252Cf neutron sources of different sizes, the ultimate elemental analysis and ash content were determined. The results were not as good as those obtained previously in a close-fitting borehole. However, the results did improve with successively larger source-to-detector distances, i.e.,as the count contribution due to hydrogen in the water decreased. It was concluded that in situ borehole analyses should be made in relatively close-fitting boreholes. ?? 1983.

  9. Preliminary Heat Flow Measurements from Plate Boundary Observatory Boreholes along the San Andreas Fault System

    NASA Astrophysics Data System (ADS)

    McDonald, K. J.; Harris, R. N.; Williams, C.; Grubb, F. V.; Fulton, P. M.; Chapman, D. S.

    2009-12-01

    Knowledge of the subsurface thermal regime is critical for understanding lithospheric rheology, fault mechanics and geodynamic processes. We report new heat flow values from boreholes drilled during the installation of borehole strain meters as part of the Plate Boundary Observatory (PBO) help constrain the role of temperature in determining the spatial and temporal pattern of deformation within along strike-slip faults in California. The new boreholes sites along this plate boundary system are clustered in the San Francisco Bay Area (n=5), San Juan Batista (n=5), Parkfield (n=7), and Anza (n=5). The boreholes vary in depth from 97 to 245 m. Temperature profiles were measured in each borehole and more than 899 thermal conductivity measurements were determined from drill cuttings and core samples. Heat production measurements are currently in progress. Temperature gradients have been corrected for the perturbing effects of terrain and combined with thermal conductivity to form thermal resistance plots and calculate heat flow. In general these plots indicate constant heat flow in the lower parts of the holes consistent with conductive heat transfer. Overall heat flow values are consistent with elevated heat flow that characterizes much of the California Coast Ranges. This study will help constrain the role of temperature in determining the spatial and temporal pattern of deformation within and along strike-slip faults in California.

  10. Combination of surface and borehole seismic data for robust target-oriented imaging

    NASA Astrophysics Data System (ADS)

    Liu, Yi; van der Neut, Joost; Arntsen, Børge; Wapenaar, Kees

    2016-05-01

    A novel application of seismic interferometry (SI) and Marchenko imaging using both surface and borehole data is presented. A series of redatuming schemes is proposed to combine both data sets for robust deep local imaging in the presence of velocity uncertainties. The redatuming schemes create a virtual acquisition geometry where both sources and receivers lie at the horizontal borehole level, thus only a local velocity model near the borehole is needed for imaging, and erroneous velocities in the shallow area have no effect on imaging around the borehole level. By joining the advantages of SI and Marchenko imaging, a macrovelocity model is no longer required and the proposed schemes use only single-component data. Furthermore, the schemes result in a set of virtual data that have fewer spurious events and internal multiples than previous virtual source redatuming methods. Two numerical examples are shown to illustrate the workflow and to demonstrate the benefits of the method. One is a synthetic model and the other is a realistic model of a field in the North Sea. In both tests, improved local images near the boreholes are obtained using the redatumed data without accurate velocities, because the redatumed data are close to the target.

  11. CORK Borehole Observatory Meets NEPTUNE Canada Cabled Observatory: First Experiences and Future Plans

    NASA Astrophysics Data System (ADS)

    Heesemann, M.; Davis, E. E.; Scherwath, M.

    2011-12-01

    The connection between the CORK ("Circulation Obviation Retrofit Kit") borehole observatory monitoring Ocean Drilling Program (ODP) borehole 1026B and the NEPTUNE Canada ocean network in September of 2009 marks the beginning of a new era of cabled subseafloor observations. The electrical power and real-time data access provided by cables improve the sampling rate, life time, and timing accuracy of existing borehole instrumentation. Cabled observatories also provide the opportunity to deploy advanced instruments that consume more power and produce more data than ever before. Using data from the 1026B CORK, we demonstrate how the higher sampling rate of cabled CORK observatories enables us to study phenomena like ocean weather and hydrologic responses to seismic waves. In an outlook we show how CORKs and new borehole instruments-planned for future connection to the NEPTUNE Canada ocean network-can help to yield critical information on the accumulation of stress and resulting strain of plate-scale crustal movements. In the future, these CORKs and new geodetic borehole instrumentation will provide a time-series of strain signals associated with the Cascadia subduction zone that would not have been possible with remote sensing or land-based monitoring. These CORKs will not only represent a new approach for earthquake research but the high-frequency, real-time data could also directly contribute to earthquake and tsunami early warning systems.

