Science.gov

Sample records for korea-china optical technology

  1. Integrated optics technology study

    NASA Technical Reports Server (NTRS)

    Chen, B.; Findakly, T.; Innarella, R.

    1982-01-01

    The status and near term potential of materials and processes available for the fabrication of single mode integrated electro-optical components are discussed. Issues discussed are host material and orientation, waveguide formation, optical loss mechanisms, wavelength selection, polarization effects and control, laser to integrated optics coupling fiber optic waveguides to integrated optics coupling, sources, and detectors. Recommendations of the best materials, technology, and processes for fabrication of integrated optical components for communications and fiber gyro applications are given.

  2. Fiber Optics Technology.

    ERIC Educational Resources Information Center

    Burns, William E.

    1986-01-01

    Discusses various applications of fiber optics technology: information systems, industrial robots, medicine, television, transportation, and training. Types of jobs that will be available with fiber optics training (such as electricians and telephone cable installers and splicers) are examined. (CT)

  3. Integrated optics technology study

    NASA Technical Reports Server (NTRS)

    Chen, B.

    1982-01-01

    The materials and processes available for the fabrication of single mode integrated electrooptical components are described. Issues included in the study are: (1) host material and orientation, (2) waveguide formation, (3) optical loss mechanisms, (4) wavelength selection, (5) polarization effects and control, (6) laser to integrated optics coupling,(7) fiber optic waveguides to integrated optics coupling, (8) souces, (9) detectors. The best materials, technology and processes for fabrication of integrated optical components for communications and fiber gyro applications are recommended.

  4. Optical Disk Technology.

    ERIC Educational Resources Information Center

    Abbott, George L.; And Others

    1987-01-01

    This special feature focuses on recent developments in optical disk technology. Nine articles discuss current trends, large scale image processing, data structures for optical disks, the use of computer simulators to create optical disks, videodisk use in training, interactive audio video systems, impacts on federal information policy, and…

  5. Polymer optical motherboard technology

    NASA Astrophysics Data System (ADS)

    Keil, N.; Yao, H.; Zawadzki, C.; Grote, N.; Schell, M.

    2008-02-01

    In this paper, different hybridly integrated optical devices including optical multiplexer/ demultiplexer and optical transceivers are described. The devices were made using polymer planar light wave circuit (P2LC) technology. Laser diodes, photodiodes, and thin-film filters have been integrated. Key issues involved in this technology, in particular the coupling between laser diodes and polymer waveguides, and between waveguides and photodiodes and also fibers are discussed.

  6. Advanced optical instruments technology

    NASA Technical Reports Server (NTRS)

    Shao, Mike; Chrisp, Michael; Cheng, Li-Jen; Eng, Sverre; Glavich, Thomas; Goad, Larry; Jones, Bill; Kaarat, Philip; Nein, Max; Robinson, William

    1992-01-01

    The science objectives for proposed NASA missions for the next decades push the state of the art in sensitivity and spatial resolution over a wide range of wavelengths, including the x-ray to the submillimeter. While some of the proposed missions are larger and more sensitive versions of familiar concepts, such as the next generation space telescope, others use concepts, common on the Earth, but new to space, such as optical interferometry, in order to provide spatial resolutions impossible with other concepts. However, despite their architecture, the performance of all of the proposed missions depends critically on the back-end instruments that process the collected energy to produce scientifically interesting outputs. The Advanced Optical Instruments Technology panel was chartered with defining technology development plans that would best improve optical instrument performance for future astrophysics missions. At this workshop the optical instrument was defined as the set of optical components that reimage the light from the telescope onto the detectors to provide information about the spatial, spectral, and polarization properties of the light. This definition was used to distinguish the optical instrument technology issues from those associated with the telescope, which were covered by a separate panel. The panel identified several areas for optical component technology development: diffraction gratings; tunable filters; interferometric beam combiners; optical materials; and fiber optics. The panel also determined that stray light suppression instruments, such as coronagraphs and nulling interferometers, were in need of general development to support future astrophysics needs.

  7. Digital Optical Circuit Technology

    NASA Technical Reports Server (NTRS)

    Dove, B. L. (Editor)

    1985-01-01

    The Proceedings for the 48th Meeting of the AGARD Avionics Panel contain the 18 papers presented a Technical Evaluation Report, and discussions that followed the presentations of papers. Seven papers were presented in the session devoted to optical bistability. Optical logic was addressed by three papers. The session on sources, modulators and demodulators presented three papers. Five papers were given in the final session on all optical systems. The purpose of this Specialists' Meeting was to present the research and development status of digital optical circuit technology and to examine its relevance in the broad context of digital processing, communication, radar, avionics and flight control systems implementation.

  8. Optical fuzing technology

    NASA Astrophysics Data System (ADS)

    von der Lippe, Christian M.; Liu, J. Jiang

    2006-05-01

    Advanced optical fuze (OF) technology based on high-performance optoelectronic sensor is developed for munitions applications. The compact and robust design of the OF employed high-power vertical-cavity surface-emitting lasers (VCSELs), the metal-semiconductor-metal photodetectors, SiGe ASIC driver, miniature optics, and the corresponding electronic signal processors. Mounted on the front of the projectile, the laser transmitter sends out a highly collimated beam that is amplitude modulated with a chirped RF signal. The reflected optical signal from the target is picked up by the photoreceiver on the projectile which also has its electrical bias modulated at the same time-dependent operational frequency as the transmitted optical signal. The on-board signal processor heterodynes both transmitted and the delayed optical waveforms and generates an intermediate frequency corresponding to the time delay due to the travel time of the light. Further measurement of the mixed signals yields directly the range information of the target.

  9. Fiber-Optic Sensing Technology

    SciTech Connect

    Milnes, M.; Baylor, L.C.; Bave, S.

    1996-10-24

    This article offers a basic review of fiber-optic sensing technology, or more specifically, fiber-optic sensing technology as applied to the qualitative or quantitative identification of a chemical sample, and how it works,

  10. Advanced Adaptive Optics Technology Development

    SciTech Connect

    Olivier, S

    2001-09-18

    The NSF Center for Adaptive Optics (CfAO) is supporting research on advanced adaptive optics technologies. CfAO research activities include development and characterization of micro-electro-mechanical systems (MEMS) deformable mirror (DM) technology, as well as development and characterization of high-resolution adaptive optics systems using liquid crystal (LC) spatial light modulator (SLM) technology. This paper presents an overview of the CfAO advanced adaptive optics technology development activities including current status and future plans.

  11. Silicon Pore Optics Technology

    NASA Astrophysics Data System (ADS)

    Beijersbergen, Marco; Collon, M. J.; Günther, R.; Partapsing, R.; Ackermann, M.; Olde Riekerink, M.; Cooper-Jensen, C.; Christensen, F.; Freyberg, M.; Krumrey, M.; Erhard, M.; van Baren, C.; Wallace, K.; Bavdaz, M.

    2009-01-01

    Silicon pore optics have been developed over the last years to enable future astrophysical X-ray telescopes and have now become a candidate mirror technology for the IXO mission. Scientific requirements demand an angular resolution better than 5” and a large effective area of several square meters at photon energies of 1 keV. This paper discusses the performance of the latest generation of these novel light, stiff and modular X-ray optics, based on ribbed plates made from commercial high grade 12” silicon wafers. Stacks with several tens of silicon plates have been assembled in the course of an ESA technology development program, by bending the plates into an accurate shape and directly bonding them on top of each other. Several mirror modules, using two stacks each, have been aligned and integrated to form the conical approximation of a Wolter-I design. This paper presents the status of the technology, addresses and discusses a number of activities in the ongoing ESA technology development and shows the latest results of full area measurements at the long-beamline MPE X-ray test facility (PANTER) and the PTB beam line at the BESSY electron storage ring in Berlin.

  12. NGST Optics Technology Program

    NASA Astrophysics Data System (ADS)

    Bilbro, J. W.

    1997-12-01

    In September 1993, the Association of Universities for Research in Astronomy appointed the HST & Beyond Committee to study possible missions for the first Decades of the twenty-first century. This was undertaken at the behest of the Space Telescope Institute with support from the National Aeronautics and Space Administration. Among the recommendations of this committee, was that an IR optimized observatory of 4 meters or larger diameter be developed. With support from the Office of Space Science at NASA Headquarters, the Goddard Space Flight Center (GSFC) and the Space Telescope Science Institute (STScI) began a feasibility study for the "Next Generation Space Telescope"(NGST). This paper discusses the optics technology program which has been implemented as a part of this study. The program seeks to push the boundaries of the current state-of-the-art while at the same time maintaining rational and achievable goals. The program has two primary parts, the first involves two demonstrations to produce 1.5m diameter mirrors that have areal densities of under 15 kilograms per square meter. This program has two participants. The University of Arizona and Composite Optics Inc. The second part of the program explores alternative material materials on a smaller scale. These efforts include: Electroform nickel (Marshall Space Flight Center), Chemical Vapor Deposition Silicon Carbide (Morton International), Single Crystal Silicon (Schafer), Carbon Fiber Reinforced Silicon Carbide (IABG & SSG), Composites (Composite Optics Inc.), pyrolyzed graphite (Ultramet), reaction bonded Silicon Carbide (Xinetics). A competitively awarded contract for a half meter diameter ultra-lightweight beryllium mirror is planned for the fall of 97 and techniques for beryllium replication are in the process of being investigated. Techniques for lightweighting glass is being investigated using waterjets at Waterjet Technology Inc.

  13. Optical Computers and Space Technology

    NASA Technical Reports Server (NTRS)

    Abdeldayem, Hossin A.; Frazier, Donald O.; Penn, Benjamin; Paley, Mark S.; Witherow, William K.; Banks, Curtis; Hicks, Rosilen; Shields, Angela

    1995-01-01

    The rapidly increasing demand for greater speed and efficiency on the information superhighway requires significant improvements over conventional electronic logic circuits. Optical interconnections and optical integrated circuits are strong candidates to provide the way out of the extreme limitations imposed on the growth of speed and complexity of nowadays computations by the conventional electronic logic circuits. The new optical technology has increased the demand for high quality optical materials. NASA's recent involvement in processing optical materials in space has demonstrated that a new and unique class of high quality optical materials are processible in a microgravity environment. Microgravity processing can induce improved orders in these materials and could have a significant impact on the development of optical computers. We will discuss NASA's role in processing these materials and report on some of the associated nonlinear optical properties which are quite useful for optical computers technology.

  14. Fiber Optics and Library Technology.

    ERIC Educational Resources Information Center

    Koenig, Michael

    1984-01-01

    This article examines fiber optic technology, explains some of the key terminology, and speculates about the way fiber optics will change our world. Applications of fiber optics to library systems in three major areas--linkage of a number of mainframe computers, local area networks, and main trunk communications--are highlighted. (EJS)

  15. Developing optic technologies in Belarus

    NASA Astrophysics Data System (ADS)

    Rubanov, Alexander S.; Shkadarevich, Alexei P.

    2001-03-01

    In this work we give a retrospective analysis of the development of optical technologies in Belarus. In the post-war period a great scientific and technological potential has been built up in this sphere, highly skilled specialist have been trained and prestigious scientific and technical schools have appeared. Belarusian multiprofile optical industry is noticed to be capable of producing not only the materials and equipment for optical production but also optical goods of the highest level of complication. The characteristics of cosmic photoequipment, photogrammetric and cinetheodolite techniques, a variety of laser devices and optical goods for civic purposes are given as an example. The instances demonstrating the realization of unique optical projects are considered as well. High quality of Belarusian optical production makes it be much in demand in Russia, Japan, USA, Germany, France, China, Korea, Sweden, Spain, England, United Arab Emirates and other countries.

  16. Optical technologies for space sensor

    NASA Astrophysics Data System (ADS)

    Wang, Hu; Liu, Jie; Xue, Yaoke; Liu, Yang; Liu, Meiying; Wang, Lingguang; Yang, Shaodong; Lin, Shangmin; Chen, Su; Luo, Jianjun

    2015-10-01

    Space sensors are used in navigation sensor fields. The sun, the earth, the moon and other planets are used as frame of reference to obtain stellar position coordinates, and then to control the attitude of an aircraft. Being the "eyes" of the space sensors, Optical sensor system makes images of the infinite far stars and other celestial bodies. It directly affects measurement accuracy of the space sensor, indirectly affecting the data updating rate. Star sensor technology is the pilot for Space sensors. At present more and more attention is paid on all-day star sensor technology. By day and night measurements of the stars, the aircraft's attitude in the inertial coordinate system can be provided. Facing the requirements of ultra-high-precision, large field of view, wide spectral range, long life and high reliability, multi-functional optical system, we integration, integration optical sensors will be future space technology trends. In the meantime, optical technologies for space-sensitive research leads to the development of ultra-precision optical processing, optical and precision test machine alignment technology. It also promotes the development of long-life optical materials and applications. We have achieved such absolute distortion better than ±1um, Space life of at least 15years of space-sensitive optical system.

  17. Precision conformal optics technology program

    NASA Astrophysics Data System (ADS)

    Trotta, Patrick A.

    2001-09-01

    Conformal optics are defined as optics that deviate from conventional form to best satisfy the contour and shape needs of system platforms. Precision Conformal Optics Technology (PCOT), a comprehensive 48 month program funded by the Defense Advanced Research Program Agency (DARPA) and the U. S. Army Missile Research, Development, and Engineering Center (MRDEC), assessed the potential benefits achieved by use of conformal optics on a variety of U.S. weapon systems. Also addressed were all barriers impeding conformal optics use. The PCOT program was executed by a consortium of organizations ranging from major U.S. defense prime contractors, to small businesses, and academia. The diversity of organizations encouraged synergy across a broad array of skills and perspectives. Smooth team interaction was made possible by the 845 contractual structure of the program. Benefits identified by the PCOT consortium included major reductions in aerodynamic drag (by as much as 50%), reduced time-to-targets (by as much as 60%), and reduced weapon signatures. Impediments addressed included inadequacies in optical design tools, optical manufacturing methods and equipment, optical testing, and system integration. The PCOT program was successfully completed with a demonstration of a highly contoured missile dome, which reduced overall missile drag by 25%, and led to a predicted twofold increase in missile range.

  18. Basics of Videodisc and Optical Disk Technology.

    ERIC Educational Resources Information Center

    Paris, Judith

    1983-01-01

    Outlines basic videodisc and optical disk technology describing both optical and capacitance videodisc technology. Optical disk technology is defined as a mass digital image and data storage device and briefly compared with other information storage media including magnetic tape and microforms. The future of videodisc and optical disk is…

  19. Technology reviews: Daylighting optical systems

    SciTech Connect

    Schuman, J.; Rubinstein, F.; Papamichael, K.; Beltran, L.; Lee, E.S.; Selkowitz, S.

    1992-09-01

    We present a representative review of existing, emerging, and future technology options in each of five hardware and systems areas in envelope and lighting technologies: lighting systems, glazing systems, shading systems, daylighting optical systems, and dynamic curtain wall systems. The term technology is used here to describe any design choice for energy efficiency, ranging from individual components to more complex systems to general design strategies. The purpose of this task is to characterize the state of the art in envelope and lighting technologies in order to identify those with promise for advanced integrated systems, with an emphasis on California commercial buildings. For each technology category, the following activities have been attempted to the extent possible: Identify key performance characteristics and criteria for each technology. Determine the performance range of available technologies. Identify the most promising technologies and promising trends in technology advances. Examine market forces and market trends.Develop a continuously growing in-house database to be used throughout the project. A variety of information sources have been used in these technology characterizations, including miscellaneous periodicals, manufacturer catalogs and cut sheets, other research documents, and data from previous computer simulations. We include these different sources in order to best show the type and variety of data available, however publication here does not imply our guarantee of these data. Within each category, several broad classes are identified, and within each class we examine the generic individual technologies that fall into that class.

  20. Advanced optical disk storage technology

    NASA Technical Reports Server (NTRS)

    Haritatos, Fred N.

    1996-01-01

    There is a growing need within the Air Force for more and better data storage solutions. Rome Laboratory, the Air Force's Center of Excellence for C3I technology, has sponsored the development of a number of operational prototypes to deal with this growing problem. This paper will briefly summarize the various prototype developments with examples of full mil-spec and best commercial practice. These prototypes have successfully operated under severe space, airborne and tactical field environments. From a technical perspective these prototypes have included rewritable optical media ranging from a 5.25-inch diameter format up to the 14-inch diameter disk format. Implementations include an airborne sensor recorder, a deployable optical jukebox and a parallel array of optical disk drives. They include stand-alone peripheral devices to centralized, hierarchical storage management systems for distributed data processing applications.

  1. Optical Backplane Interconnect Technology (OBIT)

    NASA Technical Reports Server (NTRS)

    Hammer, J. M.

    1988-01-01

    We describe and analyze a novel approach to implementing an Optical Backplane Interconnect Technology (OBIT) that is capable of optically connecting any row of a 32x32 backplane array to any row of a second 32x32 array. Each backplane array is formed monolithically on a wafer. The technology is based on the use of Grating Surface Emitting (GSE) waveguides formed on a wafer containing quantum-well and separate confinement waveguide layers. These layers are used for transverse guiding, gain, modulation, detection, and for the formation of wavelength tunable distributed-Bragg reflector lasers. The required surface structures are formed photolithographically. The GSE waveguides act as efficient antennae that radiate light at angles selected by tuning the wavelength of the lasers. The same waveguides may be used as the receiving antennae when the array is used in the receiving mode. Thus, wavelength tuning is used to direct each row of the transmitting array to the desired row of the receiving array. In summary: The optical backplane array will have the following characteristics: Any row of a 32x32 GSE array may be optically connected to any row of a second 32x32 array. Only one switch decision is required to switch 32 parallel connections to any one of 32 positions. Each monolithic array can be used as both transmitter and receiver by switching the bias on the quantum-well switch-detectors. Separate transmitting and receiving structures could be provided for duplex operation. For a bit error rate of 10 sup 9 at 100-MHz data rate, a required laser power of 12 mW is calculated based on an estimated total optical loss of 40 dB.

  2. Silica optical fibers: technology update

    NASA Astrophysics Data System (ADS)

    Krohn, David A.; McCann, Brian P.

    1995-05-01

    Silica-core optical fibers have long been the standard delivery medium for medical laser delivery systems. Their high strength, excellent flexibility, and low cost continue to make them the fiber of choice for systems operating from 300 to 2200 nm. An overview of the current fiber constructions available to the industry is reviewed. Silicone-clad fibers, hard- fluoropolymer clad fibers and silica-clad fibers are briefly compared in terms of mechanical and optical properties. The variety of fiber coatings available is also discussed. A significant product development of silica fiber delivery systems has been in side-firing laser delivery systems for Urology. These devices utilize silica-core fibers to project the laser energy at a substantial lateral angle to the conventional delivery system, typically 40 to 100 degrees off axis. Many unique distal tips have been designed to meet the needs of this potentially enormous application. There are three primary technologies employed in side-firing laser delivery systems: reflection off of an attached medium; reflection within an angle-polished fiber through total internal reflection; and reflection from both an angle-polished fiber and an outside medium. Each technology is presented and compared on the basis of operation modality, transmission efficiency, and power-handling performance.

  3. Ultrasonic precision optical grinding technology

    NASA Astrophysics Data System (ADS)

    Cahill, Michael J.; Bechtold, Michael J.; Fess, Edward; Wolfs, Frank L.; Bechtold, Rob

    2015-10-01

    As optical geometries become more precise and complex and a wider range of materials are used, the processes used for manufacturing become more critical. As the preparatory stage for polishing, this is especially true for grinding. Slow processing speeds, accelerated tool wear, and poor surface quality are often detriments in manufacturing glass and hard ceramics. The quality of the ground surface greatly influences the polishing process and the resulting finished product. Through extensive research and development, OptiPro Systems has introduced an ultrasonic assisted grinding technology, OptiSonic, which has numerous advantages over traditional grinding processes. OptiSonic utilizes a custom tool holder designed to produce oscillations in line with the rotating spindle. A newly developed software package called IntelliSonic is integral to this platform. IntelliSonic automatically characterizes the tool and continuously optimizes the output frequency for optimal cutting while in contact with the part. This helps maintain a highly consistent process under changing load conditions for a more accurate surface. Utilizing a wide variety of instruments, test have proven to show a reduction in tool wear and increase in surface quality while allowing processing speeds to be increased. OptiSonic has proven to be an enabling technology to overcome the difficulties seen in grinding of glass and hard optical ceramics. OptiSonic has demonstrated numerous advantages over the standard CNC grinding process. Advantages are evident in reduced tool wear, better surface quality, and reduced cycle times due to increased feed rates. These benefits can be seen over numerous applications within the precision optics industry.

  4. Optical technology in medicine and biology: Introduction

    NASA Astrophysics Data System (ADS)

    Burns, Stephen A.; Ediger, Marwood N.; Richards-Kortum, Rebecca R.

    1996-07-01

    This feature issue on Optical Technology in Medicine and Biology is the inaugural feature issue for a new section of Applied Optics devoted to the application of advanced optical techniques to problems in biology, medicine, and biotechnology. Although Applied Optics has always been open to research in these areas, the Optical Society's board of editors decided that the importance of this type of research merited a more prominent and focused presentation. As a result the Optical Technology division of Applied Optics was renamed the Optical Technology and Biomedical Optics division, and four new members were appointed to the Applied Optics editorial board. In addition, a call for papers was issued for an inaugural feature issue. The papers appearing in the current issue are those that were submitted in response to that call for papers and that passed the rite of peer review. The quality and breadth of the papers demonstrate the wisdom of the society's decision. We have important contributions affecting such diverse areas as biologic imaging, drug delivery, tissue optics, and laser surgery. In addition, Applied Optics has seen a sharp increase in the number of regular submissions involving biomedical optics, and the quality and breadth of these papers also bode well for the future of the publication. In addition there is already another joint Applied Optics/Journal of the Optical Society of America A Feature Issue in process, entitled Diffusing Photons in Turbid Media, scheduled for publication in January 1997. We invite you to read the papers and to participate in the future of Biomedical Optics and Optical Biotechnology by submitting manuscripts for review by your peers. We thank the OSA board of editors for this opportunity, and we encourage our colleagues to submit their papers directly to the Optical Society in the future and to share ideas and thoughts on this new area of Applied Optics.

  5. Ec-135 Fiber Optic Technology Review

    NASA Astrophysics Data System (ADS)

    Schultz, Jan R...; Hodges, Harry N.

    1984-10-01

    Fiber optic technology offers many advantages for upgrading nuclear survivability in systems such as the Airborne Command Post EC-135 aircraft, including weight and cost savings, EMI and EMC immunity, high data rates. The greatest advantage seen for nuclear survivable systems, however, is that a fiber optic system's EMP hardness can be maintained more easily with the use of fiber optics than with shielded cables or other protective methods. TRW recently completed a study to determine the feasibility of using fiber optic technology in an EC-135 aircraft environment. Since this study was conducted for a USAF Logistics Command Agency, a feasible system had to be one which could be realistically priced by an integrating contractor. Thus, any fiber optic approach would have to be well developed before it could be considered feasible. During the course of the study problem areas were encountered which are associated with the readiness of the technology for use rather than with the technology itself. These included connectors, standards, fiber radiation resistance, busing, maintenance, and logistics. Because these problems areas have not been resolved, it was concluded that fiber optic technology, despite its advantages, is not ready for directed procurement (i.e., included as a requirement in a prime mission equipment specification). However, offers by a manufacturer to use fiber optic technology in lieu of conventional technology should be considered. This paper treats these problems in more detail, addresses the areas which need further development, and discusses the hardness maintenance advantages of using fiber optic technology.

  6. Optical technologies for intraoperative neurosurgical guidance.

    PubMed

    Valdés, Pablo A; Roberts, David W; Lu, Fa-Ke; PhD; Golby, Alexandra

    2016-03-01

    Biomedical optics is a broadly interdisciplinary field at the interface of optical engineering, biophysics, computer science, medicine, biology, and chemistry, helping us understand light-tissue interactions to create applications with diagnostic and therapeutic value in medicine. Implementation of biomedical optics tools and principles has had a notable scientific and clinical resurgence in recent years in the neurosurgical community. This is in great part due to work in fluorescence-guided surgery of brain tumors leading to reports of significant improvement in maximizing the rates of gross-total resection. Multiple additional optical technologies have been implemented clinically, including diffuse reflectance spectroscopy and imaging, optical coherence tomography, Raman spectroscopy and imaging, and advanced quantitative methods, including quantitative fluorescence and lifetime imaging. Here we present a clinically relevant and technologically informed overview and discussion of some of the major clinical implementations of optical technologies as intraoperative guidance tools in neurosurgery. PMID:26926066

  7. A Review of Optical NDT Technologies

    PubMed Central

    Zhu, Yong-Kai; Tian, Gui-Yun; Lu, Rong-Sheng; Zhang, Hong

    2011-01-01

    Optical non-destructive testing (NDT) has gained more and more attention in recent years, mainly because of its non-destructive imaging characteristics with high precision and sensitivity. This paper provides a review of the main optical NDT technologies, including fibre optics, electronic speckle, infrared thermography, endoscopic and terahertz technology. Among them, fibre optics features easy integration and embedding, electronic speckle focuses on whole-field high precision detection, infrared thermography has unique advantages for tests of combined materials, endoscopic technology provides images of the internal surface of the object directly, and terahertz technology opens a new direction of internal NDT because of its excellent penetration capability to most of non-metallic materials. Typical engineering applications of these technologies are illustrated, with a brief introduction of the history and discussion of recent progress. PMID:22164045

  8. Digital optical tape: Technology and standardization issues

    NASA Technical Reports Server (NTRS)

    Podio, Fernando L.

    1996-01-01

    During the coming years, digital data storage technologies will continue an aggressive growth to satisfy the user's need for higher storage capacities, higher data transfer rates and long-term archival media properties. Digital optical tape is a promising technology to satisfy these user's needs. As any emerging data storage technology, the industry faces many technological and standardization challenges. The technological challenges are great, but feasible to overcome. Although it is too early to consider formal industry standards, the optical tape industry has decided to work together by initiating prestandardization efforts that may lead in the future to formal voluntary industry standards. This paper will discuss current industry optical tape drive developments and the types of standards that will be required for the technology. The status of current industry prestandardization efforts will also be discussed.

  9. Fiber-Optic Communication Technology Branching Devices

    NASA Astrophysics Data System (ADS)

    Williams, J. C.

    1985-02-01

    This tutorial review of fiber-optic branching devices covers example uses of branching devices, device types, device-performance characteristics, examples of current technology, and system-design methodology. The discussion is limited to passive single- and multimode devices fabricated from optical fibers or graded-index components. Integrated-optic, wavelength-division-multiplexing, and polarization-selective devices are not specifically addressed.

  10. Novel optical MEMS device technology for optical networking

    NASA Astrophysics Data System (ADS)

    Narendra, Rajashree; McMullin, J. N.

    2007-07-01

    Internet Traffic has been growing multifold with time, as more and more people are getting online for communication, education, entertainment, etc. Expanding fiber optic networks through optical networking is seen as the key to fulfilling consumer demand for internet bandwidth. Optical networking is severely handicapped by the unavailability of high performance low cost optical components. Developing economical methods for fabricating optical switches, connectors and other networking components is the key to the realization of an all-optical network vision. Using silicon MEMS technology to produce optical components provides some compelling advantages of integration with electronic devices and packaging. Simple, low-cost fabrication of the integrated optical components such as waveguides, splitters, combiners, reflectors and lenses on silicon substrate is reviewed. Specially designed novel dispensing equipment is used to fabricate these optical components. An integrated optoelectronic switch is designed using silicon V-grooves with reflective taps and dispensed polymer waveguides. Propagation losses of 0.15 dB/cm at 633 nm and 0.45 dB/cm at 1300 nm are reported. Coupling losses of less than 1 dB can be achieved. The fabrication being economical and having lower propagation losses makes this technology very attractive for networking applications.

