Science.gov

Sample records for kraft mill wastewater

  1. Anaerobic digestion of alkaline bleaching wastewater from a kraft pulp and paper mill using UASB technique.

    PubMed

    Larsson, Madeleine; Truong, Xu-Bin; Björn, Annika; Ejlertsson, Jörgen; Bastviken, David; Svensson, Bo H; Karlsson, Anna

    2015-01-01

    Anaerobic digestion of alkaline kraft elemental chlorine-free bleaching wastewater in two mesophilic, lab-scale upflow anaerobic sludge bed reactors resulted in significantly higher biogas production (250±50 vs. 120±30 NmL g [Formula: see text]) and reduction of filtered total organic carbon (fTOC) (60±5 vs. 43±6%) for wastewater from processing of hardwood (HW) compared with softwood (SW). In all cases, the gas production was likely underestimated due to poor gas separation in the reactors. Despite changes in wastewater characteristics, a stable anaerobic process was maintained with hydraulic retention times (HRTs) between 7 and 14 h. Lowering the HRT (from 13.5 to 8.5 h) did not significantly affect the process, and the stable performance at 8.5 h leaves room for further decreases in HRT. The results show that this type of wastewater is suitable for a full-scale implementation, but the difference in methane potential between SW and HW is important to consider both regarding process dimensioning and biogas yield optimization. PMID:25441833

  2. Effects of black liquor shocks on activated sludge treatment of bleached kraft pulp mill wastewater.

    PubMed

    Morales, Gabriela; Pesante, Silvana; Vidal, Gladys

    2015-01-01

    Kraft pulp mills use activated sludge systems to remove organic matter from effluents. Process streams may appear as toxic spills in treatment plant effluents, such as black liquor, which is toxic to microorganisms of the activated sludge. The present study evaluates the effects of black liquor shocks in activated sludge systems. Four black liquor shocks from 883 to 3,225 mg chemical oxygen demand-COD L(-1) were applied during 24 hours in a continuously operating lab-scale activated sludge system. Removal efficiencies of COD, color and specific compounds were determined. Moreover, specific oxygen uptake rate (SOUR), sludge volumetric index (SVI) and indicator microorganisms were evaluated. Results show that the addition of black liquor caused an increase in COD removal (76-67%) immediately post shock; followed two days later by a decrease (-19-50%). On the other hand, SOUR ranged between 0.152 and 0.336 mgO2 g(-1) volatile suspended solids-VSS• min(-1) during shocks, but the initial value was reestablished at hour 24. When the COD concentration of the shock was higher than 1,014 mg/L, the abundance of stalked ciliates and rotifers dropped. Finally, no changes in SVI were observed, with values remaining in the range 65.8-40.2 mL g(-1) total suspended solids-TSS during the entire operating process. Based on the results, the principal conclusion is that the activated sludge system with the biomass adapted to the kraft pulp effluent could resist a black liquor shock with 3,225 mgCOD L(-1) of concentration during 24 h, under this study's conditions. PMID:25837566

  3. Effect of organic load and nutrient ratio on the operation stability of the moving bed bioreactor for kraft mill wastewater treatment and the incidence of polyhydroxyalkanoate biosynthesis.

    PubMed

    Pozo, G; Villamar, C A; Martínez, M; Vidal, G

    2012-01-01

    This paper studies the effect of organic load rate (OLR) and nutrient ratio on operation stability of the moving bed bioreactor (MBBR) for kraft mill wastewater treatment, analyzing the incidence of polyhydroxyalkanoate (PHA) production. The MBBR operating strategy was to increase OLR from 0.25 ± 0.05 to 2.41 ± 0.19 kg COD m(-3) d(-1) between phases I and IV. The BOD(5):N:P ratio (100:5:1 and 100:1:0.2) was evaluated as an operation strategy for phases IV to V. A stable MBBR operation was found when the OLR was increased during 225 days in five phases. The maximum absolute fluorescence against the proportion of cells accumulating PHA was obtained for an OLR of 2.41 ± 0.19 kg COD m(-3)d(-1) and a BOD(5):N:P relationship of 100:1:0.2. The increase of PHA biosynthesis is due to the increased OLR and is not attributable to the increased cell concentration, which is maintained constant in stationary status during bioreactor biosynthesis. PMID:22699342

  4. ANALYTICAL SYSTEM FOR MEASURING MALODOROUS COMPOUNDS FROM KRAFT MILLS

    EPA Science Inventory

    Automated chromatographs equipped with flame photometric detectors were developed for the qualitative and quantitative analysis of low- and high-molecular-weight sulfur compounds in kraft mill effluents. One chromatograph equipped with a Teflon column packed with Teflon and coate...

  5. Corrosion testing in flash tanks of kraft pulp mills

    SciTech Connect

    Clarke, S.J.; Stead, N.J.

    1999-11-01

    The corrosion observed in the first flash tanks in kraft pulp mills with modified cooking practices was characterized. Coupons of carbon steel (CS), several stainless steels (SS), and Ti were exposed at two mills. At one mill, identical sets of coupons were exposed in the No. 1 and No. 2 flash tank. At the other mill, three identical sets of coupons were placed in flash tank No. 1. The results of the exposures showed that both CS and Ti suffered high rates of general corrosion, while the SS suffered varying degrees of localized attack. The ranking of the corrosion resistance in the flash tank was the same that would be expected in a reducing acid environment. Attack by organic acids was concluded to be the most likely cause of corrosion of the flash tanks.

  6. Investigating the relationship between toxicity and organic sum-parameters in kraft mill effluents.

    PubMed

    Raptis, Catherine E; Juraske, Ronnie; Hellweg, Stefanie

    2014-12-01

    Elaborate toxicity diagnostics, such as toxicity identification evaluation (TIE) and effects-directed analysis (EDA) have helped in identifying the causative agents of effluent wastewater toxicity. However, simpler means of relating ecotoxicological effects to effluent composition could be useful for effluent management practices when there is no scope for more complex procedures. The aim of this work was to investigate and isolate the relationship between biological responses and commonly measured organic sum-parameters, such as chemical- and biochemical oxygen demand (COD and BOD, respectively) in kraft mill effluents. In a top-down approach, the whole effluent toxicity (WET) of effluent samples was first determined from Pseudokirchneriella subcapitata and Ceriodaphnia dubia bioassays. The theoretical toxicity that could be attributed to the metal content was then estimated, via a combination of equilibrium chemical speciation- and metal toxicity modelling. By assuming concentration addition, the metal toxicity was subtracted from the WET, isolating the toxicity thought to be caused by the organics. Strong and significant correlations between the 'corrected' toxicity and organic sum-parameters were found for both species. The growth of P. subcapitata was negatively associated with increasing COD concentrations, whereas reproduction of C. dubia was negatively associated with increasing BOD concentrations. The linear relationships, along with robust estimations of their uncertainty bounds, can provide valuable, albeit rough, guidance for kraft mill effluent management practices. PMID:25213683

  7. OPERATION AND MAINTENANCE OF PARTICULATE CONTROL DEVICES IN KRAFT PULP MILL AND CRUSHED STONE INDUSTRIES

    EPA Science Inventory

    Control of fine particulate emissions from selected kraft pulp mill and stone crushing facilities is addressed. The principal devices considered are electrostatic precipitators, wet scrubbers, and fabric filters. Guidelines are provided for industrial personnel responsible for se...

  8. Chronic effects of Pinus radiata and Eucalyptus globulus kraft mill effluents and phytosterols on Daphnia magna.

    PubMed

    López, D; Chamorro, S; Silva, J; Bay-Schmith, E; Vidal, G

    2011-12-01

    Two kraft pulp mill effluents were compared in terms of their chronic toxicity to Daphnia magna. One resulted from pulping Pinus radiata and the other came from a parallel processing of Pinus radiata and Eucalyptus globulus (mixed kraft pulp mill effluent). The concentration of phytosterols found in the mixed kraft pulp mill effluent was higher than in the effluent from Pinus radiata, with values of 0.1082 and 0.02 μg/L, respectively. The phytosterols per se are responsible for 12.9% and 8.1% of the deviation from the natural shape, while the kraft pulp mill effluents account for 25.6%-27.8% of shape deviation. The role of β-sitosterol and stigmasterol is discussed in relation to endocrine disruption. PMID:21979137

  9. Process integration study Kraft and Magnefite pulp and paper mill

    SciTech Connect

    Not Available

    1989-12-01

    The James River Camas mill produces 500,000 tons/year of paper from an integrated operation comprising both Kraft and Magnefite pulping, bleaching, recovery and paper machines. In addition to liquor recovery boilers the mill burns hog fuel and gas to supplement steam requirements. Electrical power demands on the site are met by a combination of on site back pressure turbines and purchased power. The mill was studied by the pinch analysis method and revealed scope to reduce thermal energy requirements by 12% on the Nos. 15, 16 and 20 paper machines and 7% in the cross pinch heat transfer in the existing mill configuration. These savings are equivalent to approximately 73 MBtu/hr in process steam, or 6.2% of total energy use. Pinch techniques reveal additional potential to save between 11--16 MBtu/hr in steam by appropriate process change, principally to black liquor concentrator and evaporator configuration. More significantly, about 36 MBtu/hr steam savings could be achieved by vapor compression heat pumping at the expense of about 1.3 MW electrical power. This amounts to 2.5% of total energy use. To realize these savings appropriate heat recovery networks are required downstream of the modified process equipment. Further scope was identified but not quantified on the remaining paper machines both to make heat savings and to integrate gas turbine power generation. Projects were identified to save up to 38 MBtu/hr of steam by process integration (i.e. 2.7% of total energy use). With appropriate process changes to concentrator configuration this saving can be increased by 9 MBtu/hr. Alternatively, vapor compression heat pumping can achieve 16 MBtu/hr in additional steam savings (1.8% of total energy use). 30 figs., 1 tab.

  10. Development of hemicelluloses biorefineries for integration into kraft pulp mills

    NASA Astrophysics Data System (ADS)

    Ajao, Olumoye Abiodun

    The development and wide spread acceptance of production facilities for biofuels, biochemicals and biomaterials is an important condition for reducing reliance on limited fossil resources and transitioning towards a global biobased economy. Pulp and paper mills in North America are confronted with high energy prices, high production costs and intense competition from emerging economies and low demand for traditional products. Integrated forest biorefineries (IFBR) have been proposed as a mean to diversify their product streams, increase their revenue and become more sustainable. This is feasible because they have access to forest biomass, an established feedstock supply chain and wood processing experience. In addition, the integration of a biorefinery process that can share existing infrastructure and utilities on the site of pulp mill would significantly lower investment cost and associated risks. Kraft pulping mills are promising receptor processes for a biorefinery because they either possess a prehydrolysis step for extracting hemicelluloses sugars prior to wood pulping or it can be added by retrofit. The extracted hemicelluloses could be subsequently transformed into a wide range of value added products for the receptor mill. To successfully implement hemicelluloses biorefinery, novel processes that are technically and economically feasible are required. It is necessary to identify products that would be profitable, develop processes that are energy efficient and the receptor mill should be able to supply the energy, chemicals and material demands of the biorefinery unit. The objective of this thesis is to develop energy efficient and economically viable hemicelluloses biorefineries for integration into a Kraft pulping process. A dissolving pulp mill was the reference case study. The transformation of hemicellulosic sugars via a chemical and biochemical conversion pathway, with furfural and ethanol as representative products for each pathway was studied. In

  11. Comparative bacterial degradation and detoxification of model and kraft lignin from pulp paper wastewater and its metabolites

    NASA Astrophysics Data System (ADS)

    Abhishek, Amar; Dwivedi, Ashish; Tandan, Neeraj; Kumar, Urwashi

    2015-05-01

    Continuous discharge of lignin containing colored wastewater from pulp paper mill into the environment has resulted in building up their high level in various aquatic systems. In this study, the chemical texture of kraft lignin in terms of pollution parameters (COD, TOC, BOD, etc.) was quite different and approximately twofold higher as compared to model lignin at same optical density (OD 3.7 at 465 nm) and lignin content (2000 mg/L). For comparative bacterial degradation and detoxification of model and kraft lignin two bacteria Citrobacter freundii and Serratia marcescens were isolated, screened and applied in axenic and mixed condition. Bacterial mixed culture was found to decolorize 87 and 70 % model and kraft lignin (2000 mg/L), respectively; whereas, axenic culture Citrobacter freundii and Serratia marcescens decolorized 64, 60 % model and 50, 55 % kraft lignin, respectively, at optimized condition (34 °C, pH 8.2, 140 rpm). In addition, the mixed bacterial culture also showed the removal of 76, 61 % TOC; 80, 67 % COD and 87, 65 % lignin from model and kraft lignin, respectively. High pollution parameters (like TOC, COD, BOD, sulphate) and toxic chemicals slow down the degradation of kraft lignin as compared to model lignin. The comparative GC-MS analysis has suggested that the interspecies collaboration, i.e., each bacterial strain in culture medium has cumulative enhancing effect on growth, and degradation of lignin rather than inhibition. Furthermore, toxicity evaluation on human keratinocyte cell line after bacterial treatment has supported the degradation and detoxification of model and kraft lignin.

  12. Kraft mill sludge to improve vegetal production in Chilean Andisol.

    PubMed

    Gallardo, F; Mora, M L; Diez, M C

    2007-01-01

    The effect of kraft mill sludge addition (25 to 75 ton/ha) to soil derived from volcanic ashes (Andisol) on wheat (Triticum aestivum L.cv. Puken) biomass production, and in the nutrient absorption by the plants was evaluated. Respiration activity and seed germination tests were carried out on the soil/sludge mixtures, in order to evaluate possible toxic effects due to the sludge addition to the soil. Soil without sludge was used as a control treatment. The plants were grown in a greenhouse (25 degrees C, 14 h-photoperiod) during 120 days, then the plants were collected and dried at 65 degrees C for 72 h for the determination of biomass production (root and aerial) and analyzed for mineral content (Ca, Mg, K and P). The mixtures of soil/sludge showed no toxicity. Seed germination and respiration activity increased with the increment of the sludge. The accumulated CO2 in the soil without sludge was 41.66 mg CO2/100; this value shows a low microbial activity. The biomass increased with the increment of sludge addition to the soil and five times more biomass was obtained when 75 ton/ha sludge was added to the soil. The nutrient absorption efficiency was also improved with the sludge addition. PMID:17486832

  13. Development of hemicelluloses biorefineries for integration into kraft pulp mills

    NASA Astrophysics Data System (ADS)

    Ajao, Olumoye Abiodun

    The development and wide spread acceptance of production facilities for biofuels, biochemicals and biomaterials is an important condition for reducing reliance on limited fossil resources and transitioning towards a global biobased economy. Pulp and paper mills in North America are confronted with high energy prices, high production costs and intense competition from emerging economies and low demand for traditional products. Integrated forest biorefineries (IFBR) have been proposed as a mean to diversify their product streams, increase their revenue and become more sustainable. This is feasible because they have access to forest biomass, an established feedstock supply chain and wood processing experience. In addition, the integration of a biorefinery process that can share existing infrastructure and utilities on the site of pulp mill would significantly lower investment cost and associated risks. Kraft pulping mills are promising receptor processes for a biorefinery because they either possess a prehydrolysis step for extracting hemicelluloses sugars prior to wood pulping or it can be added by retrofit. The extracted hemicelluloses could be subsequently transformed into a wide range of value added products for the receptor mill. To successfully implement hemicelluloses biorefinery, novel processes that are technically and economically feasible are required. It is necessary to identify products that would be profitable, develop processes that are energy efficient and the receptor mill should be able to supply the energy, chemicals and material demands of the biorefinery unit. The objective of this thesis is to develop energy efficient and economically viable hemicelluloses biorefineries for integration into a Kraft pulping process. A dissolving pulp mill was the reference case study. The transformation of hemicellulosic sugars via a chemical and biochemical conversion pathway, with furfural and ethanol as representative products for each pathway was studied. In

  14. Technical assistance document for monitoring total reduced sulfur (TRS) from kraft pulp mills. Final report

    SciTech Connect

    Winberry, W.T.

    1985-12-01

    This document supports enforcement personnel in determining whether a total reduced sulfur (TRS) continuous emission monitoring (CEM) system is operating properly after initial compliance, in order to assure continuous compliance of Kraft pulp mills with TRS standards. The Kraft process, the applicable NSPS (Subpart BB), common TRS CEM Systems, performance specification tests, and QA/QC are covered. Evaluation forms covering all aspects of the TRS CEM system are provided.

  15. Management of nonprocess elements in low-effluent bleached kraft pulp mills

    SciTech Connect

    Bryant, P.S.

    1995-12-31

    Increasing environmental regulation for the discharge of chlorinated organics in bleach plant effluents has required most manufacturers in the pulp and paper industry to reduce the charge of elemental chlorine in the bleaching of kraft pulp. The best long term solution for reducing effluent pollutants from bleached kraft pulp mills is to move towards low-effluent (closed-cycle) bleaching. Closure of operating bleach plants would dramatically reduce both the volume and the pollutant concentration of pulp mill effluents. However, closing the mill creates many operational problems including a concentration build-up of nonprocess elements (NPE`s) in process streams. NPE`s usually enter the pulp process as trace constituents of wood. Recent studies have lead to a fundamental understanding of how NPE`s partition between the solid cellulose phase and the liquid aqueous phase in pulp mill process streams. This knowledge will help in the design, operation and optimization of future low-effluent bleach plants.

  16. IN VITRO ANDROGENIC ACTIVITY OF KRAFT MILL EFFLUENT IS ASSOCIATED WITH MASCULINIZATION OF FEMALE FISH

    EPA Science Inventory

    In Vitro Androgenic Activity of Kraft Mill Effluent is Associated with Masculinization of Female Fish. Lambright, CS 1 , Parks, LG 1, Orlando, E 2, Guillette, LJ, Jr.2, Ankley, G 3, Gray, LE, Jr.1 , 1USEPA, NHEERL, RTP, NC, 2 University of Florida, Dept. of Zoology, Gainesville ...

  17. Metabolic effects of kraft mill effluents on the eel Anguilla anguilla L

    SciTech Connect

    Santos, M.A.; Pires, F.; Hall, A. )

    1990-08-01

    Yellow eels (Anguilla anguilla L.) with an average weight of 60 g were used in this experiment. The fish were caught in June/July at the Aveiro Lagoon on the Portuguese West Coast, transported to the Department of Biology, Aveiro University, and kept in aerated aquaria for 1 week before the experiment started. The eels were then exposed for 1 and 3 weeks to 75 and 50% of the kraft pulp mill effluent. The eels exposed to the kraft pulp mill effluent developed an increase in red blood cell number per cubic millimeter and several biochemical changes, such as an increase in plasma lactate and sodium and a decrease in plasma pyruvate and potassium. Histological examination of the experimental eels exposed to the 50% kraft pulp mill effluent revealed deep alteration of the tissue structure, such as disruption of the skin and edematous hypertrophy of covering epithelial cells in secondary gill lamellae. The kidney had damage of the renal tubules. The liver developed necrosis supported by a significant decrease in GOT and GPT activity. The spleen had an increase in blood content as well as in pigment centers. Previous results indicated the kraft pulp mill effluent causes tissue damage and consequent metabolic changes in the eel Anguilla anguilla L.

  18. An Analytical System Designed to Measure Multiple Malodorous Compounds Related to Kraft Mill Activities.

    ERIC Educational Resources Information Center

    Mulik, J. D.; And Others

    Reported upon in this research study is the development of two automated chromatographs equipped with flame photometric detectors for the qualitative and quantitative analysis of both low- and high-molecular weight sulfur compounds in kraft mill effluents. In addition the study sought to determine the relationship between total gaseous sulfur and…

  19. Valorisation of by Products from Bleached Eucalyptus Kraft Pulp Mill

    NASA Astrophysics Data System (ADS)

    Silva, M. C.; Lopes, O. R.; Colodette, J. L.; Porto, A. O.; Rieumont, J.; Chaussy, D.; Belgacem, M. N.; Silva, G. G.

    2008-08-01

    Three industrial wastes arising from bleached hardwood kraft pulps, namely: unbleached screen rejects (USR), effluent treatment (ETW), and eucalyptus bark (EB) were analyzed with the aim of their possible valorization as an alternative source of cellulose. Their morphological properties were determined using MorFi apparatus. For this study the sample bleached kraft pulp, BKP, was analyzed as a reference. Lignin and carbohydrate contents were also quantified. These by-products were studied as such (i.e. without careful purification) because we intended to find rational and low-cost way of valorization. In fact any additional operation will induce an over cost. The results obtained indicate that these industrial wastes can be potential raw material in fibre-based applications (paper, composites…), since they contain a high proportion of cellulose with preserved fibrillar morphology. Some of these materials have low lignin and inorganic residue contents.

  20. Alumina-supported noble metal catalysts for destructive oxidation of organic pollutants in effluent from a softwood kraft pulp mill

    SciTech Connect

    Zhang, Q.; Chuang, K.T.

    1998-08-01

    The effectiveness of alumina-supported noble metal catalysts for the destructive oxidation of organic pollutants in effluent from a softwood kraft pulp mill was evaluated in a slurry reactor at 463 K and an oxygen pressure of 1.5 MPa. The effects of catalyst preparation procedures, such as metal loading, calcination, or reduction treatment on the catalytic activities, were also tested. Alumina-supported palladium catalysts were found to be more effective than supported manganese, iron, or platinum catalysts. The rate of oxidation over Pd/alumina catalyst was significantly higher than that of the uncatalyzed reaction. Adding Ce on the alumina support was found to promote the activity of alumina-supported Pt catalyst but inhibit the activity of alumina-supported Pd catalyst. The reaction mechanisms for the catalytic wet oxidation process and the roles of Ce on catalytic activity for destructive oxidation of organic pollutants in wastewater are discussed.

  1. Removal of stigmasterol from Kraft mill effluent by aerobic biological treatment with steroidal metabolite detection.

    PubMed

    Chamorro, Soledad; Vergara, Juan P; Jarpa, Mayra; Hernandez, Victor; Becerra, Jose; Vidal, Gladys

    2016-10-14

    Stigmasterol is a phytosterol contained in Kraft mill effluent that is able to increase over 100% after aerobic biological treatment. This compound can act as an endocrine disrupter as its structure is similar to that of cholesterol. The aim of this study was to evaluate the removal of stigmasterol from Kraft mill effluents treated by a moving bed biofilm reactor (MBBR) with steroidal metabolite detection. The MBBR was operated for 145 days, with a hydraulic retention time of 2 days. Stigmasterol and steroidal metabolites were detected by gas chromatography with a flame ionization detector during MBBR operation. The results show that the MBBR removed 87.4% of biological oxygen demand (BOD5), 61.5% of chemical oxygen demand (COD), 24.5% of phenol and 31.5% of lignin, expressed in average values. The MBBR system successfully removed 100% of the stigmasterol contained in the influent (33 µg L(-1)) after 5 weeks of operation. In that case, the organic load rate was 0.343 kg COD m(-3) d(-1). Furthermore, different steroidal compounds (e.g., testosterone propionate, stigmast-4-en-3-one, 5α-pregnan-12-one-20α-hydroxy, 5α-pregnane-3,11,20-trione and 3α-hydroxy-5α-androstane-11,17-dione were detected in the Kraft mill effluent as potential products of phytosterol biotransformation. PMID:27399163

  2. Advanced Modeling and Materials in Kraft Pulp Mills

    SciTech Connect

    Keiser, J.R.; Gorog, J.P.

    2002-05-15

    This CRADA provided technical support to the Weyerhaeuser Company on a number of issues related to the performance and/or selection of materials at a number of locations in a pulp and paper mill. The studies related primarily to components for black liquor recovery boilers, but some effort was directed toward black liquor gasifiers and rolls for paper machines. The purpose of this CRADA was to assist Weyerhaeuser in the evaluation of materials exposed in various paper mill environments and to provide direction in the selection of alternate materials, when appropriate.

  3. MASCULINIZATION OF FEMALE MOSQUITO FISH IN KRAFT MILL EFFLUENT -CONTAMINATED FENHOLLOWAY RIVER WATER IS ASSOCIATED WITH ANDROGEN RECEPTOR AGONIST ACTIVITY.

    EPA Science Inventory

    Female mosquitofish (Gambusia affinis holbrooki) downstream from Kraft paper mills in Florida display masculinization of the anal fin, an androgen-dependent trait. The current investigation was designed to determine if water contaminated with pulp-mill effluent (PME) from the Fen...

  4. IN VITRO CONFIRMATION OF ANDROGENIC ACTIVITY IN KRAFT MILL EFFLUENT WHICH IS ASSOCIATED WITH MASCULINIZED FEMALE MOSQUITOFISH FORP

    EPA Science Inventory

    Female mosquitofish downstream from Kraft paper mills in Florida display masculinization of the anal fin, an androgen-dependent response. This effect can be introduced in the laboratory with exposure to either paper mill effluent (PME) or to androgenic drugs. Hence, it has been h...

  5. MASCULINIZATION OF FEMALE MOSQUITOFISH IN KRAFT MILL EFFLUENT-CONTAMINATED FENHOLLOWAY RIVER WATER IS ASSOCIATED WITH ANDROGEN RECEPTOR AGONIST ACTIVITY

    EPA Science Inventory

    Female mosquitofish (Gambusia affinis holbrooki) downstream from Kraft paper mills in Florida display masculinization of the anal fin, an androgen-dependent trait. The current investigation was designed to determine if water contaminated with pulp mill effluent (PME) from the Fe...

  6. Recycling of water in bleached kraft pulp mills by using electrodialysis.

    SciTech Connect

    Fracaro, A. T.; Henry, M. P.; Pfromm, P.; Tsai, S.-P.

    1999-01-15

    Conservation of water in bleached kraft pulp mills by recycling the bleach plant effluent directly without treatment will cause accumulation of inorganic ''non-process elements'' (NPEs) and serious operational problems. In this work, an electrodialysis process is being developed for recycling the acidic bleach plant effluent of bleached kraft pulp mills. In this process, electrodialysis functions as a selective kidney to remove inorganic NPEs from bleach plant effluents, before they reach the recovery cycle. Acidic bleach plant effluents from several mills using bleaching sequences based on chlorine dioxide were characterized. The total dissolved solids were mostly inorganic NPEs. Sodium was the predominant cation and chloride was present at significant levels in all these effluents. In laboratory electrodialysis experiments, selective removal of chloride and potentially harmful cations, such as potassium, calcium, and magnesium, were removed efficiently. Rejection of organic compounds was up to 98%. Electrodialysis was shown to be resistant to membrane fouling and scaling, in a 100-hour laboratory experiment. Based on a model mill with 1,000 ton/day pulp production, the economic analysis suggests that the energy cost of electrodialysis is less than $200/day, and the capital cost of the stack is about $500,000.

  7. Assessment of opacimeter calibration on kraft pulp mills

    NASA Astrophysics Data System (ADS)

    Gomes, Joa˜o. F. P.

    This paper describes the methodology and specific techniques for calibrating automatic on-line industrial emission analysers, specifically equipments that measure total suspended dust installed in pulp mills within the scope of Portuguese Regulation No. 286/93 on air quality. The calibration of opacimeters is a multi-parameter relationship instead of the bidimensional calibration which is used in industrial practice. For a stationary source from a pulp mill such as the recovery boiler stack, which is subjected to significant variations, the effects of parameters such as the humidity and gas temperature, deviations of isokinetism, size range of particles and characteristic transmittance of equipment are analysed. The multivariable analysis of a considerable set of data leads to an estimate of about 98% of equipment transmittance over the other parameters with a level of significance greater than 0.99 which is a validation of the bidimensional practical calibrations.

  8. Monitoring endocrine activity in kraft mill effluent treated by aerobic moving bed bioreactor system.

    PubMed

    Chamorro, S; Pozo, G; Jarpa, M; Hernandez, V; Becerra, J; Vidal, G

    2010-01-01

    A Moving Bed Bioreactor (MBBR) was operated at three different hydraulic retention times for a period of 414 days. The fate of the extractive compounds and the estrogenic activity of the Pinus radiata kraft mill effluents were evaluated using Yeast Estrogen Screen (YES) and gas chromatography - mass spectrometry (GC-MS) detection. Results show that the MBBR reactor is able to remove between 80-83% of estrogenic activity present in the kraft mill Pinus radiata influent, where the values of the effluent's estrogenic activity ranged between 0.123-0.411 ng L(-1), expressed as estrogenic equivalent (EEqs) of 17-a-ethynylestradiol (EE2 eq.). Additionally, the biomass of the MBBR reactor accumulated estrogenic activity ranging between 0.29-0.37 ng EEqs EE2 during the different Hydraulic Retention Time (HRT) operations. The main groups present in pulp mills effluents, corresponding to fatty acids, hydrocarbons, phenols, sterols and triterpenes, were detected by solid phase extraction (SPE) and gas chromatography - mass spectrometry (GC-MS). The results suggest that the sterols produce the estrogenic activity in the evaluated effluent. PMID:20595766

  9. Long-term effects of bleached kraft mill effluents on red and white blood cell status, ion balance, and vertebral structure in fish

    SciTech Connect

    Haerdig, J.A.; Andersson, T.; Bengtsson, B.E.; Foerlin, L.L.; Larsson, A.

    1988-02-01

    In a laboratory investigation fourhorn sculpin (Myoxocephalus quadricornis) were exposed for 5-9 months to wastewater from pine and birch lines from a bleached kraft pulp plant. This long-term exposure to bleached kraft mill effluent (BKME) affected the hematology, the ion balance, and the vertebral structure. Decreased values for hematocrit and hemoglobin and a reduced red blood cell count, as well as increased levels of methemoglobin, indicated disturbances in the red blood cell status. The white blood cell picture was not significantly affected by the BKME exposure. Decreased levels of potassium and chloride ions in the blood plasma in some of the exposed fish suggest an impaired ability to maintain ion homeostasis. Elevated frequencies of vertebral deformations in fish exposed to BKME confirm previous observations of vertebral damage in feral fourhorn sculpin caught in the receiving body of water of the same bleached kraft pulp industry. Many of the parameters analyzed in this investigation may be used as health indicators in future laboratory and field studies on fish exposed to BKME.

  10. Effects of Kraft Mill effluent on the sexuality of fishes: An environmental early warning

    SciTech Connect

    Davis, W.P.; Bortone, S.A.