  12. Method for determining formation permeability by comparing measured tube waves with formation and borehole parameters

    SciTech Connect

    Hornby, B.E.

    1989-01-10

    A method is described for determining the permeability of an earth formation traversed by a borehole, using a tool adapted for movement in the borehole, comprising: transmitting acoustic energy from a first location on the tool; measuring the acoustic wave forms of the transmitted energy at varying distances from the first location; filtering each of the wave forms to obtain a tube wave component; determining a measured slowness parameter of the tube wave component; generating a value of the computed slowness parameter for the borehole under the conditions of an elastic nonpermeable medium; determining the difference between the measured slowness parameter and the computed value; determining the permeability of the formation in response to the difference between the measured slowness parameter and the computed value.

  13. Failure development around a borehole in an orthorhombic thermo-elastoplastic rock medium

    NASA Astrophysics Data System (ADS)

    Piłacik, Alicja; Dąbrowski, Marcin

    2016-04-01

    The elastic anisotropy of a rock medium is one of the main factors affecting stress distribution around the borehole. It governs the initiation and propagation of the technologically induced compressive and tensile failure zones, and reopening of natural mechanical discontinuities. We conducted a two-dimensional analysis of failure around a pressurized horizontal borehole in an orthorhombic elastic rock medium subject to variable far-field loads. The analytical solution to the thermoelastic problem was derived. An elastoplastic finite element method code was developed using MILAMIN platform (milamin.org) and implemented in MATLAB. Various yield functions were used, including von Mises, Mohr-Coulomb, Drucker-Prager and Hoek-Brown failure criteria. The analysis was augmented by introducing rock heterogeneities and discrete mechanical discontinuities in the vicinity of the borehole.

  14. Physical and chemical changes to rock near electrically heated boreholes at Spent Fuel Test-Climax

    SciTech Connect

    Beiriger, J.M.; Durham, W.B.; Ryerson, F.J.

    1985-01-01

    Sections of Climax Stock quartz monzonite taken from the vicinity of two electrically heated boreholes at Spent Fuel Test-Climax (SFT-C) have been studied by scanning electron microscopy and optical microscopy for signs of changes in crack structure and in mineralogy resulting from operations at SFT-C. The crack structure, as measured by density of cracks and average crack lengths was found not to have changed as a result of heating, regardless of distance from the heater hole. However, rock near the heater borehole sampled in the north heater drift was found to be more cracked than rock near the borehole sampled in the south heater drift. Mineralogically, the post-test samples are identical to the pre-test samples. No new phases have been formed as a result of the test. 10 refs., 6 figs., 8 tabs.

  15. High-density support matrices: Key to the deep borehole disposal of spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Gibb, F. G. F.; McTaggart, N. A.; Travis, K. P.; Burley, D.; Hesketh, K. W.

    2008-03-01

    Deep (4-5 km) boreholes are emerging as a safe, secure, environmentally sound and potentially cost-effective option for disposal of high-level radioactive wastes, including plutonium. One reason this option has not been widely accepted for spent fuel is because stacking the containers in a borehole could create load stresses threatening their integrity with potential for releasing highly mobile radionuclides like 129I before the borehole is filled and sealed. This problem can be overcome by using novel high-density support matrices deployed as fine metal shot along with the containers. Temperature distributions in and around the disposal are modelled to show how decay heat from the fuel can melt the shot within weeks of disposal to give a dense liquid in which the containers are almost weightless. Finally, within a few decades, this liquid will cool and solidify, entombing the waste containers in a base metal sarcophagus sealed into the host rock.

  16. Assessment of geophysical logs from borehole USW G-2, Yucca Mountain, Nevada

    SciTech Connect

    Nelson, P.H.; Schimschal, U.