  11. Intergenerational Relationships in Cross-Cultural Comparison: How Social Networks Frame Intergenerational Relations between Mothers and Grandmothers in Japan, Korea, China, Indonesia, Israel, Germany, and Turkey

    ERIC Educational Resources Information Center

    Nauck, Bernhard; Suckow, Jana

    2006-01-01

    The article explores the relevance of intergenerational relationships within the overall network of young mothers and grandmothers in seven societies: Japan, Korea, China, Indonesia, Turkey, Israel, and Germany. The empirical base is 2,945 named network members in 249 pairs of interviews of grandmothers and their daughters from a cross-cultural…

  12. Infrared micro-optics technologies

    NASA Astrophysics Data System (ADS)

    Krogmann, Dirk; Tholl, Hans D.

    2004-08-01

    Bodenseewerk GmbH generally works on challenging projects comprising Microsystems, e.g. micro-optics (micro-lenses, micro-mirrors). We utilize state-of-the-art laboratory equipment and simulation software (e.g. optical design with ZEMAX, ASAP and GLAD). Our recent activities on the development of several infrared micro-optical devices focus on high speed imaging of scenes with high angular resolution including the analysis of physical properties of the detected light (e.g. spectral content, polarization) utilizing staring IR sensors with focal-plane-arrays operating in a snap shot mode at high frame rates. We report about the development of so called micro-optical multiplexers which: (a) comprise micro-optical arrays and electro-mechanical micro-actuators, (b) image several fields of view with high resolution onto a single focal-plane-array, (c) image several fields of view with enhanced spatial resolution [by the factor of four compared to (b)] in a modified realization onto one focal-plane-array and (d) analyze the spectral content of an image using a single-band photon detector-array and multi-frame processing. The micro-opto-electro-mechanical multiplexer (MOEM) systems all consist of a primary objective, a MOEM image-steering respectively image coding device and a secondary objective. The primary objective images one or more suitable formed individual fields of view onto a common intermediate image plane. The MOEM devices comprise combinations of focusing and defocusing micro-lens-arrays, micro-shutter-arrays and micro-filter-arrays which are mounted parallel to each other near the intermediate image plane. The MOEM devices exhibit their above mentioned function modes by laterally displacing the micro-arrays with the help of modern micro-actuators. The secondary objective is utilized as relay optical stage. A modern common focal-plane-array is used as detector device. The micro-actuators responsible for the relative displacement of the micro-arrays are highly

  13. Developments in distributed optical fiber detection technology

    NASA Astrophysics Data System (ADS)

    Ye, Wei; Zhu, Qianxia; You, Tianrong

    2014-12-01

    The distributed optical fiber detection technology plays an important role in many fields, such as key regional security monitoring, pipeline maintenance and communication cable protection. It is superior to the traditional detector, and has a good prospect. This paper presents an overview of various distributed optical fiber sensors. At first, some related technologies of the optical fiber detection schemes are introduced in respect of sensing distance, real-time ability, signal strength, and system complexity; and the advantages and limitations of fiber gratings sensors, reflection-based optical fiber sensors, and interference- based optical fiber sensors are discussed. Then some advanced distributed optical fiber detection systems are mentioned. And the double-loop Sagnac distributed system is improved by adding photoelectric modulators and depolarizers. In order to denoise and enhance the original signal, a spectral subtraction-likelihood ratio method is improved. The experiment results show the spatial resolution is +/-15m per kilometer. Finally, based on the development trends of optical fiber detection technology at home and abroad, development tendency and application fields are predicted.

  14. Optical assay technology for safeguards

    SciTech Connect

    Edelson, M.C.; Lipert, R.J.; Murray, G.M.; Schuler, R.A.; Vera, J.; Wang, Z.M.; Weeks, S.J.

    1990-10-01

    Research conducted in the Ames Laboratory Nuclear Safeguards and Security Program during the period July 1, 1990 to September 30, 1990 is reviewed; included are reprints and preprints of papers written during this quarter. The first demonstration of isotopic selectivity in Inductively Coupled Plasma -- Laser Excited Atomic Fluorescence Spectroscopy (ICP-LEAFS) is reported and the application of ICP-LEAFS to U isotopic analysis is discussed. Current work in applying optical spectroscopy to the analytical determination of gas phase metal atoms is reviewed. Program administration topics are included in a separately bound Management Supplement to this report.

  15. Optical waveguide tamper sensor technology

    SciTech Connect

    Carson, R.F.; Butler, M.A.; Sinclair, M.B.

    1997-03-01

    Dielectric optical waveguides exhibit properties that are well suited to sensor applications. They have low refractive index and are transparent to a wide range of wavelengths. They can react with the surrounding environment in a variety of controllable ways. In certain sensor applications, it is advantageous to integrate the dielectric waveguide on a semiconductor substrate with active devices. In this work, we demonstrate a tamper sensor based on dielectric waveguides that connect epitaxial GaAs-GaAlAs sources and detectors. The tamper sensing function is realized by attaching particles of absorbing material with high refractive index to the surface of the waveguides. These absorbers are then attached to a lid or cover, as in an integrated circuit package or multi-chip module. The absorbers attenuate the light in the waveguides as a function of absorber interaction. In the tamper indicating mode, the absorbers are placed randomly on the waveguides, to form a unique attenuation pattern that is registered by the relative signal levels on the photodetectors. When the lid is moved, the pattern of absorbers changes, altering the photodetector signals. This dielectric waveguide arrangement is applicable to a variety of sensor functions, and specifically can be fabricated as a chemical sensor by the application of cladding layers that change their refractive index and/or optical absorption properties upon exposure to selected chemical species. An example is found in palladium claddings that are sensitive to hydrogen. A description of designs and a basic demonstration of the tamper sensing and chemical sensing functions is described herein.

  16. Innovative technology for optical and infrared astronomy

    NASA Astrophysics Data System (ADS)

    Cunningham, Colin R.; Evans, Christopher J.; Molster, Frank; Kendrew, Sarah; Kenworthy, Matthew A.; Snik, Frans

    2012-09-01

    Advances in astronomy are often enabled by adoption of new technology. In some instances this is where the technology has been invented specifically for astronomy, but more usually it is adopted from another scientific or industrial area of application. The adoption of new technology typically occurs via one of two processes. The more usual is incremental progress by a series of small improvements, but occasionally this process is disruptive, where a new technology completely replaces an older one. One of the activities of the OPTICON Key Technology Network over the past few years has been a technology forecasting exercise. Here we report on a recent event which focused on the more radical, potentially disruptive technologies for ground-based, optical and infrared astronomy.

  17. Mirror Technology Roadmap for Optical/IR/FIR Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Phil

    2006-01-01

    The Optics sub-committee of the Advanced Telescope and Observatory {ATO) Capability Roadmap developed an optics capability roadmap to enable planned future space telescopes. The roadmap details 4 basic technologies: cryogenic optics for IR and Far-IR missions; precision optics for optical, UV and EUV missions; grazing incidence optics for x-ray missions; and novel optics with revolutionary capabilities.

  18. Efficient manufacturing technology of metal optics

    NASA Astrophysics Data System (ADS)

    Zhang, Jizhen; Wu, Yanxiong; Zhang, Xin; Zhang, Liping; Wang, Lingjie; Qu, Hemeng

    2015-10-01

    The efficient manufacturing technologies greatly accelerate the development and production process. Optical components have higher precision requirements than mechanical parts. This provides great challenge for rapid manufacturing. Metallic optical system is featured high resolution, wide spectral range, light weight, compact design, low cost and short manufacturing period. Reflective mirrors and supporting structures can be made from the same material to improve athermal performance of the system. Common materials for metal mirrors in optical applications include aluminum, copper, beryllium, aluminum beryllium alloy and so on. Their physical characteristics and relative advantages are presented. Most kinds of metals have good machinability and can be manufactured by many kinds of producing methods. This makes metallic optical system saving 30%~60% cost and time than others. The manufacturing process of metal mirror is different due to its working spectral. The metal mirror can be directly manufactured by single point diamond turning. This is an outstanding technique in point of ultra-precision as well as economical manufacture of mirrors. The roughness values and form accuracy of optical surfaces after diamond turning can satisfy the quality level for applications in the near infrared and infrared range. And for visible light spectral the turning structures must be removed with a smoothing procedure in order to minimize the scatter losses. Some smoothing methods to obtain visible quality metal mirrors are given in this paper. Some new manufacturing technology, such as 3D printing, can be used for metallic optical system and several promising techniques are presented.

  19. Fiber Optic Communications Technology. A Status Report.

    ERIC Educational Resources Information Center

    Hull, Joseph A.

    Fiber optic communications (communications over very pure glass transmission channels of diameter comparable to a human hair) is an emerging technology which promises most improvements in communications capacity at reasonable cost. The fiber transmission system offers many desirable characteristics representing improvements over conventional…

  20. Optical Disc Technology for Information Management.

    ERIC Educational Resources Information Center

    Brumm, Eugenia K.

    1991-01-01

    This summary of the literature on document image processing from 1988-90 focuses on WORM (write once read many) technology and on rewritable (i.e., erasable) optical discs, and excludes CD-ROM. Highlights include vendors and products, standards, comparisons of storage media, software, legal issues, records management, indexing, and computer…

  1. Technology Development for High Efficiency Optical Communications

    NASA Technical Reports Server (NTRS)

    Farr, William H.

    2012-01-01

    Deep space optical communications is a significantly more challenging operational domain than near Earth space optical communications, primarily due to effects resulting from the vastly increased range between transmitter and receiver. The NASA Game Changing Development Program Deep Space Optical Communications Project is developing four key technologies for the implementation of a high efficiency telecommunications system that will enable greater than 10X the data rate of a state-of-the-art deep space RF system (Ka-band) for similar transceiver mass and power burden on the spacecraft. These technologies are a low mass spacecraft disturbance isolation assembly, a flight qualified photon counting detector array, a high efficiency flight laser amplifier and a high efficiency photon counting detector array for the ground-based receiver.

  2. Art + technology in optics educational outreach programs

    NASA Astrophysics Data System (ADS)

    Silberman, Donn M.

    2007-09-01

    In the modern era, art and technology have been at opposite ends of the spectrum of human study. Artists tend to be non-technical and technologists tend not to be artistic. While this is a broad generalization, it is rare to find an artist teaching science or an engineer teaching art. However, if we think back several centuries, it was very common for great artists to be at the forefront of technology. The prime example being the great Leonardo Di Vinci. Over the past several years, the optics educational outreach programs of the Optics Institute of Southern California (OISC) have incorporated using art and artists to help teach optics and related science. The original use of this was with material from the General Atomics Education Foundation, Color My World, which has been used in a number of settings. Recently, the OISC has partnered with the UC Irvine Beall Center for Art + Technology to provide Family Day Event presentations that use the themes of current Art + Technology exhibits to help attendees learn and understand more about the fundamental science through the art. The two main concepts here are that artists are using science and technology as the basis for their art, also sometimes making some social statements; and the technologists are using the art to make the science more accessible and interesting to the general pubic. This paper weaves a path from the original OISC uses of art to the recent work at UC Irvine.

  3. Fabricating binary optics: An overview of binary optics process technology

    NASA Technical Reports Server (NTRS)

    Stern, Margaret B.

    1993-01-01

    A review of binary optics processing technology is presented. Pattern replication techniques have been optimized to generate high-quality efficient microoptics in visible and infrared materials. High resolution optical photolithography and precision alignment is used to fabricate maximally efficient fused silica diffractive microlenses at lambda = 633 nm. The degradation in optical efficiency of four-phase-level fused silica microlenses resulting from an intentional 0.35 micron translational error has been systematically measured as a function of lens speed (F/2 - F/60). Novel processes necessary for high sag refractive IR microoptics arrays, including deep anisotropic Si-etching, planarization of deep topography and multilayer resist techniques, are described. Initial results are presented for monolithic integration of photonic and microoptic systems.

  4. Nanostructured detector technologies for optical sensing applications

    NASA Astrophysics Data System (ADS)

    Sood, Ashok K.; Welser, Roger E.; Puri, Yash R.; Dhar, Nibir K.; Polla, Dennis L.; Wijewarnasuriya, Priyalal; Dubey, Madan

    2014-05-01

    Optical sensing technology is critical for optical communication, defense and security applications. Advances in optoelectronics materials in the UV, Visible and Infrared, using nanostructures, and use of novel materials such as CNT and Graphene have opened doors for new approaches to apply device design methodology that are expected to offer enhanced performance and low cost optical sensors in a wide range of applications. This paper is intended to review recent advancements and present different device architectures and analysis. The chapter will briefly introduce the basics of UV and Infrared detection physics and various wave bands of interest and their characteristics [1, 2] We will cover the UV band (200-400 nm) and address some of the recent advances in nanostructures growth and characterization using ZnO/MgZnO based technologies and their applications. Recent advancements in design and development of CNT and Graphene based detection technologies have shown promise for optical sensor applications. We will present theoretical and experimental results on these device and their potential applications in various bands of interest.

  5. Converted silicon carbide technology developments for optics

    NASA Astrophysics Data System (ADS)

    Duston, Christopher; Woestman, Ken; Vargas, Hugo; deBlonk, Brett

    2007-09-01

    Silicon carbide structures fabricated by converting near-net-shape graphite preforms via Chemical Vapor Conversion (CVC) phase reaction have long provided improved performance components for electronics processing. In recent years, this same technology has been applied to the fabrication of simple and lightweighted mirrors and is moving into optical bench applications. To support the expanded applications, Poco has further evaluated the material properties of SUPERSiC® silicon carbide, developed technologies to mount silicon carbide mirrors on benches of similar and dissimilar materials, and fabricated complex monolithic geometries using in situ conversion bonding of mating graphite components. Overviews of each of these areas will be presented.

  6. Technological applications of focusing optical elements

    NASA Astrophysics Data System (ADS)

    Abul'khanov, Stanislav R.

    2015-03-01

    The article analyzes a wide range of technologies generated by the application of focusators of laser radiation. I give a brief review of the methods of monitoring substrate and forming a diffraction microrelief, optical systems and devices for experimental research of focusators, laser technologies and units on their basis. In particular, I analyze using focusator into the ring for growing single-crystalline fibers in device of mini pedestal, using focusator into a set of rings for information-measuring system of three-dimensional control of grid spacers and other applications of focusators.

  7. Receptivity of Librarians to Optical Information Technologies and Products.

    ERIC Educational Resources Information Center

    Eaton, Nancy

    1986-01-01

    Examines factors which may affect the receptivity of librarians to the use of optical disk technologies, including hardware and software issues, the content of currently available databases, and the integration of optical technologies into existing library services. (CLB)

  8. Optical technologies for UV remote sensing instruments

    NASA Astrophysics Data System (ADS)

    Keski-Kuha, R. A. M.; Osantowski, J. F.; Leviton, D. B.; Saha, T. T.; Content, D. A.; Boucarut, R. A.; Gum, J. S.; Wright, G. A.; Fleetwood, C. M.; Madison, T. J.

    Over the last decade significant advances in technology have made possible development of instruments with substantially improved efficiency in the UV spectral region. In the area of optical coatings and materials, the importance of recent developments in chemical vapor deposited (CVD) silicon carbide (SiC) mirrors, SiC films, and multilayer coatings in the context of ultraviolet instrumentation design are discussed. For example, the development of chemically vapor deposited (CVD) silicon carbide (SiC) mirrors, with high ultraviolet (UV) reflectance and low scatter surfaces, provides the opportunity to extend higher spectral/spatial resolution capability into the 50-nm region. Optical coatings for normal incidence diffraction gratings are particularly important for the evolution of efficient extreme ultraviolet (EUV) spectrographs. SiC films are important for optimizing the spectrograph performance in the 90 nm spectral region. The performance evaluation of the flight optical components for the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instrument, a spectroscopic instrument to fly aboard the Solar and Heliospheric Observatory (SOHO) mission, designed to study dynamic processes, temperatures, and densities in the plasma of the upper atmosphere of the Sun in the wavelength range from 50 nm to 160 nm, is discussed. The optical components were evaluated for imaging and scatter in the UV. The performance evaluation of SOHO/CDS (Coronal Diagnostic Spectrometer) flight gratings tested for spectral resolution and scatter in the DGEF is reviewed and preliminary results on resolution and scatter testing of Space Telescope Imaging Spectrograph (STIS) technology development diffraction gratings are presented.

  9. Optical Technologies for UV Remote Sensing Instruments

    NASA Technical Reports Server (NTRS)

    Keski-Kuha, R. A. M.; Osantowski, J. F.; Leviton, D. B.; Saha, T. T.; Content, D. A.; Boucarut, R. A.; Gum, J. S.; Wright, G. A.; Fleetwood, C. M.; Madison, T. J.

    1993-01-01

    Over the last decade significant advances in technology have made possible development of instruments with substantially improved efficiency in the UV spectral region. In the area of optical coatings and materials, the importance of recent developments in chemical vapor deposited (CVD) silicon carbide (SiC) mirrors, SiC films, and multilayer coatings in the context of ultraviolet instrumentation design are discussed. For example, the development of chemically vapor deposited (CVD) silicon carbide (SiC) mirrors, with high ultraviolet (UV) reflectance and low scatter surfaces, provides the opportunity to extend higher spectral/spatial resolution capability into the 50-nm region. Optical coatings for normal incidence diffraction gratings are particularly important for the evolution of efficient extreme ultraviolet (EUV) spectrographs. SiC films are important for optimizing the spectrograph performance in the 90 nm spectral region. The performance evaluation of the flight optical components for the Solar Ultraviolet Measurements of Emitted Radiation (SUMER) instrument, a spectroscopic instrument to fly aboard the Solar and Heliospheric Observatory (SOHO) mission, designed to study dynamic processes, temperatures, and densities in the plasma of the upper atmosphere of the Sun in the wavelength range from 50 nm to 160 nm, is discussed. The optical components were evaluated for imaging and scatter in the UV. The performance evaluation of SOHO/CDS (Coronal Diagnostic Spectrometer) flight gratings tested for spectral resolution and scatter in the DGEF is reviewed and preliminary results on resolution and scatter testing of Space Telescope Imaging Spectrograph (STIS) technology development diffraction gratings are presented.

  10. Using FEM technology for optical surfaces polishing

    NASA Astrophysics Data System (ADS)

    Procháska, F.; Polák, J.; Tomka, D.; Šubert, E.

    2013-04-01

    The aim of this article is optical surfaces polishing on the 6-axis computer-controlled (CCM) machine Optotech MCP 250 CNC using FEM technology, which is suitable for aspheric elements polishing. The main attention is dedicated to the choice and to the precise adjustment of major process parameters. The possibility of usage the multi wave interferometer Luphoscan as a data source for the 2D surface correction is solved too.

  11. Photonics technology development for optical fuzing

    NASA Astrophysics Data System (ADS)

    Geib, K. M.; Serkland, D. K.; Keeler, G. A.; Peake, G. M.; Mar, A.; von der Lippe, C. M.; Liu, J. J.

    2005-09-01

    This paper describes the photonic component development taking place at Sandia National Laboratories, ARDEC and the Army Research Laboratory in support of an effort to develop a robust, compact, and affordable photonic proximity sensor for munitions fuzing applications. Successful implementation of this sensor will provide a new capability for direct fire applications. The technologies under investigation for the optical fuze design covered in this paper are vertical-cavity surface-emitting lasers (VCSELs), vertical-external-cavity surface-emitting lasers (VECSELs), integrated resonant-cavity photodetectors (RCPDs), and refractive micro-optics. The culmination of this work will be low cost, robust, fully integrated, g-hardened components suitable for proximity fuzing applications. The use of advanced photonic components will enable replacement of costly assemblies that employ discrete lasers, photodetectors, and bulk optics. The integrated devices will be mass produced and impart huge savings for a variety of Army applications. The specific application under investigation is for gun-fired munitions. Nevertheless, numerous civilian uses exist for this proximity sensor in automotive, robotics and aerospace applications. This technology is also applicable to robotic ladar and short-range 3-D imaging.

  12. Optical coherence tomography: technology and applications

    NASA Astrophysics Data System (ADS)

    Chang, Shoude; Mao, Youxin; Flueraru, Costel; Sherif, Sherif

    2008-12-01

    Optical coherence tomography (OCT) has recently emerged as a powerful optical imaging instrument and technology. OCT performs high resolution, cross-sectional tomographic imaging of the internal structure in 3D materials including biological tissues. Advantages of OCT vs. other imaging systems are: 1) High resolution: enables greater visualization of defects. (OCT: 5-10 microns, ultrasound: 150 microns. High resolution CT: 300 microns. MRI: 1,000 microns). 2) Noninvasive, non-contact: increase ease of use. 3) Fiber-optics delivery: allows OCT to be used in catheters and endoscopes. (Fiber diameter is normally 125 microns). 4) High speed: enables high-resolution 3D imaging. 5) Potential for additional information: polarization contrast and spectroscopic information can be obtained concurrently yielding new information of the testing tissues. 6) Use of non-harmful radiation. In this paper, we shortly review the technologies of OCT and present our works in design and implementation of fiber based OCT systems and full-field OCT systems, including high performance swept source, fibre probe, hardware, software design as well as system configurations. The applications of OCT involving in medical imaging, industrial inspection, information storage and retrieval, as well as biometrics and document security are also briefly introduced and demonstrated.

  13. Optical switching technologies and their applications

    NASA Astrophysics Data System (ADS)

    Ciminelli, Caterina; Meli, F.; Grasso, Giorgio

    2001-05-01

    In this paper system applications, geometry, physical effects and materials of optical switching devices are reviewed. Main system scenarios are presented and some key features such as size, loss, speed, scalability and granularity are highlighted. Two principal categories of optical switches are considered, i.e. guided-wave switches and free-space switches. In the first category some sub- classes have been identified according to their geometrical configuration, principle of operation and, then physical mechanism and materials. As for the geometry, the most frequently used configurations are briefly described together with their advantages and disadvantages. Different physical effects suitable to obtain the index change, which the switching function is based on, are also described with reference to the material substrates. Switches based on semiconductor optical amplifier gate are also analyzed. In the free-space category the main sub-classes are represented by the opto-mechanical devices and micro-opto-electro- mechanical systems switches. The last technology combines the free-space interconnecting with the integration capability on a single silica chip. The main advantages such as the ability to scaling up to large switch fabric and some issues such as packaging and reliability are analyzed. Finally, devices based on polarization change, acousto- optics interaction, total internal reflection and holography are illustrated.

  14. Optical coating technology for the EUV

    NASA Astrophysics Data System (ADS)

    Osantowski, J. F.; Keski-Kuha, R. A. M.; Herzig, H.; Toft, A. R.; Gum, J. S.; Fleetwood, C. M.

    Adavaces in optical coating and materials technology are one of the key motivators for the development of missions such as the Far Ultraviolet Spectroscopic Explorer recently selected by NASA for an Explorer class mission in the mid 1990's. The performance of a range of candidate coatings are reviewed for normal-incidence and glancing-incidence applications, and attention is given to strengths and problem areas for their use in space. The importance of recent developments in multilayer films, chemical-vapor deposited SiC (CVD-SiC) mirrors, and SiC films are discussed in the context of EUV instrumentation design. For example, the choice of optical coatings is a design driver for the selection of the average glancing angle for the FUSE telescope, and impacts efficiency, short-wavelength cut-off, and physical size.

  15. Optical coating technology for the EUV

    NASA Technical Reports Server (NTRS)

    Osantowski, J. F.; Keski-Kuha, R. A. M.; Herzig, H.; Toft, A. R.; Gum, J. S.; Fleetwood, C. M.

    1991-01-01

    Advances in optical coating and materials technology are one of the key motivators for the development of missions such as the Far Ultraviolet Spectroscopic Explorer recently selected by NASA for an Explorer class mission in the mid 1990's. The performance of a range of candidate coatings are reviewed for normal-incidence and glancing-incidence applications, and attention is given to strengths and problem areas for their use in space. The importance of recent developments in multilayer films, chemical-vapor deposited SiC (CVD-SiC) mirrors, and SiC films are discussed in the context of EUV instrumentation design. For example, the choice of optical coatings is a design driver for the selection of the average glancing angle for the FUSE telescope, and impacts efficiency, short-wavelength cut-off, and physical size.

  16. A brief examination of optical tagging technologies.

    SciTech Connect

    Ackermann, Mark R.; Cahill, Paul A. (Aspecular Optics, Dayton, OH); Drummond, Timothy J.; Wilcoxon, Jess Patrick

    2003-07-01

    Presented within this report are the results of a brief examination of optical tagging technologies funded by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories. The work was performed during the summer months of 2002 with total funding of $65k. The intent of the project was to briefly examine a broad range of approaches to optical tagging concentrating on the wavelength range between ultraviolet (UV) and the short wavelength infrared (SWIR, {lambda} < 2{micro}m). Tagging approaches considered include such things as simple combinations of reflective and absorptive materials closely spaced in wavelength to give a high contrast over a short range of wavelengths, rare-earth oxides in transparent binders to produce a narrow absorption line hyperspectral tag, and fluorescing materials such as phosphors, dies and chemically precipitated particles. One technical approach examined in slightly greater detail was the use of fluorescing nano particles of metals and semiconductor materials. The idea was to embed such nano particles in an oily film or transparent paint binder. When pumped with a SWIR laser such as that produced by laser diodes at {lambda}=1.54{micro}m, the particles would fluoresce at slightly longer wavelengths, thereby giving a unique signal. While it is believed that optical tags are important for military, intelligence and even law enforcement applications, as a business area, tags do not appear to represent a high on return investment. Other government agencies frequently shop for existing or mature tag technologies but rarely are interested enough to pay for development of an untried technical approach. It was hoped that through a relatively small investment of laboratory R&D funds, enough technologies could be identified that a potential customers requirements could be met with a minimum of additional development work. Only time will tell if this proves to be correct.

  17. Quasi-optical MEMS switching array technology

    NASA Astrophysics Data System (ADS)

    Zhang, Weikang

    During this Ph.D. dissertation research, both experimental and theoretical investigations have been conducted to develop new micro-elecro-mechancical systems (MEMS) based technologies and new device concepts for the microwave and millimeter wave frequency range. A proof-of-principle E-band (60GHz˜90GHz) MEMS switching array has been successful designed and constructed, where 400 MEMS switches form a two dimensional array on a 2inch x 2inch quartz substrate. The E-band MEMS grid array switch has demonstrated >6 dB maximum isolation at 76 GHz and >10 dB on/off contrast ratio at 70˜85 GHz. Extensive work has been carried out with the aim of developing a compact impedance matching method for quasi-optic grid arrays. A new device concept is presented, where bulk micro-machining techniques are utilized to create a new class of artificial materials with continuously variable dielectric constant for use in millimeter wave quasi-optical systems. Based on this bulk micro-machined material, two novel quasi-optical impedance transformers have been modeled, designed, and characterized, which provide ideal impedance matching for quasi-optical systems. Photonic bandgap (PBG) RF circuit models also have been studied for microwave and millimeter wave applications. During the course of this development activity, materials characteristics have been analyzed for their suitability in quasi-optical grid array circuit and RF MEMS device applications. Air bridge MEMS switches have been designed, fabricated and characterized for microwave and millimeter wave applications.

  18. Superresolution technology applied to optical discs

    NASA Astrophysics Data System (ADS)

    Zhou, Changhe; Luo, Hongxin

    2005-09-01

    Smaller focal points are essential for the development of the next-generation optical disc. The size of focal point depends on the diffraction effect that is dependant on the numerical aperture of a lens and the wavelength of light. However, increase of the numerical aperture and decrease of the light wavelength will be ultimately limited due to the technical difficulty of fabricating a too-high NA lens and the too-short wavelength laser. In this paper, we report another approach of using the superresolution technology to compress the size of the so-called Airy spot for the next-generation optical disc, which is independent on the wavelength of laser. The superresolution phase plates are designed and fabricated with a microoptics technique. When such a phase plate is inserted into the optical system, the central spot at the focal plane of a lens is decreased to be 0.8 times of the Airy pattern, implying the possibility of reading higher storage density of optical discs. The most attractive feature is that the phase plate can be mass-produced at a very low cost, compared with the high cost of the high-numerical lens and/or the short wavelength laser. The disadvantages are that the inserted phase plate will induce the slight circular sidelobes around the central sport, so that it consumes a little more laser energy. The shortcoming could be overcome with suitable amendment. We have fabricated the phase plates with the surface-relief profile on a normal glass for phase modulation. Experimental results of superresolution effect with a low numerical aperture (NA=0.1) and a high-numerical lens (NA=0.8) are reported, which are in good agreement with the theoretical prediction. Superresolution technique should be highly interesting as a novel technique of the next-generation pickup head for reading the high storage of the optical discs.