    1992-01-01

    Arrhenoid or masculinized female fish species of the live-bearing family, Poeciliidae, have been observed for over thirteen years in specific southern streams which receive waste effluents from pulping mills. The complex mixture of organic compounds in kraft mill effluent (KME) has inhibited specific identification of causal agent(s). However, microbially degraded phytosterols (e.g. sitosterol or stigmastanol) in experimental exposures induce the same intersexual states that characterize affected female poeciliids sampled from KME streams. KME-polluted streams often exhibit a drastic reduction of fish species diversity and degrees of physiological stress, all of which suggests reduced reproduction in surviving forms. A potential ontogenetic or developmental response is demonstrated in American eels captured in one of these streams as well. The authors examine available information, including laboratory and experimental field exposures, and suggest directions for additional research as well as the need for environmental concern.

  11. Characterization of kraft pulp mill particulate emissions—A summary of existing measurements and observations

    NASA Astrophysics Data System (ADS)

    Pinkerton, John E.; Blosser, Russell O.

    Particulate matter emission sources at a kraft pulp mill include kraft recovery furnaces, lime kilns, smelt dissolving tanks and power boilers. Chemical and physical characteristics of these paniculate emissions are reviewed. Measurements of particle size distributions for these sources made with cascade impactors and microscopic counting techniques both before and after paniculate control devices such as multiple cyclones, wet scrubbers, and electrostatic precipitalors are discussed. In general, particles with equivalent diameters less than 3 jim comprise the bulk of the controlled paniculate emissions from all sources. Sodium sulfate is the dominant paniculate emission from kraft recovery furnaces, smelt dissolving tanks and lime kilns. Results from a field investigation of the relationship between human observations of near-stack plume opacity and measured in-stack paniculate concentrations and opacities are summarized. Trained cenified panels of observers were used in the investigation to estimate plume opacities from two kraft recovery furnaces, a combination wood/coal-fired boiler, and a combination wood/oil-fired boiler at four different pulp mill locations. Plume opacities were varied from near-zero to 45 % by adjustment of the paniculate control equipment operation. The effects of different background viewing conditions, observer positions, observer experience levels, and plume characteristics are enumerated. It is concluded that there can be substantial variations between measured in-stack opacities and human perceptions of near-stack plume opacities. The degree of agreement between the human judgements and measured in-stack opacities is significantly affected by the background viewing conditions. It is further shown that even with a panel of six or seven trained observers with similar visual acuity, there can be significant departures of individual opacity readings from the panel mean opacity. Although this investigation deals with questions of human

  12. Characteristics and biodegradability of olive mill wastewaters.

    PubMed

    Karahan Özgün, Özlem; Pala Özkök, İlke; Kutay, Can; Orhon, Derin

    2016-05-01

    Olive mill wastewaters (OMWs) are mostly characterized by their high-organic content and complex organic compounds in addition to the phenolic compounds. European olive oil manufacturers have to cope up with the same wastewater treatment problem and the applied conventional treatment technologies for OMW were not proved to be very successful in each case. Olive mills are mostly small and medium-sized installations and OMW is generated during the three-four-month-long manufacturing season. The problem is not only the complex wastewater to be treated but also the scattered positioning of the olive mills, the seasonal wastewater generation and the size of the manufacturing facilities. The aim of the study is to identify the organic content of OMW and to assess the biological and chemical treatability of OMWs, in order to assist the development of integrated chemical-biological treatment schemes for best appropriate techniques implementation. The experimental studies show that separation of the particulate fraction improved the biodegradability or reduced the refractory and inhibitory effects of particulate organics. PMID:26507588

  13. Process for purification of waste water produced by a Kraft process pulp and paper mill

    NASA Technical Reports Server (NTRS)

    Humphrey, M. F. (Inventor)

    1979-01-01

    The water from paper and pulp wastes obtained from a mill using the Kraft process is purified by precipitating lignins and lignin derivatives from the waste stream with quaternary ammonium compounds, removing other impurities by activated carbon produced from the cellulosic components of the water, and then separating the water from the precipitate and solids. The activated carbon also acts as an aid to the separation of the water and solids. If recovery of lignins is also desired, then the precipitate containing the lignins and quaternary ammonium compounds is dissolved in methanol. Upon acidification, the lignin is precipitated from the solution. The methanol and quaternary ammonium compound are recovered for reuse from the remainder.

  14. Membrane treatment of the bleaching plant (EPO) filtrate of a kraft pulp mill.

    PubMed

    Quezada, Rafael; Silva, Claudio Mudado; Passos Rezende, Ana Augusta; Nilsson, Leif; Manfredi, Mauro

    2014-01-01

    The objective of this study was to evaluate the use of membrane technology to treat oxygen and peroxide-reinforced extraction stage (EPO) filtrate from a kraft pulp mill bleach plant. Three different types of tubular membranes were tested in a pilot plant: (i) tight ultrafiltration (UF); (ii) open UF followed by nanofiltration (UF+NF); and (iii) nanofiltration (NF). According to the separation performance, considering the chemical oxygen demand (COD) and colour removal, permeate flux, operational simplicity and cost, the results indicated that the best option for treatment of (EPO) filtrates was the tight UF membrane. This membrane obtained a COD removal of 79% with a colour reduction of 86%. The effect of (EPO) filtrate UF treatment on the mill effluent treatment plant was evaluated. Compared with the actual mill effluent, the results indicated that if the UF permeate was recycled in the bleaching area, the COD reduction efficiency increased by 7%, the final effluent colour decreased by 8%, the biological sludge production decreased by 18%, and the energy consumption decreased by 40%. In the tertiary treatment plant, the coagulant dosage decreased by 40%, and the tertiary sludge production decreased by 46%. PMID:25225931

  15. Recovery of kraft lignin from pulping wastewater via emulsion liquid membrane process.

    PubMed

    Ooi, Zing-Yi; Harruddin, Norlisa; Othman, Norasikin

    2015-01-01

    Kraft lignin (KL) is a renewable source of many valuable intermediate biochemical products currently derived from petroleum. An excessive of lignin comes from pulping wastewater caused an adverse pollution problems hence affecting human and aquatic life. A comprehensive study pertaining to emulsion liquid membrane (ELM) extraction of lignin from pulping wastewater was presented. ELM formulation contains Aliquat 336 as carrier, kerosene as diluent, sodium bicarbonate (NaHCO3 ) as stripping agent and Span 80 as surfactant. The emulsion stability was investigated at different surfactant concentrations, homogenizer speed and emulsification time. Modifier (2-ethyl-1-hexanol) was added to avoid segregation of third phase while improving the emulsion stability. At optimum conditions, 95% and 56% of lignin were extracted and recovered, respectively at 10 min of extraction time, 0.007 M of Aliquat 336, 0.1 M of NaHCO3 and 1:5 of treat ratio. Additional of modifier was contributed to highest recovery up to 98%. The ELM process was found to be equally feasible and quite effective in the recovery of KL from real pulping wastewater. Therefore, ELM process provides a promising alternative technology to recover KL from pulping wastewater while solving the environmental problems simultaneously. PMID:26101101

  16. Production of cellulase from kraft paper mill sludge by Trichoderma reesei rut C-30.

    PubMed

    Wang, Wei; Kang, Li; Lee, Yoon Y

    2010-05-01

    Paper mill sludge is a solid waste material generated from pulping and papermaking operations. Because of high glucan content and its well-dispersed structure, paper mill sludges are well suited for bioconversion into value-added products. It also has high ash content originated from inorganic additives used in papermaking, which causes hindrance to bioconversion. In this study, paper mill sludges from Kraft process were de-ashed by a centrifugal cleaner and successive treatment by sulfuric acid and sodium hydroxide, and used as a substrate for cellulase production. The treated sludge was the only carbon source for cellulase production, and predominantly inorganic nutrients were used as the nitrogen source for this bioprocess. The cellulase enzyme produced from the de-ashed sludge exhibited cellulase activity of 8 filter paper unit (FPU)/mL, close to that obtainable from pure cellulosic substrates. The yield of cellulase enzyme was 307 FPU/g glucan of de-ashed sludge. Specific activity was 8.0 FPU/mg protein. In activity tests conducted against the corn stover and alpha-cellulose, the xylanse activity was found to be higher than that of a commercial cellulase. Relatively high xylan content in the sludge appears to have induced high xylanase production. Simultaneous saccharification and fermentation (SSF) was performed using partially de-ashed sludge as the feedstock for ethanol production using Sacharomyces cerevisiae and the cellulase produced in-house from the sludge. With 6% (w/v) glucan feed, ethanol yield of 72% of theoretical maximum and 24.4 g/L ethanol concentration were achieved. These results were identical to those of the SSF using commercial cellulases. PMID:19997787

  17. Evaluation of dioxin mobility and spoils leaching in a surface coal mine reclaimed with bleached kraft pulp and paper mill biosolids

    SciTech Connect

    McFadden, D.P.; Krouskop, D.J.; Ayers, K.C.; Proctor, J.L.

    1995-07-01

    A surface coal mine in southeastern Ohio has been reclaimed with approximately 15 to 25 cm thickness of biosolids from a bleached kraft pulp and paper mill wastewater treatment plant. Soil, vegetation, rodents, earthworms, insects, fish, frogs, sediment, and algae samples were collected and analyzed for 2,3,7,8-tetrachlorodibenzo-p-dioxin and 2,3,7,8-tetrachlorodibenzofuran. Water samples from lakes receiving drainage from unreclaimed and biosolids reclaimed areas were collected and analyzed for various parameters, including pH and metals. The trace levels of dioxin and furan in the pulp and paper mill biosolids did not bioaccumulate in rodents, insects, or earthworms or translocate into plants living in the reclaimed area. The trace levels of dioxin and furan in biosolids did not sufficiently migrate to a drainage lake to result in significant concentrations in fish, frogs, algae, or vegetation. The biosolids reclamation resulted in dramatic decreases in spoils leaching of acid, aluminum, calcium, iron, magnesium, manganese, nickel, and zinc. This work supports the thesis that surface mine reclamation with pulp and paper mill biosolids is safe and effective. 4 refs., 6 tabs.

  18. Aerobic degradation of olive mill wastewaters.

    PubMed

    Benitez, J; Beltran-Heredia, J; Torregrosa, J; Acero, J L; Cercas, V

    1997-02-01

    The degradation of olive mill wastewater by aerobic microorganisms has been investigated in a batch reactor, by conducting experiments where the initial concentration of organic matter, quantified by the chemical oxygen demand, and the initial biomass were varied. The evolution of the chemical oxygen demand, biomass and the total contents of phenolic and aromatic compounds were followed through each experiment. According to the Contois model, a kinetic expression for the substrate utilization rate is derived, and its biokinetic constants are evaluated. This final predicted equation agrees well with all the experimental data. PMID:9077005

  19. Ecotoxicological studies with newly hatched larvae of Concholepas concholepas (Mollusca, Gastropoda): bioassay with secondary-treated kraft pulp mill effluents.

    PubMed

    Manríquez, Patricio H; Llanos-Rivera, Alejandra; Galaz, Sylvana; Camaño, Andrés

    2013-12-01

    The Chilean abalone or "loco" (Concholepas concholepas, Bruguière 1789) represent the most economically important marine recourse exploited from inner inshore Management and Exploitation Areas for Benthic Resources along the Chilean coast. In this study, newly-hatched larvae of C. concholepas were investigated as a potential model species for marine ecotoxicological studies. The study developed a behavioral standard protocol for assessing the impact that kraft pulp mill effluents after secondary treatment have on C. concholepas larvae. Under controlled laboratory conditions, newly-hatched larvae were exposed to a series of different concentrations of kraft pulp mill effluents with secondary treatment (Pinus spp. and Eucalyptus spp.), potassium dichromate as standard reference toxicant and effluent-free control conditions. Regardless of the type of effluent the results indicated that diluted kraft pulp effluent with secondary treatment had reduced effect on larval survival. Low larval survivals were only recorded when they were exposed to high concentrations of the reference toxicant. This suggests that C. concholepas larval bioassay is a simple method for monitoring the effects of kraft pulp mill effluents with secondary treatment discharged into the sea. The results indicated that dilution of ca. 1% of the effluent with an elemental chlorine free (ECF) secondary treatment is appropriate for achieving low larval mortalities, such as those obtained under control conditions with filtered seawater, and to minimize their impact on early ontogenetic stages of marine invertebrates such as newly-hatched larvae of C. concholepas. The methodological aspects of toxicological testing and behavioral responses described here with newly-hatched larvae of C. concholepas can be used to evaluate in the future the potential effects of other stressful conditions as other pollutants or changes in seawater pH associated with ocean acidification. PMID:24099753

  20. Mitigation of olive mill wastewater toxicity.

    PubMed

    Greco, Guido; Colarieti, M Letizia; Toscano, Giuseppe; Iamarino, Giuseppina; Rao, Maria A; Gianfreda, Liliana

    2006-09-01

    The toxicity of olive mill wastewaters (OMW) is commonly attributed to monomeric phenols. OMW were treated in an aerated, stirred reactor containing agricultural soil, where the oxidative polymerization of phenols took place. In 24 h, OMW monomeric phenols decreased by >90%. This resulted in a corresponding reduction in phytotoxicity, as measured by germination tests with tomato and English cress seeds, and in microbial toxicity, as measured by lag phase duration in Bacillus cereus batch growth. Soil germination capability after irrigation with OMW was assessed in long-term pot experiments. The relative germination percentage of tomato was higher when the soil was irrigated with treated OMW rather than with untreated ones, although it was lower than the control (e.g., soil irrigated with distilled water). At longer incubation times, a complete recovery of the soil germination capability was achieved with treated, but not with untreated, OMW. PMID:16939339

  1. Multivariate statistical analysis of a high rate biofilm process treating kraft mill bleach plant effluent.

    PubMed

    Goode, C; LeRoy, J; Allen, D G

    2007-01-01

    This study reports on a multivariate analysis of the moving bed biofilm reactor (MBBR) wastewater treatment system at a Canadian pulp mill. The modelling approach involved a data overview by principal component analysis (PCA) followed by partial least squares (PLS) modelling with the objective of explaining and predicting changes in the BOD output of the reactor. Over two years of data with 87 process measurements were used to build the models. Variables were collected from the MBBR control scheme as well as upstream in the bleach plant and in digestion. To account for process dynamics, a variable lagging approach was used for variables with significant temporal correlations. It was found that wood type pulped at the mill was a significant variable governing reactor performance. Other important variables included flow parameters, faults in the temperature or pH control of the reactor, and some potential indirect indicators of biomass activity (residual nitrogen and pH out). The most predictive model was found to have an RMSEP value of 606 kgBOD/d, representing a 14.5% average error. This was a good fit, given the measurement error of the BOD test. Overall, the statistical approach was effective in describing and predicting MBBR treatment performance. PMID:17486834

  2. Responses of white sucker (Catostomus commersoni) to 20 years of process and waste treatment changes at a bleached kraft pulp mill, and to mill shutdown.

    PubMed

    Bowron, L K; Munkittrick, K R; McMaster, M E; Tetreault, G; Hewitt, L M

    2009-11-01

    The impacts of pulp mill effluents on white sucker (Catostomus commersoni) have been studied at Jackfish Bay, ON, Canada since the late 1980s. The site receives effluent from a large bleached kraft pulp mill which is the only source of chemical contamination in the area. Many laboratory studies have looked at the toxicological consequences of pulping process changes, but the benefit of these changes have not been looked at in wild fish. Jackfish Bay white sucker showed impacts on sexual maturity, gonad size, secondary sexual characteristics and circulating steroids hormone levels in the early years of the studies, and impacts were evaluated after installation of secondary treatment (1989), major pulping process changes (1995) and after the mill ceased pulp production and effluent release (2006). The addition of secondary treatment resulted in minor improvements in wild fish health, and the conversion to elemental chlorine free (ECF) bleaching at the mill was associated with more recovery in liver and gonad size. While some impacts persist at the exposure site, reproductive parameters showed further improvement during the mill shutdown period demonstrating that biologically active chemicals are still being discharged from modernized mills. PMID:19783055

  3. Sustainable technologies for olive mill wastewater management (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The California olive oil industry produces more than 600 million gallons of wastewater each year. Olive mill wastewater (OMWW) is considered a highly polluting effluent due to its high organic load and resistance to biological degradation. A current trend in OMWW management is to not only decrease e...

  4. Catalytic pyrolysis of olive mill wastewater sludge

    NASA Astrophysics Data System (ADS)

    Abdellaoui, Hamza

    From 2008 to 2013, an average of 2,821.4 kilotons/year of olive oil were produced around the world. The waste product of the olive mill industry consists of solid residue (pomace) and wastewater (OMW). Annually, around 30 million m3 of OMW are produced in the Mediterranean area, 700,000 m3 year?1 in Tunisia alone. OMW is an aqueous effluent characterized by an offensive smell and high organic matter content, including high molecular weight phenolic compounds and long-chain fatty acids. These compounds are highly toxic to micro-organisms and plants, which makes the OMW a serious threat to the environment if not managed properly. The OMW is disposed of in open air evaporation ponds. After evaporation of most of the water, OMWS is left in the bottom of the ponds. In this thesis, the effort has been made to evaluate the catalytic pyrolysis process as a technology to valorize the OMWS. The first section of this research showed that 41.12 wt. % of the OMWS is mostly lipids, which are a good source of energy. The second section proved that catalytic pyrolysis of the OMWS over red mud and HZSM-5 can produce green diesel, and 450 °C is the optimal reaction temperature to maximize the organic yields. The last section revealed that the HSF was behind the good fuel-like properties of the OMWS catalytic oils, whereas the SR hindered the bio-oil yields and quality.

  5. Selected resin acids in effluent and receiving waters derived from a bleached and unbleached kraft pulp and paper mill

    USGS Publications Warehouse

    Quinn, B.P.; Booth, M.M.; Delfino, J.J.; Holm, S.E.; Gross, T.S.

    2003-01-01

    Water samples were collected on three dates at 24 sites influenced by effluent from Georgia-Pacific's Palatka Pulp and Paper Mill Operation, a bleached and unbleached kraft mill near Palatka, Florida, USA. The sampling sites were located within the mill retention ponds, Rice Creek, and the St. John's River. Samples were analyzed by gas chromatography-mass spectrometry for abietic, dehydroabietic, and isopimaric acids, all of which are potentially toxic by-products of pulp production. Isopimaric acid concentrations greater than 12 mg/L were measured at the mill's effluent outfall but were less than 20 ??g/L at the end of Rice Creek. This result indicates that the waters of Rice Creek provide dilution or conditions conducive for degradation or sorption of these compounds. Large differences in resin acid concentrations were observed between sampling events. In two sampling events, the maximum observed concentrations were less than 2 mg/L for each analyte. In a third sampling event, all of the compounds were detected at concentrations greater than 10 mg/L. Data from the three sample dates showed that resin acid concentrations were below 20 ??g/L before the confluence of Rice Creek and the St. John's River in all cases.

  6. Spectroscopic characteristics of ultrafiltration fractions of fulvic and humic acids isolated from an eucalyptus bleached Kraft pulp mill effluent.

    PubMed

    Duarte, Regina M B O; Santos, Eduarda B H; Duarte, Armando C

    2003-10-01

    In order to investigate the chemical heterogeneity of fulvic and humic acids previously isolated from a bleached Kraft pulp mill effluent, a sequential ultrafiltration (UF) scheme through four polyethersulphone membranes was applied. The unfractionated fulvic and humic acids and their fractions were characterized by UV-VIS, synchronous fluorescence (with Deltalambda=60 nm) and FTIR spectroscopies. The FTIR spectra were compared with those of lignin isolated from Eucalyptus globulus wood and from the black liquor of a Kraft pulping process. The results highlighted that fulvic acids fractions of low molecular sizes contain more lignin derived phenolic units, while those of higher molecular size exhibit a higher content of carbohydrate structures. However, the shift observed in the UV-VIS absorbance and fluorescence intensity towards higher wavelength, suggests a higher degree of conjugation of pi-bonds in the fractions of highest molecular sizes. In what concerns the humic acids size fractions, the FTIR spectra did not exhibit major differences but, as observed for the fulvic acids' fractions, UV-VIS and synchronous fluorescence spectra also suggest a higher degree of conjugation of pi-bonds in the fractions with the highest molecular sizes. It was also observed that the fulvic and humic acids fractions of the same molecular size, operationally defined by the UF process, exhibit major differences in their spectroscopic features. PMID:12946888

  7. Assessment of reproductive effects in largemouth bass (Micropterus salmoides) exposed to bleached/unbleached kraft mill effluents

    USGS Publications Warehouse

    Sepulveda, M.S.; Ruessler, D.S.; Denslow, N.D.; Holm, S.E.; Schoeb, T.R.; Gross, T.S.

    2001-01-01

    This study evaluated the potential effects of different concentrations of bleached/unbleached kraft mill effluent (B/UKME) on several reproductive endpoints in adult largemouth bass (Micropterus salmoides). The kraft mill studied produces a 50/50 mix of bleached/unbleached market pulp with an estimated release of 36 million gal of efffluent/day. Bleaching sequences were C90d10EopHDp and CEHD for softwood (pines) and hardwoods (mainly tupelo, gums, magnolia, and water oaks), respectively. Bass were exposed to different effluent concentrations (0 [controls, exposed to well water], 10, 20, 40, or 80%) for either 28 or 56 days. At the end of each exposure period, fish were euthanized, gonads collected for histological evaluation and determination of gonadosomatic index (GSI), and plasma was analyzed for 17??-estradiol, 11-ketotestosterone, and vitellogenin (VTG). Largemouth bass exposed to B/UKME responded with changes at the biochemical level (decline in sex steroids in both sexes and VTG in females) that were usually translated into tissue/organ-level responses (declines in GSI in both sexes and in ovarian development in females). Although most of these responses occurred after exposing fish to 40% B/UKME concentrations or greater, some were observed after exposures to 20% B/UKME. These threshold concentrations fall within the 60% average yearly concentration of effluent that exists in the stream near the point of discharge (Rice Creek), but are above the <10% effluent concentration present in the St. Johns River. The chemical(s) responsible for such changes as well as their mode(s) of action remain unknown at this time.

  8. Effluent monitoring at a bleached kraft mill: directions for best management practices for eliminating effects on fish reproduction.

    PubMed

    Martel, Pierre H; Kovacs, Tibor G; O'connor, Brian I; Semeniuk, Sharon; Hewitt, L Mark; Maclatchy, Deborah L; McMaster, Mark E; Parrott, Joanne L; van den Heuvel, Michael R; Van Der Kraak, Glen J

    2011-01-01

    A long-term monitoring study was conducted on effluents from a bleached kraft pulp and paper mill located in Eastern Canada. The study was designed to gain insights into temporal effluent variability with respect to fish reproduction as it related to production upsets, mill restarts and conditions affecting biological treatment performance. Final effluent quality was monitored between February 2007 and May 2009 using biochemical and chemical oxygen demand, total suspended solids, resin and fatty acids, a gas chromatographic profiling index, and the presence of methyl substituted 2-cyclopentenones. Selected effluent samples were evaluated for effects on fish reproduction (egg production) using a shortened version of the adult fathead minnow reproductive test. The events relating to negative effects on fish reproduction were upsets of the pulping liquor recovery system resulting in black liquor losses, operational upsets of the hardwood line resulting in the loss of oxygen delignification filtrates, and conditions that reduced the performance of biological treatment (e.g., mill shutdown and low ambient temperatures). The reductions in egg production observed in fathead minnow were associated with biochemical oxygen demand values > 20 mg/L, GC profiling indices > 1.2 and the presence of methyl-substituted 2-cyclopentenones at concentrations > 100 μg/L. This study demonstrated the importance of both in-plant measures for controlling the loss of organics as well as the optimum operation of biological effluent treatment for eliminating effluent-related effects on fish reproduction (egg production) in the laboratory. PMID:21644165

  9. Post-treatment of anaerobic effluent by ozone and ozone/UV of a kraft cellulose pulp mill.

    PubMed

    Chaparro, T R; Pires, E C

    2015-01-01

    Pulp and paper mill effluents represent a challenge when treatment technologies are considered, not only to reduce organic matter, but also to reduce the toxicological effects. Although anaerobic treatment has shown promising results, as well as advantages when compared with an aerobic system, this process alone is not sufficient to reduce recalcitrant compounds. Thus, an advanced oxidation process was applied. This experiment was performed to determine the effect of ozone and ozone/UV treating a horizontal anaerobic immobilized biomass reactor effluent from a kraft cellulose pulp mill for 306 days with an organic volumetric load of 2.33 kgCOD/m³/day. The removal of organic compounds was measured by the following parameters: adsorbable organically bound halogens (AOX), total phenols, chemical oxygen demand (COD), dissolved organic carbon and absorbance values in the UV-visible spectral region. Moreover, ecotoxicity and genotoxicity tests were conducted before and after treatment with ozone and ozone/UV. At an applied ozone dosage of 0.76 mgO₃/mgCOD and an applied UV dosage of 3.427 Wh/m(3), the organochlorine compounds measured as AOX reached removal efficiencies of 40%. Although the combination of ozone/UV showed better results in colour (79%) and total phenols (32%) compared with only ozone, the chronic toxicity and the genotoxicity that had already been removed in the anaerobic process were slightly increased. PMID:25714637

  10. Detoxification and discoloration of Moroccan olive mill wastewater by electrocoagulation.

    PubMed

    Hanafi, F; Assobhei, O; Mountadar, M

    2010-02-15

    The objective of the present study was to assess the electrocoagulation treatment of olive mill wastewater using an aluminum electrode. We have examined the effect of the following parameters on the removal of chemical oxygen demand (COD), polyphenols and dark color removal efficiency: Electrolysis time, Current density, Chloride concentration and Initial pH. The olive mill wastewater (OMW)--diluted 5 times--used in this study had 20.000 mg/L chemical oxygen demand, 3.6 mS/cm conductivity and acidic pH (4.2). It also contains considerable quantities of polyphenols (260 mg/L). The evolution of the physico-chemical parameters during the treatment by electrocoagulation showed that under the following conditions: electrolysis time 15 min, NaCl concentration 2g/L, initial pH 4.2 and current density 250 A/m(2), the discoloration of the olive mill wastewater, the reduction of the chemical oxygen demand and the reduction of polyphenols exceeded 70%, the electrodes consumption was 0.085 kg Al/kg COD(removed) and the specific energy consumed was 2.63 kWh/ kg COD(removed). Under these optimal experimental conditions, olive mill wastewater became non-toxic for Bacillus cereus. PMID:19880250

  11. Carbonyl trapping and antiglycative activities of olive oil mill wastewater.

    PubMed

    Navarro, Marta; Fiore, Alberto; Fogliano, Vincenzo; Morales, Francisco J

    2015-02-01

    The use of natural compounds as antiglycative agents to reduce the load of advanced glycation end products from diet is very promising. Olive mill wastewater is a by-product of the olive oil extraction processes with a high content of hydroxytyrosol, hydroxytyrosol derivatives and molecules containing o-dihydroxyl functions such as verbascoside. Two powders were obtained after the ultrafiltration and nanofiltration of olive mill wastewater, and successive spray drying with maltodextrin and acacia fiber. The samples were characterized by phenolic composition and antioxidant capacity. Antiglycative capacity was evaluated by in vitro BSA-glucose and BSA-methylglyoxal assays, formation of Amadori products and direct trapping of reactive dicarbonyls (methylglyoxal and glyoxal). Both ultrafiltered and nanofiltered olive mill wastewater powders had an activity comparable to quercetin and hydroxytyrosol against the inhibition of protein glycation (IC50 = 0.3 mg mL(-1)). The antiglycative activity of the powder was further investigated after separation by reverse phase solid extraction. Fractions extracted with the methanol content higher than 40% and rich in hydroxytyrosol and verbascoside exerted the highest reactivity against dicarbonyls. Data confirmed that the direct trapping of dicarbonyl compounds is the main route explaining the antiglycative action rather than of the already known antioxidant capacity. Results support further investigations to evaluate the technological feasibility to use olive mill wastewater powders as antiglycative ingredients in foods or in pharmacological preparations in future. PMID:25519075

  12. Milt characteristics, reproductive performance, and larval survival and development of white sucker exposed to bleached kraft mill effluent

    SciTech Connect

    McMaster, M.E.; Portt, C.B.; Munkittrick, K.R.; Dixon, D.G. )

    1992-02-01

    White sucker from a Lake Superior bay which receives bleached kraft mill effluent (BKME) show increased hepatic mixed-function oxygenase (MFO) activity, reduced plasma sex steroid levels, decreased egg and gonad size, a decrease in the occurrence of secondary sexual characteristics, and an increased age to maturation. This study evaluated the reproductive performance of that white sucker population relative to a similar reference population. Spawning male white sucker from the BKME site had reduced spermatozoan motility but no significant differences in milt volume, spermatocrit levels, or seminal plasma constituents. BKME male and female fish had equal or greater fertilization potential compared to both male and female fish at the reference site. There was no difference either in the hatchability of the eggs or in larval size at hatch. BKME larvae did show reduced growth rates by 24 days posthatch but showed equal rates of yolk utilization. No difference in larval MFO activity was detected between sites at 21 days posthatch, indicating no parental transfer of induction to the progeny.

  13. EFFECTS OF KRAFT MILL EFFLUENT (KME) ON SEXUALITY OF FISHES: AN ENVIRONMENTAL WARNING SYSTEM?

    EPA Science Inventory

    Arrhenoid or masculinized female fish species of the live-bearing family, Poeciliidae, have been observed for over thirteen years in specific southern streams which receive waste effluents from pulping mills. The complex mixture of organic compounds in KME has inhibited specific ...

  14. Pulp mill wastewater sediment reveals novel methanogenic and cellulolytic populations.

    PubMed

    Yang, Chunyu; Wang, Wei; Du, Miaofen; Li, Chunfang; Ma, Cuiqing; Xu, Ping

    2013-02-01

    Pulp mill wastewater generated from wheat straw is characterized as high alkalinity and very high COD pollution load. A naturally developed microbial community in a pulp mill wastewater storage pool that had been disused were investigated in this study. Owing to natural evaporation and a huge amount of lignocellulose's deposition, the wastewater sediment contains high concentrations of organic matters and sodium ions, but low concentrations of chloride and carbonate. The microbiota inhabiting especially anaerobic community, including methanogenic arhcaea and cellulolytic species, was studied. All archaeal sequences fall into 2 clusters of family Halobacteriaceae and methanogenic archaeon in the phylum Euryarchaeota. In the methanogenic community, phylogenetic analysis of methyl coenzyme M reductase A (mcrA) genes targeted to novel species in genus Methanoculleus or novel genus of order Methanomicrobiales. The predominance of Methanomicrobiales suggests that methanogenesis in this system might be driven by the hydrogenotrophic pathway. As the important primary fermenter for methane production, the cellulolytic community of enzyme GHF48 was found to be dominated by narrower breadth of novel clostridial cellulase genes. Novel anoxic functional members in such extreme sediment provide the possibility of enhancing the efficiency of anoxic treatment of saline and alkaline wastewaters, as well as benefiting to the biomass transformation and biofuel production processes. PMID:23228889

  15. Assessment of status of white sucker (Catostomus commersoni) populations exposed to bleached kraft pulp mill effluent.

