Science.gov

Sample records for kootenai river instream

  1. Kootenai River Instream Flow Analysis, 2004 Technical Report.

    SciTech Connect

    Miller, William J.; Geise, Doran; Montana Department of Fish, Wildlife and Parks Staff

    2004-10-01

    A modified Instream Flow Incremental Methodology (IFIM) approach was used on the mainstem Kootenai River from Libby Dam downstream to Bonners Ferry, Idaho. The objective of this study was to quantify changes in habitat for the target fish species, bull trout (Salvelinus confluentus) and rainbow trout (Oncorhynchus mykiss), as a function of discharge in the river. This study used physical data and habitat use information from previous studies in the 1990s. The present study adapted the one-dimensional physical data into a georeferenced data set for each study site. The hydraulic simulations were combined with habitat suitability criteria in a GIS analysis format to determine habitat area as a function of discharge. Results of the analysis showed that the quantity of suitable habitat is greater at lower discharges than higher discharges and that the more stable flow regime from 1993 through 2002 provided more stable habitat conditions when compared to the highly variable flow regime from 1983 through 1992. The daily and weekly variability under 1983-1992 conditions forces subadult bull trout to use less productive habitat during the night by repetitively wetting and drying stream channel margin area. Subadult bull trout exhibit a distinct difference between daytime and nighttime habitat use (Muhlfeld 2002). These fish utilize deeper main channel habitats during the day and move to shallow channel margin areas at night. The productivity of lower trophic levels is low within the consistently watered and dewatered marginal areas and thus these areas provide little foraging value to subadult bull trout that utilize those areas as flows increase. The more stable flow regime (for weekly or daily timesteps) from 1993-2002 should be more productive than flow regimes with high weekly or daily variability. The highly variable flows likely stress subadult bull trout and rainbow trout due to the additional movement required to find suitable habitat or through the utilization of

  2. Instream Flows Incremental Methodology :Kootenai River, Montana : Final Report 1990-2000.

    SciTech Connect

    Hoffman, Greg; Skaar, Don; Dalbey, Steve

    2002-11-01

    Regulated rivers such as the Kootenai River below Libby Dam often exhibit hydrographs and water fluctuation levels that are atypical when compared to non-regulated rivers. These flow regimes are often different conditions than those which native fish species evolved with, and can be important limiting factors in some systems. Fluctuating discharge levels can change the quantity and quality of aquatic habitat for fish. The instream flow incremental methodology (IFIM) is a tool that can help water managers evaluate different discharges in terms of their effects on available habitat for a particular fish species. The U.S. Fish and Wildlife Service developed the IFIM (Bovee 1982) to quantify changes in aquatic habitat with changes in instream flow (Waite and Barnhart 1992; Baldridge and Amos 1981; Gore and Judy 1981; Irvine et al. 1987). IFIM modeling uses hydraulic computer models to relate changes in discharge to changes in the physical parameters such as water depth, current velocity and substrate particle size, within the aquatic environment. Habitat utilization curves are developed to describe the physical habitat most needed, preferred or tolerated for a selected species at various life stages (Bovee and Cochnauer 1977; Raleigh et al. 1984). Through the use of physical habitat simulation computer models, hydraulic and physical variables are simulated for differing flows, and the amount of usable habitat is predicted for the selected species and life stages. The Kootenai River IFIM project was first initiated in 1990, with the collection of habitat utilization and physical hydraulic data through 1996. The physical habitat simulation computer modeling was completed from 1996 through 2000 with the assistance from Thomas Payne and Associates. This report summarizes the results of these efforts.

  3. Kootenai River Resident Fish Assessment, FY2008 KTOI Progress Report.

    SciTech Connect

    Holderman, Charles

    2009-06-26

    The overarching goal of project 1994-049-00 is to recover a productive, healthy and biologically diverse Kootenai River ecosystem, with emphasis on native fish species rehabilitation. It is especially designed to aid the recovery of important fish stocks, i.e. white sturgeon, burbot, bull trout, kokanee and several other salmonids important to the Kootenai Tribe of Idaho and regional sport-fisheries. The objectives of the project have been to address factors limiting key fish species within an ecosystem perspective. Major objectives include: establishment of a comprehensive and thorough biomonitoring program, investigate ecosystem--level in-river productivity, test the feasibility of a large-scale Kootenai River nutrient addition experiment (completed), to evaluate and rehabilitate key Kootenai River tributaries important to the health of the lower Kootenai River ecosystem, to provide funding for Canadian implementation of nutrient addition and monitoring in the Kootenai River ecosystem (Kootenay Lake) due to lost system productivity created by construction and operation of Libby Dam, mitigate the cost of monitoring nutrient additions in Arrow Lakes due to lost system productivity created by the Libby-Arrow water swap, provide written summaries of all research and activities of the project, and, hold a yearly workshop to convene with other agencies and institutions to discuss management, research, and monitoring strategies for this project and to provide a forum to coordinate and disseminate data with other projects involved in the Kootenai River basin.

  4. Sediment cores and chemistry for the Kootenai River White Sturgeon Habitat Restoration Project, Boundary County, Idaho

    USGS Publications Warehouse

    Barton, Gary J.; Weakland, Rhonda J.; Fosness, Ryan L.; Cox, Stephen E.; Williams, Marshall L.

    2012-01-01

    The Kootenai Tribe of Idaho, in cooperation with local, State, Federal, and Canadian agency co-managers and scientists, is assessing the feasibility of a Kootenai River habitat restoration project in Boundary County, Idaho. This project is oriented toward recovery of the endangered Kootenai River white sturgeon (Acipenser transmontanus) population, and simultaneously targets habitat-based recovery of other native river biota. Projects currently (2010) under consideration include modifying the channel and flood plain, installing in-stream structures, and creating wetlands to improve the physical and biological functions of the ecosystem. River restoration is a complex undertaking that requires a thorough understanding of the river. To assist in evaluating the feasibility of this endeavor, the U.S. Geological Survey collected and analyzed the physical and chemical nature of sediment cores collected at 24 locations in the river. Core depths ranged from 4.6 to 15.2 meters; 21 cores reached a depth of 15.2 meters. The sediment was screened for the presence of chemical constituents that could have harmful effects if released during restoration activities. The analysis shows that concentrations of harmful chemical constituents do not exceed guideline limits that were published by the U.S. Army Corps of Engineers in 2006.

  5. KOOTENAI RIVER, BOUNDARY COUNTY, IDAHO - WATER QUALITY STATUS REPORT, 1977

    EPA Science Inventory

    The Kootenai River (17010104) is a major tributary to the Columbia River, draining southern British Columbia, northwestern Montana, and portions of northern Idaho. One-third of the river lies in the United States, its source and mouth are in Canada. The vast majority of the dra...

  6. Kootenai River White Sturgeon Studies, Annual Report FY 1993.

    SciTech Connect

    Anders, Paul J.; Siple, John T.

    1993-12-01

    This report evaluates natural spawning of white sturgeon in the Kootenai River before, during and after the 1993 augmented discharge period. To determine how altering the operation of Libby Dam may improve conditions for natural spawning of white sturgeon in the Kootenai River, discharge from Libby Dam (with no power peaking or load following) was increased to produce 20 kcfs ([plus minus] 2 kcfs) discharge at Bonners Ferry, Idaho, for a 14 day period June 2--16. Objectives of this research were to determine if white sturgeon spawned in the Kootenai River during 1993; and collect baseline biological data including timing, location, and habitat requirements of white sturgeon spawning in the Kootenai River in order to formulate and implement future flow regimes as effective recovery measures for white sturgeon. While sampling is not expected to collect a majority of white sturgeon eggs or larvae produced in a river, the fact that over 41,000 hours of sampling (combined gear) collected only 3 white sturgeon eggs and no larvae suggests that spawning conditions during 1993 were inadequate to benefit this population.

  7. Kootenai River White Sturgeon Conservation Aquaculture Project : Environmental Assessment.

    SciTech Connect

    US Bonneville Power Administration; Kootenai Tribe of Idaho

    1997-04-01

    Bonneville Power Administration (BPA) is responding to the need to prevent the extinction of the Kootenai River white sturgeon (Acipenser transmontanus) between Libby Dam in Montana and Corra Linn Dam in British Columbia. Construction and operation of Libby Dam altered the natural flow of the Kootenai River, especially the normal May-to-July flows needed for natural reproduction and recruitment. It also affected the river`s biological productivity and the quality of spawning and rearing habitat. As part of its responsibilities under the Northwest Power Act (Pacific Northwest Electric Power Planning and Conservation Act of 1980), BPA must mitigate for losses of fish and wildlife (including related spawning grounds and habitat) that are attributable to power production at federal hydroelectric dams on the Columbia River and its tributaries.

  8. Kootenai River Focus Watershed Coordination, 2003-2004 Annual Report.

    SciTech Connect

    Kootenai River Network,

    2006-02-01

    The Kootenai River Network (KRN) was contracted by the Bonneville Power Administration; PPA Project Number 96087200 for the period June 1, 2003 to May 31, 2004 to provide Kootenai River basin watershed coordination services. The prime focus of the KRN is coordinating activities and disseminating information related to watershed improvement and education and outreach with other interest groups in the Kootenai River basin. To this end, the KRN primarily focuses on maintaining communication networks among private and public watershed improvement groups in the Columbia River Basin. The KRN willing shares its resources with these groups. The 2003-2004 BPA contract extended the original Montana Fish, Wildlife and Parks contract, which was transferred to the Kootenai River Network through a Memorandum of Understanding in November 2001. The KRN objectives of this contract were carried out through Watershed Coordinator position. The highly successful Kootenai River Network Annual General Meeting in Bonners Ferry in May 2003 demonstrated the tremendous gains that the Kootenai River Network has made in trans-boundary networking of watershed issues and accomplishments. The Annual General Meeting included seventy five participants representing more than forty US and Canadian citizen groups, tribes, first nations, agencies, ministries, businesses and private land owners from Montana, British Columbia, Idaho and Alberta. The International Restoration Tour in July 2004 featured the Grave Creek and Therriault Wetlands restoration projects in Montana and the Sand Creek and Wolf Creek restoration projects in British Columbia. The tour was attended by more than thirty people representing US and Canadian Federal and State/Provincial agencies, schools, colleges, conservation groups, private land owners, consultants, tribes, first nations, and politicians. These exciting trans-boundary successes encouraged the KRN to establish half-time Watershed Coordinator positions in both the United

  9. Kootenai River Focus Watershed Coordination, 2002-2003 Annual Report.

    SciTech Connect

    Munson, Bob; Munson, Vicki; Rogers, Rox

    2003-10-01

    The Kootenai River Network Inc. (KRN) was incorporated in Montana in early 1995 with a mission ''to involve stakeholders in the protection and restoration of the chemical, physical and biological integrity of the Kootenai River Basin waters''. The KRN operates with funding from donations, membership dues, private, state and federal grants, and with funding through the Bonneville Power Administration (BPA) for a Focus Watershed Coordinator Program. The Focus Watershed Program is administered to KRN as of October 2001, through a Memorandum of Understanding. Katie Randall resigned her position as Watershed Coordinator in late January 2003 and Munson Consulting was contracted to fill that position through the BPA contract period ending May 30, 2003. To improve communications with in the Kootenai River watershed, the board and staff engaged watershed stakeholders in a full day KRN watershed conference on May 15 and 16 in Bonners Ferry, Idaho. This Annual General Meeting was a tremendous success with over 75 participants representing over 40 citizen groups, tribes and state/provincial/federal agencies from throughout northern Montana and Idaho as well as British Columbia and Alberta. Membership in the KRN increased during the course of the BPA 02/03 grant period. The board of directors grew in numbers during this same time frame and an Advisory Council was formed to assist in transboundary efforts while developing two reorganized KRN committees (Habitat/Restoration/Monitoring (HRM) and Communication/Education/Outreach (CEO)). These committees will serve pivotal roles in communications, outreach, and education about watershed issues, as well as habitat restoration work being accomplished throughout the entire watershed. During this BPA grant period, the KRN has capitalized on the transboundary interest in the Kootenai River watershed. Jim and Laura Duncan of Kimberley, British Columbia, have been instrumental volunteers who have acted as Canadian liaisons to the KRN. As a

  10. Kootenai River Focus Watershed Coordination, 2004-2005 Annual Report.

    SciTech Connect

    Kootenai River Network,

    2005-07-01

    The Kootenai River Network (KRN) was contracted by the Bonneville Power Administration; PPA Project Number 96087200 for the period June 1, 2004 to May 31, 2005 to provide Kootenai River basin watershed coordination services. The prime focus of the KRN Watershed Coordination Program is coordinating projects and disseminating information related to watershed improvement and education and outreach with other interest groups in the Kootenai River basin. The KRN willingly shares its resources with these groups. The 2004-2005 BPA contract extended the original Montana Fish, Wildlife and Parks contract, which was transferred to the Kootenai River Network through a Memorandum of Understanding in November 2001. The KRN objectives of this contract were carried out by one half-time Watershed Coordinator position in Montana-Idaho (Nancy Zapotocki) and one half-time Watershed Coordination team in British Columbia (Laura and Jim Duncan). Nancy Zapotocki was hired as the KRN US Watershed Coordinator in July 2004. Her extensive work experience in outreach and education and watershed planning complements the Duncans in British Columbia. To continue rejuvenating and revitalizing the KRN, the Board conducted a second retreat in November 2004. The first retreat took place in November 2003. Board and staff members combined efforts to define KRN goals and ways of achieving them. An Education and Outreach Plan formulated by the Watershed Coordinators was used to guide much of the discussions. The conclusions reached during the retreat specified four ''flagship'' projects for 2005-2006, to: (1) Provide leadership and facilitation, and build on current work related to the TMDL plans and planning efforts on the United States side of the border. (2) Continue facilitating trans-boundary British Columbia projects building on established work and applying the KRN model of project facilitation to other areas of the Kootenai basin. (3) Finalize and implement the KRN Education and Outreach plan

  11. Kootenai River Biological Baseline Status Report : Annual Report, 1996.

    SciTech Connect

    Richards, Diana

    1997-02-01

    The Kootenai River ecosystem in Idaho, Montana and British Columbia (B.C.) Canada has been severely degraded during the past 50 years. This aquatic ecosystem has changed from one that was culturally eutrophic, to one that is oligotrophic due to channelization, diking, impoundment (construction and operation of Libby Dam), and pollution abatement measures in the watershed. As a result of these influences, flow regimes, temperature patterns, and water quality were altered, resulting in changes in primary production and aquatic insect and fish populations. Construction of Libby Dam (creation of Lake Koocanusa) and closure of Cominco`s fertilizer plant resulted in decreased phosphorus load to the Kootenai River to below historical levels. Dissolved orthophosphorus concentrations averaged 0.383 mg/L in 1970 as compared to 0.039 mg/L in 1979. Total phosphorus concentrations followed a similar pattern. Both total phosphorus and soluble reactive phosphorus concentrations remained below 0.05 mg/L from 1976 to 1994, characterizing the river as oligotrophic. Post Libby Dam primary productivity levels in the river represent an ultra-oligotrophic to mesotrophic system. Since the construction and operation of Libby Dam, invertebrate densities immediately downstream from the dam increased, but species diversity decreased. Insect diversity increased with increasing distance from the dam, but overall species diversity was lower than would be expected in a free-flowing river. Fish species composition and abundance has also changed as a result of the changes in the river and its watershed.

  12. Kootenai River White Sturgeon Investigations, 1993 Annual Report.

    SciTech Connect

    Marcuson, Patrick E.

    1994-05-01

    U.S. Army Corps of Engineers in concordance with Bonneville Power Administration provided a release of 324.3 m{sup 3}/s (400,000 acre feet) of impounded water from Lake Koocanusa, Montana from June 2 to June 16, 1993. This release of water provided approximately 566.4 m{sup 3}/s (20,000 cfs) discharge in the Kootenai River at Bonners Ferry, Idaho. Nineteen adult white sturgeon equipped with combinations of radio and sonic transmitters were monitored from mid-April to mid-July, 1993. Nine females and one male remained in the Kootenai River near the British Columbia/Idaho border and/or Kootenay Lake, British Columbia. One female was captured by the crew from the Kootenai Hatchery, operated by the Kootenai Tribe of Idaho, delivered to the hatchery, tagged, and released seven days later. She retreated to Kootenay Lake immediately after release. Eight sturgeon with transmitters formed the aggregate of unknown numbers of fish in the staging area. The monitored fish were all judged late vitellogenic and were used to characterize what was assumed reproductive behavior of white sturgeon in the Kootenai River. Four late vitellogenic females moved upriver with the lowland spring runoff (May 11), lingered around the ''staging area'' May 11-24, then retreated downriver May 21-24. Two fish retreated all the way to Kootenay Lake, British Columbia; the other two re-advanced upriver May 27-30 concurrent with the initiation of the augmented discharge on May 28. None of the monitored fish were detected beyond the U.S. Highway 95 bridge. By June 4, the remaining females began moving downriver. Male sturgeon tended to move upriver seven days earlier than the females. They arrived in staging waters about May 11. On May 21, three male sturgeon demonstrated a slight downriver run the same time as did the females. The maximum downriver travel was 14.2 km. All four of the monitored males returned upriver just prior to and during the augmented flow period. Crews fished a combined 14

  13. Kootenai River Focus Watershed Coordination, 2001-2002 Annual Report.

    SciTech Connect

    Kruse, Gretchen

    2002-07-01

    The 2001-2002 Kootenai River Network Annual Report reflects the organization's defined set of goals and objectives, and how by accomplishing these goals, we continue to meet the needs of communities and landowners throughout the Kootenai River Basin by protecting the resource. Our completed and ongoing projects throughout the watershed reflect the cooperation and support received and needed to accomplish the rehabilitation and restoration of critical habitat. They show that our mission of facilitation through collaboration with public and private interests can lead to improved resource management, the restoration of water quality and the preservation of pristine aquatic resources. Our vision to empower local citizens and groups from two states, one province, two countries and affected tribal nations to collaborate in natural resource management within the basin is largely successful due to the engagement of the basin's residents--the landowners, town government, local interest groups, businesses and agency representatives who live and work here. We are proof that forging these types of cooperative relationships, such as those exhibited by the Kootenai River subbasin planning process, leads to a sense of entitlement--that the quality of the river and its resources enriches our quality of life. Communication is essential in maintaining these relationships. Allowing ourselves to network and receive ideas and information, as well as to produce quality, accessible research data such as KRIS, shared with like organizations and individuals, is the hallmark of this facilitative organization. We are fortunate in the ability to contribute such information, and continue to strive to meet the standards and the needs of those who seek us out as a model for watershed rehabilitative planning and restoration. Sharing includes maintaining active, ongoing lines of communication with the public we serve--through our web site, quarterly newsletter, public presentations and stream

  14. Kootenai River White Sturgeon Investigation, 1994 Annual Report.

    SciTech Connect

    Marcuson, Patrick E.; Wakkinen, Virginia; Kruse-Malle, Gretchen

    1995-07-01

    The U.S. Army Corps of Engineers in concordance with Bonneville Power Administration provided a release of 1.48 billion cubic meters (1.2 MAF, million acre feet) of impounded water from Lake Koocanusa, Montana from June 1 to June 28, 1994. This release of water provided approximately 566 To/s (20 thousand cubic feet per second, kcfs) discharge in the Kootenai River at Bonners Ferry, Idaho. Between February and early April 1994, 15 adult sturgeon (10 females, 5 males) in late vitellogenic stage were captured and fitted with combinations of radio and sonic transmitters. A total of 31 sturgeon were monitored. Ten hatchery reared juvenile white sturgeon equipped with radio and sonic tags were released in pools down river of Kootenai Falls, Montana. All ten sturgeon had moved between 60 and 97 km (37.3 and 60.3 mi) down river of release sites within one month. Movements coincided with major flow peaking associated with hydropower production at Libby Dam, located upriver of the release site

  15. Kootenai River Fisheries Investigations : Rainbow Trout Recruitment : Period Covered: 1997.

    SciTech Connect

    Downs, Chris

    1999-02-02

    The objective of this study was to determine if juvenile production is limiting the population of rainbow trout Oncorbynchus mykiss in the Idaho reach of the Kootenai River. We used snorkeling and electrofishing techniques to estimate juvenile rainbow trout abundance in, and outmigration from, the Deep, Boulder, and Myrtle creek drainages in Idaho. The total population estimates for the three drainages estimated in 1997 were 30,023; 763; and 235; respectively. A rotary-screw trap was utilized to capture juvenile outmigrants for quantification of age at outmigration and total outmigration from the Deep Creek drainage to the Kootenai River. The total outmigrant estimate for 1997 from the Deep Creek drainage was 38,206 juvenile rainbow trout. Age determination based largely on scales suggests that most juvenile rainbow trout outmigration from the Deep Creek drainage occurs at age-l, during the spring runoff period. Forty-three adult rainbow trout captured in the Deep Creek drainage were tagged with $10.00 reward T-bar anchor tags in 1997. A total of three of these fish were harvested, all in Kootenay Lake, British Columbia. This suggests the possibility of an adfluvial component in the spawning population of the Deep Creek drainage.

  16. Bathymetric surveys of the Kootenai River near Bonners Ferry, Idaho, water year 2011

    USGS Publications Warehouse

    Fosness, Ryan L.

    2013-01-01

    In 2009, the Kootenai Tribe of Idaho released and implemented the Kootenai River Habitat Restoration Master Plan. This plan aimed to restore, enhance, and maintain the Kootenai River habitat and landscape to support and sustain habitat conditions for aquatic species and animal populations. In support of these restoration efforts, the U.S. Geological Survey, in cooperation with the Kootenai Tribe of Idaho, conducted high-resolution multibeam echosounder bathymetric surveys in May, June, and July 2011, as a baseline bathymetric monitoring survey on the Kootenai River near Bonners Ferry, Idaho. Three channel patterns or reaches exist in the study area—braided, meander, and a transitional zone connecting the braided and meander reaches. Bathymetric data were collected at three study areas in 2011 to provide: (1) surveys in unmapped portions of the meander reach; (2) monitoring of the presence and extent of sand along planned lines within a section of the meander reach; and (3) monitoring aggradation and degradation of the channel bed at specific cross sections within the braided reach and transitional zone. The bathymetric data will be used to update and verify flow models, calibrate and verify sediment transport modeling efforts, and aid in the biological assessment in support of the Kootenai River Habitat Restoration Master Plan. The data and planned lines for each study reach were produced in ASCII XYZ format supported by most geospatial software.

  17. Kootenai River Fisheries Investigations; Rainbow and Bull Trout Recruitment, 2002-2003 Annual Report.

    SciTech Connect

    Walters, Jody P.

    2004-01-01

    Rainbow trout Oncorhynchus mykiss provide the most important sport fishery in the Kootenai River, Idaho, but densities and catch rates are low. Low recruitment is one possible factor limiting the rainbow trout population. Bull trout Salvelinus confluentus also exist in the Kootenai River, but little is known about this population. Research reported here addresses the following objectives for the Kootenai River, Idaho: increase rainbow trout recruitment, identify rainbow and bull trout spawning tributaries and migration timing, establish baseline data on bull trout redd numbers in tributaries, and improve the rainbow trout population size structure. Six adult rainbow trout were moved to spawning habitat upstream of a potential migration barrier on Caboose Creek, but numbers of redds and age-0 out-migrants did not appear to increase relative to a reference stream. Measurements taken on the Moyie River indicated the gradient is inadequate to deliver suitable flows to a proposed rainbow trout spawning channel. Summer water temperatures measured in the Deep Creek drainage sometimes exceeded 24 C, higher than those reported as suitable for rainbow trout. Radio-tagged rainbow trout were located in Boulder Creek during the spring spawning season, and bull trout were located in the Moyie River and O'Brien Creek, Montana in the fall. Bull trout spawning migration timing was related to increases in Kootenai River flows. Bull trout redd surveys documented 19 redds on Boulder Creek and North and South Callahan creeks. Fall 2002 electrofishing showed that the Kootenai River rainbow trout proportional stock density was 54, higher than prior years when more liberal fishing regulations were in effect. Boulder Creek produces the highest number of age-0 rainbow trout out-migrants upstream of Bonners Ferry, but the survival rate of these out-migrants upon reaching the Kootenai River is unknown. Determining juvenile survival rates and sources of mortality could aid management efforts

  18. Genetic structure of Columbia River redband trout populations in the Kootenai River drainage, Montana, revealed by microsatellite and allozyme loci

    USGS Publications Warehouse

    Knudsen, K.-L.; Muhlfeld, C.C.; Sage, G.K.; Leary, R.F.

    2002-01-01

    We describe the genetic divergence among 10 populations of redband trout Oncorhynchus mykiss gairdneri from the upper Columbia River drainage. Resident redband trout from two watersheds in the Kootenai River drainage and hatchery stocks of migratory Kamloops redband trout from Kootenay Lake, British Columbia, were analyzed using allele frequency data from microsatellite and allozyme loci. The Kamloops populations have significantly different allele frequencies from those of the Kootenai River drainage. Of the total genetic variation detected in the resident redband trout, 40.7% (microsatellites) and 15.5% (allozymes) were due to differences between populations from the two Kootenai River watersheds. The divergence among populations within each watershed, however, was less than 3.5% with both techniques. Our data indicate that watershed-specific broodstocks of redband trout are needed by fisheries managers for reintroduction or the supplementation of populations at risk of extinction.

  19. Kootenai River Fisheries Investigations: Salmonid Studies Project Progress Report, 2007-2008 Annual Report.

    SciTech Connect

    Paragamian, Vaughn L.; Walters, Jody; Maiolie, Melo

    2009-04-09

    This research report addresses bull trout Salvelinus confluentus and Redband trout Oncorhynchus mykiss redd surveys, population monitoring, trout distribution, and abundance surveys in the Kootenai River drainage of Idaho. The bull trout is one of several sport fish native to the Kootenai River, Idaho that no longer supports a fishery. Because bull trout are listed under the Endangered Species Act, population data will be vital to monitoring status relative to recovery goals. Thirty-three bull trout redds were found in North and South Callahan creeks and Boulder Creek in 2007. This is a decrease from 2006 and 2005 and less than the high count in 2003. However, because redd numbers have only been monitored since 2002, the data series is too short to determine bull trout population trends based on redd counts. Redband trout still provide an important Kootenai River sport fishery, but densities are low, at least partly due to limited recruitment. The redband trout proportional stock density (PSD) in 2007 increased from 2006 for a second year after a two-year decline in 2004 and 2005. This may indicate increased recruitment to or survival in the 201-305 mm length group due to the minimum 406 mm (16 inches) length limit initiated in 2002. We conducted 13 redd surveys and counted 44 redband trout redds from May 7 to June 3, 2007 in a 3.8 km survey reach on Twentymile Creek. We surveyed streams in the Kootenai River valley to look for barriers to trout migration. Man-made barriers, for at least part of the year, were found on Caboose, Debt, Fisher, and Twenty Mile creeks. Removing these barriers would increase spawning and rearing habitat for trout and help to restore trout fisheries in the Kootenai River.

  20. Kootenai river velocities, depth, and white sturgeon spawning site selection - A mystery unraveled?

    USGS Publications Warehouse

    Paragamian, V.L.; McDonald, R.; Nelson, G.J.; Barton, G.

    2009-01-01

    The Kootenai River white sturgeon Acipenser transmontanus population in Idaho, US and British Columbia (BC), Canada became recruitment limited shortly after Libby Dam became fully operational on the Kootenai River, Montana, USA in 1974. In the USA the species was listed under the Endangered Species Act in September of 1994. Kootenai River white sturgeon spawn within an 18-km reach in Idaho, river kilometer (rkm) 228.0-246.0. Each autumn and spring Kootenai River white sturgeon follow a 'short two-step' migration from the lower river and Kootenay Lake, BC, to staging reaches downstream of Bonners Ferry, Idaho. Initially, augmented spring flows for white sturgeon spawning were thought to be sufficient to recover the population. Spring discharge mitigation enhanced white sturgeon spawning but a series of research investigations determined that the white sturgeon were spawning over unsuitable incubation and rearing habitat (sand) and that survival of eggs and larvae was negligible. It was not known whether post-Libby Dam management had changed the habitat or if the white sturgeon were not returning to more suitable spawning substrates farther upstream. Fisheries and hydrology researchers made a team effort to determine if the spawning habitat had been changed by Libby Dam operations. Researchers modeled and compared velocities, sediment transport, and bathymetry with post-Libby Dam white sturgeon egg collection locations. Substrate coring studies confirmed cobbles and gravel substrates in most of the spawning locations but that they were buried under a meter or more of post-Libby Dam sediment. Analysis suggested that Kootenai River white sturgeon spawn in areas of highest available velocity and depths over a range of flows. Regardless of the discharge, the locations of accelerating velocities and maximum depth do not change and spawning locations remain consistent. Kootenai River white sturgeon are likely spawning in the same locations as pre-dam, but post-Libby Dam

  1. Kootenai River Fisheries Investigations; Rainbow and Bull Trout Recruitment, 2003-2004 Annual Report.

    SciTech Connect

    Walters, Jody P.

    2005-08-01

    Rainbow trout Oncorhynchus mykiss provide the most important sport fishery in the Kootenai River, Idaho, but densities and catch rates are low. Low recruitment is one possible factor limiting the rainbow trout population. Bull trout Salvelinus confluentus also exist in the Kootenai River, but little is known about this population. Research reported here addresses the following objectives for the Kootenai River, Idaho: identify sources of rainbow and bull trout recruitment, monitor the rainbow trout population size structure to evaluate regulation changes initiated in 2002, and identify factors potentially limiting rainbow trout recruitment. A screw trap was used to estimate juvenile redband and bull trout out-migration from the Callahan Creek drainage, and electrofishing was conducted to estimate summer densities of bull trout rearing in the Idaho portion of the drainage. An estimated 1,132 juvenile redband trout and 68 juvenile bull trout out-migrated from Callahan Creek to the Kootenai River from April 7 through July 15, 2003. Densities of bull trout {ge} age-1 in North and South Callahan creeks ranged from 1.6 to 7.7 fish/100m{sup 2} in August. Bull trout redd surveys were conducted in North and South Callahan creeks, Boulder Creek, and Myrtle Creek. Thirty-two bull trout redds were located in North Callahan Creek, while 10 redds were found in South Callahan Creek. No redds were found in the other two streams. Modeling of culverts in the Deep Creek drainage identified two as upstream migration barriers, preventing rainbow trout from reaching spawning and rearing habitat. Water temperature monitoring in Deep Creek identified two sites where maximum temperatures exceeded those suitable for rainbow trout. Boulder Creek produces the most rainbow trout recruits to the Kootenai River in Idaho upstream of Deep Creek, but may be below carrying capacity for rearing rainbow trout due to nutrient limitations. Monthly water samples indicate Boulder Creek is nutrient limited

  2. Kootenai River Fisheries Investigations; Rainbow and Bull Trout Recruitment, 1999 Annual Report.

    SciTech Connect

    Walters, Jody P.; Downs, Christopher C.

    2001-08-01

    Our 1999 objectives were to determine sources of rainbow trout Oncorhynchus mykiss and bull trout Salvelinus confluentus spawning and recruitment in the Idaho reach of the Kootenai River. We used a rotary-screw trap to capture juvenile trout to determine age at out-migration and to estimate total out-migration from the Boundary Creek drainage to the Kootenai River. The out-migrant estimate for March through August 1999 was 1,574 (95% C. I. = 825-3,283) juvenile rainbow trout. Most juveniles out-migrated at age-2 and age-3. No out-migrating bull trout were caught. Five of 17 rainbow trout radio-tagged in Idaho migrated upstream into Montana waters during the spawning season. Five bull trout originally radio-tagged in O'Brien Creek, Montana in early October moved downstream into Idaho and British Columbia by mid-October. Annual angler exploitation for the rainbow trout population upstream of Bonners Ferry, Idaho was estimated to be 58%. Multi-pass depletion estimates for index reaches of Caboose, Curley, and Debt creeks showed 0.20, 0.01, and 0.13 rainbow trout juveniles/m{sup 2}, respectively. We estimated rainbow trout (180-415 mm TL) standing stock of 1.6 kg/ha for the Hemlock Bar reach (29.4 ha) of the Kootenai River, similar to the 1998 estimate. Recruitment of juvenile rainbow and bull trout from Idaho tributaries is not sufficient to be the sole source of subsequent older fish in the mainstem Kootenai River. These populations are at least partly dependent on recruitment from Montana waters. The low recruitment and high exploitation rate may be indicators of a rainbow trout population in danger of further decline.

  3. Kootenai River Fisheries Investigations; Stock Status of Burbot, 1999-2000 Annual Report.

    SciTech Connect

    Paragamian, Vaughn L.; Kozfkay, Joseph R.; Whitman, Vint

    2001-10-01

    In Idaho, the burbot Lota lota are native only to the Kootenai River and are genetically distinct from burbot in the Montana reach of the river. Burbot once provided a substantial fishery with tens of thousands of burbot harvested annually. Burbot now number fewer than 1000 in the Kootenai River and Kootenay Lake and may be nearing demographic extinction. Studies completed in the winter of 1997-1998 indicated flow management at Libby Dam likely affected burbot spawning migration during winter. The objective of our study was to monitor the movement of burbot during a period of normal winter operation and a low flow period to test the null hypothesis (H{sub o}) that winter operation of Libby Dam does not affect burbot migration distance or travel rate. In addition, we monitored the stock status of burbot. We captured 36 burbot in Idaho and British Columbia with baited hoop nets. Twenty-three burbot were caught in Idaho, including 12 at Ambush Rock. The remaining 13 burbot were caught in British Columbia, including eight in the Kootenai River and five in the Goat River. One burbot escaped and was not measured, and one recaptured burbot was not measured. Burbot ranged from 332 mm to 705 mm total length (TL) (mean = 541 mm, SE = 14.02) and weighed from 350 g to 2,850 g (mean = 1,059 g, SE = 90.51). Relative weight (W{sub r}) ranged from 40.5 to 127.6 and averaged 88.6 (SE = 2.44). Population estimates for 1996, 1997, and 1998 were made for the Kootenai River from Bonners Ferry to Kootenay Lake; they were 738, 540, and 43 fish respectively. These estimates were not considered valid because we had so few recaptures, and confidence intervals could not be provided. Four burbot were implanted with sonic transmitters and their movement was monitored. We requested a low flow test (170 m{sup 3}/s) period of five weeks from the US Army Corps of Engineers (USACE) to study burbot migration distance or travel rate. The USACE could not provide an adequate low flow test period

  4. Kootenai River White Sturgeon Investigations; White Sturgeon Spawning and Recruitment Evaluation, 2003-2004 Annual Report.

    SciTech Connect

    Rust, Pete; Wakkinen, Virginia

    2005-06-01

    The objective of this research was to determine the environmental requirements for successful spawning and recruitment of the Kootenai River white sturgeon Acipenser transmontanus population. Annual tasks include monitoring and evaluating the various life stages of Kootenai River white sturgeon. Sampling for adult Kootenai River white sturgeon in 2003 began in March and continued through April. Eighty-one adult white sturgeon were captured with 3,576 hours of angling and set-lining effort in the Kootenai River. Discharge from Libby Dam and river stage at Bonners Ferry in 2003 peaked in May and early June. Flows remained above 500 m{sup 3}/s throughout June, decreased rapidly through mid July, and increased back to near 500 m{sup 3}/s after mid July and through mid August. By late August, flows had decreased to below 400 m{sup 3}/s. We monitored the movements of 24 adult sturgeon in Kootenay Lake, British Columbia (BC) and the Kootenai River from March 15, 2003 to August 31, 2003. Some of the fish were radio or sonic tagged in previous years. Twelve adult white sturgeon were moved upstream to the Hemlock Bar reach (rkm 260.0) and released as part of the Set and Jet Program. Transmitters were attached to seven of these fish, and their movements were monitored from the time of release until they moved downstream of Bonners Ferry. Eight additional radio-tagged white sturgeon adults were located in the traditional spawning reach (rkm 228-240) during May and June. Sampling with artificial substrate mats began May 21, 2003 and ended June 30, 2003. We sampled 717 mat d (a mat d is one 24 h set) during white sturgeon spawning. Three white sturgeon eggs were collected near Shortys Island on June 3, 2003, and five eggs were collected from the Hemlock Bar reach on June 5, 2003. Prejuvenile sampling began June 17, 2003 and continued until July 31, 2003. Sampling occurred primarily at Ambush Rock (rkm 244.0) in an attempt to document any recruitment that might have occurred from

  5. Kootenai River White Sturgeon Investigations and Experimental Culture, 1992 Annual Report.

    SciTech Connect

    Apperson, Kimberly A.; Wakkinen, Virginia (

    1993-11-01

    Setline and angling techniques were used to sample 64 white sturgeon Acipenser transmontanus from the Kootenai River in 1992. Of those sampled, 15 were recaptures from previous years of this study. A total of 429 white sturgeon were captured from March 1989 through September 1992. Fork lengths of white sturgeon in the total sample ranged from 88 to 274 cm. The data indicated there was a complete lack of recruitment of juveniles into the population which was estimated in 1990 at 880 individuals with a 95% confidence interval of 638 to 1,211. Annual mortality of white sturgeon from 1982 to 1991 was 0.0374. Approximately 80% of the population was more than 20 years old and was reproductively mature. An ongoing sonic telemetry study revealed long distance movements among adults. Sturgeon regularly moved across the British Columbia-Idaho border. Sturgeon used deep holes in the river or migrated to Kootenai Lake during late fall. During spring and early summer, reproductively mature sturgeon moved from 15 to 110 kilometers upriver and congregated within 15 kilometers downriver from Bonners Ferry in areas of elevated water velocity. This behavior coincided with increasing discharge and water temperatures. The authors monitored movements of five reproductively mature female white sturgeon. The fish responded to increasing then decreasing flows by moving upriver then downriver, respectively. All five fish quickly moved to Kootenai Lake when flows dropped suddenly from higher than 20 kcfs to less than 10 kcfs. One fish was recaptured and was reabsorbing eggs. Trawling and sampling with mats of artificial substrate failed to capture white sturgeon eggs or larvae in 1992. One hundred and four age 1 and 14 age 2 hatchery-reared Kootenai white sturgeon were released into the Idaho section of the river in 1992. Telemetry of six of the larger juveniles showed general downriver movement from September into November.

  6. Kootenai River White Sturgeon Investigations and Experimental Culture, 1988-1989 Annual Report.

    SciTech Connect

    Apperson, Kimberly A.; Anders, Paul J.

    1990-06-01

    The population of white sturgeon in the Kootenai River has continued to decline since 1983, in spite of a closure to harvest in the U.S. section of the river. Setline and angling techniques were used to sample 228 sturgeon from the river between Kootenai Falls and Kootenay Lake during 1989. Sturgeon were found in Montana within 4 km of Kootenai Falls and downstream from Bonners Ferry, Idaho to Kootenay Lake, British Columbia. Our data indicate there is a complete lack of recruitment of juveniles into the population. The youngest fish sampled was of the 1977 year class, and the population is estimated at 850 individuals with 95% confidence intervals of 574 to 1,463. At present, we do not understand what mechanisms are limiting recruitment. Over the past 70 years, the lower Kootenai River has been extensively diked for flood control, effectively eliminating backwater and slough areas that may have provided juvenile rearing habitat: Contaminants have entered the river system via mining operations and agricultural practices. In 1972, Libby Dam began operation, reversing the natural flow regime of the river, and releasing frequent power peaking flows. Of 179 fish that were surgically sexed, 37% were female and 35% were male. Thirty-four percent of the females held developing oocytes. All oocyte samples from nine females contained copper (1.18 to 2.50 {micro}g/g) and zinc (15.6 to 32.8 {micro}g/g). Most samples also contained organochloride residues such as DDT, DDD, DDE, and PCBs (0.215 to 1.080 {micro}g/g, combined). River sediment samples contained 1.62 to 12.8 {micro}g/g copper and 22.4 to 70.6 {micro}g/g zinc, but no organochloride residues. Electrophoretic analysis of muscle samples indicated reduced heterogeneity compared with lower basin white sturgeon and showed a significantly different degree of variation between the two stocks in seven enzyme systems. An ongoing sonic telemetry study has revealed definite long distance movements in response to water flow

  7. Kootenai River White Sturgeon Investigations and Experimental Culture, 1990-1991 Annual Report.

    SciTech Connect

    Apperson, Kimberly A.

    1992-07-01

    Setline and angling techniques were used to sample 56 white sturgeon Acioenser transmontanus from the Kootenai River in 1991. Of those sampled, nine were recaptures from previous years of this study. A total of 382 white sturgeon were captured from March 1989 through October 1991. Fork lengths of white sturgeon in the sample ranged from 88-274 cm. Our data indicated there was a complete lack of recruitment of juveniles into the population. The youngest fish sampled was of the 1977 year class. The population was estimated at 880 individuals with a 95% confidence interval of 638 to 1,211. Annual mortality of white sturgeon since 1982 is 3.74%. Approximately 80% of the population was more than 20 years old and was reproductively mature. Surgical examination of 309 white sturgeon since 1989 indicated that approximately 7% of the female white sturgeon and 30% of the male white sturgeon are reproductive each year. The ratio of males to females was estimated at 1:l. White sturgeon sampled and released with and without surgical examination were recaptured at equal rates. An ongoing sonic telemetry study has documented long distance movements by adults. White sturgeon regularly move across the British Columbia - Idaho border. White sturgeon seek out deep holes in the river or migrate to Kootenay Lake during late fall, During spring and early summer of both 1990 and 1991 reproductively mature white sturgeon moved from 15 to 110 km upriver and congregated within 10 km downriver from Bonners Ferry in areas of elevated water velocity. This behavior coincided with increasing discharge and water temperatures. Developing white sturgeon eggs were recovered from the river near Bonners Ferry on July 3, 1991. Contamination of eggs by organochloride compounds were less in recent samples from the Kootenai River than in a single sample collected in 1982. White sturgeon eggs from the Kootenai River fish contained approximately one tenth the organochloride compounds of white sturgeon eggs

  8. Recreation Benefits of Instream Flow: Application to Montana's Big Hole and Bitterroot Rivers

    NASA Astrophysics Data System (ADS)

    Duffield, John W.; Neher, Christopher J.; Brown, Thomas C.

    1992-09-01

    Allocation of water between instream uses such as recreation and consumptive uses such as irrigation is an important public policy issue in the western United States. One basis for identifying appropriate levels of instream flows is maximization of net economic benefits. A general framework for estimating the recreational value of instream flows was developed and applied to Montana's Big Hole and Bitterroot rivers. The paper also provides a synthesis of methods for interpreting covariate effects in dichotomous choice contingent valuation models. Precision of the estimates is examined through a simulation approach. The marginal recreational value of instream flow in these rivers is in the range of 50 per acre foot (1 acre foot equals 1233.5 m3) for recreation at low-flow levels plus 25 per acre foot for downstream hydroelectric generation. These values indicate that at some flow levels, gains may be achieved on the study rivers by reallocating water from consumptive to instream uses.

  9. Kootenai River Fisheries Investigations; Stock Status of Burbot, 1996 Annual Report.

    SciTech Connect

    Paragamian, Vaughn L,; Whitman, Vint

    1997-11-01

    The main theme of the 1996 burbot Lota lota study was to test the hypothesis that winter discharge for power production/flood control inhibits burbot migration to spawning tributaries. There were to be two to three minimum discharge (113 m{sup 3}/s) periods from Libby Dam of approximately five days duration during December 1995 and January 1996. However, exceptionally heavy precipitation and an excessive amount of water stored in Lake Koocanusa created near flood conditions in the Kootenai River. These high flows prevented a controlled test. But the authors captured 27 burbot in the Kootenai River, Idaho and the Goat River, British Columbia, Canada. Burbot catch from November 1995 through March 1996 averaged 0.055 fish/net-day. Captured burbot ranged from 396 to 830 mm total length and weighed from 400 to 2,800 g (mean = 1,376 g). One burbot was captured at rkm 170 (the Idaho-Canada border) in mid-March after the spawning season. Nine burbot were implanted with sonic transmitters and released at the Goat River capture location. Two additional burbot had active transmitters from the previous season. Telemetry of burbot during the pre-spawn, spawning, and post-spawning periods was conducted. Burbot were located a total of 161 times from September 1, 1995 through August 31, 1996. Ripe burbot were captured at the mouth of the Goat River during February.

  10. Use of multidimensional modeling to evaluate a channel restoration design for the Kootenai River, Idaho

    USGS Publications Warehouse

    Logan, B.L.; McDonald, R.R.; Nelson, J.M.; Kinzel, P.J.; Barton, G.J.

    2011-01-01

    River channel construction projects aimed at restoring or improving degraded waterways have become common but have been variously successful. In this report a methodology is proposed to evaluate channel designs before channels are built by using multidimensional modeling and analysis. This approach allows detailed analysis of water-surface profiles, sediment transport, and aquatic habitat that may result if the design is implemented. The method presented here addresses the need to model a range of potential stream-discharge and channel-roughness conditions to best assess the function of the design channel for a suite of possible conditions. This methodology is demonstrated by using a preliminary channel-restoration design proposed for a part of the Kootenai River in northern Idaho designated as critical habitat for the endangered white sturgeon (Acipenser transmontanus) and evaluating the design on the basis of simulations with the Flow and Sediment Transport with Morphologic Evolution of Channels (FaSTMECH) model. This evaluation indicated substantial problems with the preliminary design because boundary conditions used in the design were inconsistent with best estimates of future conditions. As a result, simulated water-surface levels did not meet target levels that corresponded to the designed bankfull surfaces; therefore, the flood plain would not function as intended. Sediment-transport analyses indicated that both the current channel of the Kootenai River and the design channel are largely unable to move the bed material through the reach at bankfull discharge. Therefore, sediment delivered to the design channel would likely be deposited within the reach instead of passing through it as planned. Consequently, the design channel geometry would adjust through time. Despite these issues, the design channel would provide more aquatic habitat suitable for spawning white sturgeon (Acipenser transmontanus) at lower discharges than is currently available in the

  11. Kootenai River White Sturgeon Investigations; White Sturgeon Spawning and Recruitment Evaluation, 2004-2005 Annual Report.

    SciTech Connect

    Rust, Pete; Wakkinen, Virginia

    2006-05-01

    The objective of this research was to determine the environmental requirements for successful spawning and recruitment of the Kootenai River white sturgeon Acipenser transmontanus population. Annual tasks include monitoring and evaluating the response of various life stages of Kootenai River white sturgeon to mitigation flows supplied by the United States Army Corps of Engineers (USACE). Sampling for adult Kootenai River white sturgeon in 2004 began in March and continued into May. One hundred forty-two adult white sturgeon were captured with 4,146 hours of angling and set-lining effort in the Kootenai River. Kootenai River discharge and stage at Bonners Ferry in 2004 peaked in mid December. Discharge remained below 400 cubic meters per second (cms) until June 1; then, because of a systems operations request (SOR), increased and remained between 480 and 540 cms through the end of June. From July through September, discharge ranged from 360 to 420 cms, decreasing to 168 cms by the end of October. Discharge increased again to above 625 cms by November 4 to increase winter storage in Lake Koocanusa and ranged from 310 to 925 cms through the end of December. We monitored the movements of 31 adult sturgeon in Kootenay Lake, British Columbia (BC) and the Kootenai River from mid-March until late August 2004. All telemetered fish were dual tagged with external sonic and radio transmitters, and some of the fish were tagged in previous years. Eighteen of the 31 telemetered adult white sturgeon were released at Hemlock Bar reach (rkm 260.0) as part of a research project to test the feasibility of moving sexually mature adult white sturgeon to areas with habitat types thought to be more suitable for successful egg hatching and early life stage recruitment. Marked fish were monitored from the time of release until they moved downstream of Bonners Ferry. Sampling for white sturgeon eggs with artificial substrate mats began May 3 and ended June 10, 2004. We sampled 650 mat days

  12. Development of instream flow requirements for summer river temperature control at the Platte River, Nebraska

    SciTech Connect

    Gu, R.; Chen, C.J.; Montgomery, S.

    1998-07-01

    In this study, minimum in-stream flow requirements to meet a river temperature standard under various summer weather regimes were developed for the central Platte River, Nebraska. Statistical and theoretical analyses were conducted to isolate and quantify the effect of instream flow on summer river temperature. Quantitative relationships between water temperature and river discharge were developed by the regression approach and the analytical solution method, treating weather condition (air temperature or equilibrium water temperature) as a reference. Regressions of historical data were performed to derive empirical temperature-discharge equations and flow requirements. For the situation where historical data is not available, a simplified, theoretical approach was used to obtain analytical solutions and to establish the minimum river discharges for wildlife habitat protection. The results provide information useful in proper planning and design of reservoir operations and streamflow management. The temperature-discharge relationships and the in-stream discharge requirements can be incorporated into a habitat assessment model and a reservoir and hydropower plant management program.

  13. QUANTIFICATION OF INSTREAM FLOW NEEDS OF A WILD AND SCENIC RIVER FOR WATER RIGHTS LITIGATION.

    USGS Publications Warehouse

    Garn, Herbert S.

    1986-01-01

    The lower 4 miles of the Red River, a tributary of the Rio Grande in northern New Mexico, was designated as one of the 'instant' components of the National Wild and Scenic River System in 1968. Instream flow requirements were determined by several methods to quantify the claims made by the United States for a federal reserved water right under the Wild and Scenic Rivers Act. The scenic (aesthetic), recreational, and fish and wildlife values are the purposes for which instream flow requirements were claimed. Since water quality is related to these values, instream flows for waste transport and protection of water quality were also included in the claim. The U. S. Fish and Wildlife Service's Instream Flow Incremental Methodology was used to quantify the relationship between various flow regimes and fish habitat. Study results are discussed.

  14. Characterization of the Kootenai River Aquatic Macroinvertebrate Community before and after Experimental Nutrient Addition, 2003-2006. [Chapter 3

    SciTech Connect

    Holderman, Charlie

    2009-02-19

    The Kootenai River ecosystem has experienced numerous ecological changes since the early 1900s. Some of the largest impacts to habitat, biological communities, and ecological function resulted from levee construction along the 120 km of river upstream from Kootenay Lake, completed by the 1950s, and the construction and operation of Libby Dam, completed in 1972 on the river near Libby Montana. Levee construction isolated tens of thousands of hectares of historic functioning floodplain habitat from the river channel, eliminating nutrient production and habitat diversity crucial to the functioning of a large river-floodplain ecosystem. Libby Dam continues to create large changes in the timing, duration, and magnitude of river flows, and greatly reduces sediment and nutrient transport to downstream river reaches. These changes have contributed to the ecological collapse of the post-development Kootenai River ecosystem and its native biological communities. In response to this artificial loss of nutrients, experimental nutrient addition was initiated in the Kootenay Lake's North Arm in 1992, the South Arm in 2004, and in the Kootenai River at the Idaho-Montana border during 2005. This report characterizes the macroinvertebrate community in the Kootenai River and its response to experimental nutrient addition during 2005 and 2006. This report also provides an initial evaluation of cascading trophic interactions in response to nutrient addition. Macroinvertebrates were sampled at 12 sites along a 325 km section of the Kootenai River, representing an upriver unimpounded reference reach, treatment and control canyon reach sites, and braided and meandering reach sites, all downstream from Libby Dam. Principle component analysis revealed that richness explained the greatest amount of variability in response to nutrient addition as did taxa from Acari, Coleoptera, Ephemeroptera, Plecoptera, and Trichoptera. Analysis of variance revealed that nutrient addition had a significant

  15. Surveying Cross Sections of the Kootenai River Between Libby Dam, Montana, and Kootenay Lake, British Columbia, Canada

    USGS Publications Warehouse

    Barton, Gary J.; Moran, Edward H.; Berenbrock, Charles

    2004-01-01

    The declining population of Kootenai River white sturgeon, which was listed as an Endangered Species in 1994, has prompted a recovery team to assess the feasibility of various habitat enhancement scenarios to reestablish white sturgeon populations. As the first phase in this assessment, the U.S. Geological Survey collected stream channel cross-section and longitudinal data during 2002—03 at about 400 locations along the Kootenai River from Libby Dam near Libby, Montana, to where the river empties into Kootenay Lake near Creston, British Columbia, Canada. Survey control stations with a horizontal and vertical accuracy of less than 0.1 foot were established using a global positioning system (GPS) prior to collection of stream channel cross-section data along the Kootenai River. A total of 245 cross sections were surveyed. Six cross sections upstream from Kootenai Falls were surveyed using a total station where the river was too shallow or dangerous to navigate by vessel. The remaining 239 cross sections were surveyed by interfacing real-time GPS equipment with an echo sounder to obtain bathymetric data and with a laser range- finder to obtain streambank data. These data were merged, straightened, ordered, and reduced in size to be useful. Spacing between these cross sections ranged from about 600 feet in the valley flat near Deep Creek and Shorty Island and near bridges to as much as several miles in other areas. These stream channel cross sections will provide information that can be used to develop hydraulic flow models of the Kootenai River from Libby Dam, Montana, to Queens Bay on Kootenay Lake in British Columbia, Canada.

  16. Kootenai River White Sturgeon Investigations and Experimental Culture, 1989-1990 Annual Report.

    SciTech Connect

    Apperson, Kimberly A.; Anders, Paul J.

    1991-10-01

    Setline and angling techniques were used to sample 332 sturgeon from the river between Kootenai Falls and Kootenay Lake during 1989 and 1990. Sturgeon were found in Montana within 4 km of Kootenai Falls and downstream from Bonners Ferry, Idaho to Kootenay Lake, British Columbia. Our data indicate there is a complete lack of recruitment of juveniles into the population. The youngest fish sampled was of the 1977 year class, and the population is estimated at 880 individuals with 95% confidence intervals of 638 to 1,211. Culture of one pair of sturgeon in 1990 was of limited success. Less than 5% of eggs hatched with 50% initial mortality of fry. The contribution of contaminants found in eggs (aluminum, copper, zinc, lead, and organochlorides) toward this poor survival is unknown. Handling problems with the eggs at the time of spawning complicated our results. An ongoing sonic telemetry study has revealed definite long distance movements. Sturgeon regularly move across the British Columbia-Idaho border and seek out deep holes or migrate to Kootenay Lake during late fall. Seasonal differences in use of depth and velocity parameters were found between sexes and among seasons. No relationships were found between sturgeon movement and month, water temperature, flow, and flow change. However, multiple regression analysis indicated that up to 30% of the variance in individual sturgeon movement was explained by the combination of the four variables.

  17. Kootenai River White Sturgeon Investigations; White Sturgeon Spawning and Recruitment Evaluation, 1999 Annual Report.

    SciTech Connect

    Paragamian, Vaughn L.; Kruse, Gretchen L.; Wakkinen, Virginia

    2001-11-01

    Sampling for adult Kootenai River white sturgeon Acipenser transmontanus began in March and continued through April 1999. Forty-six adult sturgeon were captured with 4,091 hours of angling and set-lining effort, while an additional three adult sturgeon were captured during gillnetting for juveniles. Flows for Kootenai River white sturgeon spawning were expected to be high because the snow pack in the basin was estimated at 130% of normal, but runoff came very slowly. Discharge from Libby Dam from mid-March through mid-June was maintained at 113 m{sup 3}/s (4,000 cfs). Flows in the Kootenai River at Bonners Ferry during early April, including local inflow, were 227-255 m{sup 3}/s (8,000-9,000 cfs) but increased gradually in late April to a peak of 657 m{sup 3}/s (23,200 cfs). Flows subsided in early May to about 340 m{sup 3}/s (12,000 cfs), but rose to 1,031 m{sup 3}/s (36,370 cfs) by Mary 26 because of local runoff, and white sturgeon began spawning. However, flows subsided again to 373 m{sup 3}/s (13,200 cfs) June 11, 1999 and some female white sturgeon with transmitters began leaving the spawning reach. Water temperature ranged from about 8 C to 10 C (45 F to 50 F) during these two weeks. On June 13 (two weeks after sturgeon began spawning), spawning and incubation flows from Libby Dam began. The flow was brought up to 1,136 m{sup 3}/s (40,100 cfs) and temperature rose to about 11 C (52 F). They sampled for 3,387 mat days (one mat day is a single 24 h set) with artificial substrate mats and captured 184 white sturgeon eggs. The Middle Shorty's Island reach (river kilometer [rkm] 229.6-231.5) produced the most eggs (144), with 388 mat days of effort; the Refuge section (rkm 234.8 to 237.5) with 616 mat days of effort produced 23 eggs; and the Lower Shorty's section produced 19 eggs with 548 days of mat effort. No eggs were collected above the Refuge section (> rkm 240.5) with 988 mat days of effort. They do not believe flows for sturgeon spawning in 1999 were very

  18. Kootenai River White Sturgeon Investigations; White Sturgeon Spawning and Recruitment Evaluation, 1996 Annual Report.

    SciTech Connect

    Paragamian, Vaughn L.

    1997-09-01

    Test flows for Kootenai River white sturgeon Acipenser transmontanus spawning, scheduled for June 1996, were postponed until July. However, an estimated 126% snow pack and unusually heavy precipitation created conditions for sturgeon spawning that were similar to those occurring before construction of Libby Dam. Discharge in the Kootenai River at Bonners Ferry rose to nearly 1,204 m{sup 3}/s (42,500 cfs) during May and water temperature ranged from 5.8 C to 8.4 C (42 F to 47 F). Migration of adult white sturgeon into spawning areas occurred in late May during a rising hydrograph. Discharge and water temperature were rising and had reached approximately 1,077 m{sup 3}/s (38,000 cfs) and 8 C (46 F). Discharge at Bonners Ferry peaked at about 1,397 m{sup 3}/s (49,300 cfs) on June 5. A total of 348 eggs (and one egg shell) were collected with 106,787 h of mat effort during the flow events. The first white sturgeon eggs were collected on June 8 and continued through June 30. Staging of eggs and back-calculating to spawning dates indicated there were at least 18 spawning episodes between June 6 and June 25. Discharge on June 6 was 1,196 m{sup 3}/s (42,200 cfs) and decreased steadily to 850 m{sup 3}/s (30,000 cfs) by June 26. Although sturgeon spawned in the same reach of river that they had during 1994 and 1995, the majority of eggs were found significantly (P = 0.0001) farther upstream than 1994 and 1995 and this in turn may be related to elevation of Kootenay Lake.

  19. Kootenai River Floodplain Ecosystem Operational Loss Assessment, Protection, Mitigation and Rehabilitation, 2007-2008 Annual Report.

    SciTech Connect

    Merz, Norm

    2009-02-18

    The overarching goals of the 'Kootenai River Floodplain Ecosystem Operational Loss Assessment, Protection, Mitigation and Rehabilitation' Project (BPA Project No.2002-011-00) are to: (1) assess abiotic and biotic factors (i.e., geomorphologic, hydrological, aquatic and riparian/floodplain communities) in determining a definitive composition of ecological integrity, (2) develop strategies to assess and mitigate losses of ecosystem functions, and (3) produce a regional operational loss assessment framework. To produce a scientifically defensible, repeatable, and complete assessment tool, KTOI assembled a team of top scientists in the fields of hydrology, hydraulics, ornithology, entomology, statistics, and river ecology, among other expertise. This advisory team is known as the Research Design and Review Team (RDRT). The RDRT scientists drive the review, selection, and adaptive management of the research designs to evaluate the ecologic functions lost due to the operation of federal hydropower facilities. The unique nature of this project (scientific team, newest/best science, adaptive management, assessment of ecological functions, etc.) has been to work in a dynamic RDRT process. In addition to being multidisciplinary, this model KTOI project provides a stark contrast to the sometimes inflexible process (review, re-review, budgets, etc.) of the Columbia River Basin Fish and Wildlife Program. The project RDRT is assembled annually, with subgroups meeting as needed throughout the year to address project issues, analyses, review, and interpretation. Activities of RDRT coordinated and directed the selection of research and assessment methodologies appropriate for the Kootenai River Watershed and potential for regional application in the Columbia River Basin. The entire RDRT continues to meet annually to update and discuss project progress. RDRT Subcontractors work in smaller groups throughout the year to meet project objectives. Determining the extent to which

  20. Occurrence and in-stream attenuation of wastewater-derived pharmaceuticals in Iberian rivers.

    PubMed

    Acuña, Vicenç; von Schiller, Daniel; García-Galán, Maria Jesús; Rodríguez-Mozaz, Sara; Corominas, Lluís; Petrovic, Mira; Poch, Manel; Barceló, Damià; Sabater, Sergi

    2015-01-15

    A multitude of pharmaceuticals enter surface waters via discharges of wastewater treatment plants (WWTPs), and many raise environmental and health concerns. Chemical fate models predict their concentrations using estimates of mass loading, dilution and in-stream attenuation. However, current comprehension of the attenuation rates remains a limiting factor for predictive models. We assessed in-stream attenuation of 75 pharmaceuticals in 4 river segments, aiming to characterize in-stream attenuation variability among different pharmaceutical compounds, as well as among river segments differing in environmental conditions. Our study revealed that in-stream attenuation was highly variable among pharmaceuticals and river segments and that none of the considered pharmaceutical physicochemical and molecular properties proved to be relevant in determining the mean attenuation rates. Instead, the octanol-water partition coefficient (Kow) influenced the variability of rates among river segments, likely due to its effect on sorption to sediments and suspended particles, and therefore influencing the balance between the different attenuation mechanisms (biotransformation, photolysis, sorption, and volatilization). The magnitude of the measured attenuation rates urges scientists to consider them as important as dilution when aiming to predict concentrations in freshwater ecosystems. PMID:24908335

  1. Toxicity of copper to early-life stage Kootenai River white sturgeon, Columbia River white sturgeon, and rainbow trout.

    PubMed

    Little, E E; Calfee, R D; Linder, G

    2012-10-01

    White sturgeon (Acipenser transmontanus) populations throughout western North America are in decline, likely as a result of overharvest, operation of dams, and agricultural and mineral extraction activities in their watersheds. Recruitment failure may reflect the loss of early-life stage fish in spawning areas of the upper Columbia River, which are contaminated with metals from effluents associated with mineral-extraction activities. Early-life stage white sturgeon (A. transmontanus) from the Columbia River and Kootenai River populations were exposed to copper during 96-h flow-through toxicity tests to determine their sensitivity to the metal. Similar tests were conducted with rainbow trout (RBT [Oncorhynchus mykiss]) to assess the comparative sensitivity of this species as a surrogate for white sturgeon. Exposures were conducted with a water quality pH 8.1-8.3, hardness 81-119 mg/L as CaCO(2), and dissolved organic carbon 0.2-0.4 mg/L. At approximately 30 days posthatch (dph), sturgeon were highly sensitive to copper with median lethal concentration (LC(50)) values ranging from 4.1 to 6.8 μg/L compared with 36.5 μg/L for 30 dph RBT. White sturgeon at 123-167 dph were less sensitive to copper with LC(50) values ranging from 103.7 to 268.9 μg/L. RBT trout, however, remained more sensitive to copper at 160 dph with an LC(50) value of 30.9 μg/L. The results indicate that high sensitivity to copper in early-life stage white sturgeon may be a factor in recruitment failure occurring in the upper Columbia and Kootenai rivers. When site-specific water-quality criteria were estimated using the biotic ligand model (BLM), derived values were not protective of early-life stage fish, nor were estimates derived by water-hardness adjustment. PMID:22890615

  2. Toxicity of copper to early-life stage Kootenai River white sturgeon, Columbia River white sturgeon, and rainbow trout

    USGS Publications Warehouse

    Little, E.E.; Calfee, R.D.; Linder, G.

    2012-01-01

    White sturgeon (Acipenser transmontanus) populations throughout western North America are in decline, likely as a result of overharvest, operation of dams, and agricultural and mineral extraction activities in their watersheds. Recruitment failure may reflect the loss of early-life stage fish in spawning areas of the upper Columbia River, which are contaminated with metals from effluents associated with mineral-extraction activities. Early-life stage white sturgeon (A. transmontanus) from the Columbia River and Kootenai River populations were exposed to copper during 96-h flow-through toxicity tests to determine their sensitivity to the metal. Similar tests were conducted with rainbow trout (RBT [Oncorhynchus mykiss]) to assess the comparative sensitivity of this species as a surrogate for white sturgeon. Exposures were conducted with a water quality pH 8.1-8.3, hardness 81-119 mg/L as CaCO2, and dissolved organic carbon 0.2-0.4 mg/L. At approximately 30 days posthatch (dph), sturgeon were highly sensitive to copper with median lethal concentration (LC50) values ranging from 4.1 to 6.8 μg/L compared with 36.5 μg/L for 30 dph RBT. White sturgeon at 123-167 dph were less sensitive to copper with LC50 values ranging from 103.7 to 268.9 μg/L. RBT trout, however, remained more sensitive to copper at 160 dph with an LC50 value of 30.9 μg/L. The results indicate that high sensitivity to copper in early-life stage white sturgeon may be a factor in recruitment failure occurring in the upper Columbia and Kootenai rivers. When site-specific water-quality criteria were estimated using the biotic ligand model (BLM), derived values were not protective of early-life stage fish, nor were estimates derived by water-hardness adjustment.

  3. Kootenai River Fisheries Investigation : Stock Status of Burbot : Project Progress Report 2008 Annual Report.

    SciTech Connect

    Paragamian, Valughn L.; Laude Dorothy C.

    2008-12-26

    Objectives of this investigation were to (1) monitor the population status and recruitment of burbot Lota lota in the Kootenai River, Idaho and British Columbia, Canada during the winter of 2006-2007; (2) evaluate the selective withdrawal system in place at Libby Dam to maintain the river temperature near Bonners Ferry between 1-4 C (November-December) to improve burbot migration and spawning activity; and (3) determine if a hatching success of 10% of eyed burbot embryos could be achieved through extensive rearing and produce fingerlings averaging 9.8 cm in six months. Water temperature did not fall below the upper limit (4 C) until mid-January but was usually maintained between 1-4 C January through February and was acceptable. Snowpack was characterized by a 101% of normal January runoff forecast. Adult burbot were sampled with hoop nets and slat traps. Only three burbot were captured in hoop nets, all at Ambush Rock (rkm 244.5). No burbot were caught in either slat traps or juvenile sampling gear, indicating the population is nearly extirpated. Burbot catch per unit effort in hoop nets was 0.003 fish/net d. Extensive rearing was moved to a smaller private pond and will be reported in the 2008-2009 annual report.

  4. Instream biological assessment of NPDES point source discharges at the Savannah River Site, 1997-1998

    SciTech Connect

    Specht, W.L.

    2000-02-28

    The Savannah River Site currently has 33 permitted NPDES outfalls that have been permitted by the South Carolina Department of Health an Environmental Control to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams.

  5. Kootenai River Fisheries Investigation; Stock Status of Burbot, 2004-2005 Annual Report.

    SciTech Connect

    Paragamian, Vaughn L.; Laude, Dorothy C.

    2006-03-01

    The main objective of this investigation was to monitor movement and spawning activity of burbot Lota lota in the Kootenai River, Idaho and British Columbia, Canada during the winter of 2004-2005. As a secondary objective, we examined the literature to obtain inferential information on how changes in historic water temperature may affect burbot movement and spawning. Discharge from Libby Dam for October 2004 ranged from 133 to 272 m{sup 3}/s, was ramped up to 532 m{sup 3}/s early in November, then was brought down to about 283 m{sup 3}/s through the last 10 days of the month. In early December 2004, discharge was brought up to full powerhouse of about 762 m{sup 3}/s several times but remained above 436 m{sup 3}/s for most of the month. However, with the prospect of a below normal snowpack and a mild winter, discharge was brought down to 113 m{sup 3}/s, minimum flow, for the remainder of January through March 2005. Discharge did not meet the systems operation request as a burbot rehabilitation measure. Mean water temperature of the Kootenai River at Libby Dam from November 1, 2004 through April 5, 2005 was 5.3 C, ranging from 10.45 C on November 1, 2004 to 3.2 C on March 2, 2005. Tributary water temperatures were monitored in Deep, Smith, and Boundary creeks in Idaho and in the Goat River, Corn, and Summit creeks, British Columbia, Canada from November 1, 2004 to about April 18, 2005. Baited hoop nets of 25 and 19 mm bar mesh were fished from November 5, 2004 through April 4, 2005 for 2,046 net d (one net day is a single 24 h set). One hundred twenty-two fish were caught encompassing ten different species of fish. Eighteen burbot (14 different fish) were captured. Sixteen of the captures were at Ambush Rock (rkm 244.5), one was near Nicks Island (rkm 144.5), British Columbia, and the other was downstream of the Goat River (rkm 152.7). Of the 18 burbot captured, one fish escaped from the net overnight, four were recaptures from this year's study, six were recaptures

  6. Velocity estimation using a Bayesian network in a critical-habitat reach of the Kootenai River, Idaho

    NASA Astrophysics Data System (ADS)

    Palmsten, Margaret L.; Todd Holland, K.; Plant, Nathaniel G.

    2013-09-01

    Numerous numerical modeling studies have been completed in support of an extensive recovery program for the endangered white sturgeon (Acipenser transmontanus) on the Kootenai River near Bonner's Ferry, ID. A technical hurdle in the interpretation of these model results is the transfer of information from the specialist to nonspecialist such that practical decisions utilizing the numerical simulations can be made. To address this, we designed and trained a Bayesian network to provide probabilistic prediction of depth-averaged velocity. Prediction of this critical parameter governing suitable spawning habitat was obtained by exploiting the dynamic relationships between variables derived from model simulations with associated parameter uncertainties. Postdesign assessment indicates that the most influential environmental variables in order of importance are river discharge, depth, and width, and water surface slope. We demonstrate that the probabilistic network not only reproduces the training data with accuracy similar to the accuracy of a numerical model (root-mean-squared error of 0.10 m/s), but that it makes reliable predictions on the same river at times and locations other than where the network was trained (root mean squared error of 0.09 m/s). Additionally, the network showed similar skill (root mean square error of 0.04 m/s) when predicting velocity on the Apalachicola River, FL, a river of similar shape and size to the Kootenai River where a related sturgeon population is also threatened.

  7. A demonstration of the instream flow incremental methodology, Shenandoah River, Virginia

    USGS Publications Warehouse

    Zappia, Humbert; Hayes, D.C.

    1998-01-01

    Current and projected demands on the water resources of the Shenandoah River have increased concerns for the potential effect of these demands on the natural integrity of the Shenandoah River system. The Instream Flow Incremental Method (IFIM) process attempts to integrate concepts of water-supply planning, analytical hydraulic engineering models, and empirically derived habitat versus flow functions to address water-use and instream-flow issues and questions concerning life-stage specific effects on selected species and the general well being of aquatic biological populations. The demonstration project also sets the stage for the identification and compilation of the major instream-flow issues in the Shenandoah River Basin, development of the required multidisciplinary technical team to conduct more detailed studies, and development of basin specific habitat and flow requirements for fish species, species assemblages, and various water uses in the Shenandoah River Basin.This report presents the results of an IFIM demonstration project, conducted on the main stem Shenandoah River in Virginia, during 1996 and 1997, using the Physical Habitat Simulation System (PHABSIM) model. Output from PHABSIM is used to address the general flow requirements for water supply and recreation and habitat for selected life stages of several fish species.The model output is only a small part of the information necessary for effective decision making and management of river resources. The information by itself is usually insufficient for formulation of recommendations regarding instream-flow requirements. Additional information, for example, can be obtained by analysis of habitat time-series data, habitat duration data, and habitat bottlenecks. Alternative-flow analysis and habitat-duration curves are presented.

  8. Kootenai River Fisheries Investigations; Chapter 3 : Mainstem Habitat Use and Recruitment Estimates of Rainbow Trout, 1996 Annual Report.

    SciTech Connect

    Fredericks, James P.; Hendricks, Steve

    1997-09-01

    The objective of this study was to determine if recruitment is limiting the population of rainbow trout Oncorhynchus mykiss in the mainstem Kootenai River. The authors used snorkeling and electrofishing techniques to estimate juvenile rainbow trout density and total numbers in Idaho tributaries, and they trapped juvenile outmigrants to identify the age at which juvenile trout migrate from tributaries to the Kootenai River. The authors radio and reward-tagged post-spawn adult rainbow trout captured in Deep Creek to identify river reach and habitat used by those fish spawning and rearing in the Deep Creek drainage. They also conducted redd surveys in the Kootenai River to determine the extent of mainstem spawning. Based on the amount of available habitat and juvenile rainbow trout densities, the Deep Creek drainage was the most important area for juvenile production. Population estimates of age 0, age 1+, and age 2+ rainbow trout indicated moderate to high densities in several streams in the Deep Creek drainage whereas other streams, such as Deep Creek, had very low densities of juvenile trout. The total number of age 0, age 1+, and age 2+ rainbow trout in Deep Creek drainage in 1996 was estimated to be 63,743, 12,095, and 3,095, respectively. Radio telemetry efforts were hindered by the limited range of the transmitters, but movements of a radio-tagged trout and a returned reward tag indicated that at least a portion of the trout utilizing the Deep Creek drainage migrated downriver from the mouth of Deep Creek to the meandering section of river. They found no evidence of mainstem spawning by rainbow trout, but redd counting efforts were hindered by high flows from mid-April through June.

  9. Kootenai River Fisheries Investigation; Stock Status of Burbot, 2003-2004 Annual Report.

    SciTech Connect

    Paragamian, Vaughn L.; Pyper, Brian J.; Ireland, Susan C.

    2004-12-01

    The main objective of this investigation was to monitor movement and spawning activity of burbot Lota lota in the Kootenai River, Idaho and British Columbia, Canada during the winter of 2003-2004. Due to low precipitation and snow pack, as well as low levels of Lake Koocanusa, the U.S. Army Corps of Engineers refrained from releasing discharges >113 m{sup 3}/s from Libby Dam for most of the winter. This situation provided suitable conditions for burbot migration and spawning in the mainstem river. Hoop nets captured 19 burbot, which ranged from 447 mm to 760 mm TL (mean = 630 mm) and weighed from 420 g to 4,032 g (mean = 1,937 g) with a mean W{sub r} of 99. One burbot (burbot 214) was captured for the fifth time since its first capture in 2000, and each capture was near Ambush Rock (rkm 244.4-244.8). Eleven burbot were tagged with five-month duration external sonic transmitters, and a 12th burbot, tagged with a 14-month transmitter, has been monitored since 2001. During the post-spawn period, three sonic-tagged burbot exhibited downstream and sedentary movement patterns, while five remained at Ambush Rock. Concentrations of tagged burbot near Ambush Rock (rkm 244.5) during January and February 2004 (eight tagged fish) may suggest that this area is critical spawning habitat. The appearance of burbot at Ambush Rock during the spawning period and upstream movements of tagged fish (PIT and sonic tagged) in previous years during the low discharges help validate results suggesting that discharges <113 m{sup 3}/s will permit burbot migration and may increase spawning habitat. Though it seems apparent that the Ambush Rock area is an important burbot spawning ground, no adult burbot were recaptured after the spawning period and no burbot larva were caught, despite considerable sampling efforts during the winter of 2003-2004.