  19. Advanced Optical Technologies for Space Exploration

    NASA Technical Reports Server (NTRS)

    Clark, Natalie

    2007-01-01

    NASA Langley Research Center is involved in the development of photonic devices and systems for space exploration missions. Photonic technologies of particular interest are those that can be utilized for in-space communication, remote sensing, guidance navigation and control, lunar descent and landing, and rendezvous and docking. NASA Langley has recently established a class-100 clean-room which serves as a Photonics Fabrication Facility for development of prototype optoelectronic devices for aerospace applications. In this paper we discuss our design, fabrication, and testing of novel active pixels, deformable mirrors, and liquid crystal spatial light modulators. Successful implementation of these intelligent optical devices and systems in space, requires careful consideration of temperature and space radiation effects in inorganic and electronic materials. Applications including high bandwidth inertial reference units, lightweight, high precision star trackers for guidance, navigation, and control, deformable mirrors, wavefront sensing, and beam steering technologies are discussed. In addition, experimental results are presented which characterize their performance in space exploration systems.

  20. Micro-optics technology and sensor systems applications

    NASA Technical Reports Server (NTRS)

    Gal, George; Herman, B.; Anderson, W.; Whitney, R.; Morrow, H.

    1993-01-01

    The current generation of electro-optical sensors utilizing refractive and reflective optical elements require sophisticated, complex, and expensive designs. Advanced-technology-based electro-optical sensors of minimum size and weight require miniaturization of optical, electrical, and mechanical devices with an increasing trend toward integration of various components. Micro-optics technology has the potential in a number of areas to simplify optical design with improved performance. This includes internally cooled apertures, hybrid optical design, microlenses, dispersive multicolor microlenses, active dither, electronically controlled optical beam steer, and microscopic integration of micro-optics, detectors, and signal processing layers. This paper describes our approach to the development of micro-optics technology with our main emphasis for sensors applications.

  1. 3D optical measuring technologies and systems

    NASA Astrophysics Data System (ADS)

    Chugui, Yuri V.

    2005-02-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method. The efficient algorithms for precise determining the transverse and longitudinal sizes of 3D objects of constant thickness by diffraction method, peculiarities on formation of the shadow and images of the typical elements of the extended objects were suggested. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability requires a 100% noncontact precise inspection of geometrical parameters of their components. To solve this problem we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFIL, and technologies for noncontact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic COMPLEX for noncontact inspection of geometric parameters of running freight car wheel pairs. The performances of these systems and the results of industrial testing are presented and discussed. The created devices are in pilot operation at Atomic and Railway Companies.

  2. Bridge SHM system based on fiber optical sensing technology

    NASA Astrophysics Data System (ADS)

    Li, Sheng; Fan, Dian; Fu, Jiang-hua; Huang, Xing; Jiang, De-sheng

    2015-09-01

    The latest progress of our lab in recent 10 years on the area of bridge structural health monitoring (SHM) based on optical fiber sensing technology is introduced. Firstly, in the part of sensing technology, optical fiber force test-ring, optical fiber vibration sensor, optical fiber smart cable, optical fiber prestressing loss monitoring method and optical fiber continuous curve mode inspection system are developed, which not only rich the sensor types, but also provides new monitoring means that are needed for the bridge health monitoring system. Secondly, in the optical fiber sensing network and computer system platform, the monitoring system architecture model is designed to effectively meet the integration scale and effect requirement of engineering application, especially the bridge expert system proposed integration of sensing information and informatization manual inspection to realize the mode of multi index intelligence and practical monitoring, diagnosis and evaluation. Finally, the Jingyue bridge monitoring system as the representative, the research on the technology of engineering applications are given.

  3. Application of optical interconnect technology at Lawrence Livermore National Laboratory

    SciTech Connect

    Haigh, R.E.; Lowry, M.E.; McCammon, K.; Hills, R.; Mitchell, R.; Sweider, D.

    1995-08-10

    Optical interconnects will be required to meet the information bandwidth requirements of future communication and computing applications. At Lawrence Livermore National Laboratory, the authors are involved in applying optical interconnect technologies in two distinct application areas: Multi-Gigabit/sec Computer Backplanes and Gigabit/sec Wide Area Networking using Wavelength Division Multiplexing. In this paper, the authors discuss their efforts to integrate optical interconnect technologies into prototype computing and communication systems.

  4. Opportunities in Application Design Using Optical Technology.

    ERIC Educational Resources Information Center

    Bowers, Richard A.

    1987-01-01

    Discusses the capabilities of optical data disk systems to merge different types of media, and the need to incorporate these capabilities into new information products. Guidelines for creating a profitable optical data disk product are outlined. (CLB)

  5. Smart Structures with Fibre-Optic Technologies

    SciTech Connect

    Del Grosso, Andrea; Zangani, Donato; Messervey, Thomas

    2008-07-08

    A number of smart structures have been proposed, and some of them realized, to reduce the effect that seismic motions induce on the structure themselves. In particular, active and semi-active control devices have been studied for being applied to buildings and bridges in seismic prone regions. The heart of the application for these devices consists of a network of sensors and computational nodes that produces the input to the actuating mechanisms. Despite the initial enthusiasm for these developments, only a few practical applications involving active devices have been implemented to-date, the main reason residing in questions concerning the reliability of active systems over time. Nevertheless, the allocation of sensory systems and computational intelligence in structures subjected to earthquakes can provide very important information on the real structural behavior, provide self-diagnosis functions after events, and allow for reliability estimates of critical components. The paper reviews several recently developed sensory devices and diagnostic algorithms that may be applied to existing structures or embedded in new ones for the above purpose. Special emphasis will be given to fibre optic technology and its applications.

  6. Smart Structures with Fibre-Optic Technologies

    NASA Astrophysics Data System (ADS)

    Del Grosso, Andrea; Zangani, Donato; Messervey, Thomas

    2008-07-01

    A number of smart structures have been proposed, and some of them realized, to reduce the effect that seismic motions induce on the structure themselves. In particular, active and semi-active control devices have been studied for being applied to buildings and bridges in seismic prone regions. The heart of the application for these devices consists of a network of sensors and computational nodes that produces the input to the actuating mechanisms. Despite the initial enthusiasm for these developments, only a few practical applications involving active devices have been implemented to-date, the main reason residing in questions concerning the reliability of active systems over time. Nevertheless, the allocation of sensory systems and computational intelligence in structures subjected to earthquakes can provide very important information on the real structural behavior, provide self-diagnosis functions after events, and allow for reliability estimates of critical components. The paper reviews several recently developed sensory devices and diagnostic algorithms that may be applied to existing structures or embedded in new ones for the above purpose. Special emphasis will be given to fibre optic technology and its applications.

  7. Optics vs copper: from the perspective of "Thunderbolt" interconnect technology

    NASA Astrophysics Data System (ADS)

    Cheng, Hengju; Krause, Christine; Ko, Jamyuen; Gao, Miaobin; Liu, Guobin; Wu, Huichin; Qi, Mike; Lam, Chun-Chit

    2013-02-01

    Interconnect technology has been progressed at a very fast pace for the past decade. The signaling rates have steadily increased from 100:Mb/s to 25Gb/s. In every generation of interconnect technology evolution, optics always seems to take over at first, however, at the end, the cost advantage of copper wins over. Because of this, optical interconnects are limited to longer distance links where the attenuation in copper cable is too large for the integrated circuits to compensate. Optical interconnect has long been viewed as the premier solution in compared with copper interconnect. With the release of Thunderbolt technology, we are entering a new era in consumer electronics that runs at 10Gb/s line rate (20Gb/s throughput per connector interface). Thunderbolt interconnect technology includes both active copper cables and active optical cables as the transmission media which have very different physical characteristics. In order for optics to succeed in consumer electronics, several technology hurdles need to be cleared. For example, the optical cable needs to handle the consumer abuses such as pinch and bend. Also, the optical engine used in the active optical cable needs to be physically very small so that we don't change the looks and feels of the cable/connector. Most importantly, the cost of optics needs to come down significantly to effectively compete with the copper solution. Two interconnect technologies are compared and discussed on the relative cost, power consumption, form factor, density, and future scalability.

  8. Development of optical fiber technology in Poland 2015

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.; Wójcik, Waldemar

    2015-12-01

    The paper is a digest of works presented during the XVIth National Symposium on Optical Fibres and Their Applications. The Symposium is organized since 1976. OFTA 2015 was organized by Optical Fibre Laboratory of the Faculty of Chemistry at University of Maria Curie Skłodowska, and Institute of Electronics and Information Technology of Lublin University of Technology, in Nałęczów on 22-25 September 2015. The meeting has gathered around 120 participants who presented 85 research and technical papers. The Symposium organized every 18 months is a good portrait of optical fibre technology development in Poland at university laboratories, governmental institutes, company R&D laboratories, etc. Topical tracks of the Symposium were: optical and photonic materials, technology of classical, tailored and structural photonic optical fibres, light propagation physics in optical fibres, passive and active optical fibre components, optical fibre sensors, passive and active optical fibre networks, optical fibre amplifiers and lasers, optical fibre network issues: modulation, architectures, economy, etc.

  9. Technology review of flight crucial flight control systems (application of optical technology)

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.; Buckley, E. C.

    1984-01-01

    The survey covers the various optical elements that are considered in a fly-by-light flight control system including optical sensors and transducers, optical data links, so-called optical actuators, and optical/electro-optical processing. It also addresses airframe installation, maintenance, and repair issues. Rather than an in-depth treatment of optical technology, the survey concentrates on technology readiness and the potential advantages/disadvantages of applying the technology. The information was assembled from open literature, personal interviews, and responses to a questionnaire distributed specifically for this survey. Not all of the information obtained was consistent, particularly with respect to technology readiness. The synthesis of information into the perception of the state-of-technology is presented.

  10. Optical Parametric Technology for Methane Measurements

    NASA Technical Reports Server (NTRS)

    Dawsey, Martha; Numata, Kenji; Wu, Stewart; Riris, Haris

    2015-01-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 microJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb).

  11. Optical parametric technology for methane measurements

    NASA Astrophysics Data System (ADS)

    Dawsey, Martha; Numata, Kenji; Wu, Stewart; Riris, Haris

    2015-09-01

    Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas, with approximately 25 times the radiative forcing of carbon dioxide (CO2) per molecule. Yet, lack of understanding of the processes that control CH4 sources and sinks and its potential release from stored carbon reservoirs contributes significant uncertainty to our knowledge of the interaction between carbon cycle and climate change. At Goddard Space Flight Center (GSFC) we have been developing the technology needed to remotely measure CH4 from orbit. Our concept for a CH4 lidar is a nadir viewing instrument that uses the strong laser echoes from the Earth's surface to measure CH4. The instrument uses a tunable, narrow-frequency light source and photon-sensitive detector to make continuous measurements from orbit, in sunlight and darkness, at all latitudes and can be relatively immune to errors introduced by scattering from clouds and aerosols. Our measurement technique uses Integrated Path Differential Absorption (IPDA), which measures the absorption of laser pulses by a trace gas when tuned to a wavelength coincident with an absorption line. We have already demonstrated ground-based and airborne CH4 detection using Optical Parametric Amplifiers (OPA) at 1651 nm using a laser with approximately 10 μJ/pulse at 5kHz with a narrow linewidth. Next, we will upgrade our OPO system to add several more wavelengths in preparation for our September 2015 airborne campaign, and expect that these upgrades will enable CH4 measurements with 1% precision (10-20 ppb).

  12. Optical Sensor Technology Development and Deployment

    SciTech Connect

    B. G. Parker

    2005-01-24

    The objectives of this ESP (Enhanced Surveillance) project are to evaluate sensor performance for future aging studies of materials, components and weapon systems. The goal of this project is to provide analysis capability to experimentally identify and characterize the aging mechanisms and kinetics of Core Stack Assembly (CSA) materials. The work on fiber optic light sources, hermetic sealing of fiber optics, fiber optic hydrogen sensors, and detection systems will be discussed.

  13. Fiber optic communication technology; Proceedings of the Meeting, San Diego, CA, August 23, 24, 1984

    NASA Astrophysics Data System (ADS)

    Kleekamp, C. W.

    Fiber optic components are considered, taking into account a review of developments related to optical fibers, a review of fiber optic cable technology, aspects of fiber system testing, fiber optic splices, a critical review of fiber optic connectors, and fiber optic communication technology branching devices. Developments concerning fiber optic systems are also discussed, giving attention to optoelectronic issues in fiber optic communications, digital fiber optic systems, wideband analog fiber optic systems, fiber optic local area networks, and wavelength division multiplexing.

  14. Rural Communities and Optical Information Technologies: Optical Disks Move Rural America Closer to the Information Mainstream.

    ERIC Educational Resources Information Center

    Remington, David Gray

    Optical disk technologies now offer a way to move large, complex, remote computer databases from the large urban areas to rural users. Recently, the Optical Information Systems (OIS) Conference provided an opportunity to discuss the use of this new technology for a variety of innovative applications; for example, "The State Education…

  15. Development of optical fiber technology in Poland: 2014

    NASA Astrophysics Data System (ADS)

    Dorosz, Jan; Romaniuk, Ryszard S.

    2014-05-01

    In this paper, the authors, chairs of the 15th Conference on Optical Fibers and Their Applications OFTA2014, and editors of the conference proceedings summarize the developments of optical fiber technology in Poland (during the period of 2012-2014) on the basis of papers presented there and consecutively published in this volume. The digest covers the periodically presented work results every 18 months during the meetings on optical fibers in Białystok - Lipowy Most (with emphasis on technology and applications) and Lublin - Nałęczow (with emphasis on materials and technologies). The XVth Conference on Optical Fibers and Their Applications was held in Białystok and Lipowy Most on 29.01-01.02.2014. The first conference from this cycle was organized in Jabłonna in 1976. Conference topics were: optical fiber technology, materials for optoelectronics and photonics, rare earth doped and luminescent materials, metrology of optical fibers, components and optoelectronic circuits, applications of optical fibers, waveguides and optical fiber sensors, and lighting technology. The conference was attended by 120 participants, including international guests, and 90 papers were presented. Conference papers are traditionally published in Proceedings SPIE.

  16. Polyguide polymeric technology for optical interconnect circuits and components

    NASA Astrophysics Data System (ADS)

    Booth, Bruce L.; Marchegiano, Joseph E.; Chang, Catherine T.; Furmanak, Robert J.; Graham, Douglas M.; Wagner, Richard G.

    1997-04-01

    The expanding information revolution has been made possible by the development of optical communication technology. To meet the escalating demand for information transmitted and processed at high data rates and the need to circumvent the growing electronic circuit bottlenecks, mass deployment of not only optical fiber networks but manufacturable optical interconnect circuits, components and connectors for interfacing fibers and electronics that meet economic and performance constraints are absolutely necessary. Polymeric waveguide optical interconnection are considered increasingly important to meet these market needs. DuPont's polyguide polymeric integrated optic channel waveguide system is thought by many to have considerable potential for a broad range of passive optical interconnect applications. In this paper the recent advances, status, and unique attributes of the technology are reviewed. Product and technology developments currently in progress including parallel optical ink organization and polymer optical interconnect technology developments funded by DARPA are used as examples to describe polyguide breadth and potential for manufacture and deployment of optical interconnection products for single and multimode telecom and datacom waveguide applications.

  17. Ultrafast all-optical technologies for bidirectional optical wireless communications.

    PubMed

    Jin, Xian; Hristovski, Blago A; Collier, Christopher M; Geoffroy-Gagnon, Simon; Born, Brandon; Holzman, Jonathan F

    2015-04-01

    In this Letter, a spherical retro-modulator architecture is introduced for operation as a bidirectional transceiver in passive optical wireless communication links. The architecture uses spherical retroreflection to enable retroreflection with broad directionality (2π steradians), and it uses all-optical beam interaction to enable modulation on ultrafast timescales (120 fs duration). The spherical retro-modulator is investigated from a theoretical standpoint and is fabricated for testing with three glasses, N-BK7, N-LASF9, and S-LAH79. It is found that the S-LAH79 structure provides the optimal refraction and nonlinearity for the desired retroreflection and modulation capabilities. PMID:25831390

  18. Space technology and the optical sciences.

    PubMed

    Yates, H W

    1982-01-15

    The earth-orbiting satellites and the deep-space probes have provided for the optical sciences platforms from which to study the earth, the solar system, and the universe with truly revolutionary capability. For the terrestrial sciences the orbiting platforms for optical measurements in both low and geostationary orbits have given us a view of our planet and a global coverage never before possible. For the astronomical applications of optical instruments that "cataract of the telescopic eye," the atmosphere of the earth has been left behind and through proximity, including actual contact, we now have resolution and spectral coverage limited only by money and motive. PMID:20372432

  19. Applications of optical fibres at Lublin University of Technology

    NASA Astrophysics Data System (ADS)

    Kacejko, Piotr; Wójcik, Waldemar

    2015-12-01

    The article contains a brief history and present days of research and education in application of optical fibres at Lublin University of Technology. It also presents the potential of research groups working at the University.

  20. Videodisc and Optical Disk: Technology, Research, and Applications.

    ERIC Educational Resources Information Center

    Lunin, Lois F.

    1983-01-01

    Introduction to videodisc and optical disk technology (information storage media which are able to handle word, data, image, and sound) cites articles written about videodisc and optical disk applications, instructional use, videodisc research, and information retrieval. A list of 30 suggested readings and additional information resources are…

  1. Electro-Optical Laser Technology. Curriculum Utilization. Final Report.

    ERIC Educational Resources Information Center

    Nawn, John H.

    This report describes a program to prepare students for employment as laser technicians and laser operators and to ensure that they have the necessary skills required by the industry. The objectives are to prepare a curriculum and syllabus for an associate degree program in Electro-Optical Laser Technology. The 2-year Electro-Optical Laser program…

  2. Information Providers and Videodisc/Optical Disk Technology.

    ERIC Educational Resources Information Center

    Galloway, Emily; Paris, Judith

    1983-01-01

    Explores the possibilities of using videodisc and optical disk technology as publishing media, highlighting the videodisc as an educational tool and visual supplement to online databases, digital database publishing on videodisc, optical disks for electronic document and image delivery systems, and costs associated with videodisc design and…

  3. Planning for optical disk technology with digital cartography.

    USGS Publications Warehouse

    Light, D.L.

    1986-01-01

    A major shortfall that still exists in digital systems is the need for very large mass storage capacity. The decade of the 1980s has introduced laser optical disk storage technology, which may be the breakthrough needed for mass storage. This paper addresses system concepts for digital cartography during the transition period. Emphasis will be placed on determining USGS mass storage requirements and introducing laser optical disk technology for handling storage problems for digital data in this decade.-from Author

  4. ROADM architectures and technologies for agile optical networks

    NASA Astrophysics Data System (ADS)

    Eldada, Louay A.

    2007-02-01

    We review the different optoelectronic component and module technologies that have been developed for use in ROADM subsystems, and describe their principles of operation, designs, features, advantages, and challenges. We also describe the various needs for reconfigurable optical add/drop switching in agile optical networks. For each network need, we present the different ROADM subsystem architecture options with their pros and cons, and describe the optoelectronic technologies supporting each architecture.

  5. Ultra-stable optical amplifier technologies for dynamic optical switching networks

    NASA Astrophysics Data System (ADS)

    Shiraiwa, M.; Tsang, K. S.; Man, R.; Puttnam, B. J.; Awaji, Y.; Wada, N.

    2015-01-01

    High-capacity fiber-optic communications are promising technologies to satisfy people's continuously growing demands for bandwidth hungry data services. Multi-wavelength optical circuit switching (OCS) technology is already widely deployed, however, with the limited number of transceivers equipped at each optical node and other constraints, the number of lightpaths which can be established and employed simultaneously in an optical network is restricted. This reduces the utilization efficiency of wavelength resources. Comparing to OCS, dynamic optical switching systems such as optical packet switching (OPS) offer higher efficiency in terms of wavelength resource utilization and have the potential to share more of the wavelength resources on fiber-links between larger numbers of users simultaneously. In such networks, bursty input signals or changes in traffic density may cause optical power surges that can damage optical components or impose gain transients on the signals that impair signal quality. A common approach for reducing gain transients is to employ electrical automatic gain control (AGC) or optical gain-clamping by optical feedback (OFB). AGC may be limited by the speed of the feedback circuit and result in additional transients. Meanwhile OFB can clamp the gain of power varying optical signals without transient but can introduce amplitude fluctuations caused by relaxation oscillations in the lasing cavity for large input power fluctuations. We propose and demonstrate a novel scheme for suppressing the power transients and the relaxation oscillations. This scheme can be utilized in optical amplifiers even if the optical feedback is employed.

  6. Critical reviews of fiber-optic communication technology Optical fibers

    NASA Astrophysics Data System (ADS)

    Kapron, F. P.

    The review begins with brief highlights of the history of fiber optics, followed by a discussion of the attributes of shortwave and longwave transmission. This leads to an investigation of various fiber types, short-haul considerations, and then single-mode aspects. Specialty fiber is briefly covered, followed by a survey of several research trends today that will lead to new systems capabilities in the future. No references are given, since hundreds would be necessary to make the list even partially complete.

  7. NIF Optical Materials and Fabrication Technologies: An Overview

    SciTech Connect

    Campbell, J H; Hawley-Fedder, R; Stolz, C J; Menapace, J A; Borden, M R; Whitman, P; Yu, J; Runkel, M; Riley, M; Feit, M; Hackel, R

    2004-02-23

    The high-energy/high-power section of the NIF laser system contains 7360 meter-scale optics. Advanced optical materials and fabrication technologies needed to manufacture the NIF optics have been developed and put into production at key vendor sites. Production rates are up to 20 times faster and per-optic costs 5 times lower than could be achieved prior to the NIF. In addition, the optics manufactured for NIF are better than specification giving laser performance better than the design. A suite of custom metrology tools have been designed, built and installed at the vendor sites to verify compliance with NIF optical specifications. A brief description of the NIF optical wavefront specifications for the glass and crystal optics is presented. The wavefront specifications span a continuous range of spatial scale-lengths from 10 {micro}m to 0.5 m (full aperture). We have continued our multi-year research effort to improve the lifetime (i.e. damage resistance) of bulk optical materials, finished optical surfaces and multi-layer dielectric coatings. New methods for post-processing the completed optic to improve the damage resistance have been developed and made operational. This includes laser conditioning of coatings, glass surfaces and bulk KDP and DKDP and well as raster and full aperture defect mapping systems. Research on damage mechanisms continues to drive the development of even better optical materials.

  8. Diffractive optics technology and the NASA Geostationary Earth Observatory (GEO)

    NASA Technical Reports Server (NTRS)

    Morris, G. Michael; Michaels, Robert L.; Faklis, Dean

    1992-01-01

    Diffractive (or binary) optics offers unique capabilities for the development of large-aperture, high-performance, light-weight optical systems. The Geostationary Earth Observatory (GEO) will consist of a variety of instruments to monitor the environmental conditions of the earth and its atmosphere. The aim of this investigation is to analyze the design of the GEO instrument that is being proposed and to identify the areas in which diffractive (or binary) optics technology can make a significant impact in GEO sensor design. Several potential applications where diffractive optics may indeed serve as a key technology for improving the performance and reducing the weight and cost of the GEO sensors have been identified. Applications include the use of diffractive/refractive hybrid lenses for aft-optic imagers, diffractive telescopes for narrowband imaging, subwavelength structured surfaces for anti-reflection and polarization control, and aberration compensation for reflective imaging systems and grating spectrometers.

  9. The Business and Technology of Electronic and Optical Publishing.

    ERIC Educational Resources Information Center

    Schwerin, Julie B.

    1988-01-01

    The first of a two-part series on the emergence of CD-ROM in the online publishing industry introduces the business and technology aspects of electronic and optical publishing. The development of CD-ROM products and differences between CD-ROM and online in the areas of technology, content, and marketing are discussed. (MES)

  10. Beyond the technology lists: tracking advanced optics and other critical technologies

    NASA Astrophysics Data System (ADS)

    Sternberg, Ernest

    1992-05-01

    The United States and other governments have increasingly engaged in technology-specific policies toward fields like advanced optics. But the data for making such decisions wisely is not available. Product data, R&D expenditure data, patent data, citation analyses, the industrial census, and technology lists all have serious shortcomings for tracking technical fields like optics. Better information should be obtained through more rigorous data collection on R&D activities and through a series of technology forecasts.

  11. Preparing the optics technology to observe the hot universe

    NASA Astrophysics Data System (ADS)

    Bavdaz, Marcos; Wille, Eric; Wallace, Kotska; Shortt, Brian; Fransen, Sebastiaan; Collon, Maximilien; Ackermann, Marcelo; Vacanti, Giuseppe; Guenther, Ramses; Haneveld, Jeroen; Riekerink, Mark Olde; van Baren, Coen; Kampf, Dirk; Zuknik, Karl-Heinz; Christensen, Finn; Della Monica Ferreira, Desiree; Jakobsen, Anders Clemen; Krumrey, Michael; Müller, Peter; Burwitz, Vadim; Pareschi, Giovanni; Ghigo, Mauro

    2014-07-01

    With the selection of "The hot and energetic Universe" as science theme for ESA's second large class mission (L2) in the Cosmic Vision programme, work is focusing on the technology preparation for an advanced X-ray observatory. The core enabling technology for the high performance mirror is the Silicon Pore Optics (SPO) [1 to 23], a modular X-ray optics technology, which utilises processes and equipment developed for the semiconductor industry. The paper provides an overview of the programmatic background, the status of SPO technology and gives an outline of the development roadmap and activities undertaken and planned by ESA on optics, coatings [24 to 30] and test facilities [31, 33].

  12. Novel Subcarrier Multiplexing Technologies for Optical Communication

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolu

    Microwave subcarrier multiplexing (SCM) has recently emerged as a potentially important multiplexing technique for wideband lightwave systems. By using a double beam modulation technique (DBM), in which the information is modulated onto an optical coherent pair instead of a single optical beam, a novel SCM system is proposed. The system, with multi-division and multi-channel capability (encompassing the multiplexing of both multi-channel analog and/or digital signals), potentially has an information bandwidth (IBW) of tens of GHz and is particularly suitable for optical fiber and free-space communications. The principle of the proposed system was first demonstrated by using a standing-wave surface-acoustic -wave optical modulator (SWSAW). The modulator was fabricated on the top of a Ti - LiNbO_3 waveguide. The highest acoustic modulation frequency achieved was 300 MHz, which corresponds to a 600 MHz subcarrier. The laser output, which had been directly modulated by VHF TV signals, passed through the SWSAW modulator and was upconverted to the UHF band. The carrier-to-noise ratio of the upconverted TV signal was measured to be 30 dB. The more advanced way of implementing the proposed SCM is utilizing a frequency-locked-laser (FLL) pair, which has virtually no upper frequency limitation and is readily FM modulated. We have demonstrated, to our knowledge, the first FM modulated FLL pair for optical communication. The subcarrier (locked) frequency of 15 GHz is also believed to be the highest reported today. The multi-channel video signals and high frequency sinusoidal modulations up to 1 GHz, after being FM modulated onto and demodulated from a 15 GHz subcarrier, are displayed directly on standard TV receivers and oscilloscopes. Another novel SCM, with ultra high millimeter -wave frequency subcarriers of up to one hundred GHz, based upon the self-sustained-pulsation (SSP) of the laser diode, was also proposed. A preliminary optical link test with multi

  13. Optical interconnect technologies for high-bandwidth ICT systems

    NASA Astrophysics Data System (ADS)

    Chujo, Norio; Takai, Toshiaki; Mizushima, Akiko; Arimoto, Hideo; Matsuoka, Yasunobu; Yamashita, Hiroki; Matsushima, Naoki

    2016-03-01

    The bandwidth of information and communication technology (ICT) systems is increasing and is predicted to reach more than 10 Tb/s. However, an electrical interconnect cannot achieve such bandwidth because of its density limits. To solve this problem, we propose two types of high-density optical fiber wiring for backplanes and circuit boards such as interface boards and switch boards. One type uses routed ribbon fiber in a circuit board because it has the ability to be formed into complex shapes to avoid interfering with the LSI and electrical components on the board. The backplane is required to exhibit high density and flexibility, so the second type uses loose fiber. We developed a 9.6-Tb/s optical interconnect demonstration system using embedded optical modules, optical backplane, and optical connector in a network apparatus chassis. We achieved 25-Gb/s transmission between FPGAs via the optical backplane.