    PubMed

    Miller, David H; Tietge, Joseph E; McMaster, Mark E; Munkittrick, Kelly R; Xia, Xiangsheng; Ankley, Gerald T

    2013-07-01

    Credible ecological risk assessments often need to include analysis of population-level impacts. In the present study, a predictive model was developed to investigate population dynamics for white sucker (Catostomus commersoni) exposed to pulp mill effluent at a well-studied site in Jackfish Bay, Lake Superior, Canada. The model uniquely combines a Leslie population projection matrix and the logistic equation to translate changes in the fecundity and the age structure of a breeding population of white sucker exposed to pulp mill effluent to alterations in population growth rate. Application of this density-dependent population projection model requires construction of a life table for the organism of interest, a measure of carrying capacity, and an estimation of the effect of stressors on vital rates. A white sucker population existing at carrying capacity and subsequently exposed to pulp mill effluent equivalent to a documented exposure experienced during the period 1988 to 1994 in Jackfish Bay would be expected to exhibit a 34% to 51% annual decrease in recruitment during the first 5 yr of exposure and approach a population size of 71% of carrying capacity. The Jackfish Bay study site contains monitoring data for biochemical endpoints in white sucker, including circulating sex steroid concentrations, that could be combined with population modeling to utilize the model demonstrated at the Jackfish Bay study site for investigation of other white sucker populations at sites that are less data-rich. PMID:23504660

  16. Anaerobic digestion of pulp and paper mill wastewater and sludge.

    PubMed

    Meyer, Torsten; Edwards, Elizabeth A

    2014-11-15

    Pulp and paper mills generate large amounts of waste organic matter that may be converted to renewable energy in form of methane. The anaerobic treatment of mill wastewater is widely accepted however, usually only applied to few selected streams. Chemical oxygen demand (COD) removal rates in full-scale reactors range between 30 and 90%, and methane yields are 0.30-0.40 m(3) kg(-1) COD removed. Highest COD removal rates are achieved with condensate streams from chemical pulping (75-90%) and paper mill effluents (60-80%). Numerous laboratory and pilot-scale studies have shown that, contrary to common perception, most other mill effluents are also to some extent anaerobically treatable. Even for difficult-to-digest streams such as bleaching effluents COD removal rates range between 15 and 90%, depending on the extent of dilution prior to anaerobic treatment, and the applied experimental setting. Co-digestion of different streams containing diverse substrate can level out and diminish toxicity, and may lead to a more robust microbial community. Furthermore, the microbial population has the ability to become acclimated and adapted to adverse conditions. Stress situations such as toxic shock loads or temporary organic overloading may be tolerated by an adapted community, whereas they could lead to process disturbance with an un-adapted community. Therefore, anaerobic treatment of wastewater containing elevated levels of inhibitors or toxicants should be initiated by an acclimation/adaptation period that can last between a few weeks and several months. In order to gain more insight into the underlying processes of microbial acclimation/adaptation and co-digestion, future research should focus on the relationship between wastewater composition, reactor operation and microbial community dynamics. The potential for engineering and managing the microbial resource is still largely untapped. Unlike in wastewater treatment, anaerobic digestion of mill biosludge (waste activated

  17. Waste to resource: Converting paper mill wastewater to bioplastic.

    PubMed

    Jiang, Yang; Marang, Leonie; Tamis, Jelmer; van Loosdrecht, Mark C M; Dijkman, Henk; Kleerebezem, Robbert

    2012-11-01

    In this study we investigated the feasibility of producing polyhydroxyalkanoate (PHA) by microbial enrichments on paper mill wastewater. The complete process includes (1) paper mill wastewater acidogenic fermentation in a simple batch process, (2) enrichment of a PHA-producing microbial community in a selector operated in sequencing batch mode with feast-famine regime, (3) Cellular PHA content maximization of the enrichment in an accumulator in fed-batch mode. The selective pressure required to establish a PHA-producing microbial enrichment, as derived from our previous research on synthetic medium, was validated using an agro-industrial waste stream in this study. The microbial enrichment obtained could accumulate maximum up to 77% PHA of cell dry weight within 5 h, which is currently the best result obtained on real agro-industrial waste streams, especially in terms of biomass specific efficiency. Biomass in this enrichment included both Plasticicumulans acidivorans, which was the main PHA producer, and a flanking population, which exhibited limited PHA-producing capacity. The fraction of P. acidivorans in the biomass was largely dependent on the fraction of volatile fatty acids in the total soluble COD in the wastewater after acidification. Based on this observation, one simple equation was proposed for predicting the PHA storage capacity of the enrichment. Moreover, some crucial bottlenecks that may impede the successful scaling-up of the process are discussed. PMID:22921584

  18. Phenolic profile and antioxidant activities of olive mill wastewater.

    PubMed

    El-Abbassi, Abdelilah; Kiai, Hajar; Hafidi, Abdellatif

    2012-05-01

    Olive trees play an important role in the Moroccan agro-economy, providing both employment and export revenue. However, the olive oil industry generates large amounts of wastes and wastewaters. The disposal of these polluting by-products is a significant environmental problem that needs an adequate solution. On one hand, the phytotoxic and antimicrobial effects of olive mill wastewaters are mainly due to their phenolic content. The hydrophilic character of the polyphenols results in the major proportion of natural phenols being separated into the water phase during the olive processing. On other hand, the health benefits arising from a diet containing olive oil have been attributed to its richness in phenolic compounds that act as natural antioxidants and are thought to contribute to the prevention of heart diseases and cancers. Olive mill wastewater (OMW) samples have been analysed in terms of their phenolic constituents and antioxidant activities. The total phenolic content, flavonoids, flavanols, and proanthocyanidins were determined. The antioxidant and radical scavenging activity of phenolic extracts and microfiltred samples was evaluated using different tests (iron(II) chelating activity, total antioxidant capacity, DPPH assays and lipid peroxidation test). The obtained results reveal the considerable antioxidant capacity of the OMW, that can be considered as an inexpensive potential source of high added value powerful natural antioxidants comparable to some synthetic antioxidants commonly used in the food industry. PMID:26434308

  19. Acetone-butanol-ethanol production from Kraft paper mill sludge by simultaneous saccharification and fermentation.

    PubMed

    Guan, Wenjian; Shi, Suan; Tu, Maobing; Lee, Yoon Y

    2016-01-01

    Paper mill sludge (PS), a solid waste from pulp and paper industry, was investigated as a feedstock for acetone-butanol-ethanol (ABE) production by simultaneous saccharification and fermentation (SSF). ABE fermentation of paper sludge by Clostridium acetobutylicum required partial removal of ash in PS to enhance its enzymatic digestibility. Enzymatic hydrolysis was found to be a rate-limiting step in the SSF. A total of 16.4-18.0g/L of ABE solvents were produced in the SSF of de-ashed PS with solid loading of 6.3-7.4% and enzyme loading of 10-15FPU/g-glucan, and the final solvent yield reached 0.27g/g sugars. No pretreatment and pH control were needed in ABE fermentation of paper sludge, which makes it an attractive feedstock for butanol production. The results suggested utilization of paper sludge should not only consider the benefits of buffering effect of CaCO3 in fermentation, but also take into account its inhibitory effect on enzymatic hydrolysis. PMID:26562687

  20. WASTEWATER RECYCLE AND REUSE POTENTIAL FOR INDIRECT DISCHARGE TEXTILE FINISHING MILLS. VOLUME 2. SIX MILL ENGINEERING REPORTS

    EPA Science Inventory

    The report gives detailed information on a variety of wastewater recycle/reuse technologies that allow textile finishing mills to reduce the volume of wastewater and the amount of pollutants discharged to publicly owned treatment works. (NOTE: Dyebath reconstitution is described ...

  1. Isolation and identification of ligands for the goldfish testis androgen receptor in chemical recovery condensates from a Canadian bleached kraft pulp and paper mill.

    PubMed

    Scott, Philip D; Milestone, Craig B; Smith, D Scott; MacLatchy, Deborah L; Hewitt, L Mark

    2011-12-01

    This study builds on a series of investigations characterizing substances in kraft mill chemical recovery condensates that depress sex steroids in fish. Here, incubations of goldfish testis androgen receptors (AR) with condensate extracts were used to investigate the potential role of androgens in hormone depressions. Condensates contained variable levels of AR ligands, with the highest amounts in nonpolar extracts of filtered solids prior to solid phase extraction (SPE). High pressure liquid chromatography (HPLC) fractionation recovered the majority of activity in one fraction, with ligands detected in three additional fractions. Gas chromatography mass spectrometry analysis of the most active fraction confirmed the two most abundant components as the diterpenes manool and geranyl linalool. Manool exhibited a relative affinity for the AR that was 300 fold less than testosterone and accounted for 26% of total filtered solids activity. Geranyl linalool exhibited no affinity for the AR. Three additional diterpenoid families were tentatively identified as principal components of the three other androgenic HPLC fractions. Compared to condensates, final effluent had 3000 fold less androgenic activity, with <1% attributable to manool. Putative androgens previously associated with mill effluents (androstenedione and androstadienedione) and progesterone were not detected; however, additional condensate diterpenes suspected as androgens were identified in final effluent. This study is the first to confirm nonsteroidal cyclic diterpenes as androgenic at pulp mills. A major in-mill source of these substances was identified, and the role of androgens in mill effluents affecting fish reproduction was reinforced. PMID:22040000

  2. Exposure to bleached kraft pulp mill effluent disrupts the pituitary-gonadal axis of white sucker at multiple sites

    SciTech Connect

    Van Der Kraak, G.J.; Munkittrick, K.R.; McMaster, M.E.; Portt, C.B.; Chang, J.P. )

    1992-08-01

    Recent studies have demonstrated reproductive problems in white sucker (Catostomus commersoni) exposed to bleached kraft pulp mill effluent (BKME) at Jackfish Bay on Lake Superior. These fish exhibit delayed sexual maturity, reduced gonadal size, reduced secondary sexual characteristics, and circulating steroid levels depressed relative to those of reference populations. The present studies were designed to evaluate sites in the pituitary-gonadal axis of prespawning white sucker affected by BKME exposure. At the time of entry to the spawning stream, plasma levels of immunoreactive gonadotropin (GtH)-II (LH-type GtH) in male and female white sucker were 30- and 50-fold lower, respectively, than the levels in fish from a reference site. A single intraperitoneal injection of D-Arg6, Pro9N-Et sGnRH (sGnRH-A, 0.1 mg/kg) increased plasma GtH levels in male and female fish at both sites, although the magnitude of the response was greatly reduced in BKME-exposed fish. Fish at the BKME site did not ovulate in response to sGnRH-A, while 10 of 10 fish from the reference site ovulated within 6 hr. Plasma 17 alpha,20 beta-dihydroxy-4-pregnen-3-one (17,20 beta-P) levels were depressed in BKME-exposed fish and unlike fish at the reference site, failed to increase in response to sGnRH-A. Testosterone levels in both sexes and 11-ketostestosterone levels in males were elevated in fish from the reference site but were not further increased by GnRH treatment. In contrast, BKME-exposed fish exhibit a transitory increase in testosterone levels in response to the GnRH analog. In vitro incubations of ovarian follicles obtained from fish at the BKME site revealed depressed basal secretion of testosterone and 17,20 beta-P and reduced responsiveness to the GtH analog human chorionic gonadotropin and to forskolin, a direct activator of adenylate cyclase.

  3. Comparison of different wastewater treatments for removal of selected endocrine-disruptors from paper mill wastewaters.

    PubMed

    Balabanič, Damjan; Hermosilla, Daphne; Merayo, Noemí; Klemenčič, Aleksandra Krivograd; Blanco, Angeles

    2012-01-01

    There is increasing concern about chemical pollutants that have the ability to mimic hormones, the so-called endocrine-disrupting compounds (EDCs). One of the main reasons for concern is the possible effect of EDCs on human health. EDCs may be released into the environment in different ways, and one of the most significant sources is industrial wastewater. The main objective of this research was to evaluate the treatment performance of different wastewater treatment procedures (biological treatment, filtration, advanced oxidation processes) for the reduction of chemical oxygen demand and seven selected EDCs (dimethyl phthalate, diethyl phthalate, dibutyl phthalate, benzyl butyl phthalate, bis(2-ethylhexyl) phthalate, bisphenol A and nonylphenol) from wastewaters from a mill producing 100 % recycled paper. Two pilot plants were running in parallel and the following treatments were compared: (i) anaerobic biological treatment followed by aerobic biological treatment, ultrafiltration and reverse osmosis (RO), and (ii) anaerobic biological treatment followed by membrane bioreactor and RO. Moreover, at lab-scale, four different advanced oxidation processes (Fenton reaction, photo-Fenton reaction, photocatalysis with TiO(2), and ozonation) were applied. The results indicated that the concentrations of selected EDCs from paper mill wastewaters were effectively reduced (100 %) by both combinations of pilot plants and photo-Fenton oxidation (98 %), while Fenton process, photocatalysis with TiO(2) and ozonation were less effective (70 % to 90 %, respectively). PMID:22571523

  4. 40 CFR 430.30 - Applicability; description of the unbleached kraft subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sulfite semi-chemical (cross recovery) mills; and the production of pulp and paper at combined unbleached kraft and semi-chemical mills, wherein the spent semi-chemical cooking liquor is burned within the unbleached kraft chemical recovery system....

  5. 40 CFR 430.30 - Applicability; description of the unbleached kraft subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sulfite semi-chemical (cross recovery) mills; and the production of pulp and paper at combined unbleached kraft and semi-chemical mills, wherein the spent semi-chemical cooking liquor is burned within the unbleached kraft chemical recovery system....

  6. 40 CFR 430.30 - Applicability; description of the unbleached kraft subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sulfite semi-chemical (cross recovery) mills; and the production of pulp and paper at combined unbleached kraft and semi-chemical mills, wherein the spent semi-chemical cooking liquor is burned within the unbleached kraft chemical recovery system....

  7. Valorization of treated olive mill wastewater in fertigation practice.

    PubMed

    Mseddi, Salma; Chaari, Leila; Belaid, Chokri; Chakchouk, Ikram; Kallel, Monem

    2016-08-01

    Olive mill wastewater (OMW) brings about a major environmental problem in Tunisia as well as in the other Mediterranean countries. Its strong organic load and its toxicity due to the presence of complex phenolic compounds have dire effects when applied to soil. To overcome this difficulty, the OMW pretreatment was investigated in the present work using the Fenton oxidation reaction with zero-valent iron. Then, this pretreated wastewater was valorized in fertigation practice. The effects of the addition of different concentrations of both treated and raw OMW on soil and cropping system were investigated. The treatment by Fenton oxidation with zero-valent iron could reduce 50 % of COD and decrease 53 % of phenolic compounds. OMW application had a temporary effect on the soil pH and EC. The results showed that the evolution of soil pH and EC was related to the organic matter of the soil which depends on the spread concentrations of raw or treated OMW. After 15-day incubation period, the soil pH and EC tended to stabilize and return to the control level. Moreover, this stabilization is faster in treated OMW than that in raw OMW especially for concentrations as high as 3 and 4 %. Plants cultivated with treated OMW showed an increase in their germination. The results pointed an improvement in the stem length of plants which is almost similar to that of the control for both pea and tomato, especially for high concentrations of 3 and 4 %. PMID:25794584

  8. Integration of a kraft pulping mill into a forest biorefinery: pre-extraction of hemicellulose by steam explosion versus steam treatment.

    PubMed

    Martin-Sampedro, Raquel; Eugenio, Maria E; Moreno, Jassir A; Revilla, Esteban; Villar, Juan C

    2014-02-01

    Growing interest in alternative and renewable energy sources has brought increasing attention to the integration of a pulp mill into a forest biorefinery, where other products could be produced in addition to pulp. To achieve this goal, hemicelluloses were extracted, either by steam explosion or by steam treatment, from Eucalyptus globulus wood prior to pulping. The effects of both pre-treatments in the subsequent kraft pulping and paper strength were evaluated. Results showed a similar degree of hemicelluloses extraction with both options (32-67% of pentosans), which increased with the severity of the conditions applied. Although both pre-treatments increased delignification during pulping, steam explosion was significantly better: 12.9 kappa number vs 22.6 for similar steam unexploded pulps and 40.7 for control pulp. Finally, similar reductions in paper strength were found regardless of the type of treatment and conditions assayed, which is attributed to the increase of curled and kinked fibers. PMID:24368272

  9. Electrodialysis field test for selective chloride removal from the chemical recovery cycle of a kraft pulp mill

    SciTech Connect

    Rapp, H.J.; Pfromm, P.H.

    1998-12-01

    Chloride accumulation is a serious issue in the kraft pulping process. Chloride can be selectively removed from dissolved electrostatic precipitator dust (ESP dust) in the kraft chemical recovery cycle by electrodialysis with monovalent-selective anion-exchange membranes. In a pilot-scale field test, this process was investigated (total run time, 750 h). The test was performed at about 3.5% of full scale. The process showed outstanding performance and no significant membrane fouling. In feed-and-bleed operation, chloride removal levels of 94% and 61% were tested. The energy consumption for electrodialysis is low (120 kWh per metric ton of chloride removed at a 63% chloride removal level). The process performed very well even with no feed pretreatment, polarity reversal, or membrane cleaning.

  10. 40 CFR 430.30 - Applicability; description of the unbleached kraft subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... unbleached kraft mills; the production of pulp and paper at unbleached kraft-neutral sulfite semi-chemical (cross recovery) mills; and the production of pulp and paper at combined unbleached kraft and semi-chemical mills, wherein the spent semi-chemical cooking liquor is burned within the unbleached...

  11. Assessment of Gasification-Based Biorefining at Kraft Pulp and Paper Mills in the United States, Part A: Background and Assumptions

    SciTech Connect

    Larson, E. D.; Consonni, S.; Katofsky, R. E.; Iisa, K.; Frederick, W. J., Jr.

    2008-11-01

    Commercialization of black liquor and biomass gasification technologies is anticipated in the 2010-2015 time frame, and synthesis gas from gasifiers can be converted into liquid fuels using catalytic synthesis technologies that are already commercially established in the gas-to-liquids or coal-to-liquids industries. This set of two papers describes key results from a major assessment of the prospective energy, environmental, and financial performance of commercial gasification-based biorefineries integrated with kraft pulp and paper mills [1]. Seven detailed biorefinery designs were developed for a reference mill in the southeastern United States, together with the associated mass/energy balances, air emissions estimates, and capital investment requirements. The biorefineries provide chemical recovery services and co-produce process steam for the mill, some electricity, and one of three liquid fuels: a Fischer-Tropsch synthetic crude oil (which could be refined to vehicle fuels at an existing petroleum refinery), dimethyl ether (a diesel engine fuel or propane substitute), or an ethanol-rich mixed-alcohol product. This paper describes the key assumptions that underlie the biorefinery designs. Part B will present analytical results.

  12. Assessment of electrochemical and chemical coagulation as post-treatment for the effluents of a UASB reactor treating cellulose pulp mill wastewater.

    PubMed

    Buzzini, A P; Motheo, A J; Pires, E C

    2005-01-01

    This paper presents results from exploratory experiments to test the technical feasibility of electrolytic treatment and coagulation followed by flocculation and sedimentation as post-treatment for the effluent of an UASB reactor treating simulated wastewater from an unbleached Kraft pulp mill. The electrolytic treatment provided up to 67% removal of the remaining COD and 98% of color removal. To achieve these efficiencies the energy consumption ranged from 14 Wh x l(-1) to 20 Wh x l(-1). The coagulation-flocculation treatment followed by settling required 350-400 mg x l(-1) of aluminium sulfate. The addition of a high molecular weight cationic polymer enhanced both COD and color removal. Both post-treatment processes are technically feasible. PMID:16180426

  13. Biomass selection for optimal anaerobic treatment of olive mill wastewater.

    PubMed

    Sabbah, I; Yazbak, A; Haj, J; Saliba, A; Basheer, S

    2005-01-01

    This research was conducted to identify the most efficient biomass out of five different types of biomass sources for anaerobic treatment of Olive Mill Wastewater (OMW). This study was first focused on examining the selected biomass in anaerobic batch systems with sodium acetate solutions (control study). Then, the different types of biomass were tested with raw OMW (water-diluted) and with pretreated OMW by coagulation-flocculation using Poly Aluminum Chloride (PACl) combined with hydrated lime (Ca(OH)2). Two types of biomass from wastewater treatment systems of a citrus juice producing company "PriGat" and from a citric acid manufacturing factory "Gadot", were found to be the most efficient sources of microorganisms to anaerobically treat both sodium acetate solution and OMW. Both types of biomass were examined under different concentration ranges (1-40 g l(-1)) of OMW in order to detect the maximal COD tolerance for the microorganisms. The results show that 70-85% of COD removal was reached using Gadot biomass after 8-10 days when the initial concentration of OMW was up to 5 g l(-1), while a similar removal efficiency was achieved using OMW of initial COD concentration of 10 g l(-1) in 2-4 days of contact time with the PriGat biomass. The physico-chemical pretreatment of OMW was found to enhance the anaerobic activity for the treatment of OMW with initial concentration of 20 g l(-1) using PriGat biomass. This finding is attributed to reducing the concentrations of polyphenols and other toxicants originally present in OMW upon the applied pretreatment process. PMID:15747599

  14. WASTEWATER RECYCLE AND REUSE POTENTIAL FOR INDIRECT DISCHARGE TEXTILE FINISHING MILLS. VOLUME 1. TECHNICAL REPORT

    EPA Science Inventory

    The report gives detailed information on a variety of wastewater recycle/reuse technologies that allow textile finishing mills to reduce the volume of waste-water and the amount of pollutants discharged to publicly owned treatment works. (NOTE: Dyebath reconstitution is described...

  15. Inoculation of paperboard mill sludge versus mixed culture bacteria for hydrogen production from paperboard mill wastewater.

    PubMed

    Farghaly, Ahmed; Tawfik, Ahmed; Danial, Amal

    2016-02-01

    A comparative evaluation of paperboard mill sludge (PMS) versus mixed culture bacteria (MCB) as inoculum for hydrogen production from paperboard mill wastewater (PMW) was investigated. The experiments were conducted at different initial cultivation pHs, inoculums to substrate ratios (ISRs gVS/gCOD), and hydraulic retention times (HRTs). The peak hydrogen yield (HY) of 5.29 ± 0.16 and 1.22 ± 0.11 mmol/gCODinitial was occurred at pH = 5 for MCB and PMS, respectively. At pH of 5, the HY and COD removal achieved the highest values of 2.26 ± 0.14 mmol/gCODinitial and 86 ± 1.6% at ISR = 6 for MCB, and 2.38 ± 0.25 mmol/gCODinitial and 60.4 ± 2.5% at ISRs = 3 for PMS. The maximum hydrogen production rate was 93.75 ± 8.9 mmol/day at HRT = 9.6 h from continuous upflow anaerobic reactor inoculated with MCB. Meanwhile, the 16S ribosomal RNA (rRNA) gene fragments indicated a dominance of a novel hydrogen-producing bacterium of Stenotrophomonas maltophilia for PMS microbial community. On the other hand, Escherichia fergusonii and Enterobacter hormaechei were the predominant species for MCB. PMID:26498965

  16. Ultrasound pretreatment for enhanced biogas production from olive mill wastewater.

    PubMed

    Oz, Nilgun Ayman; Uzun, Alev Cagla

    2015-01-01

    This study investigates applicability of low frequency ultrasound technology to olive mill wastewaters (OMWs) as a pretreatment step prior to anaerobic batch reactors to improve biogas production and methane yield. OMWs originating from three phase processes are characterized with high organic content and complex nature. The treatment of the wastewater is problematic and alternative treatment options should be investigated. In the first part of the study, OMW samples were subjected to ultrasound at a frequency of 20kHz with applied powers varying between 50 and 100W under temperature controlled conditions for different time periods in order to determine the most effective sonication conditions. The level of organic matter solubilization at ultrasound experiments was assessed by calculating the ratio of soluble chemical oxygen demand/total chemical oxygen demand (SCOD/TCOD). The results revealed that the optimum ultrasonic condition for diluted OMW is 20kHz, 0.4W/mL for 10min. The application of ultrasound to OMW increased SCOD/TCOD ratio from 0.59 to 0.79. Statistical analysis (Friedman's tests) show that ultrasound was significantly effective on diluted OMW (p<0.05) in terms of SCOD parameter, but not for raw OMW (p>0.05). For raw OMW, this increase has been found to be limited due to high concentration of suspended solids (SS). In the second part of the study, biogas and methane production rates of anaerobic batch reactor fed with the ultrasound pretreated OMW samples were compared with the results of control reactor fed with untreated OMW in order to determine the effect of sonication. A nonparametric statistical procedure, Mann-Whitney U test, was used to compare biogas and methane production from anaerobic batch reactors for control and ultrasound pretreated samples. Results showed that application of low frequency ultrasound to OMW significantly improved both biogas and methane production in anaerobic batch reactor fed with the wastewater (p<0.05). Anaerobic

  17. Evaluation of tertiary treatment by fungi, enzymatic and photo-Fenton oxidation on the removal of phenols from a kraft pulp mill effluent: a comparative study.

    PubMed

    Justino, Celine; Marques, Ana Gabriela; Rodrigues, Dina; Silva, Lurdes; Duarte, Armando Costa; Rocha-Santos, Teresa; Freitas, Ana Cristina

    2011-04-01

    Pulp and paper mills generate pollutants associated to their effluents depending upon the type of process, type of the wood materials, process technology applied, management practices, internal recirculation of the effluent for recovery, the amount of water used in the industrial process and type of secondary treatment. This study is the first that reports a simultaneous evaluation of the effects of tertiary treatments by fungi (Rhizopus oryzae and Pleurotus sajor caju), by enzyme (laccase) and by an oxidation process (photo-Fenton) on individual phenols (vanillin, guaiacol, phloroglucinol, vanillic acid and syringic acid) of a Eucalyptus globulus bleached kraft pulp and paper mill final effluent after secondary treatment (BKPME). The tertiary treatments were applied on BKPME samples and in BKPME samples supplemented with extra concentration of each phenol. Tertiary treatments by Rhizopus oryzae and photo-Fenton oxidation were able of complete removal (100%) of phenols on BKPME samples whereas P. sajor caju and laccase were able of 60-85% removal. On BKPME samples with added concentration of each phenol, photo-Fenton was the only treatment capable of total phenols removal (100%), which suggests a great potential for its application. PMID:20683764

  18. Bioaccumulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin in feral fish collected from a bleach-kraft paper mill receiving stream

    SciTech Connect

    Schell, J.D. ); Campbell, D.M.; Lowe, E. )

    1993-11-01

    Bleach-kraft mill (BKM) processes may result in the formation and release of a number of chlorinated organic compounds, including 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Contamination of aquatic ecosystems by TCDD is of concern due to the chemical's toxicity, bioaccumulation potential, and persistence in the environment. Sediment samples and tissues from three species of fish an done invertebrate were collected downstream from a BKM facility and were analyzed for TCDD. Concentrations of TCDD were greatest in the bowfin, particularly in the ovary of a gravid female. There appeared to be no correlation between either trophic position of habitat classification (i.e., epibenthic or pelagic) and TCDD tissue concentrations. Sediments collected near the mill outfall contained elevated levels of TCDD as great as 52.8 ppt. Sediment-based BAFs and lipid- and carbon-normalized bioavailability indexes (BI) were calculated for the fish livers and gonads, and blue crab hepatopancreas. BAF*s varied by a factor of 27, depending on species and organ, whereas BIs had an approximate seven-fold variation. It appears that organic carbon- and lipid-normalization factors may be more accurate predictors of the extent of bioaccumulation in resident biota from TCDD-contaminated sediments than either BAF*s or BCFs. As there is currently only a limited understanding of species variability in absorption and deposition of TCDD, a more accurate estimation of TCDD levels in feral fish tissues may not be possible.

  19. Electro-coagulation treatment efficiency of graphite, iron and aluminum electrodes using alum and wood ash electrolytes on a Kraft pulp and paper mill effluent.