  10. Kootenai River Fisheries Investigations; Stock Status of Burbot and Rainbow Trout and Fisheries Inventory, 1993 Annual Report.

    SciTech Connect

    Paragamian, Vaughin L.

    1994-03-01

    Seventeen burbot Lota lota were caught in the Kootenai River with two sizes of hoop nets baited with fish. One burbot was a recapture. Burbot catch from March 19 through May 10, 1993 averaged 0.03 fish/net/day. Total length ranged from 367 to 701 mm and weight from 369 to 2,610 g (mean = 916 g). Nearly all burbot were caught at Ambush Rock. Preliminary findings are that burbot abundance in the Kootenai River is substantially less than it was in the late 1970s. Rainbow trout Oncorhynchus mykiss and seven other species of fish were sampled in tributary streams of the Kootenai River. A single pass was made with a backpack electroshocker. Species diversity ranged from two found in Cascade Creek to eight each in Snow and Caribou creeks. Most streams were partially channelized in their lower reaches, and these segments were lower in species richness. Sculpins Cottus sp. were often the only species found in channelized segments. Trout were caught in all streams. Rainbow trout were the most abundant salmonid. Cutthroat trout 0. clarki numbers were highest in Cascade Creek. I estimated a total of 5,268 anglers fished 13,698 h ({+-} 3,913), for 129 h/km (n{+-} 36), from March through August 1993. Fisherman averaged 2.6 h/trip based on completed trip information. The estimated total angler catch was 5,937 fish ({+-} 3,395), of which 3,676 ({+-} 3,246) were kept. Angler effort for 1993 was similar to that of 1982. Angler harvest of rainbow trout was estimated at 700 fish ({+-} 873) and they averaged 276 mm total length. Mean catch rate for anglers fishing for rainbow trout was about 0.02 fish/h. Rainbow trout comprised 17% of the catch. Angler harvest of cutthroat trout was 105 fish ({+-} 118) at less than 0.01 fish/h and averaged 356 mm total length.

  11. Characterization of the Kootenai River Algae Community and Primary Productivity Before and After Experimental Nutrient Addition, 2004–2007 [Chapter 2, Kootenai River Algal Community Characterization, 2009 KTOI REPORT].

    SciTech Connect

    Holderman, Charlie; Anders, Paul; Shafii, Bahman

    2009-07-01

    The Kootenai River ecosystem (spelled Kootenay in Canada) has experienced numerous ecological changes since the early 1900s. Some of the largest impacts to habitat, biological communities, and ecological function resulted from levee construction along the 120 km of river upstream from Kootenay Lake, completed by the 1950s, and the construction and operation of Libby Dam on the river near Libby Montana, completed in 1972. Levee construction isolated tens of thousands of hectares of historic functioning floodplain habitat from the river channel downstream in Idaho and British Columbia (B.C.) severely reducing natural biological productivity and habitat diversity crucial to large river-floodplain ecosystem function. Libby Dam greatly reduces sediment and nutrient transport to downstream river reaches, and dam operations cause large changes in the timing, duration, and magnitude of river flows. These and other changes have contributed to the ecological collapse of the post-development Kootenai River ecosystem and its native biological communities. In response to large scale loss of nutrients, experimental nutrient addition was initiated in the North Arm of Kootenay Lake in 1992, in the South Arm of Kootenay Lake in 2004, and in the Kootenai River at the Idaho-Montana border during 2005. This report characterizes baseline chlorophyll concentration and accrual (primary productivity) rates and diatom and algal community composition and ecological metrics in the Kootenai River for four years, one (2004) before, and three (2005 through 2007) after nutrient addition. The study area encompassed a 325 km river reach from the upper Kootenay River at Wardner, B.C. (river kilometer (rkm) 445) downstream through Montana and Idaho to Kootenay Lake in B.C. (rkm 120). Sampling reaches included an unimpounded reach furthest upstream and four reaches downstream from Libby Dam affected by impoundment: two in the canyon reach (one with and one without nutrient addition), a braided reach

  12. Kootenai River White Sturgeon Investigations : White Sturgeon Spawning and Recruitment Evaluation, 1998 Annual Report.

    SciTech Connect

    Paragamian, Vaughn L.; Kruse, Gretchen L.; Wakkinen, Virginia

    2001-03-01

    Flows in the Kootenai River for white sturgeon Acipenser transmontanus spawning in 1998 were expected to be at a minimum because the snow pack in the basin was only about 79% normal, and local inflow was expected to be very low, <142 m{sup 3}/s (5,000 cfs). Flows in the Kootenai River at Bonners Ferry from late April through early May were at about 425 m{sup 3}/s (15,000 cfs) while water temperature ranged from about 8 to 10 C (45 to 50 F). Spawning and incubation flows from Libby Dam began on May 18 when flow at the dam was brought up to 765 m{sup 3}/s (27,000 cfs). Unusually frequent rains and several enormous storms brought peak flows at Bonners Ferry to over 1,175 m{sup 3}/s (41,500 cfs) on May 27, temperature ranged between 8 and 10.6 C (45 to 51 F). Flow gradually subsided at Bonners Ferry during June and was steady at 708 to 765 m{sup 3}/s (25,000 to 27,000 cfs) while temperature gradually rose to 14.4 C (58 F). Forty-seven adult white sturgeon were captured with 4,220 hours of angling and setlining effort between March 1 and April 15, 1998 by the Idaho Department of Fish and Game (IDFG). Sonic and radio tags were attached to four female and five male sturgeon during this effort. From April 1 through July 31, 1998, a total of 17 fish were monitored specifically for pre-spawn and spawning activities. White sturgeon spawning location, timing, frequency, and habitat were evaluated by sampling for eggs with artificial substrate mats. Four hundred and eighty-four eggs were collected, 393 eggs (81%) were collected on 60 standard mats, and 91 eggs (19%) were collected on seven experimental mats with drift nets. Ten eggs collected with experimental mats were found mixed with sand, suggesting eggs are moving in the lower water column with sand. The middle Shorty's Island reach (rkm 229.6-231.5) produced the most eggs (173) while the Deep Creek section (rkm 237.6-240.5) produced 112 eggs. No eggs were collected above the Deep Creek section (>rkm 240.5). Four hundred

  13. Kootenai River White Sturgeon Recovery Implementation Plan and Schedule; 2005-2010, Technical Report 2004-2005.

    SciTech Connect

    Anders, Paul

    2007-03-01

    Kootenai River white sturgeon have been declining for at least 50 years and extinction of the wild population is now imminent (Paragamian et al. 2005). Only 630 adults were estimated to remain in 2002 from a population ten times that size just 20 years ago. Significant recruitment of young sturgeon has not been observed since the early 1970s and consistent annual recruitment has not been seen since the 1950s. The remaining wild population consists of a cohort of large, old fish that is declining by about 9% per year as fish die naturally and are not replaced. At this rate, the wild population will disappear around the year 2040. Numbers have already reached critical low levels where genetic and demographic risks are acute. The Kootenai River White Sturgeon Recovery Team was convened in 1994, provided a draft Recovery Plan in 1996 and the first complete Recovery Plan for Kootenai River white sturgeon in 1999 (USFWS 1996, 1999). The Plan outlined a four part strategy for recovery, including: (1) measures to restore natural recruitment, (2) use of conservation aquaculture to prevent extinction, (3) monitoring survival and recovery, and (4) updating and revising recovery plan criteria and objectives as new information becomes available. Sturgeon recovery efforts are occurring against a backdrop of a broader ecosystem protection and restoration program for the Kootenai River ecosystem. With abundance halving time of approximately 8 years, the Kootenai River white sturgeon population is rapidly dwindling, leaving managers little time to act. Decades of study consistently indicate that recruitment failure occurs between embryo and larval stages. This assertion is based on four key observations. First, almost no recruitment has occurred during the last 30 years. Second, thousands of naturally produced white sturgeon embryos, most viable, have been collected over the past decade, resulting from an estimated 9 to 20 spawning events each year. Third, Kootenai River white

  14. Kootenai River Fisheries Investigation[s]; Stock Status of Burbot, 2002-2003 Annual Report.

    SciTech Connect

    Paragamian, Vaughn L.; Hoyle, Genevieve

    2005-09-01

    The Kootenai River Fisheries Investigation Project planned to monitor burbot Lota lota movement in the winter of 2002-2003 and test a hypothesis regarding the relationship of winter flow to upstream spawning migration success. The U.S. Army Corps of Engineers and the Bonneville Power Administration were unable to provide the consistent low winter flows needed to meet the experimental design criteria in that monitoring and evaluation plan (approximately 170 m{sup 3}/s from Libby Dam). Although conditions consistent with management for sustained minimum flows persisted throughout the winter, and stable low flows were maintained below Libby Dam from September 1 through November 24, 2002 (158 m{sup 3}/s average) and from January 1, 2003 until May 1 (144 m{sup 3}/s average), flows in the intervening 37 d period from November 25 to December 31 were increased significantly by the U.S. Army Corps of Engineers. During that important December spawning migration period for burbot, flows were well above those proposed in the monitoring and evaluation plan and peaked at 741 m{sup 3}/s on December 21, 2002. Furthermore, despite the low flow conditions for much of the winter, our capture of 10 burbot was the lowest since this investigation began in 1993, evidence that the stock is extremely depressed and the numbers of burbot are declining. We captured a single burbot in 2002-2003 that provided circumstantial evidence reproduction occurred during the winter of 2000-2001. This burbot of 352 mm TL was among the smallest captured since sampling began in 1993. Seven burbot were monitored with sonic telemetry; two of those were tagged the previous winter. The capture of a female burbot at Ambush Rock during the spawning period supports results of previous findings that low flows during winter enhances burbot migration and spawning. Sampling for larval burbot was conducted, but no larval burbot were captured.

  15. Flow and sediment-transport modeling of Kootenai River White Sturgeon Spawning Habitat.

    NASA Astrophysics Data System (ADS)

    McDonald, R. R.; Nelson, J.; Barton, G.; Paragamian, V.

    2004-12-01

    The population of White Sturgeon in the Kootenai River downstream of Libby Dam in Montana and Idaho has declined since the construction of the dam in 1972. The White Sturgeon was listed as endangered in 1994 and an 11.2 mile reach of the river, downstream of Bonners Ferry, Idaho was designated as Critical Habitat in 2001. It is hypothesized that hydro-electric and flood control operations have contributed to poor spawning habitat and recruitment of juvenile fish. The successful incubation of eggs requires a stable and coarse bed material. Currently the sturgeon are spawning in a reach of poor substrate consisting of dunes up to 2 meters in amplitude and composed of fine sand while a short distance upstream there is suitable substrate of coarse gravel. We present here the preliminary results of a flow and sediment-transport modeling effort to aid in an understanding of both the current spawning habitat of the White Sturgeon and the potential to artificially enhance the current spawning habitat or to influence the sturgeon to move upstream to more suitable habitat. A 2.5 dimensional flow model was constructed for an 8-kilometer reach of the designated Critical Habitat. The modeled reach consists of several broad meanders and a mid channel island. The substrate is composed of fine sand with a median grain size of 0.22mm and has large dunes up to 2m in amplitude at relatively lows flows of 200 cms that wash out to a plane bed at around 600 cms. The model has been calibrated to a range of historical flow conditions from 170 cms to 1709 cms and verified against 16 ADCP velocity cross-section profiles collected during a period of steady flow at 554 cms. The model predicts well most of the salient features of the velocity field including the magnitude and location of the secondary flow, using a simple constant value for roughness. However for a few reaches of the river the bed forms and their spatial variability in size are shown to significantly affect the flow and the

  16. Kootenai River Wildlife Habitat Enhancement Project : Long-term Bighorn Sheep/Mule Deer Winter and Spring Habitat Improvement Project : Wildlife Mitigation Project, Libby Dam, Montana : Management Plan.

    SciTech Connect

    Yde, Chis

    1990-06-01

    The Libby hydroelectric project, located on the Kootenai River in northwestern Montana, resulted in several impacts to the wildlife communities which occupied the habitats inundated by Lake Koocanusa. Montana Department of Fish, Wildlife and Parks, in cooperation with the other management agencies, developed an impact assessment and a wildlife and wildlife habitat mitigation plan for the Libby hydroelectric facility. In response to the mitigation plan, Bonneville Power Administration funded a cooperative project between the Kootenai National Forest and Montana Department of Fish, Wildlife and Parks to develop a long-term habitat enhancement plan for the bighorn sheep and mule deer winter and spring ranges adjacent to Lake Koocanusa. The project goal is to rehabilitate 3372 acres of bighorn sheep and 16,321 acres of mule deer winter and spring ranges on Kootenai National Forest lands adjacent to Lake Koocanusa and to monitor and evaluate the effects of implementing this habitat enhancement work. 2 refs.

  17. KOOTENAI, CLARK FORK, PEND OREILLE, AND SPOKANE RIVER BASINS, WATER QUALITY ASSESSMENT, 1976

    EPA Science Inventory

    This report contains a water quality assessment approach which will assist EPA planners, land agencies, and state and local agencies in identifying probably nonpoint sources and determining their effects upon the fishable-swimmable aspect of the Kootenai, Clark Fork-Pend Oreille,...

  18. Patterns of fish assemblage structure and habitat use among main- and side-channel environments in the lower Kootenai River, Idaho

    USGS Publications Warehouse

    Watkins, Carson J.; Stevens, Bryan S.; Quist, Michael; Shepard, Bradley B.; Ireland, Susan C.

    2015-01-01

    The lower Kootenai River, Idaho, was sampled during the summers of 2012 and 2013 to evaluate its fish assemblage structure at seven sites within main- and side-channel habitats where large-scale habitat rehabilitation was undertaken. Understanding the current patterns of fish assemblage structure and their relationships with habitat is important for evaluating the effects of past and future rehabilitation projects on the river. Species-specific habitat associations were modeled, and the variables that best explained the occurrence and relative abundance of fish were identified in order to guide future habitat rehabilitation so that it benefits native species. The results indicated that the side-channel habitats supported higher species richness than the main-channel habitats and that nonnative fishes were closely associated with newly rehabilitated habitats. This research provides valuable insight on the current fish assemblages in the Kootenai River and the assemblage-level responses that may occur as a result of future rehabilitation activities.

  19. Breeding Plan to Preserve the Genetic Variability of the Kootenai River White Sturgeon, Final Report, December 1993.

    SciTech Connect

    Kincaid, Harold L.

    1993-11-01

    Natural reproduction in the Kootenai River white sturgeon population has not produced a successful year class since 1974, resulting in a declining broodstock and 20 consecutive year classes missing from the age-class structure. This report describes a captive breeding plan designed to preserve the remaining genetic variability and to begin rebuilding the natural age class structure. The captive breeding program will use 3--9 females and an equal number of males captured from the Kootenai River each spring. Fish will be spawned in pairs or in diallel mating designs to produce individual families that will be reared separately to maintain family identity. Fish will be marked to identify family and year class before return to the river. Fish should be returned to the river as fall fingerlings to minimize potential adaptation to the hatchery environment Initially, while tagging methods are tested to ensure positive identification after return to the river, it may be necessary to plant fish as spring yearlings. Number of fish planted will be equalized at 5,000 per family if fall fingerlings or 1,000 per family if spring yearlings. Assuming annual survival rates of 20% during the first winter for fall fingerling plants and 50% for years 1--3, and 85% for years 4--20 of all fish planted, the target numbers would yield 7.9 progeny per family or about 4 breeding pairs at age 20. Natural survival in the river environment during the 19+ years from planting to maturity would result in variability in genetic contribution of families to the next broodstock generation. Fish planted per family would be adjusted in future years when actual survival rate information is known. Broodfish will be tagged when captured to minimize multiple spawning of the same fish. implementation of this breeding plan each year for the 20-year generation interval, using 5 different mating pairs each year, will yield an effective population size of 200, or 22.5% of the estimated 1990 population.

  20. Kootenai River Fisheries Investigations; Stock Status of Burbot and Rainbow Trout and Fisheries Inventory, 1995 Annual Report.

    SciTech Connect

    Paragamian, Vaughn L.

    1995-11-01

    The author sampled 33 burbot Lota lota in the Kootenay River in British Columbia, Canada. Burbot catch from November 1994 to February 1995 averaged 0.047 fish/net-day. Total length ranged from 3854 mm to 958 mm and weighed from 272 g to 4,086 g (mean = 982 g). Twelve burbot were implanted with sonic transmitters and released at capture sites. Two additional burbot had active transmitters from the previous season. Telemetry of burbot during the pre-spawn, spawning, and post-spawning periods was conducted. Burbot were located a total of 203 times from November 1994 through August 8, 1995. Ripe burbot were captured and they appeared to have an affinity to water <2C. The author believes burbot spawned in the Goat River, British Columbia. Burbot with sonic transmitters did not reach Idaho until after the spawning period. Statistical analysis of burbot movement and discharge from Libby Dam indicated there was a significant relation between winter power production and spawning migration of burbot. A controlled test is needed to verify this relation. Zooplankton samples from the Kootenai River were substantially lower than the delta of Kootenay Lake, British Columbia, Canada.

  1. Defining interactions of in-stream hydrokinetic devices in the Tanana River, Alaska

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Toniolo, H.; Seitz, A. C.; Schmid, J.; Duvoy, P.

    2012-12-01

    The acceptance, performance, and sustainability of operating in-stream hydrokinetic power generating devices in rivers depends on the impact of the river environment on hydrokinetic infrastructure as well as its impact on the river environment. The Alaska Hydrokinetic Energy Research Center (AHERC) conducts hydrokinetic "impact" and technology studies needed to support a sustainable hydrokinetic industry in Alaska. These include completed and ongoing baseline studies of river hydrodynamic conditions (river stage, discharge, current velocity, power, and turbulence; suspended and bed load sediment transport), ice, fish populations and behavior, surface and subsurface debris flows, and riverbed conditions. Technology and methods studies to minimize the effect of debris flows on deployed turbine system are in-progress to determine their effectiveness at reducing the probability of debris impact, diverting debris and their affect on available river power for conversion to electricity. An anchor point has been placed in the main flow just upstream of Main (Figure 1) to support projects and in preparation for future projects that are being planned to examine hydrokinetic turbine performance including power conversion efficiency, turbine drag and anchor chain loads, wake generation and effects on fish. Baseline fish studies indicate that hydrokinetic devices at the test site will have the most potential interactions with Pacific salmon smolts during their down-migration to the ocean in May and June. At the AHERC test site, the maximum turbulent kinetic energy (TKE) occurs just down stream from the major river bends (e.g., 000 and near the railroad bridge [upper center of the figure]) and over a deep hole at 440 (Figure 1), Minimum TKE occurs between main and 800. River current velocity measurements and simulations of river flow from 000 downstream past the railroad bridge indicate that the most stable current in the river reach is between Main and 800. The stable current

  2. Understanding in-stream temporal coupling of macronutrients based on high-frequency monitoring in groundwater dominated rivers

    NASA Astrophysics Data System (ADS)

    Bieroza, M. Z.; Heathwaite, A. L.

    2012-04-01

    Developments in high-frequency water quality measurements enable capturing of fine structure of temporal variations in river biogeochemistry. Understanding of the temporal variation in the nutrient source and in-stream processes is critical in restoration of the good ecological and chemical status of river ecosystems. However, to date the in-stream temporal variability of macronutrients captured by high-frequency sampling is poorly understood (Scholefield et al., 2005; Milne et al., 2009; Harris and Heathwaite, 2011). Typically, river water quality monitoring is based on coarse sampling or storm event targeting strategies that miss the low flow water quality dynamics when in-stream processes and chemical-biological interactions may be of the greatest importance. This paper investigates the temporal dynamics and interdependencies between multiple high-frequency (hourly) nutrient and water quality time series collated for the River Leith, a tributary of the River Eden (Cumbria, UK). In-stream nutrients (total phosphorus TP, soluble reactive phosphorus SRP, nitrate nitrogen NO3N) and water quality parameters (turbidity, specific conductivity, pH, temperature, dissolved oxygen, redox potential) were measured by an automated remote mobile lab. A 54 km2 catchment of the River Leith is of mixed geology with Carboniferous limestone overlain by Penrith Sandstone and glacial till deposits. Permeable riverbed deposits create an active groundwater-surface water interface with hyporheic processes potentially exerting control over nutrient cycling. The temporal variation in in-stream nutrients and water quality variables was analysed. Diurnal patterns were observed during low flow conditions for both nutrients and water quality time series. Possible physical and biogeochemical controls on nutrients short-term dynamics were discussed. Antecedent and contemporaneous interdependencies between nutrients, water quality and hydrometric time series were explored in more detail using

  3. Native fishes in the Truckee River: Are in-stream structures and patterns of population genetic structure related?

    PubMed

    Peacock, Mary M; Gustin, Mae S; Kirchoff, Veronica S; Robinson, Morgan L; Hekkala, Evon; Pizzarro-Barraza, Claudia; Loux, Tim

    2016-09-01

    In-stream structures are recognized as significant impediments to movement for freshwater fishes. Apex predators such as salmonids have been the focus of much research on the impacts of such barriers to population dynamics and population viability however much less research has focused on native fishes, where in-stream structures may have a greater impact on long term population viability of these smaller, less mobile species. Patterns of genetic structure on a riverscape can provide information on which structures represent real barriers to movement for fish species and under what specific flow conditions. Here we characterize the impact of 41 dam and diversion structures on movement dynamics under varying flow conditions for a suite of six native fishes found in the Truckee River of California and Nevada. Microsatellite loci were used to estimate total allelic diversity, effective population size and assess genetic population structure. Although there is spatial overlap among species within the river there are clear differences in species distributions within the watershed. Observed population genetic structure was associated with in-stream structures, but only under low flow conditions. High total discharge in 2006 allowed fish to move over potential barriers resulting in no observed population genetic structure for any species in 2007. The efficacy of in-stream structures to impede movement and isolate fish emerged only after multiple years of low flow conditions. Our results suggest that restricted movement of fish species, as a result of in-stream barriers, can be mitigated by flow management. However, as flow dynamics are likely to be altered under global climate change, fragmentation due to barriers could isolate stream fishes into small subpopulations susceptible to both demographic losses and losses of genetic variation. PMID:27135585

  4. Effects of Stream Channel Characteristics on Nitrate Delivery to Streams and In-Stream Denitrification Rates, Raccoon River, Iowa

    NASA Astrophysics Data System (ADS)

    Prestegaard, K. L.; O'Connell, M.

    2004-05-01

    Streams in agricultural areas often exhibit significant channel and sediment modifications; they are often incised and transport more fine sediment than non-agricultural streams. These channel characteristics can influence stream water quality by modifying surface-groundwater interactions. In the Raccoon River basin, channel incision increases the delivery of nitrate from the groundwater to the streams. The sandy in-stream sediments, however, serve as very effective sites for in-stream denitrification. Nitrate delivery and in-stream denitrification was examined in 3 subwatersheds of the Raccoon River. Stream morphology, water quality, and sediment characteristics were measured at 35 sites with varying land uses. Headwater stream nitrate concentration increased with percent row crops and the amount of channel incision. Downstream sites showed a wide variation in nitrate concentration with land use. Stream nitrate concentrations were measured at 6 sites in each of 3 streams with high percentages of row crop land uses during high summer baseflow following the 1993 floods and during average summer baseflow in 1995. Nitrate concentrations were systematically higher for the high baseflow conditions of 1993 than the average year (1995). This change in nitrate concentration is interpreted as the increased effectiveness of nitrate delivery to the stream during periods of high water tables. The effect was most pronounced in incised reaches. All 3 streams show downstream decreases in nitrate concentration. Water samples for all the sites in the watersheds were analyzed for nitrogen isotopic composition. The nitrogen isotopic composition shifts with towards higher d 15N values with decreasing nitrate concentration. This is consistent with denitrification reactions that selectively remove the 14N leaving a higher proportion of 15N in the nitrate. This suggests that most of the downstream decrease in nitrate concentrations is a result of in-stream denitrification. The high rates

  5. A computer program for estimating instream travel times and concentrations of a potential contaminant in the Yellowstone River, Montana

    USGS Publications Warehouse

    McCarthy, Peter M.

    2006-01-01

    The Yellowstone River is very important in a variety of ways to the residents of southeastern Montana; however, it is especially vulnerable to spilled contaminants. In 2004, the U.S. Geological Survey, in cooperation with Montana Department of Environmental Quality, initiated a study to develop a computer program to rapidly estimate instream travel times and concentrations of a potential contaminant in the Yellowstone River using regression equations developed in 1999 by the U.S. Geological Survey. The purpose of this report is to describe these equations and their limitations, describe the development of a computer program to apply the equations to the Yellowstone River, and provide detailed instructions on how to use the program. This program is available online at [http://pubs.water.usgs.gov/sir2006-5057/includes/ytot.xls]. The regression equations provide estimates of instream travel times and concentrations in rivers where little or no contaminant-transport data are available. Equations were developed and presented for the most probable flow velocity and the maximum probable flow velocity. These velocity estimates can then be used to calculate instream travel times and concentrations of a potential contaminant. The computer program was developed so estimation equations for instream travel times and concentrations can be solved quickly for sites along the Yellowstone River between Corwin Springs and Sidney, Montana. The basic types of data needed to run the program are spill data, streamflow data, and data for locations of interest along the Yellowstone River. Data output from the program includes spill location, river mileage at specified locations, instantaneous discharge, mean-annual discharge, drainage area, and channel slope. Travel times and concentrations are provided for estimates of the most probable velocity of the peak concentration and the maximum probable velocity of the peak concentration. Verification of estimates of instream travel times and

  6. Updated one-dimensional hydraulic model of the Kootenai River, Idaho-A supplement to Scientific Investigations Report 2005-5110

    USGS Publications Warehouse

    Czuba, Christiana R.; Barton, Gary J.

    2011-01-01

    The Kootenai Tribe of Idaho, in cooperation with local, State, Federal, and Canadian agency co-managers and scientists, is assessing the feasibility of a Kootenai River habitat restoration project in Boundary County, Idaho. The restoration project is focused on recovery of the endangered Kootenai River white sturgeon (Acipenser transmontanus) population, and simultaneously targets habitat-based recovery of other native river biota. River restoration is a complex undertaking that requires a thorough understanding of the river and floodplain landscape prior to restoration efforts. To assist in evaluating the feasibility of this endeavor, the U.S. Geological Survey developed an updated one-dimensional hydraulic model of the Kootenai River in Idaho between river miles (RMs) 105.6 and 171.9 to characterize the current hydraulic conditions. A previously calibrated model of the study area, based on channel geometry data collected during 2002 and 2003, was the basis for this updated model. New high-resolution bathymetric surveys conducted in the study reach between RMs 138 and 161.4 provided additional detail of channel morphology. A light detection and ranging (LIDAR) survey was flown in the Kootenai River valley in 2005 between RMs 105.6 and 159.5 to characterize the floodplain topography. Six temporary gaging stations installed in 2006-08 between RMs 154.1 and 161.2, combined with five permanent gaging stations in the study reach, provided discharge and water-surface elevations for model calibration and verification. Measured discharges ranging from about 4,800 to 63,000 cubic feet per second (ft3/s) were simulated for calibration events, and calibrated water-surface elevations ranged from about 1,745 to 1,820 feet (ft) throughout the extent of the model. Calibration was considered acceptable when the simulated and measured water-surface elevations at gaging stations differed by less than (+/-)0.15 ft. Model verification consisted of simulating 10 additional events with

  7. Water quality modeling to determine minimum instream flow for fish survival in tidal rivers.

    PubMed

    Liu, Wen-Cheng; Liu, Shin-Yi; Hsu, Ming-Hsi; Kuo, Albert Y

    2005-09-01

    The Hsintien Stream is one of the major branches of the Danshuei River system, which runs through the metropolitan capital city of Taipei, Taiwan and receives a large amount of wastewater. The dissolved oxygen concentration is generally low in the tidal portion of the Hsintien Stream. Hypoxia/anoxia occurs often, particularly during the low-flow period when the Feitsui Reservoir, Chingtan Dam and Chihtan Dam impound the freshwater for municipal water supply. Fish kills happen from time to time. This paper describes the application of a numerical hydrodynamic and water quality model to the Danshuei River system, with special attention to the tidal portion of the Hsintien Stream. The model is recalibrated with the prototype conditions of the year 2000. The hydrodynamic portion of the model is recalibrated with measured surface elevation and velocity at various stations in the river system. The water quality portion of the model is recalibrated with respect to the field data provided by Taiwan EPA. The input data of point and nonpoint sources are also estimated. The model simulates the concentrations of various forms of nutrients, CBOD and dissolved oxygen. A series of sensitivity runs was conducted to investigate the effects of point source loadings and river flow on the DO level in the river. It is demonstrated that the augmentation of river flow has as much effect on raising DO level as the reduction of point source loadings. The completion of the Taipei sewer project is expected to reduce the point source loadings by at least 75%. Under these reduced loadings, if the daily instream flow is maintained above the monthly Q75 flow throughout the year, the minimum DO concentration in the river would not fall below 1mg/L, which is the suffocation level for most fish species in the Hsintien Stream. (Q75 is the flow which is equaled or exceeded 75% of the days in the month.) The Feitsui Reservoir, Chingtan Dam and Chihtan Dam may impound water during the high flow periods

  8. The effect of in-stream activities on the Njoro River, Kenya. Part II: Microbial water quality

    NASA Astrophysics Data System (ADS)

    Yillia, Paul T.; Kreuzinger, Norbert; Mathooko, Jude M.

    The influence of periodic in-stream activities of people and livestock on the microbial water quality of the Njoro River in Kenya was monitored at two disturbed pools (Turkana Flats and Njoro Bridge) at the middle reaches. A total of 96 sets of samples were obtained from the two pools in six weeks during dry weather (January-April) in 2006. On each sampling day, two trips were made before and during in-stream activities and on each trip, two sets of samples were collected upstream and downstream of activities. This schedule was repeated four times each for Wednesday, Saturday and Sunday. Samples were processed for heterotrophic plate count bacteria (HPC), total coliform (TC), presumptive Escherichia coli and presumptive Enterococci. Additional samples were analysed for total suspended solids (TSS), turbidity, BOD 5 and ammonium-N. The microbial water quality deteriorated significant ( p < 0.05) downstream during activities at both pools. A similar trend was observed with the chemical indicators (TSS, turbidity, BOD 5 and ammonium-N). The two groups of indicators demonstrated high capacity for site segregation based on pollution levels. Pollution levels for specific days were not significantly different ( p > 0.05). This was incompatible with the variability of in-stream activities with specific days. The pooled data was explained largely by three significant principal components - recent pollution (PC1), metabolic activity (PC2) and residual pollution (PC3). It was concluded that the empirical site parity/disparity in the levels of microbial and non-microbial indicators reflected the diurnal periodicity of in-stream activities and the concomitant pollution they caused. However, microbial source tracking studies are required to distinguish faecal sources. In the meantime, measures should be undertaken to regulate in-stream activities along the stream and minimize the movement of livestock in the catchment.

  9. Flathead River Instream Flow Investigation Project : Final Report 1996-2003.

    SciTech Connect

    Miller, William J.; Ptacek, Jonathan A.

    2003-09-01

    A modified Instream Flow Incremental Methodology (IFIM) approach was used on the mainstem Flathead River from the South Fork Flathead River downstream to Flathead Lake. The objective of this study was to quantify changes in habitat for the target fish species, bull trout (Salvelinus confluentus) and west slope cutthroat trout (Oncorhynchus clarki lewisi), as a function of discharge in the river. This approach used a combination of georeferenced field data for each study site combined with a two-dimensional hydraulic simulation of river hydraulic characteristics. The hydraulic simulations were combined with habitat suitability criteria in a GIS analysis format to determine habitat area as a function of discharge. Results of the analysis showed that habitat area is more available at lower discharges than higher discharges and that in comparison of the pre-dam hydrology with post-dam hydrology, the stable pre-dam baseflows provided more stable habitat than the highly variable flow regime during both summer and winter baseflow post-dam periods. The variability week to week and day to day under post-dam conditions waters and dewaters stream margins. This forces sub-adult fish, in particular bull trout, to use less productive habitat during the night. There is a distinct difference between daytime and nighttime habitat use for bull trout sub-adults. The marginal areas that are constantly wet and then dried provide little in productivity for lower trophic levels and consequently become unproductive for higher trophic levels, especially bull trout sub-adults that use those areas as flows increase. A stable flow regime would be more productive than flow regimes with high variability week to week. The highly variable flows likely put stress on a bull trout subadult and west slope cutthroat trout, due to the additional movement required to find suitable habitat. The GIS approach presented here provides both a visual characterization of habitat as well as Arcview project data

  10. Instream Biological Assessment of NPDES Point Source Discharges at the Savannah River Site, 2000

    SciTech Connect

    Specht, W.L.

    2001-06-20

    The Savannah River Site (SRS) currently has 31 NPDES outfalls that have been permitted by the South Carolina Department of Health and Environmental Control (SCDHEC) to discharge to SRS streams and the Savannah River. In order to determine the cumulative impacts of these discharges to the receiving streams, a study plan was developed to perform in-stream assessments of the fish assemblages, macroinvertebrate assemblages, and habitats of the receiving streams. These studies were designed to detect biological impacts due to point source discharges. Sampling was initially conducted between November 1997 and July 1998 and was repeated in the summer and fall of 2000. A total of 18 locations were sampled (Table 1, Figure 1). Sampling locations for fish and macroinvertebrates were generally the same. However, different locations were sampled for fish (Road A-2) and macroinvertebrates (Road C) in the lower portion of Upper Three Runs, to avoid interference with ongoing fisheries studies at Road C. Also, fish were sampled in Fourmile Branch at Road 4 rather than at Road F because the stream at Road F was too narrow and shallow to support many fish. Sampling locations and parameters are detailed in Sections 2 and 3 of this report. In general, sampling locations were selected that would permit comparisons upstream and downstream of NPDES outfalls. In instances where this approach was not feasible because effluents discharge into the headwaters of a stream, appropriate unimpacted reference were used for comparison purposes. This report summarizes the results of the sampling that was conducted in 2000 and also compares these data to the data that were collected in 1997 and 1998.

  11. DIEL DISSOLVED OXYGEN MONITORING OF THE SPOKANE RIVER DURING EXTREME LOW FLOW. KOOTENAI COUNTY, IDAHO, 1992

    EPA Science Inventory

    Diel monitoring of dissolved oxygen and temperature was conducted on an impounded and free-flowing reach of the Spokane River, in north Idaho (17010303) on 2 occasions during an extreme low flow event in water year 1992. The objective was to document excursions from water qualit...

  12. Dendritic network models: Improving isoscapes and quantifying influence of landscape and in-stream processes on strontium isotopes in rivers

    USGS Publications Warehouse

    Brennan, Sean R.; Torgersen, Christian; Hollenbeck, Jeff P.; Fernandez, Diego P.; Jensen, Carrie K; Schindler, Daniel E.

    2016-01-01

    A critical challenge for the Earth sciences is to trace the transport and flux of matter within and among aquatic, terrestrial, and atmospheric systems. Robust descriptions of isotopic patterns across space and time, called “isoscapes,” form the basis of a rapidly growing and wide-ranging body of research aimed at quantifying connectivity within and among Earth's systems. However, isoscapes of rivers have been limited by conventional Euclidean approaches in geostatistics and the lack of a quantitative framework to apportion the influence of processes driven by landscape features versus in-stream phenomena. Here we demonstrate how dendritic network models substantially improve the accuracy of isoscapes of strontium isotopes and partition the influence of hydrologic transport versus local geologic features on strontium isotope ratios in a large Alaska river. This work illustrates the analytical power of dendritic network models for the field of isotope biogeochemistry, particularly for provenance studies of modern and ancient animals.

  13. The impact of run-off change on physical instream habitats and its response to river morphology

    NASA Astrophysics Data System (ADS)

    Hauer, Christoph; Habersack, Helmut

    2010-05-01

    Rivers have already been substantially altered by human activity. Channelization, flow regulation, or changes in land use, especially urbanization, significantly alter the water discharge, sediment transport, and morphology of rivers. The impacts of these anthropogenic measures (disturbances) on river morphology and instream habitats were frequently investigated by the scientific community over the last decades. However, there are forms of disturbances (often induced by climate change) which cause at the beginning only a slight but (over the years) a continuous degradation of aquatic habitats (and river morphology). In the presented study the impact of such disturbances caused by climate change on summer run-off was investigated within the Gr. Mühl River catchment, Austria. So far, various studies have documented the impact of run-off change on river morphology and/or sediment load. Further the impact of run-off change on aquatic ecology (target fish species) have been documented throughout various scientific papers. However, there is a lack of knowledge how (climate induced) run-off changes affect instream aquatic habitats concerning various morphological patterns (e.g. riffle-pool morphology vs. plane bed river). Thus, the aim of the presented study was to link the impacts of climate change (e.g. reduced summer run-off) to various morphological types (riffle-pool, plane bed) using habitat modelling (2-dimensional) as integrative evaluation method. As target fish species sub-adult/adult grayling was selected due to the fact, that Thymallus thymallus features especially high sensitivity in water depth (microhabitat use). Further grayling was one the historically dominant fish species for the hyporhithral catchment of the Gr. Mühl River. Within the catchment 80% of the total river length are determined as plane bed river and 20 % as riffle-pool reaches (situated in former fine material deposits). Six reaches (3 plane-bed, 3 riffle-pool) were selected and surveyed

  14. Kootenai River Nutrient Dosing System and N-P Consumption: Year 2008.

    SciTech Connect

    Holderman, Charles

    2009-02-19

    In early 2006 we designed and built low energy consumption, pump-operated system, for dosing of the liquid nutrient in the summer 2006 season. This operated successfully, and the system was used again during the 2007 and 2008 seasons for dosing. During the early winter period, 2008, laboratory tests were made of the liquid nutrient pump system, and it was noted that small amounts of air were being entrained on the suction side of the pump, during conditions when the inlet pressure was low. It was believed that this was the cause of diurnal fluctuations in the flow supplied, characteristic of the 2007 year flow data. Replacement of '0' rings on the inlet side of the pumps was the solution to this problem, and when tested in the field during the summer season, the flow supplied was found to be stable. A decision was made by the IKERT committee at the meeting of 20th to 21st May 2008 (held in Coeur d'Alene, Idaho) to use an injection flow rate of liquid fertilizer (polyammonium phosphate 10-34-0) to achieve a target phosphorus concentration of 3.0 {micro}g/L, after complete mixing in the river. This target concentration was the same as that used in 2006 and 2007. The proposed starting date was as early as possible in June 2008. Plans were made to measure the dosing flow in three ways. Two of the three methods of flow measurement (1 and 2 below) are inter-dependent. These were: (1) Direct measurement of flow rate by diverting dosing flow into a 1000 mL volume standard flask. The flow rate was computed by dividing the flask volume by the time required to fill the flask. This was done a few times only during the summer period. (2) Adjusting the flow rate reading of the Gamma dosing pump using the 'calibration' function to achieve agreement with the flow rate computed by method 1 above. (3) Direct measurement by electrical signal from conductive fluid passing through a magnetic field (Seametrics meter, as used in previous years). Values were recorded every 4 minutes by a

  15. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume I Kootenai River (Overview, Report and Appendices).

    SciTech Connect

    Jamieson, Bob; Braatne, Jeffrey H.

    2001-10-01

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  16. A comparison of drainage basin nutrient inputs with instream nutrient loads for seven rivers in Georgia and Florida, 1986-90

    USGS Publications Warehouse

    Asbury, C.E.; Oaksford, E.T.

    1997-01-01

    Instream nutrient loads of the Altamaha, Suwannee, St. Johns, Satilla, Ogeechee, Withlacoochee, and Ochlockonee River Basins were computed and compared with nutrient inputs for each basin for the period 1986-90. Nutrient constituents that were considered included nitrate, ammonia, organic nitrogen, and total phosphorus. Sources of nutrients considered for this analysis included atmospheric deposition, fertilizer, animal waste, wastewater-treatment plant discharge, and septic discharge. The mean nitrogen input ranged from 2,400 kilograms per year per square kilometer (kg/yr)km2 in the Withlacoochee River Basin to 5,470 (kg/yr)km2 in the Altamaha River Basin. The Satilla and Ochlockonee River Basins also had large amounts of nitrogen input per unit area, totaling 5,430 and 4,920 (kg/yr)km2, respectively.Fertilizer or animal waste, as sources of nitrogen, predominated in all basins. Atmospheric deposition contributed less than one-fourth of the mean total nitrogen input to all basins and was consistently the third largest input in all but the Ogeechee River Basin, where it was the second largest.The mean total phosphorus input ranged from 331 (kg/yr)km2 in the Withlacoochee River Basin to 1,380 (kg/yr)km2 in both the Altamaha and Satilla River Basins. The Ochlockonee River Basin had a phosphorus input of 1,140 (kg/yr)km2.Per unit area, the Suwannee River discharged the highest instream mean total nitrogen and phosphorus loads and also discharged higher instream nitrate loads per unit area than the other six rivers. Phosphorus loads in stream discharge were highest in the Suwannee and Ochlockonee Rivers.The ratio of nutrient outputs to inputs for the seven studied rivers ranged from 4.2 to 14.9 percent, with the St. Johns (14.9 percent) and Suwannee (12.1 percent) Rivers having significantly higher percentages than those from the other basins. The output/input percentages for mean total phosphorus ranged from 1.0 to 7.0 percent, with the St. Johns (6.2 percent) and

  17. Modeling the effects of climate and land use change on instream temperature in the Upper Tar River, North Carolina

    NASA Astrophysics Data System (ADS)

    Daraio, J. A.; Bales, J. D.

    2011-12-01

    Freshwater mussels are among the most imperiled groups of organisms in the world. Declines in abundance and diversity in North America have been attributed to a wide range of human activities, and many species occur in habitats close to their upper thermal tolerance. We are modeling instream temperature (T) as part of an effort to understand the response of imperiled freshwater mussels to anthropogenically induced changes in water T, habitat, and flow. We used the Precipitation-Runoff Modeling System (PRMS) to model projected changes in stream discharge, and the Stream Network Temperature Model (SNTEMP) to model changes in instream T due to climate and land-use change in the Upper Tar River, North Carolina, which has a drainage area of 2200 mi^2. Down-scaled gridded 12km Global Circulation Models were used for precipitation and T inputs to PRMS simulations from the present through 2060. Land-use change through 2060 in the Upper Tar basin was estimated from SLEUTH, a model that estimates land-use change using the probability of urbanization, (results available from NC State University) and incorporated into PRMS for long term simulations. Stream segment discharge and lateral and groundwater flow into each stream segment from PRMS were used as input for SNTEMP. Groundwater T was assumed equal to the average annual air T for the basin. Lateral inflow T was estimated from physical characteristics of the basin (e.g. impervious area, cover density, cover type, solar radiation, air T) when possible, or from a regression with air T based on empirical field data at 20 sites throughout the basin. In addition to T, data on mussel and fish populations (e.g., density and species composition?) and microhabitat have been collected at these sites. The SNTEMP model was calibrated using the mean daily T at each site. Nash-Sutcliffe efficiency values ranged from 0.86 to 0.94 for mean daily T, and from 0.80 to 0.93 for maximum daily T. Ensemble simulations were run for a range of

  18. Effects of alternative instream-flow criteria and water-supply demands on ground-water development options in the Big River Area, Rhode Island

    USGS Publications Warehouse

    Granato, Gregory E.; Barlow, Paul M.

    2005-01-01

    Transient numerical ground-water-flow simulation and optimization techniques were used to evaluate potential effects of instream-flow criteria and water-supply demands on ground-water development options and resultant streamflow depletions in the Big River Area, Rhode Island. The 35.7 square-mile (mi2) study area includes three river basins, the Big River Basin (30.9 mi2), the Carr River Basin (which drains to the Big River Basin and is 7.33 mi2 in area), the Mishnock River Basin (3.32 mi2), and a small area that drains directly to the Flat River Reservoir. The overall objective of the simulations was to determine the amount of ground water that could be withdrawn from the three basins when constrained by streamflow requirements at four locations in the study area and by maximum rates of withdrawal at 13 existing and hypothetical well sites. The instream-flow requirement for the outlet of each basin and the outfall of Lake Mishnock were the primary variables that limited the amount of ground water that could be withdrawn. A requirement to meet seasonal ground-water-demand patterns also limits the amount of ground water that could be withdrawn by up to about 50 percent of the total withdrawals without the demand-pattern constraint. Minimum water-supply demands from a public water supplier in the Mishnock River Basin, however, did not have a substantial effect on withdrawals in the Big River Basin. Hypothetical dry-period instream-flow requirements and the effects of artificial recharge also affected the amount of ground water that could be withdrawn. Results of simulations indicate that annual average ground-water withdrawal rates that range up to 16 million gallons per day (Mgal/d) can be withdrawn from the study area under simulated average hydrologic conditions depending on instream-flow criteria and water-supply demand patterns. Annual average withdrawals of 10 to 12 Mgal/d are possible for proposed demands of 3.4 Mgal/d in the Mishnock Basin, and for a constant

  19. Availability of natural and regulated streamflows for instream uses during historical droughts, lower Neosho River, southeastern Kansas

    USGS Publications Warehouse

    Hart, R.J.; Stiles, T.C.

    1984-01-01

    The effects of three historical droughts on streamflows available for instream use on the lower Neosho River at Iola and Parsons, Kansas, were investigated. Natural streamflows that occurred during the three droughts were compared to the multiple-use and water-quality streamflows recommended by State agencies. A reservoir model was used to investigate the effects of John Redmond Reservoir on the natural streamflows. The regulated streamflow produced from the reservoir model then was compared to the multiple-use and water-quality streamflows. The regulated streamflows usually satisfied the multiple-use and water-quality streamflows more often than the natural streamflows. Frequency analysis made on the natural and regulated streamflows showed that the number of days of low flow (less than 30 cubic feet per second) were reduced by the regulated streamflows, which aided in the achievement of the multiple-use and water-quality streamflows goals. The reservoir model was used to determine if sufficient storage was available in John Redmond Reservoir to modify the natural streamflows in order to satisfy the multiple-use and water-quality streamflow recommendations. Additional storage of 15,400 acre-feet was estimated to be needed to maintain the multiple-use streamflows at Parsons. (USGS)

  20. Sediment transport and evaluation of sediment surrogate ratings in the Kootenai River near Bonners Ferry, Idaho, Water Years 2011–14

    USGS Publications Warehouse

    Wood, Molly S.; Fosness, Ryan L.; Etheridge, Alexandra B.

    2015-01-01

    Acoustic surrogate ratings were developed between backscatter data collected using acoustic Doppler velocity meters (ADVMs) and results of suspended-sediment samples. Ratings were successfully fit to various sediment size classes (total, fines, and sands) using ADVMs of different frequencies (1.5 and 3 megahertz). Surrogate ratings also were developed using variations of streamflow and seasonal explanatory variables. The streamflow surrogate ratings produced average annual sediment load estimates that were 8–32 percent higher, depending on site and sediment type, than estimates produced using the acoustic surrogate ratings. The streamflow surrogate ratings tended to overestimate suspended-sediment concentrations and loads during periods of elevated releases from Libby Dam as well as on the falling limb of the streamflow hydrograph. Estimates from the acoustic surrogate ratings more closely matched suspended-sediment sample results than did estimates from the streamflow surrogate ratings during these periods as well as for rating validation samples collected in water year 2014. Acoustic surrogate technologies are an effective means to obtain continuous, accurate estimates of suspended-sediment concentrations and loads for general monitoring and sediment-transport modeling. In the Kootenai River, continued operation of the acoustic surrogate sites and use of the acoustic surrogate ratings to calculate continuous suspended-sediment concentrations and loads will allow for tracking changes in sediment transport over time.

  1. 77 FR 16556 - Kootenai National Wildlife Refuge, Boundary County, ID; Final Comprehensive Conservation Plan and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-21

    ... a notice of intent in the Federal Register (74 FR 8102; February 23, 2009). We released the draft... Register (76 FR 48877; August 9, 2011). Kootenai NWR encompasses 2,774 acres along the lower Kootenai River... Administration Act. CCP Alternatives, Including Selected Alternative Our draft CCP/EA (76 FR 48877; August...

  2. Conservation opportunities for securing in-stream flows in the Platte River Basin: a case study drawing on Casper, Wyoming's municipal water strategy.

    PubMed

    Waller, Aaron; Mcleod, Donald; Taylor, David

    2004-11-01

    The Platte River Basin consists of tributaries largely in Wyoming, Colorado and Western Nebraska, with the main stem in Central Nebraska. Critical wildlife habitat on the main stem requires additional in-stream flows. The watershed is one hosting multiple resources, a variety of users, and managed by an array of state and federal agencies. This study proposes a basis for securing in-stream flows for the Platte River. Candidate water supply mechanisms are suggested based on the way in which Casper, Wyoming secured water for its municipal needs. Canal lining is compared to a dam project, increasing reservoir storage, and purchasing water rights, with consideration also made for water pricing to reduce municipal use. Comparisons are based on economic efficiency, potential water conservation, and property rights criteria. Canal lining, coupled with demand management, is shown to conserve water best, given the set of efficiency and cost criteria for in-stream flow enhancement. The approach offers an opportunity to organize the water supply choice context in a transboundary watershed when quantitative information is limited. PMID:15696304

  3. Characterization of water quality in selected tributaries of the Alamosa River, southwestern Colorado, including comparisons to instream water-quality standards and toxicological reference values, 1995-97

    USGS Publications Warehouse

    Ortiz, Roderick F.; Ferguson, Sheryl A.

    2001-01-01

    A comprehensive water-quality sampling network was implemented by the U.S. Geological Survey from 1995 through 1997 at 12 tributary sites to the Alamosa River. The network was designed to address data gaps identified in the initial ecological risk assessment of the Summitville Superfund site. Tributaries draining hydrothermally altered areas had higher median values for nearly all measured properties and constituents than tributaries draining unaltered areas. Colorado instream standards for pH, copper, iron, and zinc were in attainment at most tributary sites. Instream standards for pH and chronic aquatic-life standards for iron were not attained in Jasper Creek. Toxicological reference values were most often exceeded at Iron Creek, Alum Creek, Bitter Creek, Wightman Fork, and Burnt Creek. These tributaries all drain hydrothermally altered areas.

  4. Characterization of instream hydraulic and riparian habitat conditions and stream temperatures of the Upper White River Basin, Washington, using multispectral imaging systems

    USGS Publications Warehouse

    Black, Robert W.; Haggland, Alan; Crosby, Greg

    2003-01-01

    Instream hydraulic and riparian habitat conditions and stream temperatures were characterized for selected stream segments in the Upper White River Basin, Washington. An aerial multispectral imaging system used digital cameras to photograph the stream segments across multiple wavelengths to characterize fish habitat and temperature conditions. All imageries were georeferenced. Fish habitat features were photographed at a resolution of 0.5 meter and temperature imageries were photographed at a 1.0-meter resolution. The digital multispectral imageries were classified using commercially available software. Aerial photographs were taken on September 21, 1999. Field habitat data were collected from August 23 to October 12, 1999, to evaluate the measurement accuracy and effectiveness of the multispectral imaging in determining the extent of the instream habitat variables. Fish habitat types assessed by this method were the abundance of instream hydraulic features such as pool and riffle habitats, turbulent and non-turbulent habitats, riparian composition, the abundance of large woody debris in the stream and riparian zone, and stream temperatures. Factors such as the abundance of instream woody debris, the location and frequency of pools, and stream temperatures generally are known to have a significant impact on salmon. Instream woody debris creates the habitat complexity necessary to maintain a diverse and healthy salmon population. The abundance of pools is indicative of a stream's ability to support fish and other aquatic organisms. Changes in water temperature can affect aquatic organisms by altering metabolic rates and oxygen requirements, altering their sensitivity to toxic materials and affecting their ability to avoid predators. The specific objectives of this project were to evaluate the use of an aerial multispectral imaging system to accurately identify instream hydraulic features and surface-water temperatures in the Upper White River Basin, to use the

  5. Characterization of channel substrate, and changes in suspended-sediment transport and channel geometry in white sturgeon spawning habitat in the Kootenai River near Bonners Ferry, Idaho, following the closure of Libby Dam

    USGS Publications Warehouse

    Barton, Gary J.

    2004-01-01

    Many local, State, and Federal agencies have concerns over the declining population of white sturgeon (Acipenser transmontanus) in the Kootenai River and the possible effects of the closure and subsequent operation of Libby Dam in 1972. In 1994, the Kootenai River white sturgeon was listed as an Endangered Species. A year-long field study was conducted in cooperation with the Kootenai Tribe of Idaho along a 21.7-kilometer reach of the Kootenai River including the white sturgeon spawning reach near Bonners Ferry, Idaho, approximately 111 to 129 kilometers below Libby Dam. During the field study, data were collected in order to map the channel substrate in the white sturgeon spawning reach. These data include seismic subbottom profiles at 18 cross sections of the river and sediment cores taken at or near the seismic cross sections. The effect that Libby Dam has on the Kootenai River white sturgeon spawning substrate was analyzed in terms of changes in suspended-sediment transport, aggradation and degradation of channel bed, and changes in the particle size of bed material with depth below the riverbed. The annual suspended-sediment load leaving the Kootenai River white sturgeon spawning reach decreased dramatically after the closure of Libby Dam in 1972: mean annual pre-Libby Dam load during 1966–71 was 1,743,900 metric tons, and the dam-era load during 1973–83 was 287,500 metric tons. The amount of sand-size particles in three suspended-sediment samples collected at Copeland, Idaho, 159 kilometers below Libby Dam, during spring and early summer high flows after the closure of Libby Dam is less than in four samples collected during the pre-Libby Dam era. The supply of sand to the spawning reach is currently less due to the reduction of high flows and a loss of 70 percent of the basin after the closure of Libby Dam. The river's reduced capacity to transport sand out of the spawning reach is compensated to an unknown extent by a reduced load of sand entering the

  6. Field testing and adaptation of a methodology to measure "in-stream" values in the Tongue River, northern Great Plains (NGP) region

    USGS Publications Warehouse

    Bovee, Ken D.; Gore, James A.; Silverman, Arnold J.

    1978-01-01

    A comprehensive, multi-component in-stream flow methodology was developed and field tested in the Tongue River in southeastern Montana. The methodology incorporates a sensitivity for the flow requirements of a wide variety of in-stream uses, and the flexibility to adjust flows to accommodate seasonal and sub-seasonal changes in the flow requirements for different areas. In addition, the methodology provides the means to accurately determine the magnitude of the water requirement for each in-stream use. The methodology can be a powerful water management tool in that it provides the flexibility and accuracy necessary in water use negotiations and evaluation of trade-offs. In contrast to most traditional methodologies, in-stream flow requirements were determined by additive independent methodologies developed for: 1) fisheries, including spawning, rearing, and food production; 2) sediment transport; 3) the mitigation of adverse impacts of ice; and 4) evapotranspiration losses. Since each flow requirement varied in important throughout the year, the consideration of a single in-stream use as a basis for a flow recommendation is inadequate. The study shows that the base flow requirement for spawning shovelnose sturgeon was 13.0 m3/sec. During the same period of the year, the flow required to initiate the scour of sediment from pools is 18.0 m3/sec, with increased scour efficiency occurring at flows between 20.0 and 25.0 m3/sec. An over-winter flow of 2.83 m3/sec. would result in the loss of approximately 80% of the riffle areas to encroachment by surface ice. At the base flow for insect production, approximately 60% of the riffle area is lost to ice. Serious damage to the channel could be incurred from ice jams during the spring break-up period. A flow of 12.0 m3/sec. is recommended to alleviate this problem. Extensive ice jams would be expected at the base rearing and food production levels. The base rearing flow may be profoundly influenced by the loss of streamflow

  7. Nutrient enrichment, phytoplankton algal growth, and estimated rates of instream metabolic processes in the Quinebaug River Basin, Connecticut, 2000-2001

    USGS Publications Warehouse

    Colombo, Michael J.; Grady, Stephen J.; Todd Trench, Elaine C.

    2004-01-01

    productivity and respiration obtained from diel dissolved oxygen monitoring and from light- and dark-bottle dissolved oxygen measurements demonstrated that instream metabolic processes are consistent with a seston-algae dominant system. The highest estimated maximum primary productivity rate was 1.72 grams of oxygen per cubic meter per hour at the Quinebaug River at Jewett City during September 2001. The observed extremes in diel dissolved oxygen concentrations (less than 5 milligrams per liter) and pH (greater than 9) may periodically stress aquatic organisms in the Quinebaug River Basin.

  8. A Hydrodynamic Investigation of Instream Pebble Clusters in Gravel-Bed Rivers With Implications for Fish Habitat

    NASA Astrophysics Data System (ADS)

    Lacey, R. J.; Roy, A. G.

    2006-05-01

    There does not appear to be a straight forward relationship between fish behaviour and in-stream large roughness elements such as boulders and pebble clusters. Studies have found increased salmonid densities following the placement of boulder clusters attributed to increased habitat complexity - variability in depth, cover, and current velocity. Yet laboratory bioenergetics studies have indicated that the complex environment induced by added boulders and cobbles reduces drift feeding and increases energy expenditure in juvenile salmon. These somewhat conflicting results may be related to an inadequate representation of the hydrodynamics associated with the large roughness elements in the studies. Most ecological fish habitat studies do not include a full or even a partial characterization of the turbulent flow dynamics even though positive relationships have been found between the swimming costs of salmonids and flow turbulence. This study provides a spatial description of the turbulent flow field associated with a naturally formed instream pebble cluster with a relative roughness of 0.3. The mean streamwise velocity and water depth at the time of measurement were 73 cm/s, and 35 cm, respectively. The hydrodynamic characterization presented here may aid in understanding the mechanisms involved in the linkage between large roughness elements and salmon productivity. Instantaneous high frequency velocities were measured using the simultaneous deployment of four acoustic Doppler velocimeters. Streamwise component mean velocities are reduced to near zero values in the near wake of the pebble cluster while turbulent kinetic energy values increase by a factor of approximately 2.0 compared with velocities outside the wake. The vertical velocity spectra estimated from measurements within the wake zone contain a marked peak at approximately 1.5 Hz associated with eddies shedding from the shear layer in the lee of the cluster. Turbulent events detected using the U

  9. Relationships between benthic macroinvertebrate community structure and geospatial habitat, in-stream water chemistry, and surfactants in the effluent-dominated Trinity River, Texas, USA.

    PubMed

    Slye, Jaime L; Kennedy, James H; Johnson, David R; Atkinson, Sam F; Dyer, Scott D; Ciarlo, Michael; Stanton, Kathleen; Sanderson, Hans; Nielsen, Allen M; Price, Bradford B

    2011-05-01

    Over the past 20 years, benthic macroinvertebrate community structure studies have been conducted on the upper Trinity River, Texas, USA, which is dominated by municipal wastewater treatment plant (WWTP) and industrial effluents. The Trinity River is located in the Dallas-Fort Worth metropolitan area, and is the most highly populated and industrialized watershed in Texas. As such, the Trinity River represents a near-worst-case scenario to examine the environmental effects of domestic-municipal and industrial effluents on aquatic life. A 1987 to 1988 study concluded that many stretches of the river supported a diverse benthic community structure; however, a decline in taxa richness occurred immediately downstream of WWTPs. A 2005 study designed to parallel the 1987 to 1988 efforts evaluated how changes in water quality, habitat, and increased urbanization impacted benthic community structure. Physicochemical measurements, habitat quality, geospatial variables, and benthic macroinvertebrates were collected from 10 sites. Surfactants were measured and toxic units (TUs) were calculated for surface water and pore water as indicators of domestic/household use of cleaning products. Total TUs indicated a low potential for biological impacts. Toxic unit distribution was not dependent on WWTP location and did not correlate with any benthic variable. Eight environmental parameters were determined to be useful for predicting changes in benthic macroinvertebrate community structure: surfactant surface water TUs (SWTU), in-stream habitat cover, and surface water total organic carbon were the top three parameters. Abundance, taxa richness, and taxa similarity in 2005 had increased since the earlier study throughout the immediate vicinity of the metropolitan area. PMID:21312245

  10. Detection probability of an in-stream passive integrated transponder (PIT) tag detection system for juvenile salmonids in the Klamath River, northern California, 2011

    USGS Publications Warehouse

    Beeman, John W.; Hayes, Brian; Wright, Katrina

    2012-01-01

    A series of in-stream passive integrated transponder (PIT) detection antennas installed across the Klamath River in August 2010 were tested using tagged fish in the summer of 2011. Six pass-by antennas were constructed and anchored to the bottom of the Klamath River at a site between the Shasta and Scott Rivers. Two of the six antennas malfunctioned during the spring of 2011 and two pass-through antennas were installed near the opposite shoreline prior to system testing. The detection probability of the PIT tag detection system was evaluated using yearling coho salmon implanted with a PIT tag and a radio transmitter and then released into the Klamath River slightly downstream of Iron Gate Dam. Cormack-Jolly-Seber capture-recapture methods were used to estimate the detection probability of the PIT tag detection system based on detections of PIT tags there and detections of radio transmitters at radio-telemetry detection systems downstream. One of the 43 PIT- and radio-tagged fish released was detected by the PIT tag detection system and 23 were detected by the radio-telemetry detection systems. The estimated detection probability of the PIT tag detection system was 0.043 (standard error 0.042). Eight PIT-tagged fish from other studies also were detected. Detections at the PIT tag detection system were at the two pass-through antennas and the pass-by antenna adjacent to them. Above average river discharge likely was a factor in the low detection probability of the PIT tag detection system. High discharges dislodged two power cables leaving 12 meters of the river width unsampled for PIT detections and resulted in water depths greater than the read distance of the antennas, which allowed fish to pass over much of the system with little chance of being detected. Improvements in detection probability may be expected under river discharge conditions where water depth over the antennas is within maximum read distance of the antennas. Improvements also may be expected if

  11. Swan falls instream flow study

    SciTech Connect

    Anglin, D.R.; Cummings, T.R.; Ecklund, A.E.

    1992-10-01

    The purpose of the Swan Falls Instream Flow Study was to define the relationship between streamflows and instream habitat for resident fish species and to assess the relative impact of several different hydrographs on resident fish habitat. Specific objectives included the following: (1) Conduct a literature search to compile life history, distribution, and habitat requirements for species of interest. Physical and hydrologic characteristics of the Snake River were also compiled. (2) Determine physical habitat versus discharge relationships and conduct habitat time series analysis for each species/lifestage using the Instream Flow Incremental Methodology (IFIM) developed by the U.S. Fish and Wildlife Service. (3) Examine the impacts on resident fish habitat of proposed hydrographs, including Swan Falls Agreement flows, relative to current conditions. (4) Characterize water quality conditions, including water temperature and dissolved oxygen, in the vicinity of the study area and determine the implications of those conditions for the resident species of interest. (5) Determine streamflows necessary to protect and maintain resident fish habitat in the study area.

  12. IN-STREAM AND WATERSHED PREDICTORS OF GENETIC DIVERSITY, EFFECTIVE POPULATION SIZE AND IMMIGRATION ACROSS RIVER-STREAM NETWORKS

    EPA Science Inventory

    The influence of spatial processes on population dynamics within river-stream networks is poorly understood. Utilizing spatially explicit analyses of temporal genetic variance, we examined whether persistence of Central Stonerollers (Campostoma anomalum) reflects differences in h...

  13. Using instream wood characteristics to guide the restoration of agricultural headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Instream wood is a critical habitat feature for aquatic animals within streams and rivers worldwide. Many stream restoration projects within forested watersheds include the addition of large instream wood (i.e., > 1 m length and > 0.10 m diameter) within their restoration designs. Instream wood add...

  14. Long-term effect of instream habitat-improvement structures on channel morphology along the Blackledge and Salmon rivers, Connecticut, USA.

    PubMed

    Thompson, Douglas M

    2002-02-01

    Habitat-improvement structures on the Blackledge and Salmon rivers date back to the 1930s and 1950s. Forty of these structures were investigated to determine their long-term impact on channel morphology. These structures include designs that continue to be used in modern restoration efforts. During the intervening period since these structures were introduced, several major floods have affected the two channels. The floods include three flows in excess of the 50-year event, including the flood of record, which has an estimated recurrence interval of almost 300 years. Despite the extreme flooding, many structures were discovered in varying conditions of operation. Grade-control structures and low-flow deflectors generally create some low-flow habitat (P = 0.815) but do not produce the depth of water predicted by design manuals (P < 0.0001). Unintended erosion has developed in response to many of the channel modifications especially along the outside of meanders. In addition, the mode of failure of grade-control structures has created localized channel widening with associated bank erosion. Meanwhile, cover structures have produced a 30% reduction in streamside vegetation with over 75% less overhead cover than unaltered reaches. Based on these results, it is important for prospective designers to carefully consider the long-term impacts of instream structures when developing future channel-restoration projects. PMID:11815827

  15. Physical habitat classification and instream flow modeling to determine habitat availability during low-flow periods, North Fork Shenandoah River, Virginia

    USGS Publications Warehouse

    Krstolic, Jennifer L.; Hayes, Donald C.; Ruhl, Peter M.

    2006-01-01

    Increasing development and increasing water withdrawals for public, industrial, and agricultural water supply threaten to reduce streamflows in the Shenandoah River basin in Virginia. Water managers need more information to balance human water-supply needs with the daily streamflows necessary for maintaining the aquatic ecosystems. To meet the need for comprehensive information on hydrology, water supply, and instream-flow requirements of the Shenandoah River basin, the U.S. Geological Survey and the Northern Shenandoah Valley Regional Commission conducted a cooperative investigation of habitat availability during low-flow periods on the North Fork Shenandoah River. Historic streamflow data and empirical data on physical habitat, river hydraulics, fish community structure, and recreation were used to develop a physical habitat simulation model. Hydraulic measurements were made during low, medium, and high flows in six reaches at a total of 36 transects that included riffles, runs, and pools, and that had a variety of substrates and cover types. Habitat suitability criteria for fish were developed from detailed fish-community sampling and microhabitat observations. Fish were grouped into four guilds of species and life stages with similar habitat requirements. Simulated habitat was considered in the context of seasonal flow regimes to show the availability of flows that sustain suitable habitat during months when precipitation and streamflow are scarce. The North Fork Shenandoah River basin was divided into three management sections for analysis purposes: the upper section, middle section, and lower section. The months of July, August, and September were chosen to represent a low-flow period in the basin with low mean monthly flows, low precipitation, high temperatures, and high water withdrawals. Exceedance flows calculated from the combined data from these three months describe low-flow periods on the North Fork Shenandoah River. Long-term records from three

  16. FUTURE WATER ALLOCATION AND IN-STREAM VALUES IN THE WILLAMETTE RIVER BASIN: A BASIN-WIDE ANALYSIS

    EPA Science Inventory

    Our research investigated the impact on surface water resources of three different scenarios for the future development of the Willamette River Basin in Oregon (USA). Water rights in the basin, and in the western United States in general, are based on a system of law that binds ...

  17. PHYSICAL AND CHEMICAL WATER QUALITY OF THE SPOKANE RIVER OUTLET REACH OF LAKE COEUR D'ALENE, KOOTENAI COUNTY, IDAHO. 1990 AND 1991

    EPA Science Inventory

    The University of Idaho conducted a water quality study on the Spokane River outlet arm of Lake Coeur dAlene (17010305, 17010303) from June 1990 through September 1991. Objectives of the study were: to characterize baseline river water quality; to determine seasonal river water ...

  18. Salish Kootenai College. Profile, 1976-1982.

    ERIC Educational Resources Information Center

    McDonald, Joseph; Le Beau, Ellsworth

    The profile presents a brief history and a description of Salish Kootenai College, a tribally controlled community college located in Montana. Historical information covers the history of the Flathead Reservation, the introduction of formal education on the reservation, influences of federal legislation, the effects of external policies on the…

  19. Effects of land-use patterns on in-stream nitrogen in a highly-polluted river basin in Northeast China.

    PubMed

    Bu, Hongmei; Zhang, Yuan; Meng, Wei; Song, Xianfang

    2016-05-15

    This study investigated the effects of land-use patterns on nitrogen pollution in the Haicheng River basin in Northeast China during 2010 by conducting statistical and spatial analyses and by analyzing the isotopic composition of nitrate. Correlation and stepwise regressions indicated that land-use types and landscape metrics were correlated well with most river nitrogen variables and significantly predicted them during different sampling seasons. Built-up land use and shape metrics dominated in predicting nitrogen variables over seasons. According to the isotopic compositions of river nitrate in different zones, the nitrogen sources of the river principally originated from synthetic fertilizer, domestic sewage/manure, soil organic matter, and atmospheric deposition. Isotope mixing models indicated that source contributions of river nitrogen significantly varied from forested headwaters to densely populated towns of the river basin. Domestic sewage/manure was a major contributor to river nitrogen with the proportions of 76.4 ± 6.0% and 62.8 ± 2.1% in residence and farmland-residence zones, respectively. This research suggested that regulating built-up land uses and reducing discharges of domestic sewage and industrial wastewater would be effective methods for river nitrogen control. PMID:26925734

  20. What makes an instream organism (hydrologically) happy?

    NASA Astrophysics Data System (ADS)

    Lane, S. N.

    2009-04-01

    The last decade has demonstrated the importance of landscape-scale appreciation of hydrological processes for the structure and function of instream aquatic communities. Demonstration of the critical ways in which water connects processes operating in the wider landscape, through both river floodplains and the hyporheic zone, to the stream; as well as interactions within the stream between physical, chemical and biological processes; all emphasise the importance of hydrological investigation for instream ecology. However, here I will argue that whilst this opens up a range of new opportunities for hydrological investigation, I will argue that the classical approach pursued by hydrologists to this problem needs a radical reformulation. All too often, the hydrologist, informed by an army of laboratory- and field-based studies, grounds their analysis in a process cascade where the starting point is a series of physical processes associated with the water environment and the end point is some sort of assumed ecological impact, possibly involving some kind of analysis of feedbacks and interactions. The system can be broken down into its constituent parts and then rebuilt, either through careful field/laboratory experimental design, or through assembling process relationships, to create a mathematical model. The holistic response of the system is understood through an implicitly reductionist analysis. In research terms, the approach becomes self-sustaining: the exposure of conceptual/mathematical models to scrutiny by field data encourages us to look for more complex model formulations; these more complex formulations require new forms of field data and their assimilation into our models. Using a series of projects concerned with aiming to improve and to restore aquatic communities, I will argue that this way of working has more to do with what hydrologists perceive matters to hydrology than it does the hydrological needs of instream communities. The implication is that

  1. Instream wood as a driver of nutrient attenuation in a lowland sandy stream

    NASA Astrophysics Data System (ADS)

    Klaar, Megan; Shelley, Felicity; Blaen, Phil; Dapelo, Davide; Trimmer, Mark; Bridgeman, John; Hannah, David; Krause, Stefan

    2016-04-01

    Our poster outlines our research to assess the potential of instream wood to enhance nutrient (nitrogen and carbon) attenuating potential in UK lowland rivers. Using cutting-edge distributed temperature sensing, geophysical technologies, novel microbial metabolic activity tracers and 15N isotope tracer applications, we are able to identify how instream wood alters hyporheic exchange fluxes and residence times which control the development and occurrence of biogeochemical hotspots, which facilitate nitrogen removal. Initial results show that instream wood increases surface water downwelling into the hyporheic, creating increased hyporheic mixing. Metabolic tracer, nutrient and modelling data reveal a correlation between these hyporheic exchange flow locations and increased denitrification hotspots. This data in conjunction with ongoing experimentation suggests that instream wood could be used in river basin management and river restoration efforts to improve water quality and hydromorphic integrity within lowland sandy streams. Ongoing work seeks to quantify the efficiency of alternative (stationary and transient) wood designs for controlled alteration and management of hyporheic exchange fluxes and residence times and nutrient turnover in the streambed. Outputs from this project will provide a quantitative understanding of the optimal design and efficiency of instream wood structures for removing excess nitrate from streambed sediments of nutrient impacted lowland rivers. This information will directly impact UK and European river restoration policies and inform decisions of whether wood restoration in UK lowland rivers should be promoted on a national level and how the most efficient strategies should be designed.

  2. SPIRIT LAKE, KOOTENAI COUNTY, IDAHO - WATER QUALITY STATUS REPORT, 1987

    EPA Science Inventory

    Spirit Lake is a high quality recreational lake located in northwestern Kootenai County, Idaho (17010214). A 1984 water quality assessment indicated nutrient enrichment from nonpoint sources, such as timber harvest and domestic wastewater, were causing increased aquatic plant gr...

  3. In-stream hydrokinetic power: Review and appraisal

    DOE PAGESBeta

    Van Zwieten, J.; McAnally, William; Ahmad, Jameel; Davis, Trey; Martin, James; Bevelhimer, Mark S.; Cribbs, Allison; Lippert, Renee; Hudon, Thomas; Trudeau, Matthew

    2015-09-01

    The objective of this paper is to provide a review of in-stream hydrokinetic power, which is defined as electric power generated by devices capturing the energy of naturally flowing water-stream, tidal, or open ocean flows-without impounding the water. North America has significant in-stream energy resources, and hydrokinetic electric power technologies to harness those resources have the potential to make a significant contribution to U.S. electricity needs by adding as much as 120 TWh/year from rivers alone to the present hydroelectric power generation capacity. Additionally, tidal and ocean current resources in the U.S. respectively contain 438 TWh/year and 163 TWh/year ofmore » extractable power. Among their attractive features, in-stream hydrokinetic operations do not contribute to greenhouse gas emissions or other air pollution and have less visual impact than wind turbines. Since these systems do no utilize dams the way traditional hydropower systems typically do, their impact on the environment will differ, and a small but growing number of studies support conclusions regarding those impacts. Furthermore, potential environmental impacts include altered water quality, altered sediment deposition, altered habitats, direct impact on biota, and navigability of waterways.« less

  4. In-stream hydrokinetic power: Review and appraisal

    SciTech Connect

    Van Zwieten, J.; McAnally, William; Ahmad, Jameel; Davis, Trey; Martin, James; Bevelhimer, Mark S.; Cribbs, Allison; Lippert, Renee; Hudon, Thomas; Trudeau, Matthew

    2015-09-01

    The objective of this paper is to provide a review of in-stream hydrokinetic power, which is defined as electric power generated by devices capturing the energy of naturally flowing water-stream, tidal, or open ocean flows-without impounding the water. North America has significant in-stream energy resources, and hydrokinetic electric power technologies to harness those resources have the potential to make a significant contribution to U.S. electricity needs by adding as much as 120 TWh/year from rivers alone to the present hydroelectric power generation capacity. Additionally, tidal and ocean current resources in the U.S. respectively contain 438 TWh/year and 163 TWh/year of extractable power. Among their attractive features, in-stream hydrokinetic operations do not contribute to greenhouse gas emissions or other air pollution and have less visual impact than wind turbines. Since these systems do no utilize dams the way traditional hydropower systems typically do, their impact on the environment will differ, and a small but growing number of studies support conclusions regarding those impacts. Furthermore, potential environmental impacts include altered water quality, altered sediment deposition, altered habitats, direct impact on biota, and navigability of waterways.