    1993-05-01

    Commercial logging contractors, Western Atlas, Schlumberger, and Edcon obtained borehole geophysical logs at the site of a potential high level nuclear waste repository at Yucca Mountain, Nevada. Drill hole USW-G2 was picked for this test of suitable logging tools and logging technology, both representing state-of-the-art technology by these commercial companies. Experience gained by analysis of existing core data and a variety of logs obtained earlier by Birdwell and Dresser Atlas served as a guide to a choice of logs to be obtained. Logs were obtained in water-filled borehole in zeolitized tuff (saturated zone) and in air-filled borehole largely in unaltered welded tuff (unsaturated zone).

  17. Understanding the relationship between audiomagnetotelluric data and models, and borehole data in a hydrological environment

    USGS Publications Warehouse

    McPhee, D.K.; Pellerin, L.

    2008-01-01

    Audiomagnetotelluric (AMT) data and resulting models are analyzed with respect to geophysical and geological borehole logs in order to clarify the relationship between the two methodologies of investigation of a hydrological environment. Several profiles of AMT data collected in basins in southwestern United States are being used for groundwater exploration and hydrogeological framework studies. In a systematic manner, the AMT data and models are compared to borehole data by computing the equivalent one-dimensional AMT model and comparing with the two-dimensional (2-D) inverse AMT model. The spatial length is used to determine if the well is near enough to the AMT profile to quantify the relationship between the two datasets, and determine the required resolution of the AMT data and models. The significance of the quality of the borehole data when compared to the AMT data is also examined.

  18. A heat-pulse flowmeter for measuring minimal discharge rates in boreholes

    USGS Publications Warehouse

    Hess, A.E.

    1982-01-01

    The U.S. Geological Survey has tested a borehole-configured heat-pulse flowmeter which has good low-velocity flow-measuring sensitivity. The flowmeter was tested in the laboratory in 51-, 102-, and 152-millimeter-diameter columns using water velocities ranging from 0.35 to 250 millimeters per second. The heat-pulse flowmeter also was tested in a 15-meter-deep granite test pit with controlled water flow, and in a 58-meter-deep borehole in sedimentary materials. The flowmeter's capability to detect and measure naturally occurring, low-velocity, thermally induced convection currents in boreholes was demonstrated. Further improvements to the heat-pulse-flowmeter system are needed to increase its reliability and improve its response through four-conductor logging cable.

  19. Method for locating underground anomalies by diffraction of electromagnetic waves passing between spaced boreholes

    DOEpatents

    Lytle, R. Jeffrey; Lager, Darrel L.; Laine, Edwin F.; Davis, Donald T.

    1979-01-01

    Underground anomalies or discontinuities, such as holes, tunnels, and caverns, are located by lowering an electromagnetic signal transmitting antenna down one borehole and a receiving antenna down another, the ground to be surveyed for anomalies being situated between the boreholes. Electronic transmitting and receiving equipment associated with the antennas is activated and the antennas are lowered in unison at the same rate down their respective boreholes a plurality of times, each time with the receiving antenna at a different level with respect to the transmitting antenna. The transmitted electromagnetic waves diffract at each edge of an anomaly. This causes minimal signal reception at the receiving antenna. Triangulation of the straight lines between the antennas for the depths at which the signal minimums are detected precisely locates the anomaly. Alternatively, phase shifts of the transmitted waves may be detected to locate an anomaly, the phase shift being distinctive for the waves directed at the anomaly.

  20. High-temperature batteries for geothermal and oil/gas borehole applications

    SciTech Connect

    GUIDOTTI,RONALD A.

    2000-05-25

    A literature survey and technical evaluation was carried out of past and present battery technologies with the goal of identifying appropriate candidates for use in geothermal borehole and, to a lesser extent, oil/gas boreholes. The various constraints that are posed by such an environment are discussed. The promise as well as the limitations of various candidate technologies are presented. Data for limited testing of a number of candidate systems are presented and the areas for additional future work are detailed. The use of low-temperature molten salts shows the most promise for such applications and includes those that are liquid at room temperature. The greatest challenges are to develop an appropriate electrochemical couple that is kinetically stable with the most promising electrolytes--both organic as well as inorganic--over the wide operating window that spans both borehole environments.