    PubMed

    Orori, O B; Etiégni, L; Senelwa, K; Mwamburi, M M; Balozi, K B; Barisa, G K; Omutange, E S

    2010-01-01

    Specific power consumption and reduction of BOD, COD, TS, pH, and chemical elements were used to determine the treatment efficiency of Fe, graphite and Al electrodes with alum and wood ash as supporting electrolytes on the effluent from a Kraft pulp and paper mill in Kenya. Five sampling points were selected along mill's effluent treatment system: primary settling tank (SP1), first aerated lagoon (SP2), second aerated lagoon (SP3), stabilization pond (SP4), and at discharge point (SP5). Operating costs were also compared between treatments. Graphite electrodes combined with alum showed the lowest power consumption (0.5 to 3.9 mWh/m³), followed by Al and Fe. All the electrodes reduced color from a maximum of 3,200°H to the minimum local standard of 15°H. However Al electrode with alum was the most effective method for BOD and COD reduction by over 60% and 58.8% respectively and generated less sludge at all sampling points. The cost of treatment was lowest with graphite electrode (US$0.006 to 0.0008 per m³ of effluent), but highest with Al electrodes combined with wood ash (US$31.74 to 8.34 per m³). Further study is required for the effectiveness of increasing the concentration of wood ash leachate at higher concentration and current density. PMID:20935369

  20. Antioxidant activity of phenolic fractions in olive mill wastewater.

    PubMed

    Azaizeh, Hassan; Halahlih, Fares; Najami, Naim; Brunner, Doris; Faulstich, Martin; Tafesh, Ahmed

    2012-10-15

    Olive mill wastewater (OMW) contains a substantial amount of valuable antioxidant phenols that can be recovered for industrial application as food additives and pharmaceuticals. The present study was aimed at extracting different phenolic OMW fractions, and determining their antioxidant potential. Five different OMW fractions were obtained using fractionation techniques, their antioxidant potential determined by DPPH, ORAC and a β-carotene bleaching test. The total phenol level ranged between 115 and 170 mg/l. The phenolic compounds present in individual fractions were identified using the HPLC-PAD method, where the main compounds were hydroxytyrosol, tyrosol, caffeic acid, vanillic acid, verbascoside, oleuropein, ferulic acid, and p-coumaric acid. The five OMW fractions showed different antioxidant levels depending on the test used. DPPH test showed that the fraction of alkyl aromatic alcohols (AAAs) was the best with EC(50) of 20 mg/l and the pure hydroxytyrosol with 2 mg/l. ORAC test showed that AAA and semi hydrolysed total phenol (s-TP) fractions were significantly better than Trolox when compared to 20 mg/l of Trolox. PMID:23442678

  1. Extraction of Oleic Acid from Moroccan Olive Mill Wastewater

    PubMed Central

    Elkacmi, Reda; Kamil, Noureddine; Bennajah, Mounir; Kitane, Said

    2016-01-01

    The production of olive oil in Morocco has recently grown considerably for its economic and nutritional importance favored by the country's climate. After the extraction of olive oil by pressing or centrifuging, the obtained liquid contains oil and vegetation water which is subsequently separated by decanting or centrifugation. Despite its treatment throughout the extraction process, this olive mill wastewater, OMW, still contains a very important oily residue, always regarded as a rejection. The separated oil from OMW can not be intended for food because of its high acidity of 3.397% which exceeds the international standard for human consumption defined by the standard of the Codex Alimentarius, proving its poor quality. This work gives value addition to what would normally be regarded as waste by the extraction of oleic acid as a high value product, using the technique of inclusion with urea for the elimination of saturated and unsaturated fatty acids through four successive crystallizations at 4°C and 20°C to have a final phase with oleic acid purity of 95.49%, as a biodegradable soap and a high quality glycerin will be produced by the reaction of saponification and transesterification. PMID:26933663

  2. Effect of Olive Mill Wastewater Spreading on Soil Properties.

    PubMed

    Vella, Filomena M; Galli, Emanuela; Calandrelli, Roberto; Cautela, Domenico; Laratta, Bruna

    2016-07-01

    The effect of untreated olive mill wastewater (OMW) spreading on chemical and biological soil properties of two different fields located in Campania (Italy) was investigated. Fields were irrigated since 2003 with quantities of about 30 m(3) ha(-1) year(-1), a volume lower than the maximum limit of 80 m(3) ha(-1) year(-1) established by Italian law. Results showed that the addition of OMW, even if repeated for many years, had little impact on pH, electrical conductivity, organic matter, concentrations of main cations and polyphenolic content of both soil plots; moreover, microbial respiration was low during the winter time, but an increase was evident in the second sampling carried out in warm season. This study suggests that OMW, without pre-treatments, can be annually used for crops and tree irrigation. As a consequence, OMW should be a readily and inexpensive source of nutrients that could replace chemical fertilizers which are extensively employed in agricultural practices of Mediterranean countries. PMID:27209544

  3. Lipase production by Aspergillus ibericus using olive mill wastewater.

    PubMed

    Abrunhosa, Luís; Oliveira, Felisbela; Dantas, Danielle; Gonçalves, Cristiana; Belo, Isabel

    2013-03-01

    Olive mill wastewater (OMW) characteristics make it a suitable resource to be used as a microbial culture media to produce value-added compounds, such as enzymes. In this work, the ability of the novel species Aspergillus ibericus to discolor OMW and produce lipase was studied. An initial screening on plates containing an OMW-based agar medium and an emulsified olive oil/rhodamine-B agar medium was employed to select the strain A. ibericus MUM 03.49. Then, experiments in conical flasks with liquid OMW-based media showed that the fungus could growth on undiluted OMW, with a chemical oxygen demand (COD) of 97 ± 2 g/L, and to produce up to 2,927 ± 54 U/L of lipase. When pure OMW was used in the media, the maximum COD and color reduction achieved were 45 and 97 %, respectively. When OMW diluted to 10 % was used, A. ibericus was able to reduce phenolic and aromatic compounds by 37 and 39 %, respectively. Additionally, lipase production was found to be promoted by the addition of mineral nutrients. When the fermentations were scaled up to a 2-L bioreactor, A. ibericus produced up to 8,319 ± 33 U/L of lipase, and the maximum COD and color reduction were 57 and 24 %, respectively. PMID:22791217

  4. Evaluation of an aerobic treatment for olive mill wastewater detoxification.

    PubMed

    El Hajjouji, Houda; El Fels, Loubna; Pinelli, Eric; Barje, Farid; El Asli, Abdelghani; Merlina, Georges; Hafidi, Mohamed

    2014-01-01

    Olive mill wastewater (OMWW) is a by-product of the olive oil extraction industry. Its dumping creates severe environmental problems in the Mediterranean countries. The phytoxicity of OMWW is due to the phenolic substances and is evaluated through a genotoxicity method. An aerobic treatment of OMWW was conducted during 45 days. Different concentrations of raw and treated OMWW were tested using the Vicia faba micronuclei test. Results showed that raw OMWW induced significant micronuclei formation at 10% of OMWW dilution. At 20% of dilution, no mitosis was recorded. The 45 days aerobic treatment OMWW showed an important decrease in the genotoxicity and also in the toxicity that was observed at 10% and 20% OMWW dilution. This could be correlated with the biodegradation of 76% of the total phenols. Indeed, qualitative analysis by high performance liquid chromatography shows the disappearance of the majority of phenolic compounds after 45 days of treatment. This study was completed by an agricultural test with V. faba plant. Data showed significant growth yield of 36.3% and 29.9% after being irrigated with 5 and 10 t/ha, respectively. These results supported the positive role of aerobic treatment on OMWW and their capacity to ameliorate the agronomic potential of these effluents. PMID:25244133

  5. Extraction of Oleic Acid from Moroccan Olive Mill Wastewater.

    PubMed

    Elkacmi, Reda; Kamil, Noureddine; Bennajah, Mounir; Kitane, Said

    2016-01-01

    The production of olive oil in Morocco has recently grown considerably for its economic and nutritional importance favored by the country's climate. After the extraction of olive oil by pressing or centrifuging, the obtained liquid contains oil and vegetation water which is subsequently separated by decanting or centrifugation. Despite its treatment throughout the extraction process, this olive mill wastewater, OMW, still contains a very important oily residue, always regarded as a rejection. The separated oil from OMW can not be intended for food because of its high acidity of 3.397% which exceeds the international standard for human consumption defined by the standard of the Codex Alimentarius, proving its poor quality. This work gives value addition to what would normally be regarded as waste by the extraction of oleic acid as a high value product, using the technique of inclusion with urea for the elimination of saturated and unsaturated fatty acids through four successive crystallizations at 4°C and 20°C to have a final phase with oleic acid purity of 95.49%, as a biodegradable soap and a high quality glycerin will be produced by the reaction of saponification and transesterification. PMID:26933663

  6. Synergistic Antibacterial Effects of Polyphenolic Compounds from Olive Mill Wastewater

    PubMed Central

    Tafesh, Ahmed; Najami, Naim; Jadoun, Jeries; Halahlih, Fares; Riepl, Herbert; Azaizeh, Hassan

    2011-01-01

    Polyphenols or phenolic compounds are groups of secondary metabolites widely distributed in plants and found in olive mill wastewater (OMW). Phenolic compounds as well as OMW extracts were evaluated in vitro for their antimicrobial activity against Gram-positive (Streptococcus pyogenes and Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae). Most of the tested phenols were not effective against the four bacterial strains when tested as single compounds at concentrations of up to 1000 μg mL−1. Hydroxytyrosol at 400 μg mL−1 caused complete growth inhibition of the four strains. Gallic acid was effective at 200, and 400 μg mL−1 against S. aureus, and S. pyogenes, respectively, but not against the gram negative bacteria. An OMW fraction called AntiSolvent was obtained after the addition of ethanol to the crude OMW. HPLC analysis of AntiSolvent fraction revealed that this fraction contains mainly hydroxytyrosol (10.3%), verbascoside (7.4%), and tyrosol (2.6%). The combinations of AntiSolvent/gallic acid were tested using the low minimal inhibitory concentrations which revealed that 50/100–100/100 μg mL−1 caused complete growth inhibition of the four strains. These results suggest that OMW specific fractions augmented with natural phenolic ingredients may be utilized as a source of bioactive compounds to control pathogenic bacteria. PMID:21647315

  7. Anaerobic digestion challenge of raw olive mill wastewater.

    PubMed

    Sampaio, M A; Gonçalves, M R; Marques, I P

    2011-12-01

    Olive mill wastewater (OMW) was digested in its original composition (100% v/v) in an anaerobic hybrid. High concentrations (54-55 kg COD m(-3)), acid pH (5.0) and lack of alkalinity and nitrogen are some OMW adverse characteristics. Loads of 8 kg COD m(-3) d(-1) provided 3.7-3.8 m3 biogas m(-3) d(-1) (63-64% CH4) and 81-82% COD removal. An effluent with basic pH (8.1) and high alkalinity was obtained. A good performance was also observed with weekly load shocks (2.7-4.1, 8.4-10.4 kg COD m(-3) d(-1)) by introducing piggery effluent and OMW alternately. Biogas of 3.0-3.4 m3 m(-3) d(-1) (63-69% CH4) was reached. Developed biomass (350 days) was neither affected by raw OMW nor by organic shocks. Through the effluents complementarity concept, a stable process able of degrading the original OMW alone was obtained. Unlike what is referred, OMW is an energy resource through anaerobiosis without additional expenses to correct it or decrease its concentration/toxicity. PMID:21983408

  8. High-rate anaerobic co-digestion of kraft mill fibre sludge and activated sludge by CSTRs with sludge recirculation.

    PubMed

    Ekstrand, Eva-Maria; Karlsson, Marielle; Truong, Xu-Bin; Björn, Annika; Karlsson, Anna; Svensson, Bo H; Ejlertsson, Jörgen

    2016-10-01

    Kraft fibre sludge from the pulp and paper industry constitutes a new, widely available substrate for the biogas production industry, with high methane potential. In this study, anaerobic digestion of kraft fibre sludge was examined by applying continuously stirred tank reactors (CSTR) with sludge recirculation. Two lab-scale reactors (4L) were run for 800days, one on fibre sludge (R1), and the other on fibre sludge and activated sludge (R2). Additions of Mg, K and S stabilized reactor performance. Furthermore, the Ca:Mg ratio was important, and a stable process was achieved at a ratio below 16:1. Foaming was abated by short but frequent mixing. Co-digestion of fibre sludge and activated sludge resulted in more robust conditions, and high-rate operation at stable conditions was achieved at an organic loading rate of 4g volatile solids (VS)L(-1)day(-1), a hydraulic retention time of 4days and a methane production of 230±10NmL per g VS. PMID:27453288

  9. Olive mill wastewater treatment in single-chamber air-cathode microbial fuel cells.

    PubMed

    Bermek, Hakan; Catal, Tunc; Akan, S Süha; Ulutaş, Mehmet Sefa; Kumru, Mert; Özgüven, Mine; Liu, Hong; Özçelik, Beraat; Akarsubaşı, Alper Tunga

    2014-04-01

    Olive mill wastewaters create significant environmental issues in olive-processing countries. One of the most hazardous groups of pollutants in these wastewaters is phenolic compounds. Here, olive mill wastewater was used as substrate and treated in single-chamber air-cathode microbial fuel cells. Olive mill wastewater yielded a maximum voltage of 381 mV on an external resistance of 1 kΩ. Notable decreases in the contents of 3,4-dihydroxybenzoic acid, tyrosol, gallic acid and p-coumaric acid were detected. Chemical oxygen demand removal rates were 65 % while removal of total phenolics by the process was lower (49 %). Microbial community analysis during the olive mill wastewater treating MFC has shown that both exoelectrogenic and phenol-degrading microorganisms have been enriched during the operation. Brevundimonas-, Sphingomonas- and Novosphingobium-related phylotypes were enriched on the anode biofilm, while Alphaproteobacteria and Bacteriodetes dominated the cathode biofilm. As one of the novel studies, it has been demonstrated that recalcitrant olive mill wastewaters could be treated and utilized for power generation in microbial fuel cells. PMID:24165748

  10. Wet Oxidation: A Promising Option for the Treatment of Pulp and Paper Mill Wastewater

    NASA Astrophysics Data System (ADS)

    Garg, A.

    2012-05-01

    Wet oxidation (WO) is used to degrade persistent organic or inorganic impurities present in industrial wastewater. The process utilizes severe oxidation conditions (i.e., high temperature and pressures) to achieve the efficient degradation of pollutants. To obtain high degradation at lower operation conditions, catalytic WO process is being suggested. The wastewater generated from a pulp and paper mill contains several recalcitrant compounds like lignin, hemi-cellulose, phenols, sulfides etc. Therefore, pulp and paper mill effluent have low biodegradability and are not amenable for conventional biological process. With the implementation of stringent regulations, pulp and paper mill operators need a cleaner disposal route for the wastewater. In this mini-review, the results obtained from the recently published studies on WO treatment for pulp and paper mill effluent are compiled and presented. Finally, the recommendations for the future work are also given.

  11. A comparison of kraft, PS, kraft-AQ and kraft-NaBH4 pulps of Brutia pine.

    PubMed

    Copur, Y; Tozluoglu, A

    2008-03-01

    The aim of this work was to study the effect of adding PS, AQ and NaBH(4) into kraft pulping with special attention given to NaBH(4). Kraft, kraft-AQ, PS, and kraft-NaBH(4) pulps were produced under the same cooking conditions and the pulps produced were compared in terms of pulp and paper properties. Kraft method was modified by adding 0.1% AQ, 4% PS and 2% and 4% NaBH(4) and the resultant pulps displayed an increase in pulp yield and reduction in both kappa number and screening rejects. On the other hand, there observed an increase in both pulp yield and kappa number when the kraft was modified to PS method. The benefits of NaBH(4) addition into kraft pulping was a significant reduction in kappa number and screening rejects and a significant increase in pulp yield. The most notable outcome of NaBH(4) was 66.6% increase in pulp brightness when 4% NaBH(4) was added into kraft pulping. Of unrefined pulps, unrefined kraft pulp displayed the highest strength of pulp, which is described as tear index at a constant tensile index. Of refined pulps, kraft-AQ showed the highest pulp strength when refined to 6000 and 12,000 revs in PFI mill. PMID:17531474

  12. Calibration and validation of a modified ASM1 using long-term simulation of a full-scale pulp mill wastewater treatment plant.

    PubMed

    Keskitalo, Jukka; Jansen, Jes la Cour; Leiviskä, Kauko

    2010-04-14

    A mathematical model modified from the well established Activated Sludge Model no. 1 was used for modelling a full-scale wastewater treatment plant (WWTP) in a bleached kraft pulp mill. Effluents from the pulp and paper industry are typically nutrient deficient, which was considered in the model. The wastewater characterization and model calibration were based on respirometric batch experiments with sludge and wastewater sampled from the WWTP. The model performance was validated in a long-term simulation using routinely measured process data from the WWTP as the model inputs. The simulation results proved useful in evaluating nutrient dosage strategies at the WWTP and in troubleshooting poor treatment plant performance. However, in order to achieve a completely accurate description of nitrogen removal, more complex phenomena would have to be included in the model. Even though the simulated period was long compared to the brief measurement campaign used in the model calibration, the model was able to describe the treatment plant's behaviour. The calibrated model can be expected to stay valid for a long time, which allows the use of deterministic modelling in practical applications at pulp and paper WWTPs. PMID:20480830

  13. A bleached-kraft mill effluent fraction causing induction of a fish mixed-function oxygenase enzyme

    SciTech Connect

    Burnison, B.K.; Hodson, P.V.; Nuttley, D.J.; Efler, S.

    1996-09-01

    Pulp mill effluents contain a myriad of chemicals that have the potential to cause deleterious effects on aquatic biota in receiving waters. Some of these chemicals evoke an acute lethal response of exposed biota while others evoke sublethal responses. One such sublethal response is the induction of mixed-function oxygenases (MFO) in fish, specifically the CYP1A1 enzyme ethoxy-resorufin-o-deethylase (EROD). Compounds causing MFO induction include congeners of polychlorinated biphenyls (PCBs), dioxins, furans, and polycyclic aromatic hydrocarbons (PAHs). The authors followed the partitioning of the inducing chemicals in pulp mill effluent fractions by Toxicity Identification Evaluation (TIE), or bioassay-driven chemical analysis. This procedure was eventually modified to a more direct technique involving centrifugation, filtration, cleanup procedures, and C{sub 18} solid-phase adsorption. The extracts from the fractionation of two pulp mill effluents after secondary treatment were tested for EROD-inducing activity in a 4-d rainbow trout bioassay. The methanol extracts of particulates/colloids showed significant inducing capacity in Mill A effluent but not in Mill B effluent. The C{sub 18} methanol extracts induced activity from both effluents, with extracts from Mill A causing the greatest response. The particulate/colloidal extract (Mill A) was used as the source material for chemicals which caused EROD induction. The fraction was purified by solid-phase extraction techniques and reverse-phase high-performance liquid chromatography. The majority of the EROD activity was found in the moderately nonpolar region of the chromatogram (K{sub ow} = 4.6 to 5.1).

  14. Experimental exposure of juvenile chinook (Oncorhynchus tshawytscha) to bleached kraft mill effluent: hepatic CYP1A induction is correlated with DNA adducts but not with organochlorine residues.

    PubMed

    Wilson, J Y; Kruzynski, G M; Addison, R F

    2001-06-01

    Juvenile chinook salmon (Oncorhynchus tshawytscha) were exposed for 28 days to 0-16% treated effluent from an elemental chlorine free (ECF) bleached kraft pulp mill. Fresh effluent was diluted with river water drawn from upstream of the effluent diffuser. Fish were tested for biochemical responses to identify if the effluent would cause significant effects at concentrations spanning those present in the Fraser River, BC, Canada during winter conditions. Hepatic ethoxyresorufin-O-deethylase (EROD) activity was increased significantly at all effluent concentrations and hepatic cytochrome P450 1A (CYP1A) protein was increased in all but 2% effluent. Hepatic DNA adduct concentrations were increased significantly at 8 and 16% effluent. These data indicate that there is a significant increase in all three responses at concentrations similar to those found in the receiving waters (4%) and that a dose-response relationship exists between BKME concentration and the responses measured. Carcasses contained low (< 0.2 pg g(-1)) concentrations of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Polychlorinated biphenyls (PCBs) were at higher concentrations, accounting for 77% of the total contaminant burden, expressed as TEQ, but contaminants do not appear to have bioaccumulated in this study. It is likely that the PCB concentrations were due to contaminated commercial fish feed. Bile did not contain detectable levels of polycyclic aromatic hydrocarbons (PAHs) as measured by synchronous fluorescence spectrometry. PMID:11254946

  15. Removal of colour from a kraft pulp and paper mill effluent in Kenya using a combination of electrochemical method and phosphate rock.

    PubMed

    Etiégni, L; Oricho, O D; Ofosu-Asiedu, K; Senelwa, K A; Surtan, K G; Omutange, E S

    2007-01-01

    A study was undertaken to remove colour from a kraft mill's treated effluent in Kenya and determine the suitability of phosphate rock to replace wood ash during the electrochemical process. The electrochemical method alone, electrochemical combined with alum (ELCAL), wood ash leachate (ELCAS) and phosphate rock (ELPHOS) solutions at a rate of 165 to 1000 g/m3 were tested. Effluent characteristics were determined after complete removal of colour. Same reduction rates of TS (85%) and TSS (89%) were recorded by ELCAS and ELPHOS. However, ELPHOS removed more COD (86 to 91%) and more BOD (85 to 92%) than ELCAS. Furthermore, the pH of ELPHOS treated solution was 9.3, within the Kenya Local Government's allowable limit. Power reduction with ELCAS and ELPHOS varied between 53 to 73% and 49 to 69% respectively but the difference was not statistically significant. Overnight aeration further improved the quality of ELCAS and ELPHOS treated effluent, reducing BOD and COD values to 0 mg/l. ELPHOS cost ($0.29/m3) was nevertheless three times higher than that of ELCAS ($0.10/m3), mainly because of free wood ash. ELPHOS did not also increase effluent phosphorus. It was therefore recommended that various ways be explored in making ELPHOS more economical to replace ELCAS. PMID:17486830

  16. Olive mill wastewater treatment by anodic oxidation with parallel plate electrodes.

    PubMed

    Panizza, Marco; Cerisola, Giacomo

    2006-03-01

    Olive mill wastewater is characterized by very high chemical oxygen demand (COD) values and contains high concentrations of polyphenols that inhibit the activity of micro-organisms during biological oxidations. In this paper, the applicability of electrochemical oxidation of a real olive-mill wastewater was studied by performing galvanostatic electrolysis using parallel plate electrodes. A mixed titanium and ruthenium oxide (Ti/TiRuO2) was used as anode and stainless steel as cathode. The effect of chloride concentration and applied current on the removal of COD, aromatic content and colour was investigated. The experimental results showed that an effective electrochemical oxidation was achieved in which the wastewater was decolourised and the COD and aromatic content completely eliminated. In particular, the mineralisation took place by indirect oxidation, mediated by active chlorine, and the COD removal rate was enhanced by the addition of 5 g L(-1) of NaCl to the wastewater and by increasing the applied current. PMID:16510168

  17. Biological Kraft Chemical Recycle for Augmentation of Recovery Furnace Capacity

    SciTech Connect

    Stuart E. Strand

    2001-12-06

    The chemicals used in pulping of wood by the kraft process are recycled in the mill in the recovery furnace, which oxidizes organics while simultaneously reducing sulfate to sulfide. The recovery furnace is central to the economical operation of kraft pulp mills, but it also causes problems. The total pulp production of many mills is limited by the recovery furnace capacity, which cannot easily be increased. The furnace is one of the largest sources of air pollution (as reduced sulfur compounds) in the kraft pulp mill.

  18. Refractory organic pollutants and toxicity in pulp and paper mill wastewaters.

    PubMed

    Lindholm-Lehto, Petra C; Knuutinen, Juha S; Ahkola, Heidi S J; Herve, Sirpa H

    2015-05-01

    This review describes medium and high molecular weight organic material found in wastewaters from pulp and paper industry. The aim is to review the versatile pollutants and the analysis methods for their determination. Among other pollutants, biocides, extractives, and lignin-derived compounds are major contributors to harmful effects, such as toxicity, of industrial wastewaters. Toxicity of wastewaters from pulp and paper mills is briefly evaluated including the methods for toxicity analyses. Traditionally, wastewater purification includes mechanical treatment followed by chemical and/or biological treatment processes. A variety of methods are available for the purification of industrial wastewaters, including aerobic and anaerobic processes. However, some fractions of organic material, such as lignin and its derivatives, are difficult to degrade. Therefore, novel chemical methods, including electrochemical and oxidation processes, have been developed for separate use or in combination with biological treatment processes. PMID:25647495

  19. Size fractionation of wood extractives, lignin and trace elements in pulp and paper mill wastewater before and after biological treatment.

    PubMed

    Leiviskä, Tiina; Rämö, Jaakko; Nurmesniemi, Hannu; Pöykiö, Risto; Kuokkanen, Toivo

    2009-07-01

    Integrated kraft pulp and paper mill wastewater was characterized before (influent) and after (effluent) the activated sludge process by microfiltration (8, 3, 0.45 and 0.22 microm) and ultrafiltration (100, 50, 30 and 3 kDa) into different size fractions. Wood extractives, lignin, suspended solids and certain trace elements were determined in each fraction. Forty four percent of the resin and fatty acids in the influent (12.8 mg/L) occurred in particles (>0.45 microm), 20% as colloids (0.45 microm-3 kDa) and 36% in the <3 kDa fraction. The corresponding values for sterols (1.5 mg/L) were 5, 46 and 49%. In the effluent, resin and fatty acids (1.45 mg/L) and sterols (0.26 mg/L) were mainly present in the <3 kDa fraction, as well as a small proportion in particles. beta-sitosterol was present in particles in the effluent (88+/-50 microg/L). Lignin in the influent was mainly in the colloidal and <3 kDa fractions, whereas in the effluent it was mainly in the <3 kDa fraction. Thus the decrease of lignin in the biological treatment was concentrated on the colloidal fraction. In the influent, Mn, Zn and Si were mainly present in the <3 kDa fraction, whereas a significant proportion of Fe and Al were found also in the particle and colloidal fractions. In the effluent, Fe and Al were mainly present in the colloidal fraction; in contrast, Mn, Zn and Si were mainly in the <3 kDa fraction. The results indicated that the release of certain compounds and elements into the environment could be significantly decreased or even prevented simply by employing microfiltration as a final treatment step or by enhancing particle removal in the secondary clarifier. PMID:19524281

  20. Membrane-filtered olive mill wastewater: Quality assessment of the dried phenolic-rich fraction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A current trend in olive mill wastewater (OMWW) management is to not only decrease environmental pollution but also extract and utilize valuable by-products. Therefore, the objectives of this study were to explore different techniques for drying a phenolic-rich membrane filtration fraction of OMWW a...

  1. Centrifugation as a pre-treatment in olive mill wastewater processing (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Olive mill wastewater (OMWW), generated during production of olive oil, is an untapped source of nutritious compounds. Thus, processors want to separate OMWW into a high-value, concentrated product stream and near-pure water. However, the amount and characteristics of the produced OMWW depend on t...

  2. Olive mill wastewater membrane filtration fraction: Drying techniques and quality assessment of the dried product (abstract)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A current trend in olive mill wastewater (OMWW) management is to not only decrease environmental pollution but also utilize valuable co-products. Recovery of phenolics from OMWW could help olive oil processors add value to their co-product, increasing the sustainability of olive oil production. The ...

  3. PERIPHYTON AND SEDIMENT BIOASSESSMENT AS INDICATORS OF THE EFFECT OF A COASTAL PULP MILL WASTEWATER

    EPA Science Inventory

    A two year study was conducted near Port St. Joe, Florida, in a coastal transportation canal and bay receiving combined municipal and pulp mill wastewater. The objective of the study was to determine the effectiveness of periphyton analysis techniques and sediment toxicity as ind...

  4. Treatments of oil-refinery and steel-mill wastewaters by mesocosm constructed wetland systems.

    PubMed

    Yang, L; Hu, C C

    2005-01-01

    In this study, two types of industrial wastewater, oil-refining and steel-milling, were selected for investigating their feasibility of treatment by mesocosm constructed wetland systems. The secondly treated effluents from the wastewater treatment plants were directly discharged into the systems controlled at different flow rates. Three wetland mesocosms were installed in the two industries: mesocosms A and B were in the oil refinery, and mesocosm C was in the steel mill. The substratum media used in wetland systems were sand (mesocosm A) and gravel (mesocosms B and C), while the vegetation types selected were reeds (mesocosms A and B) and mixed species of reeds and cattails (mesocosm C). The flow regimes were controlled as free water surface (FWS) and subsurface flow (SSF) for the sand- and gravel-beds, respectively. According to the experimental results, we found that the system treating oil-refining wastewater performed better than that treating steel-milling wastewater learned by comparing the removal efficiencies of COD, total N and total P. In addition, it was found that for oil-refining wastewater treatments, the SSF wetland system (mesocosm B) performed better than FWS (mesocosm A) wetland system when comparing both of their removal of pollutants and growth of vegetation. Besides, the effluents from these two industrial wetland treatment systems might be reclaimed and reused for boiler water, cooling, cleaning and miscellaneous purposes in industries. Further treatments are required if the constructed wetland effluents are thought about being reused for processing in industries. PMID:16042254

  5. Does wastewater from olive mills induce toxicity and water repellency in soil?

    NASA Astrophysics Data System (ADS)

    Peikert, B.; Bandow, N.; Schaumann, G. E.

    2012-04-01

    Olive oil mill wastewater is the effluent generated by the olive oil extraction process. It is the main waste product of this industry mainly being produced in the Mediterranean Basin. Because proper treatment options are rare it is often disposed into the environment, e.g. fields or wadies. Due to its high concentration of fatty acids and phytotoxic phenolic compounds and its high chemical and biological oxygen demand, olive oil mill wastewater becomes a serious environmental problem. In this screening study we investigated long-term effects of olive oil mill wastewater application on soil properties in several locations in the West Bank and Israel. We determined wettability via water drop penetration time and the contact angle as well as general soil properties including pH, EC, carbon content, and we conducted thermogravimetrical analyses in order to characterize the impact of the waste water on the quality of soil organic matter. Our results show that application of olive oil mill wastewater has various effects. We determined contact angles between 110 and 120° and water drop penetration times up to 1367 s indicating significant reduction in wettability. Furthermore, soil carbon and nitrogen content and water extractable organic matter increased as well as electric conductivity, which could be pointed out as a fertilizing effect. In contrast soil pH was significantly reduced. Conducting thermal analyses we observed an increase in the labile and refractory carbon fraction. Probably first one is responsible for induced water repellency. As a consequence the reduced wettability negatively affects soil quality. It would therefore be promising to minimize the hydrophobizing impacts without losing fertilizing effects of the olive oil mill wastewater.