  5. Plankton and benthic instream-flow criteria, strategy, and habitat delination in acid-containing waters. Technical report

    SciTech Connect

    Keller, E.C. Jr.; Werner, D.K.; Gerber, R.B.; Becker, A.J.

    1983-01-01

    Eight homogenous river segments were identified, through cluster analysis, in the upper Monongahela River Basin viz, Cheat Lake, Tygart Lake, an acid drainage segment of the middle Cheat, the lower Monongahela (to Pt. Marion, Pa), the upper Monongahela, the upper Cheat, the lower Blackwater River, and the Westfork River (south to Clarksburg, WV). Regression analyses of data from within these segments indicated that instream flow was highly associated with Total Algal Biomass in several of the segments. Regression analyses also showed that instream flow had very little association with the Algal General Distribution.

  6. Valuing instream-related services of wastewater

    EPA Science Inventory

    In the southwestern US water resources are increasingly scarce, leaving perennial habitats and associated environmental amenities vulnerable to off-channel water demands. To provide management insight, the value of two instream flow related ecosystem services are estimated for tw...

  7. Instream flow assessment and economic valuation: a survey of nonmarket benefits research

    USGS Publications Warehouse

    Douglas, Aaron J.; Johnson, Richard L.

    1993-01-01

    Instream flow benefits for United States streams and rivers have recently been investigated by a number of resource economists. These valuation efforts differ in scope, method, and quantitative results. An assessment and review of these valuation efforts is presented. The various sources of differences in non‐market values produced by these studies are explored in some detail. The considerable difficulty of producing estimates of instream flow benefits values that consider all of the pertinent policy and technical issues is delineated in various policy contexts. Evidence is presented that indicates that the considerable policy impact of recent research on this topic is justified despite considerable variation in the magnitude of the estimates.

  8. HAYDEN LAKE, KOOTENAI COUNTY, IDAHO - WATER QUALITY STATUS REPORT, 1987

    EPA Science Inventory

    Hayden Lake (17010305) is a high quality recreational lake located in Kootenai County, Idaho. Water quality investigations and trend monitoring data from 1985 until 1987 reveal that Hayden Lake is a relatively nutrient poor, oligo-mesotrophic lake with good water clarity and low...

  9. Lower Three Runs Instream Flow Study

    SciTech Connect

    del Carmen, B.R.; Paller, M.H.

    1993-12-31

    An Instream Flow Study was conducted to identify the minimum discharge from PAR Pond that will support a balanced biological fish community in Lower Three Runs. Hydraulic and habitat models of the Physical Habitat simulation System (PHABSIM), the major component of the US Fish and Wildlife Service`s Instream Flow Incremental Methodology (IFIM) were applied. Following calibration of the Water Surface Profile (WSP)Model for three study reaches, hydraulic data was input to the AVDEPTH habitat model to develop relationships between discharge and reaches, hydraulic data was input to the AVDEPTH habitat model to development relationship between discharge and available habitat.

  10. Quantifying in-stream retention of nitrate at catchment scales using a practical mass balance approach.

    PubMed

    Schwientek, Marc; Selle, Benny

    2016-02-01

    As field data on in-stream nitrate retention is scarce at catchment scales, this study aimed at quantifying net retention of nitrate within the entire river network of a fourth-order stream. For this purpose, a practical mass balance approach combined with a Lagrangian sampling scheme was applied and seasonally repeated to estimate daily in-stream net retention of nitrate for a 17.4 km long, agriculturally influenced, segment of the Steinlach River in southwestern Germany. This river segment represents approximately 70% of the length of the main stem and about 32% of the streambed area of the entire river network. Sampling days in spring and summer were biogeochemically more active than in autumn and winter. Results obtained for the main stem of Steinlach River were subsequently extrapolated to the stream network in the catchment. It was demonstrated that, for baseflow conditions in spring and summer, in-stream nitrate retention could sum up to a relevant term of the catchment's nitrogen balance if the entire stream network was considered. PMID:26801154

  11. HYDROKAL: A module for in-stream hydrokinetic resource assessment

    NASA Astrophysics Data System (ADS)

    Duvoy, Paul; Toniolo, Horacio

    2012-02-01

    A new tool for hydrokinetic energy potential assessment in rivers—HYDROKAL, which stands for a "hydrokinetic calculator"—is presented. This tool was developed in the Fortran 90 programming language as an external module for the CCHE2D application, an existing two-dimensional hydrodynamic numerical model developed at the National Center for Computational Hydroscience and Engineering, University of Mississippi. Velocity outputs generated by the CCHE2D model are used by HYDROKAL to compute the instantaneous power density, an essential element in calculating the hydrokinetic power of a river reach. The tool includes a user-defined efficiency factor to account for turbine efficiency, which is fundamental for estimating the energy that could be harvested from the river. For each river cross section along the computational domain, maximum velocity and specific discharge are identified to assist in estimating the stability of the river reach and, thus, the feasibility of installing an in-stream turbine. A Python script was also developed to export the results from HYDROKAL to CCHE2D. HYDROKAL is applied to a reach of the Tanana River at Nenana, Alaska, USA.

  12. Assessing Success of Instream Structures for Salmonid Stream Restoration

    NASA Astrophysics Data System (ADS)

    Whiteway, S.; Biron, P.

    2009-05-01

    Stream restoration is a billion dollar industry in North America; despite this expenditure there remain questions regarding the effectiveness of current techniques such as the installation of instream structures. Assessing the effect that such structures have on physical habitat and on salmonid density are key ways of determining project success. The objectives of this research were to assess the impact of instream structures on physical habitat in the Nicolet River (Quebec) and to analyze physical habitat and fish density data from many stream restoration projects in North America. Results of intensive surveys of the Nicolet River show that the installation of weirs and deflectors results in a greater frequency of pools. These pools have significantly greater depths, lower velocities, larger sediment size and higher percent cover than those without structures. Meta analysis of data from 187 stream restoration projects in North America also show significant increases in percent pool area, average depth, and percent cover as well as decreases in channel width following the installation of structures. The physical changes observed in the Nicolet River resulted in improved trout habitat, as measured by applying habitat preference curves, but uneven stocking practices and fishing pressure confounded attempts to verify differences in trout density based on presence or absence of structures. The meta analysis, however, shows significant increases in salmonid density, measured as fish/m2, following the installation of structures. On average, density increased by 161%. Different structure types result in significantly different changes in physical habitat, with weir structures providing the largest density increase. Multiple linear regression analysis reveals that the combination of change in relative pool area and in width is the best predictor of change in salmonid density (r2=0.511). Instream structures are significantly more successful at increasing brook trout density

  13. Asotin Creek Instream Habitat Alteration Projects: 1998 Habitat Evaluation Surveys.

    SciTech Connect

    Bumgarner, Joseph D.

    1999-03-01

    The Asotin Creek Model Watershed Master Plan was completed 1994. The plan was developed by a landowner steering committee for the Asotin County Conservation District (ACCD), with technical support from the various Federal, State and local entities. Actions identified within the plan to improve the Asotin Creek ecosystem fall into four main categories, (1) Stream and Riparian, (2) Forestland, (3) Rangeland, and (4) Cropland. Specific actions to be carried out within the stream and in the riparian area to improve fish habitat were, (a) create more pools, (b) increase the amount of large organic debris (LOD), (c) increase the riparian buffer zone through tree planting, and (d) increase fencing to limit livestock access; additionally, the actions are intended to stabilize the river channel, reduce sediment input, and protect private property. Fish species of main concern in Asotin Creek are summer steelhead (Oncorhynchus mykiss), spring chinook (Oncorhynchus tshawytscha), and bull trout (Salvelinus confluentus). Spring chinook in Asotin Creek are considered extinct (Bumgarner et al. 1998); bull trout and summer steelhead are below historical levels and are currently as ''threatened'' under the ESA. In 1998, 16 instream habitat projects were planned by ACCD along with local landowners. The ACCD identified the need for a more detailed analysis of these instream projects to fully evaluate their effectiveness at improving fish habitat. The Washington Department of Fish and Wildlife's (WDFW) Snake River Lab (SRL) was contracted by the ACCD to take pre-construction measurements of the existing habitat (pools, LOD, width, depth, etc.) within each identified site, and to eventually evaluate fish use within these sites. All pre-construction habitat measurements were completed between 6 and 14 July, 1998. 1998 was the first year that this sort of evaluation has occurred. Post construction measurements of habitat structures installed in 1998, and fish usage evaluation, will be

  14. Development and testing of an in-stream phosphorus cycling model for the Soil and Water Assessment Tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Soil and Water Assessment Tool (SWAT) is widely used to predict the fate and transport of phosphorus (P) from the landscape through streams and rivers. However, the current instream P model may not be suitable for many stream systems, particularly those dominated by attached algae and impacted ...

  15. The role of sediment-transport evaluations for development of modeled instream flows: policy and approach in Texas.

    PubMed

    Heitmuller, Franklin T; Raphelt, Nolan

    2012-07-15

    Instream-flow scientists embrace streamflow as the master variable driving aquatic and riparian ecosystems, and that natural flow variability is imperative for river conservation and restoration efforts. Sediment transport, which is critical for maintenance of physical habitats in rivers and floodplains, has received less direct attention from instream-flow practitioners. This article serves to highlight the roles of sediment-transport evaluations in modifying or verifying instream-flow prescriptions based on hydrology alone. Two examples of sediment-transport evaluations are discussed in relation to the Texas Senate Bill 3 Environmental Flows allocation process, a mandate to "develop environmental flow analyses and a recommended flow regime" that "maintain(s) the viability of the state's streams, rivers, and bay and estuary systems" using "reasonably available science". The first example provides an evaluation of effective discharge of suspended-sediment load of the lower Brazos River. The magnitude and frequency of effective discharge occurs between typical high-flow pulses and overbank flows, indicating that hydrologic and physical processes are not optimally coupled in some flow-regime models. The second example utilizes the Hydrology-Based Environmental Flow Regime (HEFR) model to prescribe instream flows for the lower Sabine River, and compares modeled bed-material loads for observed and HEFR-prescribed flow regimes. Results indicate that annual water and sediment yields are greatly reduced for the modeled flow regime. It should be noted, however, that different input variables to the HEFR model would have resulted in different computations of water and sediment yields, reinforcing that instream-flow practitioners should exercise great caution when applying rule-of-thumb procedures to generate flow prescriptions. PMID:22425877

  16. Improving the assessment of instream flow needs for fish populations

    SciTech Connect

    Sale, M.J. ); Otto, R.G. and Associates, Arlington, VA )

    1991-01-01

    Instream flow requirements are one of the most frequent and most costly environmental issues that must be addressed in developing hydroelectric projects. Existing assessment methods for determining instream flow requirements have been criticized for not including all the biological response mechanisms that regulate fishery resources. A new project has been initiated to study the biological responses of fish populations to altered stream flows and to develop improved ways of managing instream flows. 21 refs., 3 figs.

  17. Irrigation-dependent wetlands versus instream flow enhancement: economics of water transfers from agriculture to wildlife uses.

    PubMed

    Peck, Dannele E; McLeod, Doanald M; Hewlett, John P; Lovvorn, James R

    2004-12-01

    Irrigated agriculture throughout western North America faces increasing pressure to transfer water to nonagricultural uses, including instream flows for fish and wildlife management. In an important case, increased instream flows are needed in Nebraska's Platte River for recovery of threatened and endangered fish and wildlife species. Irrigated agriculture in the Laramie Basin of southeast Wyoming is a potential water source for the effort to enhance instream flow. However, flood irrigation of hayfields in the Laramie Basin has created many wetlands, both ephemeral and permanent, over the last century. Attempting to increase Platte River instream flows by purchasing water rights or improving irrigation efficiency in the Laramie Basin would transform irrigated agriculture, causing a substantial fraction of the Laramie Basin's wetlands to be lost. A creative solution is needed to prevent the sacrifice of one ecosystem on behalf of another. A rotating short-term water-leasing program is proposed. The program allows Laramie Basin producers to contribute to instream flows while continuing to support local wetlands. Permanent wetland desiccation is prevented and regional environmental water needs are met without impairing local ecological resources. Budget analysis is used to provide an initial cost estimate for acquiring water from agriculture through the short-term leasing program. The proposed approach is more expensive than traditional programs but allows contribution to instream flows without major wetland loss. Short-term leasing is a more efficient approach if benefits from wetlands exceed the difference in cost between the short-term lease program and programs that do not conserve wetlands. PMID:15633027

  18. Predicting fish population response to instream flows

    SciTech Connect

    Studley, T.K.; Baldridge, J.E.; Railsback, S.F.

    1996-10-01

    A cooperative research program initiated by Pacific Gas and Electric is described. The goals of the project are to determine if trout populations respond to changes in base streamflows in a predictible manner, and to evaluate and improve the methods used to predict rainbow and brown trout population responses under altered flow regimes. Predictive methods based on computer models of the Physical Habitat Simulation System are described, and predictions generated for four diversions and creeks are tabulated. Baseline data indicates that instream flow assessments can be improved by using guild criteria in streams with competing species and including additional limiting factors (low recruitment, high winter flow, and high stream temperatures) in the analyses.

  19. Relating stream-bank erosion to in-stream transport of suspended sediment

    NASA Astrophysics Data System (ADS)

    Green, Timothy R.; Beavis, Sara G.; Dietrich, Claude R.; Jakeman, Anthony J.

    1999-04-01

    We seek an improved and quantitative understanding of the sources and transport of sediment and attached phosphorus in upland catchments and downstream reaches of the Namoi River in New South Wales, Australia. Study of the sources of phosphorus and related sediment was motivated by severe problems with blooms of blue-green algae and toxic by-products in the Darling and Namoi Rivers. Using atmospheric fall-out of radionuclides as tracers, Olley et al. (1996) concluded that much of the sediment deposited in the lower reaches came from subsoil rather than topsoil. With this insight, we focus on quantifying sediment sources from stream bank erosion, especially in seasonally erosional reaches of Cox's Creek and the Mooki River.The approach presented here integrates interdecadal aerial photography, interseasonal field measurements of bank erosion processes, continuous monitoring of stream flow and turbidity and event sampling of suspended solids and phosphorus, with an analytical model of in-stream suspended sediment transport. We compare a lateral source term in the calibrated transport model with field-based and aerial measurements of stream bank erosion. Calibration of the in-stream model is illustrated for two reaches of the Mooki River, with the changes in parameter values being related to aspects of the hydraulic geometry and particle size. The processes of stream flow and bank erosion due to undercutting, desiccation, block failure and mass wasting of aggregated particles interact to produce instream fluxes of suspended sediment that are transported and redeposited downstream. The combined approach demonstrated here has potential for predictive spatial modelling of sediment concentrations and loads.

  20. BPA Instream Habitat Projects Completed within Asotin Creek Watershed, 1999-2001 Final Report.

    SciTech Connect

    Johnson, Bradley J.

    2002-10-23

    The Asotin County Conservation District (ACCD) is the primary entity coordinating habitat projects on both private and public lands within the Asotin Creek watershed. The watershed covers approximately 325 square miles in the Blue Mountains of southeastern Washington in WRIA 35. According to WDFW's Priority WRIA's by At-Risk Stock Significance Map, it is the highest priority WRIA in southeastern WA. Summer steelhead, bull trout, and Snake River spring chinook salmon which are listed under the Endangered Species Act (ESA), are present in the watershed. WDFW manages it as a Wild Steelhead Reserve, because no hatchery fish have been released here since 1997. The ACCD has been working with landowners, Bonneville Power Administration (BPA), Washington State Conservation Commission (WCC), Natural Resource Conservation Service (NRCS), Washington Department of Fish and Wildlife (WDFW), U.S. Forest Service, Pomeroy Ranger District (USFS), Nez Perce Tribe (NPT), Department of Ecology (DOE), National Marine Fisheries Service (NMFS), and U.S. Fish and Wildlife Service (USFWS) to address habitat projects in Asotin County. Local students, volunteers and Salmon Corps Members have been instrumental in the success of the Model Watershed Program on Asotin Creek. ACCD began coordinating habitat projects in 1995 with the help of BPA funding. Approximately two hundred seventy-six projects have been implemented as of 1999. The Washington State Legislature was successful in securing funding for endangered salmon and steelhead recovery throughout the State in 1998. While these issues were new to most of the State, southeastern Washington had been dealing with endangered fall and spring chinook salmon since 1994. The Asotin Creek In-Stream Habitat Project teamed BPA and Governor's Salmon Recovery Funding on four instream habitat projects in the Asotin Creek Watershed. These projects provide complex instream habitat for steelhead, bull trout and spring chinook in the stream. 38 pools were

  1. Determining the minimum instream flow for hydro peaking projects

    SciTech Connect

    Milhous, R.T. )

    1992-10-01

    A new analytical technique is available for quantifying and predicting the effect that a proposed hydro peaking operation, or a change in an existing project's operation, will have on physical habitat for aquatic populations downstream of the project. The technique, known as the dual flow analysis, is based on elements of the US Fish and Wildlife Service's Physical Habitat Simulation System (PHABSIM). PHABSIM is used to calculate the physical habitat for aquatic organisms in a stream. The assumption behind the development of this technique is that if the effects of a proposed project on physical habitat are known, one can better understand the effects on aquatic organisms. Thus, a defensible selection of an instream flow requirement can be made. The technique was developed as a result of a joint study by the US Fish and Wildlife Service and Niagara Mohawk Power Corp. at the 26.4-MW Bennetts Bridge and the 7.8-MW Lighthouse Hill developments on the Salmon river in upstate New York.

  2. Testing Part-Whole Valuation Effects in Contingent Valuation of Instream Flow Protection

    NASA Astrophysics Data System (ADS)

    Brown, Thomas C.; Duffield, John W.

    1995-09-01

    A review of studies of part-whole valuation effects in contingent valuation highlights the difficulty of distinguishing part-whole bias from the effect of substitution among goods. A contingent valuation of instream flow preservation indicates that respondents with more information about substitutes were more sensitive in their valuations to the number of rivers protected than were respondents with less information. These results, in combination with those of other studies of part-whole valuation effects, suggest that contingent valuation researchers must design guidelines for deciding what information about substitutes should be presented to respondents and how that information should be presented.

  3. Assessment of the Impacts of Compensation Flow Changes Upon Instream Habitat Using 2D Modelling

    NASA Astrophysics Data System (ADS)

    Mould, D. C.; Lane, S. N.; Christmas, M.

    2004-05-01

    Many millstone-grit rivers in northern England are impounded. In such cases the water company in the area has to release compensation flows from the reservoirs, traditionally to meet industrial needs: these flows are rarely set with ecology in mind; and have commonly involved constant flow. Dam overtopping may create spates, but spawning in many fish species is prompted by a spate flow in the early autumn when dams are rarely full enough to overtop. Such flows are important for fine sediment flushing and controlling the wetted useable area for spawning. Classical physical habitat modelling for instream habitat has been largely reliant upon 1D approaches, such as the Instream Flow Incremental Methodology (IFIM). Here we use a 2D finite element model (FESWMS), to simulate changes in instream habitat with variations in the compensation flow regimes. The spatial resolution of 2D models can be adapted to the scale of fish habitats so providing better representation of the reach-scale flow processes (such as slack water in the margins, wetting and drying) than the 1D case. The model is applied to the Rivers Rivelin and Loxley in Sheffield, Northern England. At the confluence of the two rivers, the compensation flow level is set at 30.6 Thousand Cubic Metres per Day (TCMD). Due to historical reasons, the compensation is not divided equally, as the Loxley receives 28 TCMD whilst the Rivelin receives only 2.6 TCMD. The model is used to simulate a transfer of 6 TCMD from the Loxley to the Rivelin. After validation, model predictions are combined with available habitat requirement data (e.g. velocity and depth needs) to develop an index of change in habitat suitability in terms of first order variables (e.g. velocity, depth and wetted useable area). This suggests that the change in compensation may significantly improve instream ecology in relation to macroinvertebrates, brown trout (Salmo trutta) and bullhead (Cottus gobio) in the Rivelin without causing detrimental impacts

  4. Reliability of in-stream retention metrics

    NASA Astrophysics Data System (ADS)

    Savickis, Jevgenijs; Zaramella, Mattia; Marion, Andrea

    2016-04-01

    The temporary solute retention within transient storage zones (TSZs) has been shown to have a large effect on the transport of solute. This retention can significantly increase the overall in-stream residence time and as consequence increase the contact time of solute with aquatic interfaces (biota, sediment) and living species. An important question that arises is whether the currently available metrics adequately represent retention mechanism. This work attempts to investigate the reliability of two existing measures, the hydrological retention factor (Rh) and the fraction of median travel time due to transient storage zone (Fmed200). For this purpose, five conservative tracer tests were conducted in four European streams with distinct morphological, sediment composition, vegetation and hydraulic characteristics. The obtained breakthrough curves (BTCs) were used to derive storage zone parameters (storage zone area, storage zone exchange coefficient and mean residence time), which then were used for comparison and in the metric expressions. The storage zone parameters were computed using a single TSZ model OTIS-P and a multiple TSZ model STIR. The STIR model was applied to BTCs as an additional tool to separate TSZs into short timescale (ST) and long timescale (LT). The study results reveal correlation between Fmed200 and LT residence time T2 values, where the streams with the lowest Fmed200 (0.01-0.96) have the smallest long timescale storage zones T2 values, ranging from 912 s to 1402 s. The findings also demonstrate an influence of discharge rate on both retention metrics. The greatest Fmed200 (6.19) and Rh (0.938) values are calculated for the streams with low discharge rates (0.08-0.10 m3s‑1) and a relatively high ST storage zone residence times T1 (159 s to 351 s). Results show that the Fmed200 and Rh metrics are strongly affected by the short timescale transient storage zones, whereas the LT storage zones (hyporheic) effects are not taken into account.

  5. Linking in-stream nutrient flux to land use and inter-annual hydrological variability at the watershed scale.

    PubMed

    Aguilera, Rosana; Marcé, Rafael; Sabater, Sergi

    2012-12-01

    The significance of nutrient inputs at the watershed scale is best expressed in terms of in-stream processes, compared to evaluating simple field measurements of nutrient inputs. Modeling tools are necessary to consider the complexity of river networks in the determination of the sources and processes by which nutrients are transported at the watershed scale. Mediterranean rivers are potentially vulnerable to climate change (decrease in precipitation and increase of extreme events), and identifying and quantifying nutrient pollution sources and their spatial distribution can improve water resource management at the watershed scale. We apply a hybrid process-based and statistical model (SPARROW, spatially referenced regression on watershed attributes) to a largely disturbed Mediterranean watershed in NE Spain in order to estimate the annual nitrate and phosphate loads reaching the drainage network. The model emphasized the contribution of in-stream processes in nutrient transport and retention, and the inter-annual (7 years) effects of hydrological variability on the export of nutrients from the landscape to water bodies. Although forest and grassland land cover types predominate, agricultural activities and human agglomerations were significant sources of nutrient enrichment. Nutrient flux apportionment was also linked to inter-annual hydrological variability. Exported nutrient load increased in the downstream direction and coincided with decreased in-stream nutrient removal, probably worsened by the significant chemical and geomorphological impairment found in the lower parts of the watershed. PMID:23031293

  6. Links between riparian landcover, instream environment and fish assemblages in headwater streams of south-eastern Brazil

    USGS Publications Warehouse

    Cruz, Bruna B.; Miranda, Leandro E.; Cetra, Mauricio

    2013-01-01

    We hypothesised and tested a hierarchical organisation model where riparian landcover would influence bank composition and light availability, which in turn would influence instream environments and control fish assemblages. The study was conducted during the dry season in 11 headwater tributaries of the Sorocaba River in the upper Paraná River Basin, south-eastern Brazil. We focused on seven environmental factors each represented by one or multiple environmental variables and seven fish functional traits each represented by two or more classes. Multivariate direct gradient analyses suggested that riparian zone landcover can be considered a higher level causal factor in a network of relations that control instream characteristics and fish assemblages. Our results provide a framework for a hierarchical conceptual model that identifies singular and collective influences of variables from different scales on each other and ultimately on different aspects related to stream fish functional composition. This conceptual model is focused on the relationships between riparian landcover and instream variables as causal factors on the organisation of stream fish assemblages. Our results can also be viewed as a model for headwater stream management in that landcover can be manipulated to influence factors such as bank composition, substrates and water quality, whereas fish assemblage composition can be used as indicators to monitor the success of such efforts.

  7. Differences in instream wood characteristics between channelized and unchannelized agricultural headwater streams in central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Instream wood is an important resource for stream biota because it provides cover for fishes, substrate for macroinvertebrates, and increases habitat diversity. However, current management of instream wood within channelized agricultural headwater streams (drainage ditches) involves removing instrea...

  8. 76 FR 37061 - Lolo and Kootenai National Forests' Sanders County Resource Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... Forest Service Lolo and Kootenai National Forests' Sanders County Resource Advisory Committee AGENCY: Forest Service, USDA. ACTION: Notice of Sanders County Resource Advisory Committee Meetings. SUMMARY... National Forests' Sanders County Resource Advisory Committee will meet on July 21, 2011 at 7 p.m. and...

  9. Boosting Underprepared Students: Salish Kootenai College Uses Research to Build Success

    ERIC Educational Resources Information Center

    Sherwin, Stacey

    2011-01-01

    As an open-access institution and a tribal college, Salish Kootenai College (SKC, Pablo, Montana) accepts all students who walk through the doors. Part of SKC's mission is to provide educational opportunities and access for students who are historically underrepresented in higher education. In recent years, national attention has focused on the…

  10. 78 FR 35602 - Coeur d'Alene Basin Restoration Plan, Kootenai, Shoshone and Benewah Counties, Idaho

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-13

    ... Wildlife Service Coeur d'Alene Basin Restoration Plan, Kootenai, Shoshone and Benewah Counties, Idaho... Department of Agriculture (USDA), Coeur d'Alene Indian Tribe (Tribe), and the State of Idaho (State) intend... related to the Coeur d'Alene Basin Restoration Plan by any of the following methods: Web site:...

  11. 75 FR 16731 - Young Dodge SEIS; Kootenai National Forest, Lincoln County, MT

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-02

    ... FR 14315) on February 22, 2008, and the notice of the Final EIS (70 FR 38131) on May 1, 2008. The... Forest Service Young Dodge SEIS; Kootenai National Forest, Lincoln County, MT AGENCY: Forest Service... Forest Service will prepare a Supplemental Environmental Impact Statement (SEIS) for the Young...

  12. Modelling catchment management impact on in-stream phosphorus loads in northern Victoria.

    PubMed

    Vigiak, O; Rattray, D; McInnes, J; Newham, L T H; Roberts, A M

    2012-11-15

    Phosphorus pollution severely impairs the water quality of rivers in Australia and worldwide. Conceptual models have proved useful to assess management impact on phosphorus loads, particularly in data-sparse environments. This paper develops and evaluates the coupling of a point-scale model (HowLeaky2008) to a catchment scale model (CatchMODS) to enhance modelling of farm management impacts on in-stream phosphorus loads. The model was tested in two adjacent catchments in northern Victoria (Avon-Richardson and Avoca), Australia. After calibration of the in-stream attenuation parameter against measurements at gauging stations, the model simulated specific annual phosphorus loads across the catchments well (Nash-Sutcliffe model efficiency of 0.52 in the Avon-Richardson and 0.83 for the Avoca catchment). Phosphorus loads at both catchment outlets under current conditions were estimated at 7 t y(-1) and were dominated by field exports. Changes to farm management practices, i.e. the use of perennial pastures in grazing systems and zero-tillage in cropping systems were estimated to reduce phosphorus load by 31% in the Avon-Richardson catchment and 19% in the Avoca catchment, relative to current practices (annual pasture and minimum tillage). The model afforded a major improvement in conceptual modelling by explicit simulation of the impacts of soil and climatic conditions on field-scale exports and by placing them in the context of landscape processes. PMID:22796756

  13. Economic Value of Instream Flow for Non-Commercial Whitewater Boating Using Recreation Demand and Contingent Valuation Methods

    NASA Astrophysics Data System (ADS)

    Loomis, John; McTernan, James

    2014-03-01

    Whitewater river kayaking and river rafting require adequate instream flows that are often adversely affected by upstream water diversions. However, there are very few studies in the USA of the economic value of instream flow to inform environmental managers. This study estimates the economic value of instream flow to non-commercial kayakers derived using a Travel Cost Method recreation demand model and Contingent Valuation Method (CVM), a type of Contingent Behavior Method (CBM). Data were obtained from a visitor survey administered along the Poudre River in Colorado. In the dichotomous choice CVM willingness to pay (WTP) question, visitors were asked if they would still visit the river if the cost of their trip was Y higher, and the level of Y was varied across the sample. The CVM yielded an estimate of WTP that was sensitive to flows ranging from 55 per person per day at 300 Cubic Feet per Second (CFS) to a maximum 97 per person per day at flows of 1900 CFS. The recreation demand model estimated a boater's number of trips per season. We found the number of trips taken was also sensitive to flow, ranging from as little as 1.63 trips at 300 CFS to a maximum number of 14 trips over the season at 1900 CFS. Thus, there is consistency between peak benefits per trip and number of trips, respectively. With an average of about 100 non-commercial boaters per day, the maximum marginal values per acre foot averages about 220. This value exceeds irrigation water values in this area of Colorado.

  14. Experimental investigation of the modification of the flow field, past instream vegetation elements, for distinct bedsurface roughness.

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Yagci, Oral; Kitsikoudis, Vasileios; Koursari, Eftychia

    2015-04-01

    The presence of vegetation in rivers and estuaries has important implications for the modification of the flow field and sediment transport. In-stream vegetation has the potential to regulate the morphology and ecological health of a surface water body, and as such it finds a wide range of applications. Even though a number of controls influencing the local flow field past aquatic vegetation elements or patches of instream vegetation have been identified (such as shape, areal density, size and flexibility), conclusive evidence is lacking, particularly on how sediment transport processes are affected. Here, an experimental study is designed to identify how the flow field past different types of elements simulating in-stream emergent vegetation is modified. Two sets of experiments are conducted, each with a distinct value of high and low hydraulic roughness for the bed surface. In both experiments a rigid cylindrical element, a patch of rigid tubes and a plant shaped element (Cupressus Macrocarpa), simulating instream emergent vegetation are utilized. The flow field is measured at various locations downstream the element and average and turbulent flow statistics are obtained at near bed, mid-flow depth and near the water surface regions. It is found that different structural aspects of the elements, particularly the geometry, can significantly affect the flow field downstream the elements. Specifically, the average flow profiles are practically restored to near ambient flow conditions at about 5 diameters downstream the rigid element, while this happens at longer distances for the other elements. The flow structures shed past the elements are also very distinct, as confirmed via appropriately designed fluorescent dye flow visualizations. Potential ecosystem feedbacks and implications for formation of geospatial patterns are also discussed.

  15. Criteria for evaluating state instream-flow programs: Deciding what works

    USGS Publications Warehouse

    Lamb, Berton Lee

    1995-01-01

    Most states have adopted some form of instream-flow–protection program. These programs are of three types: instream-flow water rights; reservations of water for instream purposes; and conditions on consumptive water rights. No matter which type of protection program is adapted, the same question remains: How can we tell if it works? Several authors have attempted to answer this question. The works of these analysts are reviewed and criteria are suggested to evaluate the success of an instream-flow–protection program. The criteria are public confidence, certainty, proper administration, expense, and outcome in-stream.

  16. Water Quality Interpolation Using Various In-Stream Distance Weighting Metrics

    NASA Astrophysics Data System (ADS)

    Saia, S. M.; Walter, T.; Sullivan, P.; Christie, R.

    2012-12-01

    Interpolation of water quality samples along the reach of a stream can be used to (1) extend point data to un-sampled locations along the stream network, (2) identify spatial patterns in water quality, and (3) understand how natural and human factors shape these patterns. Kriging, one of the most commonly used geospatial interpolation methods, assumes that nearby sites are spatially auto-correlated; sites closer together have more in common than sites further away. Studies have introduced kriging methods that weight in-stream distance metrics with either landscape attributes (i.e. topography, land use, temperature, and various soil properties) or stream order. Here we present a weighting scheme that combines both surrounding landscape attributes with stream order. We use R, an open-source programming language, to interpolate water quality data collected from the Mianus River in Westchester County, New York. As the major drinking water supply for approximately 100,000 people in Connecticut and New York, the Mianus River watershed community values the cleanliness of its water for recreational activities as well as the sustenance of terrestrial and aquatic wildlife. With the in-stream interpolation results, we can gain a better understanding of factors contributing to water quality issues and observed biogeochemical patterns within the watershed. For example, we can help answer questions such as: How can we target landscape stabilization projects to reduce turbidity? If we find that the most powerful weighting is associated with first order streams and cropland, we know conservation efforts should be focused on agricultural head waters.

  17. Direct measurements of in-stream nitrate uptake with automated high frequency sensors

    NASA Astrophysics Data System (ADS)

    Kunz, Julia Vanessa; Hensley, Robert; Brase, Lisa; Borchardt, Dietrich; Rode, Michael

    2016-04-01

    Decades of nutrient studies have unveiled the importance of river networks in nutrient cycling. Still, direct methods to quantify instream removal in defined reaches have so far been limited to small streams. In rivers, where isotope tracer additions have been impracticable, uptake rates could only very rarely be measured and therefore have been mostly modelled by upscaling. Recently, the expanding availability of high resolution stream solute signals from automated sensors offers new possibilities for uptake kinetic studies. Cohen et al (2012) assessed assimilation and denitrification rates based on daily nitrate amplitudes and longitudinal concentration gradients in spring- fed chemostatic rivers. In higher order streams, overlapping of network, onsite and upstream signals require additional conceptual and methodological adaptation. Here we present a new combined longitudinal lagrangian and mass balance approach with continuous measurements of nitrate uptake rates in the German lowland river Weiße Elster, to our knowledge the first direct measurement of nitrate kinetics with continues high frequency sensors. We used 10 minutes time step NO3-N, pH, specific conductivity, dissolved oxygen, temperature and chlorophyl-a measurements and supplementing low frequency 15N isotope manual sampling. Longitudinal lagrangian measurements were conducted during day and night. Our data from two morphologically highly contrasting reaches indicate that local, seasonal or even day to day changes in uptake kinetics can be of several orders of magnitude and that the disregard of intermediate storage and dispersion can lead to high errors. The natural river reach revealed considerably higher N uptake than the channelized river reach. Furthermore, river bottom related N-uptake rates were in the same order than those found in agricultural head water streams. Besides depicting prospects and limits, we also provide important considerations for the set-up of measurement stations and for

  18. Development and testing of an in-stream phosphorus cycling model for the soil and water assessment tool.

    PubMed

    White, Michael J; Storm, Daniel E; Mittelstet, Aaron; Busteed, Philip R; Haggard, Brian E; Rossi, Colleen

    2014-01-01

    The Soil and Water Assessment Tool is widely used to predict the fate and transport of phosphorus (P) from the landscape through streams and rivers. The current in-stream P submodel may not be suitable for many stream systems, particularly those dominated by attached algae and those affected by point sources. In this research, we developed an alternative submodel based on the equilibrium P concentration concept coupled with a particulate scour and deposition model. This submodel was integrated with the SWAT model and applied to the Illinois River Watershed in Oklahoma, a basin influenced by waste water treatment plant discharges and extensive poultry litter application. The model was calibrated and validated using measured data. Highly variable in-stream P concentrations and equilibrium P concentration values were predicted spatially and temporally. The model also predicted the gradual storage of P in streambed sediments and the resuspension of this P during periodic high-flow flushing events. Waste water treatment plants were predicted to have a profound effect on P dynamics in the Illinois River due to their constant discharge even under base flow conditions. A better understanding of P dynamics in stream systems using the revised submodel may lead to the development of more effective mitigation strategies to control the impact of P from point and nonpoint sources. PMID:25602554

  19. The design of water markets when instream flows have value.

    PubMed

    Murphy, James J; Dinar, Ariel; Howitt, Richard E; Rassenti, Stephen J; Smith, Vernon L; Weinberg, Marca

    2009-02-01

    The main objective of this paper is to design and test a decentralized exchange mechanism that generates the location-specific pricing necessary to achieve efficient allocations in the presence of instream flow values. Although a market-oriented approach has the potential to improve upon traditional command and control regulations, questions remain about how these rights-based institutions can be implemented such that the potential gains from liberalized trade can be realized. This article uses laboratory experiments to test three different water market institutions designed to incorporate instream flow values into the allocation mechanism through active participation of an environmental trader. The smart, computer-coordinated market described herein offers the potential to significantly reduce coordination problems and transaction costs associated with finding mutually beneficial trades that satisfy environmental constraints. We find that direct environmental participation in the market can achieve highly efficient and stable outcomes, although the potential does exist for the environmental agent to influence outcomes. PMID:18499333

  20. Establishing standards and assessment criteria for ecological instream flow needs in agricultural regions of Canada.

    PubMed

    Peters, Daniel L; Baird, Donald J; Monk, Wendy A; Armanini, David G

    2012-01-01

    Agricultural land use can place heavy demands on regional water resources, strongly influencing the quantity and timing of water flows needed to sustain natural ecosystems. The effects of agricultural practices on streamflow conditions are multifaceted, as they also contribute to the severity of impacts arising from other stressors within the river ecosystem. Thus, river scientists need to determine the quantity of water required to sustain important aquatic ecosystem components and ecological services, to support wise apportionment of water for agricultural use. It is now apparent that arbitrarily defined minimum flows are inadequate for this task because the complex habitat requirements of the biota, which underpin the structure and function of a river ecosystem, are strongly influenced by predictable temporal variations in flow. We present an alternative framework for establishing a first-level, regional ecological instream flow needs standard based on adoption of the Indicators of Hydrologic Alteration/Range of Variability Approach as a broadly applicable hydrological assessment tool, coupling this to the Canadian Ecological Flow Index which assesses ecological responses to hydrological alteration. By explicitly incorporating a new field-based ecological assessment tool for small agricultural streams, we provide a necessary verification of altered hydrology that is broadly applicable within Canada and essential to ensure the continuous feedback between the application of flow management criteria and ecological condition. PMID:22218172

  1. Increasing in-stream nitrogen concentrations under different bioenergy crop management practices in central Germany

    NASA Astrophysics Data System (ADS)

    Jomaa, Seifeddine; Thraen, Daniela; Rode, Michael

    2015-04-01

    Understanding how nitrogen fluxes respond to changes in land use and agriculture practices is crucial for improving instream water quality prediction. In central Germany, expansion of bioenergy crops such as maize and rape for ethanol production during the last decade led to increasing of fertilizer application rates. To examine the effect of these changes, surface water quality of a drinking water reservoir catchment was investigated for more than 30 years. The Weida catchment (99.5 km2) is part of the Elbe river basin and has a share of 67% agricultural land use with significant changes in agricultural practices within the investigation period. For the period 2004-2012, the share of maize and rape has been increased by 52% and 20%, respectively, for enhancing bioenergy production. To achieve our gaols, the semi-distributed hydrological water quality HYPE (Hydrological Predictions for the Environment) model was calibrated for discharge and inorganic nitrogen concentrations (IN) during the period 1997-2000.The model was validated successfully (with lowest performance of NSE = 0.78 and PBIAS = 3.74% for discharge) for three different periods 1983-1987, 1989-1996 and 2000-2003, which are charaterized by different fertilizer application rates. Results showed that the HYPE model reproduced reasonably well discharge and IN daily loads (with lowest NSE = 0.64 for IN-load). In addition, the HYPE model was evaluated successfully to predict the discharge and IN concentrations for the period 2004-2012, where detailed input data in terms of crops management (field-specific survey) have been considered. Land use and crop rotations scenarios, with high hypothetical percentage of acceptance by the farmers, revealed that continuous conversion of agricultural land into bioenergy crops, will most likely, lead to an enrichment of in-stream nitrogen, especially after spring storms.

  2. Standardizing instream flow requirements at hydropower projects in the Cascade Mountains, Washington

    SciTech Connect

    Smith, I.M.; Sale, M.J.

    1993-06-01

    Instream flow requirements are common mitigation measures instituted in the bypassed reaches of hydroelectric diversion projects. Currently, there are two extremes among the ways to determine instream flow requirements: generic standard-setting methods and detailed, habitat-based, impact assessment methods such as the Instream Flow Incremental Methodology (IFIM). Data from streams in Washington state show a consistent pattern in the instream flow requirements resulting from the IFIM. This pattern can be used to refine the simpler standard-setting approaches and thereby provide better estimates of flow needs during early stages of project design.

  3. Using small unmanned aerial vehicle for instream habitat evaluation and modelling

    NASA Astrophysics Data System (ADS)

    Astegiano, Luca; Vezza, Paolo; Comoglio, Claudio; Lingua, Andrea; Spairani, Michele

    2015-04-01

    Recent advances in digital image collection and processing have led to the increased use of unmanned aerial vehicles (UAV) for river research and management. In this paper, we assess the capabilities of a small UAV to characterize physical habitat for fish in three river stretches of North-Western Italy. The main aim of the study was identifying the advantages and challenges of this technology for environmental river management, in the context of the increasing river exploitation for hydropower production. The UAV used to acquire overlapping images was a small quadcopter with a two different high-resolution (non-metric) cameras (Nikon J1™ and Go-Pro Hero 3 Black Edition™). The quadcopter was preprogrammed to fly set waypoints using a small tablet PC. With the acquired imagery, we constructed a 5-cm resolution orthomosaic image and a digital surface model (DSM). The two products were used to map the distribution of aquatic and riparian habitat features, i.e., wetted area, morphological unit distributions, bathymetry, water surface gradient, substrates and grain sizes, shelters and cover for fish. The study assessed the quality of collected data and used such information to identify key reach-scale metrics and important aspects of fluvial morphology and aquatic habitat. The potential and limitations of using UAV for physical habitat survey were evaluated and the collected data were used to initialize and run common habitat simulation tools (MesoHABSIM). Several advantages of using UAV-based imagery were found, including low cost procedures, high resolution and efficiency in data collection. However, some challenges were identified for bathymetry extraction (vegetation obstructions, white waters, turbidity) and grain size assessment (preprocessing of data and automatic object detection). The application domain and possible limitation for instream habitat mapping were defined and will be used as a reference for future studies. Ongoing activities include the

  4. Instream large wood: Denitrification hotspots with low N2O production

    EPA Science Inventory

    We examined the effect of instream large wood on denitrification capacity in two contrasting, lower order streams — one that drains an agricultural watershed with no riparian forest and minimal stores of instream large wood and another that drains a forested watershed with an ext...

  5. Field test of a biological assumption of instream flow models

    SciTech Connect

    Cada, G.F.; Sale, M.J.; Cushman, R.M.; Loar, J.M.

    1983-01-01

    Hydraulic-rating methods are an attractive means of deriving instream flow recommendations at many small hydropower sites because they represent a compromise between relatively inexpensive, low-resolution, discharge methods and the costly, complex, habitat evaluation models. Like the other methods, however, they rely on certain biological assumptions about the relationship between aquatic biota and streamflow characteristics. One such assumption is that benthic production available as food for fishes is proportional to stream bottom area. Wetted perimeter is an easily measured physical parameter which represents bottom area and that is a function of discharge. Therefore, wetted perimeter should reflect the benthic food resource available to support stream fishes under varying flows. As part of a larger effort to compare a number of existing instream flow assessment methods in southern Appalachian trout streams, we examined the validity of the benthos/wetted perimeter relationship at four field sites. Benthos samples were taken at permanent riffle transects over a variety of discharges and were used to relate observed benthos densities to the fluctuations in wetted perimeter and streamflow in these systems. For most of the sites and taxa examined, benthic densities did not show a consistent relationship with discharge/wetted perimeter dynamics. Our analysis indicates that simple physical habitat descriptors obtained from hydraulic-rating models do not provide sufficient information on the response of benthic organisms to decreased discharges. Consequently, these methods may not be sufficient to protect aquatic resources in water-use conflicts.

  6. Testing the instream flow method in trout streams

    SciTech Connect

    Studley, T.K.; Railsback, S.F.; Asce, M.

    1995-12-31

    Pacific Gas and Electric Company`s (PG&E) Department of Research and Development and co-sponsors are fieldtesting the Instream Flow Incremental Methodology (IFIM) at a number of trout stream study sites. Fish populations, flows, and other variables were measured for an eight-year baseline period. Three levels of increasingly sophisticated predictions of population response to increased flows were made. The flow increases have been implemented and additional data are being collected to test the predictions. The baseline data and prediction analyses indicate that (1) using different habitat suitability criteria produces substantially different predictions of how populations respond to flow changes, (2) overlaps in habitat used by trout species can lead to misleading predictions of a population`s response to flow changes, and (3) factors other than habitat during summer low flows can limit trout populations (these include spawning habitat, high flows, stream channel characteristics, and stream temperature). Comprehensive field studies are expensive, but are more likely to result in instream flows that provide a cost-effective tradeoff between power and fisheries values.

  7. Uncertainty Analysis of the Effect of In-Stream Water Level Fluctuations on the Distributed Quantification of Stream-Aquifer Exchanges at the Regional Scale

    NASA Astrophysics Data System (ADS)

    Baratelli, F.; Flipo, N.; Lalot, E.; Beaufort, A.; Curie, F.; Moatar, F.

    2014-12-01

    The classical approach to the modeling of stream-aquifer exchanges at the regional scale (> 10 000 km2) is a conductance model in which river stages are assumed to be constant. However, time fluctuations of river stages have a significant impact. The implementation of variable river stages in hydrological models requires parameters which are difficult to estimate at regional scale. This work aims at analyzing how the quantification of stream-aquifer exchanges at the regional scale is affected by the uncertainties on the parameterization of the process. A real case study (Loire basin, 90 000 km2, France) is considered. The length of the simulated river network is 16141 km, 32% of which is in contact with an underlying aquifer. The surface and groundwater flow in the basin are simulated with EauDyssée, an integrated, distributed, physically-based hydrological model. In-stream water level fluctuations are simulated using a simplified Manning-Strickler approach. Stream-aquifer exchanges are evaluated on a 17 year period (1996-2013) at the daily time step over the river network at a resolution of 1 km. The spatial distributions and the time fluctuations of stream-aquifer exchanges obtained with different values of the quantities in Manning's equation are compared with the results of the simulation with fixed river stages. The water fluxes at the stream-aquifer interface are shown to be sensitive to the approach taken for their quantification (constant or variable river stages): in-stream water level fluctuations determine temporary reversals of the gaining or losing regime for some river reaches. Moreover, the impact of the uncertainties on the input quantities of Manning's equation is assessed. Finally, it is shown that the modeled stream-aquifer exchanges along the Loire are consistent with the longitudinal temperature profile estimated with the satellite based thermal infrared images (LANDSAT): the groundwater discharge into the Loire warms the river in winter and

  8. In-Stream Sediment Dynamics for predicted environmental concentration calculations of plant protection products in the FOCUSSW Scenarios

    NASA Astrophysics Data System (ADS)

    Strehmel, Alexander; Erzgräber, Beate; Gottesbüren, Bernhard

    2016-04-01

    The exposure assessment for the EU registration procedure of plant protection products (PPP), which is based on the 'Forum for the co-ordination of pesticide fate models and their use' (FOCUS), currently considers only periods of 12-16 months for the exposure assessment in surface water bodies. However, in a recent scientific opinion of the European Food Safety Authority (EFSA) it is argued that in a multi-year exposure assessment, the accumulation of PPP substances in river sediment may be a relevant process. Therefore, the EFSA proposed to introduce a sediment accumulation factor in order to account for enrichment of PPP substances over several years in the sediment. The calculation of this accumulation factor, however, would consider degradation in sediment as the only dissipation path, and does not take into account riverine sediment dynamics. In order to assess the influence of deposition and the possible extent of substance accumulation in the sediment phase, the hydraulic model HEC-RAS was employed for an assessment of in-stream sediment dynamics of the FOCUS stream scenarios. The model was parameterized according to the stream characteristics of the FOCUS scenarios and was run over a period of 20 years. The results show that with the distribution of grain sizes and the ranges of flow velocity in the FOCUS streams the main sediment process in the streams is transport. First modeling results suggest that about 80% of the eroded sediment mass from the adjacent field are transported to the downstream end of the stream and out of the system, while only about 20% are deposited in the river bed. At the same time, only about 30% of in-stream sediment mass stems from the adjacent field and is associated with PPP substance, while the remaining sediment consists of the substance-free base sediment concentration regarded in the scenarios. With this, the hydraulic modelling approach is able to support the development of a meaningful sediment accumulation factor by

  9. In-stream nitrate responses integrate human and climate systems in an intensively managed landscape

    NASA Astrophysics Data System (ADS)

    Ward, A. S.; Davis, C. A.; Burgin, A. J.; Loecke, T.; Riveros-Iregui, D. A.; Schnoebelen, D. J.; Just, C. L.; Thomas, S. A.; Weber, L. J.; St Clair, M. A.; Spak, S.; Dalrymple, K. E.; Li, Y.; Prior, K.

    2014-12-01

    Nitrogen (N) fertilization is a cornerstone of modern agriculture, but the practice also leads to eutrophication, hypoxia, and harmful algal blooms in both inland and coastal waters. Several studies identify Iowa, Illinois and Indiana as major source areas of N discharged by the Mississippi River to the Gulf of Mexico where large-scale hypoxia develops annually. Continental-scale management of nitrogen requires a comprehensive understanding of watershed-specific hydrologic dynamics and their consequences for nitrate flushing from agricultural landscapes. Spatiotemporal variation in nitrate fluxes is inherently complex due to the broad range of physicochemical and hydraulic properties that influence N movement through soils, groundwater, and rivers. In-stream N fluxes respond to both short- and long-term climactic forcing interacting with the cumulative human modification to both physical and biogeochemical systems in agricultural catchments. Here, we synthesize results from three individual studies in the Iowa River watershed. First, we demonstrate significant inter- and intra-annual variability in stream responses to rainfall events as a function of antecedent moisture conditions in three nested catchments (first through third-order). This study highlights the use of in-situ, high temporal resolution sensor networks as an emerging tool. Next, we leverage a catchment-wide synoptic study repeated in 2013 to demonstrate the landscape-scale impact of climate dynamics interacting with management decisions on the landscape. This study highlights the role of changes in extreme event frequency on water quality in agricultural landscapes. Finally, we extend results onto the landscape, using a numerical model to quantify heterogeneity of key controlling variables within the landscape (e.g., soil texture) and N retention or mobilization. We compare variability in key controls with variability driven by climate over a 60-yr period of record.

  10. Growing Up Indian: Stories from the Life of Louie Gingras, an 82 Year Old Kootenai Indian. Indian Culture Series.

    ERIC Educational Resources Information Center

    Gingras, Louie

    Eleven short stories from the life of Louie Gingras, an 82-year-old Kootenai Indian, illustrate many aspects of Indian culture. Accompanied by black and white drawings, ths stories describe daily life, mission schools, the Carlisle Indian School, Indian medicine, discipline for children, spiritual powers, beliefs, and several ceremonies. The book…

  11. Columbia River White Sturgeon Genetics and Early Life History: Population Segregation and Juvenile Feeding Behavior, 1987 Final Report.

    SciTech Connect

    Brannon, Ernest L.

    1988-06-01

    The geographic area of the genetics study broadly covered the distribution range of sturgeon in the Columbia from below Bonneville Dam at Ilwaco at Lake Roosevelt, the Upper Snake River, and the Kootenai River. The two remote river sections provided data important for enhancement considerations. There was little electrophoretic variation seen among individuals from the Kootenai River. Upper Snake river sturgeon showed a higher percentage of polymorphic loci than the Kootenai fish, but lower than the other areas in the Columbia River we sampled. Sample size was increased in both Lake Roosevelt and at Electrophoretic variation was specific to an individual sampling area in several cases and this shaped our conclusions. The 1987 early life history studies concentrated on the feeding behavior of juvenile sturgeon. The chemostimulant components in prey attractive to sturgeon were examined, and the sensory systems utilized by foraging sturgeon were determined under different environmental conditions. These results were discussed with regard to the environmental changes that have occurred in the Columbia River. Under present river conditions, the feeding mechanism of sturgeon is more restricted to certain prey types, and their feeding range may be limited. In these situations, enhancement measures cannot be undertaken without consideration given to the introduction of food resources that will be readily available under present conditions. 89 refs., 7 figs., 11 tabs.

  12. Valuing instream flows using the hedonic price method

    NASA Astrophysics Data System (ADS)

    Netusil, Noelwah R.; Summers, Matthew T.

    2009-11-01

    The Oregon Water Trust (OWT) uses a market-based approach to protect and enhance instream flows in Oregon. We use the hedonic price method to estimate the effect of numerous variables on the annualized price OWT pays for water rights: the amount of water protected by the transaction, transaction type (state approved or contractual agreement), presence of anadromous and/or resident fish, and if a fish is listed under the Endangered Species Act (ESA). We find evidence of a premium for state-approved transactions and for transactions that protect water in streams with listed species. Adjusting the amount of water protected by each transaction to include only rights that will be delivered with a high degree of certainty produces coefficient estimates that are similar, but more accurate, than using unadjusted water rights amounts.

  13. Continuous In-Stream Assimilatory Nitrate Uptake from High Frequency Sensor Measurements

    NASA Astrophysics Data System (ADS)

    Rode, Michael; Rehan Anis, Muhammad; Weitere, Markus

    2016-04-01

    Recently developed in situ sensors provide new opportunities to measure changes in stream concentration at high temporal frequencies that historical have not been feasible. In this study we used multi-parameter sensor measurements to relate assimilatory uptake to metabolic rates and calculate continually uptake rates for two stream reaches and a whole stream network. Two years of continues 15 min data from a forest and agricultural stream reach of the Selke river (463km2) revealed strong correlation between assimilatory uptake and GPP for the forest (r2=0.72) and agricultural (r2=0.56) stream reach. The slopes of these regressions were in good agreement with predicted assimilatory N-uptake based on additional metabolism data. Mean yearly assimilatory uptake rates were 6.4 times higher in the agricultural stream (mean 68.5 mgNm‑2d‑1, max 270 mgNm‑2d‑1) than in the forest stream (mean 10.7 mgNm‑2d‑1, max 97.5 mgNm‑2d‑1). Percentage daily assimilatory uptake amounted up to 47.4 % in the whole mainly agricultural watershed, whereas the total yearly assimilatory in-stream uptake was 9.0% of total nitrogen load of the watershed. This value was lower in the forest dominated upstream watershed (4.8%) and higher in the lower agriculture dominated watershed (13.4%). High frequency measurements offer exploring continues nutrient uptake metrics for streams with strongly deviating site characteristics.

  14. High concentration suspended sediment measurments using acontinuous fiber optic in-stream transmissometer

    SciTech Connect

    Campbell, Chris G.; Laycak, Danny T.; Hoppes, William; Tran,Nguyen T.; Shi, Frank G.

    2004-05-26

    Suspended sediment loads mobilized during high flow periods in rivers and streams are largely uncharacterized. In smaller and intermittent streams, a large storm may transport a majority of the annual sediment budget. Therefore monitoring techniques that can measure high suspended sediment concentrations at semi-continuous time intervals are needed. A Fiber optic In-stream Transmissometer (FIT) is presented for continuous measurement of high concentration suspended sediment in storm runoff. FIT performance and precision were demonstrated to be reasonably good for suspended sediment concentrations up to 10g/L. The FIT was compared to two commercially available turbidity devices and provided better precision and accuracy at both high and low concentrations. Both turbidity devices were unable to collect measurements at concentrations greater than 4 g/L. The FIT and turbidity measurements were sensitive to sediment particle size. Particle size dependence of transmittance and turbidity measurement poses the greatest problem for calibration to suspended sediment concentration. While the FIT was demonstrated to provide acceptable measurements of high suspended sediment concentrations, approaches to real-time suspended sediment detection need to address the particle size dependence in concentration measurements.

  15. Enhancements to the Precipitation-Runoff Modeling System for simulating in-stream water temperature

    NASA Astrophysics Data System (ADS)

    Markstrom, S. L.; Hay, L.

    2010-12-01

    A stream temperature module has been developed for the U.S. Geological Survey Precipitation-Runoff Modeling System (PRMS) for simulating maximum- and mean-daily stream temperature. This module provides additional simulation capabilities by coupling PRMS with the U.S. Geological Survey Stream Network Temperature (SNTEMP) model. PRMS is a modular, deterministic, distributed-parameter, physical-process watershed model that simulates watershed response to various combinations of climate and land use. Normal and extreme rainfall and snowmelt can be simulated to evaluate changes in water-balance relations, streamflow regimes, soil-water relations, and ground-water recharge. SNTEMP was developed to help aquatic biologists and engineers predict the effects of flow regime changes on water temperatures. This coupling of PRMS with SNTEMP will allow scientists and watershed managers to evaluate the effects of historical climate and projected climate change, landscape evolution, and resource management scenarios on watershed hydrology and in-stream water temperature. The prototype of this coupled model was developed for the U.S. Geological Survey Southeast Regional Assessment Project (SERAP) and tested in the Apalachicola-Chattahoochee-Flint River Basin in the southeastern United States. Preliminary results from the prototype are presented.

  16. Analysis of riverbed temperatures to determine the geometry of subsurface water flow around in-stream geomorphological structures

    NASA Astrophysics Data System (ADS)

    Munz, Matthias; Oswald, Sascha E.; Schmidt, Christian

    2016-08-01

    The analytical evaluation of diurnal temperature variation in riverbed sediments provides detailed information on exchange fluxes between rivers and groundwater. The underlying assumption of the stationary, one-dimensional vertical flow field is frequently violated in natural systems where subsurface water flow often has a significant horizontal component. In this paper, we present a new methodology for identifying the geometry of the subsurface flow field using vertical temperature profiles. The statistical analyses are based on model optimisation and selection and are used to evaluate the shape of vertical amplitude ratio profiles. The method was applied to multiple profiles measured around in-stream geomorphological structures in a losing reach of a gravel bed river. The predominant subsurface flow field was systematically categorised in purely vertical and horizontal (hyporheic, parafluvial) components. The results highlight that river groundwater exchange flux at the head, crest and tail of geomorphological structures significantly deviated from the one-dimensional vertical flow, due to a significant horizontal component. The geometry of the subsurface water flow depended on the position around the geomorphological structures and on the river level. The methodology presented in this paper features great potential for characterising the spatial patterns and temporal dynamics of complex subsurface flow geometries by using measured temperature time series in vertical profiles.

  17. The determination, assessment, and design of "in-stream value" studies for the northern Great Plains region

    USGS Publications Warehouse

    Bovee, Ken D.

    1975-01-01

    An extensive literature review was conducted to determine the discharge requirements of various components of a warm water fishery. Where exact hydrologic parameters were not measured directly in individual studies, they were estimated from inferred statements and knowledge of hydrologic variables leading to certain instream conditions. From this information it was possible to determine which components of the stream community would be most seriously affected by reduced discharges. In addition, a number of different methods used in the recommendation of minimum streamflows was reviewed. These methods were evaluated for their reliability and ease of use. It was concluded that a method for recommending minimum discharges should not sacrifice reliability for expediency. A methodology is proposed for the recommendation of minimum discharges for a warm water fishery. This method utilizes field measurements of critical stream areas and biological criteria determined from the used of indicator species. For large rivers, migration and spawning requirements are analyzed using the paddlefish (Polyodon spathula) as the indicator species. For smaller rivers, the suggested indicator species is the sauger (Stizostedion canadense). Rearing flows are determined on the basis of stream productivity by analyzing macroinvertebrate habits, and on the basis of fish habitat typing. The indicator species for determining adequate fish habitat is the stonecat (Notorus flavus). A number of variables were identified which might require a greater amount of in-stream flow than the fishery, per se. These variables included streamflow needs for riparian and other sub-irrigated vegetation, water quality parameters, anchor ice formation, and the relationship between discharge and sediment yield. Information concerning these variables is insufficient at this time to determine whether a variable will "over-ride" the streamflow requirement for the fishery itself. Further research is needed in these

  18. Quantifying watershed-scale groundwater loading and in-stream fate of nitrate using high-frequency water quality data

    NASA Astrophysics Data System (ADS)

    Miller, Matthew P.; Tesoriero, Anthony J.; Capel, Paul D.; Pellerin, Brian A.; Hyer, Kenneth E.; Burns, Douglas A.

    2016-01-01

    We describe a new approach that couples hydrograph separation with high-frequency nitrate data to quantify time-variable groundwater and runoff loading of nitrate to streams, and the net in-stream fate of nitrate at the watershed scale. The approach was applied at three sites spanning gradients in watershed size and land use in the Chesapeake Bay watershed. Results indicate that 58-73% of the annual nitrate load to the streams was groundwater-discharged nitrate. Average annual first-order nitrate loss rate constants (k) were similar to those reported in both modeling and in-stream process-based studies, and were greater at the small streams (0.06 and 0.22 day-1) than at the large river (0.05 day-1), but 11% of the annual loads were retained/lost in the small streams, compared with 23% in the large river. Larger streambed area to water volume ratios in small streams results in greater loss rates, but shorter residence times in small streams result in a smaller fraction of nitrate loads being removed than in larger streams. A seasonal evaluation of k values suggests that nitrate was retained/lost at varying rates during the growing season. Consistent with previous studies, streamflow and nitrate concentrations were inversely related to k. This new approach for interpreting high-frequency nitrate data and the associated findings furthers our ability to understand, predict, and mitigate nitrate impacts on streams and receiving waters by providing insights into temporal nitrate dynamics that would be difficult to obtain using traditional field-based studies.

  19. The economic value of Trinity River water

    USGS Publications Warehouse

    Douglas, A.J.; Taylor, J.G.

    1999-01-01

    The Trinity River, largest tributary of the Klamath River, has its head-waters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel, a manmade conduit. Hydropower is produced at four installations along the route of Trinity River water that is diverted to the Sacramento River, and power production at three of these installations would diminish if no Trinity River water were diverted to the Sacramento River. After Trinity River water reaches the Sacramento River, it flows toward the Sacramento-San Joaquin Delta and San Francisco Bay. Trinity River water is pumped via Bureau of Reclamation canals and pumps to the northern San Joaquin Valley, where it is used for irrigated agriculture. The social cost of putting more water down the Trinity River is the sum of the value of the foregone consumer surplus from hydropower production as well as the value of the foregone irrigation water. Sharply diminished instream flows have also severely affected the size and robustness of Trinity River salmon, steelhead, shad and sturgeon runs. Survey data were used to estimate the non-market benefits of augmenting Trinity River instream flows by letting more water flow down the Trinity and moving less water to the Sacramento River. Preservation benefits for Trinity River instream flows and fish runs are $803 million per annum for the scenario that returns the most water down the Trinity River, a value that greatly exceeds the social cost estimate.The Trinity River, largest tributary of the Klamath River, has its headwaters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel, a manmade conduit. Hydropower is produced at four installations along the route of Trinity River water that is diverted to the

  20. Physical-scale models of engineered log jams in rivers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Stream restoration and river engineering projects are employing engineered log jams increasingly for stabilization and in-stream improvements. To further advance the design of these structures and their morphodynamic effects on corridors, the basis for physical-scale models of rivers with engineere...

  1. Simulation of in-stream water quality on global scale under changing climate and anthropogenic conditions

    NASA Astrophysics Data System (ADS)

    Voss, Anja; Bärlund, Ilona; Punzet, Manuel; Williams, Richard; Teichert, Ellen; Malve, Olli; Voß, Frank

    2010-05-01

    Although catchment scale modelling of water and solute transport and transformations is a widely used technique to study pollution pathways and effects of natural changes, policies and mitigation measures there are only a few examples of global water quality modelling. This work will provide a description of the new continental-scale model of water quality WorldQual and the analysis of model simulations under changed climate and anthropogenic conditions with respect to changes in diffuse and point loading as well as surface water quality. BOD is used as an indicator of the level of organic pollution and its oxygen-depleting potential, and for the overall health of aquatic ecosystems. The first application of this new water quality model is to river systems of Europe. The model itself is being developed as part of the EU-funded SCENES Project which has the principal goal of developing new scenarios of the future of freshwater resources in Europe. The aim of the model is to determine chemical fluxes in different pathways combining analysis of water quantity with water quality. Simple equations, consistent with the availability of data on the continental scale, are used to simulate the response of in-stream BOD concentrations to diffuse and anthropogenic point loadings as well as flow dilution. Point sources are divided into manufacturing, domestic and urban loadings, whereas diffuse loadings come from scattered settlements, agricultural input (for instance livestock farming), and also from natural background sources. The model is tested against measured longitudinal gradients and time series data at specific river locations with different loading characteristics like the Thames that is driven by domestic loading and Ebro with relative high share of diffuse loading. With scenario studies the influence of climate and anthropogenic changes on European water resources shall be investigated with the following questions: 1. What percentage of river systems will have

  2. Analysing in-stream observed and simulated nitrate concentrations using temporal variograms

    NASA Astrophysics Data System (ADS)

    Polus, Edwige; Flipo, Nicolas; de Fouquet, Chantal; Poulin, Michel

    2010-05-01

    The scope of this study is to use variograms to reduce distributed physically-based model (DPBM) uncertainties when assessing nitrate concentrations for the year 2003 along a 250 km stretch of the Seine River from upstream of the Greater Paris to the estuary. Many combined sewer overflows and two main waste water treatment plants (1.5 M and 5 M connected inhabitants) are located along the stretch as well as ten nitrate sampling sites for validation data. Nitrate concentrations are measured weekly by the Sewage Public Company of the Greater Paris (SIAAP). Initial nitrate boundary conditions (BC) are daily mean concentrations based on hourly automatic sampling and provided by Veolia Water. Systematic deviation between observed and simulated concentrations could be reduced thanks to more consistent nitrate BC obtained by temporal cokriging of weekly SIAAP measurements by daily Veolia Water measurements. The main issue with DPBM is that, on the one hand, at the hydrological network scale, the number of measurements is not sufficient to estimate all the variables of the system of equations and to identify all the calibration parameters. On the other hand, the system of equations is physically-based, describing the behaviour of variables the best as it is understood. A new methodology for analysing in-stream water quality model's efficiency is proposed based on observations : simple and cross-variograms are used to compare the variability of observations to the one of the simulated values. The analysis of temporal variograms (simple variograms of observed and simulated concentrations, and their cross-variogram) and their fitting reveal a clear mismatch between simulated values and observed ones that was not detected by classical objective functions (Average value, RMSE, …). Variograms appear to be composed of three components that allow for analysing model response at three time scales (sub-weekly, monthly and annual). Moreover, the method allows for analysing

  3. Toxicity testing and instream biological monitoring in evaluating municipal effluents

    SciTech Connect

    Krier, K.; Pontasch, K.

    1995-12-31

    Twelve streams receiving municipal wastewater treatment plant effluents were evaluated in riffle areas above and below the outfall using the Environmental Protection Agency`s Rapid Bioassessment Protocols (RBPs) for benthic macroinvertebrates. Eight of the sites evaluated using RBP 1 exhibited stream health in the downstream riffles equaling or exceeding the upstream riffles. RBP 1 results suggested possible impacts at the remaining four sites, and these sites were more intensely evaluated using RBPs 2 and 3, acute effluent toxicity tests with Daphnia magna, and quantification of periphytic chlorophyll a and ash free dry weight (AFDW). Results from RBP 2 indicated three of the four sites evaluated have similar taxonomic richness above and below the outfall, while one site is heavily impacted by organic pollutants. Toxicity tests with 100% effluent resulted in no mortality with any of the four effluents tested. Relative to the respective upstream sites, chlorophyll a was significantly increased at one downstream site and significantly reduced at another. AFDW was similar above and below the outfalls in all streams. These results suggest that laboratory toxicity tests may not always be adequate predictors of instream biological effects.

  4. Potlatch River Watershed Restoration, Annual Report 2002-2003.

    SciTech Connect

    Stinson, Kenneth

    2003-09-01

    The project's goal is to improve instream fish habitat in the Potlatch River and the lower Clearwater River through comprehensive watershed planning, implementation of best management practices and expanded water quality and fish habitat monitoring. This proposal has two primary objectives: (1) complete the Potlatch River watershed implementation plan; and, (2) augment existing monitoring efforts in the Potlatch River to broaden the water quality and fish resource data baseline.

  5. Comparison of instream methods for measuring hydraulic conductivity in sandy streambeds

    USGS Publications Warehouse

    Landon, M.K.; Rus, D.L.; Edwin, Harvey F.

    2001-01-01

    Streambed hydraulic conductivity (K) values were determined at seven stream transects in the Platte River Basin in Nebraska using different instream measurement techniques. Values were compared to determine the most appropriate technique(s) for use in sandy streambeds. Values of K determined from field falling- and constant-head permeameter tests analyzed using the Darcy equation decreased as permeameter diameter increased. Seepage meters coupled with hydraulic gradient measurements failed to yield K values in 40% of the trials. Consequently, Darcy permeameter and seepage meter tests were not preferred approaches. In the upper 0.25 m of the streambed, field falling- and constant-head permeameter tests analyzed with the Hvorslev solution generally had similar K values that were significantly greater than those determined using the Hazen grain-size, Bouwer and Rice slug test for anisotropic and isotropic conditions, and Alyamani and Sen grain-size methods; median differences between these tests and the Hvorslev falling-head 60 cm diameter permeameter were about 8, 9, 17, and 35 m/day, respectively. The Hvorslev falling-head permeameter test is considered the most robust method for measuring K of the upper 0.25 m of the streambed because of the inherent limitations of the empirical grain-size methods and less sediment disturbance for permeameter than slug tests. However, lateral variability in K along transects on the Platte, North Platte, and Wood Rivers was greater than variability in K between valid permeameter, grain-size, or slug tests, indicating that the method used may matter less than making enough measurements to characterize spatial variability adequately. At the Platte River tributary sites, the upper 0.3 m of the streambed typically had greater K than sediment located 0.3 to 2.5 m below the streambed surface, indicating that deposits below the streambed may limit ground water/surface water fluxes. The Hvorslev permeameter tests are not a practical

  6. Instream wood loads in montane forest streams of the Colorado Front Range, USA

    NASA Astrophysics Data System (ADS)

    Jackson, Karen J.; Wohl, Ellen

    2015-04-01

    Although several studies examine instream wood loads and associated geomorphic effects in streams of subalpine forests in the U.S. Southern Rocky Mountains, little is known of instream wood loads in lower elevation, montane forests of the region. We compare instream wood loads and geomorphic effects between streams draining montane forest stands of differing age (old growth versus younger) and disturbance history (healthy versus infested by mountain pine beetles). We examined forest stand characteristics, instream wood load, channel geometry, pool volume, and sediment storage in 33 pool-riffle or plane-bed stream reaches with objectives of determining whether (i) instream wood and geomorphic effects differed significantly among old-growth, younger, healthy, and beetle-infested forest stands and (ii) wood loads correlated with valley and channel characteristics. Wood loads were standardized to drainage area, stream gradient, reach length, bankfull width, and floodplain area. Streams flowing through old-growth forests had significantly larger wood loads and logjam volumes (pairwise t-tests), as well as logjam frequencies (Kruskal-Wallis test), residual pool volume, and fine sediment storage around wood than streams flowing through younger forests. Wood loads in streams draining beetle-infested forest did not differ significantly from those in healthy forest stands, but best subset regression models indicated that elevation, stand age, and beetle infestation were the best predictors of wood loads in channels and on floodplains, suggesting that beetle infestation is affecting instream wood characteristics. Wood loads are larger than values from subalpine streams in the same region and jams are larger and more closely spaced. We interpret these differences to reflect greater wood piece mobility in subalpine zone streams. Stand age appears to exert the dominant influence on instream wood characteristics within pool-riffle streams in the study area rather than beetle

  7. In-Stream Microbial Denitrification Potential at Wastewater Treatment Plant Discharge Sites

    NASA Astrophysics Data System (ADS)

    Hill, N. B.; Rahm, B. G.; Shaw, S. B.; Riha, S. J.

    2014-12-01

    Reactive nitrogen loading from municipal sewage discharge provides point sources of nitrate (NO3-) to rivers and streams. Through microbially-mediated denitrification, NO3- can be converted to dinitrogen (N2) and nitrous oxide (N2O) gases, which are released to the atmosphere. Preliminary observations made throughout summer 2011 near a wastewater treatment plant (WWTP) outfall in the Finger Lakes region of New York indicated that NO3- concentrations downstream of the discharge pipe were lower relative to upstream concentrations. This suggested that nitrate processing was occurring more rapidly and completely than predicted by current models and that point "sources" can in some cases be point "sinks". Molecular assays and stable isotope analyses were combined with laboratory microcosm experiments and water chemistry analyses to better understand the mechanism of nitrate transformation. Nitrite reductase (nirS and nirK) and nitrous oxide reductase (nosZ) genes were detected in water and sediment samples using qPCR. Denitrifcation genes were present attached to stream sediment, in pipe biofilm, and in WWTP discharge water. A comparison of δ18-O and δ15-N signatures also supported the hypothesis that stream NO3- had been processed biotically. Results from microcosm experiments indicated that the NO3- transformations occur at the sediment-water interface rather than in the water column. In some instances, quantities of denitrification genes were at higher concentrations attached to sediment downstream of the discharge pipe than upstream of the pipe suggesting that the wastewater discharge may be enriching the downstream sediment and could promote in-stream denitrification.

  8. Evaluating the Influence of Geomorphic Conditions on Instream Fish Habitat Using Hydraulic Modeling and Geostatistical Analyses

    NASA Astrophysics Data System (ADS)

    Clark, J. S.; Rizzo, D. M.; Hession, W. C.; Watzin, M. C.; Laible, J. P.

    2006-05-01

    A two-dimensional hydrodynamic model (River2D) was utilized to evaluate the relationship between geomorphic conditions (as estimated using an existing rapid assessment protocol) and instream habitat quality in small Vermont streams. Six stream reaches ranging in geomorphic condition from good to poor according to the protocols were utilized for this study. We conducted detailed topographic surveys, quantified bed substrate, and measured velocity and discharge values during baseflow conditions. The reach models were calibrated with realistic roughness values based on field observations and pebble counts. After calibration, the weighted usable area (WUA) of habitat was calculated for each stream at three flows (7Q 10, median, and bankfull) using modeled parameters and habitat suitability curves for specific fish species and life stage. Brown trout (Salmo trutta), white sucker (Catostomus commersoni), and common shiner (Notropis cornutus) habitats were predicted using habitat parameters of velocity, depth, and channel substrate type for adult, juvenile, and fry stages. The predictions of reach-averaged WUA show a negative correlation to the geomorphic condition scores, indicating that the often-used rapid protocols, may not directly relate to habitat conditions at the reach spatial scale. However, the areas of high WUA are distributed in a patchy nature throughout the stream. This fluctuation of physical habitat conditions may be more important to classifying habitat than a single reach-averaged WUA score. The spatial distribution of habitat variables is not captured using either the reach-averaged WUA or geomorphic assessment scores to classify streams. Spatial analyses will be used to further evaluate the patchy nature of WUA distributions, and actual data on species distributions in the study streams will be compared to modeled habitat parameters and their spatial patterns.