  14. Optical diagnosis of mammary ductal carcinoma using advanced optical technology

    NASA Astrophysics Data System (ADS)

    Wu, Yan; Fu, Fangmeng; Lian, Yuane; Nie, Yuting; Zhuo, Shuangmu; Wang, Chuan; Chen, Jianxin

    2015-02-01

    Clinical imaging techniques for diagnosing breast cancer mainly include X-ray mammography, ultrasound, and magnetic resonance imaging (MRI), which have respective drawbacks. Multiphoton microscopy (MPM) has become a potentially attractive optical technique to bridge the current gap in clinical utility. In this paper, MPM was used to image normal and ductal cancerous breast tissues, based on two-photon excited fluorescence (TPEF) and second harmonic generation (SHG). Our results showed that MPM has the ability to exhibit the microstructure of normal breast tissue, ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) lesions at the molecular level comparable to histopathology. These findings indicate that, with integration of MPM into currently accepted clinical imaging system, it has the potential to make a real-time histological diagnosis of mammary ductal carcinoma in vivo.

  15. Adaptive Optics Technology for High-Resolution Retinal Imaging

    PubMed Central

    Lombardo, Marco; Serrao, Sebastiano; Devaney, Nicholas; Parravano, Mariacristina; Lombardo, Giuseppe

    2013-01-01

    Adaptive optics (AO) is a technology used to improve the performance of optical systems by reducing the effects of optical aberrations. The direct visualization of the photoreceptor cells, capillaries and nerve fiber bundles represents the major benefit of adding AO to retinal imaging. Adaptive optics is opening a new frontier for clinical research in ophthalmology, providing new information on the early pathological changes of the retinal microstructures in various retinal diseases. We have reviewed AO technology for retinal imaging, providing information on the core components of an AO retinal camera. The most commonly used wavefront sensing and correcting elements are discussed. Furthermore, we discuss current applications of AO imaging to a population of healthy adults and to the most frequent causes of blindness, including diabetic retinopathy, age-related macular degeneration and glaucoma. We conclude our work with a discussion on future clinical prospects for AO retinal imaging. PMID:23271600

  16. Gregorian optical system with non-linear optical technology for protection against intense optical transients

    DOEpatents

    Ackermann, Mark R.; Diels, Jean-Claude M.

    2007-06-26

    An optical system comprising a concave primary mirror reflects light through an intermediate focus to a secondary mirror. The secondary mirror re-focuses the image to a final image plane. Optical limiter material is placed near the intermediate focus to optically limit the intensity of light so that downstream components of the optical system are protected from intense optical transients. Additional lenses before and/or after the intermediate focus correct optical aberrations.

  17. Ultrasonic Technology for Characterizing Laser Damage in Optics

    SciTech Connect

    Thomas, G; Martin, L P; Chambers, D

    2002-04-30

    An ultrasonic technique was developed to detect and characterize laser damage in critical optics. During normal usage, sub critical flaws induced by high laser fluence can grow to critical size and potentially can cause unanticipated failure of the optics. This ultrasonic technique monitors the optic in situ and provides a quick, reliable way to quantify the location, number and, ultimately, the size of defects that may initiate and grow during firing of the laser. The feasibility of detecting and sizing laser-induced damage with an ultrasonic technology was theoretically and experimentally demonstrated. An experiment was conducted whereby ultrasonic data was acquired in situ on an optic as it was damaged by a laser. This monitoring of laser induced damage clearly demonstrated the potential for ultrasonic monitoring of critical optics for laser-induced damage.

  18. Parallel optics technology assessment for the versatile link project

    SciTech Connect

    Chramowicz, J.; Kwan, S.; Rivera, R.; Prosser, A.; /Fermilab

    2011-01-01

    This poster describes the assessment of commercially available and prototype parallel optics modules for possible use as back end components for the Versatile Link common project. The assessment covers SNAP12 transmitter and receiver modules as well as optical engine technologies in dense packaging options. Tests were performed using vendor evaluation boards (SNAP12) as well as custom evaluation boards (optical engines). The measurements obtained were used to compare the performance of these components with single channel SFP+ components operating at a transmission wavelength of 850 nm over multimode fibers.

  19. MEMS technology and explosive growth fiber optical communication

    NASA Astrophysics Data System (ADS)

    Liu, Ai Q.

    2001-10-01

    Silicon micromachines are an emerging technology that will impact almost every area of science and technology. From industries as diverse as automotive, cellular, aerospace, chemical as well as lightwave systems, N/MEMS (Nano/Microelectromechanical Systems) is rapidly becoming the solution of choice for many technical problems. MEMS devices are, in general, built using standard IC techniques. Starting with a silicon wafer and depositing a series of films such as nitrides, polysilicon, oxides and metals, one builds a complex three-dimensional structure in much the same way one builds an IC. However, unlike an IC, one then releases the device by etching away the oxides, producing a structure that can move. This subtle change in processing allows one to produce devices that move including rotary gears, hinges, plates, flexural beams and motors of every imaginable type. In optical fiber communication, MEMS allows one to build a wide range of components including data modulators, variable attenuators, optical switches, active equalizers, add/drop multiplexers, optical crossconnects (OXCs), dispersion compensators, all- optical switches, tunable laser sources, active packages and adaptive optical elements. In this paper, the design and fabrication of MEMS optical devices using readily available standard fabrication facilities for different fiber optical communication applications will be discussed in details.

  20. PLANNING FOR OPTICAL DISK TECHNOLOGY WITH DIGITAL CARTOGRAPHY.

    USGS Publications Warehouse

    Light, Donald L.

    1984-01-01

    Progress in the computer field continues to suggest that the transition from traditional analog mapping systems to digital systems has become a practical possibility. A major shortfall that still exists in digital systems is the need for very large mass storage capacity. The decade of the 1980's has introduced laser optical disk storage technology, which may be the breakthrough needed for mass storage. This paper addresses system concepts for digital cartography during the transition period. Emphasis is placed on determining U. S. Geological Survey mass storage requirements and introducing laser optical disk technology for handling storage problems for digital data in this decade.

  1. Active radiation hardening technology for fiber-optic source

    NASA Astrophysics Data System (ADS)

    Yang, Yuanhong; Suo, Xinxin; Yang, Mingwei

    2013-09-01

    We demonstrated an active radiation hardening technology for fiber optic source developed for high performance fiber optic gyroscope. The radiation characteristic of erbium-doped fiber was studied experimentally. The radiation induced attenuation (RIA) at 980nm pump light was identified to be the main reason for the degradation and there was photo-bleaching effect in EDF too. A variable parameters control technology was proposed and taken to keep the 980nm and 1550nm light energy stable and high stability and radiation-resistance fiber source with gauss profile spectrum was realized .The source can stand against more than 50 krad (Si) total radiation dose.

  2. Development of Constellation-X Optics Technologies at MSFC

    NASA Technical Reports Server (NTRS)

    Odell, S. L.; Jones, W. D.; Smith, W. S.; Ramsey, B. D.

    1999-01-01

    One of the major technological challenges for the Constellation X-ray Mission is the development of light-weight, high-resolution, grazing-incidence optics. NASA's Marshall Space Flight Center is developing and evaluating candidate technologies, based upon full-shell replication off precision mandrels. Here we report on recent progress in meeting the weight and imaging-performance requirements, using very thin, high-strength electroformed nickel alloys. In addition, we briefly describe MSFC's optics fabrication, metrology, and x-ray test facilities.

  3. Development of Constellation-X Optics Technologies at MSFC

    NASA Technical Reports Server (NTRS)

    ODell, S. L.; Jones, W. D.; Smith, W. S.; Ramsey, B. D.; Engelhaupt, D.

    2000-01-01

    One of the major technological challenges for the Constellation X-ray Mission is the development of light-weight, high-resolution, grazing-incidence optics. NASA's Marshall Space Flight Center is developing and evaluating candidate technologies, based upon full-shell replication off precision mandrels. Here we report on recent progress in meeting the weight and imaging-performance requirements, using very thin, high-strength electroformed nickel alloys. In addition, we briefly describe MSFC's optics fabrication, metrology, and x-ray test facilities.

  4. Development of Constellation-X Optics Technologies at MSFC

    NASA Technical Reports Server (NTRS)

    Ramsey, B. D.; ODell, S. L.; Jones, W. D.; Smith, W. S.; Engelhaupt, D.

    2000-01-01

    One of the major technological challenges for the Constellation X-ray Mission is the development of light-weight, high-resolution, grazing-incidence optics. NASA's Marshall Space Flight Center is developing and evaluating candidate technologies, based upon full-shell replication off precision mandrels. Here we report on recent progress in meeting the weight and imaging-performance requirements, using very thin, high- strength electroformed nickel alloys, In addition, we briefly describe MSFC's optics fabrication, metrology, and x-ray test facilities.

  5. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 2: Fiber optic technology and long distance networks

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the Executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  6. Easing wave optics understanding through technology

    NASA Astrophysics Data System (ADS)

    Garg, Amit; Kachru, Priyanka; Singh, Shatakshi; Tiwary, Rishabh

    2014-09-01

    As part of the course curriculum of Physics of class XII, students do a comprehensive theoretical study about the wave nature of light specially related to interference, diffraction and polarisation. But, these studies are not backed up by any experiments. This makes the understanding of these complex topics very difficult. The purpose of the present outreach activity is to make students do many hands-on experiments on the above topics. The experiments have been designed keeping in mind the various theoretical concepts taught to the students. The studies are helpful in making the students understand fringe formation, intensity variation across the fringes formed helping them compare interference and diffraction fringes, dependence of fringe separation on various parameters, linear polarization, Malus' law and Brewster's law. The tools used to perform the experiments include He-Ne/ diode laser(s), Laptop/Digital Storage Oscilloscope, CCD, various optical components like set of polarisers and analysers, glass plate and hardware components like single slit and double slit. The class XII students are divided into batches and each batch is handled by a team of three University of Delhi at ANDC SPIE student chapter members. The gains of the activity are measured through pre and post-tests.

  7. New Optical Imaging Technologies for Bladder Cancer: Considerations and Perspectives

    PubMed Central

    Liu, Jen-Jane; Droller, Michael J.; Liao, Joseph C.

    2014-01-01

    Purpose Bladder cancer presents as a spectrum of different diatheses. Accurate assessment for individualized treatment depends on initial diagnostic accuracy. Detection relies on white light cystoscopy accuracy and comprehensiveness. Aside from invasiveness and potential risks, white light cystoscopy shortcomings include difficult flat lesion detection, precise tumor delineation to enable complete resection, inflammation and malignancy differentiation, and grade and stage determination. Each shortcoming depends on surgeon ability and experience with the technology available for visualization and resection. Fluorescence cystoscopy/photodynamic diagnosis, narrow band imaging, confocal laser endomicroscopy and optical coherence tomography address the limitations and have in vivo feasibility. They detect suspicious lesions (photodynamic diagnosis and narrow band imaging) and further characterize lesions (optical coherence tomography and confocal laser endomicroscopy). We analyzed the added value of each technology beyond white light cystoscopy and evaluated their maturity to alter the cancer course. Materials and Methods Detailed PubMed® searches were done using the terms “fluorescence cystoscopy,” “photodynamic diagnosis,” “narrow band imaging,” “optical coherence tomography” and “confocal laser endomicroscopy” with “optical imaging,” “bladder cancer” and “urothelial carcinoma.” Diagnostic accuracy reports and all prospective studies were selected for analysis. We explored technological principles, preclinical and clinical evidence supporting nonmuscle invasive bladder cancer detection and characterization, and whether improved sensitivity vs specificity translates into improved correlation of diagnostic accuracy with recurrence and progression. Emerging preclinical technologies with potential application were reviewed. Results Photodynamic diagnosis and narrow band imaging improve nonmuscle invasive bladder cancer detection, including

  8. Adaptation technology between IP layer and optical layer in optical Internet

    NASA Astrophysics Data System (ADS)

    Ji, Yuefeng; Li, Hua; Sun, Yongmei

    2001-10-01

    Wavelength division multiplexing (WDM) optical network provides a platform with high bandwidth capacity and is supposed to be the backbone infrastructure supporting the next-generation high-speed multi-service networks (ATM, IP, etc.). In the foreseeable future, IP will be the predominant data traffic, to make fully use of the bandwidth of the WDM optical network, many attentions have been focused on IP over WDM, which has been proposed as the most promising technology for new kind of network, so-called Optical Internet. According to OSI model, IP is in the 3rd layer (network layer) and optical network is in the 1st layer (physical layer), so the key issue is what adaptation technology should be used in the 2nd layer (data link layer). In this paper, firstly, we analyze and compare the current adaptation technologies used in backbone network nowadays. Secondly, aiming at the drawbacks of above technologies, we present a novel adaptation protocol (DONA) between IP layer and optical layer in Optical Internet and describe it in details. Thirdly, the gigabit transmission adapter (GTA) we accomplished based on the novel protocol is described. Finally, we set up an experiment platform to apply and verify the DONA and GTA, the results and conclusions of the experiment are given.

  9. Optical connecting devices fabricated by self-written waveguide technology for smart optical interconnect

    NASA Astrophysics Data System (ADS)

    Enomoto, Tadayuki; Soeda, Yukinobu; Mikami, Osamu

    2014-03-01

    Recently the importance of optical interconnect is increasing particularly in board-to-board interconnection. The success of smart optical interconnects for practical use strongly depends on the development of sophisticated coupling technologies achieving both high coupling efficiency and easy alignment. One promising technology for solving these problems is self-written waveguide (SWW) method which uses light-curable resin. This method is flexible and may allow substantial advances in the practical application of optical interconnect technology. We fabricated a micro 90° light-path converter on the top of MT connector. Four channel SWWs are fabricated by irradiating a blue laser beam (406nm wavelength) from a multi-mode fiber in light-curable resin. The SWWs are covered by cladding resin. This converter is useful for connecting between fibers and an optical wiring board. We have further developed this fiber- SWW technology into a new technology we call the "Mask-Transfer SWW method". The Mask-Transfer SWW technology involves contact exposure of UV-curable resin through a photomask. Alignment of the photomask pattern with the target can be precisely accomplished by employing a conventional mask-aligner. We proposed a new Vgrooving method by applying the Mask-Transfer SWW method. V-grooves are a well-known technique for aligning optical fibers for coupling. Unlike the conventional methods and material, this new method has an advantage that Vgrooves can be easily fabricated precisely on various kinds of substrates as designed. Therefore, optical coupling between fibers and devices is achieved simply and efficiently. We believe that these devices will be a key for smart optical interconnects in near future.

  10. Laser Electro-Optic Technology. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This program guide identifies primary considerations in the organization, operation, and evaluation of a laser electro-optic technology program. An occupational description and program content are presented. A curriculum framework specifies the exact course title, course number, levels of instruction, major course content, laboratory activities,…

  11. Laser Electro-Optic Engineering Technology. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    This program guide identifies particular considerations in the organization, operation, and evaluation of laser electro-optic engineering technology programs. Contents include an occupational description and information on the following: program content, including a curriculum framework that details major concepts and intended outcomes and a list…

  12. Optical detectors for GaAs MMIC integration: Technology assessment

    NASA Technical Reports Server (NTRS)

    Claspy, P. C.; Bhasin, K. B.

    1989-01-01

    Fiber optic links are being considered to transmit digital and analog signals in phased array antenna feed networks in space communications systems. The radiating elements in these arrays will be GaAs monolithic microwave integrated circuits (MMIC's) in numbers ranging from a few hundred to several thousand. If such optical interconnects are to be practical it appears essential that the associated components, including detectors, be monolithically integrated on the same chip as the microwave circuitry. The general issue of monolithic integration of microwave and optoelectronic components is addressed from the point of view of fabrication technology and compatibility. Particular attention is given to the fabrication technology of various types of GaAs optical detectors that are designed to operate at a wavelength of 830 nm.

  13. The 1994 Fiber Optic Sensors for Aerospace Technology (FOSAT) Workshop

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert (Compiler); Adamovsky, Grigory (Compiler); Tuma, Meg (Compiler); Beheim, Glenn (Compiler); Sotomayor, Jorge (Compiler)

    1995-01-01

    The NASA Lewis Research Center conducted a workshop on fiber optic technology on October 18-20, 1994. The workshop objective was to discuss the future direction of fiber optics and optical sensor research, especially in the aerospace arena. The workshop was separated into four sections: (1) a Systems Section which dealt specifically with top level overall architectures for the aircraft and engine; (2) a Subsystems Section considered the parts and pieces that made up the subsystems of the overall systems; (3) a Sensor/Actuators section considered the status of research on passive optical sensors and optical powered actuators; and (4) Components Section which addressed the interconnects for the optical systems (e.g., optical connectors, optical fibers, etc.). This report contains the minutes of the discussion on the workshop, both in each section and in the plenary sessions. The slides used by a limited number of presenters are also included as presented. No attempt was made to homogenize this report. The view of most of the attendees was: (1) the government must do a better job of disseminating technical information in a more timely fashion; (2) enough work has been done on the components, and system level architecture definition must dictate what work should be done on components; (3) a Photonics Steering Committee should be formed to coordinate the efforts of government and industry in the photonics area, to make sure that programs complimented each other and that technology transferred from one program was used in other programs to the best advantage of the government and industry.

  14. Research on ultrasonic cleaning technology of optical components

    NASA Astrophysics Data System (ADS)

    Jiao, Lingyan; Tong, Yi; Cui, Ying; Chen, Jianhua; Bai, Qingguang

    2014-08-01

    Along with the higher demand of super smooth optical surface, the cleaning technique that is the critical process to obtain super smooth surface has to meet even higher standards. In virtue of higher efficiency and better effect, the ultrasonic cleaning technology has been widely used in cleaning high-end optical lenses. This paper introduced the process, principle and method of the ultrasonic cleaning technology for a super smooth surface. The basis of determining the main technical parameters, such as the power and frequency of ultrasonic wave, the ultrasonic time, the components of cleaning agent and its operating temperature, were also discussed. In addition, the progress situations of ultrasonic cleaning technologies including the characteristics of complex frequency ultrasonic and megasonics cleaning technology and the removal mechanism of different granularity of dirt were analyzed. The mechanism of complex frequency ultrasound produces chemical process and the relationship between megasonics boundary layer and the particles removing were studied. Results showed that the chemical functions of complex frequency ultrasound and megasonics were better than that of single frequency ultrasound for the particles removal effect. Therefore, the new complex frequency ultrasonic and megasonic cleaning technologies are very necessary for cleaning optical components.

  15. Critical Review of Noninvasive Optical Technologies for Wound Imaging

    PubMed Central

    Jayachandran, Maanasa; Rodriguez, Suset; Solis, Elizabeth; Lei, Jiali; Godavarty, Anuradha

    2016-01-01

    Significance: Noninvasive imaging approaches can provide greater information about a wound than visual inspection during the wound healing and treatment process. This review article focuses on various optical imaging techniques developed to image different wound types (more specifically ulcers). Recent Advances: The noninvasive optical imaging approaches in this review include hyperspectral imaging, multispectral imaging, near-infrared spectroscopy (NIRS), diffuse reflectance spectroscopy, optical coherence tomography, laser Doppler imaging, laser speckle imaging, spatial frequency domain imaging, and fluorescence imaging. The various wounds imaged using these techniques include open wounds, chronic wounds, diabetic foot ulcers, decubitus ulcers, venous leg ulcers, and burns. Preliminary work in the development and implementation of a near-infrared optical scanner for wound imaging as a noncontact hand-held device is briefly described. The technology is based on NIRS and has demonstrated its potential to differentiate a healing from nonhealing wound region. Critical Issues: While most of the optical imaging techniques can penetrate few hundred microns to a 1–2 mm from the wound surface, NIRS has the potential to penetrate deeper, demonstrating the potential to image internal wounds. Future Directions: All the technologies are currently at various stages of translational efforts to the clinic, with NIRS holding a greater promise for physiological assessment of the wounds internal, beyond the gold-standard visual assessment. PMID:27602254

  16. EDITORIAL: Special issue on optical neural engineering: advances in optical stimulation technology Special issue on optical neural engineering: advances in optical stimulation technology

    NASA Astrophysics Data System (ADS)

    Shoham, Shy; Deisseroth, Karl

    2010-08-01

    Neural engineering, itself an 'emerging interdisciplinary research area' [1] has undergone a sea change over the past few years with the emergence of exciting new optical technologies for monitoring, stimulating, inhibiting and, more generally, modulating neural activity. To a large extent, this change is driven by the realization of the promise and complementary strengths that emerging photo-stimulation tools offer to add to the neural engineer's toolbox, which has been almost exclusively based on electrical stimulation technologies. Notably, photo-stimulation is non-contact, can in some cases be genetically targeted to specific cell populations, can achieve high spatial specificity (cellular or even sub-cellular) in two or three dimensions, and opens up the possibility of large-scale spatial-temporal patterned stimulation. It also offers a seamless solution to the problem of cross-talk generated by simultaneous electrical stimulation and recording. As in other biomedical optics phenomena [2], photo-stimulation includes multiple possible modes of interaction between light and the target neurons, including a variety of photo-physical and photo-bio-chemical effects with various intrinsic components or exogenous 'sensitizers' which can be loaded into the tissue or genetically expressed. Early isolated reports of neural excitation with light date back to the late 19th century [3] and to Arvanitaki and Chalazonitis' work five decades ago [4]; however, the mechanism by which these and other direct photo-stimulation, inhibition and modulation events [5-7] took place is yet unclear, as is their short- and long-term safety profile. Photo-chemical photolysis of covalently 'caged' neurotransmitters [8, 9] has been widely used in cellular neuroscience research for three decades, including for exciting or inhibiting neural activity, and for mapping neural circuits. Technological developments now allow neurotransmitters to be uncaged with exquisite spatial specificity (down to

  17. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect

    Anbo Wang; Kristie L. Cooper; Gary R. Pickrell

    2003-06-01

    Efficient recovery of petroleum reserves from existing oil wells has been proven to be difficult due to the lack of robust instrumentation that can accurately and reliably monitor processes in the downhole environment. Commercially available sensors for measurement of pressure, temperature, and fluid flow exhibit shortened lifetimes in the harsh downhole conditions, which are characterized by high pressures (up to 20 kpsi), temperatures up to 250 C, and exposure to chemically reactive fluids. Development of robust sensors that deliver continuous, real-time data on reservoir performance and petroleum flow pathways will facilitate application of advanced recovery technologies, including horizontal and multilateral wells. This is the final report for the four-year program ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'', funded by the National Petroleum Technology Office of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech from October 1, 1999 to March 31, 2003. The main objective of this research program was to develop cost-effective, reliable optical fiber sensor instrumentation for real-time monitoring of various key parameters crucial to efficient and economical oil production. During the program, optical fiber sensors were demonstrated for the measurement of temperature, pressure, flow, and acoustic waves, including three successful field tests in the Chevron/Texaco oil fields in Coalinga, California, and at the world-class oil flow simulation facilities in Tulsa, Oklahoma. Research efforts included the design and fabrication of sensor probes, development of signal processing algorithms, construction of test systems, development and testing of strategies for the protection of optical fibers and sensors in the downhole environment, development of remote monitoring capabilities allowing real-time monitoring of the field

  18. Optical communications systems and technology for deep-space exploration

    NASA Technical Reports Server (NTRS)

    Lesh, James R.

    1989-01-01

    An account is given of architectural and implementational strategies for the creation of planetary and other deep-space optical communications networks, with a view to the developmental requirements of both planetary spacecraft subsystems and an earth-vicinity reception system. Attention is given to prospective technology-development challenges. An open-loop spatial acquisition process is defined, in conjunction with a terrestrial, large-aperture/low-cost 'photon bucket' optical reception telescopic system having an integral, axially-aligned tube-bundle sunshield. An efficient diode-pumped Nd:YAG laser is envisioned as the transmitter.

  19. NASA Funding Opportunities for Optical Fabrication and Testing Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Technologies to fabricate and test optical components are required for NASA to accomplish its highest priority science missions. For example, the NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities report states that the highest priority technology in which NASA should invest to 'Expand our understanding of Earth and the universe' is a new generation of astronomical telescopes. And, each of the Astrophysics division Program Office Annual Technology Reports (PATR), identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) technology development programs.

  20. Development of manufacturing technologies for hard optical ceramic materials

    NASA Astrophysics Data System (ADS)

    Fess, Edward; DeFisher, Scott; Cahill, Mike; Wolfs, Frank

    2014-05-01

    Hard ceramic optical materials such as sapphire, ALON, Spinel, or PCA can present a significant challenge in manufacturing precision optical components due to their tough mechanical properties. These are also the same mechanical properties that make them desirable materials when used in harsh environments. Premature tool wear or tool loading during the grinding process is a common result of these tough mechanical properties. Another challenge is the requirement to create geometries that conform to the platforms they reside in, but still achieve optical window tolerances for wavefront. These shapes can be complex and require new technologies to control sub aperture finishing techniques in a deterministic fashion. In this paper we will present three technologies developed at OptiPro Systems to address the challenges associated with these materials and complex geometries. The technologies presented will show how Ultrasonic grinding can reduce grinding load by up to 50%, UltraForm Finishing (UFF) and UltraSmooth Finishing (USF) technologies can accurately figure and finish these shapes, and how all of them can be controlled deterministically, with utilizing metrology feedback, by a new Computer Aided Manufacturing (CAM) software package developed by OptiPro called ProSurf.

  1. NASA funding opportunities for optical fabrication and testing technology development

    NASA Astrophysics Data System (ADS)

    Stahl, H. Philip

    2013-09-01

    NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to `Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs.

  2. NASA Funding Opportunities for Optical Fabrication and Testing Technology Development

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    NASA requires technologies to fabricate and test optical components to accomplish its highest priority science missions. The NRC ASTRO2010 Decadal Survey states that an advanced large-aperture UVOIR telescope is required to enable the next generation of compelling astrophysics and exo-planet science; and, that present technology is not mature enough to affordably build and launch any potential UVOIR mission concept. The NRC 2012 NASA Space Technology Roadmaps and Priorities Report states that the highest priority technology in which NASA should invest to 'Expand our understanding of Earth and the universe' is next generation X-ray and UVOIR telescopes. Each of the Astrophysics division Program Office Annual Technology Reports (PATR) identifies specific technology needs. NASA has a variety of programs to fund enabling technology development: SBIR (Small Business Innovative Research); the ROSES APRA and SAT programs (Research Opportunities in Space and Earth Science; Astrophysics Research and Analysis program; Strategic Astrophysics Technology program); and several Office of the Chief Technologist (OCT) programs

  3. Wafer-scale micro-optics replication technology

    NASA Astrophysics Data System (ADS)

    Rossi, Markus; Rudmann, Hartmut; Marty, Brigitte; Maciossek, Andreas

    2003-11-01

    For many high-volume applications of micro-optical elements and systems the most cost-effective fabrication technology is replication in polymer materials with techniques such as UV embossing, hot embossing, and injection molding. Replication significantly reduces the cost in volume production in comparison to silicon-based etched components. However, the temperature and humidity stability of most commercial polymers is not suitable for the application of replicated elements in areas such as telecom or datacom. A process based on UV-replication in chemically durable polymers has been developed. Technologies for all fabrication steps from mastering over tooling to replication on wafer-scale, post-processing and characterization are described. We present results of various projects with double-sided micro-optics for telecom/datacom and various sensor applications.