  6. Phytoremediation of parboiled rice mill wastewater using water lettuce (Pistia stratiotes).

    PubMed

    Mukherjee, Bidisha; Majumdar, Madhurina; Gangopadhyay, Amitava; Chakraborty, Sankar; Chaterjee, Debashish

    2015-01-01

    Phytoremediation is an emerging technology applied for treatment of wastewater. It is a suitable option notably in developing countries as it is simple, sustainable and cost effective. In the present lab-based batch study the free floating aquatic plant water lettuce (Pistia stratiotes) is used for treatment of parboiled rice mill wastewater having low pH, high chemical oxygen demand (COD), nitrogen, and phosphate. In raw rice mill wastewater (undiluted) growth of water lettuce is found to be inhibited. Later on, two different dilution approaches (raw and facultative pond effluent 1:1; raw and tap water 1:1) are applied in order to effectively use this technology. In all cases a control (without plant) is maintained to compare the performance with the Aquatic Plant based Treatment (APT) system. In the APT system results reveal that removal of soluble COD (SCOD), ammoniacal nitrogen (NH4-N), nitrate nitrogen (NO3-N), and soluble phosphorus (sol. P) are upto 65%, 98%, 70%, and 65% respectively. The study highlights the efficacy of water lettuce in removing organics and nutrients from parboiled rice mill wastewater. PMID:25192197

  7. Impact of paper mill wastewater on soil properties and crop yield through lysimeter studies.

    PubMed

    Singh, P K; Ladwani, K; Ladwani, K; Deshbhratar, P B; Ramteke, D S

    2013-01-01

    Paper and pulp industries produce large quantities of wastewater which can have adverse effects on the receiving water systems. In the present study lysimeters were used and filled with different soils replicating natural soil horizons and provided with a leachate collection system. The physico-chemical characteristics of the soil in each lysimeter and the quality of wastewater before leaching were assessed. Treated wastewater was evaluated for crop irrigation, and was categorized according to the irrigation water class 'Increasing Problem to Severe Problem' with respect to salinity and specific ion toxicity. Sandy loam soils showed 96% chemical oxygen demand (COD) removal while clay loam soils removed 99% of COD, and the colour removal in both the cases was found to be 100%. Application of wastewater resulted in an increase of pH value, ranging from 6.2-7.6; the electrical conductivity (ECe) of saturated extracts was found to be 0.6-1.7 dS m(-1), and exchangeable sodium percentage (ESP) ranged from 7.8-11.1% in soils. Similarly, an increase in the organic carbon, available nitrogen, phosphorus and potash content of soils was observed when irrigated with wastewater. Wastewater irrigation showed increased grain and straw yield of jowar, wheat and moong. These results permit successful utilization of pulp and paper mill wastewater for crop production without damaging the soils. PMID:23837309

  8. Olive mill wastewater microconstituents composition according to olive variety and extraction process.

    PubMed

    Aggoun, Moufida; Arhab, Rabah; Cornu, Agnès; Portelli, Josiane; Barkat, Malika; Graulet, Benoît

    2016-10-15

    Olive oil production yields a considerable amount of wastewater, a powerful pollutant that is currently discarded but could be considered as a potential source of valuable natural products due to its content in phenolic compounds and other natural antioxidants. The aim of this work was to explore the variability in olive mill wastewater composition from Algerian olive oil mills considering extraction processes (traditional discontinuous press vs 3-phases centrifugal system) and olive varieties (Azerraj, Sigoise, Chemlal). Whereas pH, dry or organic matter content didn't vary, there was a significant difference in ash content according to extraction process and olive variety. Carotenoid content was 2.2-fold higher with 3-phases than with press systems whereas tocopherol content was not significantly different. Among the phenolic compounds quantified, tyrosol was usually the most abundant whereas oleuropein concentrations were highly variable. Differences in phenolic compound concentrations were more pronounced between olive varieties than between processes. PMID:27173536

  9. Spatial and temporal effects of olive mill wastewaters to stream macroinvertebrates and aquatic ecosystems status.

    PubMed

    Karaouzas, Ioannis; Skoulikidis, Nikolaos T; Giannakou, Urania; Albanis, Triantafyllos A

    2011-12-01

    Olive mill wastewater (OMW) is one of the major and most challenging organic pollutants in olive oil production countries. However, the knowledge about the in-situ effects of olive mill wastewaters to lotic ecosystems and their benthic organisms is very limited. To resolve this, eight sampling sites were selected upstream and downstream the outflow of several olive mills to assess the spatial and temporal effects of OMW to stream macroinvertebrates and to ecological status of stream ecosystems. Biotic (macroinvertebrates) and abiotic (physicochemical, hydromorphological) data were monitored for two years thus following the biennial cycle of olive growth and production and hydrological variation (drought-wet years). The results of this study revealed the spatial and temporal structural deterioration of the aquatic community due to OMW pollution with consequent reduction of the river capacity for reducing the effects of polluting substances through internal mechanisms of self-purification. OMW, even highly diluted, had dramatic impacts on the aquatic fauna and to the ecological status of the receiving stream ecosystems. The organic load of the wastewater expressed as BOD(5), COD and TSS, substrate contamination (sewage bacteria) and distance from the mill outlet, were the most important factors affecting macroinvertebrate assemblages while the typology (i.e. slope, altitude) and hydrology of the stream site (i.e. mountainous-lowland) and the intensity and volume of the wastewater were the most important determinants of self-purification processes. As OMW are usually being discharged in small size streams that are not considered in the Water Framework Directive 2000/60/EC, there is a need for including such systems into monitoring and assessment schemes as they may significantly contribute to the pollution load of the river basin. Furthermore, guidelines to manage these wastes through technologies that minimise their environmental impact and lead to a sustainable use

  10. A review on the use of membrane technology and fouling control for olive mill wastewater treatment.

    PubMed

    Pulido, Javier Miguel Ochando

    2016-09-01

    Olive mill effluents (OME) by-produced have significantly increased in the last decades as a result of the boost of the olive oil agro-industrial sector and due to the conversion into continuous operation centrifugation technologies. In these effluents, the presence of phytotoxic recalcitrant pollutants makes them resistant to biological degradation and thus inhibits the efficiency of biological and conventional processes. Many reclamation treatments as well as integrated processes for OME have already been proposed and developed but not led to completely satisfactory and cost-effective results. Olive oil industries in its current status, typically small mills dispersed, cannot afford such high treatment costs. Furthermore, conventional treatments are not able to abate the significant dissolved monovalent and divalent ions concentration present in OME. Within this framework, membrane technology offers high efficiency and moderate investment and maintenance expenses. Wastewater treatment by membrane technologies is growing in the recent years. This trend is owed to the fact of the availability of new membrane materials, membrane designs, membrane module concepts and general know-how, which have promoted credibility among investors. However, fouling reduces the membrane performances in time and leads to premature substitution of the membrane modules, and this is a problem of cost efficiency since wastewater treatment must imply low operating costs. Appropriate fouling inhibition methods should assure this result, thus making membrane processes for wastewater stream treatment both technically and economically feasible. In this paper, the treatment of the effluents by-produced in olive mills, generally called olive mill wastewaters, will be addressed. Within this context, the state of the art of the different pretreatments and integral membrane processes proposed up to today will be gathered and discussed, with an insight in the problem of fouling. PMID:26472261

  11. Spray drying of a phenolic-rich membrane filtration fraction of olive mill wastewater: Optimization and dried product quality

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Olive mill wastewater (OMWW) from two California mills (3-phase and 2-phase) was subjected to a two-step membrane filtration process using a novel vibratory system. The obtained reverse osmosis retentate (RO-R) is a phenolic-rich co-product stream, and the reverse osmosis permeate is a near-pure wat...

  12. Green Technology for the Removal of Chloro-Organics from Pulp and Paper Mill Wastewater.

    PubMed

    Choudhary, Ashutosh Kumar; Kumar, Satish; Sharma, Chhaya; Kumar, Vivek

    2015-07-01

    This study evaluates the treatment efficiency of a horizontal subsurface-flow constructed wetland (HSSF-CW) for the removal of chloro-organic compounds from pulp and paper mill wastewater. The surface area of the HSSF-CW unit was 5.25 m² and was planted with Colocasia esculenta. The wastewater was characterized for different chloro-organic compounds, that is, adsorbable organic halides (AOX), chlorophenolics, and chlorinated resin and fatty acids (cRFAs). Under a hydraulic retention time of 5.9 days, the average AOX, chlorophenolics, and cRFA removal from wastewater was 87, 87, and 93%, respectively. Some of the chlorophenolics were found to accumulate in the plant biomass and soil material. The mass balance studies show that a significant fraction of chlorophenolics and cRFA was degraded in the constructed wetland system. Modeling studies were carried out to estimate the first-order area-based removal rate constants (k) for chemical oxygen demand removal. The HSSF-CW was found to be an effective treatment technology for the remediation of pulp and paper mill wastewater. PMID:26163503

  13. A review on palm oil mill biogas plant wastewater treatment using coagulation-ozonation

    NASA Astrophysics Data System (ADS)

    Dexter, Z. D.; Joseph, C. G.; Zahrim, A. Y.

    2016-06-01

    Palm oil mill effluent (POME) generated from the palm oil industry is highly polluted and requires urgent attention for treatment due to its high organic content. Biogas plant containing anaerobic digester is capable to treat the high organic content of the POME while generating valuable biogas at the same time. This green energy from POME is environmental-friendly but the wastewater produced is still highly polluted and blackish in colour. Therefore a novel concept of combining coagulation with ozonation treatment is proposed to treat pollution of this nature. Several parameters should be taken under consideration in order to ensure the effectiveness of the hybrid treatment including ozone dosage, ozone contact time, pH of the water or wastewater, coagulant dosage, and mixing and settling time. This review paper will elucidate the importance of hybrid coagulation-ozonation treatment in producing a clear treated wastewater which is known as the main challenge in palm oil industry

  14. Treatment of olive mill wastewater by chemical processes: effect of acid cracking pretreatment.

    PubMed

    Hande Gursoy-Haksevenler, B; Arslan-Alaton, Idil

    2014-01-01

    The effect of acid cracking (pH 2.0; T 70 °C) and filtration as a pretreatment step on the chemical treatability of olive mill wastewater (chemical oxygen demand (COD) 150,000 m/L; total organic carbon (TOC) 36,000 mg/L; oil-grease 8,200 mg/L; total phenols 3,800 mg/L) was investigated. FeCl3 coagulation, Ca(OH)2 precipitation, electrocoagulation using stainless steel electrodes and the Fenton's reagent were applied as chemical treatment methods. Removal performances were examined in terms of COD, TOC, oil-grease, total phenols, colour, suspended solids and acute toxicity with the photobacterium Vibrio fischeri. Significant oil-grease (95%) and suspended solids (96%) accompanied with 58% COD, 43% TOC, 39% total phenols and 80% colour removals were obtained by acid cracking-filtration pretreatment. Among the investigated chemical treatment processes, electrocoagulation and the Fenton's reagent were found more effective after pretreatment, especially in terms of total phenols removal. Total phenols removal increased from 39 to 72% when pretreatment was applied, while no significant additional (≈10-15%) COD and TOC removals were obtained when acid cracking was coupled with chemical treatment. The acute toxicity of the original olive mill wastewater sample increased considerably after pretreatment from 75 to 89% (measured for the 10-fold diluted wastewater sample). An operating cost analysis was also performed for the selected chemical treatment processes. PMID:24718336

  15. Improving the geotechnical properties of expansive soils by mixture with olive mill wastewater

    NASA Astrophysics Data System (ADS)

    Ureña, C.; Azañón, J. M.; Corpas, F.; Nieto, F.; León-Buendía, C.

    2012-04-01

    In Southern Spain, Olive grove is an artificial forest which has a surface of 18.000 km2, representing more than 25% of olive oil world production. During the manufacturing process of this oil, different types of residues are generated. The most important is a biomass called olive mill wastewater. It is a dark colored liquid which can not be directly poured onto natural watercourses. On the one hand, part of this biomass is burnt to produce electrical energy or treated to make a bio-diesel. On the other hand, we propose the use of olive mill wastewater as a stabilization agent for expansive clayey soils. Using raw biomass as a stabilization agent two objectives are achieved: adding value to biomass and reducing the problems of expansive soils. Moreover, an important reduction of economic costs can take place. A pure bentonite clay was chosen as a sample of original expansive soil. It is abundant in Southern Spain and its main component is Na-Montmorillonite. Bentonite is very susceptible to changes in the environmental available moisture and very unsuitable for its use in civil engineering due to its low bearing capacity, high plasticity and volume changes. Several dosages (5%, 10%, 15%) of olive mill wastewater were added to the original sample of bentonite. To study eventual improvements in the mechanical properties of soil, Proctor, Atterberg Limits, California Bearing Ratio, Swelling Pressure and X-Ray Diffraction tests were carried out, following Spanish standards UNE by AENOR. Both geotechnical and mineralogical characterizations were developed at two different curing times: 15 and 30 days. The Plasticity Index (PI) of the original bentonite soil was 251 (High Plasticity). The addition of 15% of olive mill wastewater yielded reductions of PI similar to those produced by the addition of 5% of Portland cement. The California Bearing Ratio (CBR) values increased slightly after the treatment with biomass leading to very similar values to those obtained after the

  16. Pesticide interactions with soils affected by olive oil mill wastewater

    NASA Astrophysics Data System (ADS)

    Keren, Yonatan; Bukhanovsky, Nadezhda; Borisover, Mikhail

    2013-04-01

    Soil pesticide sorption is well known to affect the fate of pesticides, their bioavailability and the potential to contaminate air and water. Soil - pesticide interactions may be strongly influenced by soil organic matter (SOM) and organic matter (OM)-rich soil amendments. One special OM source in soils is related to olive oil production residues that may include both solid and liquid wastes. In the Mediterranean area, the olive oil production is considered as an important field in the agricultural sector. Due to the significant rise in olive oil production, the amount of wastes is growing respectively. Olive oil mill waste water (OMWW) is the liquid byproduct in the so-called "three phase" technological process. Features of OMWW include the high content of fatty aliphatic components and polyphenols and their often-considered toxicity. One way of OMWW disposal is the land spreading, e.g., in olive orchards. The land application of OMWW (either controlled or not) is supposed to affect the multiple soil properties, including hydrophobicity and the potential of soils to interact with pesticides. Therefore, there is both basic and applied interest in elucidating the interactions between organic compounds and soils affected by OMWW. However, little is known about the impact of OMWW - soil interactions on sorption of organic compounds, and specifically, on sorption of agrochemicals. This paper reports an experimental study of sorption interactions of a series of organic compounds including widely used herbicides such as diuron and simazine, in a range of soils that were affected by OMWW (i) historically or (ii) in the controlled land disposal experiments. It is demonstrated that there is a distinct increase in apparent sorption of organic chemicals in soils affected by OMWW. In selected systems, this increase may be explained by increase in SOM content. However, the SOM quality places a role: the rise in organic compound - soil interactions may both exceed the SOM

  17. Degradation of lignin in pulp mill wastewaters by white-rot fungi on biofilm.

    PubMed

    Wu, Juan; Xiao, Ya-Zhong; Yu, Han-Qing

    2005-08-01

    An investigation was conducted to explore the lignin-degrading capacity of attached-growth white-rot fungi. Five white-rot fungi, Phanerochaete chrysosporium, Pleurotus ostreatus, Lentinus edodes, Trametes versicolor and S22, grown on a porous plastic media, were individually used to treat black liquor from a pulp and paper mill. Over 71% of lignin and 48% of chemical oxygen demand (COD) were removed from the wastewater. Several factors, including pH, concentrations of carbon, nitrogen and trace elements in wastewater, all had significant effects on the degradation of lignin and the removal of COD. Three white-rot fungi, P. chrysosporium, P. ostreatus and S22, showed high capacity for lignin degradation at pH 9.0-11.0. The addition of 1 g l-1 glucose and 0.2 g l-1 ammonium tartrate was beneficial for the degradation of lignin by the white-rot fungi studied. PMID:15792583

  18. Chemical pretreatment of olive oil mill wastewater using a metal-organic framework catalyst.

    PubMed

    De Rosa, Salvatore; Giordano, Girolamo; Granato, Teresa; Katovic, Andrea; Siciliano, Alessio; Tripicchio, Francesco

    2005-10-19

    Olive oil mill wastewaters (OOMW) are not suited for direct biological treatment because of their nonbiodegradable and phytotoxic compound (such as polyphenols) content. Advanced technologies for treatment of OOMW consider mainly the use of solid catalysts in processes that can be operated at room conditions. A system based on combined actions of catalytic oxidations and microbial technologies was studied. The wet hydrogen peroxide catalytic oxidation (WHPCO) process is one of the new emerging oxidation processes particularly attractive for the pretreatment of highly polluted OOMW containing polyphenols that are not suited for classical treatments. In this work, the biodegradability of OOMW was evaluated before and after treating the wastewater samples by the WHPCO process using a metal-organic framework (MOF) as a catalyst. This material, containing Cu and prepared with benzene-1,3,5-tricarboxylic acid (BTC), is a robust metal-organic polymer with a microporous structure that is reminiscent of the topology of zeolite frameworks. PMID:16218680

  19. Effects of harvest date, irrigation level, cultivar type and fruit water content on olive mill wastewater generated by a laboratory scale 'Abencor' milling system.

    PubMed

    Aviani, I; Raviv, M; Hadar, Y; Saadi, I; Dag, A; Ben-Gal, A; Yermiyahu, U; Zipori, I; Laor, Y

    2012-03-01

    Olive mill wastewaters (OMW) were obtained at laboratory scale by milling olives from four cultivars grown at different irrigation levels and harvested at different times. Samples were compared based on wastewater quantity, pH, suspended matter, salinity, organic load, total phenols, NPK, and phytotoxicity. Principal component analysis discriminated between harvest times, regardless of olive cultivar, indicating substantial influence of fruit ripeness on OMW characteristics. OMW properties were affected both by the composition and the extraction efficiency of fruit water. As the fruit water content increased, the concentrations of solutes in the fruit water decreased, but the original fruit water composed a larger portion of the total wastewater volume. These contradicting effects resulted in lack of correlation between fruit water content and OMW properties. The significant effects shown for fruit ripeness, irrigation and cultivar on OMW characteristics indicate that olive horticultural conditions should be considered in future OMW management. PMID:22226593

  20. Optimization and performance evaluation for nutrient removal from palm oil mill effluent wastewater using microalgae

    NASA Astrophysics Data System (ADS)

    Ibrahim, Raheek I.; Wong, Z. H.; Mohammad, A. W.

    2015-04-01

    Palm oil mill effluent (POME) wastewater was produced in huge amounts in Malaysia, and if it discharged into the environment, it causes a serious problem regarding its high content of nutrients. This study was devoted to POME wastewater treatment with microalgae. The main objective was to find the optimum conditions (retention time, and pH) in the microalgae treatment of POME wastewater considering retention time as a most important parameter in algae treatment, since after the optimum conditions there is a diverse effect of time and pH and so, the process becomes costly. According to our knowledge, there is no existing study optimized the retention time and pH with % removal of nutrients (ammonia nitrogen NH3-N, and orthophosphorous PO43-) for microalgae treatment of POME wastewater. In order to achieve with optimization, a central composite rotatable design with a second order polynomial model was used, regression coefficients and goodness of fit results in removal percentages of nutrients (NH3-N, and PO43-) were estimated.WinQSB technique was used to optimize the surface response objective functionfor the developed model. Also experiments were done to validate the model results.The optimum conditions were found to be 18 day retention time for ammonia nitrogen, and pH of 9.22, while for orthophosphorous, 15 days were indicated as the optimum retention time with a pH value of 9.2.

  1. Catalytic hydrodechlorination of monochloroacetic acid in wastewater using Ni-Fe bimetal prepared by ball milling.

    PubMed

    Zhu, Hong; Xu, Fuyuan; Zhao, Jianzhuang; Jia, Linfang; Wu, Kunming

    2015-09-01

    Monochloroacetic acid (MCA) is a chemically stable and biologically toxic pollutant. It is often generated during the production of the pesticide dimethoate. Conventional wastewater treatment processes have difficulty degrading it. In this work, the dechlorination effects of Ni-Fe bimetal prepared using ball milling (BM) technology for the high concentrations of MCA in wastewater were examined. The MCA in aqueous solution was found to be degraded efficiently by the Ni-Fe bimetal. However, S-(methoxycarbonyl) methyl O, O-dimethyl phosphorodithioate (SMOPD) in wastewater, a by-product of the dimethoate production process, significantly inhibited the reductive dechlorination activity of Ni-Fe bimetal. Increasing the reaction temperature in the MCA wastewater enhanced the reduction activity of the Ni-Fe bimetal effectively. Oxygen was found to be unfavorable to dechlorination. Sealing the reaction to prevent oxidation was found to render the degradation process more efficient. The process retained over 88% efficiency after 10 treatment cycles with 50 g/L of Ni-Fe bimetal under field conditions. PMID:25976331

  2. Removal of phenolics in olive mill wastewaters using the white-rot fungus Pleurotus ostreatus.

    PubMed

    Fountoulakis, M S; Dokianakis, S N; Kornaros, M E; Aggelis, G G; Lyberatos, G

    2002-11-01

    Olive mill wastewaters (OMW) present a major environmental problem. The large amounts generated, combined with the high phenols and chemical oxygen demand concentrations, are the main difficulties in finding a solution for the management of these wastewaters, which are dangerous for the environment. The phenols, which are contained in the OMW have a structure similar to lignin, which makes them difficult to biodegrade. Lignin can be degraded only by a few microorganisms, such as "white-rot" basidiomycete, which produce manganese (MnPs) and lignin peroxidases (LiPs) and laccases that are responsible for the oxidisation of lignin compounds. The capability of Pleurotus ostreatus to degrade phenols of OMW in different conditions such as in sterilized and thermally processed (at 100 degrees C) wastewater, with and without dilution, is investigated in this work. According to the experimental results P. ostreatus removed phenols from the culture medium, under all different conditions that were examined. The degradation of phenols reached up to 78.3% for the sterilized and 50% diluted OMW, 66.7% and 64.7% for the thermally processed OMW, with and without dilution, respectively. The effect of pre-treatment of OMW on the performance of anaerobic digestion is also assessed, as methanogenic bacteria are seriously affected by the presence of phenol compounds. The pre-treated wastewater was shown to be more amenable to a subsequent anaerobic digestion. PMID:12448515

  3. Review on recent developments on pulp and paper mill wastewater treatment.

    PubMed

    Kamali, Mohammadreza; Khodaparast, Zahra

    2015-04-01

    Economic benefits of the pulp and paper industry have led it to be one of the most important industrial sections in the world. Nevertheless, in recent years, pulp and paper mills are facing challenges with the energy efficiency mechanisms and management of the resulting pollutants, considering the environmental feedbacks and ongoing legal requirements. This study reviews and discusses the recent developments of affordable methods dealing with pulp and paper mill wastewaters. To this end, the current state of the various processes used for pulp and paper production from virgin or recovered fibers has been briefly reviewed. Also, the relevant contaminants have been investigated, considering the used raw materials and applied techniques as the subject for further discussion about the relevant suitable wastewater treatment methods. The results of the present study indicated that adopting the integrated methods, alongside a combination of biological (e.g., anaerobic digestion) and physicochemical (e.g., novel Fenton reactions) treatment methods, can be environmentally and economically preferable to minimize environmental contaminants and energy recycling. PMID:24953005

  4. Removal of chlorophenolics from pulp and paper mill wastewater through constructed wetland.

    PubMed

    Choudhary, Ashutosh Kumar; Kumar, Satish; Sharma, Chhaya

    2013-01-01

    This study evaluates the treatment efficiency of horizontal subsurface flow (HSSF) constructed wetland for the removal of AOX (adsorbable organic halides) and chlorophenolics from pulp and paper mill wastewater. The dimensions of HSSF constructed wetland were 3.5 m in length, 1.5 m in width, and 0.28 m in depth, with surface area of 5.25 m2. The HSSF constructed wetland unit was planted with an ornamental plant species, Canna indica. Under hydraulic retention time (HRT) of 5.9 days, the average AOX removal was 89.1%, and 67% to 100% removal of chlorophenolics from pulp and paper mill wastewater was achieved. The complete removal of 2,3-dichlorophenol, 3,4-dichlorophenol, 2,3,5-trichlorophenol, 2,4,6-trichlorophenol, 3,5-dichlorocatechol, 3,6-dichlorocatechol, and 4,5,6-trichloroguaiacol was observed. Some of the chlorophenolics were found to accumulate in the plant biomass and soil. The evapotranspiration rate varied from 6.7 to 12.7 mm day(-1) during the experimental period. The mass balance of chlorophenolics was also studied in constructed wetland system. PMID:23409454

  5. Innovative method for recovery and valorization of hydroxytyrosol from olive mill wastewaters.

    PubMed

    Bonetti, A; Venturini, S; Ena, A; Faraloni, C

    2016-01-01

    The nutritional properties of olive oil can be attributed to its oleic acid and phenolic compounds content, acting as natural oxidants to prevent human diseases. In particular, hydroxytyrosol has an anti-inflammatory action similar to omega 3 fatty acids from fish oil. The olive oil production was conducted by two extraction procedures: first, a two-phase extraction giving extra-virgin olive oil and humid pomace, second, a three-phase working process of humid pomace, obtaining another minimum quantity of extra-virgin olive oil, 'dry' pomace devoid of polyphenols, and mill wastewaters rich in anti-oxidant compounds. The aim of this processing was to employ water to extract the highest concentration of polyphenols from humid pomace and convey them in oil mill wastewaters for extraction. Processed olives were 37,200 kg, pomace deprived of polyphenols was equal to 20,400 kg and processing was performed with 500 kg of olives per hour. This method offers advantages of using cheap equipment and technical simplicity. PMID:27386985

  6. Treatment of cane sugar mill wastewater in an upflow anaerobic sludge bed reactor.

    PubMed

    Nacheva, P Mijaylova; Chávez, G Moeller; Chacón, J Matías; Chuil, A Canul

    2009-01-01

    The performance of a mesophilic UASB reactor was studied for the treatment of sugar cane mill wastewater previously pre-treated for solid separation. The experimental work was carried out in a reactor with 80 L total volume. Four organic loads were applied and the process performance was evaluated during two months for each experimental stage. Removal efficiencies higher than 90% were obtained with organic loads up to 16 kg COD m(-3) d(-1). Stable process performance and high biogas production were obtained. The COD removal rate increased substantially with the load increase to 24 kg COD m(-3) d(-1). However, the obtained removal was of only 78-82%, which can be attributed to the accumulation of volatile organic acids. The kinetic coefficients were obtained using first order model for the substrate removal rate and Monod's equation for bacteria specific growth rate. The UASB reactor is a good option for the biological treatment of pre-treated sugar cane mill wastewaters. The discharge requirements for COD concentration can be accomplished if the reactor is operated at a low organic load of 4 kg COD m(-3) d(-1). At higher loads, an additional biological treatment stage is needed. PMID:19717923

  7. Comparative study of MBR and activated sludge in the treatment of paper mill wastewater.

    PubMed

    Lerner, M; Stahl, N; Galil, N I

    2007-01-01

    The study was based on a full scale activated sludge plant (AS) compared to a parallel operated pilot membrane bioreactor (MBR) with flat sheets membranes. Both systems received their influent from an anaerobic bioreactor treating paper mill wastewater. MBR produced an effluent of much better quality than AS in terms of suspended solids, containing 1 mg/L or less in 80% of the monitoring time, while the AS effluent contained 12 mg/L. This could save the necessity of further treatment by filtration in the case of MBR. Other effluent quality parameters, such as organic matter (COD and BOD), phosphorus and ammonia nitrogen, did not indicate substantial differences between AS and MBR. Calcium carbonate scaling and formation of a bacterial layer on the membrane caused severe flux reduction. The membrane blockage because of scaling and biofouling proved to be very serious, therefore, it required proper and more complicated maintenance than the AS system. This study leads to the conclusion that in the case of paper mill wastewater, after anaerobic biotreatment, if there is no need for excellent effluent quality in terms of suspended solids, the replacement of the AS by the MBR would not be strongly justified, mainly because of maintenance cost. PMID:17486831

  8. Impact of Raw and Bioaugmented Olive-Mill Wastewater and Olive-Mill Solid Waste on the Content of Photosynthetic Molecules in Tobacco Plants.

    PubMed

    Parrotta, Luigi; Campani, Tommaso; Casini, Silvia; Romi, Marco; Cai, Giampiero

    2016-08-01

    Disposal and reuse of olive-mill wastes are both an economic and environmental problem, especially in countries where the cultivation of olive trees is extensive. Microorganism-based bioaugmentation can be used to reduce the pollutant capacity of wastes. In this work, bioaugmentation was used to reduce the polyphenolic content of both liquid and solid wastes. After processing, bioaugmented wastes were tested on the root development of maize seeds and on photosynthesis-related molecules of tobacco plants. In maize, we found that bioaugmentation made olive-mill wastes harmless for seed germination. In tobacco, we analyzed the content of RuBisCO (ribulose-1,5-bisphosphate carboxylase oxygenase) and of the photosynthetic pigments lutein, chlorophylls, and β-carotene. Levels of RuBisCO were negatively affected by untreated wastewater but increased if plants were treated with bioaugmented wastewater. On the contrary, levels of RuBisCO increased in the case of plants treated with raw olive-mill solid waste. Pigment levels showed dissimilar behavior because their concentration increased if plants were irrigated with raw wastewater or treated with raw olive-mill solid waste. Treatment with bioaugmented wastes restored pigment content. Findings show that untreated wastes are potentially toxic at the commencement of treatment, but plants can eventually adapt after an initial stress period. Bioaugmented wastes do not induce immediate damages, and plants rapidly recover optimal levels of photosynthetic molecules. PMID:27399282

  9. Electrocoagulation of palm oil mill effluent as wastewater treatment and hydrogen production using electrode aluminum.

    PubMed

    Nasution, M Ansori; Yaakob, Z; Ali, Ehsan; Tasirin, S M; Abdullah, S R S

    2011-01-01

    Palm oil mill effluent (POME) is highly polluting wastewater generated from the palm oil milling process. Palm oil mill effluent was used as an electrolyte without any additive or pretreatment to perform electrocoagulation (EC) using electricity (direct current) ranging from 2 to 4 volts in the presence of aluminum electrodes with a reactor volume of 20 L. The production of hydrogen gas, removal of chemical oxygen demand (COD), and turbidity as a result of electrocoagulation of POME were determined. The results show that EC can reduce the COD and turbidity of POME by 57 and 62%, respectively, in addition to the 42% hydrogen production. Hydrogen production was also helpful to remove the lighter suspended solids toward the surface. The production of Al(OH)XHO at the aluminum electrode (anode) was responsible for the flocculation-coagulation process of suspended solids followed by sedimentation under gravity. The production of hydrogen gas from POME during EC was also compared with hydrogen gas production by electrolysis of tap water at pH 4 and tap water without pH adjustment under the same conditions. The main advantage of this study is to produce hydrogen gas while treating POME with EC to reduce COD and turbidity effectively. PMID:21712603

  10. Phanerochaete flavido-alba Laccase Induction and Modification of Manganese Peroxidase Isoenzyme Pattern in Decolorized Olive Oil Mill Wastewaters

    PubMed Central

    Pérez, J.; de la Rubia, T.; Hamman, O. Ben; Martínez, J.