  9. Instream Attenuation of Nitrogen and Phosphorus in Non-Point Source Dominated Streams: Hydrologic and Biogeochemical Controls

    NASA Astrophysics Data System (ADS)

    Bray, E. N.; Chen, X.; Keller, A. A.

    2010-12-01

    Non-point source inputs of total nitrogen (TN) and total phosphorus (TP) in rivers are the leading causes of water quality degradation in the United States (Turner and Rabalais, 2003; Broussard and Turner, 2009). Yet it remains a challenge to adequately quantify the relative role and influence of physical hydrological processes versus biogeochemical processes on the attenuation of TN and TP for individual river reaches. A watershed-scale study of instream dynamics and attenuation of TN and TP in northeastern U.S. headwater streams demonstrates that physical and hydrological processes exert greater control over nutrient removal than biogeochemical processes. To explore these interactions under various attenuation scenarios, we developed the watershed-scale model (WARMF) for 97 catchments to simulate watershed processes, hydrology, and diffuse source loads of nutrients. We simulated a hypothetical nutrient release at a rate of 1 kg/d of TN (50% as ammonium and 50% as nitrate) and TP (100% as phosphate) to predict response lengths of downstream catchments. Resulting attenuation factors are presented as the change in mean load at a given location, normalized to the change in the catchment in which the load is applied. Results indicate that for most catchments, the TN and TP load increase is attenuated from the stream within a few tens of kilometers. Fifty percent attenuation occurs across length scales ranging from a few hundreds of meters to kilometers if the load is introduced in the headwaters, indicating the most rapid nutrient removal occurs in the smallest headwater streams but generally decreases with distance downstream. There are some differences in the attenuation factors for TN and TP, although the pattern of attenuation is the same. Sensitivity analyses highlight five hydrological parameters of paramount importance to concentrations of N and P, namely precipitation, evaporation coefficients (magnitude and skewness), soil layer thickness, soil saturated

  10. Comparison of Instream and Laboratory Methods of Measuring Sediment Oxygen Demand

    USGS Publications Warehouse

    Hall, Dennis C.; Berkas, Wayne R.

    1988-01-01

    Sediment oxygen demand (SOD) was determined at three sites in a gravel-bottomed central Missouri stream by: (1) two variations of an instream method, and (2) a laboratory method. SOD generally was greatest by the instream methods, which are considered more accurate, and least by the laboratory method. Disturbing stream sediment did not significantly decrease SOD by the instream method. Temperature ranges of up to 12 degree Celsius had no significant effect on the SOD. In the gravel-bottomed stream, the placement of chambers was critical to obtain reliable measurements. SOD rates were dependent on the method; therefore, care should be taken in comparing SOD data obtained by different methods. There is a need for a carefully researched standardized method for SOD determinations.

  11. Use of the instream flow incremental methodology: a tool for negotiation

    USGS Publications Warehouse

    Cavendish, Mary G.; Duncan, Margaret I.

    1986-01-01

    The resolution of conflicts arising from differing values and water uses requires technical information and negotiating skills. This article outlines the Instream Flow Incremental Methodology (IFIM), developed by the US Fish and Wildlife Service, and demonstrates that its use to quantify flows necessary to protect desired instream values aids negotiation by illustrating areas of agreement and possible compromises between conflicting water interests. Pursuant to a Section 404 permit application to the US Army Corps of Engineers made by City Utilities of Springfield, Missouri, in 1978, IFIM provided the means by which City Utilities, concerned with a secure water supply for a growing population, and those advocating instream values were satisfied that their requirements were met. In tracing the 15-month process, the authors conclude that the application of IFIM, as well as the cooperative stance adopted by the parties involved, were the key ingredients of the successful permit application.

  12. Dissolved phosphorus retention and release from a coastal plain in-stream wetland.

    PubMed

    Novak, J M; Stone, K C; Szogi, A A; Watts, D W; Johnson, M H

    2004-01-01

    Dissolved phosphorus (DP) can be released from wetlands as a result of flooding or shifts in water column concentrations. Our objectives were to determine the long-term (1460 d) DP retention and release characteristics of an in-stream wetland, and to evaluate how these characteristics respond to flooding, draining, and changes in DP concentrations. The studied in-stream wetland drains an agriculturally intensive subwatershed in the North Carolina Coastal Plain region. The wetland's DP retention and release characteristics were evaluated by measuring inflow and outflow DP concentrations, DP mass balance, and DP movement across the sediment-water column interface. Phosphorus sorption isotherms were measured to determine the sediment's equilibria P concentration (EPCo), and passive samplers were used to measure sediment pore water DP concentrations. Initially, the in-stream wetland was undersized (0.31 ha) and released 1.5 kg of DP. Increasing the in-stream wetland area to 0.67 ha by flooding resulted in more DP retention (28 kg) and low outflow DP concentrations. Draining the in-stream wetland from 0.67 to 0.33 ha caused the release of stored DP (12.1 kg). Shifts both in sediment pore water DP concentrations and sediment EPCo values corroborate the release of stored DP. Reflooding the wetland from 0.33 to 0.85 ha caused additional release of stored DP into the outflowing stream (10.9 kg). We conclude that for a time period, this in-stream wetland did provide DP retention. During other time periods, DP was released due to changes in wetland area, rainfall, and DP concentrations. PMID:14964396

  13. Science, Uncertainty, and Adaptive Management in Large River Restoration Programs: Trinity River example

    NASA Astrophysics Data System (ADS)

    McBain, S.

    2002-12-01

    Following construction of Trinity and Lewiston dams on the upper Trinity River in 1964, dam induced changes to streamflows and sediment regime had severely simplified channel morphology and aquatic habitat downstream of the dams. This habitat change, combined with blocked access to over 100 miles of salmon and steelhead habitat upstream of the dams, caused salmon and steelhead populations to quickly plummet. An instream flow study was initiated in 1984 to address the flow needs to restore the fishery, and this study relied on the Physical Habitat Simulation (PHABSIM) Model to quantify instream flow needs. In 1992, geomorphic and riparian studies were integrated into the instream flow study, with the overall study completed in 1999 (USFWS 1999). This 13-year process continued through three presidential administrations, several agency managers, and many turnovers of the agency technical staff responsible for conducting the study. This process culminated in 1996-1998 when a group of scientists were convened to integrate all the studies and data to produce the final instream flow study document. This 13-year, non-linear process, resulted in many uncertainties that could not be resolved in the short amount of time allowed for completing the instream flow study document. Shortly after completion of the instream flow study document, the Secretary of Interior issued a Record of Decision to implement the recommendations contained in the instream flow study document. The uncertainties encountered as the instream flow study report was prepared were highlighted in the report, and the Record of Decision initiated an Adaptive Environmental Assessment and Management program to address these existing uncertainties and improve future river management. There have been many lessons learned going through this process, and the presentation will summarize: 1)The progression of science used to develop the instream flow study report; 2)How the scientists preparing the report addressed

  14. Influence of adding small instream wood on fishes and hydrology within channelized agricultural headwater streams in central Ohio

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Large instream wood is well known for its importance in headwater streams because it promotes the development of pool habitat for fishes and provides them with cover from predators during the summer. However, little is known about the influence of small instream wood (diameter < 10 cm, length < 1 m...

  15. Valley-Fill Sandstones in the Kootenai Formation on the Crow Indian Reservation, South Central Montana.

    SciTech Connect

    Lopez, D.A.

    1997-10-01

    Subsurface data is being collected, organized, and a digital database is being prepared for the project. An ACCESS database and PC-Arcview will be used to manage and interpret the data. All of the four 30 X 60 geologic quadrangles have been scanned to produce a digital surface geologic data base for the Crow Reservation and all are nearing completion. Writing of the map explanations has begun. Field investigations were nearly completed during this quarter; only minor field checks remain. With the help of a student field assistant from the Crow Tribe, the entire project area was inventoried for the presence of valley-fill deposits in the Kootenai Formation. Field inventory has resulted in the identification of nine exposures of thick valley-fill deposits. These appear to represent at least four major westward-trending valley systems. All the channel localities have been measured and described in detail and paleocurrent data has been collected from all but one locality. In addition, two stratigraphic sections were measured in areas where channels are absent.

  16. Understanding the diurnal cycle in fluvial dissolved organic carbon - The interplay of in-stream residence time, day length and organic matter turnover

    NASA Astrophysics Data System (ADS)

    Worrall, F.; Howden, N. J. K.; Burt, T. P.

    2015-04-01

    There is increasing interest in characterising the diurnal fluctuation of stream solute concentrations because observed data series derived from spot samples may be highly subjective if such diurnal fluctuations are large. This can therefore lead to large uncertainties, bias or systematic errors in calculation of fluvial solute fluxes, depending upon the particular sampling regime. A simplistic approach would be to assume diurnal fluctuations are constant throughout the water year, but this study proposes diurnal cycles in stream water quality can only be interpreted in the context of stream residence time and changing day length. Three years of hourly dissolved organic carbon (DOC) concentration and flow data from the River Dee catchment (1674 km2) were analysed, and statistical analysis of the entire record shows there is no consistent diurnal cycle in the record. From the 3-year record (1095 days) there were only 96 diurnal cycles could be analysed. Cycles were quantified in terms of their: relative and absolute amplitude; duration; time to maximum concentration; asymmetry; percentile flow and in-stream residence time. The median diurnal cycle showed an amplitude that was 9.2% of the starting concentration; it was not significantly asymmetric; and occurred at the 19th percentile flow. The median DOC removal rate was 0.07 mg C/l/hr with an inter-quartile range of 0.052-0.100 mg C/l/hr. Results were interpreted as controlled by two, separate, zero-order kinetic rate laws, one for the day and one for the night. There was no single diurnal cycle present across the record, rather a number of different cycles controlled by the combination of in-stream residence time and exposure to contrasting light conditions. Over the 3-year period the average in-stream loss of DOC was 32%. The diurnal cycles evident in high resolution DOC data are interpretable, but require contextual information for their influence on in-stream processes to be understood or for them to be utilised.

  17. IN-STREAM CONTINUOUS SOURCE WATER QUALITY MONITORING SYSTEM

    EPA Science Inventory

    Abstract:

    The U.S. Environmental Protection Agency (EPA) Office of Research and Development (ORD) provided the Ohio River Valley Water Sanitation Commission (ORSANCO) with a grant as part of the Advanced Measurement Initiative (AMI). The objective of AMI is to provide an ...

  18. LABORATORY AND INSTREAM NITRIFICATION RATES FOR SELECTED STREAMS

    EPA Science Inventory

    Nitrification rate coefficients are predicted from biochemical oxygen demand tests for two rivers that are moderately deep but have some shoals and riffles. The two streams studied are notable for the lack of a thick benthic community and for the low flow velocities. Measured nit...

  19. Assessment of In-Stream Phosphorus Dynamics in Agricultural Drainage Ditches

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The intensive row crop agricultural systems in the Midwestern United States can enrich surface waters with nutrients. This project was conducted to evaluate the in-stream processing of P in agricultural ditches. Phosphorus injection studies were conducted at seven sites along three drainage ditches ...

  20. Influence of instream habitat and water quality on aggressive behavior in crayfish of channelized headwater streams

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Many agricultural drainage ditches that border farm fields of the Midwestern United States are degraded headwater streams that possess communities of crayfish. We hypothesized that crayfish communities at sites with low instream habitat diversity and poor water quality would show greater evidence of...

  1. EFFECTS OF STREAM RESTORATION ON IN-STREAM WATER QUALITY IN AN URBAN WATERSHED

    EPA Science Inventory

    The purpose of this on-going project is to provide information to Municipal Separate Storm Sewer System (MS4s) operators and states on the performance of selected best management practices (BMPs), specifically, stream restoration techniques, on improving biological and in-stream ...

  2. Instream Large Wood: Dentrification Hotspots With Low N2O Production

    EPA Science Inventory

    The maintenance and restoration of forested riparian cover is important for watershed nitrogen (N) cycling. Forested riparian zones provide woody debris to streams that may stimulate in-stream denitrification and nitrous oxide (N2O) production. We examined the effects of woody an...

  3. Winter ice processes and pool habitat associated with two types of constructed instream structures

    USGS Publications Warehouse

    Barrineau, C.E.; Hubert, W.A.; Dey, P.D.; Annear, T.C.

    2005-01-01

    There is little information on the winter features of salmonid habitats associated with constructed instream structures to provide guidance when planning habitat improvement projects. We assessed winter habitat features for trout of the genera Oncorhynchus and Salvelinus in pools associated with two types of instream structures constructed on a low-gradient reach of a mountain stream in western Wyoming with a mean wetted width of 6.4 m. Pool habitat was affected by temporal variability in ice formations from fall into winter. As surface ice and snow accumulated with the progression of winter, variation in ice formations was less frequent and winter habitat conditions became more stable. However, groundwater inflow that maintained water temperatures at 0.2-0.6??C in a portion of the study reach appeared to contribute to incomplete surface ice cover and variation in ice formations in pools through most of the winter. Hanging dams and anchor ice dams were the primary ice features that affected winter habitat in pools associated with constructed instream structures. Trout were observed in these pools in the fall but tended to abandon pools with variation in ice formations as winter progressed. The potential impacts of groundwater inflow and winter ice processes on trout habitat in pools associated with instream structures should be considered when planning habitat improvement projects. ?? Copyright by the American Fisheries Society 2005.

  4. EVALUATION OF STREAMBANK RESTORATION ON IN-STREAM WATER QUALITY IN AN URBAN WATERSHED

    EPA Science Inventory

    The objectives of this on-going project are to: investigate the effectiveness of streambank restoration techniques on increasing available biological habitat and improving in-stream water quality in an impaired stream; and, demonstrate the utility of continuous water-quality moni...

  5. Aquatic habitat measurement and valuation: imputing social benefits to instream flow levels

    USGS Publications Warehouse

    Douglas, Aaron J.; Johnson, Richard L.

    1991-01-01

    Instream flow conflicts have been analysed from the perspectives offered by policy oriented applied (physical) science, theories of conflict resolution and negotiation strategy, and psychological analyses of the behavior patterns of the bargaining parties. Economics also offers some useful insights in analysing conflict resolution within the context of these water allocation problems. We attempt to analyse the economics of the bargaining process in conjunction with a discussion of the water allocation process. In particular, we examine in detail the relation between certain habitat estimation techniques, and the socially optimal allocation of non-market resources. The results developed here describe the welfare implications implicit in the contemporary general equilibrium analysis of a competitive market economy. We also review certain currently available techniques for assigning dollar values to the social benefits of instream flow. The limitations of non-market valuation techniques with respect to estimating the benefits provided by instream flows and the aquatic habitat contingent on these flows should not deter resource managers from using economic analysis as a basic tool for settling instream flow conflicts.

  6. Storm and hurricane disturbances on phosphorus storage within an in-stream wetland

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of wetlands to hold phosphorus (P) makes them and important landscape feature that help to protect water quality. However, their ability to retain P can be affected through hydrologic disturbances caused by both storms and flooding. An animal waste impacted in-stream wetland (ISW) locate...

  7. Dissolved phosphorus retention and release from southeastern USA Coastal Plain in-stream wetlands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the southeastern USA Coastal Plain region, many inland surface water systems will meander through flat or depressional landscape areas prior to discharge into coastal estuaries. Slow water flow through these areas often causes flooding that promotes formation of in-stream wetlands with dense vege...

  8. Frequency analysis of aquatic habitat: a procedure for determining instream flow needs

    SciTech Connect

    Sale, M.J.; Railsback, S.F.; Herricks, E.E.

    1981-01-01

    Minimum flow recommendations can be improved by analyzing the natural habitat variability in lotic environments. Habitat modeling techniques such as the Incremental Methodology can be combined with stream flow records to generate habitat frequency curves that are useful in determining instream flow needs.

  9. Review of mitigation methods for fish passage, instream flows, and water quality

    SciTech Connect

    Railsback, S.F.; Cada, G.F.; Chang, L.H.; Sale, M.J.

    1991-01-01

    Current environmental mitigation practices at nonfederal hydropower projects were analyzed. Information was obtained from project operators on dissolved oxygen (DO) mitigation, instream flows, upstream fish passage facilities, and downstream fish passage facilities. The most common method for DO mitigation is the use of spill flows, which are costly because of lost power generation. DO concentrations are commonly monitored, but biological effects of DO mitigation are not. At many projects, instream flow requirements have been set without reference to formalized methods. About half of the projects with instream flow requirements monitor flow rates, but few monitor fish populations to verify that instream flows are effective. Angled bar racks are the most commonly used downstream fish passage devices and fish ladders are the most commonly used up stream fish passage devices. Fish passage rates or populations have been monitored to verify the effectiveness of passage mitigation at few projects. This analysis is the first phase of an evaluation of the costs, benefits, and effectiveness of mitigation measures. 10 refs., 3 figs.

  10. Riparian shading controls instream spring phytoplankton and benthic algal growth.

    PubMed

    Halliday, S J; Skeffington, R A; Wade, A J; Bowes, M J; Read, D S; Jarvie, H P; Loewenthal, M

    2016-06-15

    Dissolved oxygen (DO) concentrations showed a striking pattern in a multi-year study of the River Enborne, a small river in SE England. In each of three years (2010-2012), maximum DO concentrations were attained in mid-April, preceded by a period of steadily increasing diurnal amplitudes, followed by a steady reduction in both amplitude and concentration. Flow events during the reduction period reduce DO to low concentrations until the following spring. Evidence is presented that this pattern is mainly due to benthic algal growth which is eventually suppressed by the growth of the riparian tree canopy. Nitrate and silicate concentrations are too high to inhibit the growth of either benthic algae or phytoplankton, but phosphate concentrations might have started to reduce growth if the tree canopy development had been delayed. This interpretation is supported by evidence from weekly flow cytometry measurements and analysis of the diurnal, seasonal and annual patterns of nutrient concentrations. As the tree canopy develops, the river switches from an autotrophic to a heterotrophic state. The results support the use of riparian shading to help control algal growth, and highlight the risks of reducing riparian shade. PMID:27192431

  11. Opportunities to protect instream flows and wetland uses of water in Florida

    USGS Publications Warehouse

    Burkardt, Nina

    1990-01-01

    This document combines the efforts of several individuals, agencies, and organizations toward a common objective: the identification, description, and preliminary evaluation of promising opportunities for protecting instream uses of water under existing laws in Florida. this report is intended for the use of State and Federal planning and management personnel who need an overview of potential opportunities for preserving instream flows. It is not intended to replace or challenge the advice of agency counsel, nor is it written to provide legal advice. Instead, it is designed as a guide for the person trying to find his way among sometimes bewildering State statutes and administrative practices. This report is not, and should not be taken as, official policy or prediction of future actions by any agency. It is simply a summary of some potential opportunities for protecting instream uses. Toward these objectives, the U.S. Fish and Wildlife Service, through its Water Resource Analysis Project, contracted in 1977 with R. Dewsnup and D. Jensen to identify available strategies under State and Federal laws, interstate compacts, and water quality laws. A second firm, Enviro Control, Inc., was contracted to evaluate the most promising strategies. The resulting documents reported instream flow strategies for 11 States. These reports have been revised, updated, and combined in a number of new monographs, and the Service has added more States to this service over the years. The discussion of instream flow programs and opportunities for each State is written so that each report can be read independently, with minimal cross-referencing from one State report to another. The opportunities for Florida are summarized in the table.

  12. Historic evidence for a link between riparian vegetation and bank erosion in the context of instream habitat restoration

    NASA Astrophysics Data System (ADS)

    Salant, N.; Baillie, M. B.; Schmidt, J. C.; Intermountain CenterRiver Rehabilitation; Restoration

    2010-12-01

    An analysis of historic aerial photographs of the upper Strawberry River, Utah, demonstrates that rates of lateral bank erosion peaked with the loss of riparian cover during periods of willow removal for livestock grazing. Erosion rates have declined over the past two decades, concurrent with the removal of livestock grazing, modest increases in riparian cover, and the return of natural flows. Contrary to perception, present-day erosion rates are actually lower than pre-disturbance rates. Recent restoration activities to stabilize stream banks were based on the assumption that high erosion rates were contributing excess sediment to the streambed and degrading spawning gravels. However, our results show that while the historic loss of riparian vegetation contributed to an increase in bank erosion rates, bank erosion rates were not high prior to restoration. Furthermore, streambed samples show that the percentage of fine sediment in the substrate is insufficient to have a significant biological impact, supporting the finding that present-day bank erosion rates are not excessive relative to pre-disturbance rates. Current bank stabilization efforts were therefore motivated by a limited understanding of system conditions and history, suggesting that these restoration activities are unnecessary and misconceived. Our results demonstrate the large influence of riparian vegetation on bank erosion and instream habitat, as well as the importance of incorporating system history into restoration design.

  13. The First Hydrology (Geoscience) Degree at a Tribal College or University: Salish Kootenai College

    NASA Astrophysics Data System (ADS)

    Lesser, G.; Berthelote, A. R.

    2010-12-01

    A new Hydrology Degree Program was developed at Salish and Kootenai College in western Montana. This program will begin to address the fact that our nation only awards 20 to 30 Geoscience degrees annually to Native American students. Previously absent from SKC and the other 36 Tribal Colleges or Universities (TCU) Science, Technology, Engineering, and Mathematics (STEM) related programs are specific Geoscience disciplines, particularly those focusing on hydrological and water based sciences. Though 23 TCU’s offer some classes to supplement their environmental science or natural resource programs. This program is timely and essential for addressing the concerns that Native Americans have who maintain sovereignty over approximately 20% of our nation’s fresh water resources which are becoming more stressed each year. The overall objective of this new SKC Hydrology degree program is to produce students who are able to “give voice” to the perspectives of Native peoples on natural resources and particularly water-related issues, including water rights, agriculture, environmental health (related to water), beliefs and spirituality related to water, and sustainability of water resources. It will provide the opportunity for interdisciplinary study in physical, chemical, and biological water resources and their management. Students will gain theoretical, conceptual, computational, and practical knowledge/experiences in quantifying, monitoring, qualifying, and managing today’s water resource challenges with particular emphasis on Tribal lands. Completion of the Associate of Science Degree will provide the student with the necessary skills to work as a hydrology- water quality- or geo-technician within the Reservation area, the U. S. Forest Service, the Environmental Protection Agency, the Bureau of Reclamation, the United States Geological Society, and other earth science disciplines. The Bachelor’s Degree program provides students with a broad-based theoretical

  14. MICA CREEK, FISH CREEK, AND FREEMAN LAKE, IDAHO. STREAM AND LAKE NUTRIENT LOADING FROM BURNED LOGGING SLASH, BONNER AND KOOTENAI COUNTIES. 1989-1990

    EPA Science Inventory

    Three monitoring sites in Bonner and Kootenai Counties, Idaho (17010304) were chosen to give some insight into the question of nutrient contribution from logging slash. The sites were a Class II tributary to Mica Creek, a Class I tributary to Fish Creek, and a wet draw that flow...

  15. Partnership with the Confederated Salish and Kootenai Tribes: Establishing an Advisory Committee for Pharmacogenetic Research

    PubMed Central

    Morales, Chelsea T.; Muzquiz, LeeAnna I.; Howlett, Kevin; Azure, Bernie; Bodnar, Brenda; Finley, Vernon; Incashola, Tony; Mathias, Cheryl; Laukes, Cindi; Beatty, Patrick; Burke, Wylie; Pershouse, Mark A.; Putnam, Elizabeth A.; Trinidad, Susan Brown; James, Rosalina; Woodahl, Erica L.

    2016-01-01

    Background Inclusion of American Indian and Alaska Native (AI/AN) populations in pharmacogenetic research is key if the benefits of pharmacogenetic testing are to reach these communities. Community-based participatory research (CBPR) offers a model to engage these communities in pharmacogenetics. Objectives An academic-community partnership between the University of Montana and the Confederated Salish and Kootenai Tribes (CSKT) was established to engage the community as partners and advisors in pharmacogenetic research. Methods A community advisory committee, the Community Pharmacogenetics Advisory Council (CPAC), was established to ensure community involvement in the research process. To promote bidirectional learning, researchers gave workshops and presentations about pharmacogenetic research to increase research capacity and CPAC members trained researchers in cultural competencies. As part of our commitment to a sustainable relationship, we conducted a self-assessment of the partnership, which included surveys and interviews with CPAC members and researchers. Results Academic and community participants agree that the partnership has promoted a bidirectional exchange of knowledge. Interviews showed positive feedback from the perspectives of both the CPAC and researchers. CPAC members discussed their trust in and support of the partnership as well as having learned more about research processes and pharmacogenetics. Researchers discussed their appreciation of CPAC involvement in the project and guidance the group provided in understanding the CSKT community and culture. Discussion We have created an academic-community partnership to ensure CSKT community input and to share decision-making about pharmacogenetic research. Our CBPR approach may be a model for engaging AI/AN people, and other underserved populations, in genetic research. PMID:27346763

  16. Riparian and in-stream controls on nutrient concentrations and fluxes in a headwater forested stream

    NASA Astrophysics Data System (ADS)

    Bernal, S.; Lupon, A.; Ribot, M.; Sabater, F.; Martí, E.

    2015-03-01

    Headwater streams are recipients of water sources draining through terrestrial ecosystems. At the same time, stream biota can transform and retain nutrients dissolved in stream water. Yet studies considering simultaneously these two sources of variation in stream nutrient chemistry are rare. To fill this gap of knowledge, we analyzed stream water and riparian groundwater concentrations and fluxes as well as in-stream net uptake rates for nitrate (NO3-), ammonium (NH4+), and soluble reactive phosphorus (SRP) along a 3.7 km reach on an annual basis. Chloride concentrations (used as conservative tracer) indicated a strong hydrological connection at the riparian-stream interface. However, stream and riparian groundwater nutrient concentrations showed a moderate to null correlation, suggesting high in-stream biogeochemical processing. In-stream net nutrient uptake (Fsw) was highly variable across contiguous segments and over time, but its temporal variation was not related to the vegetative period of the riparian forest. For NH4+, the occurrence of Fsw > 0 μg N m-1 s-1 (gross uptake > release) was high along the reach, while for NO3-, the occurrence of Fsw < 0 μg N m-1 s-1 (gross uptake < release) increased along the reach. Within segments and dates, Fsw, whether negative or positive, accounted for a median of 6, 18, and 20% of the inputs of NO3-, NH4+, and SRP, respectively. Whole-reach mass balance calculations indicated that in-stream net uptake reduced stream NH4+ flux up to 90%, while the stream acted mostly as a source of NO3- and SRP. During the dormant period, concentrations decreased along the reach for NO3-, but increased for NH4+ and SRP. During the vegetative period, NH4+ decreased, SRP increased, and NO3- showed a U-shaped pattern along the reach. These longitudinal trends resulted from the combination of hydrological mixing with terrestrial inputs and in-stream nutrient processing. Therefore, the assessment of these two sources of variation in stream

  17. Irrigation and Instream Management under Drought Conditions using Probabilistic Constraints

    NASA Astrophysics Data System (ADS)

    Oviedo-Salcedo, D. M.; Cai, X.; Valocchi, A. J.

    2009-12-01

    It is well-known that river-aquifer flux exchange may be an important control on low flow condition in a stream. Moreover, the connections between streams and underlying formations can be spatially variable due to geological heterogeneity and landscape topography. For example, during drought seasons, farming activities may induce critical peak pumping rates to supply irrigation water needs for crops, and this leads to increased concerns about reductions in baseflow and adverse impacts upon riverine ecosystems. Quantitative management of the subsurface water resources is a required key component in this particular human-nature interaction system to evaluate the tradeoffs between irrigation for agriculture and the ecosystems low flow requirements. This work presents an optimization scheme developed upon the systems reliability-based design optimization -SRBDO- analysis, which accounts for prescribed probabilistic constraint evaluation. This approach can provide optimal solutions in the presence of uncertainty with a higher level of confidence. In addition, the proposed methodology quantifies and controls the risk of failure. SRBDO have been developed in the aerospace industry and extensively applied in the field of structural engineering, but has only seen limited application in the field of hydrology. SRBDO uses probability theory to model uncertainty and to determine the probability of failure by solving a mathematical nonlinear programming problem. Furthermore, the reliability-based design optimization provides a complete and detailed insight of the relative importance of each random variable involved in the application, in this case the surface -groundwater coupled system. Importance measures and sensitivity analyses of both, random variables and probability distribution function parameters are integral components of the system reliability analysis. Therefore, with this methodology it is possible to assess the contribution of each uncertain variable on the total

  18. EFFLUENT AND AMBIENT TOXICITY TESTING AND INSTREAM COMMUNITY RESPONSE ON THE OTTAWA RIVER, LIMA, OHIO

    EPA Science Inventory

    The research described in this report had three objectives: (1) determination of effluent and ambient stream toxicity to Ceriodaphnia, fathead minnows, and indigenous species; (2) definition of the response of the biological community to point-source discharges; and (3) evaluatio...

  19. Ground-Water Flow Model for the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    USGS Publications Warehouse

    Hsieh, Paul A.; Barber, Michael E.; Contor, Bryce A.; Hossain, Md. Akram; Johnson, Gary S.; Jones, Joseph L.; Wylie, Allan H.

    2007-01-01

    This report presents a computer model of ground-water flow in the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in Spokane County, Washington, and Bonner and Kootenai Counties, Idaho. The aquifer is the sole source of drinking water for more than 500,000 residents in the area. In response to the concerns about the impacts of increased ground-water withdrawals resulting from recent and projected urban growth, a comprehensive study was initiated by the Idaho Department of Water Resources, the Washington Department of Ecology, and the U.S. Geological Survey to improve the understanding of ground-water flow in the aquifer and of the interaction between ground water and surface water. The ground-water flow model presented in this report is one component of this comprehensive study. The primary purpose of the model is to serve as a tool for analyzing aquifer inflows and outflows, simulating the effects of future changes in ground-water withdrawals from the aquifer, and evaluating aquifer management strategies. The scale of the model and the level of detail are intended for analysis of aquifer-wide water-supply issues. The SVRP aquifer model was developed by the Modeling Team formed within the comprehensive study. The Modeling Team consisted of staff and personnel working under contract with the Idaho Department of Water Resources, personnel working under contract with the Washington Department of Ecology, and staff of the U.S. Geological Survey. To arrive at a final model that has the endorsement of all team members, decisions on modeling approach, methodology, assumptions, and interpretations were reached by consensus. The ground-water flow model MODFLOW-2000 was used to simulate ground-water flow in the SVPR aquifer. The finite-difference model grid consists of 172 rows, 256 columns, and 3 layers. Ground-water flow was simulated from September 1990 through September 2005 using 181 stress periods of 1 month each. The areal extent of the model encompasses an area of

  20. Evolution and application of instream flow methodologies to small hydropower developments: an overview of the issues

    USGS Publications Warehouse

    Trihey, E. Woody; Stalnaker, Clair B.

    1985-01-01

    ethods for evaluating instream flow needs have evolved over the last 30 years resulting in two categories which are defined as “standard-setting” and “incremental”. Standard-setting methodologies refer to those measurement and interpretative techniques designed to generate a flow value(s) which is intended to maintain the fishery at some acceptable level. Incremental methodologies on the other hand are organized and repeatable processes by which: (1) a fishery habitat/streamflow relationship and the hydrology of the stream are transformed into a baseline habitat time series; (2) proposed water management alternatives are quantified and compared with the baseline; and (3) project operating rules are negotiated. A hierarchical approach to small-hydro instream flow analysis is suggested.

  1. In-stream Physical Heterogeneity, Rainfall Aided Flushing, and Discharge on Stream Water Quality.

    PubMed

    Gomes, Pattiyage I A; Wai, Onyx W H

    2015-08-01

    Implications of instream physical heterogeneity, rainfall-aided flushing, and stream discharge on water quality control have been investigated in a headwater stream of a climatic region that has contrasting dry and wet seasons. Dry (low flow) season's physical heterogeneity showed a positive correlation with good water quality. However, in the wet season, physical heterogeneity showed minor or no significance on water quality variations. Furthermore, physical heterogeneity appeared to be more complementary with good water quality subsequent to rainfall events. In many cases stream discharge was a reason for poor water quality. For the dry season, graywater inputs to the stream could be held responsible. In the wet season, it was probably the result of catchment level disturbances (e.g., regulation of ephemeral freshwater paths). Overall, this study revealed the importance of catchment-based approaches on water quality improvement in tandem with in-stream approaches framed on a temporal scale. PMID:26237692

  2. Asotin Creek Instream Habitat Alteration Projects : Habitat Evaluation, Adult and Juvenile Habitat Utilization and Water Temperature Monitoring : 2001 Progress Report.

    SciTech Connect

    Bumgarner, Joseph D.

    2002-01-01

    Asotin Creek originates from a network of deeply incised streams on the slopes of the Blue Mountains of southeastern Washington. The watershed drains an area of 322 square miles that provides a mean annual flow of 74 cfs. The geomorphology of the watershed exerts a strong influence on biologic conditions for fish within the stream. Historic and contemporary land-use practices have had a profound impact on the kind, abundance, and distribution of anadromous salmonids in the watershed. Fish habitat in Asotin Creek and other local streams has been affected by agricultural development, grazing, tilling practices, logging, recreational activities and implementation of flood control structures (Neilson 1950). The Asotin Creek Model Watershed Master Plan was completed in 1994. The plan was developed by a landowner steering committee for the Asotin County Conservation District (ACCD), with technical support from various Federal, State and local entities. Actions identified within the plan to improve the Asotin Creek ecosystem fall into four main categories: (1) Stream and Riparian, (2) Forestland, (3) Rangeland, and (4) Cropland. Specific actions to be carried out within the stream and in the riparian area to improve fish habitat were: (1) create more pools, (2) increase the amount of large organic debris (LOD), (3) increase the riparian buffer zone through tree planting, and (4) increase fencing to limit livestock access. All of these actions, in combination with other activities identified in the Plan, are intended to stabilize the river channel, reduce sediment input, increase the amount of available fish habitat (adult and juvenile) and protect private property. Evaluation work described within this report was to document the success or failure of the program regarding the first two items listed (increasing pools and LOD). Beginning in 1996, the ACCD, with cooperation from local landowners and funding from Bonneville Power Administration began constructing instream

  3. Habitat Suitability Index Models and Instream Flow Suitability Curves: Chum Salmon

    USGS Publications Warehouse

    Hale, Stephen S.; McMahon, Thomas E.; Nelson, Patrick C.

    1985-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model and instream flow suitability curves for the chum salmon (Oncorhynchus keta). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  4. Habitat Suitability Index Models and Instream Flow Suitability Curves: Pink Salmon

    USGS Publications Warehouse

    Raleigh, Robert F.; Nelson, Patrick C.

    1985-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model and instream flow suitability curves for the pink salmon (Oncorhynchus gorbuscha). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  5. Habitat Suitability Index Models and Instream Flow Suitability Curves: Redbreast Sunfish

    USGS Publications Warehouse

    Aho, John M.; Anderson, Charles S.; Terrell, James W.

    1986-01-01

    A review and synthesis of existing information were used to develop habitat suitability index models and instream flow suitability curves for the redbreast sunfish (Lepomis auritus). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  6. Habitat Suitability Index Models and Instream Flow Suitability Curves: Shortnose Sturgeon

    USGS Publications Warehouse

    Crance, Johnie H.

    1986-01-01

    A review and synthesis of existing information were used to develop habitat suitability index models and instream flow suitability curves for the shortnose sturgeon (Acipenser brevirostrum). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  7. Habitat Suitability Index Models and Instream Flow Suitability Curves: Arctic Grayling Riverine Populations

    USGS Publications Warehouse

    Hubert, Wayne A.; Helzner, Rhonda S.; Lee, Lawrence A.; Nelson, Patrick C.

    1985-01-01

    A review and synthesis of existing information were used to develop a Habitat Suitability Index (HSI) model and instream flow suitability curves for Arctic grayling (Thymallus arcticus) riverine populations. The model consolidates habitat use information into a framework appropriate for field application, and is sclaed to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  8. Habitat Suitability Index Models and Instream Flow Suitability Curves: Gizzard Shad

    USGS Publications Warehouse

    Williamson, Kathryn L.; Nelson, Patrick C.

    1985-01-01

    A review and synthesis of existing information were used to develop habitat suitability index models and instream flow suitability curves for the gizzard shad (Dorosoma cepedianum). The model consolidates habitat use information into a framework appropriate for field application, and is scaled to produce an index between 0.0 (unsuitable habitat) to 1.0 (optimum habitat). HSI models are designed to be used with Habitat Evaluation Procedures previously developed by the U.S. Fish and Wildlife Service.

  9. Habitat Suitability Index Models and Instream Flow Suitability Curves: Inland Stocks of Striped Bass

    USGS Publications Warehouse

    Crance, Johnie H.

    1984-01-01

    The Habitat Suitability Index (HSI) models and instream flow Suitability Index (SI) presented in this publication aid in identifying important variables that determine the quality of striped bass habitat. Facts, ideas, and opinions obtained from published and unpublished reports, a Delphi panel of 18 striped bass experts/authorities, and the Striped Bass Committee, Southern Division, American Fisheries Society, are synthesized and presented in a format that can be used for habitat impact assessment and development of management alternatives.

  10. Temporal dynamics between cattle in-stream presence and suspended solids in a headwater catchment.

    PubMed

    Terry, Julie A; McW H Benskin, Clare; Eastoe, Emma F; Haygarth, Philip M

    2014-07-01

    Cattle in-stream activity is potentially an important contributor to water pollution from agriculture. Here we present research on the physical movements of cattle within a stream on suspended solid concentrations (SSC). This study used camera surveillance to monitor the in-stream activity of dairy cattle in an unfenced reach over a four-month period. Results were compared against high-resolution SSC data. Over the days that cattle grazed the field, 57.9% of the instances when SSC crossed the 25 mg l(-1) Freshwater Fish Directive guideline threshold can be attributed to cattle presence in the stream. Flow was the main driver of total sediments transported over the study period, and no relationship was found between SSC and the absolute number of cattle feet in the water. Hysteresis analysis indicated a 'first-flush' of local sediments rapidly mobilised during the non-cattle related SSC events, a result of cattle proximity to channel margins. Results demonstrate a temporal lag between cattle in-stream presence and a critical amount of their contribution to sediment load, and that monitoring only instantaneously with cattle activity may lead to underestimation of their pollution impact. PMID:24522791

  11. Instream sand and gravel mining: Environmental issues and regulatory process in the United States

    USGS Publications Warehouse

    Meador, M.R.; Layher, A.O.

    1998-01-01

    Sand and gravel are widely used throughout the U.S. construction industry, but their extraction can significantly affect the physical, chemical, and biological characteristics of mined streams. Fisheries biologists often find themselves involved in the complex environmental and regulatory issues related to instream sand and gravel mining. This paper provides an overview of information presented in a symposium held at the 1997 midyear meeting of the Southern Division of the American Fisheries Society in San Antonio, Texas, to discuss environmental issues and regulatory procedures related to instream mining. Conclusions from the symposium suggest that complex physicochemical and biotic responses to disturbance such as channel incision and alteration of riparian vegetation ultimately determine the effects of instream mining. An understanding of geomorphic processes can provide insight into the effects of mining operations on stream function, and multidisciplinary empirical studies are needed to determine the relative effects of mining versus other natural and human-induced stream alterations. Mining regulations often result in a confusing regulatory process complicated, for example, by the role of the U.S. Army Corps of Engineers, which has undergone numerous changes and remains unclear. Dialogue among scientists, miners, and regulators can provide an important first step toward developing a plan that integrates biology and politics to protect aquatic resources.

  12. Watershed structure, stream network geometry, and kinetic influences on instream nutrient retention

    NASA Astrophysics Data System (ADS)

    Mallard, J. M.; McGlynn, B. L.; Covino, T. P.; Bergstrom, A.

    2011-12-01

    Stream network nutrient dynamics are a function of both physical and biological processes. Stream water and associated nutrients are exchanged with groundwater while instream nutrients can also be retained by biological processes that are kinetically controlled. To date the integration of these physical and biological processes at the reach and network scales have been limited. However, watershed and stream network-scale assessment of where and to what degree groundwater surface water exchange (hydrologic turnover), concentration-variable biological uptake, and the interaction between the two modify stream water nutrient concentrations is critical for understanding basic watershed hydrology and biogeochemistry. To address this challenge, we developed an empirically-based network scale model to simulate hydrologic turnover and concentration-dependent nutrient uptake kinetics. Exchange and uptake parameters were determined using conservative and nutrient tracer addition experiments in the Bull Trout Watershed, central Idaho, USA. Our model allowed us to examine the interacting roles of physical and biological drivers of instream nutrient dynamics. We found that the interaction of hydrologic turnover and concentration-variable uptake combined to modify and subsequently stabilize instream concentrations, with specific concentrations dependent on the magnitude of hydrologic turnover, groundwater concentrations, and the shape of stream nutrient uptake kinetic curves.

  13. Negligible in-stream processing of dissolved organic matter in low order boreal streams

    NASA Astrophysics Data System (ADS)

    Kothawala, Dolly; Ji, Xing; Laudon, Hjalmar; Ågren, Anneli; Futter, Martyn; Köhler, Stephan; Tranvik, Lars

    2016-04-01

    Low order boreal streams have been considered to be reactive interfaces where dissolved organic matter (DOM) enters inland waters from the surrounding catchment soils. Disentangling the relative influence of key environmental factors suspected to influence stream water DOM composition is highly relevant for predicting the reactivity, and fate of terrestrial DOM. Here, we examined changes to DOM composition using optical approaches from 17 boreal streams, ranging from first to fourth order, over 14 months. We identified two specific fluorescing components, which expressed either a clear mire-wetland or forest signature, providing distinct molecular markers of land cover that is typical of the boreal ecozone. In fact, land cover alone explained 49% of the variability in stream DOM composition. In contrast, seasonal fluctuations in hydrology only contributed to minor shifts (8%) in DOM composition. Perhaps most intriguingly, in-stream transformations to DOM composition were undetectable, suggesting that the extent of in-stream processing was negligible. These findings suggest that low order boreal streams act as passive pipes rather than active reactors. Ultimately, we find that that in-stream processing of DOM was restricted by water residence times (less than 2 days). In summary, these results now leave us better equipped to predict where in the landscape, and when during the year, key DOM transformations may occur within the aquatic conduit.

  14. Assessing possible thermal rearing restrictions for juvenile coho salmon (Oncorhynchus kisutch) through thermal infrared imaging and in-stream monitoring, Redwood Creek, California

    USGS Publications Warehouse

    Madej, M.A.; Currens, C.; Ozaki, V.; Yee, J.; Anderson, D.G.

    2006-01-01

    We quantified patterns in stream temperature in a northern coastal California river using thermal infrared (TIR) imaging and in-stream monitoring and related temperature patterns to the historical and present distributions of juvenile coho salmon (Oncorhynchus kisutch). In Redwood Creek, California, water temperature increased from the headwaters to about 60 km downstream, then gradually decreased over the next 40 km as the river approaches the Pacific Ocean. Despite the lack of fish migration barriers, juvenile coho are currently only observed in the downstream-most 20 km, whereas historically they were found in 90 km of river channel. Maximum daily temperatures and duration of elevated stream temperatures were not significantly different in the headwater and downstream reaches but were significantly higher in the 50 km long intervening reach, where maximum weekly maximum temperatures ranged from 23 to 27??C. An increase in stream temperatures in the middle basin during the last three decades as a result of channel aggradation, widening, and the removal of large riparian conifers may play an important role in restricting juvenile coho to one-fifth of their historical range. ?? 2006 NRC.

  15. Instream water use in the United States: water laws and methods for determining flow requirements

    USGS Publications Warehouse

    Lamb, Berton L.; Doerksen, Harvey R.

    1987-01-01

    Water use generally is divided into two primary classes - offstream use and instream use. In offstream use, sometimes called out-of-stream or diversionary use, water is withdrawn (diverted) from a stream or aquifer and transported to the place of use. Examples are irrigated agriculture, municipal water supply, and industrial use. Each of these offstream uses, which decreases the volume of water available downstream from the point of diversion, is discussed in previous articles in this volume. Instream use, which generally does not diminish the flow downstream from its point of use, and its importance are described in this article. One of the earliest instream uses of water in the United States was to turn the water wheels that powered much of the Nation's industry in the 18th and 19th centuries. Although a small volume of water might have been diverted to a mill near streamside, that water usually was returned to the stream near the point of diversion and, thus, the flow was not diminished downstream from the mill. Over time, the generation of hydroelectric power replaced mill wheels as a means of converting water flow into energy. Since the 1920's, the generation of hydroelectric power increasingly has become a major instream use of water. By 1985, more than 3 billion acre-feet of water (3,050,000 million gallons per day) was used annually for hydropower generation (Solley and others, 1988, p. 45)-enough water to cover the State of Colorado to a depth of 51 feet. Navigation is another instream use with a long history. The Lewis and Clark expedition journals and many of Mark Twain's novels illustrate the extent to which the Nation originally depended on adequate streamfiows for basic transportation. Navigation in the 1980's is still considered to be an instream use; however, it often is based upon a stream system that has been modified greatly through channelization, diking, and construction of dams and locks. The present (1987) inland water navigation system in

  16. Instream wood in a steep headwater channel: geomorphic significance of large and small wood

    NASA Astrophysics Data System (ADS)

    Galia, Tomáš; Šilhán, Karel; Ruiz-Villanueva, Virginia; Tichavský, Radek

    2016-04-01

    Besides the well-known significance of large wood (LW), also small woody pieces (SW; here defined as pieces with dimensions at least 0.5 m length and 0.05 m diameter), can play an important role in steep narrow headwaters. We inventoried instream wood in the 0.4 km long Mazák headwater channel, Moravskoslezské Beskydy Mts, Czech Republic (2instream wood was 90 LWs and 199 SWs. In addition, dendrogeomorphic dating of 36 LWs and 17 SWs was performed to obtain residence time of local instream wood and to provide some insights into its mobility. Practically all investigated pieces were European beeches (Fagus sylvatica L.); only two pieces were Norway spruces (Picea abies (L.) Karst.). First results showed an increase in the number of LWs in channel-reaches confined by the steepest adjacent hillslopes (especially at 0.15-0.20 km). Increasing downstream amount of SW most likely reflected transport processes in the stream, and the later deposition of SWs on the lowest channel gradients. Also LWs and SWs in the downstream channel-reaches were more decayed than wood presented in the upper reaches. The orientation of instream wood was connected with its length and stability, and LWs longer than 5 m were usually attached to adjacent hillslopes. Pieces longer than 2 m, which were unattached or were somehow stabilized in the channel bed, had often orientation of 0° or 337°. LWs were mostly unattached in the upstream channel-reaches, while often stabilized by adjacent hillslopes in the middle part. At 0.05-0.10 km, there were also many logs stabilized by

  17. Is in-stream macrophyte growth predictable and what are its impacts on channel-averaged flow characteristics?

    NASA Astrophysics Data System (ADS)

    Jordan, David N.; Thomas, Robert E.; Keevil, Gareth M.; Parsons, Daniel R.; Hardy, Richard J.

    2016-04-01

    Understanding how the growth of aquatic vegetation impacts stage-discharge coupling is vital for river management planning. This study presents an annual record of monthly spatial distribution surveys of the in-stream macrophyte Ranunculus penicillatus coupled with channel form and flow velocity measurements, within a 50 m-long reach of a gravel-bed river. Whereas stage has varied by up to 0.4 m, there has been little change in channel form over the monitoring period (ongoing since 23/07/2014). Macrophyte growth continued from the start of the monitoring period until October 2014 when mean patch area was 6.74 m2, and then decreased throughout a decay phase until January 2015 when mean patch area was 1.12 m2. There was a 75.2% loss of macrophyte surface area between October 2014 and January 2015. The largest patches that remained in January 2015 continued to decay until February. Conversely, new macrophyte patches also began to recolonize the channel during this time. To our knowledge, this is the first evidence of a transition period during which aquatic vegetation is in both decay and recolonization phases simultaneously. In total 69% of patches present in January exhibited regrowth without further decay to form a base for recolonization. Therefore, the spatial distribution of macrophyte patches could be determined to be somewhat persistent. Despite this, due to several different growth factors, there are recognisable differences in both macrophyte patch shape and distribution when comparing data from July 2014 and July 2015, emphasising the unpredictability of macrophyte growth. The decay period of the Ranunculus p. coincided with seasonal high discharges in this catchment. Discharge remained high from January until March 2015, but then began to decrease, reflecting annual peaks in historical records for the study area. Large discharge variations were not matched by a large stage range. Displacement of water by vegetation growth maintained the stage height when

  18. Nature of flow and turbulence structure around an in-stream vertical plate in a shallow channel and the implications for sediment erosion

    NASA Astrophysics Data System (ADS)

    Kirkil, Gokhan; Constantinescu, George

    2009-06-01

    Detailed knowledge of the dynamics of large-scale turbulence structures is needed to understand the geomorphodynamic processes around in-stream obstacles present in rivers. Detached Eddy Simulation is used to study the flow past a high-aspect-ratio rectangular cylinder (plate) mounted on a flat-bed relatively shallow channel at a channel Reynolds number of 2.4 × 105. Similar to other flows past surface-mounted bluff bodies, the large amplification of the turbulence inside the horseshoe vortex system is because the core of the main necklace vortex is subject to large-scale bimodal oscillations. The presence of a sharp edge at the flanks of the obstruction fixes the position of the flow separation at all depths and induces the formation and shedding of very strong wake rollers over the whole channel depth. Compared with the case of a circular cylinder where the intensity of the rollers decays significantly in the near-bed region because the incoming flow velocity is not sufficient to force the wake to transition from subcritical to supercritical regime, in the case of a high-aspect-ratio rectangular cylinder the passage of the rollers was found to induce high bed-shear stresses at large distances (6-8 D) behind the obstruction. Also, the nondimensional values of the pressure root-mean-square fluctuations at the bed were found to be about 1 order of magnitude higher than the ones predicted for circular cylinders. Overall, this shows that the shape of the in-stream obstruction can greatly modify the dynamics of the large-scale coherent structures, the nature of their interactions, and ultimately, their capability to entrain and transport sediment particles and the speed at which the scour process evolves during its initial stages.

  19. Application of the SPARROW watershed model to describe nutrient sources and transport in the Missouri River Basin

    USGS Publications Warehouse

    Brown, Juliane B.

    2011-01-01

    Spatially Referenced Regression On Watershed attributes (SPARROW) models were developed to provide spatially explicit information on local and regional total nitrogen and total phosphorus sources and transport in the Missouri River Basin. Model results provide estimates of the relative contributions from various nutrient sources and delivery factors. The models also describe instream decay and reservoir and lake attenuation of nutrients. Results aid in the prioritization of nutrient-reduction strategies by identifying major sources and delivery factors contributing to instream nutrient loads and stream reaches carrying the largest nutrient loads in the Missouri River Basin.

  20. In-Stream Metabolism Differences Between Glacial and Non-Glacial Streams in Southeast Alaska

    NASA Astrophysics Data System (ADS)

    Nassry, M. Q.; Scott, D.; Vermilyea, A.; Hood, E. W.

    2011-12-01

    As glacier ice gives way to successional vegetation, streams located in glacier-containing watersheds receive decreased contributions from glacial meltwater and increased contributions from terrestrial landscapes. These changes result in increased water temperature, increased shading from vegetation, and changes in the composition and concentration of organic matter delivered to the stream from the landscape. Organic matter and source water contributions from the surrounding landscape can influence in-stream metabolism through both biotic and abiotic factors. The impact of these landscape controls on the in-stream cycling of carbon and nutrients is not well understood in glacial systems. Here, we are focusing on understanding the differences in processing of organic carbon by heterotrophic microbial communities between glacial and non-glacial streams. In this study, the metabolism in streams receiving glacial meltwater was compared to the metabolism of streams located in nearby non-glaciated watersheds to determine the effect of changing inputs of glacial meltwater on stream metabolism. In particular, we tested the hypothesis that decreased inputs of glacier meltwater will result in increased net ecosystem metabolism (NEM) in coastal streams in southeast Alaska. Dissolved oxygen and carbon dioxide measurements as well as temperature and PAR values were collected at 10-minute increments at each study site for 4 days. This data was used to generate diel curves to establish community respiration (CR24) and gross primary production (GPP) estimates. Lab-scale mesocosms containing sediment and stream water from each end-member stream were used to quantify the relative importance of glacial contributions to respiration rates in the surface sediments. Ultimately, this will provide a better understanding of the changing in-stream processing capabilities in watersheds affected by land cover changes resulting from glacial recession.

  1. Modeling hyporheic exchange and in-stream transport with time-varying transit time distributions

    NASA Astrophysics Data System (ADS)

    Ball, A.; Harman, C. J.; Ward, A. S.

    2014-12-01

    Transit time distributions (TTD) are used to understand in-stream transport and exchange with the hyporheic zone by quantifying the probability of water (and of dissolved material) taking time T to traverse the stream reach control volume. However, many studies using this method assume a TTD that is time-invariant, despite the time-variability of the streamflow. Others assume that storage is 'randomly sampled' or 'well-mixed' with a fixed volume or fixed exchange rate. Here we present a formulation for a time-variable TTD that relaxes both the time-invariant and 'randomly sampled' assumptions and only requires a few parameters. The framework is applied to transient storage, representing some combination of in-stream and hyporheic storage, along a stream reach. This approach does not assume that hyporheic and dead-zone storage is fixed or temporally-invariant, and allows for these stores to be sampled in more physically representative ways determined by the system itself. Instead of using probability distributions of age, probability distributions of storage (ranked by age) called Ω functions are used to describe how the off-stream storage is sampled in the outflow. Here the Ω function approach is used to describe hyporheic exchange during diurnal fluctuations in streamflow in a gaining reach of the H.J. Andrews Experimental Forest. The breakthrough curves of salt slugs injected four hours apart over a 28-hour period show a systematic variation in transit time distribution. This new approach allows us to relate these salt slug TTDs to a corresponding time-variation in the Ω function, which can then be related to changes in in-stream storage and hyporheic zone mobilization under varying flow conditions. Thus, we can gain insights into how channel storage and hyporheic exchange are changing through time without having to specify difficult to measure or unmeasurable quantities of our system, such as total storage.

  2. Diversion colitis: a trigger for ulcerative colitis in the in-stream colon?

    PubMed Central

    Lim, A; Langmead, F; Feakins, R; Rampton, D

    1999-01-01

    The aetiology of ulcerative colitis is unknown. Two patients without pre-existing inflammatory bowel disease in whom end colostomy for faecal incontinence was complicated by diversion colitis in the defunctioned rectosigmoid colon, are described. In both instances, colitis with the clinical, colonoscopic, and microscopic features of ulcerative colitis developed about a year later in the previously normal in-stream colon proximal to the colostomy. These cases suggest that diversion colitis may be a risk factor for ulcerative colitis in predisposed individuals and that ulcerative colitis can be triggered by anatomically discontinuous inflammation elsewhere in the large intestine. 

 Keywords: ulcerative colitis, diversion colitis PMID:9895391

  3. Habitat Suitability Index Models and Instream Flow Suitability Curves: Brown Trout

    USGS Publications Warehouse

    Raleigh, Robert F.; Zuckerman, Laurence D.; Nelson, Patrick C.

    1984-01-01

    The Habitat Suitability Index (HSI) models presented in this publication aid in identifying important habitat variables for brown trout (Salmo trutto Linneas). Facts, ideas, and concepts obtained from the research literature and expert reviews are synthesized and presented in a format that can be used for impact assessment. A brief discussion of the appropriateness of using selected Suitability Index (SI) curves from HSI models as a component of the Instream Flow Incremental Methodology (IFIM) is provided. Additional SI curves, developed specifically for analysis of brown trout habitat with IFIM, also are presented.

  4. Habitat Suitability Index Models and Instream Flow Suitability Curves: White Bass

    USGS Publications Warehouse

    Hamilton, Karen; Nelson, Patrick C.

    1984-01-01

    Habitat characteristics important to white bass (Morone chrysops) are reviewed in this report using two techniques developed by the U.S. Fish and Wildlife Service, the Habitat Evaluation Procedures (HEP) and the Instream Flow Incremental Methodology (IFIM). The Suitability Index (SI) curves and graphs and Habitat Suitability Index (HSI) models developed in this report are based primarily on a synthesis of information obtained from a review of literature concerning the habitat requirements of the species. A discussion of IFIM and white bass SI curves available for use with IFIM is included.

  5. Modeling In-stream Tidal Energy Extraction and Its Potential Environmental Impacts

    SciTech Connect

    Yang, Zhaoqing; Wang, Taiping; Copping, Andrea; Geerlofs, Simon H.

    2014-09-30

    In recent years, there has been growing interest in harnessing in-stream tidal energy in response to concerns of increasing energy demand and to mitigate climate change impacts. While many studies have been conducted to assess and map tidal energy resources, efforts for quantifying the associated potential environmental impacts have been limited. This paper presents the development of a tidal turbine module within a three-dimensional unstructured-grid coastal ocean model and its application for assessing the potential environmental impacts associated with tidal energy extraction. The model is used to investigate in-stream tidal energy extraction and associated impacts on estuarine hydrodynamic and biological processes in a tidally dominant estuary. A series of numerical experiments with varying numbers and configurations of turbines installed in an idealized estuary were carried out to assess the changes in the hydrodynamics and biological processes due to tidal energy extraction. Model results indicated that a large number of turbines are required to extract the maximum tidal energy and cause significant reduction of the volume flux. Preliminary model results also indicate that extraction of tidal energy increases vertical mixing and decreases flushing rate in a stratified estuary. The tidal turbine model was applied to simulate tidal energy extraction in Puget Sound, a large fjord-like estuary in the Pacific Northwest coast.

  6. In-stream net ecosystem metabolism differences across a glacial coverage gradient in southeast Alaska

    NASA Astrophysics Data System (ADS)

    Nassry, M. Q.; Hood, E. W.; Scott, D.; Vermilyea, A.

    2010-12-01

    As glacier ice gives way to successional vegetation, streams located in glacier-containing watersheds receive decreased contributions from glacial meltwater and increased contributions from terrestrial landscapes. Aquatic communities in streams receiving varying amounts of glacial meltwater were compared during this research to determine the effect of changing inputs of glacial meltwater on net ecosystem metabolism (NEM). In particular, we tested the hypothesis that decreased inputs of glacier meltwater will result in increased NEM in coastal streams in southeast Alaska. Dissolved oxygen and temperature measurements were collected at 5-minute increments using multi-sensor probes for 48 hours at four study streams. Additionally, discharge and velocity measurements were collected along with surface water samples during each of three replicate study periods at all four streams. Single station diel curves of in-stream oxygen concentration and water temperature changes were generated to establish community respiration (CR24) and gross primary production (GPP) values. The study watersheds, all of which are adjacent to the Juneau Icefield, range in area from 23-158 km2 and in watershed glacial coverage from 0-40%. This research will provide new insights into how changes in runoff from rapidly thinning and receding glaciers in southeast Alaska will affect aquatic community metabolism in downstream ecosystems. Ultimately, this will provide a better understanding of the changing in-stream processing capabilities in watersheds affected by land cover changes resulting from glacial recession.

  7. Technical Note: Alternative in-stream denitrification equation for the INCA-N model

    NASA Astrophysics Data System (ADS)

    Etheridge, J. R.; Birgand, F.; Burchell, M. R., II; Lepistö, A.; Rankinen, K.; Granlund, K.

    2014-04-01

    The Integrated Catchment model for Nitrogen (INCA-N) is a semi-distributed, process based model that has been used to model the impacts of land use, climate, and land management changes on hydrology and nitrogen loading. An observed problem with the INCA-N model is reproducing low nitrate-nitrogen concentrations during the summer growing season in some catchments. In this study, the current equation used to simulate the rate of in-stream denitrification was replaced with an alternate equation that uses a mass transfer coefficient and the stream bottom area. The results of simulating in-stream denitrification using the two different methods were compared for a one year simulation period of the Yläneenjoki catchment in Finland. The alternate equation (Nash-Sutcliffe efficiency = 0.61) simulated concentrations during the periods of the growing season with the lowest flow that were closer to the observed concentrations than the current equation (Nash-Sutcliffe efficiency = 0.60), but the results were mixed during other portions of the year. The results of the calibration and validation of the model using the two equations show that the alternate equation will simulate lower nitrate-nitrogen concentrations during the growing season when compared to the current equation, but promote investigation into other errors in the model that may be causing inaccuracies in the modeled concentrations.

  8. Technical Note: Alternative in-stream denitrification equation for the INCA-N model

    NASA Astrophysics Data System (ADS)

    Etheridge, J. R.; Birgand, F.; Burchell, M. R., II; Lepistö, A.; Rankinen, K.; Granlund, K.

    2013-11-01

    The Integrated Catchment model for Nitrogen (INCA-N) is a semi-distributed, process based model that has been used to model the impacts of land use, climate, and land management changes on hydrology and nitrogen loading. An observed problem with the INCA-N model is reproducing low nitrate-nitrogen concentrations during the summer growing season in some catchments. In this study, the current equation used to simulate the rate of in-stream denitrification was replaced with an alternate equation that uses a mass transfer coefficient and the stream bottom area. The results of simulating in-stream denitrification using the two different methods were compared for a 9 month simulation period of the Yläneenjoki catchment in Finland. The alternate equation (Nash-Sutcliffe efficiency = 0.59) simulated concentrations during the growing season that were closer to the observed concentrations than the current equation (Nash-Sutcliffe efficiency = 0.47). The results of this work promote the incorporation of the alternate equation into the model for further testing.

  9. Columbia River System Operation Review : Final Environmental Impact Statement, Main Report Exhibits.

    SciTech Connect

    Columbia River System Operation Review

    1995-11-01

    This Volume is a part of the Final Environmental Impact Statement (EIS) for the Columbia River System. This volume contains technical exhibits of cultural resources and commentary on the (System Operation Review) SOR process. The Confederated Tribes of the Umatilla Indian Reservation comment is the majority of the material in the volume, in the Consultation Plan, Identification of trust resources; Criteria for the selection of a System Operating Strategy; comment on rights protection and implementation of Federal Trust responsibility; analysis of the draft EIS. Comment by other Native American Tribes and groups is also included: Confederated Tribes of the Colville Reservation; Kootenai Tribe of Idaho; Spokane Tribe of Indians; Coeur d` Alene tribe.

  10. Chemical and isotopic evidence of nitrogen transformation in the Mississippi River, 1997-98

    USGS Publications Warehouse

    Battaglin, W.A.; Kendall, C.; Chang, Cecily C.Y.; Silva, S.R.; Campbell, D.H.

    2001-01-01

    Nitrate (NO3) and other nutrients discharged by the Mississippi River are suspected of causing a zone of depleted dissolved oxygen (hypoxic zone) in the Gulf of Mexico each summer. The hypoxic zone may have an adverse affect on aquatic life and commercial fisheries. The amount of NO3 delivered by the Mississippi River to the Gulf of Mexico is well documented, but the relative contributions of different sources of NO3, and the magnitude of subsequent in-stream transformations of NO3, are not well understood. Forty-two water samples collected in 1997 and 1998 at eight stations located either on the Mississippi River or its major tributaries were analysed for NO3, total nitrogen (N), atrazine, chloride concentrations and NO3 stable isotopes (??15N and ??18O). These data are used to assess the magnitude and nature of in-stream N transformation and to determine if the ??15N and ??18O of NO3 provide information about NO3 sources and transformation processes in a large river system (drainage area ??? 2 900 000 km2) that would otherwise be unavailable using concentration and discharge data alone. Results from 42 samples indicate that the ??15N and ??18O ratios between sites on the Mississippi River and its tributaries are somewhat distinctive, and vary with season and discharge rate. Of particular interest are two nearly Lagrangian sample sets, in which samples from the Mississippi River at St Francisville, LA, are compared with samples collected from the Ohio River at Grand Chain, II, and the Mississippi River at Thebes, IL. In both Lagrangian sets, mass-balance calculations indicate only a small amount of in-stream N loss. The stable isotope data from the samples suggest that in-stream N assimilation and not denitrification accounts for most of the N loss in the lower Mississippi River during the spring and early summer months.

  11. Preliminary assessment of channel stability and bed-material transport in the Coquille River basin, southwestern Oregon

    USGS Publications Warehouse

    Jones, Krista L.; O'Connor, Jim E.; Keith, Mackenzie K.; Mangano, Joseph F.; Wallick, J. Rose

    2012-01-01

    This report summarizes a preliminary study of bed-material transport, vertical and lateral channel changes, and existing datasets for the Coquille River basin, which encompasses 2,745 km2 (square kilometers) of the southwestern Oregon coast. This study, conducted to inform permitting decisions regarding instream gravel mining, revealed that:

  12. MODELING THE DISTRIBUTION OF NONPOINT NITROGEN SOURCES AND SINKS IN THE NEUSE RIVER BASIN OF NORTH CAROLINA, USA

    EPA Science Inventory

    This study quantified nonpoint nitrogen (N) sources and sinks across the 14,582 km2 Neuse River Basin (NRB) located in North Carolina, to provide a tabular database to initialize in-stream N decay models and graphic overlay products for the development of management approaches to...

  13. Did the pre-1980 use of in-stream structures improve streams? A reanalysis of historical data.

    PubMed

    Thompson, Douglas M

    2006-04-01

    In the 1930s, after only three years of scientific investigation at the University of Michigan Institute for Fisheries Research, cheap labor and government-sponsored conservation projects spearheaded by the Civilian Conservation Corps allowed the widespread adoption of in-stream structures throughout the United States. From the 1940s through the 1970s, designs of in-stream structures remained essentially unchanged, and their use continued. Despite a large investment in the construction of in-stream structures over these four decades, very few studies were undertaken to evaluate the impacts of the structures on the channel and its aquatic populations. The studies that were undertaken to evaluate the impact of the structures were often flawed. The use of habitat structures became an "accepted practice," however, and early evaluation studies were used as proof that the structures were beneficial to aquatic organisms. A review of the literature reveals that, despite published claims to the contrary, little evidence of the successful use of in-stream structures to improve fish populations exists prior to 1980. A total of 79 publications were checked, and 215 statistical analyses were performed. Only seven analyses provide evidence for a benefit of structures on fish populations, and five of these analyses are suspect because data were misclassified by the original authors. Many of the changes in population measures reported in early publications appear to result from changes in fishing pressure that often accompanied channel modifications. Modern evaluations of channel-restoration projects must consider the influence of fishing pressure to ensure that efforts to improve fish habitat achieve the benefits intended. My statistical results show that the traditional use of in-stream structures for channel restoration design does not ensure demonstrable benefits for fish communities, and their ability to increase fish populations should not be presumed. PMID:16711062

  14. Grid-connected in-stream hydroelectric generation based on the doubly fed induction machine

    NASA Astrophysics Data System (ADS)

    Lenberg, Timothy J.

    Within the United States, there is a growing demand for new environmentally friendly power generation. This has led to a surge in wind turbine development. Unfortunately, wind is not a stable prime mover, but water is. Why not apply the advances made for wind to in-stream hydroelectric generation? One important advancement is the creation of the Doubly Fed Induction Machine (DFIM). This thesis covers the application of a gearless DFIM topology for hydrokinetic generation. After providing background, this thesis presents many of the options available for the mechanical portion of the design. A mechanical turbine is then specified. Next, a method is presented for designing a DFIM including the actual design for this application. In Chapter 4, a simulation model of the system is presented, complete with a control system that maximizes power generation based on water speed. This section then goes on to present simulation results demonstrating proper operation.

  15. Habitat Suitability Index Models and Instream Flow Suitability Curves: Spotted Bass

    USGS Publications Warehouse

    McMahon, Thomas E.; Gebhart, Glen; Maughan, O. Eugene; Nelson, Patrick C.

    1984-01-01

    The Habitat Suitability Index (HSI) models presented in this publication aid in identifying habitat variable important to the growth and survival of spotted bass (Micropterus punctulatus). Facts, ideas, and concepts obtained from the research literature and expert reviews are synthesized and presented in a format that can be used for impact assessment. The models are hypotheses of species-habitat relationships, and model users should recognize that the degree of veracity of the HSI model, SI graphs, and assumptions will vary according to geographical area and the extent of the data base for individual variables. A brief discussion of selected Suitability Index (SI) curves as used in the Instream Flow Incremental Methodology (IFIM), and a discussion of SI curves available for the IFIM analysis of Spotted bass habitat are also included.

  16. In-stream attenuation of neuro-active pharmaceuticals and their metabolites

    USGS Publications Warehouse

    Writer, Jeffrey; Antweiler, Ronald C.; Ferrar, Imma; Ryan, Joseph N.; Thurman, Michael

    2013-01-01

    In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and N-desmethyl citalopram were the most rapidly attenuated compounds (t1/2 = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (t1/2 = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, O-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments.

  17. In-stream attenuation of neuro-active pharmaceuticals and their metabolites.

    PubMed

    Writer, Jeffrey H; Antweiler, Ronald C; Ferrer, Imma; Ryan, Joseph N; Thurman, E Michael

    2013-09-01

    In-stream attenuation was determined for 14 neuro-active pharmaceuticals and associated metabolites. Lagrangian sampling, which follows a parcel of water as it moves downstream, was used to link hydrological and chemical transformation processes. Wastewater loading of neuro-active compounds varied considerably over a span of several hours, and thus a sampling regime was used to verify that the Lagrangian parcel was being sampled and a mechanism was developed to correct measured concentrations if it was not. In-stream attenuation over the 5.4-km evaluated reach could be modeled as pseudo-first-order decay for 11 of the 14 evaluated neuro-active pharmaceutical compounds, illustrating the capacity of streams to reduce conveyance of neuro-active compounds downstream. Fluoxetine and N-desmethyl citalopram were the most rapidly attenuated compounds (t1/2 = 3.6 ± 0.3 h, 4.0 ± 0.2 h, respectively). Lamotrigine, 10,11,-dihydro-10,11,-dihydroxy-carbamazepine, and carbamazepine were the most persistent (t1/2 = 12 ± 2.0 h, 12 ± 2.6 h, 21 ± 4.5 h, respectively). Parent compounds (e.g., buproprion, carbamazepine, lamotrigine) generally were more persistent relative to their metabolites. Several compounds (citalopram, venlafaxine, O-desmethyl-venlafaxine) were not attenuated. It was postulated that the primary mechanism of removal for these compounds was interaction with bed sediments and stream biofilms, based on measured concentrations in stream biofilms and a column experiment using stream sediments. PMID:23952127

  18. Instream Wood Loads and Channel Complexity in Headwater Streams Under Alternative Stable States

    NASA Astrophysics Data System (ADS)

    Livers, B.; Wohl, E.

    2014-12-01

    Channel morphology and irregularities in stream boundaries can create zones of flow separation, where lower velocities trap fine sediment and organic matter and increase opportunities for nutrient processing and biological uptake. This effect is most pronounced with channel-spanning structures such as logjams. Humans have changed the spatial and temporal characteristics of wood distribution in streams, with lasting effects on instream wood recruitment, wood loads, logjam distribution, and hydraulic roughness. Previous studies in the Colorado Front Range show that contemporary headwater streams flowing through old-growth, unmanaged forests have more wood than streams flowing through younger-growth, managed forests, but do not evaluate the effects of wood on channel complexity. 'Managed' versus 'unmanaged' refers to whether forests were or are currently exposed to human alteration. Although some alteration has long since ceased, reduced wood loads in managed streams persist. Our primary objective was to quantify differences in logjams, wood volumes, stream complexity, and organic carbon storage on streams with different management and disturbance histories in order to examine legacy effects across a gradient of stream management. Data were collected during the summers of 2013 and 2014 in the Southern Rocky Mountains. The 25 stream reaches studied are 2nd to 3rd order, subalpine streams that are categorized into: old-growth unmanaged forests; younger, naturally disturbed unmanaged forests; and younger managed forests. We assessed instream and floodplain wood loads and logjams and evaluated the role that large wood plays in local channel complexity, pool volume, and storage of organic carbon. Preliminary results show that greatest wood and carbon storage in sediments, as well as channel complexity, occurs in streams in old-growth, unmanaged forests and the least wood and carbon storage and channel complexity occurs in younger-growth, managed forests.

  19. Instream cover and shade mediate avian predation on trout in semi-natural streams

    USGS Publications Warehouse

    Penaluna, Brooke E.; Dunham, Jason B.; Noakes, David L. G.

    2015-01-01

    Piscivory by birds can be significant, particularly on fish in small streams and during seasonal low flow when available cover from predators can be limited. Yet, how varying amounts of cover may change the extent of predation mortality from avian predators on fish is not clear. We evaluated size-selective survival of coastal cutthroat trout (Oncorhynchus clarkii clarkii) in replicated semi-natural stream sections. These sections provided high (0.01 m2 of cover per m2 of stream) or low (0.002 m2 of cover per m2 of stream) levels of instream cover available to trout and were closed to emigration. Each fish was individually tagged, allowing us to track retention of individuals during the course of the 36-day experiment, which we attributed to survival from predators, because fish had no other way to leave the streams. Although other avian predators may have been active in our system and not detected, the only predator observed was the belted kingfisher Megaceryle alcyon, which is known to prey heavily on fish. In both treatments, trout >20.4 cm were not preyed upon indicating an increased ability to prey upon on smaller individuals. Increased availability of cover improved survival of trout by 12% in high relative to low cover stream sections. Trout also survived better in stream sections with greater shade, a factor we could not control in our system. Collectively, these findings indicate that instream cover and shade from avian predators can play an important role in driving survival of fish in small streams or during periods of low flow.

  20. Effects of upland disturbance and instream restoration on hydrodynamics and ammonium uptake in headwater streams

    SciTech Connect

    Roberts, Brian J; Mulholland, Patrick J; Houser, Jeffrey N

    2007-01-01

    Delivery of water, sediments, nutrients, and organic matter to stream ecosystems is strongly influenced by the catchment of the stream and can be altered greatly by upland soil and vegetation disturbance. At the Fort Benning Military Installation (near Columbus, Georgia), spatial variability in intensity of military training results in a wide range of intensities of upland disturbance in stream catchments. A set of 8 streams in catchments spanning this upland disturbance gradient was selected for investigation of the impact of disturbance intensity on hydrodynamics and nutrient uptake. The size of transient storage zones and rates of NH4+ uptake in all study streams were among the lowest reported in the literature. Upland disturbance did not appear to influence stream hydrodynamics strongly, but it caused significant decreases in instream nutrient uptake. In October 2003, coarse woody debris (CWD) was added to of the study streams (spanning the disturbance gradient) in an attempt to increase hydrodynamic and structural complexity with the goals of enhancing biotic habitat and increasing nutrient uptake rates. CWD additions had positive short-term (within 1 mo) effects on hydrodynamic complexity (water velocity decreased and transient storage zone cross-sectional area, relative size of the transient storage zone, fraction of the median travel time attributable to transient storage over a standardized length of 200 m, and the hydraulic retention factor increased) and nutrient uptake (NH4+ uptake rates increased). Our results suggest that water quality in streams with intense upland disturbances can be improved by enhancing instream biotic nutrient uptake capacity through measures such as restoring stream CWD.