  4. Quantum optics: Science and technology in a new light

    NASA Astrophysics Data System (ADS)

    Walmsley, I. A.

    2015-05-01

    Light facilitates exploration of quantum phenomena that illuminate the basic properties of nature and also enables radical new technologies based on these phenomena. The critical features of quantum light that underpin the opportunities for discovery and application are exceptionally low noise and strong correlations. Rapid progress in both science and technology has been stimulated by adopting components developed for optical telecommunications and networking, such as highly efficient detectors, integrated photonic circuits, and waveguide- or nanostructure-based nonlinear optical devices. These provide the means to generate new quantum states of light and matter of unprecedented scale, containing many photons with quantum correlations across space and time. Notably, networks with only several tens of photons are already beyond what can be efficiently analyzed by current computers.

  5. Advanced optical and thermal technologies for aperture control

    SciTech Connect

    Selkowitz, S.E.; Lampert, C.M.; Rubin, M.

    1982-09-01

    Control of heat transfer and radiant energy flow through building apertures is essential for maximizing thermal and daylighting benefits and minimizing undesired heating and cooling loads. Architectural solutions based on current technology generally add devices such as louvers, shutters, shades, or blinds to the glazing system. The objectives and initial accomplishments of a research program the goal of which is to identify and evaluate advanced optical and thermal technologies for controlling aperture energy flows, thus reducing building energy requirements are outlined. Activities are described in four program areas: (1) low-conductance, high-transmittance glazing materials (e.g., heat mirrors, aerogels); (2) optical switching materials (e.g., electrochromic, photochromic); (3) selective transmitters; and (4) daylight enhancement techniques.

  6. Advanced optical and thermal technologies for aperture control

    SciTech Connect

    Selkowitz, S.E.; Lampert, C.M.; Rubin, M.

    1983-11-01

    Control of heat transfer and radiant energy flow through building apertures is essential for maximizing thermal and daylighting benefits and minimizing undesired heating and cooling loads. Architectural solutions based on current technology generally add devices such as louvers, shutters, shades, or blinds to the glazing system. The objectives and initial accomplishments of a research program are outlined, the goal of which is to identify and evaluate advanced optical and thermal technologies for controlling aperture energy flows, thus reducing building energy requirements. Activities in four program areas are described: (1) low-conductance, high-transmittance glazing materials (e.g., heat mirrors, aerogels) (2) optical switching materials (e.g., electrochromic, photochromic) (3) selective transmitters and (4) daylight enhancement techniques.

  7. Quantum optics: science and technology in a new light.

    PubMed

    Walmsley, I A

    2015-05-01

    Light facilitates exploration of quantum phenomena that illuminate the basic properties of nature and also enables radical new technologies based on these phenomena. The critical features of quantum light that underpin the opportunities for discovery and application are exceptionally low noise and strong correlations. Rapid progress in both science and technology has been stimulated by adopting components developed for optical telecommunications and networking, such as highly efficient detectors, integrated photonic circuits, and waveguide- or nanostructure-based nonlinear optical devices. These provide the means to generate new quantum states of light and matter of unprecedented scale, containing many photons with quantum correlations across space and time. Notably, networks with only several tens of photons are already beyond what can be efficiently analyzed by current computers. PMID:25931550

  8. A Wafer Transfer Technology for MEMS Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok; Wiberg, Dean V.

    2001-01-01

    Adaptive optics systems require the combination of several advanced technologies such as precision optics, wavefront sensors, deformable mirrors, and lasers with high-speed control systems. The deformable mirror with a continuous membrane is a key component of these systems. This paper describes a new technique for transferring an entire wafer-level silicon membrane from one substrate to another. This technology is developed for the fabrication of a compact deformable mirror with a continuous facet. A 1 (mu)m thick silicon membrane, 100 mm in diameter, has been successfully transferred without using adhesives or polymers (i.e. wax, epoxy, or photoresist). Smaller or larger diameter membranes can also be transferred using this technique. The fabricated actuator membrane with an electrode gap of 1.5 (mu)m shows a vertical deflection of 0.37 (mu)m at 55 V.

  9. Optical communications for DRS system and technological issues

    NASA Astrophysics Data System (ADS)

    Perbos, Jl.

    An account is given of the system requirements and constraints of the design of an optical interorbit link applicable to the projected Data Relay Satellite, in order to assess the applicability of CO2 laser and semiconductor laser diode technology. Both technologies are judged capable of fulfilling their required role in view of such criteria as burst error probability, postdetection processing, and acquisition and tracking. Dynamic interactions between the beam-pointing systems and host spacecraft are noted to be especially critical in achieving a 1-microradian pointing accuracy.

  10. Impact of microfabrication technology on x-ray optics

    SciTech Connect

    Ceglio, N.M.

    1981-08-01

    X-ray optics stands on the threshold of realizing its early promise: precision analysis of microstructure on the scale of the x-ray wavelength. The achievement of this exciting goal will depend in large part on advances in microfabrication technology making possible the precision fabrication of periodic microstructures. A review of recent advances in, as well as future prospects for: x-ray microscopy, coded imaging, and space-time resolved spectroscopy, resulting from improved microstructure fabrication capabilities is presented.

  11. OPTICAL FIBER SENSOR TECHNOLOGIES FOR EFFICIENT AND ECONOMICAL OIL RECOVERY

    SciTech Connect

    Kristie Cooper; Gary Pickrell; Anbo Wang

    2003-04-01

    This report summarizes technical progress over the fourth year of the ''Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery'' program, funded by the Federal Energy Technology Center of the U.S. Department of Energy, and performed by the Center for Photonics Technology of the Bradley Department of Electrical and Computer Engineering at Virginia Tech. During the reporting period, research efforts under the program were focused on the development and evaluation of the fiber optic flow sensor system, and field testing in Tulsa, OK and the second field test of the pressure and temperature sensors in Coalinga, CA. The feasibility of a self-compensating fiber optic flow sensor based on a cantilever beam and interferometer for real-time flow rate measurements in the fluid filled pipes of oil field was clearly demonstrated. In addition, field testing of the pressure and temperature sensors deployed downhole continued. These accomplishments are summarized here: (1) Theoretical analysis and simulations were performed to ensure performance of the design. (2) The sensor fabrication and packaging techniques were investigated and improved. (3) Prototype flow sensors were fabricated based on the fabrication experience of hundreds of test sensors. (4) A lab-scale flow testing system was constructed and used for sensor evaluation. (5) Field-testing was performed in both the indoor and outdoor flow testing facility at the University of Tulsa, OK. (6) Testing of a multimode white light pressure and temperature sensor system continued at the oil site of Chevron/Texaco Company (Coalinga CA).

  12. Overview of deformable mirror technologies for adaptive optics and astronomy

    NASA Astrophysics Data System (ADS)

    Madec, P.-Y.

    2012-07-01

    From the ardent bucklers used during the Syracuse battle to set fire to Romans’ ships to more contemporary piezoelectric deformable mirrors widely used in astronomy, from very large voice coil deformable mirrors considered in future Extremely Large Telescopes to very small and compact ones embedded in Multi Object Adaptive Optics systems, this paper aims at giving an overview of Deformable Mirror technology for Adaptive Optics and Astronomy. First the main drivers for the design of Deformable Mirrors are recalled, not only related to atmospheric aberration compensation but also to environmental conditions or mechanical constraints. Then the different technologies available today for the manufacturing of Deformable Mirrors will be described, pros and cons analyzed. A review of the Companies and Institutes with capabilities in delivering Deformable Mirrors to astronomers will be presented, as well as lessons learned from the past 25 years of technological development and operation on sky. In conclusion, perspective will be tentatively drawn for what regards the future of Deformable Mirror technology for Astronomy.

  13. Advances in optical technologies at Pontificia Universidad Católica del Perú

    NASA Astrophysics Data System (ADS)

    Baldwin, Guillermo; Asmad, Miguel; Romero, Sandra; Gonzales, Franco; Gálvez, Gonzalo; Sánchez, Rubén; Córdova, Darwin

    2011-05-01

    In this work, it is shown a panoramically view of advances and works on fundamental optical technology developed and Physics Section at Pontificia Universidad Católica del Perú PUCP in Lima Peru. This includes works in, precision optics manufacturing, optical testing, and optical design and simulation and also in optical thin film evaporation and its design techniques

  14. Optical Measuring Technologies for Industrial and Scientific Applications

    NASA Astrophysics Data System (ADS)

    Chugui, Yu V.; Plotnikov, S. V.; Potashnikov, A. K.; Verkhogliad, A. G.

    2006-10-01

    The novel results of the R & D activity of TDI SIE SB RAS in the field of the optical measuring technologies, as well as laser technologies for solving safety problems are presented. For permanent noncontact bearing position inspection of oil-drilling platforms on Sakhalin coast (Russia) we have developed optical-electronic method and system SAKHALIN with cumulative traveled distance (3 km) measurement error less than 0.03%. To measure the rocks stress and to prevent the mountain impact, as well as for basic investigations, a set of optical-electronic deformers and systems was developed and produced. Multifunctional laser technological system LSP-2000 equipped by two Nd-YAG lasers was developed for cutting, welding and surface micro profiling with ablation process (working range of 3 × 2 × 0.6 m3, positioning error less than 10 mkm). Safety of Russian nuclear reactors takes 100% noncontact 3D dimensional inspection of all parts of fuel assemblies, including grid spacers. Results of development and testing the specialized high productive laser measuring machine, based on structured illumination, for 3D inspection of grid spacers with micron resolution are presented. Ensuring the safety of running trains is the actual task for railways. Using high-speed laser noncontact method on the base of triangulation position sensors, TDI SIE has developed and produced automatic laser diagnostic system COMPLEX for inspection of geometric parameters of wheel pairs (train speed up to 60 km/hr.), which is used successfully on Russian railways. Experimental results on measuring and laser technological systems testing are presented.

  15. Progress toward board-level optical interconnect technology

    NASA Astrophysics Data System (ADS)

    Moynihan, Matthew L.; Sicard, Bruno; Ho, Tuan; Little, Luke; Pugliano, Nick; Shelnut, James G.; Zheng, Hai Bin; Knudsen, Phil; Lundy, Dan; Chiarotto, Nancy; Lustig, Curtis; Allen, Craig

    2005-03-01

    Bandwidth demand is still growing and it is becoming more difficult for copper based interconnect technologies to meet system requirements. Considerable progress is being made in the development of optical interconnect technology. Recent publications have shown improved integration of turning mirrors and connectors for board level applications. This paper presents recent work on a siloxane-based waveguide material that is optimized for 850nm board level optical interconnect applications. The material under development is a negative acting photoimageable material that can be processed with conventional Printed Wire Board (PWB) or CMOS processing techniques and chemistries. Meter long waveguides have been fabricated on both silicon and FR4 substrates with optical loss performance of 0.027dB/cm and 0.067dB/cm respectively. Data illustrating the effect of bend radii and splitter performance is reported. Lastly, the ability of the siloxane material to withstand PWB fabrication and assembly processes such as lamination, metallization and reliability is demonstrated.

  16. Optical picoscopes: new opportunities for biosensing and for molecular technologies

    NASA Astrophysics Data System (ADS)

    Nikitin, P. I.; Svetoch, I. E.; Nikitin, M. P.; Ksenevich, T. I.; Gorshkov, B. G.; Konov, V. I.; Aksinin, V. I.

    2007-06-01

    New true direct methods of sensitive real-time recording of molecular reactions on a surface and detection of bio- and chemical agents have been developed. The methods are based on measuring changes of thickness of a sensor layer due to binding reactions. A transparent plate or a gap between two surfaces of optical materials is used as the sensor layer. The methods allow employment as biochips of microscopic glass slips without deposition of any metal or dielectric films. Alternatively, direct pumping of liquid samples through the sensing gap with deposited recognition layers can be used. For label-free biosensing, different optical schemes were realized to record thickness changes due to receptor-ligand bindings with picometer-scale resolution. Biosensors named one-dimensional Picoscope TM and Affinoscope TM have been developed for real-time detection of several biological agents by different recognition spots or wells with specific receptors on the biochip surface. The devices have been successfully employed for detection of food pathogens, for investigation of pharmaceutical substances, for epitope mapping of different monoclonal antibodies and immunotherapy research, for monitoring of bacteriocin production, etc. Application of the devices can be as wide as that of optical microscopes as they provide standard lateral resolution and, in addition, offer much more comprehensive information with outstanding real-time resolution in depth, e.g., for measuring molecular binding kinetics, monitoring of assembling in molecular structures, etc. The Picoscope technology significantly increases power of research instruments for bio-, nano- and pico-technologies.

  17. Signature Optical Cues: Emerging Technologies for Monitoring Plant Health

    PubMed Central

    Liew, Oi Wah; Chong, Pek Ching Jenny; Li, Bingqing; Asundi, Anand K.

    2008-01-01

    Optical technologies can be developed as practical tools for monitoring plant health by providing unique spectral signatures that can be related to specific plant stresses. Signatures from thermal and fluorescence imaging have been used successfully to track pathogen invasion before visual symptoms are observed. Another approach for non-invasive plant health monitoring involves elucidating the manner with which light interacts with the plant leaf and being able to identify changes in spectral characteristics in response to specific stresses. To achieve this, an important step is to understand the biochemical and anatomical features governing leaf reflectance, transmission and absorption. Many studies have opened up possibilities that subtle changes in leaf reflectance spectra can be analyzed in a plethora of ways for discriminating nutrient and water stress, but with limited success. There has also been interest in developing transgenic phytosensors to elucidate plant status in relation to environmental conditions. This approach involves unambiguous signal creation whereby genetic modification to generate reporter plants has resulted in distinct optical signals emitted in response to specific stressors. Most of these studies are limited to laboratory or controlled greenhouse environments at leaf level. The practical translation of spectral cues for application under field conditions at canopy and regional levels by remote aerial sensing remains a challenge. The movement towards technology development is well exemplified by the Controlled Ecological Life Support System under development by NASA which brings together technologies for monitoring plant status concomitantly with instrumentation for environmental monitoring and feedback control.

  18. Technology Development for Nickel X-Ray Optics Enhancement

    NASA Technical Reports Server (NTRS)

    Bubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell

    2008-01-01

    We are developing grazing-incidence x-ray optics for high-energy astrophysics using the electroform-nickel replication process. In this process, mirror shells are fabricated by replication off super-polished cylindrical mandrels. The mirrors fabricated using this process have a demonstrated optical performance at the level of 11-12 arc seconds resolution (HPD) for 30 keV x rays. Future missions demand ever higher angular resolutions and this places stringent requirements on the quality of the mandrels, the precision of the metrology, and the mounting and alignment of the mirror shells in their housings. A progress report on recent technology developments in all these areas will be presented along with a discussion on possible post fabrication, in-situ improvement of the x-ray mirrors quality.

  19. Flight Technology Improvement. [spaceborne optical radiometric instruments, attitude control, and electromechanical and power subsystems

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Shortcomings in spaceborne instrumentation technology are analyzed and recommendations are given for corrections and technology development. The technologies discussed are optical radiometric instruments and calibration, attitude control and determination, and electromechanical and power subsystems.

  20. Contamination analyses of technology mirror assembly optical surfaces

    NASA Technical Reports Server (NTRS)

    Germani, Mark S.

    1991-01-01

    Automated electron microprobe analyses were performed on tape lift samples from the Technology Mirror Assembly (TMA) optical surfaces. Details of the analyses are given, and the contamination of the mirror surfaces is discussed. Based on the automated analyses of the tape lifts from the TMA surfaces and the control blank, we can conclude that the particles identified on the actual samples were not a result of contamination due to the handling or sampling process itself and that the particles reflect the actual contamination on the surface of the mirror.

  1. The AXAF technology program: The optical flats tests

    NASA Technical Reports Server (NTRS)

    Williams, A. C.; Harper, J. D.; Reily, J. C.; Weisskopf, M. C.; Wyman, C. L.; Zombeck, M.

    1984-01-01

    The results of a technology program aimed at determining the limits of surface polishing for reflecting X-ray telescopes is presented. This program is part of the major task of developing the Advanced X-ray Astrophysical Facility (AXAF). By studying the optical properties of state-of-the-art polished flat surfaces, conclusions were drawn as to the potential capability of AXAF. Surface microtopography of the flats as well as their figure are studied by X-ray, visual, and mechanical techniques. These techniques and their results are described. The employed polishing techniques are more than adequate for the specifications of the AXAF mirrors.

  2. Novel multiterabit optical router based on hybrid switching technologies

    NASA Astrophysics Data System (ADS)

    Wei, Wei; Zeng, QingJi; Ouyang, Yong; Liu, Jimin; Luo, Xuan; Huang, Xuejun

    2002-07-01

    Internet backbone network is undergoing a large-scale transformation from the current complex, static and multi-layer electronic-based architecture to the emerging simplified, and dynamic and one-layer photonic-based architecture. The explosive growth in the Internet, multi-media services, and IP router links are demanding the next generation Internet that can accommodate the entire traffic in a cost-effective manner. There is a consensus in current industries that IP over WDM integration technologies will be viable for the next generation of the optical Internet where the simplified flat network architecture can facilitate the networking performance and the networking management. In this paper, we firstly propose a novel node architecture-Terabit Optical Router (TOR) for building the next generation optical Internet and analyses each key function unit of TOR including multi-granularity electrical-optical hybrid switching fabrics, unified control plane unit and so on. Secondly, we give the unified routing definition of multi-layer in TOR and present control plane software structure with emphasis on multi-layer routing issues. Thirdly we describe our cost vs. performance analysis for various application of TOR. According to our calculation, we can get a cost reduction of more than 60 percent by using the TOR. Finally, we reach conclusions that TORs rather than OBS/OPS-based optical routers or big fat router, a cost effective multi-granularity switching and routing technique, are feasible to build the next generation Internet in the coming 5-10 years.

  3. Thin film technologies for optoelectronic components in fiber optic communication

    NASA Astrophysics Data System (ADS)

    Perinati, Agostino

    1998-02-01

    'The Asian Routes Towards the Global Information Society' and 'Towards a Strategic Planning for the Global Information Society' will be the forum themes of 'Asia Telecom 97' and 'Telecom Interactice 97' events respectively, to be held by the International Telecommunication Union (ITU) in order to further telecommunication development around the world. International telecommunications network affects our life by keeping us in touch, bringing us world news and underpinning the global economy. Global tele-economy, global information infrastructure, global information society terms are more and more used to indicate the evolution towards an information- driven world where the access to information, communication and technologies is essential to the economic and social development in every country. Telecommunication industry can strongly contribute to this evolution together with broadcasting and computer industry, and fiber optic communications are expected to continue to grow up and share a relevant part of the total telecom market. In 1995 telecom market shown a 3.8 percent worldwide investment growth reaching a 545 billion value. According to 'Kessler Marketing Intelligence (KMI) Corp.' analysis of fiberoptics and multimedia market the amount of cabled fiber installed in U.S. will be around 11 million fiber-km in 1997 and 15 million fiber-km are predicted in the year 2000. Between 1995 and 1998 the undersea industry is estimated to deal with 13.9 billion as additional undersea cable systems investment in the global telecom network. In China beside satellite telecom stations and digital microwave systems 22 fiber optic backbones have been realized and another 23 systems are expected to be built in the Ninth Five-Year National Plan (1996 to approximately 2000) with a total length of nearly 30,000 sheat-km. The study, Fiber and Fiberoptic Cable Markets in China, recently released by KMI Corp. shows that fiber optic cable installation by MPT and other network operators

  4. Time multiplexed optical shutter (TMOS) display technology for avionics platforms

    NASA Astrophysics Data System (ADS)

    Selbrede, M.; Yost, B.

    2006-05-01

    Time Multiplexed Optical Shutter (TMOS) is a new approach to flat panel light valve display technology that addresses display requirements in avionics applications, particularly head-down cockpit deployments. TMOS modulates the local transmission of light from a waveguide coextensive with the screen. The architecture requires fewer, larger on-screen features (e.g., TFTs) than prevailing technologies because it exploits field sequential color techniques. Methods to mitigate color break up are presented. TMOS exhibits lower power consumption, lower weight, a simplified architecture, and better visual quality than incumbent display technologies while overcoming their limitations (e.g., poor light efficiency, and size/weight constraints due to yield and backlighting). TMOS should meet avionics needs without additional ruggedization enhancements, offers high immunity to EMP, and can be constructed from transparent materials (allowing z-axis redundancy to improve cockpit ergonomics). Respecting the avionics market, TMOS has advantages over incumbent display technologies, including lower sensitivity to temperature variation, greater immunity to vibration, higher system efficacy (power in to light out), and larger dimming ratios. The status of TMOS development and its fit within avionics applications is addressed.

  5. Active fiber optic technologies used as tamper-indicating devices

    SciTech Connect

    Horton, P.R.V.; Waddoups, I.G.

    1995-11-01

    The Sandia National Laboratories (SNL) Safeguards and Seals Evaluation Program is evaluating new fiber optic active seal technologies for use at Department of Energy (DOE) facilities. The goal of the program is to investigate active seal technologies that can monitor secured containers storing special nuclear materials (SNM) within DOE vaults. Specifically investigated were active seal technologies that can be used as tamper-indicating devices to monitor secured containers within vaults while personnel remain outside the vault area. Such a system would allow minimal access into vaults while ensuring container content accountability. The purpose of this report is to discuss tamper-indicating devices that were evaluated for possible DOE use. While previous seal evaluations (Phase I and II) considered overall facility applications, this discussion focuses specifically on their use in vault storage situations. The report will highlight general background information, specifications and requirements, and test procedures. Also discussed are the systems available from four manufacturers: Interactive Technologies, Inc., Fiber SenSys, Inc., Inovonics, Inc., and Valve Security Systems.

  6. 78 FR 17187 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-20

    ... Department of the Navy Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems... to grant to Fiber Optic Sensor Systems Technology Corporation, a revocable, nonassignable, exclusive... its intent to grant to Fiber Optic Sensor Systems Technology Corporation a revocable,...

  7. Merging parallel optics packaging and surface mount technologies

    NASA Astrophysics Data System (ADS)

    Kopp, Christophe; Volpert, Marion; Routin, Julien; Bernabé, Stéphane; Rossat, Cyrille; Tournaire, Myriam; Hamelin, Régis

    2008-02-01

    Optical links are well known to present significant advantages over electrical links for very high-speed data rate at 10Gpbs and above per channel. However, the transition towards optical interconnects solutions for short and very short reach applications requires the development of innovative packaging solutions that would deal with very high volume production capability and very low cost per unit. Moreover, the optoelectronic transceiver components must be able to move from the edge to anywhere on the printed circuit board, for instance close to integrated circuits with high speed IO. In this paper, we present an original packaging design to manufacture parallel optic transceivers that are surface mount devices. The package combines highly integrated Multi-Chip-Module on glass and usual IC ceramics packaging. The use of ceramic and the development of sealing technologies achieve hermetic requirements. Moreover, thanks to a chip scale package approach the final device exhibits a much minimized footprint. One of the main advantages of the package is its flexibility to be soldered or plugged anywhere on the printed circuit board as any other electronic device. As a demonstrator we present a 2 by 4 10Gbps transceiver operating at 850nm.

  8. Mexican infrared optical new technology telescope (TIM) project

    NASA Astrophysics Data System (ADS)

    Salas, Luis; Ruiz, Elfego; Cruz-Gonzales, Irene; Luna, Esteban; Cuevas, Salvador; Pedrayes, Maria H.; Sierra, Gerardo; Sohn, Erika; Koenigsberger, G.; Valdez, Jorge; Harris, Oswaldo N.; Cobos Duenas, Francisco J.; Tejada, Carlos; Gutierrez, L.; Iriarte, Arturo

    1998-08-01

    We present the Mexican Infrared-Optical New Technology Telescope Project (TIM). The design and construction of a 7.8 m telescope, which will operate at the Observatorio Astronomico Nacional in San Pedro Martir, B.C. (Mexico), are described. The site has been selected based on seeing and sky condition measurements taken for several years. The f/1.5 primary mirror consists of 19 hexagonal off-axis parabolic Zerodur segments. The telescope structure will be alt-az, lightweight, low cost, and high stiffness. It will be supported by hydrostatic bearings. The single secondary will complement a Ritchey-Chretien f/15 design, delivering to Cassegrain focus instrumentation. The telescope will be infrared optimized to allow observations ranging from 0.3 to 20 microns. The TIM mirror cell provides an independent and full active support system for each segment, in order to achieve both, phasing capability and very high quality imaging (0.25 arcsec).

  9. Coherent Terahertz Wireless Signal Transmission Using Advanced Optical Fiber Communication Technology

    NASA Astrophysics Data System (ADS)

    Kanno, Atsushi; Kuri, Toshiaki; Morohashi, Isao; Hosako, Iwao; Kawanishi, Tetsuya; Yoshida, Yuki; Kitayama, Ken-ichi

    2015-02-01

    Coherent terahertz signal transmission with multilevel modulation and demodulation is demonstrated using an optical sub-harmonic IQ mixer (SHIQM), which consists of optical components in advanced optical fiber communication technologies. An optical-frequency-comb-employed signal generator is capable of vector modulation as well as frequency tunability. Digital signal processing (DSP) adopted from the recently developed optical digital coherent communication can easily demodulate multi-level modulated terahertz signals by using electrical heterodyning for intermediate-frequency (IF) down conversion. This technique is applicable for mobile backhauling in the next-generation mobile communication technology directly connected to an optical fiber network as a high-speed wireless transmission link.

  10. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    PubMed Central

    Merino, David; Loza-Alvarez, Pablo

    2016-01-01

    Adaptive optics (AO) retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. PMID:27175057

  11. Optical control of the Advanced Technology Solar Telescope.

    PubMed

    Upton, Robert

    2006-08-10

    The Advanced Technology Solar Telescope (ATST) is an off-axis Gregorian astronomical telescope design. The ATST is expected to be subject to thermal and gravitational effects that result in misalignments of its mirrors and warping of its primary mirror. These effects require active, closed-loop correction to maintain its as-designed diffraction-limited optical performance. The simulation and modeling of the ATST with a closed-loop correction strategy are presented. The correction strategy is derived from the linear mathematical properties of two Jacobian, or influence, matrices that map the ATST rigid-body (RB) misalignments and primary mirror figure errors to wavefront sensor (WFS) measurements. The two Jacobian matrices also quantify the sensitivities of the ATST to RB and primary mirror figure perturbations. The modeled active correction strategy results in a decrease of the rms wavefront error averaged over the field of view (FOV) from 500 to 19 nm, subject to 10 nm rms WFS noise. This result is obtained utilizing nine WFSs distributed in the FOV with a 300 nm rms astigmatism figure error on the primary mirror. Correction of the ATST RB perturbations is demonstrated for an optimum subset of three WFSs with corrections improving the ATST rms wavefront error from 340 to 17.8 nm. In addition to the active correction of the ATST, an analytically robust sensitivity analysis that can be generally extended to a wider class of optical systems is presented. PMID:16926876

  12. Adaptive optics scanning laser ophthalmoscope imaging: technology update.

    PubMed

    Merino, David; Loza-Alvarez, Pablo

    2016-01-01

    Adaptive optics (AO) retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. PMID:27175057

  13. Seaborne electro-optical sensors and their technologies

    NASA Astrophysics Data System (ADS)

    Horman, Stephen R.; Headley, Robert M., Jr.; Zurasky, Matthew W.; Dezeeuw, Patrick A.; Trahan, Joseph W.

    1999-07-01

    The US Navy (USN) has long placed a strong emphasis on the production and use of electro-optical (EO) sensors for a wide variety of mission on naval aircraft. Numerous EO fire control and surveillance sensor systems have been developed for USN surface ship applications, but production and deployment has been limited. This apparent dichotomy is due to the vastly different missions and environments of aircraft and ships, and to the need for shipboard system that will support operations dictated by our global interest. EO technology has now evolved to the point where surveillance and fire control sensor systems can be built that have excellent performance under the preponderance of environmental conditions, and where atmospheric refraction, rather than transmission, is the primary design driver. In addition, the consensus of USN decision-makers is that EO sensor system that are designed to complement not supplant, radar systems can provide dramatic improvements in combat system performance at acceptable costs. The two sensor classes that have achieved this level of maturity are Horizon IR Surveillance Systems and the Thermal Imaging Sensors. This paper describes the technologies that have made these sensors possible as well as some of the phenomenological drivers to their designs.