    1998-01-01

    Lignin-degrading enzymes were partially purified from supernatant solutions obtained from Phanerochaete flavido-alba-decolorized olive oil mill wastewaters (OMW). The dominant enzymes, manganese peroxidases, exhibited different isoform patterns in decolorized OMW-containing cultures than in residue-free samples. Laccase induction was also detected in OMW-containing cultures but not in control cultures. PMID:9647858

  11. Strength loss in kraft pulping

    NASA Astrophysics Data System (ADS)

    Iribarne, Jose

    Unbleached kraft pulps from two U.S. mills were 21% and 26% weaker than comparable laboratory pulps from the same chip sources, when assessed as the tear index at a tensile index of 70 kN.m/kg. The phenomena involved were clarified by characterizing the differences between the mill and laboratory pulps in terms of fundamental fiber properties. All of the strength loss could be explained by a reduction in intrinsic fiber strength of 9% to 11%, as estimated from wet zero-span tensile tests and fiber length distributions. Most of the effects of different fiber shape and length were isolated by PFI mill refining and decrilling, respectively. The higher fiber coarseness of mill pulps was a factor in their maximum density and bond strength, but changes in these variables were analogous to those of laboratory pups due to similar swelling. Specific bond strength, determined from a wet pressing experiment, was similar in mill and laboratory pulps. Neither carbohydrate composition nor crystalline structure, assessed through x-ray diffraction analysis, were significant factors in the observed fiber strength differences. The mill pulps were not more heterogeneous than the laboratory pulps, within the resolution of a fractionation experiment. The number of weak points in each pulp was assessed through analysis of the amount of fiber cutting during PFI mill refining and treatments with potassium superoxide or cellulase. The results suggested that the chemistry of kraft pulping preferentially weaken short, slender fibers, while mechanical stresses during the hot discharge of batch digesters mainly affect long, thick fibers. The greater number of weak points in the long-fiber fractions of mill pulps is probably associated with their lower wet zero-span tensile indices. Automated optical detection of major singularities with a prototype instrument suggested that only the weak points induced by mechanical stress could be detected by local variations in birefringence. In contrast

  12. Fixation of ammonium-N and nitrate-N with olive oil mill wastewaters.

    PubMed

    Jiménez Aguilar, Manuel

    2010-04-01

    The present work evaluates whether ammonium and nitrate ions become linked with diluted olive oil mill wastewaters (OOMW). From a laboratory experiment it was concluded that the ammonium ion linked with OOMW in the presence of carbonates or hydroxides and OOMW could block up to a third of the present ammonium-N ion. On the other hand, OOMW are capable of joining with the nitrate ion, in a sulphuric diluted medium at room temperature, retaining up to 80% of nitrate-N. These complexes could be useful for recycling OOMW as new OOMW-N fertilizers. In soils treated with OOMW-N fertilizers, the nitrate-N emissions were reduced by 90% for two months. So, inorganic-N fertilizers mixed with OOMW could produce new organic fertilizers with a higher efficiency index for N. PMID:20450113

  13. Sequential treatment of olive oil mill wastewater with adsorption and biological and photo-Fenton oxidation.

    PubMed

    Aytar, Pınar; Gedikli, Serap; Sam, Mesut; Farizoğlu, Burhanettin; Çabuk, Ahmet

    2013-05-01

    Olive oil mill wastewater (OMWW), a recalcitrant pollutant, has features including high phenolic content and dark color; thereby, several chemical or physical treatments or biological processes were not able to remediate it. In this study, the treatment efficiencies of three treatments, including adsorption, biological application, and photo-Fenton oxidation were sequentially evaluated for OMWW. Adsorption, biological treatment, and photo-Fenton caused decreasing phenolic contents of 48.69 %, 59.40 %, and 95 %, respectively. However, after three sequential treatments were performed, higher reduction percentages in phenolic (total 99 %) and organic contents (90 %) were observed. Although the studied fungus has not induced significant color reduction, photo-Fenton oxidation was considered to be an attractive solution, especially for color reduction. Besides, toxicity of OMWW treatment was significantly reduced. PMID:23054778

  14. Ozonation kinetics of phenolic acids present in wastewaters from olive oil mills

    SciTech Connect

    Benitez, F.J.; Beltran-Heredia, J.; Acero, J.L.; Pinilla, M.L.

    1997-03-01

    A kinetic study of the degradation by ozone of eight phenolic acids present in wastewaters from olive oil mills has been performed by using a competition kinetic method. The selected phenolic acids are: caffeic, p-coumaric, syringic, vanillic, 3,4,5-trimethoxybenzoic, veratric, p-hydroxy-benzoic, and protocatechuic. The influence of the operating variables (temperature, pH, and ozone partial pressure in the gas stream) is established, and the stoichiometric ratios for the individual direct reactions between ozone and each acid are determined. Once the reaction rate constants are evaluated, they are correlated as a function of temperature and pH into kinetic expressions which are provided for every phenolic acid. The global process occurs in the fast and pseudo-first-order kinetic regime of absorption, a condition required by the competition model to be used.

  15. Olive oil mill wastewaters pollution abatement by physical treatments and biodegradation with Phanerochaetae chrysosporium.

    PubMed

    Mebirouk, M; Sbai, L; Lopez, M; Gonzalez, J

    2006-12-01

    This paper discusses decolorization and chemical oxygen demand (COD) abatement in olive mill wastewaters (OMW) by Phanerochaetae chrysosporium grown in static, suspended and immobilised cultures. When P chrysosporium is used in cultures, no decolorization of crude OMW is observed. Decolorization occurs only after removal of polyphenols by adsorption on wood sawdust, which allows for removal of 39% of polyphenols. The use of High lignin peroxides (Lip) producing medium, yields the highest OMW decolorization and COD removal efficiencies. The use of P. chrysosporium immobilized on polyurethane foam leads to significant abatements of OMW polluting characteristics. In fact, chemical oxygen demand (COD), Biological oxygen demand (BOD5) and polyphenols contents are significantly reduced. In addition, a significant effluent decolorization is obvious. PMID:17285940

  16. Strategy for olive mill wastewater treatment and reuse with a sewage plant in an arid region.

    PubMed

    Boukchina, R; Choi, E; Kim, S; Yu, Y B; Cheung, Y J

    2007-01-01

    This study was conducted to evaluate the treatability of OMW (olive mill wastewater) with sewage and sewage sludge, which could supplement nutrients and microbes required for OMW treatment and reduce its possible toxicity. The amount of OMW added to an aeration tank was based on the loading difference between the designed and actual COD loads, while the amount added to anaerobic digestion for energy recovery was determined by CH4 production. The COD removal efficiencies were 70-85% for both systems. Compost of OMW with dried sewage sludge also showed a similar temperature profile without OMW addition. This strongly suggested that OMW can be treated at a sewage plant without pretreatment and the treated effluent can be reused in irrigation for an arid region. PMID:17564372

  17. Olive oil mill wastewaters: phenolic content characterization during degradation by Coriolopsis gallica.

    PubMed

    Daâssi, Dalel; Lozano-Sánchez, Jesus; Borrás-Linares, Isabel; Belbahri, Lassaad; Woodward, Steve; Zouari-Mechichi, Héla; Mechichi, Tahar; Nasri, Moncef; Segura-Carretero, Antonio

    2014-10-01

    Olive mill wastewaters (OMW) pose a serious environmental concern owing to high polyphenol content. Decolorization and degradation of phenolic compounds (PC) by Coriolopsis gallica was demonstrated in our laboratory as a potential biotreatment of OMW in solid and liquid media. High performance liquid chromatography coupled to electrospray time-of-flight mass spectrometry was used to analyze the evolution of the main phenolic compounds during the C. gallica biodegradation process. Amongst total the compounds characterized in methanolic extracts of OMW, 12 were unknown, 15 were from different polyphenolic families, and 27 were other non-phenolic compounds. The evolution of PC content during the degradation process indicated that, despite the complexity of the OMW phenolic fraction, C. gallica was able to grow on OMW-based media using PC as sources of carbon and energy, particularly acids, alcohols, lignans and flavones. Complete dephenolization of OMW was obtained. PMID:25065791

  18. Toxicity and biodegradability of olive mill wastewaters in batch anaerobic digestion

    SciTech Connect

    Hamdi, M. Universite de Provence, Marseille )

    1992-11-01

    The anaerobic biodegradability and toxicity of olive mill wastewaters (OMW) were studied in batch anaerobic digestion experiments. Anaerobic digestion of OMW or the supernatant of its centrifugation, the methane production was achieved at up to 5-15% (V/V) dilution corresponding to only 5-20 g/L COD. The washed suspended solids of OMW were toxic at up to 80 g/L COD; however, the kinetic of biodegradability of OMW or the supernatant was faster than for suspended solids, which are constituted mealy of cellulose and lignin. The darkly colored polyphenols induce the problem of biodegradation of OMW, whereas the long chain fatty acids (LCFA), tannins and simple phenolic compounds are responsible for its toxicity for methanogenic bacteria. 26 refs., 4 figs., 1 tab.

  19. Parameters and kinetics of olive mill wastewater dephenolization by immobilized Rhodotorula glutinis cells.

    PubMed

    Bozkoyunlu, Gaye; Takaç, Serpil

    2014-01-01

    Olive mill wastewater (OMW) with total phenol (TP) concentration range of 300-1200 mg/L was treated with alginate-immobilized Rhodotorula glutinis cells in batch system. The effects of pellet properties (diameter, alginate concentration and cell loading (CL)) and operational parameters (initial TP concentration, agitation rate and reusability of pellets) on dephenolization of OMW were studied. Up to 87% dephenolization was obtained after 120 h biodegradations. The utilization number of pellets increased with the addition of calcium ions into the biodegradation medium. The overall effectiveness factors calculated for different conditions showed that diffusional limitations arising from pellet size and pellet composition could be neglected. Mass transfer limitations appeared to be more effective at high substrate concentrations and low agitation rates. The parameters of logistic model for growth kinetics of R. glutinis in OMW were estimated at different initial phenol concentrations of OMW by curve-fitting of experimental data with the model. PMID:25244135

  20. Decolorization and COD reduction of dyeing wastewater from a cotton textile mill using thermolysis and coagulation.

    PubMed

    Kumar, Pradeep; Prasad, B; Mishra, I M; Chand, Shri

    2008-05-01

    The decolorization and reduction of COD of dyeing wastewater from a cotton textile mill was conducted using catalytic thermal treatment (thermolysis) accompanied with/without coagulation. Thermolysis in presence of a homogeneous copper sulphate catalyst was found to be the most effective in comparison to other catalysts (FeCl(3), FeSO(4), CuO, ZnO and PAC) used. A maximum reduction of chemical oxygen demand (COD) and color of dyeing wastewater of 66.85% and 71.4%, respectively, was observed with a catalyst concentration of 5 kg/m(3) at pH 8. Commercial alum was found most effective coagulant among various coagulants (aluminum potassium sulphate, PAC, FeCl(3) and FeSO(4)) tested during coagulation operations, resulting in 58.57% COD and 74% color reduction at pH 4 and coagulant dose of 5 kg/m(3). Coagulation of the clear fluid (supernatant) obtained after treatment by thermolysis at the conditions previously used resulted in an overall reduction of 89.91% COD and 94.4% color at pH 4 and a coagulant dose of 2 kg/m(3). The application of thermolysis followed by coagulation, thus, is the most effective treatment method in removing nearly 90% COD and 95% color at a lower dose of coagulant (2 kg/m(3)). The sludge thus produced would contain lower inorganic mass coagulant and, therefore, less amount of inorganic sludge. PMID:17931773

  1. Microalgal biomass production by using ultra- and nanofiltration membrane fractions of olive mill wastewater.

    PubMed

    Cicci, A; Stoller, M; Bravi, M

    2013-09-01

    Olive milling produces huge amounts of wastewater (OMWW) characterized by an extremely high organic load. Its polyphenols content is a hindrance to conventional biological treatment and to using it as growing medium for common microbial biomasses. The practice to dump it on soil is in conflict with the latest EU directives about waste management. OMWW can be effectively and efficiently treated by means of membrane technology to a fraction of the initial volume, but membrane processing concentrates still require treatment. Reversing the overall cost balance of membrane processing and subsequent treatment requires valorizing the concentrates through their reuse, as well as ensuring long-term service of the membrane system through effective wastewater pretreatment and sustainable, fouling-controlling, membrane operation conduite. Aim of this work is to reuse and valorize the ultra- and nanofiltration membrane concentrates as media for biomass production of microalgae and cyanobacteria. Scenedesmus dimorphus and Arthrospira platensis, usable as a food, feed, nutraceutical component or feedstock for biofuels, were selected for this investigation. Microalgal growth was experimentally determined and related to the composition of the concentrate-based media and to the irradiance distribution within the photobioreactor volume to decouple light limitation and medium chemical composition effects. PMID:23770485

  2. Treatment of wastewater from pulp and paper mill industry by electrochemical methods in membrane reactor.

    PubMed

    Chanworrawoot, Kanjana; Hunsom, Mali

    2012-12-30

    The treatment of wastewater from a pulp and paper mill plant using electrochemical methods was performed at a laboratory bench-scale at ambient temperature (~30 °C). The effects of wastewater dilution (10- to 100-fold), circulating water flow rate (0-3.95 l/min), current density (1.90-3.80 mA/cm(2)) and sodium chloride concentration (0-3.75 g/l) were ascertained. The results demonstrated that this methods can facilitate the disappearance of the oxidative coupling unit of lignin as well as other organic and inorganic compounds, measured in terms of the removal of color, total biological- and total chemical oxygen demand (BOD and COD), and the total suspended and dissolved solids (TSS and TSD). In addition, the electrochemical method was more effective at reducing the pollutant levels, produced a smaller quantity of low-density sludge and had a low operating cost per unit quantity of COD. After optimization, the electrochemical method operating in a batch mode enhanced the removal of color, BOD and COD at around 98%, 98% and 97%, respectively, whilst in a continuous mode at the steady state condition (8 h after the start-up time) the color, BOD and COD levels were reduced by around 91%, 83% and 86%, respectively. PMID:23062272

  3. Co-treatment of olive-mill and urban wastewaters by experimental stabilization ponds.

    PubMed

    Jail, A; Boukhoubza, F; Nejmeddine, A; Sayadi, S; Hassani, L

    2010-04-15

    Olive oil mill wastewater (OMW) constitutes a source of environmental problems in Morocco due to its significantly high organic load, its phytotoxic properties and its relatively low biodegradability. An effective option for its disposal is its agricultural use after co-treatment with urban wastewater (UWW). The main objective of this investigation was to evaluate the potential of this co-treatment, using experimental waste stabilization ponds, in removing OMW phytotoxicity. We examined the influence of the organic load, at the entry of the treatment system, on the evolution of some physicochemical (chemical oxygen demand and polyphenols) and microbiological (fecal coliforms and fecal streptococci) parameters. The results showed a removal of the organic, phenolic and microbial load throughout the treatment which differed from one system to another according to the OMW load applied to each system. The results concerning the germination assays of Zea mays and Solanum lycopersicum suggested that the co-treatment of OMW with UWW would decrease the phytotoxicity of this waste. PMID:20018449

  4. On the Recent Use of Membrane Technology for Olive Mill Wastewater Purification.

    PubMed

    Ochando-Pulido, Javier Miguel; Martinez-Ferez, Antonio

    2015-01-01

    Many reclamation treatments as well as integrated processes for the purification of olive mill wastewaters (OMW) have already been proposed and developed but not led to completely satisfactory results, principally due to complexity or cost-ineffectiveness. The olive oil industry in its current status, composed of little and dispersed factories, cannot stand such high costs. Moreover, these treatments are not able to abate the high concentration of dissolved inorganic matter present in these highly polluted effluents. In the present work, a review on the actual state of the art concerning the treatment and disposal of OMW by membranes is addressed, comprising microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), as well as membrane bioreactors (MBR) and non-conventional membrane processes such as vacuum distillation (VD), osmotic distillation (OD) and forward osmosis (FO). Membrane processes are becoming extensively used to replace many conventional processes in the purification of water and groundwater as well as in the reclamation of wastewater streams of very diverse sources, such as those generated by agro-industrial activities. Moreover, a brief insight into inhibition and control of fouling by properly-tailored pretreatment processes upstream the membrane operation and the use of the critical and threshold flux theories is provided. PMID:26426062

  5. On the Recent Use of Membrane Technology for Olive Mill Wastewater Purification

    PubMed Central

    Ochando-Pulido, Javier Miguel; Martinez-Ferez, Antonio

    2015-01-01

    Many reclamation treatments as well as integrated processes for the purification of olive mill wastewaters (OMW) have already been proposed and developed but not led to completely satisfactory results, principally due to complexity or cost-ineffectiveness. The olive oil industry in its current status, composed of little and dispersed factories, cannot stand such high costs. Moreover, these treatments are not able to abate the high concentration of dissolved inorganic matter present in these highly polluted effluents. In the present work, a review on the actual state of the art concerning the treatment and disposal of OMW by membranes is addressed, comprising microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO), as well as membrane bioreactors (MBR) and non-conventional membrane processes such as vacuum distillation (VD), osmotic distillation (OD) and forward osmosis (FO). Membrane processes are becoming extensively used to replace many conventional processes in the purification of water and groundwater as well as in the reclamation of wastewater streams of very diverse sources, such as those generated by agro-industrial activities. Moreover, a brief insight into inhibition and control of fouling by properly-tailored pretreatment processes upstream the membrane operation and the use of the critical and threshold flux theories is provided. PMID:26426062

  6. Impacts of operating conditions on nanofiltration of secondary-treated two-phase olive mill wastewater.

    PubMed

    Ochando Pulido, Javier Miguel; Martínez Férez, Antonio

    2015-09-15

    In the present paper, a thin-film composite polymeric nanofiltration (NF) membrane is examined for the tertiary treatment of secondary-treated two-phase olive mill wastewater, in substitution of the reverse osmosis membrane used in previous work by the Authors. Overcoming the deleterious fouling phenomena persistently encountered in membrane processes managing wastewater streams was indeed pursued. Setting the adequate parameters of the operating variables - that is, operating at ambient temperature upon a net pressure equal to 13 bar (Pc), tangential crossflow in the order of 2.55 m s(-1) to attain enough turbulence over the membrane, and above the point of zero charge (pH > 5.8) of the membrane - ensured high steady-state permeate productivity (59.6 L h(-1) m(-2)), also economically sustainable in time owed to minimization of the fouling-build up rate (0.91 h(-1)). Moreover, these conditions also provided high feed recovery (90%) and significant rejection efficiencies for the electroconductivity (58.1%) and organic matter (76.1%). This led to a purified permeate stream exiting the NF membrane operation exhibiting average EC and COD values equal to 1.4 mS cm(-1) and 45 mg L(-1). This permits complying with the water quality parameters established by different regulations for discharge public waterways and irrigation purposes. PMID:26186549

  7. Production of polyhydroxyalkanoates by glycogen accumulating organisms treating a paper mill wastewater.

    PubMed

    Bengtsson, Simon; Werker, Alan; Welander, Thomas

    2008-01-01

    A process for production of polyhydroxyalkanoates (PHA) by activated sludge treating a paper mill wastewater was investigated. The applied strategy was to select for glycogen accumulating organisms (GAOs) by alternating anaerobic/aerobic conditions. Acidogenic fermentation was used as pretreatment to convert various organic compounds to volatile fatty acids which are preferable substrates for PHA production. Enrichment resulted in a culture dominated by GAOs related to Defluviicoccus vanus (56%) and Candidatus Competibacter phosphatis (22%). Optimization of PHA accumulation by the enriched GAO culture was performed through batch experiments. Accumulation of PHA under anaerobic conditions was limited by the intracellular glycogen stored. Under aerobic conditions significant glycogen production (to 25% of sludge dry weight) was observed alongside PHA accumulation (to 22% of sludge dry weight). By applying a subsequent anaerobic period after an initial aerobic, the produced glycogen could be utilized for further PHA accumulation and by this strategy PHA content was increased to 42% of sludge dry weight. The PHA yield over the entire process was 0.10 kg per kg of influent COD treated which is similar to what has been achieved with a process applying feast/famine enrichment strategy with the same wastewater. PMID:18701781

  8. A comparative study among different photochemical oxidation processes to enhance the biodegradability of paper mill wastewater.

    PubMed

    Jamil, Tarek S; Ghaly, Montaser Y; El-Seesy, Ibrahim E; Souaya, Eglal R; Nasr, Rabab A

    2011-01-15

    Advanced oxidation processes including UV, UV/H(2)O(2), Fenton reaction (Fe(II)/H(2)O(2)) and photo-Fenton process (Fe(II)/H(2)O(2)/UV) for the treatment of paper mill wastewater will be investigated. A comparison among these techniques is undertaken with respect to the decrease of chemical oxygen demand (COD) and total suspended solids (TSS) and the evolution of chloride ions. Optimum operating conditions for each process under study revealed the effect of the initial amounts of Fe(II) and hydrogen peroxide. Of the tested processes, photo-Fenton process was found to be the fastest one with respect to COD and TSS reduction of the wastewater within 45 min reaction time under low amounts of Fe(II) and hydrogen peroxide of 0.5 and 1.5mg/L, respectively, and amounted to 79.6% and 96.6% COD and TSS removal. The initial biodegradability of the organic matter present in the effluent, estimated as the BOD(5)/COD, was low 0.21. When the effluent was submitted to the different types of AOPs used in this study, the biodegradability increases significantly. Within 45 min of reaction time, the photo-Fenton process appears as the most efficient process in the enhancement of the biodegradability of the organic matter in the effluent and the BOD(5)/COD ratio increased from 0.21 to 0.7. PMID:20926185

  9. Polyhydroxyalkanoates from Pseudomonas sp. using synthetic and olive mill wastewater under limiting conditions.

    PubMed

    Kourmentza, C; Ntaikou, I; Lyberatos, G; Kornaros, M

    2015-03-01

    The present study aimed at investigating the ability of bacteria isolated from an enriched mixed culture to produce polyhydroxyalkanoates (PHAs) and examining the effect of nitrogen and dual nitrogen-oxygen limitation on PHAs production, by using both synthetic and olive mill wastewater (OMW). PHAs production was performed through batch experiments using both the enriched culture and the isolated strains (belonging to the genus of Pseudomonas) aiming to compare PHAs accumulation capacity, yields and rates. The use of enriched culture and synthetic wastewater under nitrogen limitation resulted in the highest PHA accumulation, i.e. 64.4%gPHAs/g of cell dry mass (CDM). However, when OMW was used, PHAs accumulation significantly decreased, i.e. 8.8%gPHAs/g CDM. The same trend was followed by the isolated strains, nevertheless, their ability to synthesize PHAs was lower. Although, dual nitrogen-oxygen limitation generally slowed down PHAs biosynthesis, in certain strains PHAs production was positively affected. PMID:25542172

  10. Effect of aerobic pretreatment with Aspergillus terreus on the anaerobic digestion of olive-mill wastewater.

    PubMed

    Borja, R; Alba, J; Garrido, S E; Martínez, L; García, M P; Monteoliva, M; Ramos-Cormenzana, A

    1995-10-01

    A kinetic study was carried out on the anaerobic digestion of olive-mill wastewater (OMW) and OMW that was previously fermented with Aspergillus terreus. The bioreactors used were batch fed and contained saponite as support for the mediating bacteria. The anaerobic digestion process followed first-order kinetics, from which the kinetic constant A was calculated using a non-linear regression. This kinetic parameter was influenced by the pretreatment carried out, and was 3.7 times higher for pretreated OMW than for untreated OMW. The anaerobic processing of pretreated OMW seemingly involved no inhibition phenomena as the biotoxicity and the total phenolic compound content (analysed by HPLC) were reduced by 71.2% and 77.9% respectively as a result of the pretreatment. Finally, the yield coefficient of methane production was 0.345 litres of methane (at standard temperature and pressure)/g of chemical oxygen demand, that is, 23% higher than that provided by untreated wastewater. PMID:7576261

  11. Treatment of olive oil mill wastewater by combined process electro-Fenton reaction and anaerobic digestion.

    PubMed

    Khoufi, Sonia; Aloui, Fathi; Sayadi, Sami

    2006-06-01

    In this work, we investigated an integrated technology for the treatment of the recalcitrant contaminants of olive mill wastewaters (OMW), allowing water recovery and reuse for agricultural purposes. The method involves an electrochemical pre-treatment step of the wastewater using the electro-Fenton reaction followed by an anaerobic bio-treatment. The electro-Fenton process removed 65.8% of the total polyphenolic compounds and subsequently decreased the OMW toxicity from 100% to 66.9%, which resulted in improving the performance of the anaerobic digestion. A continuous lab-scale methanogenic reactor was operated at a loading rate of 10 g chemical oxygen demand (COD)l(-1) d(-1) without any apparent toxicity. Furthermore, in the combined process, a high overall reduction in COD, suspended solids, polyphenols and lipid content was achieved by the two successive stages. This result opens promising perspectives since its conception as a fast and cheap pre-treatment prior to conventional anaerobic post-treatment. The use of electro-coagulation as post-treatment technology completely detoxified the anaerobic effluent and removed its toxic compounds. PMID:16678883

  12. Dephenolization, dearomatization and detoxification of olive mill wastewater with sonication combined with additives and radical scavengers.

    PubMed

    Sponza, Delia Teresa; Oztekin, Rukiye

    2014-05-01

    In this study, the effects of some additives [manganese (III) oxide (Mn3O4), Cu(+2), Fe(0) and potassium iodate (KIO3)] and some radical scavengers [sodium carbonate (Na2CO3), perfluorohexane (C6F14) and t-butyl alcohol (C4H10O)] on the sonication of olive mill effluent wastewater (OMW) were investigated since the wastewaters of this industry are removed with low efficiencies. The maximum total phenol and total aromatic amines (TAAs) removal efficiencies were 88% and 79%, respectively, at 60°C with only 150 min sonication. The maximum phenol removal was found as 98% with 19 mg L(-1) perfluorohexane and 5 mg L(-1) Fe(0) while the maximum TAAs removal was 99% with 16 mg L(-1) KIO3. Catechol, tyrosol, quercetin, caffeic acid, 4-methyl catechol, 2-phenylphenol (2-PHE) and 3-phenyl phenol (3-PHE) were detected as phenol intermediates while trimethlyaniline, aniline, o-toluidine, o-anisidine, dimethylaniline, ethylbenzene and durene were identified as TAAs in the OMW. The maximum acute toxicity removals were 96% and 99% in Vibrio fischeri and Daphnia magna, respectively. Total phenol, TAAs and the toxicity in an OMW were removed efficiently and cost-effectively through sonication. PMID:24315030

  13. Membrane-Filtered Olive Mill Wastewater: Quality Assessment of the Dried Phenolic-Rich Fraction.

    PubMed

    Sedej, Ivana; Milczarek, Rebecca; Wang, Selina C; Sheng, Runqi; de Jesús Avena-Bustillos, Roberto; Dao, Lan; Takeoka, Gary

    2016-04-01

    A current trend in olive mill wastewater (OMWW) management is to not only decrease environmental pollution but also to extract and utilize valuable by-products. Therefore, the objectives of this study were to explore different techniques for drying a phenolic-rich membrane filtration fraction of OMWW and compare the techniques in terms of the dried product quality and feasibility of the process. The OMWW from 2 (3-phase and 2-phase) California mills was subjected to a 2-step membrane filtration process using a novel vibratory system. The reverse osmosis retentate (RO-R) is a phenolic-rich coproduct stream, and the reverse osmosis permeate is a near-pure water stream that could be recycled into the milling process. Spray-, freeze-, and infrared-drying were applied to obtain solid material from the RO-R. Drying of the RO-R was made possible only with addition of 10% maltodextrin as a carrier. The total soluble phenolics in dried RO-R were in the range 0.15 to 0.58 mg gallic acid equivalents/g of dry weight for 2-phase RO-R, and 1.38 to 2.17 mg gallic acid equivalents/g of dry weight for the 3-phase RO-R. Spray-dried RO-R from 3-phase OMWW showed remarkable antioxidant activity. Protocatechuic acid, tyrosol, vanillic acid, and p-coumaric acid were quantified in all dried RO-R, whereas 3-hydroxytyrosol was found in 3-phase dried RO-R. This combination of separation and drying technologies helps to add value and shelf-stability to an olive oil by-product and increase environmental sustainability of its production. PMID:26989993

  14. Land spreading of olive mill wastewater: effects on soil microbial activity and potential phytotoxicity.

    PubMed

    Saadi, Ibrahim; Laor, Yael; Raviv, Michael; Medina, Shlomit

    2007-01-01

    Extremely high organic load and the toxic nature of olive mill wastewater (OMW) prevent their direct discharge into domestic wastewater treatment systems. In addition to the various treatment schemes designed for such wastewater, controlled land spreading of untreated OMW has been suggested as an alternative mean of disposal. A field study was conducted between October 2004 and September 2005 to assess possible effects of OMW on soil microbial activity and potential phytotoxicity. The experiment was carried out in an organic orchard located on a Vertisol-type soil (Jezre'el Valley, Israel) and included two application levels of OMW (36 and 72m(3)ha(-1)). Total microbial counts, and to less extent the hydrolytic activity and soil respiration were increased following the high OMW application level. A bench-scale lab experiment showed that the rate of OMW mineralization was mainly dependent on the general status of soil activity and was not related to previous acclimatization of the soil microflora to OMW. Soil phytotoxicity (% germination and root elongation) was assessed in soil extracts of samples collected before and after each OMW application, using germinating cress (Lepidium sativum L.) seeds. We found direct short-term effect of OMW application on soil phytotoxicity. However, the soil was partly or completely recovered between successive applications. No further phytotoxicity was observed in treated soils as compared with control soil, 3 months after OMW application. Such short-term phytotoxicity was not in correlation with measured EC and total polyphenols in the soil extracts. Overall, the results of this study further support a safe controlled OMW spreading on lands that are not associated with sensitive aquifers. PMID:16814841

  15. Degradation and biodegradability improvement of the olive mill wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes.