  1. Effects of upland disturbance and instream restoration on hydrodynamics and ammonium uptake in headwater streams

    USGS Publications Warehouse

    Roberts, B.J.; Mulholland, P.J.; Houser, J.N.

    2007-01-01

    Delivery of water, sediments, nutrients, and organic matter to stream ecosystems is strongly influenced by the catchment of the stream and can be altered greatly by upland soil and vegetation disturbance. At the Fort Benning Military Installation (near Columbus, Georgia), spatial variability in intensity of military training results in a wide range of intensities of upland disturbance in stream catchments. A set of 8 streams in catchments spanning this upland disturbance gradient was selected for investigation of the impact of disturbance intensity on hydrodynamics and nutrient uptake. The size of transient storage zones and rates of NH4+ uptake in all study streams were among the lowest reported in the literature. Upland disturbance did not appear to influence stream hydrodynamics strongly, but it caused significant decreases in instream nutrient uptake. In October 2003, coarse woody debris (CWD) was added to 1/2 of the study streams (spanning the disturbance gradient) in an attempt to increase hydrodynamic and structural complexity, with the goals of enhancing biotic habitat and increasing nutrient uptake rates. CWD additions had positive short-term (within 1 mo) effects on hydrodynamic complexity (water velocity decreased and transient storage zone cross-sectional area, relative size of the transient storage zone, fraction of the median travel time attributable to transient storage over a standardized length of 200 m, and the hydraulic retention factor increased) and nutrient uptake (NH4+ uptake rates increased). Our results suggest that water quality in streams with intense upland disturbances can be improved by enhancing instream biotic nutrient uptake capacity through measures such as restoring stream CWD. ?? 2007 by The North American Benthological Society.

  2. River Restoration for a Changing Climate

    NASA Astrophysics Data System (ADS)

    Beechie, T. J.; Pollock, M. M.; Pess, G. R.; Roni, P.

    2012-12-01

    Future climate scenarios suggest that riverine habitats will be significantly altered in the next few decades, forcing managers to ask whether and how river restoration activities should be altered to accommodate climate change. Obvious questions include: Will climate change alter river flow and temperature enough to reduce action effectiveness? What types of restoration actions are more likely to remain effective in a climate altered future? To help address these questions, we reviewed literature on habitat restoration actions and river processes to determine the degree to which different restoration actions are likely to either ameliorate a climate effect or increase habitat diversity and resilience. Key findings are that restoring floodplain connectivity and re-aggrading incised channels ameliorate both stream flow and temperature changes and increase lateral connectivity, whereas restoring in-stream flows can ameliorate decreases in low flows as well as stream temperature increases. Other restoration actions (e.g., reducing sediment supply, in-stream rehabilitation) are much less likely to ameliorate climate change effects. In general, actions that restore watershed and ecosystem processes are most likely to be robust to climate change effects because they allow river channels and riverine ecosystems to evolve in response to shifting stream flow and temperature regimes. We offer a decision support process to illustrate how to evaluate whether a project design should be altered to accommodate climate change effects, and show examples of restoration actions that are likely to be resilient to a changing climate.

  3. Valey-Fill Sandstones in the Kootenai Formation on the Crow Indian Reservation, South-Central Montana

    SciTech Connect

    Lopez, David A

    1998-04-07

    Subsurface data is being collected, organized, and a digital database is being prepared for the project. An ACCESS database and PC-Arcview is being used to manage and interpret the data. Well data and base map data have been successfully imported into Arcview and customized to meet the needs of this project. Log tops and other data from about ½ of the exploration wells in the area have been incorporated into the data base. All of the four 30" X 60" geologic quadrangles have been scanned to produce a digital surface geologic data base for the Crow Reservation and all are nearing completion. Formal technical review prior to publication has been completed for the Billings and Bridger Quadrangles; and are underway for the Hardin and Lodge Grass Quadrangles. Field investigations were completed during the last quarter. With the help of a student field assistant from the Crow Tribe, the entire project area was inventoried for the presence of valley-fill deposits in the Kootenai Formation. Field inventory has resulted in the identification of nine exposures of thick valley-fill deposits. These appear to represent at least four major westward-trending valley systems. All the channel localities have been measured and described in detail and paleocurrent data has been collected from all but one locality. In addition, two stratigraphic sections were measured in areas where channels are absent. One channel has bee traced over a distance of about 60 miles and exhibits definite paleostructural control. An abstract describing this channel has been submitted and accepted for presentation at the Williston Basin Symposium in October, 1998.

  4. Valley-Fill Sandstones in the Kootenai Formation on the Crow Indian Reservation, South-Central Montana

    SciTech Connect

    Lopez, David A

    1998-07-03

    Subsurface data continues to be collected, organized, and a digital database is being prepared for the project. An ACCESS database and PC-Arcview is being used to manage and interpret the data. Well data and base map data have been successfully imported into Arcview and customized to meet the needs of this project. Log tops and other data from about ¾ of the exploration wells in the area have been incorporated into the data base. All of the four 30" X 60" geologic quadrangles have been scanned to produce a digital surface geologic data base for the Crow Reservation and all are nearing completion. Formal technical review prior to publication has been completed for all the quadrangles; Billings, Bridger; Hardin, and Lodge Grass. Final GIS edits are being made before being forwarded to the Bureau's Publications Department. Field investigations were completed during the third quarter, 1997. With the help of a student field assistant from the Crow Tribe, the entire project area was inventoried for the presence of valley-fill deposits in the Kootenai Formation. Field inventory has resulted in the identification of nine exposures of thick valley-fill deposits. These appear to represent at least four major westward-trending valley systems. All the channel localities have been measured and described in detail and paleocurrent data has been collected from all but one locality. In addition, two stratigraphic sections were measured in areas where channels are absent. One channel has bee traced over a distance of about 60 miles and exhibits definite paleostructural control. An abstract describing this channel has been submitted and accepted for presentation at the Williston Basin Symposium in October, 1998.

  5. Establishing a context for river rehabilitation, North Fork Gunnison River, Colorado.

    PubMed

    Jaquette, Christopher; Wohl, Ellen; Cooper, David

    2005-05-01

    Initial river rehabilitation efforts along the North Fork Gunnison River in Colorado focused on the use of in-stream structures and channel stabilization to create a single-thread channel with pools along a braided river. These efforts were based on the assumption that the river's braided planform results primarily from land use during the past century. In order to establish a context for further rehabilitation, we evaluated the possibility that the river might be braided as a result of processes independent of land use. We estimated volume, grain-size distribution, and lithology of sediment sources along the river corridor and evaluated the planform stability of the river during the past century using historical sources, aerial photographs covering 1939-1997, and comparison of bankfull discharge and gradient in the study area to values published for braided and meandering rivers. Our results indicate that the North Fork Gunnison River has been primarily braided in its lower reaches during the past few hundred years, although the channel planform tends toward a single-thread channel during decades of lower precipitation and discharge. Although land use is not the primary cause of braiding along the North Fork Gunnison River, it has decreased channel stability, and rehabilitation efforts should be designed to reduce these effects. Our results illustrate the importance of planning river rehabilitation measures within a historical context that accounts for both catchment-scale and reach-scale controls on channel processes and planform. PMID:15886956

  6. River enhancement in the Upper Mississippi River basin: Approaches based on river uses, alterations, and management agencies

    USGS Publications Warehouse

    O'Donnell, T. K.; Galat, D.L.

    2007-01-01

    The Upper Mississippi River is characterized by a series of locks and dams, shallow impoundments, and thousands of river channelization structures that facilitate commercial navigation between Minneapolis, Minnesota, and Cairo, Illinois. Agriculture and urban development over the past 200 years have degraded water quality and increased the rate of sediment and nutrient delivery to surface waters. River enhancement has become an important management tool employed to address causes and effects of surface water degradation and river modification in the Upper Mississippi River Basin. We report information on individual river enhancement projects and contrast project densities, goals, activities, monitoring, and cost between commercially non-navigated and navigated rivers (Non-navigated and Navigated Rivers, respectively). The total number of river enhancement projects collected during this effort was 62,108. Cost of all projects reporting spending between 1972 and 2006 was about US$1.6 billion. Water quality management was the most cited project goal within the basin. Other important goals in Navigated Rivers included in-stream habitat improvement and flow modification. Most projects collected for Non-navigated Rivers and their watersheds originated from the U.S. Department of Agriculture (USDA). The U.S. Army Corps of Engineers and the USDA were important sources for projects in Navigated Rivers. Collaborative efforts between agencies that implement projects in Non-navigated and Navigated Rivers may be needed to more effectively address river impairment. However, the current state of data sources tracking river enhancement projects deters efficient and broad-scale integration. ?? Journal compilation ?? 2007 Society for Ecological Restoration International.

  7. Analysis of Environmental Issues Related to Small-Scale Hydroelectric Development V: Instream Flow Needs for Fishery Resources

    SciTech Connect

    Loar, James M.; Sale, Michael J.

    1981-10-01

    The purpose of this document is to provide guidance to developers of small-scale hydroelectric projects on the assessment of instream flow needs. While numerous methods have been developed to assess the effects of stream flow regulation on aquatic biota in coldwater streams in the West, no consensus has been reached regarding their general applicability, especially to streams in the eastern United States. This report presents and reviews these methods (Section 2.0), which is intended to provide the reader with general background information that is the basis for the critical evaluation of the methods (Section 3.0). The strategy for instream flow assessment presented in Section 4.0 is, in turn, based on the implicit assumptions, data needs, costs, and decision-making capabilities of the various methods as discussed in Section 3.0.

  8. Wind River watershed restoration: Annual report of U.S. Geological Survey activities November 2010 – October 2011

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.; Munz, Carrie S.

    2012-01-01

    This report summarizes work completed by U.S. Geological Survey’s Columbia River Research Laboratory (USGS-CRRL) in the Wind River subbasin during November 2010 through October 2011 under Bonneville Power Administration (BPA) contract 40481. The primary focus of USGS activities during this contract was on tagging of juvenile steelhead Oncorhynchus mykiss with Passive Integrated Transponder (PIT) tags, and working toward a network of instream PIT tag detection systems to monitor movements and life histories of these fish.

  9. Macroinvertebrate instream flow studies after 20 years: A role in stream management and restoration

    USGS Publications Warehouse

    Gore, J.A.; Layzer, J.B.; Mead, J.

    2001-01-01

    Over the past two decades of refinement and application of instream flow evaluations, we have examined the hydraulic habitat of aquatic macroinvertebrates in a variety of conditions, along with the role of these macroinverte-brates in sustaining ecosystem integrity. Instream flow analyses assume that predictable changes in channel flow characteristics can, in turn, be used to predict the change in the density or distribution of lotic species or, more appropriately, the availability of useable habitat for those species. Five major hydraulic conditions most affect the distribution and ecological success of lotic biota: suspended load, bedload movement, and water column effects, such as turbulence, velocity profile, and substratum interactions (near-bed hydraulics). The interactions of these hydraulic conditions upon the morphology and behavior of the individual organisms govern the distribution of aquatic biota. Historically, management decisions employing the Physical Habitat Simulation (PHABSIM) have focused upon prediction of available habitat for life stages of target fish species. Regulatory agencies have rarely included evaluation of benthos for flow reservations. Although 'taxonomic discomfort' may be cited for the reluctant use or creation of benthic criteria, we suggest that a basic misunderstanding of the links between benthic macroinvertebrate and the fish communities is still a problem. This is derived from the lack of a perceived 'value' that can be assigned to macroinvertebrate species. With the exception of endangered mussel species (for which PHABSIM analysis is probably inappropriate), this is understandable. However, it appears that there is a greater ability to predict macroinvertebrate distribution (that is, a response to the change in habitat quality or location) and diversity without complex population models. Also, habitat suitability criteria for water quality indicator taxa (Ephemeroptera, Plecoptera, and Trichoptera; the so-called 'EPTs

  10. Flow and turbulence structure around an in-stream rectangular cylinder with scour hole

    NASA Astrophysics Data System (ADS)

    Kirkil, Gokhan; Constantinescu, George

    2010-11-01

    Most of the erosion around obstacles present in alluvial streams takes place after the formation of a scour hole of sufficiently large dimensions to stabilize the large-scale oscillations of the horseshoe vortex (HV) system. The present paper uses eddy resolving techniques to reveal the unsteady dynamics of the coherent structures present in the flow field around an in-stream vertical cylinder (e.g., bridge pier) with a large scour hole at a channel Reynolds number defined with the channel depth and the bulk channel velocity of 2.4 × 105. The cylinder has a rectangular section and is placed perpendicular to the incoming flow. The geometry of the scour hole is obtained from an experiment conducted as part of the present work. The mechanisms driving the bed erosion during the advanced stages of the scour process around the vertical plate are discussed. Simulation results demonstrate the critical role played by these large-scale turbulent eddies and their interactions in driving the local scour. The paper analyzes the changes in the flow and turbulence structure with respect to the initial stages of the scour process (flat bed conditions) for a cylinder of identical shape and orientation. Results show the wake loses its undular shape due to suppression of the antisymmetrical shedding of the roller vortices. Also, the nature of the interactions between the necklace vortices of the HV system and the eddies present inside the detached shear layers (DSLs) changes as the scour process evolves. This means that information on the vortical structure of the flow at the initiation of the scour process, or during its initial stages, are insufficient to understand the local scour mechanisms. The paper also examines the effect of the shape of the obstruction on the dynamics of the vortical eddies and how it affects the bed erosion processes during the advanced stages of the local scour. In particular, the paper provides an explanation for the observed increase in the maximum

  11. Instream investigations in the Beaver Creek Watershed in West Tennessee, 1991-95

    USGS Publications Warehouse

    Byl, T.D.; Carney, K.A.

    1996-01-01

    The U.S. Geological Survey (USGS), in cooperation with the Tennessee Department of Agriculture, began a long-term scientific investigation in 1989 to evaluate the effect of agricultural activities on water quality and the effectiveness of agricultural best management practices in the Beaver Creek watershed, West Tennessee. In 1993 as a part of this study, the USGS, in cooperation with the Natural Resources Conservation Service, Shelby County Soil Conservation District, and the Tennessee Soybean Promotion Board, began an evaluation of the physical, chemical, biological and hydrological factors that affect water quality in streams and wetlands, and instream resource-management systems to treat agricultural nonpoint-source runoff and improve water quality. The purpose of this report is to present the results of three studies of stream and wetland investigations and a study on the transport of aldicarb from an agricultural field in the Beaver Creek watershed. A natural bottomland hardwood wetland and an artificially constructed wetland were evaluated as instream resource-management systems. These two studies showed that wetlands are an effective way to improve the quality of agricultural nonpoint-source runoff. The wetlands reduced concentrations and loads of suspended sediments, nutrients, and pesticides in the streams. A third paper documents the influence of riparian vegetation on the biological structure and water quality of a small stream draining an agricultural field. A comparison of the upper reach lined with herbaceous plants and the lower reach with mature woody vegetation showed a more stable biological community structure and Water- quality characteristics in the woody reach than in the herbaceous reach. The water-quality characteristics monitored were pH, temperature, dissolved oxygen, and specific conductance. The herbaceous reach had a greater diversity and abundance of organisms during spring and early summer, but the abundance dropped by approximately

  12. Wood and Sediment Dynamics in River Corridors

    NASA Astrophysics Data System (ADS)

    Wohl, E.; Scott, D.

    2015-12-01

    Large wood along rivers influences entrainment, transport, and storage of mineral sediment and particulate organic matter. We review how wood alters sediment dynamics and explore patterns among volumes of instream wood, sediment storage, and residual pools for dispersed pieces of wood, logjams, and beaver dams. We hypothesized that: volume of sediment per unit area of channel stored in association with wood is inversely proportional to drainage area; the form of sediment storage changes downstream; sediment storage correlates most strongly with wood load; and volume of sediment stored behind beaver dams correlates with pond area. Lack of data from larger drainage areas limits tests of these hypotheses, but analyses suggest a negative correlation between sediment volume and drainage area and a positive correlation between wood and sediment volume. The form of sediment storage in relation to wood changes downstream, with wedges of sediment upstream from jammed steps most prevalent in small, steep channels and more dispersed sediment storage in lower gradient channels. Use of a published relation between sediment volume, channel width, and gradient predicted about half of the variation in sediment stored upstream from jammed steps. Sediment volume correlates well with beaver pond area. Historically more abundant instream wood and beaver populations likely equated to greater sediment storage within river corridors. This review of the existing literature on wood and sediment dynamics highlights the lack of studies on larger rivers.

  13. Environmental mitigation at hydroelectric projects. Volume 1, Current practices for instream flow needs, dissolved oxygen, and fish passage

    SciTech Connect

    Sale, M.J.; Cada, G.F.; Chang, L.H.; Christensen, S.W.; Railsback, S.F.; Francfort, J.E.; Rinehart, B.N.; Sommers, G.L.

    1991-12-01

    Current environmental mitigation practices at nonfederal hydropower projects were analyzed. Information about instream flows, dissolved oxygen (DO) mitigation, and upstream and downstream fish passage facilities was obtained from project operators, regulatory and resource agencies, and literature reviews. Information provided by the operators includes the specific mitigation requirements imposed on each project, specific objectives or purposes of mitigation, mitigation measures chosen to meet the requirement, the kinds of post-project monitoring conducted, and the costs of mitigation. Costs are examined for each of the four mitigation methods, segmented by capital, study, operations and maintenance, and annual reporting costs. Major findings of the study include: the dominant role of the Instream Flow Incremental Methodology, in conjunction with professional judgment by agency biologists, to set instream flow requirements; reliance on spill flows for DO enhancement; and the widespread use of angled bar racks for downstream fish protection. All of these measures can have high costs and, with few exceptions, there are few data available from nonfederal hydropower projects with which to judge their effectiveness. 100 refs.

  14. Relationships among Land-Use, In-Stream Stressors, and Biological Condition in Prince George's County, MD

    NASA Astrophysics Data System (ADS)

    Lessard, J. L.; Stribling, S.; Leppo, E.

    2005-05-01

    As human disturbance increases in watersheds there is a resulting change in hydrologic stability that leads to alterations of in-stream habitat conditions. These in-stream alterations are called stressors because they represent sub-optimal to lethal conditions for aquatic organisms. The linkages and mechanisms that relate multiple stressors with complex landscape features (sources) are currently the focus of research across North America. The objective of this project was to illustrate the linkages and biological responses for coastal plain watersheds that contain a gradient of severity and types of human disturbance. Stepwise multiple-regression was performed on a routine biological monitoring database from Prince George's County, MD. Results demonstrated that urban land-use sources (medium-density residential, commercial, and industrial) and in-stream stressors of reduced physical habitat complexity (e.g., decreased gravel substrate, reduced channel sinuosity etc.) were most related to biological degradation. The biological response variables that had the strongest relationships with these sources and stressors were: the indexes of biotic integrity, EPT Index, Beck's Biotic Index, % Dominant Fish Species, and % generalists, omnivores, and invertivores. These types of analyses need to be conducted in a variety of ecoregions to understand the dynamics of the relationship between human disturbance and the biological condition of streams.

  15. The effect of chamber mixing velocity on bias in measurement of sediment oxygen demand rates in the Tualatin River basin, Oregon

    USGS Publications Warehouse

    Doyle, Micelis C.; Rounds, Stewart

    2003-01-01

    The same resuspension effect probably exists in the Tualatin River during storm-runoff events following prolonged periods of low flow, when increased stream velocity may result in the resuspension of bottom sediments. The resuspension causes increased turbidity and increased oxygen demand, resulting in lower instream dissolved oxygen concentrations.

  16. Epilithic biofilms as hotspots of in-stream nitrification in a high N loaded urban stream

    NASA Astrophysics Data System (ADS)

    Bernal, S.; Merbt, S. N.; Ribot, M.; Casamayor, E. O.; Martí Roca, E.

    2015-12-01

    Nitrification, the oxidation of ammonia to nitrate, is one of the most important biogeochemical processes in high nitrogen loaded urban streams. The first rate-limiting step of the nitrification process is carried out by ammonia-oxidizing (AO) archaea (AOB) and bacteria (AOB) that live in stream sediments and epilithic biofilms. Yet, the relative contribution of these two stream habitats to whole-reach nitrification is largely unknown. We tested the well-established idea that whole-reach nitrification is mainly driven by AO present in hyporheic sediments because of their relative high active surface area compared to the thin epilithic biofilm interface. To do so, we examined substrata-specific nitrification rates and AO transcripts abundance (amoA gene) in mesocosms and scaled data to whole reach. Further, we compared the scaled data to in situ whole-reach nitrification rates and amoA transcript and gene abundances in a high N loaded urban stream downstream of a waste water treatment plant effluent. Against expectations, whole-reach in-stream nitrification was mainly driven by AOB embedded in biofilms growing on the sediment-facing side (> 60%) and light-exposed side (20%) of stream cobbles. Hyporheic sediments, which were mainly colonized by AOA, accounted for 11% of in situ whole-reach nitrification. Our study points epilithic biofilms as hot spots of nitrification within urban stream ecosystems.

  17. Hydraulic controls of in-stream gravel bar hyporheic exchange and reactions

    NASA Astrophysics Data System (ADS)

    Trauth, Nico; Schmidt, Christian; Vieweg, Michael; Oswald, Sascha E.; Fleckenstein, Jan H.

    2015-04-01

    Hyporheic exchange transports solutes into the subsurface where they can undergo biogeochemical transformations, affecting fluvial water quality and ecology. A three-dimensional numerical model of a natural in-stream gravel bar (20 m × 6 m) is presented. Multiple steady state streamflow is simulated with a computational fluid dynamics code that is sequentially coupled to a reactive transport groundwater model via the hydraulic head distribution at the streambed. Ambient groundwater flow is considered by scenarios of neutral, gaining, and losing conditions. The transformation of oxygen, nitrate, and dissolved organic carbon by aerobic respiration and denitrification in the hyporheic zone are modeled, as is the denitrification of groundwater-borne nitrate when mixed with stream-sourced carbon. In contrast to fully submerged structures, hyporheic exchange flux decreases with increasing stream discharge, due to decreasing hydraulic head gradients across the partially submerged structure. Hyporheic residence time distributions are skewed in the log-space with medians of up to 8 h and shift to symmetric distributions with increasing level of submergence. Solute turnover is mainly controlled by residence times and the extent of the hyporheic exchange flow, which defines the potential reaction area. Although streamflow is the primary driver of hyporheic exchange, its impact on hyporheic exchange flux, residence times, and solute turnover is small, as these quantities exponentially decrease under losing and gaining conditions. Hence, highest reaction potential exists under neutral conditions, when the capacity for denitrification in the partially submerged structure can be orders of magnitude higher than in fully submerged structures.

  18. A modeling study of the potential water quality impacts from in-stream tidal energy extraction

    DOE PAGESBeta

    Wang, Taiping; Yang, Zhaoqing; Copping, Andrea E.

    2013-11-09

    To assess the effects of tidal energy extraction on water quality in a simplified estuarine system, which consists of a tidal bay connected to the coastal ocean through a narrow channel where energy is extracted using in-stream tidal turbines, a three-dimensional coastal ocean model with built-in tidal turbine and water quality modules was applied. The effects of tidal energy extraction on water quality were examined for two energy extraction scenarios as compared with the baseline condition. It was found, in general, that the environmental impacts associated with energy extraction depend highly on the amount of power extracted from the system.more » Model results indicate that, as a result of energy extraction from the channel, the competition between decreased flushing rates in the bay and increased vertical mixing in the channel directly affects water quality responses in the bay. The decreased flushing rates tend to cause a stronger but negative impact on water quality. On the other hand, the increase of vertical mixing could lead to higher bottom dissolved oxygen at times. As the first modeling effort directly aimed at examining the impacts of tidal energy extraction on estuarine water quality, this study demonstrates that numerical models can serve as a very useful tool for this purpose. Furthermore, more careful efforts are warranted to address system-specific environmental issues in real-world, complex estuarine systems.« less

  19. A modeling study of the potential water quality impacts from in-stream tidal energy extraction

    SciTech Connect

    Wang, Taiping; Yang, Zhaoqing; Copping, Andrea E.

    2013-11-09

    To assess the effects of tidal energy extraction on water quality in a simplified estuarine system, which consists of a tidal bay connected to the coastal ocean through a narrow channel where energy is extracted using in-stream tidal turbines, a three-dimensional coastal ocean model with built-in tidal turbine and water quality modules was applied. The effects of tidal energy extraction on water quality were examined for two energy extraction scenarios as compared with the baseline condition. It was found, in general, that the environmental impacts associated with energy extraction depend highly on the amount of power extracted from the system. Model results indicate that, as a result of energy extraction from the channel, the competition between decreased flushing rates in the bay and increased vertical mixing in the channel directly affects water quality responses in the bay. The decreased flushing rates tend to cause a stronger but negative impact on water quality. On the other hand, the increase of vertical mixing could lead to higher bottom dissolved oxygen at times. As the first modeling effort directly aimed at examining the impacts of tidal energy extraction on estuarine water quality, this study demonstrates that numerical models can serve as a very useful tool for this purpose. Furthermore, more careful efforts are warranted to address system-specific environmental issues in real-world, complex estuarine systems.

  20. Comparison of fluvial suspended-sediment concentrations and particle-size distributions measured with in-stream laser diffraction and in physical samples

    USGS Publications Warehouse

    Czuba, Jonathan A.; Straub, Timothy D.; Curran, Christopher A.; Landers, Mark N.; Domanski, Marian M.

    2014-01-01

    Laser-diffraction technology, recently adapted for in-stream measurement of fluvial suspended-sediment concentrations (SSCs) and particle-size distributions (PSDs), was tested with a streamlined (SL), isokinetic version of the Laser In-Situ Scattering and Transmissometry (LISST) for measuring volumetric SSCs and PSDs ranging from 1.8-415 µm in 32 log-spaced size classes. Measured SSCs and PSDs from the LISST-SL were compared to a suite of 22 datasets (262 samples in all) of concurrent suspended-sediment and streamflow measurements using a physical sampler and acoustic Doppler current profiler collected during 2010-12 at 16 U.S. Geological Survey streamflow-gaging stations in Illinois and Washington (basin areas: 38 – 69,264 km2). An unrealistically low computed effective density (mass SSC / volumetric SSC) of 1.24 g/ml (95% confidence interval: 1.05-1.45 g/ml) provided the best-fit value (R2 = 0.95; RMSE = 143 mg/L) for converting volumetric SSC to mass SSC for over 2 orders of magnitude of SSC (12-2,170 mg/L; covering a substantial range of SSC that can be measured by the LISST-SL) despite being substantially lower than the sediment particle density of 2.67 g/ml (range: 2.56-2.87 g/ml, 23 samples). The PSDs measured by the LISST-SL were in good agreement with those derived from physical samples over the LISST-SL's measureable size range. Technical and operational limitations of the LISST-SL are provided to facilitate the collection of more accurate data in the future. Additionally, the spatial and temporal variability of SSC and PSD measured by the LISST-SL is briefly described to motivate its potential for advancing our understanding of suspended-sediment transport by rivers.

  1. Science for Managing Riverine Ecosystems: Actions for the USGS Identified in the Workshop "Analysis of Flow and Habitat for Instream Aquatic Communities"

    USGS Publications Warehouse

    Bencala, Kenneth E.; Hamilton, David B.; Petersen, James H.

    2006-01-01

    Federal and state agencies need improved scientific analysis to support riverine ecosystem management. The ability of the USGS to integrate geologic, hydrologic, chemical, geographic, and biological data into new tools and models provides unparalleled opportunities to translate the best riverine science into useful approaches and usable information to address issues faced by river managers. In addition to this capability to provide integrated science, the USGS has a long history of providing long-term and nationwide information about natural resources. The USGS is now in a position to advance its ability to provide the scientific support for the management of riverine ecosystems. To address this need, the USGS held a listening session in Fort Collins, Colorado in April 2006. Goals of the workshop were to: 1) learn about the key resource issues facing DOI, other Federal, and state resource management agencies; 2) discuss new approaches and information needs for addressing these issues; and 3) outline a strategy for the USGS role in supporting riverine ecosystem management. Workshop discussions focused on key components of a USGS strategy: Communications, Synthesis, and Research. The workshop identified 3 priority actions the USGS can initiate now to advance its capabilities to support integrated science for resource managers in partner government agencies and non-governmental organizations: 1) Synthesize the existing science of riverine ecosystem processes to produce broadly applicable conceptual models, 2) Enhance selected ongoing instream flow projects with complementary interdisciplinary studies, and 3) Design a long-term, watershed-scale research program that will substantively reinvent riverine ecosystem science. In addition, topical discussion groups on hydrology, geomorphology, aquatic habitat and populations, and socio-economic analysis and negotiation identified eleven important complementary actions required to advance the state of the science and to

  2. Comparison of fluvial suspended-sediment concentrations and particle-size distributions measured with in-stream laser diffraction and in physical samples

    NASA Astrophysics Data System (ADS)

    Czuba, Jonathan A.; Straub, Timothy D.; Curran, Christopher A.; Landers, Mark N.; Domanski, Marian M.

    2015-01-01

    Laser-diffraction technology, recently adapted for in-stream measurement of fluvial suspended-sediment concentrations (SSCs) and particle-size distributions (PSDs), was tested with a streamlined (SL), isokinetic version of the Laser In Situ Scattering and Transmissometry (LISST) for measuring volumetric SSCs and PSDs ranging from 1.8 to 415 μm in 32 log-spaced size classes. Measured SSCs and PSDs from the LISST-SL were compared to a suite of 22 data sets (262 samples in all) of concurrent suspended-sediment and streamflow measurements using a physical sampler and acoustic Doppler current profiler collected during 2010-2012 at 16 U.S. Geological Survey streamflow-gaging stations in Illinois and Washington (basin areas: 38-69,264 km2). An unrealistically low computed effective density (mass SSC/volumetric SSC) of 1.24 g/mL (95% confidence interval: 1.05-1.45 g/mL) provided the best-fit value (R2 = 0.95; RMSE = 143 mg/L) for converting volumetric SSC to mass SSC for over two orders of magnitude of SSC (12-2,170 mg/L; covering a substantial range of SSC that can be measured by the LISST-SL) despite being substantially lower than the sediment particle density of 2.67 g/mL (range: 2.56-2.87 g/mL, 23 samples). The PSDs measured by the LISST-SL were in good agreement with those derived from physical samples over the LISST-SL's measureable size range. Technical and operational limitations of the LISST-SL are provided to facilitate the collection of more accurate data in the future. Additionally, the spatial and temporal variability of SSC and PSD measured by the LISST-SL is briefly described to motivate its potential for advancing our understanding of suspended-sediment transport by rivers.

  3. Distribution of Unionid Mussels in Tributaries of the Lower Flint River, Southwestern Georgia: An Examination of Current and Historical Trends.

    NASA Astrophysics Data System (ADS)

    Golladay, S. W.

    2005-05-01

    The historically diverse assemblage of freshwater mussels in the Flint River Basin has shown declines in abundance and distribution. The mid-reaches of the major tributaries of the Flint River contained one of the richest assemblages of mussels in the southeastern Coastal Plain. Declines in mussel assemblages accelerated following a recent severe drought (1999-2001). Following the drought, we surveyed mussel populations at selected sites in the major tributaries of the Flint River to determine whether declines in abundance and distribution are continuing. Many populations of common, rare, and endangered species were stable in their distribution (# taxa per site) but exhibited declines in abundance. One survey site in particular, on Spring Creek, contains a rich assemblage of mussels unique to the basin, and surveys from this site also suggest diminishing populations. Possible explanations for declines include poor water quality, loss or degradation of instream habitat, competition from the exotic Asiatic clam, and inadequate instream flows.

  4. Hood River Production Program : Hood River Fish Habitat Protection, Restoration, and Monitoring Plan.

    SciTech Connect

    Coccoli, Holly; Lambert, Michael

    2000-02-01

    Effective habitat protection and rehabilitation are essential to the long-term recovery of anadromous fish populations in the Hood River subbasin. This Habitat Protection, Restoration, and Monitoring Plan was prepared to advance the goals of the Hood River Production Program (HRRP) which include restoring self-sustaining runs of spring chinook salmon and winter and summer steelhead. The HRPP is a fish supplementation and monitoring and evaluation program initiated in 1991 and funded by the Bonneville Power Administration (BPA) as part of the Northwest Power Planning Council Fish and Wildlife Program. The HRPP is a joint effort of the Confederated Tribes of the Warm Springs Reservation of Oregon (CTWSRO) and Oregon Department of Fish and Wildlife (ODFW). Using recent watershed assessment and federal watershed analysis reports, this Plan reviews the historic and current condition of riparian, instream and upland habitats; natural watershed processes; anadromous and resident fish populations; identifies limiting factors, and indicates those subbasin areas that need protection or are likely to respond to restoration. Primary habitat restoration needs were identified as (1) improved fish screening and upstream adult passage at water diversions; (2) improved spawning gravel availability, instream habitat structure and diversity; and (3) improved water quality and riparian conditions. While several early action projects have been initiated in the Hood River subbasin since the mid 1990s, this Plan outlines additional projects and strategies needed to protect existing high quality habitat, correct known fish survival problems, and improve the habitat capacity for natural production to meet HRPP goals.

  5. The role of in-stream vegetation as 'disturbance mitigators' in a Mediterranean-climate stream

    NASA Astrophysics Data System (ADS)

    Hershkovitz, Yaron; Gasith, Avital; Shachak, Moshe

    2010-05-01

    Fluctuating discharge (floods and droughts) is considered a major ecological disturbance and a source of temporal and spatial variation in many fluvial ecosystems. Community recovery after a disturbance event ('resilience') depends on its features (e.g. magnitude, duration, predictability) and adaptations of the community to the disturbace ('resistance'). The use of refugia (e.g. low shear stress areas during spates) is one of the mechanisms of the latter. Ecosystem engineers (EE) are organisms that cause structurally mediated changes in the abiotic environment, thereby, modulating community structure. Little is known on the interaction between ecosystem modulation by EE and environmental disturbances. The goal of this study was to assess the magnitude of effect of an ecological disturbance (floods and droughts) on community attributes (macroinvertebrates) in the presence of an EE (macrophyte patches). We suggest that in small agricultural streams, where boulders and wood debris are scarce or absent, patches of in-stream vegetation may be exploited as refugia by benthic macroinvertebrates during spates and near drying conditions. We assumed 4 possible effects of EE on community responses to a hydrological disturbance: 1) 'amelioration', 2) 'aggravation', 3) 'overturning' and 4) 'no-effect'. For testing this hypothesis we analyzed the response of macroinvertebrate community in a small Mediterranean-climate stream (MCS) to seasonally predictable disturbance (stream discharge) in an un-vegetated patch (P1) and in both un-vegetated and vegetated patches (P1+P2). We found that whereas family richness and total density in the un-vegetated patch presented an "optimum" response to discharge (R2>0.65, p

  6. Wind River subbasin restoration: U.S. Geological Survey annual report November 2012 through December 2013

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.

    2014-01-01

    Evaluating restoration efforts is of interest to many managers and agencies so that funding and time are allocated for best results. The evaluation of various life-histories of Lower Columbia River steelhead within the Wind River subbasin will provide information to better track populations, and to direct habitat restoration and water allocation planning. Increasingly detailed Viable Salmonid Population information, such as that provided by PIT-tagging and instream PTISs networks like those we are building and operating in the Wind River subbasin, will provide data to inform policy and management, as life-history strategies and production bottlenecks are identified and understood.

  7. Instream wood recruitment, channel complexity, and their relationship to stream ecology in forested headwater streams under alternative stable states

    NASA Astrophysics Data System (ADS)

    Livers, B.; Wohl, E.

    2015-12-01

    Human alteration to forests has had lasting effects on stream channels worldwide. Such land use changes affect how wood enters and is stored in streams as individual pieces and as logjams. Changes in wood recruitment affect the complexity and benefits wood can provide to the stream environment, such as zones of flow separation that store fine sediment and organic matter, increased nutrient processing, and greater habitat potential, which can enhance biota and cascade through stream-riparian ecosystems. Previous research in our study area shows that modern headwater streams flowing through old-growth, unmanaged forests have more wood than streams in young, managed forests, but does not explicitly evaluate how wood affects channel complexity or local ecology. 'Managed' refers to forests previously or currently exposed to human alteration. Alteration has long since ceased in some areas, but reduced wood loads in managed streams persist. Our primary objective was to quantify stream complexity metrics, with instream wood as a mediator, on streams across a gradient of management and disturbance histories in order to examine legacy effects of human alteration to forests. Data collected in the Southern Rocky Mountains include 24 2nd to 3rd order subalpine streams categorized into: old-growth unmanaged; younger, naturally disturbed unmanaged; and younger managed. We assessed instream wood loads and logjams and evaluated how they relate to channel complexity using a number of metrics, such as standard deviation of bed and banks, volume of pools, ratios of stream to valley lengths and stream to valley area, and diversity of substrate, gradient, and morphology. Preliminary results show that channel complexity is directly related to instream wood loads and is greatest in streams in old-growth. Related research in the field area indicates that streams with greater wood loads also have increased nutrient processing and greater abundance and diversity of aquatic insect predators.

  8. Climatic Controls on Fluvial Cut-and-Fill Cycles in Drainages with In-stream Wetlands in the Central Andes

    NASA Astrophysics Data System (ADS)

    Rech, J. A.; Latorre, C.

    2004-12-01

    Fluvial systems that possess in-stream wetlands, or marshes, are common in arid environments where water-tables are emergent and large discharge events uncommon. These streambeds are protected from erosion by a dense cover of hydrophyllic and phreatophytic vegetation. Along the Pacific slope of the Central Andes in northern Chile (~20°-26°S), which includes some of the driest sectors of the Atacama Desert, in-stream wetlands occur in deeply incised bedrock canyons on the Andean slope and piedmont. Over the last several years we have compiled a detailed record of late Pleistocene and Holocene vegetation changes along the Pacific slope of the Andes through the collection, analysis, and radiocarbon determination of over 180 rodent middens. Rodent middens record past changes in precipitation levels by tracking the downslope migrations of plant species into the hyperarid desert. We have also assembled a record of the cut-and-fill cycles of several fluvial systems with in-stream wetlands located at various distances (5-50 km) from the zone of ground-water recharge in the High Andes through stratigraphic mapping and the radiocarbon dating of over 100 samples of organic material within these wetlands. Combined, this well-dated record of hillslope vegetation and stream aggradation and incision allows us to assess the influence of climatic change on stream processes, including the nature of stream response, the sensitivity of different stream systems to climatic change, and the response times of streams to climate changes that vary in distance from ground-water recharge zones. The combined data set shows that in-stream wetland aggradation is directly linked to changes in climate, with aggradation occurring during wetter climatic periods when water tables are high. Incision occurs during dry climatic periods when water tables are lower and streambed sediments are no longer anchored by dense vegetation. Streams that are closer to ground-water recharge zones are more

  9. Environmental Impact Assessment of Sand Mining from the Small Catchment Rivers in the Southwestern Coast of India: A Case Study

    NASA Astrophysics Data System (ADS)

    Sreebha, Sreedharan; Padmalal, Damodaran

    2011-01-01

    In the past few decades, the demand for construction grade sand is increasing in many parts of the world due to rapid economic development and subsequent growth of building activities. This, in many of the occasions, has resulted in indiscriminate mining of sand from instream and floodplain areas leading to severe damages to the river basin environment. The case is rather alarming in the small catchment rivers like those draining the southwestern coast of India due to limited sand resources in their alluvial reaches. Moreover, lack of adequate information on the environmental impact of river sand mining is a major lacuna challenging regulatory efforts in many developing countries. Therefore, a scientific assessment is a pre-requisite in formulating management strategies in the sand mining-hit areas. In this context, a study has been made as a case to address the environmental impact of sand mining from the instream and floodplain areas of three important rivers in the southwestern coast of India namely the Chalakudy, Periyar and Muvattupuzha rivers, whose lowlands host one of the fast developing urban-cum-industrial centre, the Kochi city. The study reveals that an amount of 11.527 million ty-1 of sand (8.764 million ty-1 of instream sand and 2.763 million ty-1 of floodplain sand) is being mined from the midland and lowland reaches of these rivers for construction of buildings and other infrastructural facilities in Kochi city and its satellite townships. Environmental Impact Assessment (EIA) carried out as a part of this investigation shows that the activities associated with mining and processing of sands have not only affected the health of the river ecosystems but also degraded its overbank areas to a large extent. Considering the degree of degradation caused by sand mining from these rivers, no mining scenario may be opted in the deeper zones of the river channels. Also, a set of suggestions are made for the overall improvement of the rivers and its

  10. SCIMAP: Modelling Diffuse Pollution in Large River Basins

    NASA Astrophysics Data System (ADS)

    Milledge, D.; Heathwaite, L.; Lane, S. N.; Reaney, S. M.

    2009-12-01

    Polluted rivers are a problem for the plants and animals that require clean water to survive. Watershed scale processes can influence instream aquatic ecosystems by delivering fine sediment, solutes and organic matter from diffuse sources. To improve our rivers we need to identify the pollution sources. Models can help us to do this but these rarely address the extent to which risky land uses are hydrologically-connected, and hence able to deliver, to the drainage network. Those that do tend to apply a full hydrological scheme, which is unfeasible for large watersheds. Here we develop a risk-based modelling framework, SCIMAP, for diffuse pollution from agriculture (Nitrate, Phosphate and Fine Sediment). In each case the basis of the analysis is the joint consideration of the probability of a unit of land (25 m2 cell) producing a particular environmental risk and then of that risk reaching the river. The components share a common treatment of hydrological connectivity but differ in their treatment of each pollution type. We test and apply SCIMAP using spatially-distributed instream water quality data for some of the UK’s largest catchments to infer the processes and the associated process parameters that matter in defining their concentrations. We use these to identify a series of risky field locations, where this land use is readily connected to the river system by overland flow.

  11. Lower Flathead River Fisheries Study, 1983 Annual Report.

    SciTech Connect

    DosSantos, Joseph M.; Darling, James E.; Cross, Paul D.

    1986-07-01

    In January of 1983 a two-phase study of the lower Flathead River was initiated by the Confederated Salish and Kootenai Tribes with funding provided by the Bonneville Power Administration. The study fulfills program measure 804 (a) (3) of the Columbia River Basin Fish and Wildlife Program. During 1983 Phase I of the study was completed resulting in a detailed study plan for the next four years and the methods to be employed during the study. Preliminary observations suggest the present operation of Kerr hydroelectric facility and land use practices within the drainage have combined to significantly reduce spawning success of salmonids and northern pike, and thus recruitment to the fisheries of the main river and tributaries. Main river spawning marshes were observed to be drained frequently during the northern pike spawning season which would result in desiccation of eggs and loss of attached fry. Water level fluctuations also caused trapping of juvenile fish and may be an important source of juvenile mortality.

  12. An initial SPARROW model of land use and in-stream controls on total organic carbon in streams of the conterminous United States

    USGS Publications Warehouse

    Shih, Jhih-Shyang; Alexander, Richard B.; Smith, Richard A.; Boyer, Elizabeth W.; Shwarz, Grogory E.; Chung, Susie

    2010-01-01

    Watersheds play many important roles in the carbon cycle: (1) they are a site for both terrestrial and aquatic carbon dioxide (CO2) removal through photosynthesis; (2) they transport living and decomposing organic carbon in streams and groundwater; and (3) they store organic carbon for widely varying lengths of time as a function of many biogeochemical factors. Using the U.S. Geological Survey (USGS) Spatially Referenced Regression on Watershed Attributes (SPARROW) model, along with long-term monitoring data on total organic carbon (TOC), this research quantitatively estimates the sources, transport, and fate of the long-term mean annual load of TOC in streams of the conterminous United States. The model simulations use surrogate measures of the major terrestrial and aquatic sources of organic carbon to estimate the long-term mean annual load of TOC in streams. The estimated carbon sources in the model are associated with four land uses (urban, cultivated, forest, and wetlands) and autochthonous fixation of carbon (stream photosynthesis). Stream photosynthesis is determined by reach-level application of an empirical model of stream chlorophyll based on total phosphorus concentration, and a mechanistic model of photosynthetic rate based on chlorophyll, average daily solar irradiance, water column light attenuation, and reach dimensions. It was found that the estimate of in-stream photosynthesis is a major contributor to the mean annual TOC load per unit of drainage area (that is, yield) in large streams, with a median share of about 60 percent of the total mean annual carbon load in streams with mean flows above 500 cubic feet per second. The interquartile range of the model predictions of TOC from in-stream photosynthesis is from 0.1 to 0.4 grams (g) carbon (C) per square meter (m-2) per day (day-1) for the approximately 62,000 stream reaches in the continental United States, which compares favorably with the reported literature range for net carbon fixation by

  13. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS.

    SciTech Connect

    Not Available

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.

  14. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective.

    PubMed

    Habersack, Helmut; Hein, Thomas; Stanica, Adrian; Liska, Igor; Mair, Raimund; Jäger, Elisabeth; Hauer, Christoph; Bradley, Chris

    2016-02-01

    In the Danube River Basin multiple pressures affect the river system as a consequence of river engineering works, altering both the river hydrodynamics and morphodynamics. The main objective of this paper is to identify the effects of hydropower development, flood protection and engineering works for navigation on the Danube and to examine specific impacts of these developments on sediment transport and river morphology. Whereas impoundments are characterised by deposition and an excess of sediment with remobilisation of fine sediments during severe floods, the remaining five free flowing sections of the Danube are experiencing river bed erosion of the order of several centimetres per year. Besides the effect of interruption of the sediment continuum, river bed degradation is caused by an increase in the sediment transport capacity following an increase in slope, a reduction of river bed width due to canalisation, prohibition of bank erosion by riprap or regressive erosion following base level lowering by flood protection measures and sediment dredging. As a consequence, the groundwater table is lowered, side-arms are disconnected, instream structures are lost and habitat quality deteriorates affecting the ecological status of valuable floodplains. The lack of sediments, together with cutting off meanders, leads also to erosion of the bed of main arms in the Danube Delta and coastal erosion. This paper details the causes and effects of river engineering measures and hydromorphological changes for the Danube. It highlights the importance of adopting a basin-wide holistic approach to river management and demonstrates that past management in the basin has been characterised by a lack of integration. To-date insufficient attention has been paid to the wide-ranging impacts of river engineering works throughout the basin: from the basin headwaters to the Danube Delta, on the Black Sea coast. This highlights the importance of new initiatives that seek to advance knowledge

  15. Nutrient Sources and Transport in the Missouri River Basin, with Emphasis on the Effects of Irrigation and Reservoirs.

    PubMed

    Brown, Juliane B; Sprague, Lori A; Dupree, Jean A

    2011-10-01

    SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River. PMID:22457581

  16. Nutrient Sources and Transport in the Missouri River Basin, with Emphasis on the Effects of Irrigation and Reservoirs1

    PubMed Central

    Brown, Juliane B; Sprague, Lori A; Dupree, Jean A

    2011-01-01

    Abstract SPAtially Referenced Regressions On Watershed attributes (SPARROW) models were used to relate instream nutrient loads to sources and factors influencing the transport of nutrients in the Missouri River Basin. Agricultural inputs from fertilizer and manure were the largest nutrient sources throughout a large part of the basin, although atmospheric and urban inputs were important sources in some areas. Sediment mobilized from stream channels was a source of phosphorus in medium and larger streams. Irrigation on agricultural land was estimated to decrease the nitrogen load reaching the Mississippi River by as much as 17%, likely as a result of increased anoxia and denitrification in the soil zone. Approximately 16% of the nitrogen load and 33% of the phosphorus load that would have otherwise reached the Mississippi River was retained in reservoirs and lakes throughout the basin. Nearly half of the total attenuation occurred in the eight largest water bodies. Unlike the other major tributary basins, nearly the entire instream nutrient load leaving the outlet of the Platte and Kansas River subbasins reached the Mississippi River. Most of the larger reservoirs and lakes in the Platte River subbasin are upstream of the major sources, whereas in the Kansas River subbasin, most of the source inputs are in the southeast part of the subbasin where characteristics of the area and proximity to the Missouri River facilitate delivery of nutrients to the Mississippi River. PMID:22457581

  17. Distributions of phosphorus fractions in the sediments of a river-lake system: a case study in Huai River catchment area, China.

    PubMed

    Jingqiu, Piao; Changyuan, Tang; Xianfang, Song

    2015-01-01

    Phosphorus (P) forms, with respect to sediment characteristics, and an in-stream sluice were studied in the river-lake system, Huai River catchment area, China. The mean of total P in sediments in the mainstream of the Huai River was higher than that in the Hongze Lake. It was found that P fractions varied in the sediments throughout the river and lake. Detrital-P was the dominant P fraction in the mainstream and organic P and detrital-P were the dominant P fractions in the lake, which could indicate: biologically available and non-biologically available forms. Useful information for the interpretation of P fractions could also be obtained from major sediment characteristics. Whether the relations between P fractions and grain size characteristics were significant or weak, 0.125 mm was a threshold grain size for P fraction distribution in sediment. In addition, the Bengbu Sluice, one of the most important in-stream facilities in the Huai River catchment area, regulated not only the transport of P in sediments upstream and downstream of the sluice, but also the distribution of P fractions in the river-lake system. Therefore, it was confirmed that nutrient loadings could be prevented from reaching the watershed, as well as improved ecological diversity by integrating sluice operation. PMID:26287843

  18. Multivariate Analysis of In-stream Nutrient Loads and Salinity for a Large Regional Basin in Australia

    NASA Astrophysics Data System (ADS)

    Versace, V.; Ierodiaconou, D.; Stagnitti, F.; Leblanc, M.; March, T.; Salzman, S.

    2004-12-01

    The Glenelg-Hopkins area is a large regional watershed in south-west Victoria, Australia (Area : ~30,000 km2). The region delivers many socio-economic benefits with extensive national park systems as well as playing a major role in Australian agriculture. Within the region extensive clearing of native vegetation has led to a decline in water quality including increased solute loads and salinisation. The relationships between patterns in land use and total in-stream phosphorus (TP), total nitrogen (TN) loads and salt concentration (indicated by EC) is investigated. Multi-temporal satellite imagery was interpreted and water quality data analysed from 5 available gauge stations within the Glenelg-Hopkins region. Geographical Information Systems (GIS) were used to analyse spatial variations of land use for corresponding gauging stations in the catchment. Multiple regression analysis for a wide range of catchment characteristics was applied with spatial analysis to predict total stream nutrients and salt concentration. The multiple regression analysis demonstrated that the variables, Dryland pasture, Areas subject to inundation, Agricultural land on greater than 3 percent slope and the Ratio of Agriculture to Native vegetation were most strongly related to TP and TN loads. The regression model for salt concentration shows Native Vegetation, Bluegum Plantations, Dryland Cropping and Irrigated Horticulture were the significant explanatory variables. This study shows strong relationships between in-stream water quality parameters and a selected set of watershed attributes easily determined from satellite images.

  19. Environmental mitigation at hydroelectric projects: Volume 1. Current practices for instream flow needs, dissolved oxygen, and fish passage

    SciTech Connect

    Sale, M. J.; Cada, G. F.; Chang, L. H.; Christensen, S. W.; Railsback, S. F.; Francfort, J. E.; Rinehart, B. N.; Sommers, G. L.

    1991-12-01

    The first report of the Environmental Study examines current mitigation practices for water quality [specifically, dissolved oxygen (DO)], instream flows, and upstream and downstream fish passage. This review describes information on the types and frequency of mitigations methods in use, their environmental benefits and effectiveness, and their environmental benefits and effectiveness, and their costs. Information on mitigation practices was obtained directly from three sources: (a) existing records from the Federal Energy Regulatory Commission (FERC), (b) new information provided by nonfederal hydropower developers, and (c) new information obtained from the state and federal natural resource agencies involved in hydropower regulation. Information on specific mitigation practices was obtained from 280 projects, more than 40% of all the projects licensed during the 1980s that were identified a priori as having the mitigation requirements of interest. Of all projects receiving FERC licenses or license exemptions since 1980, instream flow requirements are the most common mitigation requirement, followed by requirements for downstream fish passage, DO protection, and upstream fish passage facilities. The proportion of projects with environmental mitigation requirements has increased significantly during the past decade.

  20. Attraction to and Avoidance of instream Hydrokinetic Turbines by Freshwater Aquatic Organisms

    SciTech Connect

    Cada, Glenn F; Bevelhimer, Mark S

    2011-05-01

    The development of hydrokinetic (HK) energy projects is under consideration at over 150 sites in large rivers in the United States, including the Mississippi, Ohio, Tennessee, and Atchafalaya Rivers. These waterbodies support numerous fish species that might interact with the HK projects in a variety of ways, e.g., by attraction to or avoidance of project structures. Although many fish species inhabit these rivers (about 172 species in the Mississippi River alone), not all of them will encounter the HK projects. Some species prefer low-velocity, backwater habitats rather than the high-velocity, main channel areas that would be the best sites for HK. Other, riverbank-oriented species are weak swimmers or too small to inhabit the main channel for significant periods of time. Some larger, main channel fish species are not known to be attracted to structures. Based on a consideration of habitat preferences, size/swim speed, and behavior, fish species that are most likely to be attracted to HK structures in the main channel include carps, suckers, catfish, white bass, striped bass, smallmouth bass, spotted bass, and sauger. Proper siting of the project in order to avoid sensitive fish populations, backwater and fish nursery habitat areas, and fish migration corridors will likely minimize concerns about fish attraction to or avoidance of HK structures.

  1. Modeling Fluvial Response to In-stream Woody Vegetation: Implications for Stream Corridor Restoration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    River restoration and bank stabilization programs often use vegetation for improving stream corridor habitat, aesthetic, and function. Yet no study has examined the use of managed vegetation plantings to transform a straight, degraded stream corridor into a more functional, aesthetically-pleasing m...

  2. ECOREGIONAL INFLUENCES ON WATERSHED LAND COVER, WATER QUALITY, AND IN-STREAM BIOLOGY

    EPA Science Inventory

    Omernik's ecoregions were developed to serve as a spatial framework for environmental monitoring and research. We examined the biology and chemistry in 35 headwater streams in the Little Miami River (LMR) of Ohio to determine whethEr there were real differences among three ecore...

  3. ESTIMATION OF TOTAL DISSOLVED NITRATE LOAD IN NATURAL STREAM FLOWS USING AN IN-STREAM MONITOR

    EPA Science Inventory

    Estuaries respond rapidly to rain events and the nutrients carried by inflowing rivers such that discrete samples at weekly or monthly intervals are inadequate to catch the maxima and minima in nutrient variability. To acquire data with sufficient sampling frequency to realistica...

  4. Wind River subbasin restoration: Annual report of U.S. Geological Survey activities January 2014 through December 2014

    USGS Publications Warehouse

    Jezorek, Ian G.; Connolly, Patrick J.

    2015-01-01

    Evaluating restoration efforts is of interest to many managers and agencies so that funding and time are allocated for best results. The evaluation of various life-histories of Lower Columbia River steelhead within the Wind River subbasin provides information to better track populations, and more effectively direct habitat restoration and water allocation planning. Increasingly detailed Viable Salmonid Population information (Crawford and Rumsey 2009), such as that provided by PIT-tagging and instream PTISs networks like those we build and operate in the Wind River subbasin, provide data to better inform policy and management, as life-history strategies and production bottlenecks are identified and understood.

  5. Beyond Rating Curves: Time Series Models for in-Stream Turbidity Prediction

    NASA Astrophysics Data System (ADS)

    Wang, L.; Mukundan, R.; Zion, M.; Pierson, D. C.

    2012-12-01

    The New York City Department of Environmental Protection (DEP) manages New York City's water supply, which is comprised of over 20 reservoirs and supplies over 1 billion gallons of water per day to more than 9 million customers. DEP's "West of Hudson" reservoirs located in the Catskill Mountains are unfiltered per a renewable filtration avoidance determination granted by the EPA. While water quality is usually pristine, high volume storm events occasionally cause the reservoirs to become highly turbid. A logical strategy for turbidity control is to temporarily remove the turbid reservoirs from service. While effective in limiting delivery of turbid water and reducing the need for in-reservoir alum flocculation, this strategy runs the risk of negatively impacting water supply reliability. Thus, it is advantageous for DEP to understand how long a particular turbidity event will affect their system. In order to understand the duration, intensity and total load of a turbidity event, predictions of future in-stream turbidity values are important. Traditionally, turbidity predictions have been carried out by applying streamflow observations/forecasts to a flow-turbidity rating curve. However, predictions from rating curves are often inaccurate due to inter- and intra-event variability in flow-turbidity relationships. Predictions can be improved by applying an autoregressive moving average (ARMA) time series model in combination with a traditional rating curve. Since 2003, DEP and the Upstate Freshwater Institute have compiled a relatively consistent set of 15-minute turbidity observations at various locations on Esopus Creek above Ashokan Reservoir. Using daily averages of this data and streamflow observations at nearby USGS gauges, flow-turbidity rating curves were developed via linear regression. Time series analysis revealed that the linear regression residuals may be represented using an ARMA(1,2) process. Based on this information, flow-turbidity regressions with

  6. Quantitative assessment of future development of cooper/silver resources in the Kootenai National Forest, Idaho/Montana: Part I-Estimation of the copper and silver endowments

    USGS Publications Warehouse

    Spanski, G.T.

    1992-01-01

    Faced with an ever-increasing diversity of demand for the use of public lands, managers and planners are turning more often to a multiple-use approach to meet those demands. This approach requires the uses to be mutually compatible and to utilize the more valuable attributes or resource values of the land. Therefore, it is imperative that planners be provided with all available information on attribute and resource values in a timely fashion and in a format that facilitates a comparative evaluation. The Kootenai National Forest administration enlisted the U.S. Geological Survey and U.S. Bureau of Mines to perform a quantitative assessment of future copper/silver production potential within the forest from sediment-hosted copper deposits in the Revett Formation that are similar to those being mined at the Troy Mine near Spar Lake. The U.S. Geological Survey employed a quantitative assessment technique that compared the favorable host terrane in the Kootenai area with worldwide examples of known sediment-hosted copper deposits. The assessment produced probabilistic estimates of the number of undiscovered deposits that may be present in the area and of the copper and silver endowment that might be contained in them. Results of the assessment suggest that the copper/silver deposit potential is highest in the southwestern one-third of the forest. In this area there is an estimated 50 percent probability of at least 50 additional deposits occurring mostly within approximately 260,000 acres where the Revett Formation is thought to be present in the subsurface at depths of less than 1,500 meters. A Monte Carlo type simulation using data on the grade and tonnage characteristics of other known silver-rich, sediment-hosted copper deposits predicts a 50 percent probability that these undiscovered deposits will contain at least 19 million tonnes of copper and 100,000 tonnes of silver. Combined with endowments estimated for identified, but not thoroughly explored deposits, and

  7. Transport of nitrate and ammonium during stream flow events from a southeastern USA Coastal Plain in-stream wetland - 1997 to 1999

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In-stream wetlands (ISW) intercept stream water and act as nitrogen (N) sinks influencing nitrate and ammonium export to downstream aquatic ecosystems. Nitrogen assimilation and storage by ISW, however, can be affected by storm flows, seasonal changes in water quality or shifts in N pools, resulting...

  8. Advancing the Food-Energy-Water Nexus: Closing Nutrient Loops in Arid River Corridors.

    PubMed

    Mortensen, Jacob G; González-Pinzón, Ricardo; Dahm, Clifford N; Wang, Jingjing; Zeglin, Lydia H; Van Horn, David J

    2016-08-16

    Closing nutrient loops in terrestrial and aquatic ecosystems is integral to achieve resource security in the food-energy-water (FEW) nexus. We performed multiyear (2005-2008), monthly sampling of instream dissolved inorganic nutrient concentrations (NH4-N, NO3-N, soluble reactive phosphorus-SRP) along a ∼ 300-km arid-land river (Rio Grande, NM) and generated nutrient budgets to investigate how the net source/sink behavior of wastewater and irrigated agriculture can be holistically managed to improve water quality and close nutrient loops. Treated wastewater on average contributed over 90% of the instream dissolved inorganic nutrients (101 kg/day NH4-N, 1097 kg/day NO3-N, 656 kg/day SRP). During growing seasons, the irrigation network downstream of wastewater outfalls retained on average 37% of NO3-N and 45% of SRP inputs, with maximum retention exceeding 60% and 80% of NO3-N and SRP inputs, respectively. Accurate quantification of NH4-N retention was hindered by low loading and high variability. Nutrient retention in the irrigation network and instream processes together limited downstream export during growing seasons, with total retention of 33-99% of NO3-N inputs and 45-99% of SRP inputs. From our synoptic analysis, we identify trade-offs associated with wastewater reuse for agriculture within the scope of the FEW nexus and propose strategies for closing nutrient loops in arid-land rivers. PMID:27438783

  9. Balancing power production and instream flow regime for small scale hydropower

    NASA Astrophysics Data System (ADS)

    Perona, P.; Gorla, L.; Characklis, G. W.

    2013-12-01

    Flow diversion from river and torrent main stems is a common practice to feed water uses such run-of-river and mini-hydropower, irrigation, etc. Considering the worldwide increasing water demand, it becomes mandatory to take the importance of riparian ecosystems and related biodiversity into account before starting such practices. In this paper, we use a simple hydro-economic model (Perona et al., 2013, Gorla and Perona, 2013) to show that redistribution policies at diversion nodes allow for a clear bio-economic interpretation of residual flows. This model uses the Principle of Equal Marginal Utility (PEMU) as optimal water allocation rule for generating natural-like flow releases while maximizing the aggregated economic benefits of both the riparian environment and the traditional use (e.g., hydropower). We show that both static and dynamic release polices such Minimal Flow, and Proportional/Non-proportional Repartitions, respectively, can all be represented in terms of PEMU, making explicit the value of the ecosystem health underlying each policy. The related ecological and economical performances are evaluated by means of hydrological/ecological indicators. We recommend taking this method into account as a helpful tool guiding political, economical and ecological decisions when replacing the inadequate concept of Minimum Flow Requirement (MFR) with dynamic ones. References Perona, P., D. Dürrenmatt and G. Characklis (2013) Obtaining natural-like flow releases in diverted river reaches from simple riparian benefit economic models. Journal of Environmental Management, 118: 161-169, http://dx.doi.org/10.1016/j.jenvman.2013.01.010 Gorla, L. and P. Perona (2013) On quantifying ecologically sustainable flow releases in a diverted river reach. Journal of Hydrology, 489: 98- 107, http://dx.doi.org/10.1016/j.jhydrol.2013.02.043

  10. Evaluation of ecological instream flow using multiple ecological indicators with consideration of hydrological alterations

    NASA Astrophysics Data System (ADS)

    Zhang, Qiang; Gu, Xihui; Singh, Vijay P.; Chen, Xiaohong

    2015-10-01

    Dam-induced hydrological alterations and related ecological problems have been arousing considerable concern from hydrologists, ecologists, and policy-makers. The East River basin in China is the major provider of water resources for mega-cities within the Pearl River Delta and meets 80% of annual water demand of Hong Kong. In this study, ecodeficit and ecosurplus were analyzed to determine the ecological impact of water impoundments. Also, Do and DHRAM were employed to evaluate the degree of alteration of hydrological regimes, and ERHIs were analyzed to evaluate the influence of hydrological alterations on ecological diversity. Results indicate that: (1) the magnitude and frequency of high flows decrease and those of low flows increase due to the regulation of reservoirs; (2) variations of annual ecosurplus are mainly the result of precipitation changes and the annual ecodeficit is significantly influenced by reservoirs. However, ecodeficit and ecosurplus in other seasons, particularly autumn and winter, are more influenced by reservoir regulation; (3) impacts of reservoirs on hydrological regimes and eco-flow regimes are different from one station to another due to different degrees of influence of reservoirs on hydrological processes at different stations. The longer the distance between a reservoir and a hydrological station is, the weaker the influence the water reservoir has on the hydrological processes; (4) ecodeficit and ecosurplus can be accepted in the evaluation of alterations of hydrological processes at annual and seasonal time scales. Results of Shannon Index indicate decreasing biological diversity after the construction of water reservoirs, implying negative impacts of water reservoirs on biological diversity of a river basin and this should arouse considerable human concerns. This study provides a theoretical background for water resources management with consideration of eco-flow variations due to reservoir regulation in other highly

  11. The long-term effects of invasive signal crayfish (Pacifastacus leniusculus) on instream macroinvertebrate communities.

    PubMed

    Mathers, Kate L; Chadd, Richard P; Dunbar, Michael J; Extence, Chris A; Reeds, Jake; Rice, Stephen P; Wood, Paul J

    2016-06-15

    Non-native species represent a significant threat to indigenous biodiversity and ecosystem functioning worldwide. It is widely acknowledged that invasive crayfish species may be instrumental in modifying benthic invertebrate community structure, but there is limited knowledge regarding the temporal and spatial extent of these effects within lotic ecosystems. This study investigates the long term changes to benthic macroinvertebrate community composition following the invasion of signal crayfish, Pacifastacus leniusculus, into English rivers. Data from long-term monitoring sites on 7 rivers invaded by crayfish and 7 rivers where signal crayfish were absent throughout the record (control sites) were used to examine how invertebrate community composition and populations of individual taxa changed as a result of invasion. Following the detection of non-native crayfish, significant shifts in invertebrate community composition were observed at invaded sites compared to control sites. This pattern was strongest during autumn months but was also evident during spring surveys. The observed shifts in community composition following invasion were associated with reductions in the occurrence of ubiquitous Hirudinea species (Glossiphonia complanata and Erpobdella octoculata), Gastropoda (Radix spp.), Ephemeroptera (Caenis spp.), and Trichoptera (Hydropsyche spp.); although variations in specific taxa affected were evident between regions and seasons. Changes in community structure were persistent over time with no evidence of recovery, suggesting that crayfish invasions represent significant perturbations leading to permanent changes in benthic communities. The results provide fundamental knowledge regarding non-native crayfish invasions of lotic ecosystems required for the development of future management strategies. PMID:26974569

  12. Fecal Coliform Removal by River Networks

    NASA Astrophysics Data System (ADS)

    Huang, T.; Wollheim, W. M.; Stewart, R. J.

    2015-12-01

    Bacterial pathogens are a major cause of water quality impairment in the United States. Freshwater ecosystems provide the ecosystem service of reducing pathogen levels by diluting and removing pathogens as water flows from source areas through the river network. However, the integration of field-scale monitoring data and watershed-scale hydrologic models to estimate pathogen loads and removal in varied aquatic ecosystems is still limited. In this study we applied a biogeochemical river network model (the Framework for Aquatic Modeling in the Earth System or FrAMES) and utilized available field data the Oyster R. watershed, a small (51.7 km2) draining coastal New Hampshire (NH, USA), to quantify pathogen removal at the river network scale, using fecal coliform as an indicator. The Oyster R. Watershed is comprised of various land use types, and has had its water quality monitored for fecal coliform, dissolved oxygen, and turbidity since 2001. Water samples were also collected during storm events to account for storm responses. FrAMES was updated to incorporate the dominant processes controlling fecal coliform concentrations in aquatic ecosystems: spatially distributed terrestrial loading, in-stream removal, dilution, and downstream transport. We applied an empirical loading function to estimate the terrestrial loading of fecal coliform across flow conditions. Data was collected from various land use types across a range of hydrologic conditions. The loading relationship includes total daily precipitation, antecedent 24-hour rainfall, air temperature, and catchment impervious surface percentage. Attenuation is due to bacterial "die-off" and dilution processes. Results show that fecal coliform input loads varied among different land use types. At low flow, fecal coliform concentrations were similar among watersheds. However, at high flow the concentrations were significantly higher in urbanized watersheds than forested watersheds. The mainstem had lower fecal coliform

  13. Organic carbon transport in the Columbia River

    NASA Astrophysics Data System (ADS)

    Dahm, Clifford N.; Gregory, Stanley V.; Kilho Park, P.

    1981-12-01

    Total organic carbon (TOC) levels in the Columbia River measured monthly from May 1973 to December 1974 ranged from a maximum of 270 μmol l -1 during late spring and early summer to a minimum of 150 μmol l -1 during late autumn. Sampling locations were directly behind the spillway at the Bonneville Dam, 230 km upstream, and at Kalama, Washington, 128km upstream from the river mouth. The average annual TOC contribution from the Columbia River drainage to the north-eastern Pacific is 4·9×10 10 mol with an average concentration of approximately 195μmol l -1. Of this TOC annual export, 89% is dissolved organic carbon (DOC) and 11% is particulate organic carbon (OOC). The TOC and DOC levels were most highly correlated with increased oxygen saturation and dischange, while POC correlated more closely to high instream primary productivy as indicated by higher pH and oxygen supersaturation. Variability of DOC in the main channel of the Columbia River from Portland, Oregon, to the estuary during a June 1974 cruise was minimal. The DOC concentrations ranged from 221-260 μmol l -1 with no significant upstream or downstream gradients. Diel variation also was slight, varying randomly during 24h between 235-257 μmol l -1. The relative annual constancy of the DOC is indicative of the refractory nature of a significant proportion of the dissolved organic load of the Columbia River.

  14. Investigations on the Influence of the In-Stream Pylon and Strut on the Performance of a Scramjet Combustor

    PubMed Central

    Liu, Weidong; Sun, Mingbo

    2014-01-01

    The influence of the in-stream pylon and strut on the performance of scramjet combustor was experimentally and numerically investigated. The experiments were conducted with a direct-connect supersonic model combustor equipped with multiple cavities. The entrance parameter of combustor corresponds to scramjet flight Mach number 4.0 with a total temperature of 947 K. The research results show that, compared with the scramjet combustor without pylon and strut, the wall pressure and the thrust of the scramjet increase due to the improvement of mixing and combustion effect due to the pylon and strut. The total pressure loss caused by the strut is considerable whereas pylon influence is slight. PMID:25254234

  15. Hydrokinetic Resource Characterization on the Tanana River Near Nenana, Alaska

    NASA Astrophysics Data System (ADS)

    Toniolo, H.; Duvoy, P.; Schmid, J.; Johnson, J.

    2012-12-01

    The field of hydrokinetics, in general, is developing rapidly due to high fossil fuel costs and the desire to use renewable energy sources to reduce greenhouse gases. Alaska, in particular, has tidal and in-stream hydrokinetic resources. This presentation focuses on resource characterization in rivers; specifically, the Tanana River near Nenana, Alaska. We present a comprehensive approach to characterize the existing resource and the conditions for installing hydrokinetic devices. The methodology includes: a) extensive field measurements, b) numerical modeling, and c) turbulence analysis. Field work efforts involve bathymetric surveys, velocity measurements, and sediment sampling. Modeling encompasses an existing 2D-dimensional hydrodynamic model, and the calculation of power density along the river reach. Turbulence analysis provides insights on channel stability and energy partition. As results of this combined research approach, preliminary sediment-rating curves were developed, distribution of available power density was calculated and possible sites for turbine deployment were defined.

  16. In-stream biotic control on nutrient biogeochemistry in a forested sheadwater tream, West Fork of Walker Branch

    SciTech Connect

    Roberts, Brian J; Mulholland, Patrick J

    2007-01-01

    A growing body of evidence demonstrates the importance of in-stream processing in regulating nutrient export, yet the influence of temporal variability in stream metabolism on net nutrient uptake has not been explicitly addressed. Streamwater DIN and SRP concentrations in Walker Branch, a first-order deciduous forest stream in eastern Tennessee, show a repeated pattern of annual maxima in summer and biannual minima in spring and autumn. Temporal variations in catchment hydrologic flowpaths result in lower winter and higher summer nutrient concentrations, but do not explain the spring and autumn nutrient minima. Ambient nutrient uptake rates were measured 2-3 times per week over an 18-mo period and compared to daily rates of gross primary production (GPP) and ecosystem respiration (ER) to examine the influence of in-stream biotic activity on nutrient export. GPP and ER rates explained 85% of the variation in net DIN retention with high net NO3- uptake (and lower net NH4+ release) rates occurring during spring and autumn and net DIN release in summer. Diel nutrient concentration patterns were examined several times throughout the year to determine the relative importance of autotrophic and heterotrophic activity on net nutrient uptake. High spring GPP corresponded to daily decreases in NO3- over the illuminated hours resulting in high diel NO3- amplitude which dampened as the canopy closed. GPP explained 91% of the variance in diel NO3- amplitude. In contrast, the autumn nutrient minima was largely explained by heterotrophic respiration since GPP remained low and little diel NO3- variation was observed during the autumn.

  17. Valley-fill sandstones in the Kootenai Formation on the Crow Indian Reservation, south-central Montana. Quarterly report, October 1--December 31, 1996

    SciTech Connect

    Lopez, D.A.

    1997-01-03

    Field investigation of the Kootenai valley-fill sandstones was begun in the first quarter. About one half of the outcrop belt was inventoried for occurrences of channel sandstone before heavy snows came to the area. Five exposures of valley-fill sandstone have been located, of these two are 15 meters (50 feet) or greater in thickness and have excellent porosity and permeability. These will be measured and studied in detail during the next field season (1997). No further field work was possible during the second quarter because of snow cover. Subsurface data is being collected, organized, and a digital database is being prepared for the project. A collection of most of the oil and gas well logs for the Crow Reservation area was donated to the project by a company that had initiated an exploration program on the reservoir several years ago. Geographix petroleum software will probably be used to manage and manipulate the data. Regional subsurface cross sections are being constructed for correlation purposes. All of the four 30 ft. x 60 ft. geologic quadrangles, the Billings, Bridger, Hardin, and Lodge Grass, have been scanned to produce a digital surface geologic data base for the Crow Reservation. These maps are currently being proofed and edited for accuracy.

  18. Incorporating groundwater-surface water interaction into river management models.

    PubMed

    Valerio, Allison; Rajaram, Harihar; Zagona, Edith

    2010-01-01

    Accurate representation of groundwater-surface water interactions is critical to modeling low river flows in the semi-arid southwestern United States. Although a number of groundwater-surface water models exist, they are seldom integrated with river operation/management models. A link between the object-oriented river and reservoir operations model, RiverWare, and the groundwater model, MODFLOW, was developed to incorporate groundwater-surface water interaction processes, such as river seepage/gains, riparian evapotranspiration, and irrigation return flows, into a rule-based water allocations model. An explicit approach is used in which the two models run in tandem, exchanging data once in each computational time step. Because the MODFLOW grid is typically at a finer resolution than RiverWare objects, the linked model employs spatial interpolation and summation for compatible communication of exchanged variables. The performance of the linked model is illustrated through two applications in the Middle Rio Grande Basin in New Mexico where overappropriation impacts endangered species habitats. In one application, the linked model results are compared with historical data; the other illustrates use of the linked model for determining management strategies needed to attain an in-stream flow target. The flows predicted by the linked model at gauge locations are reasonably accurate except during a few very low flow periods when discrepancies may be attributable to stream gaging uncertainties or inaccurate documentation of diversions. The linked model accounted for complex diversions, releases, groundwater pumpage, irrigation return flows, and seepage between the groundwater system and canals/drains to achieve a schedule of releases that satisfied the in-stream target flow. PMID:20412319

  19. Maps and geospatial data for the Shorty’s Island and Myrtle Bend substrate enhancement pilot projects, Kootenai River near Bonners Ferry, Idaho, 2014

    USGS Publications Warehouse

    Fosness, Ryan L.