  14. The Mexican Infrared-Optical New Technology Telescope: TIM Project

    NASA Astrophysics Data System (ADS)

    Cruz-Gonzalez, I.; Salas, L.; Ruiz, E.; Luna, E.; Pedrayes, M.; Sohn, E.; Si Erra, G.; Sanchez, B.; Valdez, J.; Gutierrez, L.; Hiriart, D.; Iriarte, A.

    2001-07-01

    We present the Mexican Infrared-Optical New Technology Telescope Project (TIM). The design and construction of a 7.8 m telescope, which will operate at the Observatorio Astronomico Nacional in San Pedro Martir, B.C. (Mexico), are described. The site has been selected based on seeing and sky condition measurements taken for several years. The f/1.5 primary mirror consists of 19 hexagonal off-axis hyperbolic segments of 1.8 m in diameter. The telescope structure will be alt-az, lightweight, low cost, and high stiffness. It will be supported by hydrostatic bearings. The single secondary will complement a Ritchey-Chretien f/15 design, delivering to Cassegrain focus instrumentation. The telescope will be infrared optimized to allow observations ranging from 0.3 to 20 microns. The TIM mirror cell provides an independent and full active support system for each segment, in order to achieve both, phasing capability and very high quality imaging (0.25 arcsec). The TIM project is one of the most advanced technological UNAM projects. The participation of technical and scientific professionals of other national institutions is crucial for its success. The project is seeking partners and financing.

  15. New optical technology for low mass intelligent trigger and readout.

    SciTech Connect

    Underwood, D.; Salvachua-Ferrando, B.; Stanek, R.; Lopez, D.; Liu, J.; Michel, J.; Kimerling, L. C.

    2010-07-01

    New optical devices offer the potential for reductions in mass, power, and cost of data paths for on-board trigger and readout of tracking detectors. We give examples of optical modulators, MEMS beam steering devices, and optical coupling. We also present results on radiation hardness of materials as well as different approaches to using optics in triggering.

  16. The Over-Selling of Fiber Optics? Cable Planning for Educational Technology.

    ERIC Educational Resources Information Center

    Kovacs, Robert E.

    1993-01-01

    Describes fiber optic cables and coaxial cables and considers when each would be appropriate for educational technology. Single mode versus multimode fiber optics are explained, advantages and disadvantages of each type of cable are discussed, and guidelines for choosing fiber optic cables and coaxial cables are offered. (LRW)

  17. Optical memory system technology. Citations from the International Aerospace Abstracts data base

    NASA Technical Reports Server (NTRS)

    Zollars, G. F.

    1980-01-01

    Approximately 213 citations from the international literature which concern the development of the optical data storage system technology are presented. Topics covered include holographic computer storage devices, crystal, magneto, and electro-optics, imaging techniques, in addition to optical data processing and storage.

  18. 77 FR 73456 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-10

    ... Department of the Navy Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems... Navy hereby gives notice of its intent to grant to Fiber Optic Sensor Systems Technology Corporation a... described in U.S. Patent No. 7,020,354: Intensity Modulated Fiber Optic Pressure Sensor, Navy Case No....

  19. 75 FR 34988 - Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems Technology...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-21

    ... Department of the Navy Notice of Intent To Grant Exclusive Patent License; Fiber Optic Sensor Systems... Navy hereby gives notice of its intent to grant to Fiber Optic Sensor Systems Technology Corporation a.... Patent No. 7,149,374: Fiber Optic Pressure Sensor, Navy Case No. 84,557.//U.S. Patent No....

  20. Fabrication of Optical Devices Based on Printable Photonics Technology and Its Application for Biosensor

    NASA Astrophysics Data System (ADS)

    Endo, Tatsuro; Okuda, Norimichi; Yanagida, Yasuko; Tanaka, Satoru; Hatsuzawa, Takeshi

    The specific optical characteristics which can be observed nanostructured optical device have great potentials for applying to several applications such as lifescience, optical communications, and data storage. Application of nanostrcutured optical device to industry, we suggest “printable photonics technology” for fabrication of nanostructured optical device based on nanoimprint lithography (NIL). In this study, using printable photonics technology, fabrication of flexible photonic crystal (PC) and its application for biosensor was performed. Using printable photonics technology-based PC for biosensing application, high sensitive detection of protein adsorption (detection limit: 1 pg/ml) could be detected.

  1. Deployment of a Testbed in a Brazilian Research Network using IPv6 and Optical Access Technologies

    NASA Astrophysics Data System (ADS)

    Martins, Luciano; Ferramola Pozzuto, João; Olimpio Tognolli, João; Chaves, Niudomar Siqueira De A.; Reggiani, Atilio Eduardo; Hortêncio, Claudio Antonio

    2012-04-01

    This article presents the implementation of a testbed and the experimental results obtained with it on the Brazilian Experimental Network of the government-sponsored "GIGA Project." The use of IPv6 integrated to current and emerging optical architectures and technologies, such as dense wavelength division multiplexing and 10-gigabit Ethernet on the core and gigabit capable passive optical network and optical distribution network on access, were tested. These protocols, architectures, and optical technologies are promising and part of a brand new worldwide technological scenario that has being fairly adopted in the networks of enterprises and providers of the world.

  2. New trends and applications of optical fiber sensing technologies at the NEL-FOST

    NASA Astrophysics Data System (ADS)

    Yang, Minghong; Huang, Chujia; Yuan, Yinquan; Ding, Liyun; Zhou, Ciming

    2015-07-01

    This paper reviews the recent development of optical fiber sensors at the National Engineering Laboratory for Optic Fiber Sensing Technologies (NEL-FOST) at Wuhan University of Technology. Integration of optical fiber with sensitive thin films will new possibilities for industry application, such as optical fiber hydrogen sensors based on Pt-doped WO3 coatings, fiber humidity sensors with porous oxide coating and high-temperature sapphire fiber sensors based on multilayer coating on fiber tip. Ultra-weak FBG array with thousand of FBGs with on-line draw tower technology will enable FBG sensing network with large capacity, also improved sensing performance and mechanical stability.

  3. Modern trends in industrial technology of production of optical polymeric components for night vision devices

    NASA Astrophysics Data System (ADS)

    Goev, A. I.; Knyazeva, N. A.; Potelov, V. V.; Senik, B. N.

    2005-06-01

    The present paper represents in detail the complex approach to creating industrial technology of production of polymeric optical components: information has been given on optical polymeric materials, automatic machines for injection moulding, the possibilities of the Moldflow system (the AB "Universal" company) used for mathematical simulation of the technological process of injection moulding and making the moulds.

  4. Kodak Optical Disk and Microfilm Technologies Carve Niches in Specific Applications.

    ERIC Educational Resources Information Center

    Gallenberger, John; Batterton, John

    1989-01-01

    Describes the Eastman Kodak Company's microfilm and optical disk technologies and their applications. Topics discussed include WORM technology; retrieval needs and cost effective archival storage needs; engineering applications; jukeboxes; optical storage options; systems for use with mainframes and microcomputers; and possible future…

  5. Implementation of 3D Optical Scanning Technology for Automotive Applications.

    PubMed

    Kuş, Abdil

    2009-01-01

    Reverse engineering (RE) is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings) model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters. PMID:22573995

  6. Implementation of 3D Optical Scanning Technology for Automotive Applications

    PubMed Central

    Kuş, Abdil

    2009-01-01

    Reverse engineering (RE) is a powerful tool for generating a CAD model from the 3D scan data of a physical part that lacks documentation or has changed from the original CAD design of the part. The process of digitizing a part and creating a CAD model from 3D scan data is less time consuming and provides greater accuracy than manually measuring the part and designing the part from scratch in CAD. 3D optical scanning technology is one of the measurement methods which have evolved over the last few years and it is used in a wide range of areas from industrial applications to art and cultural heritage. It is also used extensively in the automotive industry for applications such as part inspections, scanning of tools without CAD definition, scanning the casting for definition of the stock (i.e. the amount of material to be removed from the surface of the castings) model for CAM programs and reverse engineering. In this study two scanning experiments of automotive applications are illustrated. The first one examines the processes from scanning to re-manufacturing the damaged sheet metal cutting die, using a 3D scanning technique and the second study compares the scanned point clouds data to 3D CAD data for inspection purposes. Furthermore, the deviations of the part holes are determined by using different lenses and scanning parameters. PMID:22573995

  7. New broadband access technology: Ethernet passive optical network (EPON)

    NASA Astrophysics Data System (ADS)

    Zhu, Lili; Fan, Xiliang; He, Yan

    2004-04-01

    A newly broadband access technology comes into being with the combination of IP and access technique, which is considered as EPON (Ethernet passive optical network). EPON system resolves the limitation of point-to-point, instead uses the topology architecture of point-to-multipoint. It extends the fiber cable to the last mile, so we can get the end-to-end network system with high efficiency, well expansibility and low maintenance cost. There are many key techniques and problems in EPON system, for example, CDR (Clock and data recovery), RTT (Round-Trip Time), DBA (Dynamic Bandwidth Allocation) and ULSLE (Upper-Layer Shared LAN Emulation). The essential character of MPCP (Multi-Point Control Protocol) used in EPON is to schedule the transmission of the upstream data packets, and to avoid data collision. A central counter is applied to synchronize the upstream data through a time-stamp flag. A REPORT control frame is transmitted, which give the length of the different priority queues. On receiving this control frame, central office device modifies the bandwidth allocation in the grant table. The function relating to the ULSLE protocol is similar with IEEE802.1D Bridge, and also includes point-to-multipoint, therefore so many problems are resolved, such as the frame reflection, the communication among different ONUs.

  8. The achievements and future prospects of Chinese space optical remote sensor technology

    NASA Astrophysics Data System (ADS)

    Zhou, Feng; Liu, Zhaojun

    2011-08-01

    The launched space optical Remote Sensors, including the three generations of space film remote sensor, the space CCD remote sensor and the IRMSS for resources survey, the first generation CCD and IR remote sensor for disaster monitoring, the first generation CCD and IR camera for ocean monitoring, the related remote sensor in polar orbit and geostationary orbit for meteorological detection and forecasting, the first generation related remote sensor for deep space exploration, etc, are presented in detail in the paper. The related technologies, including system design technology, the lens technology, the FPA video technology, the manufacture technology, the AIT technology, etc, are also introduced in the paper. The Chinese great achievements in the field of space optical remote sensor are shown. The prospects on future development of the space serial optical remote sensors and the related technologies are made.

  9. Vibration Performance Comparison Study on Current Fiber Optic Connector Technologies

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Thomes Jr., William J.; LaRocca, Frank V.; Switzer, Robert C.; Chuska, Rick F.; Macmurphy, Shawn L.

    2008-01-01

    Fiber optic cables are increasingly being used in harsh environments where they are subjected to vibration. Understanding the degradation in performance under these conditions is essential for integration of the fibers into the given application. System constraints oftentimes require fiber optic connectors so subsystems can be removed or assembled as needed. In the present work, various types of fiber optic connectors were monitored in-situ during vibration testing to examine the transient change in optical transmission and the steady-state variation following the event. Inspection of the fiber endfaces and connectors was performed at chosen intervals throughout the testing.

  10. Vibration performance comparison study on current fiber optic connector technologies

    NASA Astrophysics Data System (ADS)

    Thomes, William J., Jr.; LaRocca, Frank V.; Switzer, Robert C.; Ott, Melanie N.; Chuska, Richard F.; Macmurphy, Shawn L.

    2008-08-01

    Fiber optic cables are increasingly being used in harsh environments where they are subjected to vibration. Understanding the degradation in performance under these conditions is essential for integration of the fibers into the given application. System constraints often require fiber optic connectors so that subsystems can be removed or assembled as needed. In the present work, various types of fiber optic connectors were monitored in-situ during vibration testing to examine the transient change in optical transmission and the steady-state variation following the event. The fiber endfaces and connectors were inspected at selected intervals throughout the testing.

  11. Coherent optical component technologies for WDM transmission systems

    NASA Astrophysics Data System (ADS)

    Mino, S.; Murata, K.; Saida, T.; Ogawa, I.

    2011-01-01

    We review our recent progress toward 100 Gbps and beyond, focusing on integrated optical devices. Topics include our recently developed integrated optical front-ends for 100 Gbps PDM-QPSK based on multi-channel micro collimator optics and hermetically sealed O/E converters, and PLC-LiNbO3 hybrid optical modulators for 100 Gbps PDM-QPSK. We also describe our recent work on exceeding 100 Gbps, including 64 QAM modulators, modulation-level-selectable modulators, and high-speed digital-analog converter ICs for future multi-level transmissions.

  12. Comparison of satellite and fiber optics technologies for intercity and intercontinental communications

    NASA Astrophysics Data System (ADS)

    Sharifi, M. Hossein; Arozullah, Mohammed

    The applications of satellite and fiber optic technologies to the design of intercity and intercontinental communications networks are examined. Satellite technology including space and ground segments, and advancements and operational requirements for underwater and land fiber optics communications systems are discussed. Communications satellites and fiber optics are compared in terms of physical implementation, switching requirements, transmission parameters, availability, cost, system flexibility, transmission quality, and applications. The cost of point-to-point transmission of 60 Mbps data using satellite, fiber optics, and microwave systems is evaluated. It is observed that satellite systems are the most cost-effective and flexible methods for providing transmission media for distances greater than about 700 km.

  13. Emerging Digital Optical Disc Technologies: An Opportunity and a Challenge for Educational Researchers.

    ERIC Educational Resources Information Center

    Harvey, Francis A.

    1987-01-01

    Description of new applications of digital optical disc storage technologies focuses on CD-ROM (Compact Disc--Read Only Memory); CD-I (Compact Disc--Interactive); and DV-I (Digital Video--Interactive). Features of each technology are described in the context of instructional design and educational technology, and the role of educational research…

  14. Optical technology for microwave applications IV; Proceedings of the Meeting, Orlando, FL, Mar. 28, 29, 1989

    NASA Technical Reports Server (NTRS)

    Yao, Shi-Kay (Editor)

    1989-01-01

    Among the topics discussed at the meeting are high-speed laser and electrooptical technologies, detectors and detector arrays, microwave delay lines, and photon-microwave interactions. In addition, optical link applications are discussed, along with electronic warfare receivers and acoustooptical signal processing. Emphasis is placed on laser diode technology, direct modulation of laser diodes, external electrooptical laser modulation techniques, and microwave fiber-optic delay lines. Attention is given to such optical link applications as multigigahertz links as well as to signal processing for phased-array antennas and channelized microwave receiver technologies.

  15. Advanced photonic integrated technologies for optical routing and switching

    NASA Astrophysics Data System (ADS)

    Masanovic, Milan L.; Burmeister, Emily; Dummer, Matthew M.; Koch, Brian; Nicholes, Steven C.; Jevremovic, Biljana; Nguyen, Kim; Lal, Vikrant; Bowers, John E.; Coldren, Larry A.; Blumenthal, Daniel J.

    2009-02-01

    In this paper, we report on the latest advances in implementation of the photonic integrated circuits (PICs) required for optical routing. These components include high-speed, high-performance integrated tunable wavelength converters and packet forwarding chips, integrated optical buffers, and integrated mode-locked lasers.

  16. Technology Validation of Optical Fiber Cables for Space Flight Environments

    NASA Technical Reports Server (NTRS)

    Ott, Melanie N.; Friedberg, Patricia; Day, John H. (Technical Monitor)

    2000-01-01

    Periodically, commercially available (COTS) optical fiber cable assemblies are characterized for space flight usage under the NASA Electronic Parts and Packaging Program (NEPP). The purpose of this is to provide a family of optical fiber cable options to a variety of different harsh environments typical to space flight missions. The optical fiber cables under test are evaluated to bring out known failure mechanisms that are expected to occur during a typical mission. The tests used to characterize COTS cables include: (1) vacuum exposure, (2) thermal cycling, and (3) radiation exposure. Presented here are the results of the testing conducted at NASA Goddard Space Flight Center on COTS optical fiber cables over this past year. Several optical fiber cables were characterized for their thermal stability both during and after thermal cycling. The results show how much preconditioning is necessary for a variety of available cables to remain thermally stable in a space flight environment. Several optical fibers of dimensions 100/140/172 microns were characterized for their radiation effects at -125 C using the dose rate requirements of International Space Station. One optical fiber cable in particular was tested for outgassing to verify whether an acrylate coated fiber could be used in a space flight optical cable configuration.

  17. Technology development for high-energy x-ray optics

    NASA Astrophysics Data System (ADS)

    Gubarev, Mikhail; Ramsey, Brian; Engelhaupt, Darell; Kester, Thomas; Speegle, Chet

    2006-06-01

    We are developing hard-x-ray optics using an electroformed-nickel-replication process off superpolished mandrels. To date, we have fabricated over 100 shells for our HERO balloon payload with typical angular resolutions in the 13-15 arcsec range. This paper discusses the factors currently limiting this resolution and various developments geared towards the production of higher-resolution optics.

  18. Evaluation of emerging parallel optical link technology for high energy physics

    SciTech Connect

    Chramowicz, J.; Kwan, S.; Prosser, A.; Winchell, M.; /Fermilab

    2012-01-01

    Modern particle detectors utilize optical fiber links to deliver event data to upstream trigger and data processing systems. Future detector systems can benefit from the development of dense arrangements of high speed optical links emerging from industry advancements in transceiver technology. Supporting data transfers of up to 120 Gbps in each direction, optical engines permit assembly of the optical transceivers in close proximity to ASICs and FPGAs. Test results of some of these parallel components will be presented including the development of pluggable FPGA Mezzanine Cards equipped with optical engines to provide to collaborators on the Versatile Link Common Project for the HI-LHC at CERN.

  19. High-speed optical packet processing technologies based on novel optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Takenouchi, Hirokazu; Takahashi, Ryo; Takahata, Kiyoto; Nakahara, Tatsushi; Suzuki, Hiroyuki

    2004-10-01

    To cope with the explosive growth of IP traffic, we must increase both the link capacity between nodes and the node throughput. These requirements have stimulated research on photonic networks that use optical technologies. Optical packet switching (OPS) is an attractive solution because it maximizes the use of the network bandwidth. The key functions in achieving such networks include synchronization, label processing, compression/decompression, regeneration, and buffering for high-speed asynchronous optical packets. However, it is impractical to implement such functions by using all-optical approaches. We have proposed a new optoelectronic system composed of a packet-by-packet optical clock-pulse generator (OCG), an all-optical serial-to-parallel converter (SPC), a photonic parallel-to-serial converter (PSC), and CMOS circuitry. The OCG provides a single optical pulse synchronized with the incoming packet, and the SPC carries out a parallel conversion of the incoming packet. The parallel converted data are processed in the smart CMOS circuit, and reconstructed into an optical packet by the photonic PSC. Our system makes it possible to carry out various functions for high-speed asynchronous optical packets. This paper reviews our recent work on high-speed optical packet processing technologies such as buffering, packet compression/decompression, and label swapping, which are key technologies for constructing future OPS networks.

  20. Precision machining of optical surfaces with subaperture correction technologies MRF and IBF

    NASA Astrophysics Data System (ADS)

    Schmelzer, Olaf; Feldkamp, Roman

    2015-10-01

    Precision optical elements are used in a wide range of technical instrumentations. Many optical systems e.g. semiconductor inspection modules, laser heads for laser material processing or high end movie cameras, contain precision optics even aspherical or freeform surfaces. Critical parameters for such systems are wavefront error, image field curvature or scattered light. Following these demands the lens parameters are also critical concerning power and RMSi of the surface form error and micro roughness. How can we reach these requirements? The emphasis of this discussion is set on the application of subaperture correction technologies in the fabrication of high-end aspheres and free-forms. The presentation focuses on the technology chain necessary for the production of high-precision aspherical optical components and the characterization of the applied subaperture finishing tools MRF (magneto-rheological finishing) and IBF (ion beam figuring). These technologies open up the possibility of improving the performance of optical systems.

  1. Broadband Optical Access Technologies to Converge towards a Broadband Society in Europe

    NASA Astrophysics Data System (ADS)

    Coudreuse, Jean-Pierre; Pautonnier, Sophie; Lavillonnière, Eric; Didierjean, Sylvain; Hilt, Benoît; Kida, Toshimichi; Oshima, Kazuyoshi

    This paper provides insights on the status of broadband optical access market and technologies in Europe and on the expected trends for the next generation optical access networks. The final target for most operators, cities or any other player is of course FTTH (Fibre To The Home) deployment although we can expect intermediate steps with copper or wireless technologies. Among the two candidate architectures for FTTH, PON (Passive Optical Network) is by far the most attractive and cost effective solution. We also demonstrate that Ethernet based optical access network is very adequate to all-IP networks without any incidence on the level of quality of service. Finally, we provide feedback from a FTTH pilot network in Colmar (France) based on Gigabit Ethernet PON technology. The interest of this pilot lies on the level of functionality required for broadband optical access networks but also on the development of new home network configurations.

  2. Exabits/s integrated photonic interconnection technology for flexible data-centric optical networks

    NASA Astrophysics Data System (ADS)

    Binh, Le N.; Tao, Thomas W.; Ning, Gordon L.

    2016-03-01

    Optical networking is evolving from classical service-provider base data-center centric (DCC) internetworking environment with massive capacity, hence demanding novel optical switching and interconnecting technologies. The traditional telecom networks are under a flattening transformation to meet challenges from DCC networks for massive capacity serving in order of multi-Pb/s. We present proposed distributed and concentric data center based networks and the essential optical interconnection technologies, from the photonic kernels to electronic and optoelectronic server clusters, in both passive and active structures. Optical switching devices and integrated matrices are proposed composing of tunable (bandwidth and center wavelength) optical filters and switches as well as resonant microring modulators (μRM)(switching and spectral demux/mux) for multi-wavelength flexible-bandwidth optical channels of aggregate capacity reaching Ebps. The design principles and some experimental results are also reported.

  3. Computer-assisted optics teaching at the Moscow Institute of Physics and Technology

    NASA Astrophysics Data System (ADS)

    Soboleva, Natalia N.; Kozel, Stanislav M.; Lockshin, Gennady R.; Entin, M. A.; Galichsky, K. V.; Lebedinsky, P. L.; Zhdanovich, P. M.

    1995-10-01

    Traditional methods used in optics teaching lack clarity and vividness when illustrating abstract notions such as polarization or interference. Here's where computer models may help, but they usually show only a single phenomenon or process and don't let the student see the entire picture. For this reason at Moscow Institute of Physics and Technology was developed the courseware 'Wave Optics on the Computer' consisting of a number of related simulations. It is intended for students studying optics at the Universities. Recently we have developed different simulations in optics for secondary school level. They are included as part of large computer courseware 'Physics by Pictures'. The courseware 'Wave Optics on the Computer' consists of nine large simulation programs and the textbook. The programs are simulating basic phenomena of wave optics. parameters of optical systems can be varied by the user. The textbook contains theoretical considerations on studied optical phenomena, recommendations concerning work with computer programs, and, especially for those wishing to deeper understand wave optics, original problems for individual solution. At the Moscow Institute of Physics and Technology the course 'Wave Optics on the Computer' is used for teaching optics in the course of general physics. The course provides both the computer assisted teaching for lectures support and computer assisted learning for students during seminars in the computer classroom.

  4. Design of an All-Optical Network Based on LCoS Technologies

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jiuh; Shiau, Yhi

    2016-06-01

    In this paper, an all-optical network composed of the ROADMs (reconfigurable optical add-drop multiplexer), L2/L3 optical packet switches, and the fiber optical cross-connection for fiber scheduling and measurement based on LCoS (liquid crystal on silicon) technologies is proposed. The L2/L3 optical packet switches are designed with optical output buffers. Only the header of optical packets is converted to electronic signals to control the wavelength of input ports and the packet payloads can be transparently destined to their output ports. An optical output buffer is designed to queue the packets when more than one incoming packet should reach to the same destination output port. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The wavelength of input ports is designed for routing incoming packets using LCoS technologies. Finally, the proposed OFS (optical flow switch) with input buffers can quickly transfer the big data to the output ports and the main purpose of the OFS is to reduce the number of wavelength reflections. The all-optical content delivery network is comprised of the OFSs for a large amount of audio and video data transmissions in the future.

  5. Simulating semiconductor structures for next-generation optical inspection technologies

    NASA Astrophysics Data System (ADS)

    Golani, Ori; Dolev, Ido; Pond, James; Niegemann, Jens

    2016-02-01

    We present a technique for optimizing advanced optical imaging methods for nanoscale structures, such as those encountered in the inspection of cutting-edge semiconductor devices. The optimization flow is divided to two parts: simulating light-structure interaction using the finite-difference time-domain (FDTD) method and simulating the optical imaging system by means of its optical transfer function. As a case study, FDTD is used to simulate 10-nm silicon line-space and static random-access memory patterns, with irregular structural protrusions and silicon-oxide particles as defects of interest. An ultraviolet scanning-spot optical microscope is used to detect these defects, and the optimization flow is used to find the optimal imaging mode for detection.

  6. Application and the key technology on high power fiber-optic laser in laser weapon

    NASA Astrophysics Data System (ADS)

    Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua

    2014-12-01

    The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.

  7. Hydrophobic and oleophobic coating technologies for polymer optics

    NASA Astrophysics Data System (ADS)

    Fiore, Daniel; Wilson, Brian

    2012-10-01

    With the array of thin-film coated polymer based optics currently in use within the optoelectronic and photonic industries the need for finger print reducing coatings has drastically increased. Due to the peak-to-valley micro structure of thinfilms fingerprint oils and other airborne particulate are prone to create disruptive optical interference within films, which negate their overall effectiveness in transmitting light and or data. Our approach in combating this issue is a deposition process that is capable of being deposited on numerous injection-molded and cast sheet polymer formulations to help reduce the appearance of fingerprint oils on optically and cosmetically critical components. In many cases, such vacuum-applied coatings improve the optical performance of polymers by improving the visual acuity of the display through the drastic reduction of fingerprint oils and airborne particulate. This presentation will focus on the full spectrum of thin-film coatings that are currently being deployed to polymer optics in order to combat smudging and fingerprints on polymer optics and displays.

  8. Laser Communications and Fiber Optics Lab Manual. High-Technology Training Module.

    ERIC Educational Resources Information Center

    Biddick, Robert

    This laboratory training manual on laser communications and fiber optics may be used in a general technology-communications course for ninth graders. Upon completion of this exercise, students achieve the following goals: match concepts with laser communication system parts; explain advantages of fiber optic cable over conventional copper wire;…

  9. Initial Technology Assessment for the Large UV-Optical-Infrared (LUVOIR) Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Feinberg, Lee D.; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Divisions 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet-optical-infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for bio-signatures via direct-imaging and spectroscopic characterization of habitable exo-planets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV-Optical Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  10. Initial Technology Assessment for the Large-Aperture UV-Optical-Infrared (LUVOIR) Mission Concept Study

    NASA Technical Reports Server (NTRS)

    Bolcar, Matthew R.; Feinberg, Lee; France, Kevin; Rauscher, Bernard J.; Redding, David; Schiminovich, David

    2016-01-01

    The NASA Astrophysics Division's 30-Year Roadmap prioritized a future large-aperture space telescope operating in the ultra-violet/optical/infrared wavelength regime. The Association of Universities for Research in Astronomy envisioned a similar observatory, the High Definition Space Telescope. And a multi-institution group also studied the Advanced Technology Large Aperture Space Telescope. In all three cases, a broad science case is outlined, combining general astrophysics with the search for biosignatures via direct-imaging and spectroscopic characterization of habitable exoplanets. We present an initial technology assessment that enables such an observatory that is currently being studied for the 2020 Decadal Survey by the Large UV/Optical/Infrared (LUVOIR) surveyor Science and Technology Definition Team. We present here the technology prioritization for the 2016 technology cycle and define the required technology capabilities and current state-of-the-art performance. Current, planned, and recommended technology development efforts are also reported.