    PubMed

    Esfandyari, Yahya; Mahdavi, Yousef; Seyedsalehi, Mahdi; Hoseini, Mohammad; Safari, Gholam Hossein; Ghozikali, Mohammad Ghanbari; Kamani, Hossein; Jaafari, Jalil

    2015-04-01

    Olive mill wastewater is considered as one of the most polluting effluents of the food industry and constitutes a source of important environmental problems. In this study, the removal of pollutants (chemical oxygen demand (COD), biochemical oxygen demand (BOD5), polyphenols, turbidity, color, total suspended solids (TSS), and oil and grease) from olive oil mill processing wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes was evaluated using a pilot continuous reactor. In the electrochemical unit, aluminum (Al), stainless steel, and RuO2/Ti plates were used. The effects of pH, hydrogen peroxide doses, current density, NaCl concentrations, and reaction times were studied. Under optimal conditions of pH 4, current density of 40 mA/m(2), 1000 mg/L H2O2, 1 g/L NaCl, and 30-min reaction time, the peroxi-electrochemical method yielded very effective removal of organic pollution from the olive mill wastewater diluted four times. The treatment process reduced COD by 96%, BOD5 by 93.6%, total, polyphenols by 94.4%, color by 91.4%, turbidity by 88.7, suspended solids by 97% and oil and grease by 97.1%. The biodegradability index (BOD5/COD) increased from 0.29 to 0.46. Therefore, the peroxi-electrocoagulation/electrooxidation-electroflotation process is considered as an effective and feasible process for pre-treating olive mill wastewater, making possible a post-treatment of the effluent in a biological system. PMID:25408073

  16. Conventional methods and emerging wastewater polishing technologies for palm oil mill effluent treatment: a review.

    PubMed

    Liew, Wai Loan; Kassim, Mohd Azraai; Muda, Khalida; Loh, Soh Kheang; Affam, Augustine Chioma

    2015-02-01

    The Malaysian palm oil industry is a major revenue earner and the country is ranked as one of the largest producers in the world. However, growth of the industry is synonymous with a massive production of agro-industrial wastewater. As an environmental protection and public health concern, the highly polluting palm oil mill effluent (POME) has become a major attention-grabber. Hence, the industry is targeting for POME pollution abatement in order to promote a greener image of palm oil and to achieve sustainability. At present, most palm oil mills have adopted the ponding system for treatment. Due to the successful POME pollution abatement experiences, Malaysia is currently planning to revise the effluent quality standards towards a more stringent discharge limits. Hence, the current trend of POME research focuses on developing tertiary treatment or polishing systems for better effluent management. Biotechnologically-advanced POME tertiary (polishing) technologies as well as other physicochemical methods are gaining much attention as these processes are the key players to push the industry towards the goal of environmental sustainability. There are still ongoing treatment technologies being researched and the outcomes maybe available in a while. However, the research completed so far are compiled herein and reported for the first time to acquire a better perspective and insight on the subject with a view of meeting the new standards. To this end, the most feasible technology could be the combination of advanced biological processes (bioreactor systems) with extended aeration, followed by solids separation prior to discharge. Chemical dosing is favoured only if effluent of higher quality is anticipated. PMID:25463585

  17. Treatment of composite wastewater of a cotton textile mill by thermolysis and coagulation.

    PubMed

    Kumar, Pradeep; Prasad, B; Mishra, I M; Chand, Shri

    2008-03-01

    Catalytic thermal treatment (thermolysis) accompanied with coagulation was used for the removal of COD and color of composite wastewater from a cotton textile mill. CuSO4, FeSO4, FeCl3, CuO, ZnO and PAC were used as catalytic agents during thermolysis. Homogeneous copper sulphate at a mass loading of 6 kg/m3 was found to be the most active. Similarly during coagulation aluminum potassium sulphate [KAl(SO4)(2).16H2O] at a coagulant concentration of 5 kg/m3 was found to be the best among the other coagulants tested, namely, commercial alum, FeSO4, FeCl3 and PAC. During thermolysis, a reduction in COD and color of composite wastewater of about 77.9 and 92.85%, respectively, was observed at pH 12. Coagulation of fresh composite waste using aluminum potassium sulphate resulted in 88.62% COD reduction and 95.4% color reduction at pH 8. Coagulation of the supernatant obtained after treatment by catalytic thermolysis resulted in overall reduction of 97.3% COD and close to 100% color reductions at pH 8 at a lesser coagulant concentration of 3 kg/m3. The results reveal that the application of coagulation after thermolysis is most effective in removing nearly 100% of COD and color at a lower dose of coagulant. The sludge thus produced would contain lower inorganic mass coagulant and can be used as a solid fuel with high calorific value of about 16 MJ/kg, close to that of Indian coal. PMID:17646051

  18. Color and chlorinated organics removal from pulp mills wastewater using activated petroleum coke.

    PubMed

    Shawwa, A R; Smith, D W; Sego, D C

    2001-03-01

    Delayed petroleum coke, a waste by-product from the oil sand industry, was utilized in the production of activated carbon. The activated carbon was then evaluated for color and chlorinated organics reduction from pulp mill wastewater. The activation of the petroleum coke was evaluated using a fixed bed reactor involving carbonization and activation steps at temperature of 850 degrees C and using steam as the activation medium. The activation results showed that the maximum surface area of the activated coke was achieved at an activation period of 4 h. The maximum surface area occurred at burnoff and water efficiency of 48.5 and 54.3%, respectively. Increasing the activation period to 6 h resulted in a decrease in the surface area. Methylene blue adsorption results indicated that the activation process was successful. Methylene blue adsorbed per 100 g of applied activated coke was 10 times higher than that adsorbed by raw petroleum coke. Adsorption equilibrium results of the bleached wastewater and the activated coke showed that significant color, COD, DOC and AOX removal (> 90%) was achieved when the activated coke dose exceeded 15,000 mg/L. Adsorption isotherms, in terms of COD, DOC, UV and color were developed based on the batch equilibrium data. Based on these isotherms, the amount of activated coke required to achieve certain removal of color and AOX can be predicted. The utilization of the petroleum coke for the production of activated carbon can provide an excellent disposal option for the oil sand industry at the same time would provide a cheap and valuable activated carbon. PMID:11228973

  19. Microbial community structure associated with the high loading anaerobic codigestion of olive mill and abattoir wastewaters.

    PubMed

    Gannoun, Hana; Omri, Ilhem; Chouari, Rakia; Khelifi, Eltaief; Keskes, Sajiaa; Godon, Jean-Jacques; Hamdi, Moktar; Sghir, Abdelghani; Bouallagui, Hassib

    2016-02-01

    The effect of increasing the organic loading rates (OLRs) on the performance of the anaerobic codigestion of olive mill (OMW) and abattoir wastewaters (AW) was investigated under mesophilic and thermophilic conditions. The structure of the microbial community was also monitored. Increasing OLR to 9g of chemical oxygen demand (COD) L(-1)d(-1) affected significantly the biogas yield and microbial diversity at 35°C. However, at 55°C digester remained stable until OLR of 12g of CODL(-1)d(-1) with higher COD removal (80%) and biogas yield (0.52Lg(-1) COD removed). Significant differences in the bacterial communities were detected between mesophilic and thermophilic conditions. The dominant phyla detected in the digester at both phases were the Firmicutes, Actinobacteria, Bacteroidetes, Synergistetes and Spirochaete. However, Verrucomicrobia, Proteobacteria and the candidate division BRC1 were only detected at thermophilic conditions. The Methanobacteriales and the Thermoplasmales were found as a high predominant archaeal member in the anaerobic sludge. PMID:26687494

  20. Olive mill wastewater treatment using a simple zeolite-based low-cost method.

    PubMed

    Aly, Anwar A; Hasan, Yousef N Y; Al-Farraj, Abdullah S

    2014-12-01

    Olive mill wastewater (OMW), a liquid by-product of the olive oil industry, represents a severe environmental problem owing to its high pollution load. In this study, successive columns containing different types of natural materials were investigated for their OMW treatment efficiency. Passing OMW through three columns of gravel, fine sand, and a mixture of acidified cotton and zeolite (weight:weight ratio of cotton:clinoptilolite of 2:1), followed by treatment with activated charcoal (AC) and lime, was the best treatment in terms of the quality of water obtained. This treatment decreased concentrations of [Formula: see text] , B, K, P, and total fat in OMW by mean percentages of 78.0, 92.4, 66.6, 48.3, and 93.3%, respectively. Furthermore, it decreased OMW turbidity and electric conductivity (EC) by 96.8 and 48.4%, respectively. Most contaminants were removed from the OMW in the cotton/clinoptilolite column owing to the high sorption affinity of clinoptilolite on its active sites. The AC was efficient for organic particle removal; meanwhile, lime was used to raise the pH of the treated OMW (TOMW) from 2.9 to 5.1. This simple method enables us to obtain environmentally friendly TOMW that can be safely used for irrigation. PMID:25113228

  1. Impacts of operating conditions on reverse osmosis performance of pretreated olive mill wastewater.

    PubMed

    Ochando-Pulido, J M; Rodriguez-Vives, S; Hodaifa, G; Martinez-Ferez, A

    2012-10-01

    Management of the effluent from the olive oil industry is of capital importance nowadays, especially in the Mediterranean countries. Most of the scarce existing studies concerning olive mill wastewater (OMW) treatment by means of membrane processes not only do fix their aims simply on achieving irrigation standards, but lack suitable pretreatments against deleterious fouling issues. With the target of achieving the parametric requirements for public waterways discharge or even for reuse in the production process, a bench-scale study was undertaken to evaluate the feasibility of a thin-film composite reverse osmosis (RO) membrane (polyamide/polysulfone) for the purification of OMW. Previously, OMW was pretreated by means of chemical oxidation based on Fenton's reagent, flocculation-sedimentation and biosorption through olive stones. Impacts of the main operating parameters on permeate flux and pollutants rejection of the RO process, as well as fouling on the membrane surface, were examined for removing the significant ionic concentration and remaining organic matter load of the pretreated OMW. Combining operating parameters adequately in a semibatch operating regime ensured high and sustainable permeate flux, yielding over 99.4% and 98.5% removal efficiencies for the chemical oxygen demand and ionic content respectively, as well as complete rejection of phenols, iron and suspended solids. PMID:22771149

  2. Verbascoside, isoverbascoside, and their derivatives recovered from olive mill wastewater as possible food antioxidants.

    PubMed

    Cardinali, Angela; Pati, Sandra; Minervini, Fiorenza; D'Antuono, Isabella; Linsalata, Vito; Lattanzio, Vincenzo

    2012-02-22

    Olive oil processing industries generate substantial quantities of phenolic-rich byproducts, which could be valuable natural sources of antioxidants. This work is focused on the recovery and structural characterization of antioxidant compounds from olive mill wastewater (OMWW), a polluting byproduct of the olive oil production process. Phenolics were extracted from the waste material using a membrane technology coupled to low-pressure gel filtration chromatography on a Sephadex LH-20. The LH-20 fraction was, in turn, characterized for its phenolic composition by HPLC-DAD-MS/MS analyses. Verbascoside, isoverbascoside, β-hydroxyverbascoside, β-hydroxyisoverbascoside, and various oxidized phenolics were identified. Uptake of verbascoside, purified from the LH-20 fraction, by HT-29 cells, an established model system for studying drug transport properties, was also assayed. Finally, the antioxidant activities of the LH-20 fraction and verbascoside were characterized by two different techniques. Individual verbascoside was more active as a scavenger of reactive oxygen species and as a chemopreventive agent protecting low-density lipoproteins from oxidative damage than the LH-20 fraction. PMID:22268549

  3. Strategies for dephenolization of raw olive mill wastewater by means of Pleurotus ostreatus.

    PubMed

    Olivieri, Giuseppe; Russo, Maria Elena; Giardina, Paola; Marzocchella, Antonio; Sannia, Giovanni; Salatino, Piero

    2012-05-01

    The reduction of polyphenols content in olive mill wastewater (OMW) is a major issue in olive oil manufacturing. Although researchers have pointed out the potential of white-rot fungus in dephenolizing OMW, the results available in the literature mainly concern pretreated (sterilized) OMW. This paper deals with the reduction of polyphenols content in untreated OMW by means of a white-rot fungus, Pleurotus ostreatus. Dephenolization was performed both in an airlift bioreactor and in aerated flasks. The process was carried out under controlled non-sterile conditions, with different operating configurations (batch, continuous, biomass recycling) representative of potential industrial operations. Total organic carbon, polyphenols concentration, phenol oxidase activity, dissolved oxygen concentration, oxygen consumption rate, and pH were measured during every run. Tests were carried out with or without added nutrients (potato starch and potato dextrose) and laccases inducers (i.e., CuSO₄). OMW endogenous microorganisms were competing with P. ostreatus for oxygen during simultaneous fermentation. Dephenolization of raw OMW by P. ostreatus under single batch was as large as 70%. Dephenolization was still extensive even when biomass was recycled up to six times. OMW pre-aeration had to be provided under continuous operation to avoid oxygen consumption by endogenous microorganisms that might spoil the process. The role of laccases in the dephenolization process has been discussed. Dephenolization under batch conditions with biomass recycling and added nutrients proved to be the most effective configuration for OMW polyphenols reduction in industrial plants (42-68% for five cycles). PMID:22179541

  4. Control of household mycoflora in fermented sausages using phenolic fractions from olive mill wastewaters.

    PubMed

    Chaves-López, Clemencia; Serio, Annalisa; Mazzarrino, Giovanni; Martuscelli, Maria; Scarpone, Emidio; Paparella, Antonello

    2015-08-17

    Biopreservation using polyphenols represents an alternative to chemical molecules for improving food safety. In this work, we evaluated the antifungal activity of polyphenols extracted from olive mill wastewater (OMWWP) to reduce or eliminate the growth of undesired fungi on the surface of dry fermented sausages. Antagonism against Penicillium expansum DSMZ 1282, Penicillium verrucosum DSMZ 12639, Penicillium nalgiovense MS01, Aspergillus ochraceus DSMZ 63304, Cladosporium cladosporioides MS12, and Eurotium amstelodami MS10 was evident at 1.25% OMWWP in vitro, whereas in situ application of 2.5% OMWWP strongly reduced undesired household fungal species such as C. cladosporioides, Penicillium aurantiogriseum, Penicillium commune, and Eurotium amstelodami, while a moderate antagonistic activity towards P. nalgiovense and Penicillium chrysogenum was observed at the same concentration. OMWWP at the concentrations used in this study demonstrated species-dependent antifungal activity by inhibiting both fungal growth and spore germination. Therefore, OMWWP can be regarded as a potential alternative to synthetic antifungal compounds to preserve the product from both oxidation and undesired fungi, without changing the sensory characteristics. PMID:25996624

  5. Microencapsulation by Membrane Emulsification of Biophenols Recovered from Olive Mill Wastewaters.

    PubMed

    Piacentini, Emma; Poerio, Teresa; Bazzarelli, Fabio; Giorno, Lidietta

    2016-01-01

    Biophenols are highly prized for their free radical scavenging and antioxidant activities. Olive mill wastewaters (OMWWs) are rich in biophenols. For this reason, there is a growing interest in the recovery and valorization of these compounds. Applications for the encapsulation have increased in the food industry as well as the pharmaceutical and cosmetic fields, among others. Advancements in micro-fabrication methods are needed to design new functional particles with target properties in terms of size, size distribution, and functional activity. This paper describes the use of the membrane emulsification method for the fine-tuning of microparticle production with biofunctional activity. In particular, in this pioneering work, membrane emulsification has been used as an advanced method for biophenols encapsulation. Catechol has been used as a biophenol model, while a biophenols mixture recovered from OMWWs were used as a real matrix. Water-in-oil emulsions with droplet sizes approximately 2.3 times the membrane pore diameter, a distribution span of 0.33, and high encapsulation efficiency (98% ± 1% and 92% ± 3%, for catechol and biophenols, respectively) were produced. The release of biophenols was also investigated. PMID:27171115

  6. Purification of olive mill wastewater phenols through membrane filtration and resin adsorption/desorption.

    PubMed

    Zagklis, Dimitris P; Vavouraki, Aikaterini I; Kornaros, Michael E; Paraskeva, Christakis A

    2015-03-21

    Olive tree cultivation has a long history in the Mediterranean countries, and even today consists an important cultural, economic, and environmental aspect of the area. The production of olive oil through 3-phase extraction systems, leads to the co-production of large quantities of olive mill wastewater (OMW), with toxic compounds that inhibit its biodegradation. Membrane filtration has been used for the exploitation of this byproduct, through the isolation of valuable phenolic compounds. In the current work, a fraction of the waste occurring from a membrane process was used. More specifically the reverse osmosis concentrate, after a nanofiltration, containing the low-molecular-weight compounds, was further treated with resin adsorption/desorption. The non ionic XAD4, XAD16, and XAD7HP resins were implemented, for the recovery of phenols and their separation from carbohydrates. The recovered phenolic compounds were concentrated through vacuum evaporation reaching a final concentration of 378 g/L in gallic acid equivalents containing 84.8 g/L hydroxytyrosol. PMID:25497019

  7. Olive-mill wastewaters: a promising substrate for microbial lipase production.

    PubMed

    D'Annibale, Alessandro; Sermanni, Giovanni Giovannozzi; Federici, Federico; Petruccioli, Maurizio

    2006-10-01

    The present study investigated the valorization of olive-mill wastewater (OMW) by its use as a possible growth medium for the microbial production of extra-cellular lipase. To this end, strains of Geotrichum candidum (NRRL Y-552 and Y-553), Rhizopus arrhizus (NRRL 2286 and ISRIM 383), Rhizopus oryzae (NRRL 6431), Aspergillus oryzae (NRRL 1988 and 495), Aspergillus niger (NRRL 334), Candida cylindracea (NRRL Y-17506) and Penicillium citrinum (NRRL 1841 and 3754, ISRIM 118) were screened. All strains were able to grow on the undiluted OMW, producing extra-cellular lipase activity. C. cylindracea NRRL Y-17506 showed the highest lipase activity on all the typologies of OMW used. Its lipase production on OMW was markedly affected by the type of nitrogen source and was induced by the addition of olive oil. The highest activity (9.23 IU ml(-1)) of the yeast was obtained on OMW supplemented with NH(4)Cl (2.4 g l(-1)) and olive oil (3.0 g l(-1)). PMID:16236495

  8. Use of solar distillation for olive mill wastewater drying and recovery of polyphenolic compounds.

    PubMed

    Sklavos, Sotirios; Gatidou, Georgia; Stasinakis, Athanasios S; Haralambopoulos, Dias

    2015-10-01

    Olive mill wastewater (OMW) is characterized by its high organic load and the presence of phenolic compounds. For first time, a solar distillator was used to investigate the simultaneous solar drying of OMW and the recovery of phenolic compounds with antioxidant properties in the distillate. Two experiments were conducted and the role of thermal insulation on the performance of the distiller was studied. The use of insulation resulted to higher temperatures in the distillator (up to 84.3 °C and 78.5 °C at the air and sludge, respectively), shorter period for OMW dewatering (14 days), while it increased the performance of distillator by 26.1%. Chemical characterization of the distillate showed that pH and COD concentration gradually decreased during the experiments, whereas an opposite trend was noticed for conductivity and total phenols concentration. Almost 4% of the total phenols found initially in OMW were transferred to the distillate when an insulated solar distillator was used. Gas chromatographic analysis of collected distillates confirmed the presence of tyrosol in all samples; whereas hydroxytyrosol was found only in fresh collected distillate samples. Further experiments should be conducted to optimize the process and quantify the concentrations of recovered phenolic compounds. PMID:26222602

  9. Pilot-scale treatment of olive oil mill wastewater by physicochemical and advanced oxidation processes.

    PubMed

    Kiliç, M Yalili; Yonar, T; Kestioğlu, K

    2013-01-01

    The pilot-scale treatability of olive oil mill wastewater (OOMW) by physicochemical methods, ultrafiltration and advanced oxidation processes (AOPs) was investigated. Physicochemical methods (acid cracking, oil separation and coagulation-flocculation) showed high efficiency of chemical oxygen demand (COD) (85%), oil and grease (O&G) (> 97%), suspended solids (SS) (> 99%) and phenol (92%) removal from the OOMW. Ultrafiltration followed by physicochemical methods is effective in reducing the SS, O&G. The final permeate quality is found to be excellent with over 90% improvements in the COD and phenol parameters. AOPs (ozonation at a high pH, O3/UV, H2O2/UV, and O3/H2O2/UV) increased the removal efficiency and the O3/H2O2/UV combination among other AOPs studied in this paper was found to give the best results (> 99% removal for COD, > 99% removal for phenol and > 99% removal for total organic carbon). Pilot-scale treatment plant has been continuously operated on site for three years (3 months olive oil production campaign period of each year). The capital and operating costs of the applied treatment alternatives were also determined at the end of these seasons. The results obtained in this study have been patented for 7 years by the Turkish Patent Institute. PMID:24191487

  10. Reuse of microbially treated olive mill wastewater as fertiliser for wheat (Triticum durum Desf.).

    PubMed

    Fausto Cereti, Carlo; Rossini, Francesco; Federici, Federico; Quaratino, Daniele; Vassilev, Nikolay; Fenice, Massimiliano

    2004-01-01

    Free cells of Aspergillus niger were grown on olive mill wastewater (OMW) supplemented with rock phosphate (RP) in an air-lift bioreactor in batch and repeated-batch processes. The fungus grew well and reduced the chemical oxygen demand of the waste by 35% and 64% in the batch and repeated-batch (fourth batch) processes, respectively. Total sugar content was consistently reduced (ca. 60%) in both processes while reduction of total phenols was minimal. RP was solubilised and maximum soluble P was 0.63 and 0.75 gl(-1) in the batch and repeated-batch (third batch), respectively. Several types of OMW+/-RP, microbially-treated or not, were tested in a greenhouse for their fertilising ability on a soil-wheat (Triticum durum Desf.) model system. Beneficial effects were highest using OMW treated by the repeated-batch process. The treated plants showed an increase in seed biomass, spike number, and kernel weight. Harvest index was highest (0.49+/-0.04) after treatment with OMW from the repeated-batch process. PMID:14592741

  11. Olive mill wastewater stabilization in open-air ponds: impact on clay-sandy soil.

    PubMed

    Jarboui, Raja; Sellami, Fatma; Kharroubi, Adel; Gharsallah, Néji; Ammar, Emna

    2008-11-01

    The aim of this work was to study the natural biodegradation of the stored olive mill wastewater (OMW) in ponds and the infiltration as well as the impact on soil of the effluent in the evaporation pond used for the storage over the past eight years. For this, two approaches were considered. First, a laboratory-scale column was used for the infiltration of OMW through soil (clay and sand) to predict the effect of the clayey soil in reducing OMW pollution. Second, the ponds including the effluent annually stored and having this clayey structure were investigated. At the laboratory-scale, a modification of OMW contents was noticed, with the elimination of 95% of total suspended solids (TSS), 60% of chemical oxygen demand (COD), 40% of total organic carbon (TOC), 50% of total P, 50% of phenols and 40% of minerals (K+, Mg++ and Na+). The experimented soil was able to restrain the considerable effects of OMW pollution. In the ponds, the granulometric characteristics, the physico-chemical and the biological parameters of the soil profile from the contaminated pond were compared to those of a control soil, located near the contaminated pond. Property modifications of the contaminated soil were noted, especially pH, electrical conductivity, COD and microflora. These changes can be explained by the infiltration of OMW constituents, which were noticed in the soil layers, especially phenolic compounds that have a negative effect on the ground water. PMID:18337092

  12. Hydrothermal liquefaction of oil mill wastewater for bio-oil production in subcritical conditions.

    PubMed

    Hadhoum, Loubna; Balistrou, Mourad; Burnens, Gaëtan; Loubar, Khaled; Tazerout, Mohand

    2016-10-01

    The main purpose of this study is to investigate the direct hydrothermal liquefaction of oil mill wastewater (OMWW). Experiments were carried out at different temperatures (240-300°C), water contents (58-88wt.%) and reaction times (15-45min). Results show that the highest bio-oil yield was about 58wt.%, resulting in a higher heating value of 38MJ/kg. This was conducted at the following optimal conditions: water content 88wt.%, a temperature of 280°C, and 30min as reaction time. To put bio-oil into wide application, the various physical and chemical characteristics were determined. A detailed chemical composition analysis of bio-oil was performed by gas chromatography-mass spectrometry (GC-MS) coupled with a flame ionization detector (FID). The dominant compounds were identified by using NIST library. Analyses show that the bio-oil contains mainly oleic acid, hexadecanoic acid, fatty acid methyl ester, fatty acid ethyl ester, amino acid derived compounds and phenolic compounds. PMID:27344243

  13. Olive oil mill wastewater purification by combination of coagulation- flocculation and biological treatments.

    PubMed

    Jaouani, A; Vanthournhout, M; Penninckx, M J

    2005-06-01

    In order to define an efficient pre-treatment of Olive Oil Mill Wastewater (OOMW) to overcome major obstacles to biological treatment, various organic and mineral coagulants have been tested. In particular, the application of quicklime until a pH around 12 - 12.4 was reached, allowed the reduction of almost 37% of the initial COD, and approximately 88% and 71% of the colour and phenolic content of the waste. Hence, further biological treatments with an adapted aerobic consortium (AC) and a white rot fungus (WRF) strain were improved. The WRF Coriolopsis polyzona was more efficient than AC to reduce colour and polyphenols when the waste was prior diluted or pre-treated; however, it was less effective in COD removal. The combined treatment: lime - AC of OOMW having initial COD of 102 g l(-1) led to the elimination of about 77, 91 and 63%, of the COD, phenols and colour, respectively. Interestingly, the opposite combination AC - lime permitted better COD, phenols and colour reduction to respectively, 21, 11 and 11% of the initial values. This latter condition is technically recommended since only one step separation was needed and no pH correction was necessary before undergoing aerobic treatment. Moreover, the process would produce a sludge potentially rich in organic matter, and consequently, useful as an agricultural amendment or/and as an additive in animal nutrition. PMID:16035656

  14. Sugar and volatile fatty acids dynamic during anaerobic treatment of olive mill wastewater.

    PubMed

    Fernandes, L R; Gomes, A C; Lopes, A; Albuquerque, A; Simões, R M

    2016-01-01

    Biogas production has been the main route used to exploit olive mill wastewater (OMW), after pretreatment and/or in combination with other effluents, but more recently the production of chemicals and biopolymers by biotechnological routes has deserved increasing attention by the scientific community. The present paper aims to explore the potential of fresh OMW as a source of volatile fatty acids (VFAs) and biogas. The time profile of VFAs production and the corresponding sugar consumption was followed by high-performance liquid chromatography, in batch anaerobic assays. The experimental results have revealed the very high potential of the OMW for the production of VFAs, mainly due to the high sugar concentration in the effluent (37.8 g/L) and its complete conversion into VFAs, in a time period of 2-3 days. The most abundant VFAs were acetic (48-50%), n-butanoic (12-27%), iso-pentanoic (12-14%) and propanoic (5-13%). The ratio of VFA containing even and odd carbon chains increased with the reduction in the initial chemical oxygen demand concentration of the samples used in the experiments. The conversion of the VFAs to biogas was inhibited at concentrations of 3.5 g/L of VFAs. PMID:26496487

  15. Effects of olive mill wastewater on soil carbon and nitrogen cycling.

    PubMed

    Tsiknia, Myrto; Tzanakakis, Vasileios A; Oikonomidis, Dimitris; Paranychianakis, Nikolaos V; Nikolaidis, Nikolaos P

    2014-03-01

    This study investigated the cycling of C and N following application of olive mill wastewater (OMW) at various rates (0, 42, 84, and 168 m(3)/ha). OMW stimulated respiration rate throughout the study period, but an increase in soil organic matter was observed only at the highest rate. Soil phenol content decreased rapidly within 2 weeks following application but neither phenol oxidase and peroxidase activity nor laccase gene copies could explain this response. Soil NH4 (+)-N content increased in response to OMW application rate, while an opposite trend observed for NO3 (-)-N, which attributed to immobilization. This decrease was in accordance with amoA gene copies of archaeal and bacterial ammonia oxidizers in the first days following OMW application. Afterwards, although amoA gene copies and potential nitrification rates recovered to values similar to or higher than those in the non-treated soils, NO3 (-)-N content did not change among the treatments. A corresponding increase in denitrifying gene copies (nirK, nirS, nosZ) during that period indicates that denitrification, stimulated by OMW application rate, was responsible for this effect; a hypothesis consistent with the decrease in total Kjeldahl nitrogen content late in the season. The findings suggest that land application of OMW is a promising practice for OMW management, even at rates approaching the soil water holding capacity. PMID:24092011

  16. Assesing the effect of an olive mill wastewater evaporation pond in Sousse, Tunisia

    NASA Astrophysics Data System (ADS)

    S'habou, Rakia; Zairi, Moncef; Kallel, Amjed; Aydi, Abdelwaheb; Ben Dhia, Hamed

    2009-08-01

    Olive oil is a typical and valuable agro-industrial product in Mediterranean countries. In Tunisia, olive mill wastewaters (OMW) reach an amount of about 1,000,000 t year-1 and constitute a serious organic pollution risk because of the high chemical oxygen demand values and the presence of phytotoxic and antibacterial polyphenols. OMW have been generally stored in pond sites to be eliminated by natural evaporation or valorised by spreading on cultivated soils or by composting. Many researches on the interactions of OMW with soils at laboratory scale (columns) have been reported, but less attention have been paid to the effect of OMW on soils at field scale. The aim of this work is to investigate an area used for >15 years as an uncontrolled OMW pond site. The transformations of soil properties and groundwater occurring during OMW storage were characterised by the pH, phenolic contents, electrical conductivity (EC), moisture content and organic contents. The soil samples were taken from two borings and compared to those of a control one located near the pond site. Groundwater samples were taken on the accessible and nearest water wells to the evaporation ponds. The permeable silty and sandy layers in the site support the infiltration of OMW near the evaporation ponds. This infiltration has reached a depth of 6 m at a distance of almost 50 m laterally. The results show that the OMW infiltration in the subsoil has affected the pH, EC, organic content, phenolic compounds and the moisture.

  17. Feed supplemented with byproducts from olive oil mill wastewater processing increases antioxidant capacity in broiler chickens.