    2014-01-01

    This report presents the methods used to develop georeferenced portable document format maps and geospatial data that describe spawning locations and physical habitat characteristics (including egg mat locations, bathymetry, surficial sediment facies, and streamflow velocity) within the substrate enhancement pilot project study area. The results are presented as two maps illustrating the physical habitat characteristics along with proposed habitat enhancement areas, aerial imagery, and hydrography. The results of this study will assist researchers, policy makers, and management agencies in deciding the spatial location and extent of the substrate enhancement pilot project.

  20. Assessing patterns of bed-material storage and flux on a mixed bedrock-alluvium river: Umpqua River Oregon, USA

    NASA Astrophysics Data System (ADS)

    Wallick, R.; Anderson, S.; Keith, M.; Cannon, C.; O'Connor, J. E.

    2010-12-01

    Gravel bed rivers in the Pacific Northwest and elsewhere provide an important source of commercial aggregate. Mining in-stream gravel, however, can alter channel and bar morphology, resulting in habitat degradation for aquatic species. In order to sustainably manage rivers subject to in-stream gravel extraction, regulatory agencies in Oregon have requested that the USGS complete a series of comprehensive geomorphic and sediment transport studies to provide context for regulatory-agency management of in-stream gravel extraction in Oregon streams. The Umpqua River in western Oregon poses special challenges to this type of assessment. Whereas most rivers subject to gravel extraction are relatively rich in bed-material sediment, the Umpqua River is a mixed bedrock-alluvium system draining a large (1,804 km2) basin; hence typical bed-material transport analyses and ecologic and geomorphic lessons of in-stream gravel extraction on more gravel-rich rivers have limited applicability. Consequently, we have relied upon multiple analyses, including comprehensive historical mapping, bedload transport modeling, and a GIS-based sediment yield analysis to assess patterns of bed-material transport and annual rates of bed-material flux. These analyses, combined with numerous historical accounts, indicate that since at least the 1840’s, the Umpqua River planform has been stable, as bar geometry is largely fixed by valley physiography and the channel itself is underlain mainly by bedrock. Preliminary estimates of annual bedload transport rates calculated for the period 1951-2008 from bed-material transport capacity relations at 42 bars along the South Umpqua and mainstem Umpqua Rivers vary from 0 to 600,000 metric tons per year, with this large spread reflecting variability in bar geometry and grainsize. Large stable bars are activated only during exceptionally large floods and have negligible transport during most years whereas smaller, low elevation bars serve as transient

  1. Temporal scale-induced uncertainty in load duration curves for instream-dissolved oxygen.

    PubMed

    Patil, Abhijit; Deng, Zhiqiang; Malone, Ronald F

    2013-02-01

    Load duration curves were developed using the Hydrological Simulation Program FORTRAN (HSPF) for dissolved oxygen (DO) for the Amite River in Louisiana, USA. The concept of 'dissolved oxygen reserve', defined as the total quantity of DO, is introduced. The effect of temporal resolution on duration curves of DO reserve was examined using duration curves developed based on daily, weekly, biweekly, and monthly average data. Duration curves for DO exhibited high variability in the load estimated using daily data as compared to those based on biweekly and monthly data. A seasonal analysis revealed the trend in the DO reserve. The daily DO reserve for the Amite River at Port Vincent was 44,049.31 kg when daily summer data were used and 74,255.15 kg for daily annual data. A surplus of 10,691 kg of DO reserve was shown in the monthly data during critical summer months. The coefficient of variation (CV), used to define the temporal scale-induced uncertainty, was found to be linearly and inversely correlated with the logarithm of the time scale. Regression equations were developed to extrapolate near real-time flow and water quality data, greatly simplifying flow and water quality monitoring and reducing the cost involved in flow and water quality monitoring. PMID:22623167

  2. Data for selected gaging stations in the upper Red River of the North Basin in Minnesota, September 2001 through September 2003

    USGS Publications Warehouse

    Damschen, William C.; Nustad, Rochelle A.

    2005-01-01

    Surface-water and water-quality data were collected to use in development of upper Red River of the North Basin Total Maximum Daily Loads (TMDLs). This report presents the data that were collected. During September 2001 through September 2003, data were collected at 13 selected gaging stations in the upper Red River of the North Basin. Continuous streamflow data were collected at three of the gaging stations. Water-quality samples were collected at all 13 gaging stations; and, simultaneous with sample collection, in-stream specific conductance, pH, water temperature, dissolved oxygen, and turbidity were measured. Samples were analyzed for selected nutrients, selected bacteria, chlorophyll a, and suspended sediment. Continuous in-stream water-quality monitors were installed at two gaging stations to measure specific conductance, pH, water temperature, dissolved oxygen, and turbidity.

  3. The river as a chemostat: fresh perspectives on dissolved organic matter flowing down the river continuum

    USGS Publications Warehouse

    Creed, Irena F.; McKnight, Diane M.; Pellerin, Brian; Green, Mark B.; Bergamaschi, Brian; Aiken, George R.; Burns, Douglas A.; Findlay, Stuart E G; Shanley, James B.; Striegl, Rob; Aulenbach, Brent T.; Clow, David W.; Laudon, Hjalmar; McGlynn, Brian L.; McGuire, Kevin J.; Smith, Richard A.; Stackpoole, Sarah M.

    2015-01-01

    A better understanding is needed of how hydrological and biogeochemical processes control dissolved organic carbon (DOC) concentrations and dissolved organic matter (DOM) composition from headwaters downstream to large rivers. We examined a large DOM dataset from the National Water Information System of the US Geological Survey, which represents approximately 100 000 measurements of DOC concentration and DOM composition at many sites along rivers across the United States. Application of quantile regression revealed a tendency towards downstream spatial and temporal homogenization of DOC concentrations and a shift from dominance of aromatic DOM in headwaters to more aliphatic DOM downstream. The DOC concentration–discharge (C-Q) relationships at each site revealed a downstream tendency towards a slope of zero. We propose that despite complexities in river networks that have driven many revisions to the River Continuum Concept, rivers show a tendency towards chemostasis (C-Q slope of zero) because of a downstream shift from a dominance of hydrologic drivers that connect terrestrial DOM sources to streams in the headwaters towards a dominance of instream and near-stream biogeochemical processes that result in preferential losses of aromatic DOM and preferential gains of aliphatic DOM.

  4. Measuring and modeling multidimensional dispersion in a meandering river

    NASA Astrophysics Data System (ADS)

    Logan, B. L.; Nelson, J. M.; Runkel, R. L.; McDonald, R. R.

    2009-04-01

    As part of a study to separate and characterize the active and passive components of sturgeon larval dispersal in a large river, we made detailed measurements of the dispersion of a large pulse of Rhodamine dye injected at a single upstream point. The study occurred on the Kootenai River, USA, a 200m-wide meandering river with an unusually low gradient, 2x10-5, and an average depth of 5 m at the moderate study flow of 271 m3/s. For the first 14 river kilometers downstream from the injection site, a detailed concentration data set describing the spatial and temporal evolution of the dye pulse was obtained using GPS receivers and high-accuracy fluorometers mounted on several boats. Beyond this initial reach, the dye was predominantly well-mixed in the cross-stream direction except near the leading and trailing edges of the pulse, and only longitudinal dispersion was measured. These measurements were made at a series of 11 fixed locations for an additional 45 river kilometers downstream, at which point peak dye concentrations were near the detection limit. Even for a relatively simple channel, the data indicate that local topography and bank irregularity exert a strong influence on the distribution of dye. While most of the dye pulse was apparently well mixed in the cross-stream and vertical directions, deep pools and lateral separation zones produced complex 3-dimensional structure in the concentration field, especially at the leading edge of the dye pulse. The dispersion data show that travel times in different reaches were more variable than predicted by a simple 1-dimensional model. Comparisons of the field data with results from multidimensional computational models indicate that uncommon channel features play a disproportionately important role in determining the storage and subsequent release of constituents that are passively advected and diffused.

  5. Pseudo-spectral methodology for a quantitative assessment of the cover of in-stream vegetation in small streams

    NASA Astrophysics Data System (ADS)

    Hershkovitz, Yaron; Anker, Yaakov; Ben-Dor, Eyal; Schwartz, Guy; Gasith, Avital

    2010-05-01

    In-stream vegetation is a key ecosystem component in many fluvial ecosystems, having cascading effects on stream conditions and biotic structure. Traditionally, ground-level surveys (e.g. grid and transect analyses) are commonly used for estimating cover of aquatic macrophytes. Nonetheless, this methodological approach is highly time consuming and usually yields information which is practically limited to habitat and sub-reach scales. In contrast, remote-sensing techniques (e.g. satellite imagery and airborne photography), enable collection of large datasets over section, stream and basin scales, in relatively short time and reasonable cost. However, the commonly used spatial high resolution (1m) is often inadequate for examining aquatic vegetation on habitat or sub-reach scales. We examined the utility of a pseudo-spectral methodology, using RGB digital photography for estimating the cover of in-stream vegetation in a small Mediterranean-climate stream. We compared this methodology with that obtained by traditional ground-level grid methodology and with an airborne hyper-spectral remote sensing survey (AISA-ES). The study was conducted along a 2 km section of an intermittent stream (Taninim stream, Israel). When studied, the stream was dominated by patches of watercress (Nasturtium officinale) and mats of filamentous algae (Cladophora glomerata). The extent of vegetation cover at the habitat and section scales (100 and 104 m, respectively) were estimated by the pseudo-spectral methodology, using an airborne Roli camera with a Phase-One P 45 (39 MP) CCD image acquisition unit. The swaths were taken in elevation of about 460 m having a spatial resolution of about 4 cm (NADIR). For measuring vegetation cover at the section scale (104 m) we also used a 'push-broom' AISA-ES hyper-spectral swath having a sensor configuration of 182 bands (350-2500 nm) at elevation of ca. 1,200 m (i.e. spatial resolution of ca. 1 m). Simultaneously, with every swath we used an Analytical

  6. Management scenarios for the Jordan River salinity crisis

    USGS Publications Warehouse

    Farber, E.; Vengosh, A.; Gavrieli, I.; Marie, A.; Bullen, T.D.; Mayer, B.; Holtzman, R.; Segal, M.; Shavit, U.

    2005-01-01

    Recent geochemical and hydrological findings show that the water quality of the base flow of the Lower Jordan River, between the Sea of Galilee and the Dead Sea, is dependent upon the ratio between surface water flow and groundwater discharge. Using water quality data, mass-balance calculations, and actual flow-rate measurements, possible management scenarios for the Lower Jordan River and their potential affects on its salinity are investigated. The predicted scenarios reveal that implementation of some elements of the Israel-Jordan peace treaty will have negative effects on the Jordan River water salinity. It is predicted that removal of sewage effluents dumped into the river (???13 MCM/a) will significantly reduce the river water's flow and increase the relative proportion of the saline groundwater flux into the river. Under this scenario, the Cl content of the river at its southern point (Abdalla Bridge) will rise to almost 7000 mg/L during the summer. In contrast, removal of all the saline water (16.5 MCM/a) that is artificially discharged into the Lower Jordan River will significantly reduce its Cl concentration, to levels of 650-2600 and 3000-3500 mg/L in the northern and southern areas of the Lower Jordan River, respectively. However, because the removal of either the sewage effluents or the saline water will decrease the river's discharge to a level that could potentially cause river desiccation during the summer months, other water sources must be allocated to preserve in-stream flow needs and hence the river's ecosystem. ?? 2005 Elsevier Ltd. All rights reserved.

  7. A Regional Assessment of the Effects of Conservation Practices on In-stream Water Quality

    NASA Astrophysics Data System (ADS)

    Garcia, A. M.; Alexander, R. B.; Arnold, J.; Norfleet, L.; Robertson, D. M.; White, M.

    2011-12-01

    The Conservation Effects Assessment Program (CEAP), initiated by USDA Natural Resources Conservation Service (NRCS), has the goal of quantifying the environmental benefits of agricultural conservation practices. As part of this effort, detailed farmer surveys were compiled to document the adoption of conservation practices. Survey data showed that up to 38 percent of cropland in the Upper Mississippi River basin is managed to reduce sediment, nutrient and pesticide loads from agricultural activities. The broader effects of these practices on downstream water quality are challenging to quantify. The USDA-NRCS recently reported results of a study that combined farmer surveys with process-based models to deduce the effect of conservation practices on sediment and chemical loads in farm runoff and downstream waters. As a follow-up collaboration, USGS and USDA scientists conducted a semi-empirical assessment of the same suite of practices using the USGS SPARROW (SPAtially Referenced Regression On Watershed attributes) modeling framework. SPARROW is a hybrid statistical and mechanistic stream water quality model of annual conditions that has been used extensively in studies of nutrient sources and delivery. In this assessment, the USDA simulations of the effects of conservation practices on loads in farm runoff were used as an explanatory variable (i.e., change in farm loads per unit area) in a component of an existing a SPARROW model of the Upper Midwest. The model was then re-calibrated and tested to determine whether the USDA estimate of conservation adoption intensity explained a statistically significant proportion of the spatial variability in stream nutrient loads in the Upper Mississippi River basin. The results showed that the suite of conservation practices that NRCS has catalogued as complete nutrient and sediment management are a statistically significant feature in the Midwestern landscape associated with phosphorous runoff and delivery to downstream waters

  8. Linking catchment and in-stream processes for an integrated simulation of freshwater biota

    NASA Astrophysics Data System (ADS)

    Kiesel, Jens; Hering, Daniel; Jähnig, Sonja; Schmalz, Britta; Fohrer, Nicola

    2015-04-01

    Natural catchments, streams and aquatic diversity are globally degraded due to the impacts of industrial and urban development, as well as the intensification of agriculture. Degradation occurres at different spatial scales and rehabilitation measures are required in both streams and catchments, to improve conditions for the aquatic biota. Models, applied for planning restoration measures, are mostly targeting individual components of the complex chain linking the abiotic and biotic environment; e.g., models might be used just for predicting hydrological or hydraulic variables. Hereby, the cause-effect chain is compromised, which links drivers, pressures, state and impacts of the riverine system. We describe the design of an integrated, GIS-based model system considering the cause-effect chain from the catchment to the stream and aquatic biota. The models require data on climatic and physical catchment properties, and on the geometry and structure of the streams. This enables the assessment of the impact of global change as well as of more regional and local changes on the stream ecosystem on different scales. The approach is based on the Driver-Pressure-State-Impact-(Response) concept and includes the linkage of one ecohydrologic, two hydraulic and two habitat models: The ecohydrologic model SWAT was used for depicting the discharge regime and ero-sion processes controlled by land use and climate on the catchment scale. The discharge and sediment time series resulting from the hydrologic modelling were used for hydraulic simulations on the reach scale. Water depth, flow velocity, substrate changes and sediment transport were simulated in variable resolutions with the hydraulic models HEC-RAS one-dimensionally and with AdH two-dimensionally. Combined with structural river mapping, the temporally and spatially dynamic results of the hydraulic models were used for describing macroinvertebrate habitats. Two independent simulations were carried out: First, the

  9. Characterizing the thermal suitability of instream habitat for salmonids: A cautionary example from the Rocky Mountains

    USGS Publications Warehouse

    Al-Chokhachy, Robert K.; Wegner, Seth J.; Isaak, Daniel J.; Kershner, Jeffrey L.

    2013-01-01

    Understanding a species’ thermal niche is becoming increasingly important for management and conservation within the context of global climate change, yet there have been surprisingly few efforts to compare assessments of a species’ thermal niche across methods. To address this uncertainty, we evaluated the differences in model performance and interpretations of a species’ thermal niche when using different measures of stream temperature and surrogates for stream temperature. Specifically, we used a logistic regression modeling framework with three different indicators of stream thermal conditions (elevation, air temperature, and stream temperature) referenced to a common set of Brook Trout Salvelinus fontinalis distribution data from the Boise River basin, Idaho. We hypothesized that stream temperature predictions that were contemporaneous with fish distribution data would have stronger predictive performance than composite measures of stream temperature or any surrogates for stream temperature. Across the different indicators of thermal conditions, the highest measure of accuracy was found for the model based on stream temperature predictions that were contemporaneous with fish distribution data (percent correctly classified = 71%). We found considerable differences in inferences across models, with up to 43% disagreement in the amount of stream habitat that was predicted to be suitable. The differences in performance between models support the growing efforts in many areas to develop accurate stream temperature models for investigations of species’ thermal niches.

  10. Temporal scale effect of loading data on instream nitrate-nitrogen load computation.

    PubMed

    Patil, Abhijit; Deng, Zhiqiang

    2012-01-01

    The temporal scale effect of loading data on nitrate-nitrogen load computation was examined using outputs of watershed modeling tool Hydrologic Simulation Program-FORTRAN (HSPF) for the Amite River in Louisiana, USA. The daily nitrate-nitrogen concentrations simulated using the HSPF were employed first to obtain daily, weekly, bi-weekly, and monthly average data and then to develop load duration curves for the data with four different temporal scales. The duration curves exhibited high variability in the load estimated using daily data as compared with those based on bi-weekly and monthly data. According to daily data, the nitrate-nitrogen load in the winter was found to be 2,780 kg. The nitrate-nitrogen load decreased with increasing temporal (daily, weekly, bi-weekly, and monthly) scale (commonly used in water quality monitoring) of the data. The coefficient of variation, used to quantify the effect of temporal scale on the load, was found to be linearly and inversely correlated with the logarithm of the time scale. Based on the finding, empirical equations were proposed to extrapolate near real-time data for flow and nitrate-nitrogen, greatly simplifying nutrient monitoring and reducing the cost involved in water quality monitoring. PMID:22678198

  11. Urbanization in a great plains river: Effects on fishes and food webs

    USGS Publications Warehouse

    Eitzmann, J.L.; Paukert, C.P.

    2010-01-01

    Spatial variation of habitat and food web structure of the fish community was investigated at three reaches in the Kansas River, USA to determine if ??13C variability and ??15N values differ longitudinally and are related to urbanization and instream habitat. Fish and macroinvertebrates were collected at three river reaches in the Kansas River classified as the less urbanized reach (no urban in riparian zone; 40% grass islands and sand bars, braided channel), intermediate (14% riparian zone as urban; 22% grass islands and sand bars) and urbanized (59% of riparian zone as urban; 6% grass islands and sand bars, highly channelized) reaches in June 2006. The less urbanized reach had higher variability in ??13C than the intermediate and urbanized reaches, suggesting fish from these reaches utilized a variety of carbon sources. The ??15N also indicated that omnivorous and detritivorous fish species tended to consume prey at higher trophic levels in the less urbanized reach. Channelization and reduction of habitat related to urbanization may be linked to homogenization of instream habitat, which was related to river food webs. ?? 2009.

  12. A two end-member model of wood dynamics in headwater neotropical rivers

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen; Bolton, Susan; Cadol, Daniel; Comiti, Francesco; Goode, Jaime R.; Mao, Luca

    2012-09-01

    SummaryGeomorphic and ecological effects of instream wood have been documented primarily along rivers in the temperate zones. Instream wood loads in tropical rivers might be expected to differ from those in analogous temperate rivers because of the higher transport capacity and higher rates of wood decay in the tropics. We use data from four field sites in Costa Rica and Panama to demonstrate that wood loads are consistently lower in tropical rivers, despite substantial variations among tropical sites as a result of differences in mechanisms of wood recruitment. We develop a model of wood dynamics (recruitment, transport, and retention) based on differences in dominant wood recruitment mechanism. The steady-state end-member reflects sites where gradual recruitment of wood through individual tree fall creates a relatively consistent wood load through time and development of logjams is minimal. The episodic end-member reflects sites dominated by episodic mass recruitment via landslides or blowdowns. This facilitates formation of transient logjams, so that wood loads exhibit substantial spatial and temporal variation along the channel network. The model presented here should also apply to headwater streams in the temperate zone, although existing documentation suggests that jams are more persistent along streams in the temperate zone.

  13. Variability in Response of Instream Habitat, and Fish and Macroinvertebrate Assemblages, to Riparian Forest Harvest in Northern Minnesota

    NASA Astrophysics Data System (ADS)

    Atuke, D. M.; Schlesser, N. J.; Vondracek, B.; Newman, R. M.

    2005-05-01

    We are evaluating the effects of high and low levels of riparian forest harvest, along eight, northern Minnesota streams, on fish and macroinvertebrate assemblages and instream habitat. The study is part of a larger project that includes water quality, vegetation and bird monitoring. Our design pairs streams with a high residual basal area (RBA) and a low RBA treatment. At each stream, control plots with no harvest and no riparian harvest were established and stream reaches were sampled downstream, within and upstream of all plots. Preharvest (2003) and postharvest (2004) data were collected from each stream and compared at the reach level. Fish were collected in one pass with a backpack electroshocker. Benthic macroinvertebrates were assessed following the US EPA family-level composited, multi-habitat rapid bioassessment protocol. Stream habitat was evaluated with a Quantitative Habitat Evaluation Index (QHEI) modified from the Minnesota Pollution Control Agency's habitat assessment protocol. Initial results indicate substantial variability in flow among sites, a significant variation (p<0.05) between years in QHEI and IBI scores, and differences within and between sites in macroinvertebrate species composition and abundance (species richness and %EPT). Continued monitoring will be required to assess the effects of riparian harvest.

  14. Dissolved phosphorus export from an animal waste impacted in-stream wetland: response to tropical storm and hurricane disturbance.

    PubMed

    Novak, J M; Szogi, A A; Stone, K C; Watts, D W; Johnson, M H

    2007-01-01

    The ability of wetlands to retain P makes them an important landscape feature that buffers P movement. However, their P retention ability can be compromised through hydrologic disturbances caused by hurricanes and tropical storms (TS). This study had three objectives: (i) to determine the effects of hurricanes and TS on dissolved phosphorus (DP) concentrations and loads discharged from a Coastal Plain in-stream wetland (ISW); (ii) to evaluate shifts in P storage pools that would reflect P accretion/removal patterns; and (iii) to determine if relationships exist between storm characteristics with releases of DP and water volume. From January 1996 to October 1999, the ISW's outflow DP concentrations and flow volumes (Q) were measured and they were used to calculate DP mass export loads. In addition, the sediment total phosphorus (TP) concentrations were measured, and both the water column and sediment pore water DP concentrations were examined using passive samplers. In several instances, TS facilitated greater DP releases than a single hurricane event. The largest release of DP occurred in 1999 after Hurricanes Dennis, Floyd, and Irene. The large differences in DP exports among the storms were explained by Q variations. Storm activity also caused changes in sediment pore water DP and sediment TP concentrations. This study revealed that some TS events caused higher DP releases than a single hurricane; however, multiple hurricanes delivering heavy precipitation totals significantly increased DP export. PMID:17412914

  15. In-stream measurements of combustion during Mach 5 to 7 tests of the Hypersonic Research Engine (HRE)

    NASA Technical Reports Server (NTRS)

    Lezberg, Erwin A.; Metzler, Allen J.; Pack, William D.

    1993-01-01

    Results of in-stream combustion measurements taken during Mach 5 to 7 true simulation testing of the Hypersonic Research Engine/Aerothermodynamic Integration Model (HRE/AIM) are presented. These results, the instrumentation techniques, and configuration changes to the engine installation that were required to test this model are described. In test runs at facility Mach numbers of 5 to 7, an exhaust instrumentation ring which formed an extension of the engine exhaust nozzle shroud provided diagnostic measurements at 10 circumferential locations in the HRE combustor exit plane. The measurements included static and pitot pressures using conventional conical probes, combustion gas temperatures from cooled-gas pyrometer probes, and species concentration from analysis of combustion gas samples. Results showed considerable circumferential variation, indicating that efficiency losses were due to nonuniform fuel distribution or incomplete mixing. Results using the Mach 7 facility nozzle but with Mach 6 temperature simulation, 1590 to 1670 K, showed indications of incomplete combustion. Nitric oxide measurements at the combustor exit peaked at 2000 ppmv for stoichiometric combustion at Mach 6.

  16. Inferring DOC export mechanisms from high-frequency, instream UV-VIS concentration measurements

    NASA Astrophysics Data System (ADS)

    Oosterwoud, Marieke; Musolff, Andreas; Keller, Toralf; Fleckenstein, Jan

    2015-04-01

    The flux of soil-derived dissolved organic carbon (DOC) is a significant term in terrestrial carbon budgets and, as a result, a dominant link between terrestrial and aquatic ecosystems. Concentrations of dissolved organic carbon in streams and rivers have been increasing in many parts of the world. Providers of drinking water from surface water reservoirs are increasingly facing problems as elevated DOC concentrations cause higher costs for removal and potentially to toxic by-products during chlorination. Mitigating these problems requires a mechanistic understanding of the controls and dynamics of DOC export from catchments. High frequency measurements using UV-vis absorbance as a proxy for DOC concentrations allow for improved evaluation of DOC concentration-discharge relationships in catchments. In addition, several UV-vis absorbance proxies (both single and multiple wavelength) can be used as an indicator of DOC quality. These relationships allow quantification of net DOC export, and may additionally provide new insights into the mechanisms that control DOC export dynamics. We aimed to evaluate the response and interaction of DOC concentrations and quality between a riparian zone soil and stream under different hydrological conditions. UV-vis sensors were installed in both the riparian soil and stream of two headwater catchments, the Hassel and Rappbode, in the Harz Mountains in Germany. The two headwater catchments are approximately equal in size, however, differ in their land-use. The Hassel catchment is dominated by agricultural land-use, whereas the Rappbode catchment is mainly forested. The DOC concentration-discharge relationships show intricate hysteretic behavior, which differs between locations and shifts in time. The rich data-set will allow for a characterization of space and time patterns of DOC export as well as changes in its quality, providing valuable new insights into the hydrologic mechanisms that govern the delivery of DOC to streams.

  17. Evaluation of the Biological Effects of the Northwest Power Conservation Council's Mainstem Amendment on the Fisheries Upstream and Downstream of Libby Dam, Montana, 2007-2008 Annual Report.

    SciTech Connect

    Sylvester, Ryan; Stephens, Brian; Tohtz, Joel

    2009-04-03

    validate an existing Instream Flow Incremental Methodology (IFIM) model developed for the Kootenai River and will also be used to assess the effect of changes in discharge on fish movements and habitat use downstream of Libby Dam. Passive integrated transponder (PIT) tags will be injected into rainbow, bull, and cutthroat trout throughout the mainstem Kootenai River and selected tributaries to provide information on growth, survival, and migration patterns in relation to abiotic and biotic variables. Model simulations (RIVBIO) are used to calculate the effects of dam operations on the wetted perimeter and benthic biomass in the Kootenai River below Libby Dam. Additional models (IFIM) will also be used to evaluate the impacts of dam operations on the amount of available habitat for different life stages of rainbow and bull trout in the Kootenai River.

  18. Wigwam River Juvenile Bull Trout and Fish Habitat Monitoring Program : 2000 Data Report.

    SciTech Connect

    Cope, R.S.; Morris, K.J.

    2001-03-01

    The Wigwam River bull trout (Salvelinus confluentus) and fish habitat monitoring program is a trans-boundary initiative implemented by the British Columbia Ministry of Environment, Lands and Parks (MOE), in cooperation with Bonneville Power Administration (BPA). The Wigwam River is an important fisheries stream located in southeastern British Columbia that supports healthy populations of both bull trout and Westslope cutthroat trout (Figure 1.1). This river has been characterized as the single most important bull trout spawning stream in the Kootenay Region (Baxter and Westover 2000, Cope 1998). In addition, the Wigwam River supports some of the largest Westslope cutthroat trout (Oncorhynchus clarki lewisi) in the Kootenay Region. These fish are highly sought after by anglers (Westover 1999a, 1999b). Bull trout populations have declined in many areas of their range within Montana and throughout the northwest including British Columbia. Bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Center (Cannings 1993) and although there are many healthy populations of bull trout in the East Kootenays they remain a species of special concern. Bull trout in the United States portion of the Columbia River were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. The upper Kootenay River is within the Kootenai sub-basin of the Mountain Columbia Province, one of the eleven Eco-provinces that make up the Columbia River Basin. MOE applied for and received funding from BPA to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. This task is one of many that was undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00).

  19. Wigwam River Juvenile Bull Trout and Fish Habitat Monitoring Program : 2002 Data Report.

    SciTech Connect

    Cope, R.S.

    2003-03-01

    The Wigwam River bull trout (Salvelinus confluentus) and fish habitat monitoring program is a trans-boundary initiative implemented by the British Columbia Ministry of Water, Land, and Air Protection (MWLAP), in cooperation with Bonneville Power Administration (BPA). The Wigwam River is an important fisheries stream located in southeastern British Columbia that supports healthy populations of both bull trout and Westslope cutthroat trout (Figure 1). This river has been characterized as the single most important bull trout spawning stream in the Kootenay Region (Baxter and Westover 2000, Cope 1998). In addition, the Wigwam River supports some of the largest Westslope cutthroat trout (Oncorhynchus clarki lewisi) in the Kootenay Region. These fish are highly sought after by anglers (Westover 1999a, 1999b). Bull trout populations have declined in many areas of their range within Montana and throughout the northwest including British Columbia. Bull trout were blue listed as vulnerable in British Columbia by the B.C. Conservation Data Center (Cannings 1993) and although there are many healthy populations of bull trout in the East Kootenay they remain a species of special concern. Bull trout in the United States portion of the Columbia River were listed as threatened in 1998 under the Endangered Species Act by the U.S. Fish and Wildlife Service. The upper Kootenay River is within the Kootenai sub-basin of the Mountain Columbia Province, one of the eleven Eco-provinces that make up the Columbia River Basin. MWLAP applied for and received funding from BPA to assess and monitor the status of wild, native stocks of bull trout in tributaries to Lake Koocanusa (Libby Reservoir) and the upper Kootenay River. This task is one of many that were undertaken to ''Monitor and Protect Bull Trout for Koocanusa Reservoir'' (BPA Project Number 2000-04-00).

  20. Salmonid Gamete Preservation in the Snake River Basin, Annual Report 2002.

    SciTech Connect

    Young, William; Kucera, Paul

    2003-07-01

    repository by Washington Department of Fish and Wildlife and Columbia River Intertribal Fish Commission, respectively. To date, a total of 3,928 Columbia River salmon and steelhead gamete samples and three Kootenai River white sturgeon are preserved in the repository. Samples are stored in independent locations at the University of Idaho (UI) and Washington State University (WSU).

  1. Significance of Overland Flow in Sustaining Water Resources of Arid and Semi-Arid Rivers - Water Quantity and Quality Implications

    NASA Astrophysics Data System (ADS)

    Meixner, T.; Hogan, J. F.; Brooks, P. D.; Oelsner, G. P.; Soto-López, C. D.; Baillie, M. N.; Simpson, S. C.

    2007-12-01

    Overland flow is known to be a dominant runoff generation mechanism in arid and semiarid river systems. Despite its prevalence, little is known about the impact of overland flow on the quantity and quality of water in arid and semi-arid rivers and riparian systems. Several studies along the San Pedro and Rio Grande Rivers in the Southwest United States have documented the importance of ephemeral overland flows to the quantity and quality of river water in the stream and near stream zones. First, studies on both rivers have documented the importance of flood flows in providing a significant source of water to near stream aquifers. On the San Pedro River studies have shown that ~50% of baseflow water originates from summer Monsoon floods with a stronger influence on losing versus gaining river reaches. In the Rio Grande, stable isotope data indicate that nearly 100% of the increase in discharge during a Monsoon flood event can be attributed to ephemeral overland flow with approximately 40% of this flood pulse in the Rio Grande lost to the shallow alluvial aquifer. Second, nutrient studies on both rivers demonstrate that reconnecting the river with its uplands during flood events causes a dramatic increase in nutrient concentrations and fundamentally alters near and in-stream biogeochemical conditions and processes by providing a large pulse of allochthonous nutrients and organic matter. Despite the large nutrient influx with flood events the sustained impact on nutrient composition is limited; with upwelling zones, possibly reworking particulate organic matter, having more influence than water source on in-stream nutrient concentrations. Furthermore the influence of flood events attenuates significantly over a period of months with the influence of flood events diminishing from 40% of river flow to 20% in a period of just 6 months.

  2. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume III (Overview and Tools).

    SciTech Connect

    Jamieson, Bob; Braatne, Jeffrey H.

    2001-10-01

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  3. Riparian Cottonwood Ecosystems and Regulated Flows in Kootenai and Yakima Sub-Basins : Volume II Yakima (Overview, Report, Appendices).

    SciTech Connect

    Jamieson, Bob; Braatne, Jeffrey H.

    2001-10-01

    Riparian vegetation and especially cottonwood and willow plant communities are dependent on normative flows and especially, spring freshette, to provide conditions for recruitment. These plant communities therefore share much in common with a range of fish species that require natural flow conditions to stimulate reproduction. We applied tools and techniques developed in other areas to assess riparian vegetation in two very different sub-basins within the Columbia Basin. Our objectives were to: Document the historic impact of human activity on alluvial floodplain areas in both sub-basins; Provide an analysis of the impacts of flow regulation on riparian vegetation in two systems with very different flow regulation systems; Demonstrate that altered spring flows will, in fact, result in recruitment to cottonwood stands, given other land uses impacts on each river and the limitations imposed by other flow requirements; and Assess the applicability of remote sensing tools for documenting the distribution and health of cottonwood stands and riparian vegetation that can be used in other sub-basins.

  4. Geochemical characteristics and fluxes of organic carbon in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China.

    PubMed

    Zhang, Shurong; Lu, X X; Sun, Huiguo; Han, Jingtai; Higgitt, David Laurence

    2009-01-01

    This study aims to investigate the state of the riverine organic carbon in the Luodingjiang River under human impacts, such as reforestation, construction of reservoirs and in-stream damming. Seasonal and spatial characteristics of total suspended sediment (TSS), dissolved organic carbon (DOC) and particulate organic carbon (POC), as well as C/N ratios and the stable carbon isotopic signatures of POC (delta(13)C(POC)) were examined based on a one-year study (2005) in the basin-wide scale. More frequent sampling was conducted in the outlet of the river basin at Guanliang hydrological station. DOC and POC concentrations showed flush effects with increasing water discharge and sediment load in the basin-wide scale. Atomic C/N ratio of POC had a positive relationship with TSS in the outlet of the basin, indicating the reduced aquatic sources and enhanced terrestrial sources during the high flood season. However, the similar relationship was not observed in the basin-wide scale mainly due to the spatial distributions of soil organic carbon and TSS. delta(13)C(POC) showed obvious seasonal variations with enriched values in the period with high TSS concentration, reflecting the increased contribution from C(4) plants with enhanced soil erosion. The specific flux of the total organic carbon (2.30 t km(-)(2) year(-1)) was smaller than the global average level. The ratio of DOC to POC was 1.17, which is higher than most rivers under Asian monsoon climate regime. The organic carbon flux was estimated to decline with decreasing sediment load as a result of reforestation, reservoir construction and in-stream damming, which demonstrates the impacts of human disturbances on the global carbon cycle. PMID:19004473

  5. Evaluating the accotink creek restoration project for improving water quality, in-stream habitat, and bank stability

    USGS Publications Warehouse

    Struck, S.D.; Selvakumar, A.; Hyer, K.; O'Connor, T.

    2007-01-01

    Increased urbanization results in a larger percentage of connected impervious areas and can contribute large quantities of stormwater runoff and significant quantities of debris and pollutants (e.g., litter, oils, microorganisms, sediments, nutrients, organic matter, and heavy metals) to receiving waters. To improve water quality in urban and suburban areas, watershed managers often incorporate best management practices (BMPs) to reduce the quantity of runoff as well as to minimize pollutants and other stressors contained in stormwater runoff. It is well known that land-use practices directly impact urban streams. Stream flows in urbanized watersheds increase in magnitude as a function of impervious area and can result in degradation of the natural stream channel morphology affecting the physical, chemical, and biological integrity of the stream. Stream bank erosion, which also increases with increased stream flows, can lead to bank instability, property loss, infrastructure damage, and increased sediment loading to the stream. Increased sediment loads may lead to water quality degradation downstream and have negative impacts on fish, benthic invertebrates, and other aquatic life. Accotink Creek is in the greater Chesapeake Bay and Potomac watersheds, which have strict sediment criteria. The USEPA (United States Environmental Protection Agency) and USGS (United States Geological Survey) are investigating the effectiveness of stream restoration techniques as a BMP to decrease sediment load and improve bank stability, biological integrity, and in-stream water quality in an impaired urban watershed in Fairfax, Virginia. This multi-year project continuously monitors turbidity, specific conductance, pH, and water temperature, as well as biological and chemical water quality parameters. In addition, physical parameters (e.g., pebble counts, longitudinal and cross sectional stream surveys) were measured to assess geomorphic changes associated with the restoration. Data

  6. Terrestrial and in-stream influences on the spatial variability of nitrate in a forested headwater catchment

    NASA Astrophysics Data System (ADS)

    Scanlon, Todd M.; Ingram, Spencer M.; Riscassi, Ami L.

    2010-06-01

    A vast majority of monitoring programs designed to assess nutrient fluxes from headwater systems rely upon temporally intensive sampling at a single position within the stream network, essentially measuring the integrated response of the catchment. Missing from such an approach is spatial information related to how nutrient availability varies throughout the network, where freshwater biota live and where biogeochemical processes ultimately shape the downstream water chemistry. Here, we examine the spatial distribution of nitrate (NO3-) concentrations within the Paine Run catchment, a forested headwater catchment in Shenandoah National Park, Virginia. Nitrate concentrations throughout the stream network were measured as part of synoptic surveys conducted in 1992-1994, in the aftermath of region-wide gypsy moth defoliation that caused dramatic increases in stream water NO3- concentrations. A follow-up synoptic survey was conducted in 2007, when the stream water NO3- concentrations had returned to predefoliation levels. Common to each of the eight synoptic surveys were observations of multiple-fold declines in NO3- concentration along the main stem of the stream network from the headwaters to the catchment outlet. A portion of this decline was caused by dilution, as water input by tributaries at the lower elevations of the catchment tended to have lower NO3- concentrations. A stream network model was applied to determine the relative contributions of terrestrial versus in-stream processes to the spatial variability of the NO3- concentrations. Model results suggest that even though nitrate removal within the stream network can be substantial, terrestrial factors that determine the NO3- inputs to streams account for the vast majority of the spatial variability in stream water NO3- concentrations.

  7. Stream discharge events increase the reaction efficiency of the hyporheic zone of an in-stream gravel bar

    NASA Astrophysics Data System (ADS)

    Fleckenstein, J. H.; Trauth, N.; Schmidt, C.

    2015-12-01

    Streambed structures such as dunes, pool-riffles or bars enhance the exchange of stream water and solutes with the subsurface, the hyporheic zone. Prior studies have evaluated the factors which control hyporheic exchange and biogeochemical processes for steady state hydrological conditions using numerical models. However, the impact of natural discharge variability on water and solute exchange, creating hydraulically specific conditions for the reactions in the shallow streambed, has not been studied so far. In our study, we set up a transient flow and reactive transport model to elucidate the impact of single stream discharge events on water exchange, solute transport and reactions within the hyporheic zone of an in-stream gravel bar. The discharge events were varied by their duration and the maximum stream discharge. Temporally variable hydraulic heads were assigned as hydraulic head boundary conditions at the top of the reactive groundwater model MIN3P. A steady ambient groundwater flow field was introduced by lateral upstream and downstream hydraulic head boundaries, generating in combination with the stream water level, losing, neutral, or gaining stream conditions. Stream water borne dissolved oxygen, dissolved organic carbon and nitrate can infiltrate into the modelling domain across the top boundary and can react with each other by aerobic respiration and denitrification. Our results show that water and solute exchange through the hyporheic zone (only stream water that infiltrates into the subsurface and exfiltrates back to the stream) is highly dependent on the interplay between event characteristics and the ambient groundwater level. In scenarios where the stream discharge shifts the hydraulic system to strong and long-lasting losing conditions, hyporheic flow paths are longer and the extent of the hyporheic zone are deeper than under base flow conditions and small events where gaining conditions prevail. Consequently, stream discharge events may

  8. Stream discharge events increase the reactive efficiency of the hyporheic zone of an in-stream gravel bar

    NASA Astrophysics Data System (ADS)

    Trauth, Nico; Schmidt, Christian; Fleckenstein, Jan H.

    2016-04-01

    Streambed structures such as dunes, pool-riffles or bars enhance the exchange of stream water and solutes with the subsurface, the hyporheic zone. Prior studies have evaluated the factors which control hyporheic exchange and biogeochemical processes for steady state hydrological conditions using numerical models. However, the impact of natural discharge variability on water and solute exchange, creating hydraulically specific conditions for the reactions in the shallow streambed, has received less attention to date. In our study, we set up a transient flow and reactive transport model to elucidate the impact of single stream discharge events on water exchange, solute transport and reactions within the hyporheic zone of an in-stream gravel bar. The discharge events were varied by their duration and the maximum stream discharge. Temporally varying hydraulic heads were assigned as hydraulic head boundary conditions at the top of the reactive groundwater model MIN3P. A steady ambient groundwater flow field was introduced by lateral upstream and downstream hydraulic head boundaries, resulting in losing, neutral, or gaining conditions in the stream with respect to exchange with groundwater. Stream water borne dissolved oxygen, dissolved organic carbon and nitrate can infiltrate across the top of the modelling domain, where aerobic respiration and denitrification are simulated. Our results show that water and solute exchange through the hyporheic zone (only stream water that infiltrates into the subsurface and exfiltrates back to the stream) is highly dependent on the interplay between event characteristics and the ambient groundwater level. In scenarios where the stream discharge shifts the hydraulic system to strong and long-lasting losing conditions, hyporheic flow paths are longer and the extent of the hyporheic zone deeper than under base flow conditions and small hydrologic events where gaining conditions prevail. Consequently, stream discharge events may

  9. Elemental sources, cycling, and ecological availability in rivers in carbonate terrains: An interdisciplinary perspective

    NASA Astrophysics Data System (ADS)

    Kurz, M. J.; Martin, J. B.; Cohen, M. J.; de Montety, V.; Nifong, R. L.

    2013-12-01

    Multiple, coupled physical, chemical and biologic processes control the sources and cycling of solutes in streams; however, the relative magnitude and temporal variability of individual processes can be difficult to differentiate in large rivers. Understanding the timing and magnitude of these processes is critical to preserving the water quality and ecological health of stream systems and predicting their responses to environmental change. The large springs of north Florida are characterized by stable chemical composition and discharge, high clarity and naturally low metal concentrations. As a result, spring-fed rivers provide model systems to study the interactions between the hydrologic, geochemical and ecological processes which control the availability and cycling of solutes within streams and the feedbacks between these solute dynamics and submerged vegetation. We combined high-frequency river and synoptic pore-water sampling, with measurements of submerged vegetation stoichiometry, and long-term records of river and pore-water hydrology in the Ichetucknee River, FL to investigate how diffuse groundwater discharge and in-stream diel (24-hr) cycling mediate the environmental availability of solutes and the composition and function of aquatic vegetation. Diffusion and diffuse groundwater flow from the anoxic river-bottom sediments provide a source of Fe, Mn, P, Ca and Cl to the aquatic ecosystem distinct from other spring water inputs. In-stream solute concentrations of Ca, Mn, Ba, Cr, V, Fe, U, and Sr cycle at diel time scales as a result of a number of overlapping inorganic processes indirectly controlled by solar radiation and the primary production of submerged vegetation. Plant metabolism also directly contributes to the diel removal of trace metals via assimilatory uptake, although the exact timing of assimilation relative to the other inorganic controls remains uncertain. Tissue stoichiometry varies between vegetation types (submerged macrophytes

  10. Designing and Assessing Restored Meandering River Planform Using RVR Meander

    NASA Astrophysics Data System (ADS)

    Langendoen, E. J.; Abad, J. D.; Motta, D.; Frias, C. E.; Wong, M.; Barnes, B. J.; Anderson, C. D.; Garcia, M. H.; MacDonald, T. E.

    2013-12-01

    The ongoing modification and resulting reduction in water quality of U.S. rivers have led to a significant increase in river restoration projects over the last two decades. The increased interest in restoring degraded streams, however, has not necessarily led to improved stream function. Palmer and Allan (2005) found that many restoration projects fail to achieve their objectives due to the lack of policies to support restoration standards, to promote proven methods and to provide basic data needed for planning and implementation. Proven models of in-stream and riparian processes could be used not only to guide the design of restoration projects but also to assess both pre- and post-project indicators of ecological integrity. One of the most difficult types of river restoration projects concern reconstructing a new channel, often with an alignment and channel form different from those of the degraded pre-project channel. Recreating a meandering planform to provide longitudinal and lateral variability of flow and bed morphology to improve in-stream aquatic habitat is often desired. Channel meander planform is controlled by a multitude of variables, for example channel width to depth ratio, radius of curvature to channel width ratio, bankfull discharge, roughness, bed-material physical characteristics, bed material transport, resistance to erosion of the floodplain soils, riparian vegetation, etc. Therefore, current practices that use simple, empirically based relationships or reference reaches have led to failure in several instances, for example a washing out of meander bends or a highly unstable planform, because they fail to address the site-specific conditions. Recently, progress has been made to enhance a physically- and process-based model, RVR Meander, for rapid analysis of meandering river morphodynamics with reduced empiricism. For example, lateral migration is based on measurable physical properties of the floodplain soils and riparian vegetation versus

  11. Macroinvertebrate Responses to Constructed Riffles in the Cache River, Illinois, USA

    NASA Astrophysics Data System (ADS)

    Walther, Denise A.; Whiles, Matt R.

    2008-04-01

    Stream restoration practices are becoming increasingly common, but biological assessments of these improvements are still limited. Rock weirs, a type of constructed riffle, were implemented in the upper Cache River in southern Illinois, USA, in 2001 and 2003-2004 to control channel incision and protect high quality riparian wetlands as part of an extensive watershed-level restoration. Construction of the rock weirs provided an opportunity to examine biological responses to a common in-stream restoration technique. We compared macroinvertebrate assemblages on previously constructed rock weirs and newly constructed weirs to those on snags and scoured clay streambed, the two dominant substrates in the unrestored reaches of the river. We quantitatively sampled macroinvertebrates on these substrates on seven occasions during 2003 and 2004. Ephemeroptera, Plecoptera, and Trichoptera (EPT) biomass and aquatic insect biomass were significantly higher on rock weirs than the streambed for most sample periods. Snags supported intermediate EPT and aquatic insect biomass compared to rock weirs and the streambed. Nonmetric multidimensional scaling (NMDS) ordinations for 2003 and 2004 revealed distinct assemblage groups for rock weirs, snags, and the streambed. Analysis of similarity supported visual interpretation of NMDS plots. All pair-wise substrate comparisons differed significantly, except recently constructed weirs versus older weirs. Results indicate positive responses by macroinvertebrate assemblages to in-stream restoration in the Cache River. Moreover, these responses were not evident with more common measures of total density, biomass, and diversity.

  12. Longitudinal differences in habitat complexity and fish assemblage structure of a great plains river

    USGS Publications Warehouse

    Eitzmann, J.L.; Paukert, C.P.

    2010-01-01

    We investigated the spatial variation in the Kansas River (USA) fish assemblage to determine how fish community structure changes with habitat complexity in a large river. Fishes were collected at ten sites throughout the Kansas River for assessing assemblage structure in summer 2007. Aerial imagery indicated riparian land use within 200 m from the river edge was dominated by agriculture in the upper river reaches (>35) and tended to increase in urban land use in the lower reaches (>58). Instream habitat complexity (number of braided channels, islands) also decreased with increased urban area (<25). Canonical correspondence analysis indicated that species that prefer high-velocity flows and sandy substrate (e.g., blue sucker Cycleptus elongatus and shovelnose sturgeon Scaphirhynchus platorynchus) were associated with the upper river reaches. Abundance of omnivorous and planktivorous fish species were also higher in the lower river. The presence of fluvial dependent and fluvial specialist species was associated with sites with higher water flows, more sand bars, and log jams. Our results suggest that conserving intolerant, native species in the Kansas River may require maintaining suitable habitat for these species and restoration of impacted areas of the river.

  13. Energy development and water options in the Yellowstone River Basin

    SciTech Connect

    Narayanan, R.; MacIntyre, D.D.; Torpy, M.F.

    1980-08-01

    Using a mixed-integer programming model, the impacts of institutional constraints on the marginal capacity for energy development in the Yellowstone River Basin and consequent hydrologic changes were examined. Under average annual flow conditions, energy outputs in the Yellowstone Basin can increase roughly nine times by 1985 and 12 to 18 times by 2000. In contrast, water availability is limiting energy development in the Tongue and Powder River Basins in Wyoming. Variability in hydrologic regime causes model solutions to change drastically. If flows decrease to 80 and 60% of average annual levels, the energy production is decreased by 17 and 95%, respectively. If development strategies in the basin are followed on the basis of 80% average annual flows, the Buffalo Bill enlargement (271,300 acre-ft), Tongue River Modification (58,000 acre-ft), and the two reservoirs at Sweetgrass Creek (each 27,000 acre-ft) will be necessary, in addition to several small storage facilities, to best meet the instream flow needs in Montana and to deliver the waters apportioned by compact between Wyoming and Montana. Furthermore, the results indicate that relaxing the instream flow requirements from recommended levels by 10% could increase regional energy output by 19% in 1985 and 35% in 2000. This model illustrates that modifications in institutional restrictions to achieve greater water mobility between users in a given state, as well as flexible practices for transferring water between states, can assist economic growth. Thus, the probability for restricted energy development at this juncture appears to be affected to a greater degree by institutional constraints than by water availability constraints.

  14. Avian Community Responses to Variability in River Hydrology

    PubMed Central

    Royan, Alexander; Hannah, David M.; Reynolds, S. James; Noble, David G.; Sadler, Jonathan P.

    2013-01-01

    River flow is a major driver of morphological structure and community dynamics in riverine-floodplain ecosystems. Flow influences in-stream communities through changes in water velocity, depth, temperature, turbidity and nutrient fluxes, and perturbations in the organisation of lower trophic levels are cascaded through the food web, resulting in shifts in food availability for consumer species. River birds are sensitive to spatial and phenological mismatches with aquatic prey following flow disturbances; however, the role of flow as a determinant of riparian ecological structure remains poorly known. This knowledge is crucial to help to predict if, and how, riparian communities will be influenced by climate-induced changes in river flow characterised by more extreme high (i.e. flood) and/or low (i.e. drought) flow events. Here, we combine national-scale datasets of river bird surveys and river flow archives to understand how hydrological disturbance has affected the distribution of riparian species at higher trophic levels. Data were analysed for 71 river locations using a Generalized Additive Model framework and a model averaging procedure. Species had complex but biologically interpretable associations with hydrological indices, with species’ responses consistent with their ecology, indicating that hydrological-disturbance has implications for higher trophic levels in riparian food webs. Our quantitative analysis of river flow-bird relationships demonstrates the potential vulnerability of riparian species to the impacts of changing flow variability and represents an important contribution in helping to understand how bird communities might respond to a climate change-induced increase in the intensity of floods and droughts. Moreover, the success in relating parameters of river flow variability to species’ distributions highlights the need to include river flow data in climate change impact models of species’ distributions. PMID:24340094

  15. Season-ahead Drought Forecast Models for the Lower Colorado River Authority in Texas

    NASA Astrophysics Data System (ADS)

    Block, P. J.; Zimmerman, B.; Grzegorzewski, M.; Watkins, D. W., Jr.; Anderson, R.

    2014-12-01

    The Lower Colorado River Authority (LCRA) in Austin, Texas, manages the Highland Lakes reservoir system in Central Texas, a series of six lakes on the Lower Colorado River. This system provides water to approximately 1.1 million people in Central Texas, supplies hydropower to a 55-county area, supports rice farming along the Texas Gulf Coast, and sustains in-stream flows in the Lower Colorado River and freshwater inflows to Matagorda Bay. The current, prolonged drought conditions are severely taxing the LCRA's system, making allocation and management decisions exceptionally challenging, and affecting the ability of constituents to conduct proper planning. In this work, we further develop and evaluate season-ahead statistical streamflow and precipitation forecast models for integration into LCRA decision support models. Optimal forecast lead time, predictive skill, form, and communication are all considered.

  16. Major ion chemistry and dissolved inorganic carbon cycling in a human-disturbed mountainous river (the Luodingjiang River) of the Zhujiang (Pearl River), China.

    PubMed

    Zhang, Shurong; Lu, X X; Sun, Huiguo; Han, Jingtai; Higgitt, David Laurence

    2009-04-01

    Major ion chemistry and dissolved inorganic carbon system (DIC, mainly HCO3(-) and gaseous CO2) in the Luodingjiang River, a mountainous tributary of the Zhujiang (Pearl River), China, were examined based on a seasonal and spatial sampling scheme in 2005. The diverse distribution of lithology and anthropogenic impacts in the river basin provided the basic idea to assess the effects of lithology vs. human activities on water chemistry and carbon biogeochemistry in river systems. Major ions showed great spatial variations, with higher concentrations of total dissolved solids (TDS) and DIC in the regions with carbonate rocks and clastic sedimentary rocks, while lower in the regions with metamorphic sandstones and schists as well as granites. pCO2 at all sampling sites was oversaturated in June, ranging with a factor from 1.6 to 18.8 of the atmospheric concentration, reflecting the enhanced contribution from baseflow and interflow influx as well as in situ oxidation of organic matter. However, in April and December, undersaturated pCO2 was found in some shallow, clean rivers in the upstream regions. delta13C of DIC has a narrow range from -9.07 to -13.59 per thousand, which was more depleted in the regions with metamorphic rocks and granites than in the carbonate regions. Seasonally, it was slightly more depleted in the dry season (December) than in the wet season (June). The results suggested that lithological variability had a dominant control on spatial variations of water chemistry and carbon geochemistry in river systems. Besides, anthropogenic activities, such as agricultural and urban activities and in-stream damming, as well as river physical properties, such as water depth and transparency, also indicated their impacts. The seasonal variations likely reflected the changes of hydrological regime, as well as metabolic processes in the river. PMID:19185905

  17. Environmental flow assessment for river Trebizat, BiH

    NASA Astrophysics Data System (ADS)

    Smolar-Zvanut, N.; Kupusovic, E.; Vucijak, B.; Mijatovic, A.; Grizelj, Z.; Antonelli, F.

    2009-04-01

    The alteration of the water flow downstream of dams is one of the most stressful factors influencing the aquatic and riverine ecosystem. The environmental flow assessment is a tool for finding the balance between water use by humans and nature and ensuring a long-term and good quality water supply both for human purposes and for ecosystems. In 2007/08 WWF has implemented a project in the Neretva basin (Bosnia and Herzegovina) with a focus on environmental flow evaluation for the river Trebizat, located in the western region of Herzegovina. The water regime of the Trebizat river is affected by the abstraction of its water for hydropower plants, irrigation and fish farming not to mention pollution problems. The Trebizat river flows through an area of remarkable ecological value hosting also protected areas (the travertine-formation around Kravice waterfall). The main aim of this paper is to present the results of the application of a methodology for environmental flow assessment, namely the GEP methodology (guaranteed ecological flow). It belongs to the category of hydrological environmental flow assessment methods and the test was done to assess the environmental flow in the river Trebizat. Using existing hydrological data as well as samples specifically collected on the field, the environmental flow was assessed applying the GEP methodology. Additionally, instream ecological values and critical parameters for environmental flow assessment were evaluated. The area was assessed in terms of its geography, climate conditions, historic heritage of the river, demography, geology of the river and its tributaries, river hydrology and morphology, ecological characteristics, river pollution, river use and river management. At five selected sampling sites along the Trebizat river, additional data on macrophytes, phytobenthos and physico-chemical parameters were collected and analysed. Although there have been many negative impacts in recent years on the Trebizat river, the

  18. Amazon River

    Atmospheric Science Data Center

    2013-04-17

    article title:  Mouth of the Amazon River     View Larger Image ... over 6450 kilometers eastward across Brazil, the Amazon River originates in the Peruvian Andes as tiny mountain streams that eventually ...

  19. Distributed River Stages and Stream-Aquifer Exchanged Fluxes Simulation at Regional Scale

    NASA Astrophysics Data System (ADS)

    Saleh, Firas; Flipo, Nicolas; Pryet, Alexandre; Labarthe, Baptiste

    2013-04-01

    The goal of this study is to accurately simulate river stage in regional river networks in order to improve the quantification of stream-aquifer exchanges and better assess the associated aquifer responses that are often impacted by the magnitude and the frequency of the river stage fluctuations. This study focused on the Seine River basin (76 500 km2), located in the north of France. The Seine basin is located in the Parisian sedimentary basin, which is a composite of several geologic formations of which six are modeled in this study. The exchanged stream-aquifer water fluxes are modeled in the main Seine river network (~ 4350 km) using a regional distributed process-based hydro(geo)logical model, Eau-Dyssée. Eau-Dyssée simulates pseudo 3D flow in aquifer systems solving the diffusivity equation with a finite difference numerical scheme. River flow is simulated with a Muskingum model. In addition to the in-stream discharge, the river level is estimated to calculate the stream-aquifer water exchange with a conductance model. The river stages themselves are assessed from river flow using a simplified Manning Strickler model, which assumes a steady-state flow. For each river cell, this approach requires the fitting of two parameters: the elevation of the bottom of the river bed and the Manning friction coefficient. While this fitting is performed following a Monte Carlo approach, the future SWOT mission and its high-spatial resolution imagery will provide surface water level measurements at the regional scale that will permit to better characterize the Seine complex hydrological system. Eventually the different components of the hydrosystem model (surface component, groundwater component and stream-aquifer component) were calibrated following a nested methodology over the period 1996-2006. The overall performances of the model are satisfactory with a RMSE between simulated and observed piezometric head of 4 m (for 200 piezometers), and a Nash criteria of 0.9 at the

  20. Patterns in nutrient concentrations and biological quality indices across the upper Thames river basin, UK.

    PubMed

    Jarvi, Helen P; Lycett, Esther; Neal, Colin; Love, Alison

    2002-01-23

    This paper examines the nutrient chemistry and biological quality indices [Mean Trophic Rank (MTR) and Trophic Diatom Index (TDI)] for rivers within the upper Thames basin. The predominant sources of nitrogen within the rivers monitored were diffuse and agricultural in nature. However, phosphorus showed both diffuse and point source signals. MTR surveys undertaken both upstream and downstream of major STWs indicate that these rivers are 'at risk' of eutrophication or 'badly damaged'. MTR surveys also indicate increased trophic status downstream of STWs, whereas TDI does not indicate such a consistent pattern. Phosphorus treatment at selected major sewage treatment works in the upper Thames basin resulted in significant reductions in in-stream P concentrations and reductions in fluxes by a half to two thirds. However, the effects of P-reduction on in-stream ecology (measured as MTR and TDI) were more difficult to ascribe, owing to: (1) the high variability in river flow rates experienced since P-reduction was introduced; (2) lag effects related to P stores in river bed sediments; and (3) diffuse and smaller point source inputs upstream. The results of this study indicate that control of upstream sources of phosphorus may prove critical in improving the biological quality status of UK lowland rivers, including ecological responses to P-source controls on the major sewage treatment works downstream. Upstream sources include both diffuse (agricultural) sources and small point source inputs which, at present, are not classified as 'qualifying discharges' under the Urban Wastewater Treatment Directive (UWWTD) and are thus not subject to phosphorus control measures. These results are of relevance for integrated, sustainable management and protection of European freshwater resources, particularly in terms of new ecological targets for water quality management under the new Water Framework Directive. PMID:11846074

  1. The importance of base flow in sustaining surface water flow in the Upper Colorado River Basin

    NASA Astrophysics Data System (ADS)

    Miller, Matthew P.; Buto, Susan G.; Susong, David D.; Rumsey, Christine A.

    2016-05-01

    The Colorado River has been identified as the most overallocated river in the world. Considering predicted future imbalances between water supply and demand and the growing recognition that base flow (a proxy for groundwater discharge to streams) is critical for sustaining flow in streams and rivers, there is a need to develop methods to better quantify present-day base flow across large regions. We adapted and applied the spatially referenced regression on watershed attributes (SPARROW) water quality model to assess the spatial distribution of base flow, the fraction of streamflow supported by base flow, and estimates of and potential processes contributing to the amount of base flow that is lost during in-stream transport in the Upper Colorado River Basin (UCRB). On average, 56% of the streamflow in the UCRB originated as base flow, and precipitation was identified as the dominant driver of spatial variability in base flow at the scale of the UCRB, with the majority of base flow discharge to streams occurring in upper elevation watersheds. The model estimates an average of 1.8 × 1010 m3/yr of base flow in the UCRB; greater than 80% of which is lost during in-stream transport to the Lower Colorado River Basin via processes including evapotranspiration and water diversion for irrigation. Our results indicate that surface waters in the Colorado River Basin are dependent on base flow, and that management approaches that consider groundwater and surface water as a joint resource will be needed to effectively manage current and future water resources in the Basin.

  2. Nile River

    Atmospheric Science Data Center

    2013-04-15

    article title:  Nile River Fluctuations Near Khartoum, Sudan     ... history, the rising and falling waters of the mighty Nile River have directly impacted the lives of the people who live along its banks. ... the area around Sudan's capital city of Khartoum capture the river's dynamic nature. Acquired by the Multi-angle Imaging SpectroRadiometer ...

  3. Mississippi River

    Atmospheric Science Data Center

    2014-05-15

    article title:  Mississippi River Flooding during Spring 2001     ... South TIFF: 1024 x 724 The Mississippi River, from its source at Lake Itasca Minnesota to the Gulf of Mexico is ... 2348 miles long. Over the course of it's history, the mighty river has flooded many times. The largest flood recorded in the lower valley ...

  4. Niger River

    Atmospheric Science Data Center

    2013-04-15

    article title:  Niger River after the Rainy Season     View larger image The third largest river in Africa, the Niger, forms an inland delta in central Mali. This ... is situated near the top of the image, where the Niger River changes direction to flow more directly eastward. Six hundred years ago, ...

  5. Influence of varying hydraulic conditions on hyporheic exchange and reactions in an in-stream gravel bar

    NASA Astrophysics Data System (ADS)

    Trauth, Nico; Schmidt, Christian; Maier, Uli; Fleckenstein, Jan H.

    2014-05-01

    In the hyporheic zone (HZ) important biogeochemical transformations occur with crucial impact on nutrient cycling in fluvial systems. Here we investigate the interplay between stream flow and HZ exchange of a natural in-stream gravel bar (ISGB), by using three-dimensional steady state simulations of a coupled surface and subsurface numerical model. Stream flow is simulated by the open source computational fluid dynamics (CFD) software OpenFOAM. It is sequentially coupled by the hydraulic head distribution to the top boundary of the groundwater model code MIN3P, simulating flow, solute transport, aerobic respiration (AR) and denitrification (DN) in the HZ. The modelling approach is validated to the stream rating curve and the subsurface travel times in the ISGB based on field measurements. Hydraulic conditions are varied by stream discharge, ranging from low discharge, sufficient to allow stream water flow through both stream channels surrounding the ISGB (0.1 m³/s), to conditions where the ISGB is completely submerged (5.0 m³/s). Ambient groundwater flow is assigned by constant head boundaries upstream and downstream of the ISGB. By varying stream discharge or ambient groundwater heads the general flow field of the ISGB can be adjusted from losing via neutral to gaining conditions. Reactive transport scenarios consider stream water as the primary source of dissolved oxygen and dissolved organic carbon. Furthermore, two nitrate sources originated from the stream water and ambient groundwater are included in the model. Results show that highest hyporheic exchange and longest residence times occur under neutral conditions, where the extent of the hyporheic flow cell is at a maximum. Hence, the stronger the system is gaining and losing, the smaller is the hyporheic exchange flux and the shorter are the residence times in the HZ of the ISGB. AR and DN efficiencies of the ISGB are lowest under gaining conditions because infiltrating solutes are restriced to the

  6. A multi-scale GIS and hydrodynamic modelling approach to fish passage assessment: Clarence and Shoalhaven Rivers, NSW Australia

    NASA Astrophysics Data System (ADS)

    Bonetti, Rita M.; Reinfelds, Ivars V.; Butler, Gavin L.; Walsh, Chris T.; Broderick, Tony J.; Chisholm, Laurie A.

    2016-05-01

    Natural barriers such as waterfalls, cascades, rapids and riffles limit the dispersal and in-stream range of migratory fish, yet little is known of the interplay between these gradient dependent landforms, their hydraulic characteristics and flow rates that facilitate fish passage. The resurgence of dam construction in numerous river basins world-wide provides impetus to the development of robust techniques for assessment of the effects of downstream flow regime changes on natural fish passage barriers and associated consequences as to the length of rivers available to migratory species. This paper outlines a multi-scale technique for quantifying the relative magnitude of natural fish passage barriers in river systems and flow rates that facilitate passage by fish. First, a GIS-based approach is used to quantify channel gradients for the length of river or reach under investigation from a high resolution DEM, setting the magnitude of identified passage barriers in a longer context (tens to hundreds of km). Second, LiDAR, topographic and bathymetric survey-based hydrodynamic modelling is used to assess flow rates that can be regarded as facilitating passage across specific barriers identified by the river to reach scale gradient analysis. Examples of multi-scale approaches to fish passage assessment for flood-flow and low-flow passage issues are provided from the Clarence and Shoalhaven Rivers, NSW, Australia. In these river systems, passive acoustic telemetry data on actual movements and migrations by Australian bass (Macquaria novemaculeata) provide a means of validating modelled assessments of flow rates associated with successful fish passage across natural barriers. Analysis of actual fish movements across passage barriers in these river systems indicates that two dimensional hydraulic modelling can usefully quantify flow rates associated with the facilitation of fish passage across natural barriers by a majority of individual fishes for use in management

  7. Umatilla River Basin Anadromous Fish Habitat Enhancement Project: 1990 Annual Report.

    SciTech Connect

    Scheeler, Carl A.

    1991-01-01

    The Umatilla habitat improvement program is funded under the Northwest Power Planning Council`s Columbia River Basin Fish and Wildlife Program measure 704 (d) (1) 34.02, and targets the improvement of water quality and the restoration of riparian areas, spawning and rearing habitat of steelhead, spring and fall chinook and coho salmon. The Confederated Tribes of the Umatilla Indian Reservation are responsible for enhancing stream reaches within the Reservation boundaries as guided by an implementation plan developed cooperatively with the Oregon Department of Fish and Wildlife and the USDA Forest Service, Umatilla National Forest. Treatment areas included the lower 4 miles of Meacham Creek, the lower {1/4} mile of Boston Canyon Creek, and the Umatilla River between RM 78.5 and 80. The upper {1/2} of the Meacham Creek project area including Boston Canyon Creek, which were initially enhanced during 1989, were reentered for maintenance and continued enhancements. Approximately 2400 cu. yds. of boulders and 1000 cu. yds. of riprap was used in the construction of in-stream, stream bank and flood plain structures and in the anchoring of large organic debris (LOD) placements. In-stream structures were designed to increase instream cover and channel stability and develop of a defined thalweg to focus low summer flows. Flood plain structures were designed to reduce sediment inputs and facilitate deposition on flood plains. Riparian recovery was enhanced through the planting of over 1000 willow cuttings and 400 lbs. of grass seed mix and through the exclusion of livestock from the riparian corridor with 4.5 miles of high tensile smooth wire fence. Photo documentation and elevational transects were used to monitor changes in channel morphology and riparian recovery at permanent standardized points throughout the projects. Water quality (temperature and turbidity) data was collected at locations within the project area and in tributaries programmed for future enhancements.

  8. Survey and evaluation of instream habitat and stock restoration techniques for wild pink and chum salmon. Restoration study number 105-1 (restoration project 93063). Exxon Valdez oil spill state/federal natural resource damage assessment final report

    SciTech Connect

    Willette, T.M.; Dudiak, N.C.; Honnold, S.G.; Carpenter, G.; Dickson, M.

    1995-08-01

    This project is the result of a three-year survey of the Exxon Valdez oil spill impact area to identify appropriate and cost-effective instream habitat restoration techniques for salmon, including spawning channels and improvement of fish passage through fish ladders or step-pool structures to overcome physical or hydrological barriers. Additional wild salmon stock rehabilitation measures include stream-side incubation boxes, remote egg-taking, incubation at existing hatcheries for fry stocking in oil-impacted streams, and fry rearing. Study results include the identification of the most promising instream habitat restoration projects in each of the spill-impacted areas.

  9. The fluvial flux of particulate organic matter from the UK: Quantifying in-stream losses and carbon sinks

    NASA Astrophysics Data System (ADS)

    Worrall, Fred; Burt, Tim P.; Howden, Nicholas J. K.

    2014-11-01

    This study considers records of fluvial suspended sediment concentration and its organic matter content from across the United Kingdom from 1974 to 2010. Suspended sediment, mineral concentration and river flow data were used to estimate the particulate organic matter (POM) concentration and flux. Median annual POM flux from the UK was 1596 ktonnes/yr. The POM concentration significantly declined after the European Commission's Urban Wastewater Directive was adopted in 1991 although the POM flux after 1992 was significantly higher. Estimates of POM flux were compared to a range of catchment properties to estimate the flux of particulate organic carbon (POC) and particulate organic nitrogen (PON) as they entered rivers and thus estimate the net catchment losses. The total fluvial flux of N from the soil source to rivers was 2209 ktonnes N/yr with 814 ktonnes N lost at the tidal limit, and so leaving 1395 ktonnes N/yr loss to atmosphere from across UK catchments - equivalent to an N2O flux from UK rivers of between 33 and 154 ktonnes (N2O)/yr. The total fluvial flux of carbon from the soil source to rivers for the UK was 5020 ktonnes C/yr; the flux at the tidal limit was 1508 ktonnes C/yr, equivalent to 6.5 tonnes C/km2/yr. Assuming that all the net catchment loss goes into the atmosphere, then the impact of rivers on the atmosphere is 3512 ktonnes C/yr, equivalent to 15.2 tonnes C/km2/yr. The loss of POM from the UK suggests that soil erosion in the UK prevents soil being a net sink of CO2 and is instead a small net source to the atmosphere.

  10. Riverine based eco-tourism: Trinity River non-market benefits estimates

    USGS Publications Warehouse

    Douglas, A.J.; Taylor, J.G.

    1998-01-01

    California's Central Valley Project (CVP) was approved by voters in a statewide referendum in 1933. CVP referendum approval initiated funding for construction of important water development projects that had far reaching effects on regional water supplies. The construction of Trinity Dam in 1963 and the subsequent transbasin diversion of Trinity River flow was one of several CVP projects that had noteworthy adverse environmental and regional economic impacts. The Trinity River is the largest tributary of the Klamath River, and has its headwaters in the Trinity Alps of north-central California. After the construction of Trinity Dam in 1963, 90% of the Trinity River flow at Lewiston was moved to the Sacramento River via the Clear Creek Tunnel. Before 1963, the Trinity River was a major recreation resource of Northern California. The loss of streamflow has had a marked adverse impact on Trinity River-related recreation activities and the size and robustness of Trinity River salmon, steelhead, shad, and sturgeon runs. Trinity River water produces hydropower during its transit via Bureau of Reclamation canals and pumps to the northern San Joaquin Valley, where it is used for irrigated agriculture. The benefits provided by Trinity River instream flow-related environmental amenities were estimated with the travel cost method (TCM). Trinity River non-market benefits are about $406 million per annum, while the social cost of sending water down the Trinity River ranges from $17 to $42 million per annum, depending on the exact flow. We also discuss the relative magnitude of Trinity River survey data contingent value method (CVM) benefits estimates.

  11. Total phosphorus input to the Cache la Poudre River in Northern Colorado.

    PubMed

    Son, Ji-Hee; Goodwin, Stephen; Carlson, Kenneth

    2015-02-01

    The objectives of this study were to monitor total phosphorus concentrations and loads along the Cache la Poudre River in Northern Colorado as it flows from a pristine area through urban regions and, finally, through mixed land uses. The study attempted to evaluate the sources and influences of total phosphorus under different hydrologic conditions. Nine sampling events were completed from April 2010 to May 2011 to assess the influence of various hydrologic conditions on aqueous and riverbed sediment total phosphorus concentrations. Total phosphorus concentrations and loads exceeded the in-stream limits proposed by the Colorado Department of Public Health and Environment in all observed hydrologic conditions, and nonpoint sources were significant in high-flow conditions. Reducing nutrients only at water resource recovery facilities (WRRFs) could not achieve the in-stream limits without substantial reduction of non-point-source loads. The study exposed a need for flexibility in WRRF discharge limits based on the overall total phosphorus load in the river from other sources. PMID:25790519

  12. Characterization of geomorphic units in the alluvial valleys and channels of Gulf Coastal Plain rivers in Texas, with examples from the Brazos, Sabine, and Trinity Rivers, 2010

    USGS Publications Warehouse

    Coffman, David K.; Malstaff, Greg; Heitmuller, Franklin T.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the Texas Water Development Board, described and characterized examples of geomorphic units within the channels and alluvial valleys of Texas Gulf Coastal Plain rivers using a geomorphic unit classification scale that differentiates geomorphic units on the basis of their location either outside or inside the river channel. The geomorphic properties of a river system determine the distribution and type of potential habitat both within and adjacent to the channel. This report characterizes the geomorphic units contained in the river channels and alluvial valleys of Texas Gulf Coastal Plain rivers in the context of the River Styles framework. This report is intended to help Texas Instream Flow Program practitioners, river managers, ecologists and biologists, and others interested in the geomorphology and the physical processes of the rivers of the Texas Gulf Coastal Plain (1) gain insights into how geomorphic units develop and adjust spatially and temporally, and (2) be able to recognize common geomorphic units from the examples cataloged in this report. Recent aerial imagery (high-resolution digital orthoimagery) collected in 2008 and 2009 were inspected by using geographic information system software to identify representative examples of the types of geomorphic units that occurred in the study area. Geomorphic units outside the channels of Texas Gulf Coastal Plain rivers are called \\"valley geomorphic units\\" in this report. Valley geomorphic units for the Texas Gulf Coastal Plain rivers described in this report are terraces, flood plains, crevasses and crevasse splays, flood-plain depressions, tie channels, tributaries, paleochannels, anabranches, distributaries, natural levees, neck cutoffs, oxbow lakes, and constructed channels. Channel geomorphic units occur in the river channel and are subject to frequent stresses associated with flowing water and sediment transport; they adjust (change) relatively quickly in

  13. Hungry water: Effects of dams and gravel mining on river channels

    SciTech Connect

    Kondolf, G.M.