  11. The study of optical fiber communication technology for space optical remote sensing

    NASA Astrophysics Data System (ADS)

    Zheng, Jun; Yu, Sheng-quan; Zhang, Xiao-hong; Zhang, Rong-hui; Ma, Jian-hua

    2012-11-01

    The latest trends of Space Optical Remote Sensing are high-resolution, multispectral, and wide swath detecting. High-speed digital image data transmission will be more important for remote sensing. At present, the data output interface of Space Optical Remote Sensing, after performing the image data compression and formatting, transfers the image data to data storage unit of the Spacecraft through LVDS circuit cables. But this method is not recommended for high-speed digital image data transmission. This type of image data transmission, called source synchronization, has the low performance for high-speed digital signal. Besides, it is difficult for cable installing and system testing in limited space of vehicle. To resolve these issues as above, this paper describes a high-speed interconnection device for Space Optical Remote Sensing with Spacecraft. To meet its objectives, this device is comprised of Virtex-5 FPGA with embedded high-speed series and power-efficient transceiver, fiber-optic transceiver module, the unit of fiber-optic connection and single mode optical fiber. The special communication protocol is performed for image data transferring system. The unit of fiber-optic connection with high reliability and flexibility is provided for transferring high-speed serial data with optical fiber. It is evident that this method provides many advantages for Space Optical Remote Sensing: 1. Improving the speed of image data transferring of Space Optical Remote Sensing; 2. Enhancing the reliability and safety of image data transferring; 3. Space Optical Remote Sensing will be reduced significantly in size and in weight; 4. System installing and system testing for Space Optical Remote Sensing will become easier.

  12. New technologies measuring optics of the upper ocean

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Atreyee

    2012-08-01

    Understanding precisely how light propagates across the air-sea interface and the factors that control this propagation are essential for several studies associated with the upper ocean. For example, estimates of organic activity are based on the amount of chlorophyll present, the number and types of organisms in the upper ocean, and measurements of the number of bubbles in breaking waves (a key factor that controls air-sea gas exchange). Optical properties of the surface and upper ocean are among the few tools available to scientists interested in understanding physical and chemical processes in the ocean. However, optical properties of the upper ocean vary within milliseconds and over millimeters as well as at longer time and space scales. This is because several factors affect the optical properties of the ocean, ranging from season, cloud cover, fog, aerosols, and wind to ocean turbulence and the organisms and chemicals present in the upper ocean.

  13. Optical microsensors for pesticides identification based on porous silicon technology.

    PubMed

    Rotiroti, Lucia; De Stefano, Luca; Rendina, Ivo; Moretti, Luigi; Rossi, Andrea Mario; Piccolo, Alessandro

    2005-04-15

    A simple and low cost optical sensor, based on porous silicon nanotechnology, has been used to detect and quantify the presence of atrazine pesticide in water and humic acid solutions. In both cases, a well defined optical signal variation can be registered, even at low concentration as 1 ppm. The phenomenon can be ascribed to the capillary infiltration of liquid into the pores, which changes the average refractive index of the structure. Due to the resonant cavity enhanced operation of the proposed sensors, very low detection limits can be reached. PMID:15741087

  14. RAPID OPTICAL SCREEN TOOL (ROST): INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    In August 1994, a demonstration of cone penetrometer-mounted sensor technologies took place to evaluate their effectiveness in sampling and analyzing the physical and chemical characteristics of subsurface soil at hazardous waste sites. he effectiveness of each technology was eva...

  15. RAPID OPTICAL SCREEN TOOL (ROST™) - INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    In August 1994, a demonstration of cone penetrometer-mounted sensor technologies took place to evaluate their effectiveness in sampling and analyzing the physical and chemical characteristics of subsurface soil at hazardous waste sites. The effectiveness of each technology was ev...

  16. Tolerancing the LITE optical system. [Lidar In-space Technology Experiment

    NASA Technical Reports Server (NTRS)

    Wilson, Mark E.

    1989-01-01

    This paper describes the optical system used in the Lidar In-Space Technology Experiment (LITE) and presents the results of a study designed to generate a tolerance budget for the LITE, using the combination of manual and Monte Carlo tolerancing techniques utilizing the SYNOPSYS optical analysis program. The tolerance budget derived for LITE, including the contributions of both the fabrication and the alignment of the optical-path elements, are presented. It is shown that the nature of the design allows for typical optical shop tolerances of about 5 mils of despace and decenter, 0.1 deg of tilt, and about 5 fringes of surface figure error.

  17. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Over the past two decades, fiber optics has emerged as a highly practical and cost-efficient communications technology. Its competitiveness vis-a-vis other transmission media, especially satellite, has become a critical question. This report studies the likely evolution and application of fiber optic networks in the United States to the end of the century. The outlook for the technology of fiber systems is assessed and forecast, scenarios of the evolution of fiber optic network development are constructed, and costs to provide service are determined and examined parametrically as a function of network size and traffic carried. Volume 1 consists of the Executive Summary. Volume 2 focuses on fiber optic technology and long distance fiber optic networks. Volume 3 develops a traffic and financial model of a nationwide long distance transmission network. Among the study's most important conclusions are: revenue requirements per circuit for LATA-to-LATA fiber optic links are less than one cent per call minute; multiplex equipment, which is likely to be required in any competing system, is the largest contributor to circuit costs; the potential capacity of fiber optic cable is very large and as yet undefined; and fiber optic transmission combined with other network optimization schemes can lead to even lower costs than those identified in this study.

  18. Estimating ammonia and methane emissions from CAFOs using an open-path optical remote sensing technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The U.S. EPA recently demonstrated the open-path optical remote sensing technology to identify hot spots and estimate mass flux of fugitive gases from closed landfill. The objective of this research is to validate this technology for estimating ammonia and methane emission from concentrated animal f...

  19. EMC noise free endoscope using optical fiber communication technology

    NASA Astrophysics Data System (ADS)

    Kubo, Wataru; Minakuchi, Tadashi; Sato, Koichi; Tsutamura, Koichi; Syoji, Takaaki; Sugitani, Kazuo; Arimoto, Akira; Arai, Shinichi

    2008-02-01

    Recently, the number of pixels of an image sensor has reached more than one Mega in the field of video endoscopes, while analog signal transmission bands that use existing electric wires will face physical limitations from the perspective of signal bandwidth and EMC (Electro Magnetic Compatibility) noise. In order to solve these problems, we have developed a bi-directional digital optical communication endoscope system that employs both an image sensor and a single line optical fiber. In addition, due to the fiber's high-speed image signal transmission, we have incorporated a digital circuit for serial modulation and deserial demodulation. Consequently, we confirmed that transmission speeds of a 1Gbps downlink image signal and a 110Kbps uplink control signal were achieved as a result of simultaneous communication. We also designed and tested a compact, co-axial bi-directional optical transmitter and receiver module that can be built into the distal side of a scope. The optical communication module size is less than φ4×10mm. It was confirmed that this module could be installed in the distal side of a current endoscope.

  20. Future technologies for optical and infrared telescopes and instruments

    NASA Astrophysics Data System (ADS)

    Cunningham, Colin

    2009-08-01

    The theme of this conference is the evolution of telescopes over the last 400 years. I present my view on what the major leaps of technology have been, and attempt to predict what new technologies could come along in the next 50 years to change the way we do astronomy and help us make new discoveries. Are we approaching a peak of innovation and discovery, and will this be followed by a slow decline? Or are there prospects for even further technology leaps and consequent new discoveries? Will global resource and financial crises bring an end to our great ambitions, or will we continue with bigger telescopes and more ambitious space observatories?

  1. Advanced communication systems: A report on fiber optic technology and its possible applications in the gas industry

    NASA Astrophysics Data System (ADS)

    Ziolkowski, C. J.; Rush, W. F.; Saha, N. C.

    1987-08-01

    The applicability of fiber optic technology to the area of natural gas distribution is examined. The basic technology of fiber optics is outlined. Some of the commercially available products are examined. The two areas where fiber optics might be successfully applied to gas distribution needs are the remote control of district pressure regulators and the lease of communication capability to interested parties.

  2. Technology integration and synergies: radar, optics, and AIS

    NASA Astrophysics Data System (ADS)

    Abellard, J. N.; Chen, Y.; Gonzalez Chevere, D.; Shahid, H.

    2015-05-01

    Various technologies were used to detect, track, and classify vessels on the Hudson River. Broadband radar was used to detect and track vessels. Visible light cameras, infrared cameras, and image processing techniques were used to detect, track, and classify vessels. Automatic Identification System (AIS) was used to track and classify vessels. The technologies, collectively referred to as the Integrated Technology System (ITS), were used in conjunction with each other to achieve synergies and to overcome individual system limitations. These limitations included a narrow field of view, false alarms, and misdetections. The suite of technologies successfully fulfilled its purpose. The radar was effective despite some errors. The cameras allowed for software development including automatic slewing and image processing. While AIS was considered the most reliable tool, it was determined not to be infallible. Future work includes integration of passive acoustics into the system and wake analysis for vessel detection.

  3. Research progress of the resonant fiber optic gyroscope technology

    NASA Astrophysics Data System (ADS)

    Wang, Linglan; Yan, Yuchao; Ma, Huilian; Jin, Zhonghe

    2015-10-01

    The resonant fiber optic gyro (RFOG) is a high accuracy inertial rotation sensor based on the Sagnac effect. The existence of various noises, including the nonreciprocal noises such as the polarization noise and the Kerr noise as well as the reciprocal circuit noise, limits the performance improvement of the RFOG. An improved scheme by inserting two in-line polarizers in the polarization maintaining fiber transmission-type resonator has been proposed to suppress the polarization-fluctuation induced drift. Furthermore, the adoption of the air-core photonic bandgap fibers (PBFs) offers a novel solution to reduce the optical Kerr effect. In addition, A digital signal processor is designed to reduce the reciprocal noises and detect the rotation information. A minimum actual rotation of 0.001°/s is achieved. The dynamic range is improved by a factor of 7 and the scale factor nonlinearity is decreased by a factor of 60.

  4. Optical Fiber Sensor Technologies for Efficient and Economical Oil Recovery

    SciTech Connect

    Wang, a.; Pickrell, G.; Xiao, H.; May, r.

    2003-02-27

    The overall goal of this project was to develop reliable cost effective sensors for application in the down-hole environment. The physical parameters measured by these sensors were temperature, pressure, flow and acoustic signals. Sensor head configurations for each of the physical measurands were optimized to increase the sensitivity to the particular measurand of interest while decreasing the cross-sensitivity to the other physical measurands and to environmental influences. In addition, the optical signal demodulation electronics was designed to be insensitive to environmental influences while maintaining the required resolution, precision and accuracy of the parameter being sensed. The influence of potentially detrimental agents such as water in the down-hole environment was investigated as well as methods to protect both the optical fiber and the sensor from these detrimental effects.

  5. Development of optical biosensor technologies for cardiac troponin recognition.

    PubMed

    Abdolrahim, Mojgan; Rabiee, Mohammad; Alhosseini, Sanaz Naghavi; Tahriri, Mohammadreza; Yazdanpanah, Sara; Tayebi, Lobat

    2015-09-15

    Acute myocardial infarction (AMI) is the leading cause of death among cardiovascular diseases. Among the numerous attempts to develop coronary marker concepts into clinical strategies, cardiac troponin is known as a specific marker for coronary events. The cardiac troponin concentration level in blood has been shown to rise rapidly for 4-10 days after onset of AMI, making it an attractive approach for a long diagnosis window for detection. The extremely low clinical sensing range of cardiac troponin levels consequently makes the methods of detection highly sensitive. In this review, by taking into consideration optical methods applied for cardiac troponin detection, we discuss the most commonly used methods of optical immunosensing and provide an overview of the various diagnostic cardiac troponin immunosensors that have been employed for determination of cardiac troponin over the last several years. PMID:26050627

  6. Merging Technologies to Develop Light Weight X-ray Optics

    NASA Astrophysics Data System (ADS)

    Romaine, Suzanne

    We have made significant progress in our on-going program to develop higher resolution grazing incidence focusing hard X-ray optics for future missions. This proposal is for continued development of light weight optics for future hard X-ray missions. Our goal is to reduce the mass of the present full shell nickel replicated optics by more than half, while at the same time improving their resolution. The electroformed-nickel-replication process produces full shells of revolution, which are inherently stable with good figure control, offering the potential for good angular resolution. With angular resolution of 10 15 , such a telescope will improve the sensitivity by a factor of 5 over current planned high energy missions, and would lead to compelling new science which is central to NASA s Physics of the Cosmos Program. We have made significant progress over our previous period of performance and have achieved most of our goals including the first replication of a Wolter-1 mandrel using a metal-ceramic coating with an effective density of less than 4gm/cc. Achieving our goals will significantly advance the state-of-the-art for replicated full shell telescopes and will lower the cost for future NASA X-ray astronomy missions of moderate resolution.

  7. Micro particle launcher/cleaner based on optical trapping technology.

    PubMed

    Liu, Zhihai; Liang, Peibo; Zhang, Yu; Zhang, Yaxun; Zhao, Enming; Yang, Jun; Yuan, Libo

    2015-04-01

    Efficient and controllable launching function of an optical tweezers is a challenging task. We present and demonstrate a novel single fiber optical tweezers which can trap and launch (clean) a target polystyrene (PS) microsphere (diameter~10μm) with independent control by using two wavelengths beams: 980nm and 1480nm. We employ 980nm laser beam to trap the target PS microsphere by molding the fiber tip into a special tapered-shape; and we employ 1480nm laser beam to launch the trapped PS microsphere with a certain velocity by using the thermophoresis force generated from the thermal effect due to the high absorption of the 1480nm laser beams in water. When the launching force is smaller than the trapping force, the PS microsphere will be trapped near the fiber tip, and the launching force will blow away other PS microspheres in the workspace realizing the cleaning function; When the launching force is larger than the trapping force, the trapped PS microsphere will be launched away from the fiber tip with a certain velocity and towards a certain direction, realizing the launching function. The launching velocity, acceleration and the distance can be measured by detecting the interference signals generated from the PS microsphere surface and the fiber tip end-face. This PS microsphere launching and cleaning functions expanded new features of single fiber optical tweezers, providing for the possibility of more practical applications in the micro manipulation research fields. PMID:25968703

  8. Micro-Optic Color Separation Technology for Efficient Projection Displays

    NASA Technical Reports Server (NTRS)

    Gunning, W. J.; Boehmer, E.

    1997-01-01

    Phase 1 of this project focused on development of an overall optical concept which incorporated a single liquid crystal spatial light modulator. The system achieved full color by utilizing an echelon grating, which diffracted the incident light into three orders with different color spectra, in combination with a microlens array, which spatially separated RGB bands and directed the light of the appropriate wavelength to the appropriate color dot. Preliminary echelon grating designs were provided by MIT/LL and reviewed by Rockwell. Additional Rockwell activities included the Identification of microlens designs, light sources (ILC), and projection optics to fulfill the overall design requirements. An Internal subcontract was established with Rockwell's Collins Avionics and Communications Division (CACD) which specified the liquid crystal SLM (Sharp Model No. LQ 46EO2) and built the projection display baseline projector. Full Color projected video images were produced and shown at the 1995 HDS meeting in Washington. Analysis of the luminance performance of the projector and detailed parameter trade studies helped define the dependence of overall display efficiency on lamp collimation, and indicated that a lamp with very small arc dimension is required for the optical concept to be viable.

  9. New practical MS/MSE degree program with concentration in optics and photonics technology

    NASA Astrophysics Data System (ADS)

    Dimmock, John O.; Ahmad, Anees; Kowel, Stephen T.

    1995-10-01

    An interdisciplinary Masters Program with a concentration in Optics and Photonics Technology has been developed under the U.S. Manufacturing Education and Training Activity of the Technology Reinvestment Project. This development has been a collaboration between the University of Alabama in Huntsville, Alabama A&M University, Northwest Shoals Community College, the NASA Marshall Space Flight Center, the U.S. Army Missile Command, Oak Ridge National Laboratory, Advanced Optical Systems Inc., Dynetics, Inc., Hughes Danbury Optical Systems, Inc., Nichols Research and Speedring Inc. These organizations as well as the National Institute for Standards and Technology and SCI, Inc., have been participating fully in the design, development and implementation of this program. This program will produce highly trained graduates who can also solve practical problems, and includes an on-site practicum at a manufacturing location. The broad curriculum of this program emphasizes the fundamentals of optics, optical systems manufacturing and testing, and the principles of design and manufacturing to cost for commercial products. The MS in Physics and MSE in Electrical Engineering Degrees with concentration in Optics and Photonics Technology are offered by the respective UAH academic departments with support from and in consultation with a Steering Committee composed of representatives from each of the participating organizations, and a student representative from UAH.

  10. Feasibility assessment of optical technologies for reliable high capacity feeder links

    NASA Astrophysics Data System (ADS)

    Witternigg, Norbert; Schönhuber, Michael; Leitgeb, Erich; Plank, Thomas

    2013-08-01

    Space telecom scenarios like data relay satellite and broadband/broadcast service providers require reliable feeder links with high bandwidth/data rate for the communication between ground station and satellite. Free space optical communication (FSOC) is an attractive alternative to microwave links, improving performance by offering abundant bandwidth at small apertures of the optical terminals. At the same time Near-Earth communication by FSOC avoids interference with other services and is free of regulatory issues. The drawback however is the impairment by the laser propagation through the atmosphere at optical wavelengths. Also to be considered are questions of eye safety for ground personnel and aviation. In this paper we assess the user requirements for typical space telecom scenarios and compare these requirements with solutions using optical data links through the atmosphere. We suggest a site diversity scheme with a number of ground stations and a switching scheme using two optical terminals on-board the satellite. Considering the technology trade-offs between four different optical wavelengths we recommend the future use of 1.5 μm laser technology and calculate a link budget for an atmospheric condition of light haze on the optical path. By comparing link budgets we show an outlook to the future potential use of 10 μm laser technology.

  11. Technology Development of Stratified Volume Diffractive Optics for Waveguide Coupling

    NASA Technical Reports Server (NTRS)

    Chambers, Diana M.

    2000-01-01

    Stratified Volume Diffractive Optical Elements (SVDOE) appear to be viable as high-efficiency waveguide couplers. Preliminary design studies were conducted under this task to provide initial device parameters for evaluation. However, these designs should be revisited prior to fabrication of a device for testing. The emphasis of this task has been development and implementation of fabrication procedures necessary for SVDOE'S, namely alignment of grating layers, Including offsets, to within required tolerances. Progress in this area Indicates that the alignment technique chosen is viable and tolerances have been reached that allow reasonable performance ranges. Approaches have been identified to improve alignment tolerances even further.

  12. Noncontact Microembossing Technology for Fabricating Thermoplastic Optical Polymer Microlens Array Sheets

    PubMed Central

    Chang, Xuefeng; Ge, Xiaohong; Li, Hui

    2014-01-01

    Thermoplastic optical polymers have replaced traditional optical glass for many applications, due to their superior optical performance, mechanical characteristics, low cost, and efficient production process. This paper investigates noncontact microembossing technology used for producing microlens arrays made out of PMMA (polymethyl methacrylate), PS (polyStyrene), and PC (polycarbonate) from a quartz mold, with microhole arrays. An array of planoconvex microlenses are formed because of surface tension caused by applying pressure to the edge of a hole at a certain glass transition temperature. We studied the principle of noncontact microembossing techniques using finite element analysis, in addition to the thermal and mechanical properties of the three polymers. Then, the independently developed hot-embossing equipment was used to fabricate microlens arrays on PMMA, PS, and PC sheets. This is a promising technique for fabricating diverse thermoplastic optical polymer microlens array sheets, with a simple technological process and low production costs. PMID:25162063

  13. Noncontact microembossing technology for fabricating thermoplastic optical polymer microlens array sheets.

    PubMed

    Chang, Xuefeng; Xie, Dan; Ge, Xiaohong; Li, Hui

    2014-01-01

    Thermoplastic optical polymers have replaced traditional optical glass for many applications, due to their superior optical performance, mechanical characteristics, low cost, and efficient production process. This paper investigates noncontact microembossing technology used for producing microlens arrays made out of PMMA (polymethyl methacrylate), PS (polyStyrene), and PC (polycarbonate) from a quartz mold, with microhole arrays. An array of planoconvex microlenses are formed because of surface tension caused by applying pressure to the edge of a hole at a certain glass transition temperature. We studied the principle of noncontact microembossing techniques using finite element analysis, in addition to the thermal and mechanical properties of the three polymers. Then, the independently developed hot-embossing equipment was used to fabricate microlens arrays on PMMA, PS, and PC sheets. This is a promising technique for fabricating diverse thermoplastic optical polymer microlens array sheets, with a simple technological process and low production costs. PMID:25162063

  14. Micro-optics: enabling technology for illumination shaping in optical lithography

    NASA Astrophysics Data System (ADS)

    Voelkel, Reinhard

    2014-03-01

    Optical lithography has been the engine that has empowered semiconductor industry to continually reduce the half-pitch for over 50 years. In early mask aligners a simple movie lamp was enough to illuminate the photomask. Illumination started to play a more decisive role when proximity mask aligners appeared in the mid-1970s. Off-axis illumination was introduced to reduce diffraction effects. For early projection lithography systems (wafer steppers), the only challenge was to collect the light efficiently to ensure short exposure time. When projection optics reached highest level of perfection, further improvement was achieved by optimizing illumination. Shaping the illumination light, also referred as pupil shaping, allows the optical path from reticle to wafer to be optimized and thus has a major impact on aberrations and diffraction effects. Highly-efficient micro-optical components are perfectly suited for this task. Micro-optics for illumination evolved from simple flat-top (fly's-eye) to annular, dipole, quadrupole, multipole and freeform illumination. Today, programmable micro-mirror arrays allow illumination to be changed on the fly. The impact of refractive, diffractive and reflective microoptics for photolithography will be discussed.

  15. Medical smart textiles based on fiber optic technology: an overview.

    PubMed

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-01-01

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest. PMID:25871010

  16. Advanced metaheuristic algorithms for laser optimization in optical accelerator technologies

    NASA Astrophysics Data System (ADS)

    Tomizawa, Hiromitsu

    2011-10-01

    Lasers are among the most important experimental tools for user facilities, including synchrotron radiation and free electron lasers (FEL). In the synchrotron radiation field, lasers are widely used for experiments with Pump-Probe techniques. Especially for X-ray-FELs, lasers play important roles as seed light sources or photocathode-illuminating light sources to generate a high-brightness electron bunch. For future accelerators, laser-based techonologies such as electro-optic (EO) sampling to measure ultra-short electron bunches and optical-fiber-based femtosecond timing systems have been intensively developed in the last decade. Therefore, controls and optimizations of laser pulse characteristics are strongly required for many kinds of experiments and improvement of accelerator systems. However, people believe that lasers should be tuned and customized for each requirement manually by experts. This makes it difficult for laser systems to be part of the common accelerator infrastructure. Automatic laser tuning requires sophisticated algorithms, and the metaheuristic algorithm is one of the best solutions. The metaheuristic laser tuning system is expected to reduce the human effort and time required for laser preparations. I have shown some successful results on a metaheuristic algorithm based on a genetic algorithm to optimize spatial (transverse) laser profiles, and a hill-climbing method extended with a fuzzy set theory to choose one of the best laser alignments automatically for each machine requirement.

  17. Manufacturing microcomponents for optical information technology using the LIGA technique

    NASA Astrophysics Data System (ADS)

    Bauer, Hans-Dieter; Ehrfeld, Wolfgang; Hossfeld, Jens; Paatzsch, Thomas

    1999-09-01

    Recently, splices and connectors for fibers ribbons, optical cross connects and especially planar waveguide devices have been fabricated via LIGA in combination with precision engineering techniques. LIGA combines high precision and mass production capability, necessary for products designed for applications in the telecom and datacom market. In this presentation the fabrication of three-level molding and embossing tools is presented, which have been used for the manufacturing of waveguide prestructures consisting of waveguide channels and bier-to-waveguide coupling grooves. The precision of the tools is better than 1 micrometers in all directions, which allows for simple passive pigtailing. A first product, a precision of the tool is better than 1 micrometers in all directions, which allows for simple passive pigtailing. A first product, sixfold array of 4 X 4 multimode star couplers has been realized. The molding behavior of PMMA and COC material has been tested and compared. Production and assembly was tested by fabricating a series of 300 star couplers. The average insertion los has been found better than 9dB, the uniformity better than 3dB, both measured at 830nm. THe device is designed for application in optical backplanes for high-speed computers.

  18. Medical Smart Textiles Based on Fiber Optic Technology: An Overview

    PubMed Central

    Massaroni, Carlo; Saccomandi, Paola; Schena, Emiliano

    2015-01-01

    The growing interest in the development of smart textiles for medical applications is driven by the aim to increase the mobility of patients who need a continuous monitoring of such physiological parameters. At the same time, the use of fiber optic sensors (FOSs) is gaining large acceptance as an alternative to traditional electrical and mechanical sensors for the monitoring of thermal and mechanical parameters. The potential impact of FOSs is related to their good metrological properties, their small size and their flexibility, as well as to their immunity from electromagnetic field. Their main advantage is the possibility to use textile based on fiber optic in a magnetic resonance imaging environment, where standard electronic sensors cannot be employed. This last feature makes FOSs suitable for monitoring biological parameters (e.g., respiratory and heartbeat monitoring) during magnetic resonance procedures. Research interest in combining FOSs and textiles into a single structure to develop wearable sensors is rapidly growing. In this review we provide an overview of the state-of-the-art of textiles, which use FOSs for monitoring of mechanical parameters of physiological interest. In particular we briefly describe the working principle of FOSs employed in this field and their relevant advantages and disadvantages. Also reviewed are their applications for the monitoring of mechanical parameters of physiological interest. PMID:25871010

  19. {alpha}-particle optical potentials for nuclear astrophysics (NA) and nuclear technology (NT)

    SciTech Connect

    Avrigeanu, V.; Avrigeanu, M.

    2012-11-20

    The high precision of recent measurements for low-energy {alpha}-particle elastic-scattering as well as induced-reaction data makes possible the understanding of actual limits and possible improvement of the global optical model potentials parameters. Involvement of recent optical potentials for reliable description of both the elastic scattering and emission of {alpha}-particles, of equal interest for nuclear astrophysics (NA) and nuclear technology (NT) for fusion devices, is discussed in the present work.

  20. Design and performance analysis of a bio-optical sub-assembly for diffuse optical technologies

    NASA Astrophysics Data System (ADS)

    Jeong, Je-Myung; Park, Kyoungsu; Kim, Sehwan

    2014-11-01

    This paper presents a compact, multi-wavelength, and high-frequency-response light source named the bio-optical sub-assembly (BiOSA). The BiOSA is used to measure the absorption and the reduced scattering coefficients from diffuse optics-based biomedical systems. It is equipped with six laser diodes and one optical fiber with a 400- μm diameter core. Simulations can be used to determine the design parameters and to confirm the feasibility of the BiOSA. The evaluation results indicate that the coupling efficiency of the fabricated BiOSA is 80 ˜ 85%, and the frequency response is up to 3.38 GHz.

  1. Strategic planning of developing automatic optical inspection (AOI) technologies in Taiwan

    NASA Astrophysics Data System (ADS)

    Fan, K. C.; Hsu, C.

    2005-01-01

    In most domestic hi-tech industries in Taiwan, the automatic optical inspection (AOI) equipment is mostly imported. In view of the required specifications, AOI consists of the integration of mechanical-electrical-optical-information technologies. In the past two decades, traditional industries have lost their competitiveness due to the low profit rate. It is possible to promote a new AOI industry in Taiwan through the integration of its strong background in mechatronic technology in positioning stages with the optical image processing techniques. The market requirements are huge not only in domestic need but also in global need. This is the main reason to promote the AOI research for the coming years in Taiwan. Focused industrial applications will be in IC, PCB, LCD, communication, and MEMS parts. This paper will analyze the domestic and global AOI equipment market, summarize the necessary fish bone technology diagrams, survey the actual industrial needs, and propose the strategic plan to be promoted in Taiwan.