    1997-07-01

    Rivers transport sediment from eroding uplands to depositional areas near sea level. If the continuity of sediment transport is interrupted by dams or removal of sediment from the channel by gravel mining, the flow may become sediment-starved (hungry water) and prone to erode the channel bed and banks, producing channel incision (downcutting), coarsening of bed material, and loss of spawning gravels for salmon and trout (as smaller gravels are transported without replacement from upstream), Gravel is artificially added to the River Rhine to prevent further incision and to many other rivers in attempts to restore spawning habitat. It is possible to pass incoming sediment through some small reservoirs, thereby maintaining the continuity of sediment transport through the system. Damming and mining have reduced sediment delivery from rivers to many coastal areas, leading to accelerated beach erosion. Sand and gravel are mined for construction aggregate from river channel and floodplains. In-channel mining commonly causes incision, which may propagate up- and downstream of the mine, undermining bridges, inducing channel instability, and lowering alluvial water tables. Floodplain gravel pits have the potential to become wildlife habitat upon reclamation, but may be captured by the active channel and thereby become instream pits. Management of sand and gravel in rivers must be done on a regional basis, restoring the continuity of sediment transport where possible and encouraging alternatives to river-derived aggregate sources. 80 refs., 17 figs.

  14. Modeling flow and sediment transport in a river system using an artificial neural network.

    PubMed

    Yitian, Li; Gu, Roy R

    2003-01-01

    A river system is a network of intertwining channels and tributaries, where interacting flow and sediment transport processes are complex and floods may frequently occur. In water resources management of a complex system of rivers, it is important that instream discharges and sediments being carried by streamflow are correctly predicted. In this study, a model for predicting flow and sediment transport in a river system is developed by incorporating flow and sediment mass conservation equations into an artificial neural network (ANN), using actual river network to design the ANN architecture, and expanding hydrological applications of the ANN modeling technique to sediment yield predictions. The ANN river system model is applied to modeling daily discharges and annual sediment discharges in the Jingjiang reach of the Yangtze River and Dongting Lake, China. By the comparison of calculated and observed data, it is demonstrated that the ANN technique is a powerful tool for real-time prediction of flow and sediment transport in a complex network of rivers. A significant advantage of applying the ANN technique to model flow and sediment phenomena is the minimum data requirements for topographical and morphometric information without significant loss of model accuracy. The methodology and results presented show that it is possible to integrate fundamental physical principles into a data-driven modeling technique and to use a natural system for ANN construction. This approach may increase model performance and interpretability while at the same time making the model more understandable to the engineering community. PMID:12447580

  15. PROFILE: Hungry Water: Effects of Dams and Gravel Mining on River Channels

    PubMed

    Kondolf

    1997-07-01

    / Rivers transport sediment from eroding uplands to depositional areas near sea level. If the continuity of sediment transport is interrupted by dams or removal of sediment from the channel by gravel mining, the flow may become sediment-starved (hungry water) and prone to erode the channel bed and banks, producing channel incision (downcutting), coarsening of bed material, and loss of spawning gravels for salmon and trout (as smaller gravels are transported without replacement from upstream). Gravel is artificially added to the River Rhine to prevent further incision and to many other rivers in attempts to restore spawning habitat. It is possible to pass incoming sediment through some small reservoirs, thereby maintaining the continuity of sediment transport through the system. Damming and mining have reduced sediment delivery from rivers to many coastal areas, leading to accelerated beach erosion. Sand and gravel are mined for construction aggregate from river channel and floodplains. In-channel mining commonly causes incision, which may propagate up- and downstream of the mine, undermining bridges, inducing channel instability, and lowering alluvial water tables. Floodplain gravel pits have the potential to become wildlife habitat upon reclamation, but may be captured by the active channel and thereby become instream pits. Management of sand and gravel in rivers must be done on a regional basis, restoring the continuity of sediment transport where possible and encouraging alternatives to river-derived aggregate sources.KEY WORDS: Dams; Aquatic habitat; Sediment transport; Erosion; Sedimentation; Gravel mining PMID:9175542

  16. In-stream validation of the effects of intermittent sediment toxicity on recruitment of juvenile unionid mussels

    SciTech Connect

    Yeager, M.M.; Cherry, D.S.; Scott, J.C.; Van Hassel, J.H.

    1994-12-31

    A triad approach was used to assess sediment toxicity in the Clinch River, Virginia to determine if sediment bound toxicants are contributing to decreased recruitment of unionid mussel populations. Eleven sites in the Clinch River and one site in a tributary, which exhibited suitable mussel habitat, were included in the analysis. Physical characteristics of the sediment revealed similar particle size distribution and percent water content at the twelve sites; however, three of the sites exhibited high volatile organic compounds. Total recoverable metals analysis of lead, zinc and copper in the interstitial water showed fluctuating metal concentrations throughout the river on different sampling dates. Sediment bioassays using C. riparius, D. magna, and H. azteca identified intermittent toxicity which may be related to non-point runoff from rain events. At ten of the twelve sites, mussel density surveys indicated decreased recruitment despite apparent suitable habitat. Invertebrate community structure analysis identified eight of the twelve sites as having significantly lower total abundance than the reference side and six of the twelve sites as s supporting significantly fewer taxa. In-situ juvenile mussel testing was used to determine the degree to which toxicity may impair juvenile recruitment in unionid populations.

  17. The semi-sewer river: hydraulic backwater effects and combined sewer overflow reverse flows in Central Brussels reduce deoxygenation impact further downstream.

    PubMed

    Le, H M; Petrovic, D; Verbanck, M A

    2014-01-01

    In 2011 and 2012 the dissolved oxygen content in the low-discharge river Zenne was monitored continuously, every 5 minutes, downstream of Brussels city centre, making it possible to document the complex mechanisms by which combined sewer overflow (CSO) spills affect both the hydraulics and the oxygen balance of the hydrosystem. In addition to oxygen demand impacts, proportions of water volumes are such that the oxygen-devoid sewage water discharged from CSOs contributes significantly to the oxygen deficit observed in the river further downstream. It is shown that ensuing unexpected hydraulic behaviour, such as a full river-flow reversal, can explain the dual nature of oxygen sag following major CSO events. At times the semi-sewer river plays the role of an in-stream stormwater tank, effectively attenuating the environmental impacts of Brussels CSOs. PMID:24569294

  18. Spatial Scaling of Environmental Variables Improves Species-Habitat Models of Fishes in a Small, Sand-Bed Lowland River

    PubMed Central

    Radinger, Johannes; Wolter, Christian; Kail, Jochem

    2015-01-01

    Habitat suitability and the distinct mobility of species depict fundamental keys for explaining and understanding the distribution of river fishes. In recent years, comprehensive data on river hydromorphology has been mapped at spatial scales down to 100 m, potentially serving high resolution species-habitat models, e.g., for fish. However, the relative importance of specific hydromorphological and in-stream habitat variables and their spatial scales of influence is poorly understood. Applying boosted regression trees, we developed species-habitat models for 13 fish species in a sand-bed lowland river based on river morphological and in-stream habitat data. First, we calculated mean values for the predictor variables in five distance classes (from the sampling site up to 4000 m up- and downstream) to identify the spatial scale that best predicts the presence of fish species. Second, we compared the suitability of measured variables and assessment scores related to natural reference conditions. Third, we identified variables which best explained the presence of fish species. The mean model quality (AUC = 0.78, area under the receiver operating characteristic curve) significantly increased when information on the habitat conditions up- and downstream of a sampling site (maximum AUC at 2500 m distance class, +0.049) and topological variables (e.g., stream order) were included (AUC = +0.014). Both measured and assessed variables were similarly well suited to predict species’ presence. Stream order variables and measured cross section features (e.g., width, depth, velocity) were best-suited predictors. In addition, measured channel-bed characteristics (e.g., substrate types) and assessed longitudinal channel features (e.g., naturalness of river planform) were also good predictors. These findings demonstrate (i) the applicability of high resolution river morphological and instream-habitat data (measured and assessed variables) to predict fish presence, (ii) the

  19. Amazon River

    Atmospheric Science Data Center

    2013-04-17

    ... the Rio Solimoes and the Rio Negro converge to form the Amazon River. This image from the Multi-angle Imaging SpectroRadiometer (MISR) ... date:  Jul 23, 2000 Images:  Amazon River location:  South America thumbnail:  ...

  20. Mississippi River

    Atmospheric Science Data Center

    2014-05-15

    ... View Larger Image The mighty Mississippi River, from its source at Lake Itasca, Minnesota to the Gulf of Mexico, is ... heavy rainfall on areas traversed by the upper Mississippi River. Each image in this pair covers an identical 195-kilometer x ...

  1. Benefits of increased streamflow: The case of the John Day River Steelhead Fishery

    NASA Astrophysics Data System (ADS)

    Johnson, Neal S.; Adams, Richard M.

    1988-11-01

    Conflicts between instream water uses such as fish production and traditional out-of-stream uses are an important water resource issue. One criterion for evaluating the merits of alternative water allocations is economic efficiency. This study uses an integrated approach to measure the recreational steelhead fishery benefits of incremental streamflow changes in the John Day River in Oregon. The analysis combines a steelhead fishery production model with a contingent valuation assessment of changes in fishing quality to obtain estimates of the marginal value of water in producing fishing quality. The results suggest that increased summer flows to enhance fishing have a marginal value of about $2.40 acre-foot. When expressed in terms of water actually consumed, the value may be up to 10 times higher. These values are sensitive to the location of flow alterations in the river, potential for downstream uses and number of anglers in the fishery.

  2. The importance of the riparian zone and in-stream processes in nitrate attenuation in undisturbed and agricultural watersheds – a review of the scientific literature

    USGS Publications Warehouse

    Ranalli, Anthony J.; MacAlady, Donald L.

    2010-01-01

    We reviewed published studies from primarily glaciated regions in the United States, Canada, and Europe of the (1) transport of nitrate from terrestrial ecosystems to aquatic ecosystems, (2) attenuation of nitrate in the riparian zone of undisturbed and agricultural watersheds, (3) processes contributing to nitrate attenuation in riparian zones, (4) variation in the attenuation of nitrate in the riparian zone, and (5) importance of in-stream and hyporheic processes for nitrate attenuation in the stream channel. Our objectives were to synthesize the results of these studies and suggest methodologies to (1) monitor regional trends in nitrate concentration in undisturbed 1st order watersheds and (2) reduce nitrate loads in streams draining agricultural watersheds. Our review reveals that undisturbed headwater watersheds have been shown to be very retentive of nitrogen, but the importance of biogeochemical and hydrological riparian zone processes in retaining nitrogen in these watersheds has not been demonstrated as it has for agricultural watersheds. An understanding of the role of the riparian zone in nitrate attenuation in undisturbed watersheds is crucial because these watersheds are increasingly subject to stressors, such as changes in land use and climate, wildfire, and increases in atmospheric nitrogen deposition. In general, understanding processes controlling the concentration and flux of nitrate is critical to identifying and mapping the vulnerability of watersheds to water quality changes due to a variety of stressors. In undisturbed and agricultural watersheds we propose that understanding the importance of riparian zone processes in 2nd order and larger watersheds is critical. Research is needed that addresses the relative importance of how the following sources of nitrate along any given stream reach might change as watersheds increase in size and with flow: (1) inputs upstream from the reach, (2) tributary inflow, (3) water derived from the riparian zone

  3. Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States

    USGS Publications Warehouse

    Kendall, C.; Silva, S.R.; Kelly, V.J.

    2001-01-01

    Riverine particulate organic matter (POM) samples were collected bi-weekly to monthly from 40 sites in the Mississippi, Colorado, Rio Grande, and Columbia River Basins (USA) in 1996-97 and analysed for carbon and nitrogen stable isotopic compositions. These isotopic compositions and C : N ratios were used to identify four endmember sources of POM: Plankton, fresh terrestrial plant material, aquatic plants, and soil organic material. This large-scale study also incorporated ancillary chemical and hydrologic data to refine and extend the interpretations of POM sources beyond the source characterizations that could be done solely with isotopic and elemental ratios. The ancillary data were especially useful for differentiating between seasonal changes in POM source materials and the effects of local nutrient sources and in-stream biogeochemical processes. Average values of ??13 C and C : N for all four river systems suggested that plankton is the dominant source of POM in these rivers, with higher percentages of plankton downstream of reservoirs. Although the temporal patterns in some rivers are complex, the low ??13C and C : N values in spring and summer probably indicate plankton blooms, whereas relatively elevated values in fall and winter are consistent with greater proportions of decaying aquatic vegetation and/or terrestrial material. Seasonal shifts in the ??13C of POM when the C : N remains relatively constant probably indicate changes in the relative rates of photosynthesis and respiration. Periodic inputs of plant detritus are suggested by C : N ratios >15, principally on the Columbia and Ohio Rivers. The ??15N and ??13C also reflect the importance of internal and external sources of dissolved carbon and nitrogen, and the degree of in-stream processing. Elevated ??15N values at some sites probably reflect inputs from sewage and/or animal waste. This information on the spatial and temporal variation in sources of POM in four major river systems should prove

  4. Assessing ecological integrity of Ozark rivers to determine suitability for protective status

    USGS Publications Warehouse

    Radwell, A.J.; Kwak, T.J.

    2005-01-01

    Preservation of extraordinary natural resources, protection of water quality, and restoration of impaired waters require a strategy to identify and protect least-disturbed streams and rivers. We applied two objective, quantitative methods to determine stream ecological integrity of headwater reaches of 10 Ozark rivers, 5 with Wild and Scenic River federal protective status. Thirty-four variables representing macroinvertebrate and fish assemblage characteristics, in-stream habitat, riparian vegetation, water quality, and watershed attributes were quantified for each river and analyzed using two multivariate approaches. The first approach, cluster and discriminant analyses, identified two groups of river with only one variable (% forested watershed) reliably distinguishing groups. Our second approach employed ordinal scaling to compare variables for each river to conceptually ideal conditions that were developed as a composite of optimal attributes among the 10 rivers. The composite distance of each river from ideal was then calculated using a unidimensional ranking technique. Two rivers without Wild and Scenic River designation ranked highest relative to ideal (highest ecological integrity), and two others, also without designation, ranked most distant from ideal (lowest ecological integrity). Fish density, number of intolerant fish species, and invertebrate density were influential biotic variables for scaling. Contributing physical variables included riparian forest cover, water nitrate concentration, water turbidity, percentage of forested watershed, percentage of private land ownership, and road density. These methods provide a framework for refinement and application in other regions to facilitate the process of establishing least-disturbed reference conditions and identifying rivers for protection and restoration. ?? 2005 Springer Science+Business Media, Inc.

  5. Evaluation of Management of Water Releases for Painted Rocks Rexervoir, Bitterroot River, Montana, 1985 Annual Report.

    SciTech Connect

    Lere, Mark E.

    1985-12-01

    The Bitterroot River, located in western Montana, is an important and heavily used resource, providing water for agriculture and a source for diversified forms of recreation. Water shortages in the river, however, have been a persistent problem for both irrigators and recreational users. Five major diversions and numerous smaller canals remove substantial quantities of water from the river during the irrigation season. Historically, the river has been severely dewatered between the towns of Hamilton and Stevensville as a result of these withdrawals. Demands for irrigation water from the Bitterroot River have often conflicted with the instream flow needs for trout. Withdrawals of water can decrease suitable depths, velocities, substrates and cover utilized by trout (Stalnaker and Arnette 1976, Wesche 1976). Losses in habitat associated with dewatering have been shown to diminish the carrying capacities for trout populations (Nelson 1980). Additionally, dewatering of the Bitterroot River has forced irrigators to dike or channelize the streambed to obtain needed flows. These alterations reduce aquatic habitat and degrade channel stability. Odell (personal communication) found a substantial reduction in the total biomass of aquatic insects within a section of the Bitterroot River that had been bulldozed for irrigation purposes. The Montana Department of Fish, Wildlife and Parks (MDFWP) has submitted a proposal to the Northwest Power Planning Council for the purchase of 10,000 acre-feet (AF) of stored water in Painted Rocks Reservoir to augment low summer flows in the Bitterroot River. This supplemental water potentially would enhance the fishery in the river and reduce degradation of the channel due to diversion activities. The present study was undertaken to: (1) develop an implementable water management plan for supplemental releases from Painted Rocks Reservoir which would provide optimum benefits to the river: (2) gather fisheries and habitat information to

  6. Controls on the turnover of fluvial organic carbon in UK rivers - combining experimental, observational and modelling approaches.

    NASA Astrophysics Data System (ADS)

    Worrall, F.

    2015-12-01

    In-stream processing of allochthonous dissolved organic carbon (DOC) and particulate organic carbon (POC) within the UK has been shown to be significant flux pathways in the terrestrial carbon cycle with both DOC and POC evolving into carbon dioxide (CO2). A mass balance approach based upon long term monitoring records was used to consider the loss of DOM and POM across UK watersheds. The total flux of carbon to UK rivers from the terrestrial biosphere was 21.8 tonnes C/km2/yr and the net catchment loss was 70%. Including the role of fluvial organic nitrogen means that for total nitrogen species UK rivers are gaining 9.6 tonnes N/km2/yr from the terrestrial biosphere but are losing 63% of this nitrogen by the tidal limit. In a parallel study, in-situ experiments investigating rates of degradation in unfiltered surface water from a headwater, peat-dominated stream. Experiments were conducted on unfiltered samples (DOM and POM could be considered); on fresh samples (experiments were started stream-side); and over 70 hours (similar to in-stream residence time of the UK). The study found that the DOC concentration of samples in the daylight declined by 64%, compared with 6% decline for the samples kept in the dark: the POC loss in the light was 13%. The organic matter was characterised using elemental analysis (CHNOP); uv-vis spectroscopy, pyrolysis GC-MS; thermos-gravimetric analysis; bomb calorimetry and solid-state 13C nmr. Initial rate kinetics in the light were as high as 3rd order, but the study could show that no single rate law could describe the whole diurnal degradation cycle. Developing a physically-based set of rate laws for the turnover of DOM and POM over the appropriate timescales showed that the derived set of rate laws was able to explain experimental data with a 13% MAPE based on turnover in three types of organic matter (particulate, labile dissolved, refractory dissolved) although the order and rate of reactions did change between sets of

  7. River Discharge and Bathymetry Estimation from Hydraulic Inversion of Surface Currents and Water Surface Elevation Observations

    NASA Astrophysics Data System (ADS)

    Simeonov, J.; Holland, K. T.

    2015-12-01

    We developed an inversion model for river bathymetry and discharge estimation based on measurements of surface currents, water surface elevation and shoreline coordinates. The model uses a simplification of the 2D depth-averaged steady shallow water equations based on a streamline following system of coordinates and assumes spatially uniform bed friction coefficient and eddy viscosity. The spatial resolution of the predicted bathymetry is related to the resolution of the surface currents measurements. The discharge is determined by minimizing the difference between the predicted and the measured streamwise variation of the total head. The inversion model was tested using in situ and remote sensing measurements of the Kootenai River east of Bonners Ferry, ID. The measurements were obtained in August 2010 when the discharge was about 223 m3/s and the maximum river depth was about 6.5 m. Surface currents covering a 10 km reach with 8 m spatial resolution were estimated from airborne infrared video and were converted to depth-averaged currents using acoustic Doppler current profiler (ADCP) measurements along eight cross-stream transects. The streamwise profile of the water surface elevation was measured using real-time kinematic GPS from a drifting platform. The value of the friction coefficient was obtained from forward calibration simulations that minimized the difference between the predicted and measured velocity and water level along the river thalweg. The predicted along/cross-channel water depth variation was compared to the depth measured with a multibeam echo sounder. The rms error between the measured and predicted depth along the thalweg was found to be about 60cm and the estimated discharge was 5% smaller than the discharge measured by the ADCP.

  8. Relationships between woody vegetation and geomorphological patterns in three gravel-bed rivers with different intensities of anthropogenic disturbance

    NASA Astrophysics Data System (ADS)

    Sitzia, T.; Picco, L.; Ravazzolo, D.; Comiti, F.; Mao, L.; Lenzi, M. A.

    2016-07-01

    We compared three gravel-bed rivers in north-eastern Italy (Brenta, Piave, Tagliamento) having similar bioclimate, geology and fluvial morphology, but affected by different intensities of anthropogenic disturbance related particularly to hydropower dams, training works and instream gravel mining. Our aim was to test whether a corresponding difference in the interactions between vegetation and geomorphological patterns existed among the three rivers. In equally spaced and sized plots (n = 710) we collected descriptors of geomorphic conditions, and presence-absence of woody species. In the less disturbed river (Tagliamento), spatial succession of woody communities from the floodplain to the channel followed a profile where higher elevation floodplains featured more developed tree communities, and lower elevation islands and bars were covered by pioneer communities. In the intermediate-disturbed river (Piave), islands and floodplains lay at similar elevation and both showed species indicators of mature developed communities. In the most disturbed river (Brenta), all these patterns were simplified, all geomorphic units lay at similar elevations, were not well characterized by species composition, and presented similar persistence age. This indicates that in human-disturbed rivers, channel and vegetation adjustments are closely linked in the long term, and suggests that intermediate levels of anthropogenic disturbance, such as those encountered in the Piave River, could counteract the natural, more dynamic conditions that may periodically fragment vegetated landscapes in natural rivers.

  9. Compliance of the Savannah River Site D-Area cooling system with environmental regulations

    SciTech Connect

    Specht, W.L.; Mackey, H.E.; Paller, M.H.; Wike, L.D.; Wilde, E.W.

    1990-08-01

    This document presents information relating to a demonstration under Section 316(a) of the Clean Water Act for the 400-D Area cooling system at the Savannah River Site (SRS) near Aiken, South Carolina. The demonstration was mandated because the National Pollution Discharge Elimination System (NPDES) permit for SRS (SC0000175), granted on January 1, 1984, specified in-stream temperature limits in SRS streams of 32.2{degree}C and a {Delta}T limit of 2.8{degree}C above ambient. To achieve compliance with in-stream temperature limits, the Department of Energy (DOE) and the South Carolina Department of Health and Environmental Control (SCDHEC) entered into a Consent Order (84-4-W) which temporarily superseded the temperature requirements and identified a process for attaining compliance. The preferred option for achieving thermal compliance in Beaver Dam Creek consisted of increased flow, with mixing of the raw water basin overflow with the cooling water discharge during the summer months. Although this action can achieve instream temperatures of less than 32.2{degree}C, {Delta}T's still exceed 2.8{degree}C. Therefore, a 316 (a) Demonstration was initiated to determine whether a balanced indigenous biological community can be supported in the receiving stream with {Delta}T's in excess of 2.8{degree}C. A Biological Monitoring Program for Beaver Dam Creek was approved by SCDHEC in June 1988 and implemented in September 1988. The program monitored the water quality, habitat formers, zooplankton, macroinvertebrates, fish, other vertebrate wildlife and threatened and endangered species in Beaver Dam Creek for an 18-month period (September 1988-February 1990). This document summarizes information collected during the monitoring program and evaluates the data to determine whether Beaver Dam Creek presently supports a balanced indigenous biological community. 97 refs., 32 figs., 51 tabs.

  10. Compilation of geologic, hydrologic, and ground-water flow modeling information for the Spokane Valley-Rathdrum Prairie aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    USGS Publications Warehouse

    Kahle, Sue C.; Caldwell, Rodney R.; Bartolino, James R.

    2005-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources and Washington Department of Ecology compiled and described geologic, hydrologic, and ground-water flow modeling information about the Spokane Valley-Rathdrum Prairie (SVRP) aquifer in northern Idaho and northeastern Washington. Descriptions of the hydrogeologic framework, water-budget components, ground- and surface-water interactions, computer flow models, and further data needs are provided. The SVRP aquifer, which covers about 370 square miles including the Rathdrum Prairie, Idaho and the Spokane valley and Hillyard Trough, Washington, was designated a Sole Source Aquifer by the U.S. Environmental Protection Agency in 1978. Continued growth, water management issues, and potential effects on water availability and water quality in the aquifer and in the Spokane and Little Spokane Rivers have illustrated the need to better understand and manage the region's water resources. The SVRP aquifer is composed of sand, gravel, cobbles, and boulders primarily deposited by a series of catastrophic glacial outburst floods from ancient Glacial Lake Missoula. The material deposited in this high-energy environment is coarser-grained than is typical for most basin-fill deposits, resulting in an unusually productive aquifer with well yields as high as 40,000 gallons per minute. In most places, the aquifer is bounded laterally by bedrock composed of granite, metasedimentary rocks, or basalt. The lower boundary of the aquifer is largely unknown except along the margins or in shallower parts of the aquifer where wells have penetrated its entire thickness and reached bedrock or silt and clay deposits. Based on surface geophysics, the thickness of the aquifer is about 500 ft near the Washington-Idaho state line, but more than 600 feet within the Rathdrum Prairie and more than 700 feet in the Hillyard trough based on drilling records. Depth to water in the aquifer is greatest in the northern

  11. Effective Discharge and Annual Sediment Yield on Brazos River

    NASA Astrophysics Data System (ADS)

    Rouhnia, M.; Salehi, M.; Keyvani, A.; Ma, F.; Strom, K. B.; Raphelt, N.

    2012-12-01

    Geometry of an alluvial river alters dynamically over the time due to the sediment mobilization on the banks and bottom of the river channel in various flow rates. Many researchers tried to define a single representative discharge for these morphological processes such as "bank-full discharge", "effective discharge" and "channel forming discharge". Effective discharge is the flow rate in which, the most sediment load is being carried by water, in a long term period. This project is aimed to develop effective discharge estimates for six gaging stations along the Brazos River from Waco, TX to Rosharon, TX. The project was performed with cooperation of the In-stream Flow Team of the Texas Water Development Board (TWDB). Project objectives are listed as: 1) developing "Flow Duration Curves" for six stations based on mean-daily discharge by downloading the required, additional data from U.S Geological Survey website, 2) developing "Rating Curves" for six gaging stations after sampling and field measurements in three different flow conditions, 3) developing a smooth shaped "Sediment Yield Histogram" with a well distinguished peak as effective discharge. The effective discharge was calculated using two methods of manually and automatic bin selection. The automatic method is based on kernel density approximation. Cross-sectional geometry measurements, particle size distributions and water field samples were processed in the laboratory to obtain the suspended sediment concentration associated with flow rate. Rating curves showed acceptable trends, as the greater flow rate we experienced, the more sediment were carried by water.

  12. Estimation of the Risks of Collision or Strike to Freshwater Aquatic Organisms Resulting from Operation of Instream Hydrokinetic Turbines

    SciTech Connect

    Schweizer, Peter E; Cada, Glenn F; Bevelhimer, Mark S

    2010-05-01

    Hydrokinetic energy technologies have been proposed as renewable, environmentally preferable alternatives to fossil fuels for generation of electricity. Hydrokinetic technologies harness the energy of water in motion, either from waves, tides or from river currents. For energy capture from free-flowing rivers, arrays of rotating devices are most commonly proposed. The placement of hydrokinetic devices in large rivers is expected to increase the underwater structural complexity of river landscapes. Moore and Gregory (1988) found that structural complexity increased local fish populations because fish and other aquatic biota are attracted to structural complexity that provides microhabitats with steep flow velocity gradients (Liao 2007). However, hydrokinetic devices have mechanical parts, blades, wings or bars that move through the water column, posing a potential strike or collision risk to fish and other aquatic biota. Furthermore, in a setting with arrays of hydrokinetic turbines the cumulative effects of multiple encounters may increase the risk of strike. Submerged structures associated with a hydrokinetic (HK) project present a collision risk to aquatic organisms and diving birds (Cada et al. 2007). Collision is physical contact between a device or its pressure field and an organism that may result in an injury to that organism (Wilson et al. 2007). Collisions can occur between animals and fixed submerged structures, mooring equipment, horizontal or vertical axis turbine rotors, and structures that, by their individual design or in combination, may form traps. This report defines strike as a special case of collision where a moving part, such as a rotor blade of a HK turbine intercepts the path of an organism of interest, resulting in physical contact with the organism. The severity of a strike incidence may range from minor physical contact with no adverse effects to the organism to severe strike resulting in injury or death of the organism. Harmful effects

  13. River Times.

    ERIC Educational Resources Information Center

    Auldridge, Teresa; And Others

    The James River is one of the most precious resources of Virginia. It was the site of the first permanent English settlement in the New World; the power of the water at the Fall Zone was a major factor in the development of Richmond; and the river served as a primary transportation route to the West via the Kanawha Canal. Both the water itself and…

  14. Channel change and bed-material transport in the Umpqua River basin, Oregon

    USGS Publications Warehouse

    Wallick, J. Rose; O'Connor, Jim E.; Anderson, Scott; Keith, Mackenzie K.; Cannon, Charles; Risley, John C.

    2011-01-01

    The Umpqua River drains 12,103 square kilometers of western Oregon; with headwaters in the Cascade Range, the river flows through portions of the Klamath Mountains and Oregon Coast Range before entering the Pacific Ocean. Above the head of tide, the Umpqua River, along with its major tributaries, the North and South Umpqua Rivers, flows on a mixed bedrock and alluvium bed, alternating between bedrock rapids and intermittent, shallow gravel bars composed of gravel to cobble-sized clasts. These bars have been a source of commercial aggregate since the mid-twentieth century. Below the head of tide, the Umpqua River contains large bars composed of mud and sand. Motivated by ongoing permitting and aquatic habitat concerns related to in-stream gravel mining on the fluvial reaches, this study evaluated spatial and temporal trends in channel change and bed-material transport for 350 kilometers of river channel along the Umpqua, North Umpqua, and South Umpqua Rivers. The assessment produced (1) detailed mapping of the active channel, using aerial photographs and repeat surveys, and (2) a quantitative estimation of bed-material flux that drew upon detailed measurements of particle size and lithology, equations of transport capacity, and a sediment yield analysis. Bed-material transport capacity estimates at 45 sites throughout the South Umpqua and main stem Umpqua Rivers for the period 1951-2008 result in wide-ranging transport capacity estimates, reflecting the difficulty of applying equations of bed-material transport to a supply-limited river. Median transport capacity values calculated from surface-based equations of bedload transport for each of the study reaches provide indications of maximum possible transport rates and range from 8,000 to 27,000 metric tons per year (tons/yr) for the South Umpqua River and 20,000 to 82,000 metric tons/yr for the main stem Umpqua River upstream of the head of tide; the North Umpqua River probably contributes little bed material. A

  15. Adjusted Streamflow and Storage 1928-1989 : with Listings of Historical Streamflow, Summation of Storage Change and Adjusted Streamflow : Columbia River and Coastal Basins.

    SciTech Connect

    A.G. Crook Company

    1993-04-01

    The development of irrigation projects since the 1830's and the construction of major dams and reservoirs since the early 1900's have altered substantially the natural streamflow regimen of the Columbia River and its tributaries. As development expanded a multipurpose approach to streamflow regulation evolved to provide flood control, irrigation, hydropower generation, navigation, recreation, water quality enhancement, fish and wildlife, and instream flow maintenance. The responsible agencies use computer programs to determine the effects of various alternative system regulations. This report describes the development of the streamflow data that these computer programs use.

  16. Detection probabilities of electrofishing, hoop nets, and benthic trawls for fishes in two western North American rivers

    USGS Publications Warehouse

    Smith, Christopher D.; Quist, Michael C.; Hardy, Ryan S.

    2015-01-01

    Research comparing different sampling techniques helps improve the efficiency and efficacy of sampling efforts. We compared the effectiveness of three sampling techniques (small-mesh hoop nets, benthic trawls, boat-mounted electrofishing) for 30 species in the Green (WY, USA) and Kootenai (ID, USA) rivers by estimating conditional detection probabilities (probability of detecting a species given its presence at a site). Electrofishing had the highest detection probabilities (generally greater than 0.60) for most species (88%), but hoop nets also had high detectability for several taxa (e.g., adult burbot Lota lota, juvenile northern pikeminnow Ptychocheilus oregonensis). Benthic trawls had low detection probabilities (<0.05) for most taxa (84%). Gear-specific effects were present for most species indicating large differences in gear effectiveness among techniques. In addition to gear effects, habitat characteristics also influenced detectability of fishes. Most species-specific habitat relationships were idiosyncratic and reflected the ecology of the species. Overall findings of our study indicate that boat-mounted electrofishing and hoop nets are the most effective techniques for sampling fish assemblages in large, coldwater rivers.

  17. Hydrologic and Biogeochemical Controls on the C and N Isotopic Compositions of Particulate Organic Matter in Large US Rivers

    NASA Astrophysics Data System (ADS)

    Kendall, C.; Silva, S. R.

    2004-05-01

    Particulate organic matter (POM) samples were collected bi-weekly to monthly from 40 NASQAN (National Stream Quality Accounting Network) river sites in the Mississippi, Colorado, Rio Grande, and Columbia River Basins from 1996 to 2001. These samples were analyzed for carbon and nitrogen stable isotopic compositions, and C:N ratios. The goal of our study was to use the isotopic compositions of POM samples, along with the abundant ancillary chemical and hydrological data generated by the NASQAN program at the same sites and dates (http://water.usgs.gov/nasqan/), to quantify seasonal and spatial changes in the POM and other nutrient sources, and to investigate in-stream biogeochemical processes in these large river systems. The d13C values for these sites ranges from less than -40 to about -17 permil. The d15N values range from about -30 to +30 permil. The combined use of the isotope data, C:N values, water chemistry, and hydrological data allow the determination of the seasonal changes in the contributions of POM from different terrestrial and riverine sources. These data also provide insight into seasonal and spatial controls on sources of nutrients to the rivers and biogeochemical processes in the water column. On average, about half of the POM from these rivers is composed of plankton and/or heterotrophic bacteria. However, there is considerable seasonal variation in the relative proportions, mainly related to algal blooms and seasonal changes in discharge amounts from different upstream sources. Our data suggest POM derived from in-stream productivity, since it is biologically labile, may be an important but overlooked contributor to hypoxia in the Gulf of Mexico and other coastal areas.

  18. Nitrogen attenuation in the Connecticut River, northeastern USA; a comparison of mass balance and N2 production modeling approaches

    USGS Publications Warehouse

    Smith, T.E.; Laursen, A.E.; Deacon, J.R.

    2008-01-01

    Two methods were used to measure in-stream nitrogen loss in the Connecticut River during studies conducted in April and August 2005. A mass balance on nitrogen inputs and output for two study reaches (55 and 66 km), at spring high flow and at summer low flow, was computed on the basis of total nitrogen concentrations and measured river discharges in the Connecticut River and its tributaries. In a 10.3 km subreach of the northern 66 km reach, concentrations of dissolved N2 were also measured during summer low flow and compared to modeled N2 concentrations (based on temperature and atmospheric gas exchange rates) to determine the measured "excess" N2 that indicates denitrification. Mass balance results showed no in-stream nitrogen loss in either reach during April 2005, and no nitrogen loss in the southern 55 km study reach during August 2005. In the northern 66 km reach during August 2005, however, nitrogen output was 18% less than the total nitrogen inputs to the reach. N2 sampling results gave an estimated rate of N2 production that would remove 3.3% of the nitrogen load in the river over the 10.3 km northern sub-reach. The nitrogen losses measured in the northern reach in August 2005 may represent an approximate upper limit for nitrogen attenuation in the Connecticut River because denitrification processes are most active during warm summer temperatures and because the study was performed during the annual low-flow period when total nitrogen loads are small. ?? 2008 Springer Science+Business Media B.V.

  19. Comparison of Methylmercury Production and Accumulation in Sediments of the Congaree and Edisto River Basins, South Carolina, 2004-06

    USGS Publications Warehouse

    Bradley, Paul M.; Chapelle, Francis H.; Journey, Celeste A.

    2009-01-01

    Fish-tissue mercury concentrations (approximately 2 micrograms per gram) in the Edisto River basin of South Carolina are among the highest recorded in the United States. Substantially lower mercury concentrations (approximately 0.2 microgram per gram) are reported in fish from the adjacent (about 30 kilometer) Congaree River basin and the Congaree National Park. In contrast, concentrations of total mercury were statistically higher in sediments from the Congaree River compared with those in sediments from the Edisto River. Furthermore, no statistically significant difference was observed in concentrations of methylmercury or net methylation potential in sediments collected from various Edisto and Congaree hydrologic settings. In both systems, the net methylation potential was low (0-0.17 nanogram per gram per day) for in-stream sediments exposed to continuously flowing water but substantially higher (about 1.8 nanograms per gram per day) in wetland sediments exposed to standing water. These results are not consistent with the hypothesis that differences in fish-tissue mercury between the Edisto and Congaree basins reflect fundamental differences in the potential for each system to methylate mercury. Rather, the significantly higher ratios of methylmercury to total mercury observed in the Edisto system suggest that the net accumulation and(or) preservation of methylmercury are greater in the Edisto system. The marked differences in net methylation potential observed between the wetland and in-stream settings suggest the hypothesis that methylmercury transport from zones of production (wetlands) to points of entry into the food chain (channels) may contribute to the observed differences in fish-tissue mercury concentrations between the two river systems.

  20. Umatilla River Basin Anadromous Fish Habitat Enhancement Project : 1993 Annual Report.

    SciTech Connect

    Shaw, R. Todd

    1993-04-01

    The Umatilla Basin Anadromous Fish Habitat Enhancement Project is funded under the Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program Measure 704 (d) (1) 34.02 and targets the improvement of water quality and restoration of riparian areas, holding, spawning and rearing habitats of steelhead, spring and fall chinook and coho salmon. The project focused on implementing instream and riparian habitat improvements on private lands on the Umatilla Indian Reservation (hereafter referred to as Reservation) from April 1, 1988 to March 31, 1992. These efforts resulted in enhancement of the lower 1/4 mile of Boston Canyon Creek, the lower 4 river miles of Meacham Creek and 3.2 river miles of the Umatilla River (downstream of the Meacham Creek confluence upstream to the Reservation East Boundary). In 1993, the project shifted emphasis to a comprehensive watershed approach consistent with other basin efforts and began to identify upland and riparian watershed-wide causative factors impacting fisheries habitat and natural fisheries production capabilities throughout the Umatilla River Watershed. Maintenance of existing habitat improvement projects was included under this comprehensive approach. Maintenance of existing gravel traps, instream and bank stabilization structures was required within project areas during the reporting period due to spring flooding damage and high bedload movement. Maintenance activities were completed between river mile (RM) 0.0 and RM 0.25 Boston Canyon Creek, between RM 0.0 and RM 4 Meacham Creek and between RM 78.5 and RM 79 Umatilla River. Habitat enhancement areas were seeded with native grass, legume, shrub and wildflower mixes and planted with willow cuttings to assist in floodplain recovery, stream channel stability and filtering of sediments during high flow periods. Water quality monitoring continued for temperature and turbidity throughout the upper Umatilla River Watershed. Survey of cross sections and photo

  1. River restoration in Spain: theoretical and practical approach in the context of the European water framework directive.

    PubMed

    González Del Tánago, Marta; García de Jalón, Diego; Román, Mercedes

    2012-07-01

    River restoration is becoming a priority in many countries because of increasing the awareness of environmental degradation. In Europe, the EU Water Framework Directive (WFD) has significantly reinforced river restoration, encouraging the improvement of ecological status for water bodies. To fulfill the WFD requirements, the Spanish Ministry of the Environment developed in 2006 a National Strategy for River Restoration whose design and implementation are described in this paper. At the same time many restoration projects have been conducted, and sixty of them have been evaluated in terms of stated objectives and pressures and implemented restoration measures. Riparian vegetation enhancement, weir removal and fish passes were the most frequently implemented restoration measures, although the greatest pressures came from hydrologic alteration caused by flow regulation for irrigation purposes. Water deficits in quantity and quality associated with uncontrolled water demands seriously affect Mediterranean rivers and represent the main constraint to achieving good ecological status of Spanish rivers, most of them intensively regulated. Proper environmental allocation of in-stream flows would need deep restrictions in agricultural water use which seem to be of very difficult social acceptance. This situation highlights the need to integrate land-use and rural development policies with water resources and river management, and identifies additional difficulties in achieving the WFD objectives and good ecological status of rivers in Mediterranean countries. PMID:22569704

  2. River Restoration in Spain: Theoretical and Practical Approach in the Context of the European Water Framework Directive

    NASA Astrophysics Data System (ADS)

    González del Tánago, Marta; García de Jalón, Diego; Román, Mercedes

    2012-07-01

    River restoration is becoming a priority in many countries because of increasing the awareness of environmental degradation. In Europe, the EU Water Framework Directive (WFD) has significantly reinforced river restoration, encouraging the improvement of ecological status for water bodies. To fulfill the WFD requirements, the Spanish Ministry of the Environment developed in 2006 a National Strategy for River Restoration whose design and implementation are described in this paper. At the same time many restoration projects have been conducted, and sixty of them have been evaluated in terms of stated objectives and pressures and implemented restoration measures. Riparian vegetation enhancement, weir removal and fish passes were the most frequently implemented restoration measures, although the greatest pressures came from hydrologic alteration caused by flow regulation for irrigation purposes. Water deficits in quantity and quality associated with uncontrolled water demands seriously affect Mediterranean rivers and represent the main constraint to achieving good ecological status of Spanish rivers, most of them intensively regulated. Proper environmental allocation of in-stream flows would need deep restrictions in agricultural water use which seem to be of very difficult social acceptance. This situation highlights the need to integrate land-use and rural development policies with water resources and river management, and identifies additional difficulties in achieving the WFD objectives and good ecological status of rivers in Mediterranean countries.

  3. Relations between retired agricultural land, water quality, and aquatic-community health, Minnesota River Basin

    USGS Publications Warehouse

    Christensen, Victoria G.; Lee, Kathy E.; McLees, James M.; Niemela, Scott L.

    2012-01-01

    The relative importance of agricultural land retirement on water quality and aquatic-community health was investigated in the Minnesota River Basin. Eighty-two sites, with drainage areas ranging from 4.3 to 2200 km2, were examined for nutrient concentrations, measures of aquatic-community health (e.g., fish index of biotic integrity [IBI] scores), and environmental factors (e.g., drainage area and amount of agricultural land retirement). The relation of proximity of agricultural land retirement to the stream was determined by calculating the land retirement percent in various riparian zones. Spearman's rho results indicated that IBI score was not correlated to the percentage of agricultural land retirement at the basin scale (p = 0.070); however, IBI score was correlated to retired land percentage in the 50- to 400-m riparian zones surrounding the streams (p < 0.05), indicating that riparian agricultural land retirement may have more influence on aquatic-community health than does agricultural land retirement in upland areas. Multivariate analysis of covariance and analysis of covariance models indicated that other environmental factors (such as drainage area and lacustrine and palustrine features) commonly were correlated to aquatic-community health measures, as were in-stream factors (standard deviation of water depth and substrate type). These results indicate that although agricultural land retirement is significantly related to fish communities as measured by the IBI scores, a combination of basin, riparian, and in-stream factors act together to influence IBI scores.

  4. Catchment and in-stream influences on iron-deposit chemistry, algal-bacterial biomass and invertebrate richness in upland streams, Northern Ireland.

    NASA Astrophysics Data System (ADS)

    Macintosh, Katrina Ann; Griffiths, David

    2013-04-01

    The density and composition of upland stream bed iron-deposits is affected by physical, chemical and biological processes. The basic chemical processes producing ochre deposits are well known. Mobilisation of iron and manganese is influenced by bedrock weathering, the presence of acidic and/or reducing conditions and the concentration of dissolved organic carbon. Ferromanganese-depositing bacteria are significant biogenic agents and can cause/enhance the deposition of metals in streams as (hydr)oxides. Metal concentrations from stream waters in two geological blocks in Northern Ireland were compared to determine the contributions of catchment characteristics and in-stream conditions. One block is composed of metamorphosed schist and unconsolidated glacial drift, with peat or peaty podzol (mainly humic) soils, while the other block consists of tertiary basalt with brown earth and gley soils. Water samples were collected from 52 stream sites and analysed for iron, manganese and aluminium as well as a range of other chemical determinands known to affect metal solubility. Stone deposit material was analysed for metal concentrations, organic matter content and epilithic algae, chlorophyll a concentration. Invertebrates were collected by area-standardised kick samples and animals identified to family and numbers counted. Higher conductivities and concentrations of bicarbonate, alkalinity, calcium and magnesium occurred on basalt than on schist. Despite higher iron and manganese oxide concentrations in basalt-derived non-humic soils, stream water concentrations were much lower and stone deposit concentrations only one third of those occurring on schist overlain by humic soils. Peat-generated acidity and the limited acid neutralising capacity of base-poor metamorphosed schist has resulted in elevated concentrations of metals and ochre deposit in surface waters. Algal biomass was determined by catchment level factors whereas in-stream conditions affected bacterial biomass

  5. Coherent structure dynamics and sediment erosion mechanisms around an in-stream rectangular cylinder at low and moderate angles of attack

    NASA Astrophysics Data System (ADS)

    Chang, W. Y.; Constantinescu, George; Tsai, W. F.; Lien, H. C.

    2011-12-01

    Local scour around elongated in-stream structures (e.g., high-aspect ratio rectangular bridge piers) is mainly driven by the interactions between the erodible bed and the large-scale coherent structures generated by the presence of the flow obstruction. The present investigation uses eddy-resolving numerical simulations to study the mean flow and turbulence structure around a high-aspect ratio rectangular cylinder placed in a flat bed channel. Simulations are conducted for three angles of attack (α = 0°, 15°, and 30°) at a channel Reynolds number of 2.4 × 105. This paper focuses on the dynamics of the large-scale coherent structures forming around the rectangular cylinder and their role in controlling sediment entrainment at conditions corresponding to the start of the scour process. Simulation results show that most of the sediment is entrained from the bed by the eddies shed inside the separated shear layers (SSLs), by the legs of the necklace vortices, and by the strongly accelerated flow on the outer side of the SSLs. For α = 0° and 15°, the horseshoe vortex (HV) system plays a relatively minor role in the entrainment of sediment in front of the cylinder, and the passage of the wake vortices (rollers) results in a small amplification of the bed friction velocity. In contrast, for α = 30°, the unsteady dynamics of the main necklace vortices part of the HV system and of the roller vortices results in a significant amplification of the instantaneous bed friction velocity. The mean flux of sediment entrained from the bed calculated on the basis of the mean flow field is found to underestimate by 2-3 times the same quantity when estimated more correctly on the basis of the instantaneous flow fields. The primary reason for this underestimation is sediment entrainment in regions where the mean flow bed friction velocity is smaller than the critical value for entrainment. Quantitative information on the extent of the regions of high values of the bed friction

  6. Effects of agricultural conservation practices on N loads in the Mississippi-atchafalaya river basin.

    PubMed

    Santhi, C; Arnold, J G; White, M; Di Luzio, M; Kannan, N; Norfleet, L; Atwood, J; Kellogg, R; Wang, X; Williams, J R; Gerik, T

    2014-11-01

    A modeling framework consisting of a farm-scale model, Agricultural Policy Environmental Extender (APEX); a watershed-scale model, Soil and Water Assessment Tool (SWAT); and databases was used in the Conservation Effects Assessment Project to quantify the environmental benefits of conservation practices on cropland. APEX is used to simulate conservation practices on cultivated cropland and Conservation Reserve Program land to assess the edge-of-field water-quality benefits. Flow and pollutant loadings from APEX are input to SWAT. SWAT simulates the remaining noncultivated land and routes flow and loads generated from noncultivated land, point sources, and cropland to the basin outlet. SWAT is used for assessing the effects of practices on local and in-stream water-quality benefits. Each river basin is calibrated and validated for streamflow and loads at multiple gauging stations. The objectives of the current study are to estimate the effects of currently existing and additional conservation practices on total N (TN) loads in the Mississippi-Atchafalaya River Basin (MARB) and draw insights on TN load reductions necessary for reducing the hypoxic zone in the Gulf of Mexico. The effects of conservation practice scenarios on local and in-stream (riverine) water quality are evaluated. Model results indicate that conservation practices currently on cropland have reduced the TN losses to local waters between 20 and 59% in the six river basins within MARB and the TN load discharged to the Gulf by 17%. Further water-quality improvement can be obtained in the MARB with additional conservation treatment. PMID:25602207

  7. How effective is river restoration in re-establishing groundwater - surface water interactions? - A case study

    NASA Astrophysics Data System (ADS)

    Kurth, A.-M.; Weber, C.; Schirmer, M.

    2015-01-01

    In this study we investigated whether river restoration was successful in re-establishing vertical connectivity and, thereby, groundwater-surface water interactions, in a degraded urban stream. Well-tried passive Distributed Temperature Sensing (DTS) and novel active and passive DTS approaches were employed to study groundwater-surface water interactions in an experimental reach of an urban stream before and after its restoration and in two (near-) natural reference streams. Results were validated with Radon-222 analyses. Our results indicated that river restoration at the study site was indeed successful in increasing groundwater-surface water interactions. Increased surface water downwelling occurred locally at the tip of a gravel island created during river restoration. Hence, the installation of in-stream structures increased the vertical connectivity and thus groundwater-surface water interactions. With the methods presented in this publication it would be possible to routinely investigate the success of river restorations in re-establishing vertical connectivity, thereby gaining insight into the effectiveness of specific restoration measures. This, in turn, would enable the optimization of future river restoration projects, rendering them more cost-effective and successful.

  8. Evaluation of the chemical, physical, and biological conditions of the Alamosa River and associated tributaries

    SciTech Connect

    Willingham, W.T.; Parrish, L.P.; Schroeder, W.C.

    1995-12-31

    This study focused on the Summitville Mine Site, an abandoned cyanide heap-leach facility that discharges into the upper Alamosa River by way of the Wightman Fork, some five miles upstream from its confluence with the Alamosa River. Environmental data have been collected from the Alamosa River from its headwaters in the Rocky Mountains to its confluence with the Rio Grande River, Colorado. To date, environmental data have been collected in 1991, 1993, and July and September 1994. Water column and sediment chemistry, flow estimates and toxicity test data from more comprehensive environmental sampling events in July and September 1994 were used, in conjunction with other environmental data including in-stream biological data and physical habitat, to determine what impact, if any, the Summitville Superfund site was having on the aquatic life resources within the Alamosa River drainage, Comparisons of macroinvertebrate samples collected in July and September revealed difficulties relating impacts that occurred earlier in the summer, when heavy metal concentrations in the water column were high, to impacts that were noted in the fall, when heavy metal concentrations were lower. The macroinvertebrate community was reduced in numbers in the fall. However, water column chemistry and toxicity testing indicated improved conditions, when compared to the July sampling results. Possible reasons for the differences will be examined and suggestions will be made concerning additional sampling that might provide answers to the differences observed.

  9. Simulation of flood reduction by natural river rehabilitation using a distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Liu, Y. B.; Gebremeskel, S.; de Smedt, F.; Hoffmann, L.; Pfister, L.

    The effects of river rehabilitation on flood reduction in the Steinsel sub-basin of the Alzette River basin, Grand-Duchy of Luxembourg, are discussed; the rehabilitation measures include planting and changing riparian and in-stream vegetation, and re-meandering of channelised reaches, etc. in the headwater streams. To simulate flood reduction by river rehabilitation, the streams have been classified into different orders and by assessing the response of the stream channels to the resistance or obstruction of flows. Based on this assessment, the roughness to the flow in the first and second order streams is adjusted in line with the river rehabilitation while the roughness of higher order channels downstream is unchanged. The hydrological analysis utilises the WetSpa distributed model based on spatial information on topography, soil type and land use. The increased channel roughness in the headwater channels delays the flows, so that peak discharges at the outlet of the basin are reduced. The simulation indicates that, after river naturalisation, the reduction in peak flow can be as much as 14% and the time of concentration may be delayed by as much as two hours. Also, an impact analysis has assessed the possible flood reduction for a changed climate scenario.

  10. Reach Scale Application of UAV+SFM Method in Shallow Rivers Hyperspatial Bathymetry

    NASA Astrophysics Data System (ADS)

    Bagheri, O.; Ghodsian, M.; Saadatseresht, M.

    2015-12-01

    Nowadays, rivers are impacted by different human activities and highly regulated. To rehabilitate these systems, spatial and process-based analyses of rivers are essential. Hydrodynamic models are sophisticated tools in this regard and instream topography is one of the most important input of these models. To represent hyperspatial topography and bathymetry in shallow rivers, UAV imagery and structure from motion may be an optimum method considering the extent of application, vegetation condition and flow quality. However, at the present there is no available workflow for applications of UAV+SfM method in riverine environments at extent of reach or higher scales. Therefore, in this study a new workflow has been presented and evaluated in Alarm River. The evaluation showed that the workflow provides 2 m/s speed for UAV while mapping flight lines with low illumination changes. Specific pattern of image acquisition in the proposed workflow leads to substantial decrease of process time. In addition, precise control of flight height and overlap of images may lead to consistent accurate results. The result of validation against rtkGNSS data points showed that the suggested workflow is capable of providing 0.01 m-resolution topographic data with an error less than 0.075 m and 95% level of confidence in clear shallow rivers.

  11. Evaulation of the Quality of an Aquatic Habitat on the Drietomica River

    NASA Astrophysics Data System (ADS)

    Stankoci, Ivan; Jariabková, Jana; Macura, Viliam

    2014-03-01

    The ecological status of a river is influenced by many factors, of which the most important are fauna and flora; in this paper they are defined as a habitat. During the years 2004, 2005, 2006 and 2011, research on the hydroecological quality of a habitat was evaluated in the reference section of the Drietomica River. Drietomica is a typical representative river of the Slovak flysch area and is located in the region of the White Carpathians in the northwestern part of Slovakia. In this article the results of modeling a microhabitat by means of the Instream Flow Incremental Methodology (IFIM) are presented. For the one-dimensional modeling, the River Habitat Simulation System (RHABSIM) was used to analyse the interaction between a water flow, the morphology of a riverbed, and the biological components of the environment. The habitat ´s hydroecological quality was evaluated after detailed ichthyological, topographical and hydro-morphological surveys. The main step was assessing the biotic characteristics of the habitat through the suitability curves for the Brown trout (Salmo trutta m. fario). Suitability curves are a graphic representation of the main biotic and abiotic preferences of a microhabitat's components. The suitability curves were derived for the depth, velocity, fish covers and degree of the shading. For evaluating the quality of the aquatic habitat, 19 fish covers were closely monitored and evaluated. The results of the Weighted Usable Area (WUA = f (Q)) were evaluated from a comprehensive assessment of the referenced reach of the Drietomica River.

  12. Use of fish functional traits to associate in-stream suspended sediment transport metrics with biological impairment.

    PubMed

    Schwartz, John S; Simon, Andrew; Klimetz, Lauren

    2011-08-01

    Loss of ecological integrity due to excessive suspended sediment in rivers and streams is a major cause of water quality impairment in the USA. Current assessment protocols for development of sediment total maximum daily loads (TMDLs) lack a means to link temporally variable sediment transport rates with specific losses of ecological functions as loads increase. In order to accomplish this linkage assessment, a functional traits-based approach was used to correlate site occurrences of 17 fish species traits in three main groups (preferred rearing habitat, trophic feeding guild, and spawning behavior) with suspended sediment transport metrics. The sediment transport metrics included concentrations, durations, and dosages for a range of exceedance frequencies; and mean annual suspended sediment yields (SSY). In addition, this study in the Northwestern Great Plains Ecoregion examined trait relationships with three environmental gradients: channel stability, drainage area, and elevation. Potential stressor responses due to elevated suspended sediment concentration (SSC) levels were correlated with occurrences of five traits: preferred pool habitat; feeding generalists, omnivores, piscivores, and nest-building spawners; and development of ecologically based TMDL targets were demonstrated for specific SSC exceedance frequencies. In addition, reduced site occurrences for preferred pool habitat and nest-building spawners traits were associated with unstable channels and higher SSY. At an ecoregion scale, a functional traits assessment approach provided a means to quantify relations between biological impairment and episodically elevated levels of suspended sediment, supporting efforts to develop ecologically based sediment TMDLs. PMID:20981569

  13. Simulations of a hypothetical temperature control structure at Detroit Dam on the North Santiam River, northwestern Oregon

    USGS Publications Warehouse

    Buccola, Norman L.; Stonewall, Adam J.; Rounds, Stewart A.

    2015-01-01

    Estimated egg-emergence days for endangered Upper Willamette River Chinook salmon (Oncorhynchus tshawytscha) and Upper Willamette River winter steelhead (Oncorhynchus mykiss) were assessed for all scenarios. Estimated spring Chinook fry emergence under SlidingWeir scenarios was 9 days later immediately downstream of Big Cliff Dam, and 4 days later at Greens Bridge compared with existing structural scenarios at Detroit Dam. Despite the inclusion of a hypothetical sliding weir at Detroit Dam, temperatures exceeded without-dams temperatures during November and December. These late-autumn exceedances likely represent the residual thermal effect of Detroit Lake operated to meet minimum dry-season release rates (supporting instream habitat and irrigation requirements) and lake levels specified by the current (2014) operating rules (supporting recreation and flood mitigation).

  14. Quantification and Simulation of Metal Loading to the Upper Animas River, Eureka to Silverton, San Juan County, Colorado, September 1997 and August 1998

    USGS Publications Warehouse

    Paschke, Suzanne S.; Kimball, Briant A.; Runkel, Robert L.

    2005-01-01

    Drainage from abandoned and inactive mines and from naturally mineralized areas in the San Juan Mountains of southern Colorado contributes metals to the upper Animas River near Silverton, Colorado. Tracer-injection studies and associated synoptic sampling were performed along two reaches of the upper Animas River to develop detailed profiles of stream discharge and to locate and quantify sources of metal loading. One tracer-injection study was performed in September 1997 on the Animas River reach from Howardsville to Silverton, and a second study was performed in August 1998 on the stream reach from Eureka to Howardsville. Drainage in the upper Animas River study reaches contributed aluminum, calcium, copper, iron, magnesium, manganese, sulfate, and zinc to the surface-water system in 1997 and 1998. Colloidal aluminum, dissolved copper, and dissolved zinc were attenuated through a braided stream reach downstream from Eureka. Instream dissolved copper concentrations were lower than the State of Colorado acute and chronic toxicity standards downstream from the braided reach to Silverton. Dissolved iron load and concentrations increased downstream from Howardsville and Arrastra Gulch, and colloidal iron remained constant at low concentrations downstream from Howardsville. Instream sulfate concentrations were lower than the U.S. Environmental Protection Agency's secondary drinking-water standard of 250 milligrams per liter throughout the two study reaches. Elevated zinc concentrations are the primary concern for aquatic life in the upper Animas River. In the 1998 Eureka to Howardsville study, instream dissolved zinc load increased downstream from the Forest Queen mine, the Kittimack tailings, and Howardsville. In the 1997 Howardsville to Silverton study, there were four primary areas where zinc load increased. First, was the increase downstream from Howardsville and abandoned mining sites downstream from the Cunningham Gulch confluence, which also was measured during

  15. Origin and dynamics of dissolved and particulate nutrients in a minimally disturbed Mediterranean river with intermittent flow

    NASA Astrophysics Data System (ADS)

    Skoulikidis, Nikolaos; Amaxidis, Yorgos

    2009-06-01

    SummaryHydrological pathways, speciation, and in-stream spatio-temporal variations (including initial flood pulses), along with soil/sediment characteristics, pointed out to the most probable factors and processes driving the origin, levels and dynamics of nutrients in a minimally disturbed Greek temporal river. Nitrogen and phosphorus were predominately found in the organic form and, despite the high suspended sediment transport, in the dissolved phase. Forest soil leaching and erosion fuelled the river with organic nutrients both in the dissolved and particulate phase, especially at the upstream portion of the basin. This part of the basin exhibited "pristine" dissolved nutrient levels (e.g. 30 μg/l DIN, 1.04 μg/l P-PO 4), despite substantial transport through precipitation and subsurface flow, suggesting that certain biogeochemical processes acting in the watershed and in-stream effectively reduce riverine dissolved nutrient concentrations. Intense erosion caused a significant downstream increase of suspended sediments and associated nutrient concentrations. Flushing processes, that were detected even in a monthly base in particular river stretches, enhanced dissolved and particulate nutrient concentrations. Initial flood pulses created "hot moments" chiefly for suspended sediments (RMF during initial flood events reached up to 7) and associated nutrients (e.g. RMF of POC during initial flood events reached up to 32), although flood event sediments presented lower nutrient portions compared to usual sediment transport. Flush peaks of ammonia (max 19 mg/l NH 4) and nitrite (max 42 μg/l NO 2), that surpassed aquatic quality standards, were attributed to rapid mineralization of organic matter upon rewetting and subsequent nitrification. River bed sediments were characterized by organic carbon and nitrogen losses, due to leaching and mineralization processes, and phosphorus retention, thus affecting nutrient ratios and hence photosynthesis in receiving waters.

  16. Evaluation of total phosphorus mass balance in the lower Boise River and selected tributaries, southwestern Idaho

    USGS Publications Warehouse

    Etheridge, Alexandra B.

    2013-01-01

    phosphorus in the lower Boise River in October 2012 and March 2013. Model results indicate that point sources represent the largest contribution of phosphorus to the Boise River year round, but that reductions in point and nonpoint source phosphorus loads may be necessary to achieve seasonal total phosphorus concentration targets at Parma (RM 3.8) from May 1 through September 30, as set by the 2004 Snake River-Hells Canyon Total Maximum Daily Load document. The mass-balance models do not account for biological or depositional instream processes, but are useful indicators of locations where appreciable phosphorus uptake or release by aquatic plants may occur.

  17. A general protocol for restoration of entire river catchments

    SciTech Connect

    Stanford, J.A.; Frissell, C.A.; Ward, J.V.; Coutant, C.C.; Williams, R.N.; Lichatowich, J.A.

    1996-05-28

    Large catchment basins may be viewed as ecosystems with interactive natural and cultural attributes. Stream regulation severs ecological connectivity between channels and flood plains by reducing the range of natural flow and temperature variation, reduces the capacity of the ecosystem to sustain native biodiversity and bioproduction and promotes proliferation of non-native biota. However, regulated rivers regain normative attributes, which promote recovery of native biota, as distance from the dam increases and in relation to the mode of regulation. Therefore, reregulation of flow and temperature to normative pattern, coupled with elimination of pollutants and constrainment of nonnative biota, can naturally restore damaged habitats from headwaters to mouth. The expectation is rapid recovery of depressed populations of native species. The protocol requires: restoration of seasonal temperature patterns; restoration of peak flows needed to reconnect and periodically reconfigure channel and floodplain habitats; stabilization of base flows to revitalize the shallow water habitats; maximization of dam passage to allow restoration of metapopulation structure; change in the management belief system to rely on natural habitat restoration as opposed to artificial propagation, installation of artificial instream structures (river engineering) and artificial food web control; and, practice of adaptive ecosystem management.

  18. How effective is river restoration in re-establishing groundwater-surface water interactions? - A case study

    NASA Astrophysics Data System (ADS)

    Kurth, A.-M.; Weber, C.; Schirmer, M.

    2015-06-01

    In this study, we investigated whether river restoration was successful in re-establishing groundwater-surface water interactions in a degraded urban stream. Restoration measures included morphological changes to the river bed, such as the installation of gravel islands and spur dykes, as well as the planting of site-specific riparian vegetation. Standard distributed temperature sensing (DTS) and novel active and passive DTS approaches were employed to study groundwater-surface water interactions in two reference streams and an experimental reach of an urban stream before and after its restoration. Radon-222 analyses were utilized to validate the losing stream conditions of the urban stream in the experimental reach. Our results indicated that river restoration at the study site was indeed successful in increasing groundwater-surface water interactions. Increased surface water downwelling occurred locally at the tip of a gravel island created during river restoration. Hence, the installation of in-stream structures increased the vertical connectivity and thus groundwater-surface water interactions. With the methods presented in this publication, it would be possible to routinely investigate the success of river restorations in re-establishing vertical connectivity, thereby gaining insight into the effectiveness of specific restoration measures. This, in turn, would enable the optimization of future river restoration projects, rendering them more cost-effective and successful.

  19. Composition and variability in the export of biogenic silica in the Changjiang River and the effect of Three Gorges Reservoir.

    PubMed

    Ran, Xiangbin; Liu, Sen; Liu, Jun; Zang, Jiaye; Che, Hong; Ma, Yongxing; Wang, Yibin

    2016-11-15

    Silicon (Si) plays an essential role in biogeochemical processes, but is still poorly characterized in the river system. This study addressed the biogenic silica (BSi) composition, origin and variation in the Changjiang River, and estimated the impacts of natural processes and human activities on the river Si cycling. Our results indicate that phytoliths comprised 14%-64% of BSi, while diatoms accounted for 34%-85% of BSi. The Changjiang River transported 620Ggyr(-1) of BSi and 2100Ggyr(-1) of dissolved silicate (DSi) loadings, respectively; 55% of the BSi and 51% of the DSi fluxes are transported during the high discharge period from June to September. The Changjiang River carried phytolith BSi mostly comes from the middle and lower reaches area. The ratio of BSi/(BSi+DSi) has decreased from 0.47 before 1980 to 0.19 in 2013-2014 due to the direct retention of BSi. The BSi sedimentation in the Three Gorges Reservoir would cause a decrease of total reactive silica, but contribute to approximately 4%-16% of the DSi loading at the Jiangyin station due to its dissolution. This study demonstrates that phytoliths represent a significant contribution to the biogeochemical cycle of silica in coastal waters, and in-stream process exerts a great influence on the river Si loading and cycling. PMID:27450961

  20. Relating river geomorphology to the abundance of periphyton in New Zealand rivers

    NASA Astrophysics Data System (ADS)

    Hoyle, Jo; Hicks, Murray; Kilroy, Cathy

    2013-04-01

    Aquatic plants (including both periphyton and macrophytes) are a natural component of stream and river systems. However, abundant growth of instream plants can have detrimental impacts on the values of rivers. For example, periphyton in rivers provides basal resources for food webs and provides an important ecological service by removing dissolved nutrients and contaminants from the water column. However, high abundance of periphyton can have negative effects on habitat quality, water chemistry and biodiversity, and can reduce recreation and aesthetic values. The abundance of periphyton in rivers is influenced by a number of factors, but two key factors can be directly influenced by human activities: flow regimes and nutrient concentrations. Establishing quantitative relationships between periphyton abundance and these factors has proven to be difficult but remains an urgent priority due to the need to manage the ecological impacts of water abstraction and eutrophication of rivers worldwide. This need is particularly strong in New Zealand, where there is increasing demand for water for industry, power generation and agriculture. However, we currently have limited ability to predict the effects of changes in the mid-range flow regime on the presence/absence, abundance and composition of aquatic plants. Current water allocation limits are based on simple flow statistics, such as multiples of the median flow, but these are regional averages and can be quite unreliable on a site-specific basis. This stems largely from our limited ability to transform flow data into ecologically meaningful physical processes that directly affect plants (e.g., drag, abrasion, bed movement). The research we will present examines whether geomorphic variables, such as frequency of bed movement, are useful co-predictors in periphyton abundance-flow relationships. We collected topographic survey data and bed sediment data for 20 study reaches in the Manawatu-Wanganui region of New Zealand

  1. Interactions between river channel processes and riparian vegetation - an example from the Lužnice River, Czech Republic

    NASA Astrophysics Data System (ADS)

    Krejci, Lukas; Macka, Zdenek

    2010-05-01

    Riparian vegetation responds to hydrogemorphic processes and environmental changes and also controls these processes. Our study focuses on the interactions between woody riparian vegetation (live and dead trees) and river channel morphology on the example of three 1 km long reaches of the Lužnice River in southern Czech Republic. Here, we propose that despite spatial proximity, identical hydrological and sedimentological controls, three river reaches have different geomorphology due to varying character of riparian woody vegetation and different character and abundance of large in-stream wood (LW). Upstream, middle and downstream reaches vary markedly in channel dimensions (width, depth) and the present day rate of lateral erosion. Three reaches also show the different in-stream wood loads which are dependent mainly on the character of the riparian vegetation, and on the lateral activity of the channel. The highest wood load was recorded at the downstream reach with 102,162 m3/ha, the lowest at the middle reach 37,041 m3/ha, the upstream reach has load 81,370 m3/ha. Upper reach woody vegetation is the mixture of willow, alder, chokecherry and oak. The reach is only slightly sinuous with the moderate rate of incision and lateral erosion. The channel width and depth are 13 m and 2,1 m respectively, the mean cross section area is 27,3 m2. Erosion in the reach is slightly enhanced by the river training works upstream (canalisation, weir construction). Middle reach woody vegetation mostly consist of willow. Tree-tops often incline into the channel, thus, dissipating effectively the energy of the river flow. The reach is moderately sinuous and rather laterally stable. The channel width and depth are 10 m and 2,5 m respectively, the mean cross section area is 25 m2. The reach approximates the natural condition of the pristine river. The impact of river training works is minor only with the road bridge upstream. This reach in the most natural condition shows the lowest in-stream

  2. Hotspots and hot moments of aquifer river exchange and biogeochemical cyclinbg in the streambed of lowland rivers

    NASA Astrophysics Data System (ADS)

    Krause, Stefan; Munz, Mathias; Tecklenburg, Christina; Blume, Theresa; Binley, Andrew

    2013-04-01

    Exchange fluxes across aquifer-river interfaces can have a major impact on the biogeochemical cycling in streambed environments. This paper presents integrated experimental and model-based investigations of physical drivers and chemical controls on streambed biogeochemcial cycling at two UK lowland rivers. It combines in-stream geophysical surveys, multi-level mini-piezometer networks and active and passive heat tracing methods for identifying spatial patterns and temporal dynamics of aquifer-river exchange fluxes with multi-scale hyporheic pore-water sampling and applications of reactive "smart-tracers". Hyporheic pore water analysis from nested multi-level piezometers and passive gel probe samplers revealed significant spatial variability in streambed nitrogen cycling in dependence of redox-conditions, dissolved oxygen and bio-available organic carbon concentrations. Hot spots of increased nitrate attenuation and anaerobic respiration were associated with semi-confining streambed peat lenses. The intensity of concentration changes underneath the confining peat layers correlated with the state of anoxia in the pore water as well as the supply of organic carbon and hyporheic residence times. In contrast, at locations where flow inhibiting peat layers were absent or disrupted - fast exchange between aquifer and river caused a break-through of nitrate without significant concentration changes along the hyporheic flow path. Fibre-optic Distributed Temperature Sensing was applied for identifying groundwater - surface water exchange flow patterns in dependency of streambed structural heterogeneity and support the identification of the location and extend of flow inhibiting structures as indicators of streambed reactivity hot spots. Coupled groundwater-surface water model simulations supported the experimental results, indicating that hotspots of exchange fluxes and biogeochemical activity were predominantly controlled by the spatial heterogeneous impact of streambed

  3. Coal aquifer contribution to streams in the Powder River Basin, Montana

    NASA Astrophysics Data System (ADS)

    Meredith, Elizabeth Brinck

    2016-06-01

    Groundwater contributions to streams can be reduced by groundwater withdrawal associated with coalbed methane and coal mine production. Quantifying the groundwater contribution to streams aids the assessment of potential impacts to in-stream flow and provides information necessary for energy producers to use coproduced water for beneficial purposes, rather than treating it as a waste product. Stream flow, field parameters, common ions, and isotopes of carbon and strontium were measured on Otter Creek and the Powder River in southeastern Montana. Direct streamflow measurements were ineffective because of the magnitude and nature of coalbed contribution. The coal groundwater contribution did not exceed the geochemical detection threshold on two nearby streams. Geochemical models based on isotopic data proved to be the most effective analytical method, resulting in baseflow measurements from coal aquifers of 28-275 l s-1.

  4. 33 CFR 162.90 - White River, Arkansas Post Canal, Arkansas River, and Verdigris River between Mississippi River...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., Arkansas River, and Verdigris River between Mississippi River, Ark., and Catoosa, Okla.; use... White River, Arkansas Post Canal, Arkansas River, and Verdigris River between Mississippi River, Ark... apply to: (1) Waterways. White River between Mississippi River and Arkansas Post Canal, Ark.;...

  5. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS : Appendices.

    SciTech Connect

    Not Available

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described. The document concludes with an evaluation of the potential effects that could result from implementing proposed actions. The conclusions are based on evaluation of existing data, utilization of numerical models, and application of logical inference. This volume contains the appendices.

  6. Fish habitat characterization and quantification using lidar and conventional topographic information in river survey

    NASA Astrophysics Data System (ADS)

    Marchamalo, Miguel; Bejarano, María-Dolores; García de Jalón, Diego; Martínez Marín, Rubén

    2007-10-01

    This study presents the application of LIDAR data to the evaluation and quantification of fluvial habitat in river systems, coupling remote sensing techniques with hydrological modeling and ecohydraulics. Fish habitat studies depend on the quality and continuity of the input topographic data. Conventional fish habitat studies are limited by the feasibility of field survey in time and budget. This limitation results in differences between the level of river management and the level of models. In order to facilitate upscaling processes from modeling to management units, meso-scale methods were developed (Maddock & Bird, 1996; Parasiewicz, 2001). LIDAR data of regulated River Cinca (Ebro Basin, Spain) were acquired in the low flow season, maximizing the recorded instream area. DTM meshes obtained from LIDAR were used as the input for hydraulic simulation for a range of flows using GUAD2D software. Velocity and depth outputs were combined with gradient data to produce maps reflecting the availability of each mesohabitat unit type for each modeled flow. Fish habitat was then estimated and quantified according to the preferences of main target species as brown trout (Salmo trutta). LIDAR data combined with hydraulic modeling allowed the analysis of fluvial habitat in long fluvial segments which would be time-consuming with traditional survey. LIDAR habitat assessment at mesoscale level avoids the problems of time efficiency and upscaling and is a recommended approach for large river basin management.

  7. Integrated Status and Effectiveness Monitoring Program - Entiat River Snorkel Surveys, 2006-2007.

    SciTech Connect

    Nelle, R.D.

    2007-10-01

    The USFWS Mid-Columbia River Fishery Resource Office conducted snorkel surveys at 11 sites during the summer 2006 survey period and at 15 sites during fall 2006 and winter 2007 survey periods as part of the Integrated Status and Effectiveness Monitoring Program in the Entiat River. A total of 39,898 fish from 14 species/genera and an unknown category were enumerated. Chinook salmon were the overall most common fish observed and comprised 19% of fish enumerated followed by mountain whitefish (18%) and rainbow trout (14%). Day and night surveys were conducted during the summer 2006 period (August), while night surveys were conducted during the fall 2006 (October) and winter 2007 (February/March) surveys. This is second annual progress report to Bonneville Power Administration for the snorkel surveys conducted in the Entiat River as related to long-term effectiveness monitoring of restoration programs in this watershed. The objective of this study is to monitor the fish habitat utilization of planned in-stream restoration efforts in the Entiat River by conducting pre- and post-construction snorkel surveys at selected treatment and control sites.