  2. Microgel photonics and lab on fiber technology for advanced label-free fiber optic nanoprobes

    NASA Astrophysics Data System (ADS)

    Giaquinto, M.; Micco, A.; Aliberti, A.; Ricciardi, A.; Ruvo, M.; Cutolo, A.; Cusano, A.

    2016-05-01

    We experimentally demonstrate a novel optical fiber label free optrode platform resulting from the integration between two rapidly emerging technologies such as Lab-on-Fiber Technology (LOFT) and Microgel Photonics (MPs). The device consists of a microgel (MG) layer painted on a metallic slabs supporting plasmonic resonances, directly integrated on the optical fiber tip. A molecular binding event induces significant changes in the MG layer thickness (and consequently in its 'equivalent' refractive index) resulting in an evident wavelength shift of the resonant feature. As a case of study, glucose-responsive MGs have been synthesized by incorporating into the gel matrix boronic acid moieties, whose interaction with glucose rules the driving forces for gel swelling. Our results pave the way for new technological routes aimed to develop advanced label free fiber optic nanoprobes.

  3. Single-mode glass waveguide technology for optical interchip communication on board level

    NASA Astrophysics Data System (ADS)

    Brusberg, Lars; Neitz, Marcel; Schröder, Henning

    2012-01-01

    The large bandwidth demand in long-distance telecom networks lead to single-mode fiber interconnects as result of low dispersion, low loss and dense wavelength multiplexing possibilities. In contrast, multi-mode interconnects are suitable for much shorter lengths up to 300 meters and are promising for optical links between racks and on board level. Active optical cables based on multi-mode fiber links are at the market and research in multi-mode waveguide integration on board level is still going on. Compared to multi-mode, a single-mode waveguide has much more integration potential because of core diameters of around 20% of a multi-mode waveguide by a much larger bandwidth. But light coupling in single-mode waveguides is much more challenging because of lower coupling tolerances. Together with the silicon photonics technology, a single-mode waveguide technology on board-level will be the straight forward development goal for chip-to-chip optical interconnects integration. Such a hybrid packaging platform providing 3D optical single-mode links bridges the gap between novel photonic integrated circuits and the glass fiber based long-distance telecom networks. Following we introduce our 3D photonic packaging approach based on thin glass substrates with planar integrated optical single-mode waveguides for fiber-to-chip and chip-to-chip interconnects. This novel packaging approach merges micro-system packaging and glass integrated optics. It consists of a thin glass substrate with planar integrated singlemode waveguide circuits, optical mirrors and lenses providing an integration platform for photonic IC assembly and optical fiber interconnect. Thin glass is commercially available in panel and wafer formats and characterizes excellent optical and high-frequency properties. That makes it perfect for microsystem packaging. The paper presents recent results in single-mode waveguide technology on wafer level and waveguide characterization. Furthermore the integration in a

  4. Optical RAM-enabled cache memory and optical routing for chip multiprocessors: technologies and architectures

    NASA Astrophysics Data System (ADS)

    Pleros, Nikos; Maniotis, Pavlos; Alexoudi, Theonitsa; Fitsios, Dimitris; Vagionas, Christos; Papaioannou, Sotiris; Vyrsokinos, K.; Kanellos, George T.

    2014-03-01

    The processor-memory performance gap, commonly referred to as "Memory Wall" problem, owes to the speed mismatch between processor and electronic RAM clock frequencies, forcing current Chip Multiprocessor (CMP) configurations to consume more than 50% of the chip real-estate for caching purposes. In this article, we present our recent work spanning from Si-based integrated optical RAM cell architectures up to complete optical cache memory architectures for Chip Multiprocessor configurations. Moreover, we discuss on e/o router subsystems with up to Tb/s routing capacity for cache interconnection purposes within CMP configurations, currently pursued within the FP7 PhoxTrot project.

  5. Structural Health Monitoring of Civil Infrastructure Using Optical Fiber Sensing Technology: A Comprehensive Review

    PubMed Central

    Ye, X. W.; Su, Y. H.; Han, J. P.

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure. PMID:25133250

  6. Structural health monitoring of civil infrastructure using optical fiber sensing technology: a comprehensive review.

    PubMed

    Ye, X W; Su, Y H; Han, J P

    2014-01-01

    In the last two decades, a significant number of innovative sensing systems based on optical fiber sensors have been exploited in the engineering community due to their inherent distinctive advantages such as small size, light weight, immunity to electromagnetic interference (EMI) and corrosion, and embedding capability. A lot of optical fiber sensor-based monitoring systems have been developed for continuous measurement and real-time assessment of diversified engineering structures such as bridges, buildings, tunnels, pipelines, wind turbines, railway infrastructure, and geotechnical structures. The purpose of this review article is devoted to presenting a summary of the basic principles of various optical fiber sensors, innovation in sensing and computational methodologies, development of novel optical fiber sensors, and the practical application status of the optical fiber sensing technology in structural health monitoring (SHM) of civil infrastructure. PMID:25133250

  7. Polymer optical interconnect technology (POINT): optoelectronic packaging and interconnect for board and backplane applications

    NASA Astrophysics Data System (ADS)

    Liu, Yung S.; Wojnarowski, R. J.; Hennessy, W. A.; Bristow, Julian P.; Liu, Yue; Peczalski, Andrzej; Rowlette, John R.; Plotts, Alan; Stack, Jared D.; Yardley, James T.; Eldada, L.; Osgood, Richard M.; Scarmozzino, Robert; Lee, Sing H.; Ozguz, Volkan H.

    1996-01-01

    The polymer optical interconnect technology (POINT) represents a major collaborative effort among GE, Honeywell, AMP, AlliedSignal, Columbia University and the University of California at San Diego (UCSD), sponsored by ARPA, in developing affordable optoelectronic module packaging and interconnect technologies for board- and backplane-level optical interconnect applications for a wide range of military and commercial applications. The POINT program takes a novel development approach by fully leveraging the existing electronic design, processing, fabrication, and module packaging technologies to optoelectronic module packaging. The POINT program further incorporates several state-of- the-art optoelectronic technologies that include high-speed VCSEL for multichannel array data transmission; flexible optical polymers such as PolyguideTM or coupling of device-to- fiber using a passive alignment process; a low-loss polymer for backplane interconnect to provide a high I/O density; low-cost diffractive optical elements (DOE) for board-to-backplane interconnect; and use of molded MT array ferrule to reduce overall system size, weight, and cost. In addition to further reducing design and fabrication cycle times, computer simulation tools for optical waveguide and mechanical modeling will be advanced under the POINT program.

  8. Bridge continuous deformation measurement technology based on fiber optic gyro

    NASA Astrophysics Data System (ADS)

    Gan, Weibing; Hu, Wenbin; Liu, Fang; Tang, Jianguang; Li, Sheng; Yang, Yan

    2016-03-01

    Bridge is an important part of modern transportation systems and deformation is a key index for bridge's safety evaluation. To achieve the long span bridge curve measurement rapidly and timely and accurately locate the bridge maximum deformation, the continuous deformation measurement system (CDMS) based on inertial platform is presented and validated in this paper. Firstly, based on various bridge deformation measurement methods, the method of deformation measurement based on the fiber optic gyro (FOG) is introduced. Secondly, the basic measurement principle based on FOG is presented and the continuous curve trajectory is derived by the formula. Then the measurement accuracy is analyzed in theory and the relevant factors are presented to ensure the measurement accuracy. Finally, the deformation measurement experiments are conducted on a bridge across the Yangtze River. Experimental results show that the presented deformation measurement method is feasible, practical, and reliable; the system can accurately and quickly locate the maximum deformation and has extensive and broad application prospects.

  9. Intellectual parachute and balloon systems based on fiber optic technologies

    NASA Astrophysics Data System (ADS)

    Nikolaev, Alexander M.; Nikolaev, Pavel M.; Nikolaev, Yuri M.; Morozov, Oleg G.; Zastela, Mikhail Yu.; Morozov, Gennady A.

    2014-04-01

    For any parachute system, it is important to predict the opening forces it will experience in order to make a safe and economic choice of materials to be used. Developed fiber optic sensors on two twisted fibers with the locked ends and variable twisting step have been used for creation of intellectual knots of perspective vehicles, in particular, parachute canopies and slings. We decided to change our measuring procedure from measuring of transmitted power or its Raleigh scattering in different ends of twisted fibers onto Brillouin scattering characterization. For this situation we offered the kind of method of frequency variation to get the information about the frequency shift and Q-factor of the Brillouin scattering in each sensor.

  10. Lab-on-fiber technology: a new avenue for optical nanosensors

    NASA Astrophysics Data System (ADS)

    Consales, Marco; Pisco, Marco; Cusano, Andrea

    2012-12-01

    The "lab-on-fiber" concept envisions novel and highly functionalized technological platforms completely integrated in a single optical fiber that would allow the development of advanced devices, components and sub-systems to be incorporated in modern optical systems for communication and sensing applications. The realization of integrated optical fiber devices requires that several structures and materials at nano- and micro-scale are constructed, embedded and connected all together to provide the necessary physical connections and light-matter interactions. This paper reviews the strategies, the main achievements and related devices in the lab-on-fiber roadmap discussing perspectives and challenges that lie ahead.

  11. Application research on hydraulic coke cutting monitoring system based on optical fiber sensing technology

    NASA Astrophysics Data System (ADS)

    Zhong, Dong; Tong, Xinglin

    2014-06-01

    With the development of the optical fiber sensing technology, the acoustic emission sensor has become one of the focal research topics. On the basis of studying the traditional hydraulic coke cutting monitoring system, the optical fiber acoustic emission sensor has been applied in the hydraulic coke cutting monitoring system for the first time, researching the monitoring signal of the optical fiber acoustic emission sensor in the system. The actual test results show that using the acoustic emission sensor in the hydraulic coke cutting monitoring system can get the real-time and accurate hydraulic coke cutting state and the effective realization of hydraulic coke cutting automatic monitoring in the Wuhan Branch of Sinopec.

  12. Micro-precision control/structure interaction technology for large optical space systems

    NASA Technical Reports Server (NTRS)

    Sirlin, Samuel W.; Laskin, Robert A.

    1993-01-01

    The CSI program at JPL is chartered to develop the structures and control technology needed for sub-micron level stabilization of future optical space systems. The extreme dimensional stability required for such systems derives from the need to maintain the alignment and figure of critical optical elements to a small fraction (typically 1/20th to 1/50th) of the wavelength of detected radiation. The wavelength is about 0.5 micron for visible light and 0.1 micron for ultra-violet light. This lambda/50 requirement is common to a broad class of optical systems including filled aperture telescopes (with monolithic or segmented primary mirrors), sparse aperture telescopes, and optical interferometers. The challenge for CSI arises when such systems become large, with spatially distributed optical elements mounted on a lightweight, flexible structure. In order to better understand the requirements for micro-precision CSI technology, a representative future optical system was identified and developed as an analytical testbed for CSI concepts and approaches. An optical interferometer was selected as a stressing example of the relevant mission class. The system that emerged was termed the Focus Mission Interferometer (FMI). This paper will describe the multi-layer control architecture used to address the FMI's nanometer level stabilization requirements. In addition the paper will discuss on-going and planned experimental work aimed at demonstrating that multi-layer CSI can work in practice in the relevant performance regime.

  13. Design of a Multicast Optical Packet Switch Based on Fiber Bragg Grating Technology for Future Networks

    NASA Astrophysics Data System (ADS)

    Cheng, Yuh-Jiuh; Yeh, Tzuoh-Chyau; Cheng, Shyr-Yuan

    2011-09-01

    In this paper, a non-blocking multicast optical packet switch based on fiber Bragg grating technology with optical output buffers is proposed. Only the header of optical packets is converted to electronic signals to control the fiber Bragg grating array of input ports and the packet payloads should be transparently destined to their output ports so that the proposed switch can reduce electronic interfaces as well as the bit rate. The modulation and the format of packet payloads may be non-standard where packet payloads could also include different wavelengths for increasing the volume of traffic. The advantage is obvious: the proposed switch could transport various types of traffic. An easily implemented architecture which can provide multicast services is also presented. An optical output buffer is designed to queue the packets if more than one incoming packet should reach to the same destination output port or including any waiting packets in optical output buffer that will be sent to the output port at a time slot. For preserving service-packet sequencing and fairness of routing sequence, a priority scheme and a round-robin algorithm are adopted at the optical output buffer. The fiber Bragg grating arrays for both input ports and output ports are designed for routing incoming packets using optical code division multiple access technology.

  14. Adapting optical technologies for low pressure measurements in the marine industry (1-10 bar)

    NASA Astrophysics Data System (ADS)

    Sanmartin, D. Rodriguez; Lawal, A.; Awcock, G.; Busbridge, S.; Cooper, P.; Spenceley, J.

    2013-05-01

    Optical sensing is a very attractive technology option to design transducers for applications, such as the measurement of liquid level in oil fuel tanks, which require intrinsic safety and electromagnetic compatibility. PSM Instrumentation Ltd., an UK firm specialised in instrumentation for liquid level measurement for the marine industry and the University of Brighton are currently collaborating in a 2 year research programme funded by the UK government scheme Knowledge Transfer Partnerships. This paper evaluates how optical technologies could be used in pressure transducers, and their potential benefits, such as intrinsic safety compliance and low cost cabling, for low pressure applications such as fuel tank gauging for applications in the marine industry.

  15. Required technologies for a lunar optical UV-IR synthesis array

    NASA Technical Reports Server (NTRS)

    Johnson, Stewart W.; Wetzel, John P.

    1992-01-01

    A Lunar Optical UV-IR Synthesis Array (LOUISA) proposed to take advantage of the characteristics of the lunar environment requires appropriate advances in technology. These technologies are in the areas of contamination/interference control, test and evaluation, manufacturing, construction, autonomous operations and maintenance, power and heating/cooling, stable precision structures, optics, parabolic antennas, and communications/control. LOUISA needs to be engineered to operate for long periods with minimal intervention by humans or robots. What is essential for LOUISA operation is enforcement of a systems engineering approach that makes compatible all lunar operations associated with habitation, resource development, and science.

  16. Reliability of MEMS deformable mirror technology used in adaptive optics imaging systems

    NASA Astrophysics Data System (ADS)

    Hartzell, Allyson L.; Cornelissen, Steven A.; Bierden, Paul A.; Lam, Charlie V.; Davis, Daniel F.

    2010-02-01

    Deformable mirror (DM) technology based on microelectromechanical systems (MEMS) technology produced by Boston Micromachines Corporation has been demonstrated to be an enabling component in a variety of adaptive optics applications such as high contrast imaging in astronomy, multi object adaptive optics, free-space laser communication, and microscopy. Many of these applications require DMs with thousands of actuators operating at frame rates up to 10 kHz for many years requiring sufficient device reliability to avoid device failures. In this paper we present improvements in MEMS deformable mirrors for reliability along with test data and device lifetime prediction that show trillions of actuator-cycles can be achieved without failures.

  17. Challenges for the introduction of board-level optical interconnect technology into product development roadmaps

    NASA Astrophysics Data System (ADS)

    Berger, Christoph; Offrein, Bert Jan; Schmatz, Martin

    2006-02-01

    Optical interconnects have gradually replaced electrical interconnects in the long-distance telecom, local-area, and rackto- rack link classes. We believe that this transition will also happen in the card-backplane-card datacom link class, both for bandwidth*length reasons and for density reasons. In analogy to the transition from individually wired boards to integrated printed circuit boards, we believe that eventually board-level optical interconnects will be based on an integrated technology such as board-embedded waveguides. In order to bring optical waveguide technology into mainstream product development plans, however, numerous challenges on many levels have to be met. Problems to be tackled span from the base level of materials (stability, processability) and devices (reliability, lifetime), over the subsystem level of packages (concepts, cost-efficient assembly and alignment) all the way up to the system level (link architecture, system packaging, heat management). A sustainable solution can only be reached if the development of all individual technology components is done with the whole system in mind. Important figures of merit are the cost per gigabit per second, the power per gigabit per second, and the maturity/reliability of the technology. We will give an overview of our optical interconnect activity, with respect to these challenges. We will discuss the options, explain our technology decisions and present some results of our multi-disciplinary activity.

  18. Workshop Proceedings: Optical Systems Technology for Space Astrophysics in the 21st Century, volume 3

    NASA Technical Reports Server (NTRS)

    Ayon, Juan A. (Editor)

    1992-01-01

    A technology development program, Astrotech 21, is being proposed by NASA to enable the launching of the next generation of space astrophysical observatories during the years 1995-2015. Astrotech 21 is being planned and will ultimately be implemented jointly by the Astrophysics Division of the Office of Space Science and Applications and the Space Directorate of the Office of Aeronautics and Space Technology. A summary of the Astrotech 21 Optical Systems Technology Workshop is presented. The goal of the workshop was to identify areas of development within advanced optical systems that require technology advances in order to meet the science goals of the Astrotech 21 mission set, and to recommend a coherent development program to achieve the required capabilities.

  19. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-Tao; Zhang, Xiao-Hui; Ge, Wei-Long

    2011-11-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  20. OPTICAL correlation identification technology applied in underwater laser imaging target identification

    NASA Astrophysics Data System (ADS)

    Yao, Guang-tao; Zhang, Xiao-hui; Ge, Wei-long

    2012-01-01

    The underwater laser imaging detection is an effective method of detecting short distance target underwater as an important complement of sonar detection. With the development of underwater laser imaging technology and underwater vehicle technology, the underwater automatic target identification has gotten more and more attention, and is a research difficulty in the area of underwater optical imaging information processing. Today, underwater automatic target identification based on optical imaging is usually realized with the method of digital circuit software programming. The algorithm realization and control of this method is very flexible. However, the optical imaging information is 2D image even 3D image, the amount of imaging processing information is abundant, so the electronic hardware with pure digital algorithm will need long identification time and is hard to meet the demands of real-time identification. If adopt computer parallel processing, the identification speed can be improved, but it will increase complexity, size and power consumption. This paper attempts to apply optical correlation identification technology to realize underwater automatic target identification. The optics correlation identification technology utilizes the Fourier transform characteristic of Fourier lens which can accomplish Fourier transform of image information in the level of nanosecond, and optical space interconnection calculation has the features of parallel, high speed, large capacity and high resolution, combines the flexibility of calculation and control of digital circuit method to realize optoelectronic hybrid identification mode. We reduce theoretical formulation of correlation identification and analyze the principle of optical correlation identification, and write MATLAB simulation program. We adopt single frame image obtained in underwater range gating laser imaging to identify, and through identifying and locating the different positions of target, we can improve

  1. Integration of magnetorheological finishing (MRF) technology for ultraprecision optical manufacturing

    NASA Astrophysics Data System (ADS)

    Pun, Ashley M. H.; Chan, Norman S. W.; Louie, Derek C. H.; Li, Li-Man

    2003-05-01

    Magneto-rheological-finishing (MRF) technology is capable of substantially improving the surface figure of spherical lens to about 1/20 wavelength. Nonetheless, since MRF technology is an ultra-fine polishing process, in which only less than a few microns of material will be removed per cycle, time for making an aspheric surface from a best-fit sphere can be very significant. The situation can be worse if the surface profile is considerably deviated from its best-fit spherical surface. This is not desirable for actual production, and thus a manufacturing cell is proposed to enhance the efficiency of the high precision lens manufacturing process. On the other hand, MRF was suggested to be an alternative for lapping of surface of ceramic lens mould insert. Rather than using the abrasive particles in typical lapping process, the magnetized slurry in MRF is moved past the rotating surface of mould insert locally under the computer-control process so as to achieve the desired surface form accuracy.

  2. Mexican Infrared-Optical New Technology Telescope: The TIM project

    NASA Astrophysics Data System (ADS)

    Salas, L.

    1998-11-01

    The scientific goals for TIM are an image quality of 0.25", consistent with the seeing at our site, optimization for the infrared as many scientific programs are going in that region of the spectrum, a M1 diameter in excess of 6.5 meters and a field of view limited to 10 arc minutes. Practical reasons, such as the limited funding available and the requirement of mexican financial agencies that the telescope should be built and installed in Mexico, lead us to decide for a segmented telescope, with a single secondary mirror, a single cassegrain focus and a light high stifness tubular structure. ALthough we are still working on the conceptual design of the telescope, there are some concepts that we are pursuing. The optical desing (M1+M2) is Ritchey-Cretien type with an hyperbolic primary 7.8 m od F/1.5 and a 0.9 m diameter f/15 secondary mirror. This will give a plate scale of 1.7 "/mm. This is 0.03 "/pix in direct mode, enough for AO goals. As for direct imaging, a factor of 5 reduction with 20 cm diam optical components would be able to produce 5' fields on a 2048, 20 microns type detector with 0.17"/pix. This implies that, with the use of auxiliary optics which is a common need for each particular instrument anyway, a wide variety of needs can be accomodated with a single secondary mirror. Choping for infrared observations would however introduce a additional cost in the secondary mirror. Alternatively the use of cold tertiary choping mirror is currently under study. The M1+M2 design currently aquires d80 of 0.17" in a 5' field without correction and 1" in a 10' field, that would require a field correcting lens. The M1 mirror will be segmented into 19 1.8 m diameter segments. There are 4 kinds of segments, the central, which we have kept to provide a reference for phasing, 6 more segments for the first ring and 12 in the outer ring, of two different kinds. The spacing between the segments is 5 mm, enough to reduce the inter-segment thermal background to half a

  3. Applications of telecommunication technology for optical instrumentation with an emphasis on space-time duality

    NASA Astrophysics Data System (ADS)

    van Howe, James William

    Telecommunication technology has often been applied to areas of science and engineering seemingly unrelated to communication systems. Innovations such as electronic amplifiers, the transistor, digital coding, optical fiber, and the laser, which all had roots in communication technology, have been implemented in devices from bar-code scanners to fiber endoscopes for medical procedures. In the same way, the central theme of the work in the following chapters has been to borrow both the concepts and technology of telecommunications systems to develop novel optical instrumentation for non-telecom pursuits. This work particularly leverages fiber-integrated electro-optic phase modulators to apply custom phase profiles to ultrafast pulses for control and manipulation. Such devices are typically used in telecom transmitters to encode phase data onto optical pulses (differential phase-shift keying), or for chirped data transmission. We, however, use electro-optic phase modulators to construct four novel optical devices: (1) a programmable ultrafast optical delay line with record scanning speed for applications in optical metrology, interferometry, or broad-band phase arrays, (2) a multiwavelength pulse generator for real-time optical sampling of electronic waveforms, (3) a simple femtosecond pulse generator for uses in biomedical imaging or ultrafast spectroscopy, and (4) a nonlinear phase compensator to increase the energy of fiber-amplified ultrashort pulse systems. In addition, we describe a fifth instrument which makes use of a higher-order mode fiber, similar in design to dispersion compensating fibers used for telecom. Through soliton self-frequency shift in the higher-order mode fiber, we can broadly-tune the center frequency of ultrashort pulses in energy regimes useful for biomedical imaging or ultrafast spectroscopy. The advantages gained through using telecom components in each of these systems are the simplicity and robustness of all-fiber configurations, high

  4. Optical waveguide technology and its application in head-mounted displays

    NASA Astrophysics Data System (ADS)

    Cameron, Alex

    2012-06-01

    Applying optical waveguide technology to head mounted display (HMD) solutions has the key goal of providing the user with improved tactical situational awareness by providing information and imagery in an easy to use form which also maintains compatibility with current night vision devices and also enables the integration of future night vision devices. The benefits of waveguide technology in HMDs have seen a number of alternative waveguide display technologies and configurations emerge for Head mounted Display applications. BAE System's presented one such technology in 2009 [1] and this is now in production for a range of Helmet Mounted Display products. This paper outlines the key design drivers for aviators Helmet Mounted Displays, provides an update of holographic Optical Waveguide Technology and its maturation into compact, lightweight Helmet Mounted Displays products for aviation and non-aviation applications. Waveguide displays have proved too be a radical enabling technology which allows higher performance display devices solutions to be created in a revolutionary way. It has also provided the user with see through daylight readable displays, offering the combination of very large eye box and excellent real world transmission in a compact format. Holographic Optical Waveguide is an optical technology which reduces size and mass whilst liberating the designer from many of the constraints inherent in conventional optical solutions. This technology is basically a way of moving light without the need for a complex arrangement of conventional lenses. BAE Systems has exploited this technology in the Q-SightTM family of scalable Helmet Mounted Displays; allowing the addition of capability as it is required in a flexible, low-cost way The basic monocular Q-SightTM architecture has been extended to offer wide field of view, monochrome and full colour HMD solution for rotary wing, fast jet and solider system applications. In its basic form Q-SightTM now offers plug

  5. Advanced Optical Technologies in NASA's Space Communication Program: Status, Challenges, and Future Plans

    NASA Technical Reports Server (NTRS)

    Pouch, John

    2004-01-01

    A goal of the NASA Space Communications Project is to enable broad coverage for high-data-rate delivery to the users by means of ground, air, and space-based assets. The NASA Enterprise need will be reviewed. A number of optical space communications technologies being developed by NASA will be described, and the prospective applications will be discussed.

  6. Teaching fiber-optic communications in engineering technology programs by virtual collaboration with industry

    NASA Astrophysics Data System (ADS)

    Mynbaev, Djafar K.

    2003-10-01

    A fiber-optic communications course requires a deep understanding of the physical processes of the components and systems. Unfortunately, many students in engineering technology programs lack the scientific background for such a course. Another challenge is that these students need to be trained as maintenance and control personnel. To resolve these problems, we focus our teaching on the use of corporate technical documentation.

  7. Advanced optical sensing and processing technologies for the distributed control of large flexible spacecraft

    NASA Technical Reports Server (NTRS)

    Williams, G. M.; Fraser, J. C.

    1991-01-01

    The objective was to examine state-of-the-art optical sensing and processing technology applied to control the motion of flexible spacecraft. Proposed large flexible space systems, such an optical telescopes and antennas, will require control over vast surfaces. Most likely distributed control will be necessary involving many sensors to accurately measure the surface. A similarly large number of actuators must act upon the system. The used technical approach included reviewing proposed NASA missions to assess system needs and requirements. A candidate mission was chosen as a baseline study spacecraft for comparison of conventional and optical control components. Control system requirements of the baseline system were used for designing both a control system containing current off-the-shelf components and a system utilizing electro-optical devices for sensing and processing. State-of-the-art surveys of conventional sensor, actuator, and processor technologies were performed. A technology development plan is presented that presents a logical, effective way to develop and integrate advancing technologies.

  8. Advanced Fiber Optic-Based Sensing Technology for Unmanned Aircraft Systems

    NASA Technical Reports Server (NTRS)

    Richards, Lance; Parker, Allen R.; Piazza, Anthony; Ko, William L.; Chan, Patrick; Bakalyar, John

    2011-01-01

    This presentation provides an overview of fiber optic sensing technology development activities performed at NASA Dryden in support of Unmanned Aircraft Systems. Examples of current and previous work are presented in the following categories: algorithm development, system development, instrumentation installation, ground R&D, and flight testing. Examples of current research and development activities are provided.

  9. Development of Articulated Competency-Based Curriculum in Laser/Electro-Optics Technology. Final Report.

    ERIC Educational Resources Information Center

    Luzerne County Community Coll., Nanticoke, PA.

    A project was conducted at the Community College of Luzerne County (Pennsylvania) to develop, in cooperation with area vocational-technical schools, the first year of a competency-based curriculum in laser/electro-optics technology. Existing programs were reviewed and private sector input was sought in developing the curriculum and identifying…

  10. Development of Articulated Competency-Based Curriculum in Laser/Electro-Optics Technology. Final Report.

    ERIC Educational Resources Information Center

    Luzerne County Community Coll., Nanticoke, PA.

    The project described in this report was conducted at the Community College of Luzerne County (Pennsylvania) to develop, in conjunction with area vocational-technical schools, the second year of a competency-based curriculum in laser/electro-optics technology. During the project, a task force of teachers from the area schools and the college…