  8. Passive hyporheic flux meter - measuring nitrate flux to the reactive sites in the river bed

    NASA Astrophysics Data System (ADS)

    Kunz, Julia Vanessa; Borchardt, Dietrich; Rode, Michael; Annable, Michael

    2015-04-01

    Most European lowland rivers are afflicted by high nitrate loads, modified morphology and discharge regulations, resulting in restricted capacity to retain nitrate. In those nutrient saturated rivers, sediment bound denitrification is the only process by which nitrate is removed from the system. Despite the importance of the hyporheic zone in nutrient reduction we are lacking detailed information on the transport to and retention at those reactive sites. Passive flux meters have successfully been used to measure contaminant transport to aquifers (eg Cho and Annable 2007). Here we present how a modification of those samplers can be used to quantify nitrate flux to and intermediate storage patterns in the interstices of an agriculturally impacted river. Installed in the river bed sediments, water flux and nutrient quantities passing through the device are recorded. While the amount of water flux serves as an index for connectivity of the hyporheic zone (exchange surface-subsurface water) the nitrate flux through the device can be seen as the portion of nitrate subjected to denitrification. The generated data on solute behavior in hyporheic zones are the missing puzzle to in-stream nitrate dynamics. Complementing flume and tracer experiments our approach depicts how discharge, morphology and sediment characteristics control the denitrification rate via the connectivity of the hyporheic zone. Passive hyporheic flux meter are a novel method to directly asses the quantity of removed nitrate by an in situ experiment.

  9. Changes in nutrient and pesticide concentrations in urban and agricultural areas of the South Platte River Basin, Colorado, Wyoming, and Nebraska, 1994-2000

    USGS Publications Warehouse

    Sprague, Lori A.; Greve, Adrienne I.

    2003-01-01

    As part of the National Water-Quality Assessment (NAWQA) Program, the U.S. Geological Survey (USGS) monitored two sites on the main-stem South Platte River? an urban site in Denver and a mixed urban/agricultural site near Kersey?to determine changes in nutrient and pesticide concentrations from 1994 through 2000. Concentrations of nitrate, nitrite, ammonia, and orthophosphorus decreased at the Denver site during the study period, likely due to an increase in instream dilution of wastewater-treatment plant (WWTP) discharge and upgrades at the WWTPs. In contrast, only concentrations of orthophosphorus decreased at the Kersey site; agricultural inputs between Denver and Kersey may have offset the observed decreases in other nutrients upstream. During the extreme low-flow conditions in 1994, when there was relatively little snowmelt to dilute instream pesticide concentrations, total median pesticide concentrations at both sites were the highest of the study period. During the less extreme conditions in 1997 through 2000, greater amounts of snowmelt likely led to lower total median pesticide concentrations at both sites. Because pesticide-use data are not available, the contribution of changes in the amount and type of pesticides applied on the land to changes in the concentration of pesticides in the river is not known but likely was substantial. In general, insecticides predominated at the Denver site, whereas herbicides predominated at the Kersey site.

  10. Umatilla River Basin Anadromous Fsh Habitat Enhancement Project : 2000 Annual Report.

    SciTech Connect

    Shaw, R. Todd

    2001-12-31

    The Umatilla River Basin Anadromous Fish Habitat Enhancement Project continued to identify impacted stream reaches throughout the Umatilla River Basin for habitat improvements during the 2000 project period. Public outreach efforts, biological and physical monitoring, and continued development of a Umatilla River Basin Watershed Assessment assisted the project in fostering public cooperation, targeting habitat deficiencies and determining habitat recovery measures. Habitat enhancement projects continued to be maintained on 44 private properties, four riparian easements and one in-stream enhancement agreement were secured, two new projects implemented and two existing projects improved to enhance anadromous fish habitat and natural fisheries production capabilities in the Umatilla River Basin. New project locations included sites on the mid Umatilla River and Buckaroo Creek. Improvements were implemented at existing project sites on the upper Umatilla River and Wildhorse Creek. A stream bank stabilization project was implemented at approximately River Mile 37.4 Umatilla River to stabilize 760 feet of eroding stream bank and improve in-stream habitat diversity. Habitat enhancements at this site included construction of six rock barbs with one large conifer root wad incorporated into each barb, stinging approximately 10,000 native willow cuttings, planting 195 tubling willows and 1,800 basin wildrye grass plugs, and seeding 40 pounds of native grass seed. Staff time to assist in development of a subcontract and fence materials were provided to establish eight spring sites for off-stream watering and to protect wetlands within the Buckaroo Creek Watershed. A gravel bar was moved and incorporated into an adjacent point bar to reduce stream energy and stream channel confinement within the existing project area at River Mile 85 Umatilla River. Approximately 10,000 native willow cuttings were stung and trenched into the stream channel margins and stream banks, and 360

  11. Guidelines and Procedures for Computing Time-Series Suspended-Sediment Concentrations and Loads from In-Stream Turbidity-Sensor and Streamflow Data

    USGS Publications Warehouse

    Rasmussen, Patrick P.; Gray, John R.; Glysson, G. Douglas; Ziegler, Andrew C.

    2009-01-01

    In-stream continuous turbidity and streamflow data, calibrated with measured suspended-sediment concentration data, can be used to compute a time series of suspended-sediment concentration and load at a stream site. Development of a simple linear (ordinary least squares) regression model for computing suspended-sediment concentrations from instantaneous turbidity data is the first step in the computation process. If the model standard percentage error (MSPE) of the simple linear regression model meets a minimum criterion, this model should be used to compute a time series of suspended-sediment concentrations. Otherwise, a multiple linear regression model using paired instantaneous turbidity and streamflow data is developed and compared to the simple regression model. If the inclusion of the streamflow variable proves to be statistically significant and the uncertainty associated with the multiple regression model results in an improvement over that for the simple linear model, the turbidity-streamflow multiple linear regression model should be used to compute a suspended-sediment concentration time series. The computed concentration time series is subsequently used with its paired streamflow time series to compute suspended-sediment loads by standard U.S. Geological Survey techniques. Once an acceptable regression model is developed, it can be used to compute suspended-sediment concentration beyond the period of record used in model development with proper ongoing collection and analysis of calibration samples. Regression models to compute suspended-sediment concentrations are generally site specific and should never be considered static, but they represent a set period in a continually dynamic system in which additional data will help verify any change in sediment load, type, and source.

  12. Impact of transient stream flow on water exchange and reactions in the hyporheic zone of an in-stream gravel bar

    NASA Astrophysics Data System (ADS)

    Trauth, Nico; Schmidt, Christian; Fleckenstein, Jan H.

    2015-04-01

    Groundwater-surface water exchange is an important process that can facilitate the degradation of critical substances like nitrogen-species and contaminants, supporting a healthy status of the aquatic ecosystem. In our study, we simulate water exchange, solute transport and reactions within a natural in-stream gravel bar using a coupled surface and subsurface numerical model. Stream water flow is simulated by computational fluid dynamics software that provides hydraulic head distributions at the streambed, which are used as an upper boundary condition for a groundwater model. In the groundwater model water exchange, solute transport, aerobic respiration and denitrification in the subsurface are simulated. Ambient groundwater flow is introduced by lateral upstream and downstream hydraulic head boundaries that generate neutral, losing or gaining stream conditions. Stream water transports dissolved oxygen, organic carbon (as the dominant electron donor) and nitrate into the subsurface, whereas an additional nitrate source exists in the ambient groundwater. Scenarios of stream flow events varying in duration and stream stage are simulated and compared with steady state scenarios with respect to water fluxes, residence times and the solute turn-over rates. Results show, that water exchange and solute turn-over rates highly depend on the interplay between event characteristics and ambient groundwater levels. For scenarios, where the stream flow event shifts the hydraulic system to a net-neutral hydraulic gradient between the average stream stage and the ambient groundwater level (minimal exchange between ground- and surface water), solute consumption is higher, compared to the steady losing or gaining case. In contrast, events that induce strong losing conditions lead to a lower potential of solute consumption.

  13. Hydrogeologic Framework and Ground-Water Budget of the Spokane Valley-Rathdrum Prairie Aquifer, Spokane County, Washington, and Bonner and Kootenai Counties, Idaho

    USGS Publications Warehouse

    Kahle, Sue C.; Bartolino, James R.

    2007-01-01

    The U.S. Geological Survey, in cooperation with the Idaho Department of Water Resources and Washington State Department of Ecology, investigated the hydrogeologic framework and ground-water budget of the Spokane Valley-Rathdrum Prairie (SVRP) aquifer located in northern Idaho and northeastern Washington. Descriptions of the hydrogeologic framework, water-budget components, and further data needs are provided. The SVRP aquifer, which covers about 370 square miles including the Rathdrum Prairie, Idaho, and the Spokane Valley and Hillyard Trough, Washington, is the sole source of drinking water for more than 500,000 residents. Continued growth, water-management issues, and potential effects on water availability and water quality in the aquifer and in the Spokane and Little Spokane Rivers have illustrated the need to better understand and manage the region's water resources. The SVRP aquifer consists mostly of gravels, cobbles, and boulders - deposited during a series of outburst floods resulting from repeated collapse of the ice dam that impounded ancient Glacial Lake Missoula. In most places, the SVRP aquifer is bounded by bedrock of pre-Tertiary granite or metasedimentary rocks, or Miocene basalt and associated sedimentary deposits. Discontinuous fine-grained layers are scattered throughout the SVRP aquifer at considerably different altitudes and with considerably different thicknesses. In the Hillyard Trough and the Little Spokane River Arm of the aquifer, a massive fine-grained layer with a top altitude ranging from about 1,500 to 1,700 feet and thickness ranging from about 100 to 200 feet separates the aquifer into upper and lower units. Most of the Spokane Valley part of the aquifer is devoid of fine-grained layers except near the margins of the valley and near the mouths of lakes. In the Rathdrum Prairie, multiple fine-grained layers are scattered throughout the aquifer with top altitudes ranging from about 1,700 to 2,400 feet with thicknesses ranging from 1

  14. Modeling the Effects of Land Use and Climate Change on Streamflow in the Delaware River Basin

    NASA Astrophysics Data System (ADS)

    Kwon, P. Y. S.; Endreny, T. A.; Kroll, C. N.; Williamson, T. N.

    2014-12-01

    Forest-cover loss and drinking-water reservoirs in the upper Delaware River Basin of New York may alter summer low streamflows, which could degrade the in-stream habitat for the endangered dwarf wedgemussel. Our project analyzes how flow statistics change with land-cover change for 30-year increments of model-simulated streamflow hydrographs for three watersheds of concern to the National Park Service: the East Branch, West Branch, and main stem of the Delaware River. We use four treatments for land cover ranging from historical high to low forest cover. We subject each land cover to adjusted GCM climate scenarios for 1600, 1900, 1940, and 2040 to isolate land cover from potential climate-change effects. Hydrographs are simulated using the Water Availability Tool for Environmental Resources (WATER), a TOPMODEL-based United States Geological Survey hydrologic decision-support tool, which uses the variable-source-area concept and water budgets to generate streamflow. Model parameters for each watershed change with land-use, and capture differences in soil-physical properties that control how rainfall infiltrates, evaporates, transpires, is stored in the soil, and moves to the stream. Our results analyze flow statistics used as indicators of hydrologic alteration, and access streamflow events below the critical flow needed to provide sustainable habitat for dwarf wedgemussels. These metrics will demonstrate how changes in climate and land use might affect flow statistics. Initial results show that the 1940 WATER simulation outputs generally match observed unregulated low flows from that time period, while performance for regulated flow from the same time period and from 1600, 1900, and 2040 require model input adjustments. Our study will illustrate how increased forest cover could potentially restore in-stream habitat for the endangered dwarf wedgemussel for current and future climate conditions.

  15. Effects of flood control and other reservoir operations on the water quality of the lower Roanoke River, North Carolina

    USGS Publications Warehouse

    Garcia, Ana Maria

    2012-01-01

    The Roanoke River is an important natural resource for North Carolina, Virginia, and the Nation. Flood plains of the lower Roanoke River, which extend from Roanoke Rapids Dam to Batchelor Bay near Albemarle Sound, support a large and diverse population of nesting birds, waterfowl, freshwater and anadromous fish, and other wildlife, including threatened and endangered species. The flow regime of the lower Roanoke River is affected by a number of factors, including flood-management operations at the upstream John H. Kerr Dam and Reservoir. A three-dimensional, numerical water-quality model was developed to explore links between upstream flows and downstream water quality, specifically in-stream dissolved-oxygen dynamics. Calibration of the hydrodynamics and dissolved-oxygen concentrations emphasized the effect that flood-plain drainage has on water and oxygen levels, especially at locations more than 40 kilometers away from the Roanoke Rapids Dam. Model hydrodynamics were calibrated at three locations on the lower Roanoke River, yielding coefficients of determination between 0.5 and 0.9. Dissolved-oxygen concentrations were calibrated at the same sites, and coefficients of determination ranged between 0.6 and 0.8. The model has been used to quantify relations among river flow, flood-plain water level, and in-stream dissolved-oxygen concentrations in support of management of operations of the John H. Kerr Dam, which affects overall flows in the lower Roanoke River. Scenarios have been developed to mitigate the negative effects that timing, duration, and extent of flood-plain inundation may have on vegetation, wildlife, and fisheries in the lower Roanoke River corridor. Under specific scenarios, the model predicted that mean dissolved-oxygen concentrations could be increased by 15 percent by flow-release schedules that minimize the drainage of anoxic flood-plain waters. The model provides a tool for water-quality managers that can help identify options that improve

  16. Influences of fragmentation on three species of native warmwater fishes in a Colorado River Basin headwater stream system, Wyoming

    USGS Publications Warehouse

    Compton, R.I.; Hubert, W.A.; Rahel, F.J.; Quist, M.C.; Bower, M.R.

    2008-01-01

    We investigated the effects of constructed instream structures on movements and demographics of bluehead suckers Catostomus discobolus, flannelmouth suckers C. latipinnis, and roundtail chub Gila robusta in the upstream portion of Muddy Creek, an isolated headwater stream system in the upper Colorado River basin of Wyoming. Our objectives were to (1) evaluate upstream and downstream movements of these three native species past a small dam built to divert irrigation water from the stream and a barrier constructed to prevent upstream movements of nonnative salmonids and (2) describe population characteristics in stream segments created by these structures. Our results indicated that upstream and downstream movements of the three target fishes were common. Fish of all three species moved frequently downstream over both structures, displayed some upstream movements over the irrigation diversion dam, and did not move upstream over the fish barrier. Spawning migrations by some fish into an intermittent tributary, which was not separated from Muddy Creek by a barrier, were observed for all three species. Both the irrigation diversion dam and the fish barrier contributed to fragmentation of the native fish populations, and considerable differences in population features were observed among segments. The instream structures may eventually cause extirpation of some native species in one or more of the segments created by the structures. ?? Copyright by the American Fisheries Society 2008.

  17. Assessing Impacts of Hydropower Regulation on Salmonid Habitat Connectivity to Guide River Restoration

    NASA Astrophysics Data System (ADS)

    Buddendorf, Bas; Geris, Josie; Malcolm, Iain; Wilkinson, Mark; Soulsby, Chris

    2016-04-01

    Anthropogenic activity in riverine ecosystems has led to a substantial divergence from the natural state of many rivers globally. Many of Scotland's rivers have been regulated for hydropower with increasing intensity since the 1890s. At the same time they sustain substantial populations of Atlantic Salmon (Salmo salar L.), which have a range of requirements in terms of flow and access to habitat, depending on the different life-stages. River barriers for hydropower regulation can change the spatial and temporal connectivity within river networks, the impacts of which on salmon habitat are not fully understood. Insight into such changes in connectivity, and the link with the distribution and accessibility of suitable habitat and areas of high productivity, are essential to aid restoration and/or conservation efforts. This is because they indicate where such efforts might have a higher chance of being successful in terms of providing suitable habitat and increasing river productivity. In this study we applied a graph theory approach to assess historic (natural) and contemporary (regulated) in-stream habitat connectivity of the River Lyon, an important UK salmon river that is moderately regulated for hydropower. Historic maps and GIS techniques were used to construct the two contrasting river networks (i.e., natural vs. regulated). Subsequently, connectivity metrics were used to assess the impacts of hydropower infrastructure on upstream and downstream migration possibilities for adults and juveniles, respectively. A national juvenile salmon production model was used to weight the importance of reaches for juvenile salmon production. Results indicate that the impact of barriers in the Lyon on the connectivity indices depends on the type of barrier and its location within the network, but is generally low for both adults and juveniles, and that compared to the historic river network the reduction in the amount of suitable habitat and juvenile production is most marked

  18. Integrated Status and Effectiveness Monitoring Program - Entiat River Snorkel Surveys and Rotary Screw Trap, 2007.

    SciTech Connect

    Nelle, R.D.

    2008-01-01

    The USFWS Mid-Columbia River Fishery Resource Office conducted snorkel surveys at 24 sites during the summer and fall periods of 2006 survey periods as part of the Integrated Status and Effectiveness Monitoring Program in the Entiat River. A total of 37,938 fish from 15 species/genera and an unknown category were enumerated. Chinook salmon were the overall most common fish observed and comprised 15% of fish enumerated followed by rainbow trout (10%) and mountain whitefish (7%). Day surveys were conducted during the summer period 2007 (August), while night surveys were conducted during the fall 2007 (October) surveys. The USFWS Mid-Columbia River Fishery Resource Office (MCFRO) operated two rotary screw traps on the Entiat River as part of the Integrated Status and Effectiveness Monitoring Program (ISEMP) program from August through November of 2007. Along with the smolt traps, juvenile emigrants were also captured at remote locations throughout the Entiat watershed and its major tributary, the Mad River. A total of 999 wild Oncorhynchus mykiss and 5,107 wild run O. tshawytscha were PIT tagged during the study period. Rotary screw trap efficiencies averaged 22.3% for juvenile O. tshawytscha and 9.0% for juvenile O. mykiss. Rotary screw traps operated 7 days a week and remote capture operations were conducted when flow and temperature regimes permitted. This is third annual progress report to Bonneville Power Administration for the snorkel surveys conducted in the Entiat River as related to long-term effectiveness monitoring of restoration programs in this watershed. The objective of this study is to monitor the fish habitat utilization of planned in-stream restoration efforts in the Entiat River by conducting pre- and post-construction snorkel surveys at selected treatment and control sites.

  19. River nutrient loads and catchment size

    USGS Publications Warehouse

    Smith, S.V.; Swaney, D.P.; Buddemeier, R.W.; Scarsbrook, M.R.; Weatherhead, M.A.; Humborg, Christoph; Eriksson, H.; Hannerz, F.

    2005-01-01

    We have used a total of 496 sample sites to calibrate a simple regression model for calculating dissolved inorganic nutrient fluxes via runoff to the ocean. The regression uses the logarithms of runoff and human population as the independent variables and estimates the logarithms of dissolved inorganic nitrogen and phosphorus loading with R 2 values near 0.8. This predictive capability is about the same as has been derived for total nutrient loading with process-based models requiring more detailed information on independent variables. We conclude that population and runoff are robust proxies for the more detailed application, landscape modification, and in-stream processing estimated by more process-based models. The regression model has then been applied to a demonstration data set of 1353 river catchments draining to the sea from the North American continent south of the Canadian border. The geographic extents of these basins were extracted from a 1-km digital elevation model for North America, and both runoff and population were estimated for each basin. Most of the basins (72% of the total) are smaller than 103 km2, and both runoff and population density are higher and more variable among small basins than among larger ones.While total load to the ocean can probably be adequately estimated from large systems only, analysis of the geographic distribution of nutrient loading requires consideration of the small basins, which can exhibit significant hydrologic and demographic heterogeneity between systems over their range even within the same geographic region. High-resolution regional and local analysis is necessary for environmental assessment and management. ?? Springer 2005.

  20. YELLOWSTONE RIVER WATCH (YRW)

    EPA Science Inventory

    Yellowstone River Watch seeks to expand its monitoring and education efforts throughout the Yellowstone River Basin by actively recruiting and training new teacher members. Yellowstone River Watch also seeks to advance existing school programs by offering quality assurance/quali...

  1. Quantifying phosphorus retention and release in rivers and watersheds using extended end-member mixing analysis (E-EMMA).

    PubMed

    Jarvie, Helen P R; Neal, Colin; Withers, Paul J A; Baker, David B; Richards, R Peter; Sharpley, Andrew N

    2011-01-01

    Extended end-member mixing analysis (E-EMMA) is presented as a novel empirical method for exploring phosphorus (P) retention and release in rivers and watersheds, as an aid to water-quality management. E-EMMA offers a simple and versatile tool that relies solely on routinely measured P concentration and flow data. E-EMMA was applied to two river systems: the Thames (U.K.) and Sandusky River (U.S.), which drain similar watershed areas but have contrasting dominant P sources and hydrology. For both the Thames and Sandusky, P fluxes at the watershed outlets were strongly influenced by processes that retain and cycle P. However, patterns of P retention were markedly different for the two rivers, linked to differences in P sources and speciation, hydrology and land use. On an annual timescale, up to 48% of the P flux was retained for the Sandusky and up to 14% for the Thames. Under ecologically critical low-flow periods, up to 93% of the P flux was retained for the Sandusky and up to 42% for the Thames. In the main River Thames and the Sandusky River, in-stream processes under low flows were capable of regulating the delivery of P and modifying the timing of delivery in a way that may help to reduce ecological impacts to downstream river reaches, by reducing ambient P concentrations at times of greatest river eutrophication risk. The results also suggest that by moving toward cleaner rivers and improved ecosystem health, the efficiency of P retention may actually increase. PMID:21520757

  2. Impact of river stage prediction methods on stream-aquifer exchanges in a hydro(geo)logical model at the regional scale

    NASA Astrophysics Data System (ADS)

    Saleh, F.; Flipo, N.; de Fouquet, C.

    2012-04-01

    The main objective of this study is to provide a realistic simulation of river stage in regional river networks in order to improve the quantification of stream-aquifer exchanges and better assess the associated aquifer responses that are often impacted by the magnitude and the frequency of the river stage fluctuations. The study focuses on the Oise basin (17 000 km2, part of the 65 000 km2 Seine basin in Northern France) where stream-aquifer exchanges cannot be assessed directly by experimental methods. Nowadays numerical methods are the most appropriate approaches for assessing stream-aquifer exchanges at this scale. A regional distributed process-based hydro(geo)logical model, Eau-Dyssée, is used, which aims at the integrated modeling of the hydrosystem to manage the various elements involved in the quantitative and qualitative aspects of water resources. Eau-Dyssée simulates pseudo 3D flow in aquifer systems solving the diffusivity equation with a finite difference numerical scheme. River flow is simulated with a Muskingum model. In addition to the in-stream discharge, a river stage estimate is needed to calculate the water exchange at the stream-aquifer interface using the Darcy law. Three methods for assessing in-stream river stages are explored to determine the most appropriate representation at regional scale over 25 years (1980-2005). The first method consists in defining rating curves for each cell of a 1D Saint-Venant hydraulic model. The second method consists in interpolating observed rating curves (at gauging stations) onto the river cells of the hydro(geo)logical model. The interpolation technique is based on geostatistics. The last method assesses river stage using Manning equation with a simplified rectangular cross-section (water depth equals the hydraulic radius). Compared to observations, the geostatistical and the Manning methodologies lead to slightly less accurate (but still acceptable) results offering a low computational cost opportunity

  3. Contribution of the tributaries of the Sava River to its mean daily flow at the time of hydrological droughts

    NASA Astrophysics Data System (ADS)

    Stravs, L.; Brilly, M.

    2009-04-01

    The Sava River runs 945 km from northwest to southeast, rising in Slovenia, continuing across Croatia and Bosnia and ending in Serbia at its confluence with the Danube in Belgrade. It contributes approximately 25% of the Danube's total discharge and has a drainage area of approximately 96 400 km2, which represents approximately 15% of the Danube River basin. In Slovenia, the Sava River basin forms the central part of the country and has a drainage area of 11 761 km2. There are five in-stream hydropower stations situated on the Slovenian part of the Sava River and more hydropower plants are planned to be built in the near future, so knowledge about streamflow behaviour of the Sava River's tributaries during rainless periods is of high importance in the decision-making processes regarding water-related issues. The main tributaries of the Sava River in Slovenia are the Sava Dolinka, Radovna, Sava Bohinjka, Trziska Bistrica, Kokra, Sora, Ljubljanica, Kamniska Bistrica, Savinja and Krka rivers. Analysis of the low flow hydrological situation on the reach of the Sava River from its spring to the Vrhovo Hydropower Station was performed by using two different methods. Structural contribution of the Sava River's tributaries in the Sava River's mean daily flow at the time of hydrological droughts was estimated. First method included identification of the longer low flow periods in the Sava River basin and estimation of the daily based structural shares of the Sava River's tributaries in the Sava River's mean daily flow. The other method was calculation of the characteristic low flow statistics Q95, Q90 and Q80 for all of the final gauging stations on the Sava River's tributaries and calculation of the relations between them by the means of comparing the low flow index (QLFP = (3 x Q95 + 2 x Q90 + 1 x Q80)/6). Results were compared and useful information about the hydrological situation on the Slovenian part of the Sava River at the time of hydrological droughts was obtained

  4. Evaluation of a total dissolved solids model in comparison to actual field data measurements in the Cheyenne River, South Dakota, U.S.A.

    PubMed

    Berdanier, Bruce W; Ziadat, Anf H

    2006-06-01

    During the summers of 2002 and 2004, in-stream integrated flow and concentration measurements for the total dissolved solids in the Cheyenne River, South Dakota, USA was conducted in order to compare the obtained actual field measurements with the predictions values made by the Bureau of Reclamation in the Environmental Impact Statement. In comparison to the actual field measurements conducted in this study, The Bureau of Reclamation extension of a small database used in the analysis for the impact of operations at the Angostura Unit over the past 50 years and into the future to predict the annual total dissolved solid loadings doesn't represent the actual loading values and various conditions in the study area. Additional integrated flow and concentration sampling is required to characterize the impact of the current Angostura Dam operations and Angostura Irrigation District return flows on the Cheyenne River in different seasons of the year. PMID:16917716

  5. Second report on the Oak Ridge National Laboratory Biological Monitoring and Abatement Program for White Oak Creek Watershed and the Clinch River

    SciTech Connect

    Loar, J.M.; Adams, S.M.; Bailey, R.D.; Blaylock, B.G.; Boston, H.L.; Cox, D.K.; Huston, M.A.; Kimmel, B.L.; Loar, J.M.; Olsen, C.R.; Ryon, M.G.; Shugart, L.R.; Smith, J.G.; Southworth, G.R.; Stewart, A.J.; Walton, B.T.; Talmage, S.S.; Murphy, J.B.; Valentine, C.K.; Appellanis, S.M.; Jimenez, B.D.; Huq, M.V.; Meyers-Schone, L.J.; Mohrbacher, D.A.; Olsen, C.R.; Stout, J.G.

    1992-12-01

    As a condition of the National Pollutant Discharge Elimination System (NPDES) permit issued to Oak Ridge National Laboratory (ORNL) on April 1, 1986, a Biological Monitoring and Abatement Program (BMAP) was developed for White Oak Creek (WOC); selected tributaries of WOC, including Fifth Creek, First Creek, Melton Branch, and Northwest Tributary; and the Clinch River. BMAP consists of seven major tasks that address both radiological and nonradiological contaminants in the aquatic and terrestrial environs on-site and the aquatic environs off-site. These tasks are (1) toxicity monitoring; (2) bioaccumulation monitoring of nonradiological contaminants in aquatic biota; (3) biological indicator studies; (4) instream ecological monitoring; (5) assessment of contaminants in the terrestrial environment; (6) radioecology of WOC and White Oak Lake (WOL); and (7) contaminant transport, distribution, and fate in the WOC embayment-Clinch River-Watts Bar Reservoir system. This document, the second of a series of annual reports, described the results of BMAP studies conducted in 1987.

  6. Probabilistic multi-scale modeling of pathogen dynamics in rivers

    NASA Astrophysics Data System (ADS)

    Packman, A. I.; Drummond, J. D.; Aubeneau, A. F.

    2014-12-01

    Most parameterizations of microbial dynamics and pathogen transport in surface waters rely on classic assumptions of advection-diffusion behavior in the water column and limited interactions between the water column and sediments. However, recent studies have shown that strong surface-subsurface interactions produce a wide range of transport timescales in rivers, and greatly the opportunity for long-term retention of pathogens in sediment beds and benthic biofilms. We present a stochastic model for pathogen dynamics, based on continuous-time random walk theory, that properly accounts for such diverse transport timescales, along with the remobilization and inactivation of pathogens in storage reservoirs. By representing pathogen dynamics probabilistically, the model framework enables diverse local-scale processes to be incorporated in system-scale models. We illustrate the application of the model to microbial dynamics in rivers based on the results of a tracer injection experiment. In-stream transport and surface-subsurface interactions are parameterized based on observations of conservative tracer transport, while E. coli retention and inactivation in sediments is parameterized based on direct local-scale experiments. The results indicate that sediments are an important reservoir of enteric organisms in rivers, and slow remobilization from sediments represents a long-term source of bacteria to streams. Current capability, potential advances, and limitations of this model framework for assessing pathogen transmission risks will be discussed. Because the transport model is probabilistic, it is amenable to incorporation into risk models, but a lack of characterization of key microbial processes in sediments and benthic biofilms hinders current application.

  7. Pharmacogenetics in American Indian Populations: Analysis of CYP2D6, CYP3A4, CYP3A5, and CYP2C9 in the Confederated Salish and Kootenai Tribes

    PubMed Central

    Fohner, Alison; Muzquiz, LeeAnna I.; Austin, Melissa A.; Gaedigk, Andrea; Gordon, Adam; Thornton, Timothy; Rieder, Mark J.; Pershouse, Mark A.; Putnam, Elizabeth A.; Howlett, Kevin; Beatty, Patrick; Thummel, Kenneth E.; Woodahl, Erica L.

    2014-01-01

    Objectives Cytochrome P450 enzymes play a dominant role in drug elimination and variation in these genes is a major source of interindividual differences in drug response. Little is known, however, about pharmacogenetic variation in American Indian and Alaska Native (AI/AN) populations. We have developed a partnership with the Confederated Salish and Kootenai Tribes (CSKT) in northwestern Montana to address this knowledge gap. Methods We resequenced CYP2D6 in 187 CSKT subjects and CYP3A4, CYP3A5, and CYP2C9 in 94 CSKT subjects. Results We identified 67 variants in CYP2D6, 15 in CYP3A4, 10 in CYP3A5, and 41 in CYP2C9. The most common CYP2D6 alleles were CYP2D6*4 and *41 (20.86 and 11.23%, respectively). CYP2D6*3, *5, *6, *9, *10, *17, *28, *33, *35, *49, *1xN, *2xN, and *4xN frequencies were less than 2%. CYP3A5*3, CYP3A4*1G, and *1B were detected with frequencies of 92.47, 26.81, and 2.20%, respectively. Allelic variation in CYP2C9 was low: CYP2C9*2 (5.17%) and *3 (2.69%). In general, allele frequencies in CYP2D6, CYP2C9 and CYP3A5 were similar to those observed in European Americans. There was, however, a marked divergence in CYP3A4 for the CYP3A4*1G allele. We also observed low levels of linkage between CYP3A4*1G and CYP3A5*1 in the CSKT. The combination of nonfunctional CYP3A5*3 and putative reduced function CYP3A4*1G alleles may predict diminished clearance of CYP3A substrates. Conclusions These results highlight the importance of conducting pharmacogenomic research in AI/AN populations and demonstrate that extrapolation from other populations is not appropriate. This information could help to optimize drug therapy for the CSKT population. PMID:23778323

  8. Variability of Ecosystem State in Rivers Containing Natural Dams: A Chemical Analysis

    NASA Astrophysics Data System (ADS)

    Reynolds, Z. A.

    2015-12-01

    Flooding, and the resulting economic damage to roads and property, is associated with natural dams such as beaver dams or log jams. For this reason, humans often remove natural dams; however, river reaches with natural dams provide very different ecosystem services in comparison with free-flowing river reaches. Therefore, the goal of this project is to assess the differences in ecosystem state between these different river reach types in the northeastern United States. We focused on differences in basic chemistry (e.g., dissolved oxygen, pH, temperature, and organic carbon) to assess the impact of natural dams on river ecosystem state. Study sites include rivers in the White Mountains and southeastern New Hampshire at locations with beaver dams, beaver ponds, beaver meadows, log jams, and free-flowing reaches. Dissolved oxygen, ORP, pH, temperature, and conductivity were measured in the field with a YSI Professional Plus meter. Water samples were collected for subsequent laboratory analysis of total organic carbon with a Shimadzu TOC-L. Preliminary results show that the chemistry of river water varies with feature type. Most significantly, dissolved oxygen concentrations are highest in free-flowing reaches and lowest in beaver ponds. Although beaver ponds are often associated with lower pH, due the increased concentration of organic acids, some beaver ponds can increase pH when compared to free-flowing reaches on the same river. Early results also show that water chemistry returns quickly to the chemistry typical of the free-flowing river reaches after being altered by a natural dam. Overall, natural dams create a river system that has more heterogeneity, and therefore has opportunities to provide more ecosystem functions, than a purely free-flowing river; this can increase the number of supported instream and riparian species. By increasing the understanding of how natural dams affect the chemistry of river water, river engineers can improve their decisions on how

  9. Grays River Watershed and Biological Assessment, 2006 Final Report.

    SciTech Connect

    May, Christopher; Geist, David

    2007-04-01

    habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area

  10. Grays River Watershed and Biological Assessment Final Report 2006.

    SciTech Connect

    May, Christopher W.; McGrath, Kathleen E.; Geist, David R.; Abbe, Timothy; Barton, Chase

    2008-02-04

    habitat conditions, and biological integrity. In addition, human land-use impacts are factored into the conceptual model because they can alter habitat quality and can disrupt natural habitat-forming processes. In this model (Figure S.1), aquatic habitat--both instream and riparian--is viewed as the link between watershed conditions and biologic responses. Based on this conceptual model, assessment of habitat loss and the resultant declines in salmonid populations can be conducted by relating current and historical (e.g., natural) habitat conditions to salmonid utilization, diversity, and abundance. In addition, assessing disrupted ecosystem functions and processes within the watershed can aid in identifying the causes of habitat change and the associated decline in biological integrity. In this same way, restoration, enhancement, and conservation projects can be identified and prioritized. A watershed assessment is primarily a landscape-scale evaluation of current watershed conditions and the associated hydrogeomorphic riverine processes. The watershed assessment conducted for this project focused on watershed processes that form and maintain salmonid habitat. Landscape metrics describing the level of human alteration of natural ecosystem attributes were used as indicators of water quality, hydrology, channel geomorphology, instream habitat, and biotic integrity. Ecological (watershed) processes are related to and can be predicted based on specific aspects of spatial pattern. This study evaluated the hydrologic regime, sediment delivery regime, and riparian condition of the sub-watersheds that comprise the upper Grays River watershed relative to their natural range of conditions. Analyses relied primarily on available geographic information system (GIS) data describing landscape characteristics such as climate, vegetation type and maturity, geology and soils, topography, land use, and road density. In addition to watershed-scale landscape characteristics, the study area

  11. Characterizing coarse bedload transport during floods with RFID and accelerometer tracers, in-stream RFID antennas and HEC-RAS modeling

    NASA Astrophysics Data System (ADS)

    Olinde, L.; Johnson, J. P.

    2013-12-01

    By monitoring the transport timing and distances of tracer grains in a steep mountains stream, we collected data that can constrain numerical bedload transport models considered for these systems. We captured bedload activity during a weeks-spanning snowmelt period in Reynolds Creek, Idaho by deploying Radio Frequency Identification (RFID) and accelerometer embedded tracers with in-stream stationary RFID antennas. During transport events, RFID dataloggers recorded the times when tracers passed over stationary antennas. The accelerometer tracers also logged x, y, z-axis accelerations every 10 minutes to identify times of motion and rest. After snowmelt flows receded, we found tracers with mobile antennas and surveyed their positions. We know the timing and tracer locations when accelerometer tracers were initially entrained, passed stationary antennas, and were finally deposited at the surveyed locations. The fraction of moving accelerometers over time correlates well with discharge. Comparisons of the transported tracer fraction between rising and falling limbs over multiple flood peaks suggest that some degree of clockwise hysteresis persisted during the snowmelt period. Additionally, we apply accelerometer transport durations and displacement distances to calculate virtual velocities over full tracer path lengths and over lengths between initial locations to stationary antennas as well as between stationary antennas to final positions. The accelerometer-based virtual velocities are significantly faster than those estimated from traditional tracer methods that estimate bedload transport durations by assuming threshold flow conditions. We also subsample the motion data to calculate how virtual velocities change over the measurement intervals. Regressions of these relations are in turn used to extrapolate virtual velocities at smaller sampling timescales. Minimum hop lengths are also evaluated for each accelerometer tracer. Finally, flow conditions during the

  12. The Mattole River Estuary: Restoration Efforts in a Dynamic System

    NASA Astrophysics Data System (ADS)

    Barber, D.; Liquori, M.

    2010-12-01

    habitat for all salmon and steelhead species: the water too warm, habitat cover poor, the channel lacks riparian vegetation, and only remnant, non- functioning slough channels are present. Over the last 20 years, the Mattole Salmon group has installed and monitored 12 large wood structures that have had various effects on the instream habitat and geomorphic processes that influence river and estuary dynamics. Methods of construction and hydrologic and geomorphic effects will be discussed, as will developing designs to reconnect abandon slough tributary channels.

  13. Isolating causal pathways between flow and fish in the regulated river hierarchy

    SciTech Connect

    McManamay, Ryan A.; Peoples, Brandon K.; Orth, Donald J.; Dolloff, Charles A.; Matthews, David C.; Jonsson, Bror

    2015-07-07

    Unregulated river systems are organized in a hierarchy in which large-scale factors (i.e., landscape and segment scales) influence local habitats (i.e., reach, meso-, and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative roles of hydrology and other instream factors, within a hierarchical landscape context, in organizing fish communities in regulated and unregulated tributaries to the Upper Tennessee River, USA. We also used multivariate regression trees to identify factors that partition fish assemblages based on trait similarities, irrespective of spatial scale. Then, we used classical path analysis and structural equation modeling to evaluate the most plausible hierarchical causal structure of specific trait-based community components, given the data. Both statistical approaches suggested that river regulation affects stream fishes through a variety of reach-scale variables, not always through hydrology itself. Though we observed different changes in flow, temperature, and biotic responses according to regulation types, the most predominant path in which dam regulation affected biota was via temperature alterations. Diversion dams had the strongest effects on fish assemblages. Diversion dams reduced flow magnitudes, leading to declines in fish richness but increased temperatures, leading to lower abundances in equilibrium species and nest guarders. Peaking and run-of-river dams increased flow variability, leading to lower abundances in nest-guarding fishes. Flow displayed direct relationships with biotic responses; however, results indicated that changes in temperature and substrate had equal, if not stronger, effects on fish assemblage composition. The strength and nature of relationships depended on whether flow metrics were standardized for river size. Here, we suggest that restoration efforts in regulated rivers

  14. Isolating causal pathways between flow and fish in the regulated river hierarchy

    DOE PAGESBeta

    McManamay, Ryan A.; Peoples, Brandon K.; Orth, Donald J.; Dolloff, Charles A.; Matthews, David C.; Jonsson, Bror

    2015-07-07

    Unregulated river systems are organized in a hierarchy in which large-scale factors (i.e., landscape and segment scales) influence local habitats (i.e., reach, meso-, and microhabitat scales), and both differentially exert selective pressures on biota. Dams, however, create discontinua in these processes and change the hierarchical structure. We examined the relative roles of hydrology and other instream factors, within a hierarchical landscape context, in organizing fish communities in regulated and unregulated tributaries to the Upper Tennessee River, USA. We also used multivariate regression trees to identify factors that partition fish assemblages based on trait similarities, irrespective of spatial scale. Then, wemore » used classical path analysis and structural equation modeling to evaluate the most plausible hierarchical causal structure of specific trait-based community components, given the data. Both statistical approaches suggested that river regulation affects stream fishes through a variety of reach-scale variables, not always through hydrology itself. Though we observed different changes in flow, temperature, and biotic responses according to regulation types, the most predominant path in which dam regulation affected biota was via temperature alterations. Diversion dams had the strongest effects on fish assemblages. Diversion dams reduced flow magnitudes, leading to declines in fish richness but increased temperatures, leading to lower abundances in equilibrium species and nest guarders. Peaking and run-of-river dams increased flow variability, leading to lower abundances in nest-guarding fishes. Flow displayed direct relationships with biotic responses; however, results indicated that changes in temperature and substrate had equal, if not stronger, effects on fish assemblage composition. The strength and nature of relationships depended on whether flow metrics were standardized for river size. Here, we suggest that restoration efforts in

  15. Development and Application of a Mechanistic Ecological Model for Assessment of TMDL for Nutrients over an Extended Range of Calibration Conditions: Truckee River, Nevada USA.

    NASA Astrophysics Data System (ADS)

    Brock, J. T.; Caupp, C. L.; Runke, H. M.

    2002-05-01

    Water quality impairment associated with substandard dissolved oxygen (DO) levels has been observed for decades in the Truckee River, a desert river that is challenged by cultural eutrophication and modifications of its flow and channel. Benthic algae (periphyton) in this shallow river constitute a primary source of endogenous organic matter that creates an oxygen demand downstream from nutrient sources, which include treated municipal wastewater effluent, nonpoint source agricultural runoff, and groundwater seepage. The Dynamic Stream Simulation and Assessment Model (DSSAMt) was chosen to simulate water temperature, DO, nutrients, and periphyton. In order to establish credibility and robustness of DSSAMt results, we successfully simulated DO over annual periods during 1986-1996 that spanned an extended range of river discharge and nutrient loading conditions. Nitrogen loads from the Reno-Sparks municipal wastewater facility ranged over an order of magnitude during this period due to improvements in treatment processes. Monitoring programs for various ecological attributes of the river system were implemented and modified in response to the needs of the model development. DSSAMt applications to the Truckee River have included determination of pollutant assimilation capacity, instream flow needs, and the potential benefits of riparian and channel modification.

  16. Measuring in-stream productivity: the potential of continuous chlorophyll and dissolved oxygen monitoring for assessing the ecological status of surface waters.

    PubMed

    Jarvie, H P; Love, A J; Williams, R J; Neal, C

    2003-01-01

    Continuous (hourly) measurements of dissolved oxygen and chlorophyll (determined by fluorimetry) were made for an inter-linked lowland river and canal system. The dissolved oxygen data were used to estimate daily rates of re-aeration, photosynthesis and respiration, using a process-based analytical technique (the Delta method). In-situ fluorimeter measurements of chlorophyll were ground-truthed on a fortnightly basis using laboratory methanol extraction of chlorophyll and spectrophotometric analysis. Water samples were also analysed for algal species on a fortnightly basis. The river and canal exhibited very similar rates of photosynthesis and respiration during the summer of 2001, despite much higher chlorophyll concentrations and total algal counts, indicating that benthic algae and/or aquatic macrophytes may be making an important contribution to photosynthesis rates in the river. Suspended algal populations in the canal are dominated by planktonic species, whereas the river has a higher proportion of species which are predominantly benthic in habitat. The river exhibited higher rates of respiration, reflecting a higher organic loading from external (e.g. sewage effluent) sources. PMID:15137170

  17. Sediment-phosphorus dynamics can shift aquatic ecology and cause downstream legacy effects after wildfire in large river systems.

    PubMed

    Emelko, Monica B; Stone, Micheal; Silins, Uldis; Allin, Don; Collins, Adrian L; Williams, Chris H S; Martens, Amanda M; Bladon, Kevin D

    2016-03-01

    Global increases in the occurrence of large, severe wildfires in forested watersheds threaten drinking water supplies and aquatic ecology. Wildfire effects on water quality, particularly nutrient levels and forms, can be significant. The longevity and downstream propagation of these effects as well as the geochemical mechanisms regulating them remain largely undocumented at larger river basin scales. Here, phosphorus (P) speciation and sorption behavior of suspended sediment were examined in two river basins impacted by a severe wildfire in southern Alberta, Canada. Fine-grained suspended sediments (<125 μm) were sampled continuously during ice-free conditions over a two-year period (2009-2010), 6 and 7 years after the wildfire. Suspended sediment samples were collected from upstream reference (unburned) river reaches, multiple tributaries within the burned areas, and from reaches downstream of the burned areas, in the Crowsnest and Castle River basins. Total particulate phosphorus (TPP) and particulate phosphorus forms (nonapatite inorganic P, apatite P, organic P), and the equilibrium phosphorus concentration (EPC0 ) of suspended sediment were assessed. Concentrations of TPP and the EPC0 were significantly higher downstream of wildfire-impacted areas compared to reference (unburned) upstream river reaches. Sediments from the burned tributary inputs contained higher levels of bioavailable particulate P (NAIP) - these effects were also observed downstream at larger river basin scales. The release of bioavailable P from postfire, P-enriched fine sediment is a key mechanism causing these effects in gravel-bed rivers at larger basin scales. Wildfire-associated increases in NAIP and the EPC0 persisted 6 and 7 years after wildfire. Accordingly, this work demonstrated that fine sediment in gravel-bed rivers is a significant, long-term source of in-stream bioavailable P that contributes to a legacy of wildfire impacts on downstream water quality, aquatic ecology, and

  18. Evaluation of Juvenile Salmonid Outmigration and Survival in the Lower Umatilla River Basin, Annual Report 1998-1999.

    SciTech Connect

    Ehlers, Danette L.; Knapp, Suzanne M.; Jewett, Shannon M.

    2001-05-01

    Large runs of salmon (Oncorhynchus spp.) and steelhead (O. mykiss) once supported productive Tribal and sport fisheries in the Umatilla River. By the 1920s, unscreened irrigation diversions, reduced in-stream flows, poor passage conditions, and habitat degradation had extirpated the salmon run and drastically reduced the summer steelhead run (CTUIR and ODFW 1989). Reintroduction of chinook salmon (O. tshawytscha) and coho salmon (O. kisutch) and enhancement of summer steelhead populations in the Umatilla River was initiated in the early and mid-1980s (CTUIR and ODFW 1989). Measures to rehabilitate the fishery and improve flows in the Umatilla River are addressed in the original Northwest Power Planning Council's Columbia River Basin Fish and Wildlife Program (NPPC 1987). These include habitat enhancement, hatchery production, holding and acclimation facilities, flow enhancement, passage improvement, and natural production enhancement. Detailed scope and nature of the habitat, flow, passage, and natural production projects are in the Umatilla River basin fisheries restoration plans (CTUIR 1984; Boyce 1986). The Umatilla Hatchery Master Plan (CTUIR and ODFW 1990) provides the framework for hatchery production and evaluation activities. Many agencies cooperate, coordinate, and exchange information in the Umatilla basin to ensure successful implementation of rehabilitation projects, including the Oregon Department of Fish and Wildlife (ODFW), the U.S. Bureau of Reclamation (USBR), the Bonneville Power Administration (BPA), National Marine Fisheries Service (NMFS), Oregon Water Resources Department (OWRD), the Confederated Tribes of the Umatilla Indian Reservation (CTUIR), and local irrigation districts (West Extension, Hermiston, and Stanfield-Westland). The Umatilla River Operations Group and the Umatilla Management, Monitoring and Evaluation Oversight Committee coordinate river and fisheries management and research in the Umatilla River basin.

  19. Internal connectivity of meandering rivers: Statistical generalization of channel hydraulic geometry

    NASA Astrophysics Data System (ADS)

    Czapiga, M. J.; Smith, V. B.; Nittrouer, J. A.; Mohrig, D.; Parker, G.

    2015-09-01

    The geometry of rivers has been characterized in terms of downstream and at-a-station hydraulic geometry, based on individual cross sections. Such analyses do not, however, provide insight as to how these cross sections are connected. We generalize the concept of hydraulic geometry, using data on bathymetry from four reaches of meandering rivers that include at least five bends. We quantify connectivity in terms of the probability that a connected path exists such that a given attribute remains within specified bounds along it. While the concept is general, here we apply it to vessel navigability. We develop a predictor for navigability in meandering rivers, which requires only the following, relatively easily obtained input: vessel draft, vessel width, bankfull depth, bankfull width, relative difference between current and bankfull water surface elevation, and length of desired navigation path. The predictor is applicable to both bankfull and below-bankfull stage. A key input parameter is the standard deviation of the probability distribution of depth. This parameter, in and of itself, yields no information on connectivity as it does not capture the spatial orientation of depth variation. We find, however, that (a) the probability function for connectivity does depend on this parameter, and (b) its use allows for an approximate similarity collapse of the probability function, so providing a quasi-universal predictive relation applying to all four reaches. The results also suggest potential application to more complex forms for connectivity that involve other or multiple in-stream physical variables.

  20. Ecological Status of a Patagonian Mountain River: Usefulness of Environmental and Biotic Metrics for Rehabilitation Assessment

    NASA Astrophysics Data System (ADS)

    Laura, Miserendino M.; Adriana, M. Kutschker; Cecilia, Brand; La Ludmila, Manna; Cecilia, Prinzio Y. Di; Gabriela, Papazian; José, Bava

    2016-06-01

    This work evaluates the consequences of anthropogenic pressures at different sections of a Patagonian mountain river using a set of environmental and biological measures. A map of risk of soil erosion at a basin scale was also produced. The study was conducted at 12 sites along the Percy River system, where physicochemical parameters, riparian ecosystem quality, habitat condition, plants, and macroinvertebrates were investigated. While livestock and wood collection, the dominant activities at upper and mean basin sites resulted in an important loss of the forest cover still the riparian ecosystem remains in a relatively good status of conservation, as do the in-stream habitat conditions and physicochemical features. Besides, most indicators based on macroinvertebrates revealed that both upper and middle basin sections supported similar assemblages, richness, density, and most functional feeding group attributes. Instead, the lower urbanized basin showed increases in conductivity and nutrient values, poor quality in the riparian ecosystem, and habitat condition. According to the multivariate analysis, ammonia level, elevation, current velocity, and habitat conditions had explanatory power on benthos assemblages. Discharge, naturalness of the river channel, flood plain morphology, conservation status, and percent of urban areas were important moderators of plant composition. Finally, although the present land use in the basin would not produce a significant risk of soil erosion, unsustainable practices that promotes the substitution of the forest for shrubs would lead to severe consequences. Mitigation efforts should be directed to protect headwater forest, restore altered riparian ecosystem, and to control the incipient eutrophication process.

  1. Ecological Status of a Patagonian Mountain River: Usefulness of Environmental and Biotic Metrics for Rehabilitation Assessment.

    PubMed

    Laura, Miserendino M; Adriana, M Kutschker; Cecilia, Brand; La Ludmila, Manna; Cecilia, Prinzio Y Di; Gabriela, Papazian; José, Bava

    2016-06-01

    This work evaluates the consequences of anthropogenic pressures at different sections of a Patagonian mountain river using a set of environmental and biological measures. A map of risk of soil erosion at a basin scale was also produced. The study was conducted at 12 sites along the Percy River system, where physicochemical parameters, riparian ecosystem quality, habitat condition, plants, and macroinvertebrates were investigated. While livestock and wood collection, the dominant activities at upper and mean basin sites resulted in an important loss of the forest cover still the riparian ecosystem remains in a relatively good status of conservation, as do the in-stream habitat conditions and physicochemical features. Besides, most indicators based on macroinvertebrates revealed that both upper and middle basin sections supported similar assemblages, richness, density, and most functional feeding group attributes. Instead, the lower urbanized basin showed increases in conductivity and nutrient values, poor quality in the riparian ecosystem, and habitat condition. According to the multivariate analysis, ammonia level, elevation, current velocity, and habitat conditions had explanatory power on benthos assemblages. Discharge, naturalness of the river channel, flood plain morphology, conservation status, and percent of urban areas were important moderators of plant composition. Finally, although the present land use in the basin would not produce a significant risk of soil erosion, unsustainable practices that promotes the substitution of the forest for shrubs would lead to severe consequences. Mitigation efforts should be directed to protect headwater forest, restore altered riparian ecosystem, and to control the incipient eutrophication process. PMID:26961305

  2. Umatilla River Subbasin Fish Habitat Improvement Program, 2005 Annual Report.

    SciTech Connect

    St. Hilaire, Danny R.

    2006-05-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The Program works cooperatively with private landowners to develop long-term restoration agreements, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat conditions. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and re-construction aimed at improving fish habitat, through the restoration of stable channel function. This report provides a summary of Program activities for the 2005 calendar year (January 1 through December 31, 2005), within each of the four main project phases, including: (1) Implementation--Pre-Work, (2) Implementation--On Site Development, (3) Operation and Maintenance (O&M), and (4) Monitoring and Evaluation (M&E). This report also summarizes activities associated with Program Administration, Interagency Coordination, and Public Education.

  3. Leaky rivers: Implications of the loss of longitudinal fluvial disconnectivity in headwater streams

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen; Beckman, Natalie D.

    2014-01-01

    Naturally induced longitudinal disconnectivity in the form of channel-spanning logjams creates backwaters along headwater streams that reduce velocity and transport capacity, create at least temporary storage sites for finer sediment and organic matter, and enhance biological processing and uptake of nutrients. Land uses that reduce wood recruitment and instream storage result in reduced stream complexity and increased longitudinal connectivity in headwater rivers. We examine three scales of naturally occurring longitudinal disconnectivity in headwater streams of the Colorado Front Range and the implications for channel process and form of historical alterations in disconnectivity. Basin-scale disconnectivity at channel lengths of 102-103 m results from downstream alternations between steep, narrowly confined valley segments with single-thread channels, and lower gradient, wider, valley segments with multi-thread channels. This variation in valley geometry likely reflects differences in average spacing between joints in bedrock outcrops, which influences bedrock weathering and erosion. Greater volumes of wood stored in the wide valley segments correlate with more closely spaced channel-spanning logjams and greater storage of fine sediments and organic matter. Reach-scale disconnectivity at channel lengths of 101-102 m results from the presence of numerous, closely spaced channel-spanning logjams, which cumulatively store substantial amounts of fine sediment and organic matter. The backwater effects associated with an individual jam can result in the accumulation of up to ~ 11 m3 of fine sediment upstream from the jam, of which as much as 21% is organic matter. Unit-scale disconnectivity at channel lengths of 100-101 m results from the presence of an individual channel-spanning logjam, which locally alters bed gradient, substrate composition, bedform dimensions, and the transport of sediment and organic matter. The transport and storage of instream wood is a

  4. Carbon and nitrogen isotopic compositions of particulate organic matter in four large river systems across the United States

    NASA Astrophysics Data System (ADS)

    Kendall, Carol; Silva, Steven R.; Kelly, Valerie J.

    2001-05-01

    Riverine particulate organic matter (POM) samples were collected bi-weekly to monthly from 40 sites in the Mississippi, Colorado, Rio Grande, and Columbia River Basins (USA) in 1996-97 and analysed for carbon and nitrogen stable isotopic compositions. These isotopic compositions and C : N ratios were used to identify four endmember sources of POM: plankton, fresh terrestrial plant material, aquatic plants, and soil organic material. This large-scale study also incorporated ancillary chemical and hydrologic data to refine and extend the interpretations of POM sources beyond the source characterizations that could be done solely with isotopic and elemental ratios. The ancillary data were especially useful for differentiating between seasonal changes in POM source materials and the effects of local nutrient sources and in-stream biogeochemical processes.Average values of 13C and C : N for all four river systems suggested that plankton is the dominant source of POM in these rivers, with higher percentages of plankton downstream of reservoirs. Although the temporal patterns in some rivers are complex, the low 13C and C : N values in spring and summer probably indicate plankton blooms, whereas relatively elevated values in fall and winter are consistent with greater proportions of decaying aquatic vegetation and/or terrestrial material. Seasonal shifts in the 13C of POM when the C : N remains relatively constant probably indicate changes in the relative rates of photosynthesis and respiration. Periodic inputs of plant detritus are suggested by C : N ratios >15, principally on the Columbia and Ohio Rivers. The 15N and 13C also reflect the importance of internal and external sources of dissolved carbon and nitrogen, and the degree of in-stream processing. Elevated 15N values at some sites probably reflect inputs from sewage and/or animal waste. This information on the spatial and temporal variation in sources of POM in four major river systems should prove useful in future

  5. Regulated flushing in a gravel-bed river for channel habitat maintenance: A Trinity River fisheries case study

    NASA Astrophysics Data System (ADS)

    Nelson, R. Wayne; Dwyer, John R.; Greenberg, Wendy E.

    1987-08-01

    The operation of Trinity and Lewiston Dams on the Trinity River in northern California in the United States, combined with severe watershed erosion, has jeopardized the existence of prime salmonid fisheries. Extreme streamflow depletion and stream sedimentation below Lewiston have resulted in heavy accumulation of coarse sediment on riffle gravel and filling of streambed pools, causing the destruction of spawning, nursery, and overwintering habitat for prized chinook salmon ( Salmo gairdnerii) and steelhead trout ( Oncorhynchus tschawytscha). Proposals to restore and maintain the degraded habitat include controlled one-time remedial peak flows or annual maintenance peak flows designed to flush the spawning gravel and scour the banks, deltas, and pools. The criteria for effective channel restoration or maintenance by streambed flushing and scouring are examined here, as well as the mechanics involved. The liabilities of releasing mammoth scouring-flushing flows approximating the magnitude that preceded reservoir construction make this option unviable. The resulting damage to fish habitat established under the postproject streamflow regime, as well as damage to human settlements in the floodplain, would be unacceptable, as would the opportunity costs to hydroelectric and irrigation water users. The technical feasibility of annual maintenance flushing flows depends upon associated mechanical and structural measures, particularly instream maintenance dredging of deep pools and construction of a sediment control dam on a tributary where watershed erosion is extreme. The cost effectiveness of a sediment dam with a limited useful economic life, combined with perpetual maintenance dredging, is questionable.

  6. Water quality in the upper Tennessee River basin, Tennessee, North Carolina, Virginia, and Georgia 1994-98

    USGS Publications Warehouse

    Hampson, Paul S.; Treece, M.W., Jr.; Johnson, Gregory C.; Ahlstedt, Steven A.; Connell, Joseph F.

    2000-01-01

    This report summarizes major findings about water quality in the upper Tennessee River basin that emerged from an assessment conducted between 1994 and 1998 by the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program. Water quality is discussed in terms of local and regional issues and compared to conditions found in all 36 NAWQA study areas, called study units, assessed to date. Findings are also explained in the context of selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. Finally, this report includes information about the status of aquatic communities and the condition of in-stream habitats as elements of a complete water-quality assessment.

  7. River and riparian restoration in the southwest: Results of the National River Restoration Science Synthesis project

    USGS Publications Warehouse

    Follstad, Shah J.J.; Dahm, Clifford N.; Gloss, S.P.; Bernhardt, E.S.

    2007-01-01

    Restoration activity has exponentially increased across the Southwest since 1990. Over 37,000 records were compiled into the National River Restoration Science Synthesis (NRRSS) database to summarize restoration trends and assess project effectiveness. We analyzed data from 576 restoration projects in the Southwest (NRRSS-SW). More than 50% of projects were less than or equal to 3 km in length. The most common restoration project intent categories were riparian management, water quality management, in-stream habitat improvement, and flow modification. Common project activities were well matched to goals. Conservative estimates of total restoration costs exceeded $500 million. Most restoration dollars have been allocated to flow modification and water quality management. Monitoring was linked to 28% of projects across the Southwest, as opposed to just 10% nationwide. Mean costs were statistically similar whether or not projects were monitored. Results from 48 telephone interviews provided validation of NRRSS-SW database analyses but showed that project costs are often underreported within existing datasets. The majority of interviewees considered their projects to be successful, most often based upon observed improvements to biota or positive public reaction rather than evaluation of field data. The efficacy of restoration is difficult to ascertain given the dearth of information contained within most datasets. There is a great need for regional entities that not only track information on project implementation but also maintain and analyze monitoring data associated with restoration. Agencies that fund or regulate restoration should reward projects that emphasize monitoring and evaluation as much as project implementation. ?? 2007 Society for Ecological Restoration International.

  8. Phase I Water Rental Pilot Project : Snake River Resident Fish and Wildlife Resources and Management Recommendations.

    SciTech Connect

    Riggin, Stacey H.; Hansen, H. Jerome

    1992-10-01

    The Idaho Water Rental Pilot Project was implemented as a part of the Non-Treaty Storage Fish and Wildlife Agreement (NTSA) between Bonneville Power Administration and the Columbia Basin Fish and Wildlife Authority. The goal of the project is to improve juvenile and adult salmon and steelhead passage in the lower Snake River with the use of rented water for flow augmentation. The primary purpose of this project is to summarize existing resource information and provide recommendations to protect or enhance resident fish and wildlife resources in Idaho with actions achieving flow augmentation for anadromous fish. Potential impacts of an annual flow augmentation program on Idaho reservoirs and streams are modeled. Potential sources of water for flow augmentation and operational or institutional constraints to the use of that water are identified. This report does not advocate flow augmentation as the preferred long-term recovery action for salmon. The state of Idaho strongly believes that annual drawdown of the four lower Snake reservoirs is critical to the long-term enhancement and recovery of salmon (Andrus 1990). Existing water level management includes balancing the needs of hydropower production, irrigated agriculture, municipalities and industries with fish, wildlife and recreation. Reservoir minimum pool maintenance, water quality and instream flows are issues of public concern that will be directly affected by the timing and quantity of water rental releases for salmon flow augmentation, The potential of renting water from Idaho rental pools for salmon flow augmentation is complicated by institutional impediments, competition from other water users, and dry year shortages. Water rental will contribute to a reduction in carryover storage in a series of dry years when salmon flow augmentation is most critical. Such a reduction in carryover can have negative impacts on reservoir fisheries by eliminating shoreline spawning beds, reducing available fish habitat

  9. Evaluating turbidity and suspended-sediment concentration relations from the North Fork Toutle River basin near Mount St. Helens, Washington; annual, seasonal, event, and particle size variations - a preliminary analysis.

    USGS Publications Warehouse

    Uhrich, Mark A.; Spicer, Kurt R.; Mosbrucker, Adam; Christianson, Tami

    2015-01-01

    Regression of in-stream turbidity with concurrent sample-based suspended-sediment concentration (SSC) has become an accepted method for producing unit-value time series of inferred SSC (Rasmussen et al., 2009). Turbidity-SSC regression models are increasingly used to generate suspended-sediment records for Pacific Northwest rivers (e.g., Curran et al., 2014; Schenk and Bragg, 2014; Uhrich and Bragg, 2003). Recent work developing turbidity-SSC models for the North Fork Toutle River in Southwest Washington (Uhrich et al., 2014), as well as other studies (Landers and Sturm, 2013, Merten et al., 2014), suggests that models derived from annual or greater datasets may not adequately reflect shorter term changes in turbidity-SSC relations, warranting closer inspection of such relations. In-stream turbidity measurements and suspended-sediment samples have been collected from the North Fork Toutle River since 2010. The study site, U.S. Geological Survey (USGS) streamgage 14240525 near Kid Valley, Washington, is 13 river km downstream of the debris avalanche emplaced by the 1980 eruption of Mount St. Helens (Lipman and Mullineaux, 1981), and 2 river km downstream of the large sediment retention structure (SRS) built from 1987–1989 to mitigate the associated sediment hazard. The debris avalanche extends roughly 25 km down valley from the edifice of the volcano and is the primary source of suspended sediment moving past the streamgage (NF Toutle-SRS). Other significant sources are debris flow events and sand deposits upstream of the SRS, which are periodically remobilized and transported downstream. Also, finer material often is derived from the clay-rich original debris avalanche deposit, while coarser material can derive from areas such as fluvially reworked terraces.

  10. REDUCTION OF RIVERINE NITRATE LOADS THRUGH FIELD TARGETING OF BEST MANAGEMENT PRACTICES, PLACEMENT OF WETLANDS, AND IN-STREAM DENITRIFICATION: A MODELING/SIMULATION PROJECT.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increased agricultural production has led to a reduction in water quality. In the case of the Mississippi River Basin increased nutrient loads linked to agricultural production has contributed to the hypoxic zone along the Louisiana Gulf coast. The objectives of this study are to: 1) gain a better u...

  11. The occurrence and fate of chemicals of emerging concern in coastal urban rivers receiving discharge of treated municipal wastewater effluent.

    PubMed

    Sengupta, Ashmita; Lyons, J Michael; Smith, Deborah J; Drewes, Jörg E; Snyder, Shane A; Heil, Ann; Maruya, Keith A

    2014-02-01

    To inform future monitoring and assessment of chemicals of emerging concern (CECs) in coastal urban watersheds, the occurrence and fate of more than 60 pharmaceuticals and personal care products (PPCPs), commercial/household chemicals, current-use pesticides, and hormones were characterized in 2 effluent-dominated rivers in southern California (USA). Water samples were collected during 2 low-flow events at locations above and below the discharge points of water reclamation plants (WRPs) and analyzed using gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. Approximately 50% of targeted CECs were detectable at stations downstream from WRPs, compared with <31% and <10% at the reference stations above the WRPs. Concentrations of chlorinated phosphate flame retardants were highest among the CECs tested, with mean total aggregate concentrations of tris(2-chloroethyl) phosphate (TCEP), tris(1-chloro-2-propyl) phosphate (TCPP), and tris(1,3-dichloro-2-propyl) phosphate (TDCPP) of 3400 ng/L and 2400 ng/L for the 2 rivers. Maximum in-stream concentrations of pyrethroids (bifenthrin and permethrin), diclofenac, and galaxolide exceeded risk-based thresholds established for monitoring of CECs in effluent-dominated receiving waters. In contrast, maximum concentrations of PPCPs commonly detected in treated wastewater (e.g., acetaminophen, N,N,diethyl-meta-toluamide [DEET], and gemfibrozil) were less than 10% of established thresholds. Attenuation of target CECs was not observed downstream of WRP discharge until dilution by seawater occurred in the tidal zone, partly because of the short hydraulic residence times in these highly channelized systems (<3 d). In addition to confirming CECs for future in-stream monitoring, these results suggest that conservative mass transport is an important boundary condition for assessment of the input, fate, and effects of CECs in estuaries at the bottom of these watersheds. PMID:24399464

  12. Fall and winter habitat use and movement by Columbia River redband trout in a small stream in Montana

    USGS Publications Warehouse

    Muhlfeld, Clint C.; Bennett, David H.; Marotz, B.

    2001-01-01

    We used radiotelemetry to quantify the movements and habitat use of resident adult Columbia River redband trout Oncorhynchus mykiss gairdneri (hereafter, redband trout) from October to December 1997 in South Fork Callahan Creek, a third-order tributary to Callahan Creek in the Kootenai River drainage in northwestern Montana. All redband trout (N = 23) were consistently relocated in a stream reach with moderate gradient (2.3%) near the site of original capture. Some fish (N = 13) displayed sedentary behavior, whereas others were mobile (N = 10). The mean total distance moved during the study for all fish combined was 64 m (SD = 105 m; range, 0–362 m), and the mean home range from October through December was 67 m (SD = 99 m; range, 5–377 m). Thirteen redband trout made short upstream and downstream movements (mean total movement = 134 m; range, 8–362 m) that were related to habitat use. Mobile fish commonly migrated to complex pools that spanned the entire channel width (primary pools). Eight of 10 fish that did not change habitat location occupied primary pools, whereas the remaining 2 fish occupied lateral pools. Fish commonly overwintered in primary pools dominated by cobble and boulder substrates that contained large woody debris. As water temperatures decreased from 3.2–6.3°C in October to 0–3.8°C in November and December, we found a 29% average increase (46–75%) in the proportional use of primary pool habitats. The lack of extensive movement and small home ranges indicate that adult redband trout found suitable overwintering habitat in deep pools with extensive amounts of cover within a third-order mountain stream. Resource managers who wish to protect overwintering habitat features preferred by redband trout throughout their limited range in streams affected by land management practices could apply strategies that protect and enhance pool habitat and stream complexity.

  13. Umatilla River Subbasin Fish Habitat Improvement Program, 1996-2003 Summary Report.

    SciTech Connect

    St. Hilaire, Danny R.; Montgomery, Michael; Bailey, Timothy D.

    2005-01-01

    This annual report is in fulfillment of contractual obligations with Bonneville Power Administration (BPA), which is the funding source for the Oregon Department of Fish and Wildlife's (ODFW), Umatilla River Subbasin Fish Habitat Improvement Program (Program). The last Annual Program Report was submitted in 1997, and described projects undertaken in 1995. This report describes Program activities carried out in 2003, along with a summary of projects undertaken during the years 1996 through 2002. The Program works cooperatively with private landowners to develop long-term restoration agreements, under which, passive and active Habitat Improvement Projects are conducted. Historically, projects have included livestock exclusion fencing (passive restoration) to protect riparian habitats, along with the installation of instream structures (active restoration) to address erosion and improve fish habitat. In recent years, the focus of active restoration has shifted to bioengineering treatments and, more recently, to channel re-design and re-construction aimed at improving fish habitat, by restoring stable channel function. This report provides a summary table of past projects (1996-2002), along with a text description of more extensive habitat improvement projects, including: (1) Implementation of a four-phased project on the Lobato property (Birch Creek) beginning in 1996 and involving a demonstration bioengineering site and riparian improvements (fencing, planting), (2) Implementation of stable channel design/instream structure placement on the Houser property, East Birch Creek, beginning in 1998, an (3) Implementation of a joint, US Army Corps of Engineers/ODFW (cost share) project beginning in 2001 on the Brogoitti property, East Birch Creek, which involved implementation of stable channel design/construction and riparian improvement treatments.

  14. Hydrological conditions control in situ DOM retention and release along a Mediterranean river.

    PubMed

    Butturini, A; Guarch, A; Romaní, A M; Freixa, A; Amalfitano, S; Fazi, S; Ejarque, E

    2016-08-01

    Uncertainties exist regarding the magnitude of in situ dissolved organic matter (DOM) processing in lotic systems. In addition, little is known about the effects of extreme hydrological events on in-stream DOM retention or release during downriver transport. This study quantified the net in-stream retention/release efficiencies (η) of dissolved organic carbon (DOC) and its humic and protein-like fluorescent fractions along a Mediterranean river during drought, baseflow and flood conditions. High performance size exclusion chromatography was used to describe the apparent size distributions of the humic and protein-like DOM moieties. A snapshot mass balance allowed estimating the η values of DOC and humic and protein-like fractions. Significant DOM net retention (η < 0) was detected during the drought condition and the protein-like fraction was more retained than the humic-like fraction and bulk DOC. In addition, small substances were more efficiently retained than larger substances. DOC retention decreased under baseflow conditions, but it remained significant. The humic and protein-like net efficiencies exhibited high variability, but the net retention were not significant. From a longitudinal perspective, the entire fluvial corridor contributed net retention of DOC and humic and protein-like moieties net retention during drought condition. In contrast, net retention/release efficiencies exhibited spatial variability during baseflow condition. The flood preferentially mobilized large size DOM molecules and the fluvial corridor behaved as a homogeneous passive DOM (η = 0) conduit. This research highlights the relevance of hydrological extreme events on the magnitude of DOM retention/release mass balance and emphasizes the need to perform measurements during these conditions to quantify the impact of fluvial corridors on DOM fate and transport. PMID:27132197

  15. Malheur River Wildlife Mitigation Project, Annual Report 2003.

    SciTech Connect

    Ashley, Paul

    2004-01-01

    Hydropower development within the Columbia and Snake River Basins has significantly affected riparian, riverine, and adjacent upland habitats and the fish and wildlife species dependent upon them. Hydroelectric dams played a major role in the extinction or major loss of both anadromous and resident salmonid populations and altered instream and adjacent upland habitats, water quality, and riparian/riverine function. Hydroelectric facility construction and inundation directly affected fish and wildlife species and habitats. Secondary and tertiary impacts including road construction, urban development, irrigation, and conversion of native habitats to agriculture, due in part to the availability of irrigation water, continue to affect wildlife and fish populations throughout the Columbia and Snake River Basins. Fluctuating water levels resulting from facility operations have created exposed sand, cobble, and/or rock zones. These zones are generally devoid of vegetation with little opportunity to re-establish riparian plant communities. To address the habitat and wildlife losses, the United States Congress in 1980 passed the Pacific Northwest Electric Power Planning and Conservation Act (Act) (P.L. 96-501), which authorized the states of Idaho, Montana, Oregon, and Washington to create the Northwest Power Planning Council (Council). The Act directed the Council to prepare a program in conjunction with federal, state, and tribal wildlife resource authorities to protect, mitigate, and enhance fish and wildlife species affected by the construction, inundation and operation of hydroelectric dams in the Columbia River Basin (NPPC 2000). Under the Columbia Basin Fish and Wildlife Program (Program), the region's fish and wildlife agencies, tribes, non-government organizations (NGOs), and the public propose fish and wildlife projects that address wildlife and fish losses resulting from dam construction and subsequent inundation. As directed by the Council, project proposals are

  16. A 25-Year Retrospective Analysis of River Nitrogen Fluxes in the Atchafalaya

    NASA Astrophysics Data System (ADS)

    Xu, Y.

    2005-05-01

    lowest from August to November (8,000 vs. 6,000 Mg mon-1). There was a large variation in both annual and inter-annual nitrogen removals, and the variability was positively correlated with the amount of inflow water at Simmesport. However, no close relationship between the river inflow and percentage nitrogen removal rate was found. The results gained from this study suggest that regulating the river's inflow will help reduce nitrogen loading of the Mississippi River to the Gulf of Mexico. The in-stream loss of nitrogen indicates that previous studies may have overestimated nitrogen discharge from the Mississippi-Atchafalaya River system. Furthermore, the study found that knowledge on spatial hydrological conditions in the basin is needed to understand nitrogen dynamics in the Atchafalaya River Swamp.

  17. Evaluating the effectiveness of floodplain restoration on the North Fork John Day River, Northeast Oregon, USA

    NASA Astrophysics Data System (ADS)

    Clifton, C. F.; Blanton, P.; Long, W.; Walterman, M. T.; McDowell, P. F.; Maus, P.

    2007-12-01

    Over the last decade hundreds of river restoration projects intended to maintain, protect, and restore watersheds, rivers, and habitat for native species in the Pacific Northwest have been implemented. By some counts, investment in watershed restoration exceeds hundreds of millions of dollars annually yet the effectiveness of these efforts remains an elusive question (Roni, 2005). Remote sensing and GIS technologies show great promise for large-scale river monitoring, however most natural resource organizations who implement these projects have limited budget and staff and would benefit from simple, low cost monitoring techniques that use readily available imagery. We used 1:24000 digitized orthorectified resource imagery from 1995, and National Agriculture Imagery Program (NAIP) digital orthophotography from 2005 to assess the effectiveness of floodplain restoration on a 16 km reach of the North Fork John Day River. Between 1993 and 1997 this section was restored by mechanically removing, reshaping, and revegetating cobble-boulder tailings piles left from dredge mining. The project was intended to directly improve floodplain function (i.e. inundation, riparian habitat) and indirectly improve instream habitat (pools, spawning) by rec