    PubMed

    Gerasopoulos, Konstantinos; Stagos, Dimitrios; Kokkas, Stylianos; Petrotos, Konstantinos; Kantas, Dimitrios; Goulas, Panagiotis; Kouretas, Dimitrios

    2015-08-01

    In the present study, a ceramic membrane microfiltration method was used for the separation of two liquid products, the downstream permeate and the upstream retentate, from olive mill wastewater (OMWW). These liquid products were examined for their antioxidant activity by incorporating them into broilers' feed. Twenty four broilers 13 d old were divided into two feeding groups receiving supplementation with OMWW retentate or permeate for 37 d. Blood was drawn at 17, 27 and 37 d, while tissues (muscle, heart, liver) were collected at 37 d. The antioxidant effects were assessed by measuring oxidative stress biomarkers in blood and tissues. The results showed that broilers given feed supplemented with OMWW retentate or permeate had significantly lower protein oxidation and lipid peroxidation levels and higher total antioxidant capacity in plasma and tissues compared to control group. In both OMWW groups, catalase activity in erythrocytes and tissues was significantly increased compared to control group. OMWW retentate administration increased significantly GSH in erythrocytes in broilers with low GSH, although both OMWW products significantly reduced GSH in broilers with high GSH. Thus, it has been demonstrated for the first time that supplementation with OMWW processing residues could be used for enhancing broilers' redox status. PMID:25916917

  18. Microencapsulation by Membrane Emulsification of Biophenols Recovered from Olive Mill Wastewaters

    PubMed Central

    Piacentini, Emma; Poerio, Teresa; Bazzarelli, Fabio; Giorno, Lidietta

    2016-01-01

    Biophenols are highly prized for their free radical scavenging and antioxidant activities. Olive mill wastewaters (OMWWs) are rich in biophenols. For this reason, there is a growing interest in the recovery and valorization of these compounds. Applications for the encapsulation have increased in the food industry as well as the pharmaceutical and cosmetic fields, among others. Advancements in micro-fabrication methods are needed to design new functional particles with target properties in terms of size, size distribution, and functional activity. This paper describes the use of the membrane emulsification method for the fine-tuning of microparticle production with biofunctional activity. In particular, in this pioneering work, membrane emulsification has been used as an advanced method for biophenols encapsulation. Catechol has been used as a biophenol model, while a biophenols mixture recovered from OMWWs were used as a real matrix. Water-in-oil emulsions with droplet sizes approximately 2.3 times the membrane pore diameter, a distribution span of 0.33, and high encapsulation efficiency (98% ± 1% and 92% ± 3%, for catechol and biophenols, respectively) were produced. The release of biophenols was also investigated. PMID:27171115

  19. Structural Characterization and Biological Activities of Polysaccharides from Olive Mill Wastewater.

    PubMed

    Nadour, Malika; Laroche, Celine; Pierre, Guillaume; Delattre, Cedric; Moulti-Mati, Farida; Michaud, Philippe

    2015-09-01

    Olive mill wastewater (OMWW), the main waste product of olive oil extraction process, was investigated as a source of polysaccharides. The yield of alcohol insoluble residue (AIR) was 20.5 % based on the dry matter of OMWW. Extraction with water gave water soluble (WSF) and insoluble (WIF) fractions from AIR with yields of 13.3 % (w/w) and 3.7 % (w/w) based on the dry matter, respectively. Chemical composition and monosaccharide analysis indicated that glucose was the main monosaccharide of these extracts in addition to galactose, arabinose, rhamnose, and galacturonic acid. Prebiotic and antioxidant activities of polysaccharidic fractions from OMWW were evaluated. Results gave evidence for their scavenging capacity toward the 2,2'-diphenyl-1-picrylhydrazyle (DPPH) (IC50 value of 89.43 μg/mL) and hydroxyl radicals (IC50 value of 158.70 μg/mL), resistance toward artificial human gastric juice, and ability to be fermented by Lactobacilli strains. PMID:26189104

  20. Toxicity effects of olive-mill wastewater on growth, photosynthesis and pollen morphology of spinach plants.

    PubMed

    Asfi, Maria; Ouzounidou, Georgia; Panajiotidis, Sampson; Therios, Ioannis; Moustakas, Michael

    2012-06-01

    Olive mill-wastewater (OMW), a by-product of the olive oil extraction process, represents a significant environmental problem in Mediterranean areas. We studied the impact of OMW dilutions (1:10 and 1:20) on growth, photosynthesis, proline and sugar accumulation as well as on pollen morphology of spinach (Spinacia oleracea L.) plants, to evaluate the application of OMW dilutions as pretreatment technique, prior to land disposal. Biomass, height, total chlorophyll and leaf area of spinach declined progressively with decreasing OMW dilution. Since fatty acids and phenolic compounds (present in the OMW) are considered precursors in the polymerization of sporopollenin, we suggest that under OMW treatment spinach plants seem to 'direct' the excess of these substances in the production and formation of increased pollen grains. Proline did not accumulate under OMW stress, but decreased possible due to transport to pollens in response to increased demand to over-production of pollens. Both OMW dilutions resulted in a decreased efficiency of PSII functioning and an increased excitation pressure (1-q(p)). It is concluded that, higher than 1:20 OMW dilutions should be used, and/or additional treatment should be applied before use of the OMW in the environment. PMID:22455663

  1. Characterization of the harmful effect of olive mill wastewater on spearmint.

    PubMed

    El Hassani, F Z; Zinedine, A; Amraoui, M Bendriss; Errachidi, F; Alaoui, S Mdaghri; Aissam, H; Merzouki, M; Benlemlih, M

    2009-10-30

    In this study, changes in viability, biomass production, essential oil yield and essential oil composition of Mentha spicata L. (spearmint) exposed to olive mill wastewater (OMW) were investigated. Spearmint cuttings were sensitive to OMW and, after 6h of incubation in raw or diluted OMW, their viability was null. The short contact of raw OMW with mint cuttings caused an irreversible damage in rhizogenesis and shoots development. Roots were more sensitive to phytotoxicity than shoots. In a field essay, spearmint showed a good capability to recover when OMW was spread at 8 l m(-2) at the vegetative phase of growth (45 days after plantation). At this dose, a slight increase of mostly of the mint essential oil constituents was obtained. When the dose applied was 16 l m(-2), phytotoxicity was manifested by a high reduction of biomass and essential oil yield. The essential oil composition was also affected and a disappearance of many of mint essential oil constituents was observed with an increase of 59% for carvone, the major compound of spearmint essential oil. As far as we know, this is the first report on the effect of field application of OMW on an aromatic plant essential oil yield and composition. PMID:19482423

  2. Combined treatment of olive mill wastewater by Fenton's reagent and anaerobic biological process.

    PubMed

    Amor, Carlos; Lucas, Marco S; García, Juan; Dominguez, Joaquín R; De Heredia, J Beltrán; Peres, José A

    2015-01-01

    This work presents the application of Fenton's reagent process combined with anaerobic digestion to treat an olive mill wastewater (OMW). Firstly, OMW was pre-treated by chemical oxidation in a batch reactor with Fenton's reagent, using a fixed H2O2/COD ratio of 0.20, pH = 3.5 and a H2O2/Fe(2+) molar ratio of 15:1. This advanced oxidation treatment allowed reaching reductions of 17.6 and 82.5% of chemical oxygen demand (COD) and total polyphenols (TP), respectively. Secondly, OMW treatment by anaerobic digestion was performed using previously adapted microorganisms immobilized in Sepiolite. These biological tests were carried out varying the substrate concentration supplied to the reactor and COD conversions from 52 to 74% were obtained. Afterwards, Fenton's reagent followed by anaerobic digestion was applied to OMW treatment. This combined process presented a significant improvement on organic load removal, reaching COD degradations from 64 to 88%. Beyond the pollutant load removal, it was also monitored the yield of methane generated throughout anaerobic experiments. The methane produced ranged from 281 cm(3) to 322 cm(3) of CH4/g COD removed. Additionally, a methane generation kinetic study was performed using the Monod Model. The application of this model allowed observing a kinetic constant increase of the combined process (kFN = 0.036 h(-1)) when compared to the single anaerobic process (kF = 0.017 h(-1)). PMID:25560262

  3. Comparative examination of the olive mill wastewater biodegradation process by various wood-rot macrofungi.

    PubMed

    Koutrotsios, Georgios; Zervakis, Georgios I

    2014-01-01

    Olive mill wastewater (OMW) constitutes a major cause of environmental pollution in olive-oil producing regions. Sixty wood-rot macrofungi assigned in 43 species were evaluated for their efficacy to colonize solidified OMW media at initially established optimal growth temperatures. Subsequently eight strains of the following species were qualified: Abortiporus biennis, Ganoderma carnosum, Hapalopilus croceus, Hericium erinaceus, Irpex lacteus, Phanerochaete chrysosporium, Pleurotus djamor, and P. pulmonarius. Fungal growth in OMW (25%v/v in water) resulted in marked reduction of total phenolic content, which was significantly correlated with the effluent's decolorization. A. biennis was the best performing strain (it decreased phenolics by 92% and color by 64%) followed by P. djamor and I. lacteus. Increase of plant seeds germination was less pronounced evidencing that phenolics are only partly responsible for OMW's phytotoxicity. Laccase production was highly correlated with all three biodegradation parameters for H. croceus, Ph. chrysosporium, and Pleurotus spp., and so were manganese-independent and manganese dependent peroxidases for A. biennis and I. lacteus. Monitoring of enzymes with respect to biomass production indicated that Pleurotus spp., H. croceus, and Ph. chrysosporium shared common patterns for all three activities. Moreover, generation of enzymes at the early biodegradation stages enhanced the efficiency of OMW treatment. PMID:24987685

  4. Comparative Examination of the Olive Mill Wastewater Biodegradation Process by Various Wood-Rot Macrofungi

    PubMed Central

    Koutrotsios, Georgios; Zervakis, Georgios I.

    2014-01-01

    Olive mill wastewater (OMW) constitutes a major cause of environmental pollution in olive-oil producing regions. Sixty wood-rot macrofungi assigned in 43 species were evaluated for their efficacy to colonize solidified OMW media at initially established optimal growth temperatures. Subsequently eight strains of the following species were qualified: Abortiporus biennis, Ganoderma carnosum, Hapalopilus croceus, Hericium erinaceus, Irpex lacteus, Phanerochaete chrysosporium, Pleurotus djamor, and P. pulmonarius. Fungal growth in OMW (25%v/v in water) resulted in marked reduction of total phenolic content, which was significantly correlated with the effluent's decolorization. A. biennis was the best performing strain (it decreased phenolics by 92% and color by 64%) followed by P. djamor and I. lacteus. Increase of plant seeds germination was less pronounced evidencing that phenolics are only partly responsible for OMW's phytotoxicity. Laccase production was highly correlated with all three biodegradation parameters for H. croceus, Ph. chrysosporium, and Pleurotus spp., and so were manganese-independent and manganese dependent peroxidases for A. biennis and I. lacteus. Monitoring of enzymes with respect to biomass production indicated that Pleurotus spp., H. croceus, and Ph. chrysosporium shared common patterns for all three activities. Moreover, generation of enzymes at the early biodegradation stages enhanced the efficiency of OMW treatment. PMID:24987685

  5. Effect of olive mill wastewater application on soil water repellency mitigation

    NASA Astrophysics Data System (ADS)

    Diamantis, V.; Gazani, E.

    2009-04-01

    Olive mill wastewater (OMW) is a by-product of olive oil production and it is generated in large quantities in the Mediterranean region. Waste disposal is a growing problem and therefore there is an increasing interest in sustainable (economical and environmental) reuse of this material. In this study OMW was applied in water drops on a water repellent sandy soil and the time until complete penetration was recorded. For this reason different dilutions of OMW were used while comparison was made with the standard procedure of the water drop penetration time (WDPT) using de-ionised water. The results of this study showed that with increasing OMW concentration the lower the water penetration time was. Analyzing the OMW samples using Capillary Gas Chromatography revealed increased concentrations of low molecular fatty acids (mainly acetic, propionic, butyric and valeric). Direct application of OMW on the field combined with the rapid infiltration into the soil matrix, is an interesting option to mitigate soil water repellency and deplete hydrophobic compounds.

  6. Yield Improvement and Energy Savings Uing Phosphonates as Additives in Kraft pulping

    SciTech Connect

    Ulrike W. Tschirner; Timothy Smith

    2007-03-31

    Project Objective: Develop a commercially viable modification to the Kraft process resulting in energy savings, increased yield and improved bleachability. Evaluate the feasibility of this technology across a spectrum of wood species used in North America. Develop detailed fundamental understanding of the mechanism by which phosphonates improve KAPPA number and yield. Evaluate the North American market potential for the use of phosphonates in the Kraft pulping process. Examine determinants of customer perceived value and explore organizational and operational factors influencing attitudes and behaviors. Provide an economic feasibility assessment for the supply chain, both suppliers (chemical supply companies) and buyers (Kraft mills). Provide background to most effectively transfer this new technology to commercial mills.

  7. Study on preparation of water hyacinth-based activated carbon for pulp and paper mill wastewater treatment.

    PubMed

    Boonpoke, Anusorn

    2015-09-01

    Mulberry pulp and paper mills produce high chemical- and organic matter containing waste water in Thailand. Many of the mills are not equipped with wastewater treatment unit; their untreated effluent is directly discharged into recipient water resources. The effluent constituents are well recognized as acute and chronic pollutants that are hazardous to the environment. The present study aimed to investigate the utilization of an activated carbon from a low-cost material and to examine its adsorption performance using batch and fixed-bed adsorption. Water hyacinth was used as a raw material for activated carbon production via a chemical activation method. The results showed that water hyacinth-based activated carbon (WHAC) provided a high surface area of 912-1,066 m2g(-1) and exhibited micropore structure. Based on the Freundlich fit, the maximum adsorption capacity of COD and color was 4.52 mgg(-1) and 13.57 Pt-Cog(-1), respectively. The fixed bed adsorption provided maximum removal efficiency of 91.70 and 92.62% for COD and color, respectively. A continuous adsorption data agreed well with the Thomas kinetic model. In summary, water hyacinth can be used as a low-cost material for activated carbon production with high removal efficiency of COD and color for pulp and paper mill wastewater treatment. PMID:26521558

  8. Pollution prevention for the kraft pulp and paper industry

    SciTech Connect

    Not Available

    1992-09-01

    The document is an annotated bibliography of publications related to pollution prevention in the Kraft segment of the pulp and paper industry. It is organized by process area as follows: chip preparation, chemical pulping, pulp washing, bleaching, chemical recovery, recausticizing, power generation, wastewater treatment, papermaking, and general plant. The document contains 269 citations.

  9. Exploitation of olive mill wastewater and liquid cow manure for biogas production

    SciTech Connect

    Dareioti, Margarita A.; Dokianakis, Spyros N.; Stamatelatou, Katerina; Zafiri, Constantina; Kornaros, Michael

    2010-10-15

    Co-digestion of organic waste streams is an innovative technology for the reduction of methane/greenhouse gas emissions. Different organic substrates are combined to generate a homogeneous mixture as input to the anaerobic reactor in order to increase process performance, realize a more efficient use of equipment and cost-sharing by processing multiple waste streams in a single facility. In this study, the potential of anaerobic digestion for the treatment of a mixture containing olive mill wastewater (OMW) and liquid cow manure (LCM) using a two-stage process has been evaluated by using two continuously stirred tank reactors (CSTRs) under mesophilic conditions (35 {sup o}C) in order to separately monitor and control the processes of acidogenesis and methanogenesis. The overall process was studied with a hydraulic retention time (HRT) of 19 days. The digester was continuously fed with an influent composed (v/v) of 20% OMW and 80% LCM. The average removal of dissolved and total COD was 63.2% and 50%, respectively. The volatile solids (VS) removal was 34.2% for the examined mixture of feedstocks operating the system at an overall OLR of 3.63 g CODL{sub reactor}{sup -1}d{sup -1}. Methane production rate at the steady state reached 0.91 L CH{sub 4}L{sub reactor}{sup -1}d{sup -1} or 250.9 L CH{sub 4} at standard temperature and pressure conditions (STP) per kg COD fed to the system.

  10. Reuse of drinking water treatment sludge for olive oil mill wastewater treatment.

    PubMed

    Fragoso, R A; Duarte, E A

    2012-01-01

    Olive mill wastewater (OMW) results from the production of olive oil, which is an important traditional agro-industry in Mediterranean countries. In continuous three-phase centrifugation 1.0-1.2 m(3) of OMW are produced per ton of processed olives. Discharge of OMW is of serious environmental concern due to its high content of organic matter with phytotoxic properties, namely phenolic compounds. Meanwhile, drinking water treatment sludge (DWTS) is produced in high amounts and has long been considered as a waste for landfill. The aim of this work was the assessment of reusing DWTS for OMW treatment. High performance liquid chromatography (HPLC) analysis was carried out to determine the phenolic compounds present and to evaluate if they are recalcitrant. Treatability assays were performed using a dosage of DWTS from 50 to 300 g L(-1). Treatment efficiency was evaluated based on the removal of chemical oxygen demand (COD), biochemical oxygen demand (BOD), total solids (TS), total suspended solids (TSS), total volatile solids (TVS), oil and grease (OG), phenols (total phosphorous (TP) and HPLC fraction). Results from OMW HPLC characterization identified a total of 13 compounds; the major ones were hydroxytyrosol, tyrosol, caffeic acid, p-cumaric acid and oleuropein. Treatability assays led to a maximum reduction of about 90% of some of the phenolic compounds determined by HPLC. Addition of 200-300 g L(-1) of DWTS reduced 40-50% of COD, 45-50% of TP, a maximum of nearly 70% TSS and 45% for TS and TVS. The OG fraction showed a reduction of about 90%, achieved adding 300 g L(-1) od DWTS. This study points out the possibility of establishing an integrated management of OMW and DWTS, contributing to a decrease in the environmental impact of two industrial activities, olive oil production and drinking water treatment. PMID:22766882

  11. Assessment of Coriolopsis gallica-treated olive mill wastewater phytotoxicity on tomato plants.

    PubMed

    Daâssi, Dalel; Sellami, Sahar; Frikha, Fakher; Rodriguez-Couto, Susana; Nasri, Moncef; Mechichi, Tahar

    2016-08-01

    The aim of the present study was to evaluate the phytotoxicity of olive mill wastewater (OMW) after being treated by the white-rot fungus Coriolopsis gallica. For this, the effect of irrigation with treated OMW (TOMW) and untreated OMW (UOMW) on tomato plants (Lycopersicon esculentum) for 3 weeks was studied. The control plants were irrigated with distilled water. Agronomic tests were performed in pot experiments in a greenhouse using the randomized complete block (RCB) experimental design. The relative leaf height (RLH), as a morphological parameter, and the content of total phenols in the roots and total chlorophyll [Cha + Chb] and reducing sugars in the leaves, as physiological parameters, were selected as responses of the experimental design. The results obtained showed that [Cha + Chb] in the leaves of tomato growth under TOMW was enhanced by 36.3 and 19.4 % compared to the plant growth under UOMW and to the controls, respectively. Also, reducing sugar concentrations were closed to those of the control plants, ranging from 0.424 to 0.678 g/L for the different dilutions tested. However, the plants irrigated with UOMW showed lower reducing sugar concentrations ranging from 0.042 to 0.297g/L. The optimum RLH (0.537) was observed in the plants irrigated with TOMW diluted at (1:4), this value being higher than that observed in the controls (0.438). Our study proved that the irrigation with TOMW significantly improved tomato growth and photosynthesis activity over those irrigated with UOMW. Optimization of TOMW as a fertilizer was obtained for a dilution of 1:4. From the obtained results, it can be concluded that OMW treated by C. gallica holds potential to be used as a fertilizer for tomato plants. Graphical Abstract ᅟ Please provide a caption for the graphical abstract.The graphical abstract is improved and sent as attachment Please replace it. PMID:27113734

  12. Agronomic application of olive mill wastewater: Effects on maize production and soil properties.

    PubMed

    Belaqziz, Majdouline; El-Abbassi, Abdelilah; Lakhal, El Khadir; Agrafioti, Evita; Galanakis, Charis M

    2016-04-15

    This study investigates the effect of direct amendment of olive mill wastewater (OMW) on the fertility of soil, described as poor in the area of Marrakech (semi-arid region) in Morocco. The treated plots were amended with untreated OMW generated by a traditional extraction process at the amount of 10 L/m(2)/year during two consecutive years. Results of these two years treatments with crude OMW at relatively high dose reveal an important increase in soil physicochemical characteristics, namely electric conductivity (EC), Na(+,) K(+), phosphorus, nitrogen, organic matter and soluble phenolic compounds. EC of treated soil was enhanced from 0.34 to 2.91 mS/cm as compared to the control soil. After spreading OMW in soil, the amounts of its nutritive elements increased by 81% for nitrogen, 66% for phosphorus and 88% for potassium. The accumulation of phenolic compounds and the increase of total peroxidase activity in plants provide evidence of their protective role against the physiological stress induced by OMW. However, this enrichment in mineral and nutritive elements decreased three months after OMW application, revealing OMW biodegradation in the studied calcareous soil. In parallel, an increase in the contents of the soluble phenolic compounds on the upper layer of soil was denoted and maize plants growth was efficiently raised. Significant amelioration was obtained notably in terms of fresh and dry weight of leaves, leaves area, spikes fresh and dry weight, 100 seeds weight and straw yield (37, 54, 27, 24, 14 and 9% respectively). Along with the correct choice of convenient soils notably calcareous ones and tolerant crops such as maize, this method could constitute an efficient approach for avoiding problems attributed to the uncontrolled disposal of these effluents and an effective strategy to regenerate degraded soils and represents an economical alternative that provides a local fertilizer. PMID:26899012

  13. Sorption interactions of organic compounds with soils affected by agricultural olive mill wastewater.

    PubMed

    Keren, Yonatan; Borisover, Mikhail; Bukhanovsky, Nadezhda

    2015-11-01

    The organic compound-soil interactions may be strongly influenced by changes in soil organic matter (OM) which affects the environmental fate of multiple organic pollutants. The soil OM changes may be caused by land disposal of various OM-containing wastes. One unique type of OM-rich waste is olive mill-related wastewater (OMW) characterized by high levels of OM, the presence of fatty aliphatics and polyphenolic aromatics. The systematic data on effects of the land-applied OMW on organic compound-soil interactions is lacking. Therefore, aqueous sorption of simazine and diuron, two herbicides, was examined in batch experiments onto three soils, including untreated and OMW-affected samples. Typically, the organic compound-soil interactions increased following the prior land application of OMW. This increase is associated with the changes in sorption mechanisms and cannot be attributed solely to the increase in soil organic carbon content. A novel observation is that the OMW application changes the soil-sorbent matrix in such a way that the solute uptake may become cooperative or the existing ability of a soil sorbent to cooperatively sorb organic molecules from water may become characterized by a larger affinity. The remarkable finding of this study was that in some cases a cooperative uptake of organic molecules by soils makes itself evident in distinct sigmoidal sorption isotherms rarely observed in soil sorption of non-ionized organic compounds; the cooperative herbicide-soil interactions may be characterized by the Hill model coefficients. However, no single trend was found for the effect of applied OMW on the mechanisms of organic compound-soil interactions. PMID:26183941

  14. Effect of combined physico-chemical processes on the phytotoxicity of olive mill wastewaters.

    PubMed

    Andreozzi, Roberto; Canterino, Marisa; Di Somma, Ilaria; Lo Giudice, Roberto; Marotta, Raffaele; Pinto, Gabriele; Pollio, Antonino

    2008-03-01

    A pool of laboratory experiments is planned with the aim of evaluating the possibility to reduce the phytotoxicity of olive mill wastewater (OMW) with combined physico-chemical processes (centrifugation-ozonation, centrifugation-solar photolysis, centrifugation-solar modified photoFenton, centrifugation-solar modified photoFenton-ozonation). A moderate COD removal of an OMW is reached by using ozonation or solar modified photoFenton separately or solar modified photoFenton/O(3) combined process even for prolonged treatment times. The O(3)-treated OMWs are still toxic towards algal growth (Pseudokirchneriella subcapitata) and only for dilutions equal to or higher than 1:160 a stimulation of algal growth is observed. The sole ozonation does not reduce significantly the phytotoxicity of tested OMW measured through the GI calculation of Raphanus sativus L., Cucumis sativus L. and Lactuca sativa L. A marked reduction of OMW inhibition, higher than 50%, is evidenced for 1:8 dilution OMW samples ozonated for 2h. The long-term storage of OMW associated with solar irradiation without or with Fe(III) ions under continuous aeration is less efficient than ozonation, and the combined action of the two former treatments does not significantly contribute to enhance both COD removal and germination index. Better results are obtained on seed germination and root elongation of plantlets of the three selected species, which germinated on OMW-free solidified medium and were then transferred on a solidified culture medium containing O(3)-treated OMW diluted 1:2 and 1:4. The operating costs are estimated for the solar modified photoFenton-ozonation process. PMID:18006039

  15. Polyhydroxyalkanoate biosynthesis from paper mill wastewater treated by a moving bed biofilm reactor.

    PubMed

    Jarpa, Mayra; Pozo, Guillermo; Baeza, Rocío; Martínez, Miguel; Vidal, Gladys

    2012-01-01

    Polyhydroxyalkanoate (PHA) biosynthesis in paper mill wastewater treated by a Moving Bed Biofilm Reactor (MBBR) was evaluated. A MBBR was operated during 300 d. The increasing effect of the Organic Load Rate (OLR) from 0.13 kg BOD(5)/m(3)·d to 2.99 kg BOD(5)/m(3)·d and the influence of two relationship of BOD(5:) N: P (100: 5: 1 and 100: 1: 0.3) on the PHA biosynthesis were evaluated. With an OLR of 0.13 kg BOD(5)/m(3)·d, the maximum organic matter removal measure as Biochemical Oxygen Demand (BOD(5)) was 98.7% for a BOD(5:) N: P relationship of 100: 5: 1. Meanwhile for BOD(5): N: P relationship of 100: 1: 0.3, the maximum efficiency was 87.2% (OLR: 2.99 kg BOD(5)/m(3)·d). The behaviour of the Chemical Oxygen Demand (COD) and total phenolic compound removal efficiencies were below 65.0% and 41.0%, respectively. PHA biosynthesis was measured as a percentage of cells that accumulate PHA, where the maximum percentage was 85.1% and 78.7% when MBBR was operated under a BOD(5): N: P relationship of 100: 5: 1 and 100: 1: 0.3, respectively. Finally, the PHA yields in this study were estimated to range between 0.11 to 0.72 mg PHA/mg VSS and 0.06 to 0.15 mg PHA/mg COD. PMID:22871002

  16. Dephenolization and detoxification of olive-mill wastewater (OMW) by purified biotic and abiotic oxidative catalysts.

    PubMed

    Iamarino, G; Rao, M A; Gianfreda, L

    2009-01-01

    The capability of two oxidative catalysts, a laccase from Rhus vernicifera and birnessite, a manganese oxide, in the dephenolization and detoxification of two olive-mill wastewater (OMW) samples, C1 and C2, differing for complexity and composition, was evaluated. OMW phenolic extracts (EC1 and EC2) and mono-substrate solutions of phenols mostly present in OMW samples were also tested. Birnessite was more effective than laccase in removing the phenolic content from mono-substrate solutions (more than 70% of each initial phenolic concentration) and of either OMW samples or EC1 and EC2 extracts. For instance, 60% of the total phenolic content of EC1 was removed after 48-h treatment with 5 mg mL(-1) birnessite and the efficiency was lower as greater was the complexity of the OMW sample (only 17% removal from EC2 over the same time span). Phytotoxicity tests with Lepidium sativum and Lycopersicon esculentum seeds and antibacterial toxicity tests with Bacillus megaterium were performed on crude OMW samples and their extract and exhausted fractions before and after the catalytic treatment. Results demonstrated that (a) monomeric phenols were certainly but not exclusively responsible of OMW phytotoxicity, whereas their removal led to a quite complete elimination of the toxicity toward bacterial growth; (b) other components not removable by the oxidative catalysts very likely contribute to OMW phytotoxicity; and (c) the choice of the vegetal species to use in toxicity tests might be crucial for correct and easily interpretable results. Overall the results provided useful information on the possible use of oxidative catalysts for the efficient treatment of complex aqueous wastes such as those deriving from olive industry. PMID:18990422

  17. Polymer incompatibility as a potential tool for polyphenol recovery from olive mill wastewater.

    PubMed

    Hajji, Fuad; Kunz, Benno; Weissbrodt, Jenny

    2014-08-01

    Experiments were designed and preformed in consideration of polymer type (proteins, i.e. caseinate and ovalbumin, and polysaccharides, i.e. alginate and methylcellulose), charge character and polysaccharide concentrations, intended to understand how the polymer properties determine both phase separation and polyphenol partitioning from olive mill wastewater (OMW). The highest yield of polyphenols (YBP=92.9%) was achieved in an aqueous two-phase system (ATPS) using an ovalbumin-methylcellulose system (OMCS) in comparison to ATPS with caseinate-alginate system (CAS; YBP=85.8%) or caseinate methylcellulose system (CMCS; YBP=74%). The performance of CMCS for the ATPS partitioning of polyphenols in OMW was found to depend on the addition of salt (sodium chloride). The use of centrifugation as assistive technology appears to be necessary for the polyphenol partitioning in ATPS using OMCS. In contrast to these polymer systems, CAS caused a rapid ATPS without resorting to centrifugation and salt, mainly because of strong electrostatic repulsion between alginate and caseinate. In this regard, CAS in phase-separated OMW obtained a partition coefficient of protein (KP1) of 0.04, a tie-line length (TLL) of 10.47% (w/w) and a phase volume ratio (VR) of 0.7. Thus, ATPS based on CAS represent an efficient and environmentally friendly concept in recovery of polyphenols from OMW. The spray drying of the caseinate-polyphenol-rich phase from CAS could become a dry intermediate product with potential use in the food and non-food industry. PMID:24629933

  18. Biosynthesis of single-cell biomass from olive mill wastewater by newly isolated yeasts.

    PubMed

    Arous, Fatma; Azabou, Samia; Jaouani, Atef; Zouari-Mechichi, Hela; Nasri, Moncef; Mechichi, Tahar

    2016-04-01

    The aim of this study was to assess the potential of newly isolated yeast strains Schwanniomyces etchellsii M2 and Candida pararugosa BM24 to produce yeast biomass on olive mill wastewater (OMW). Maximum biomass yield was obtained at 75 % (v/v) OMW, after 96 h of incubation at 30 °C and 5 % (v/v) inoculum size. The optimal carbon/nitrogen (C/N) ratio was in the range of 8:1 to10:1, and ammonium chloride was selected as the most suitable nitrogen source. Under these conditions, a maximum biomass production of 15.11 and 21.68 g L(-1) was achieved for Schwanniomyces etchellsii M2 and Candida pararugosa BM24, respectively. Proteins were the major constituents of yeast cells (35.9-39.4 % dry weight), lipids were 2.8-5 % dry weight, and ash ranged from 4.8 to 9.5 % dry weight. Besides biomass production, yeast strains were also able to reduce toxicity and polluting parameter levels of the spent OMW-based medium. The practical results presented show that pH rose from initial value of 5.5 to 7.24-7.45 after fermentation. Approximately 23.1-41.4 % of the chemical oxygen demand (COD) and 15.4-19.2 % of the phenolic compounds were removed. The removal of phenolic compounds was associated with their biodegradation and their partial adsorption on yeast cells. PMID:26662789

  19. Biological treatment with fungi of olive mill wastewater pre-treated by photocatalytic oxidation with nanomaterials.

    PubMed

    Nogueira, V; Lopes, I; Freitas, A C; Rocha-Santos, T A P; Gonçalves, F; Duarte, A C; Pereira, R

    2015-05-01

    Olive mill wastewater (OMW) still is a major environmental problem due to its high chemical oxygen demand (COD) and total phenolic content (TPC), contributing for the high toxicity and recalcitrant nature. Several attempts have been made for developing more efficient treatment processes, but no chemical or biological approaches were found to be totally effective, especially in terms of toxicity reduction. In this context, the main purpose of this study was to investigate the treatability of OMW by the combination of photocatalytic oxidation, using two nanomaterials as catalysts (TiO2 and Fe2O3), with biological degradation by fungi (Pleurotus sajor caju and Phanerochaete chrysosporium). Photocatalytic oxidation was carried out using different systems, nano-TiO2/UV, nano-Fe2O3/UV, nano-TiO2/H2O2/UV and nano-Fe2O3/H2O2/UV. The effectiveness of the treatment was assessed through color (465nm), aromatics (270nm), COD and TPC reductions, as well as by the decrease in toxicity using the bacterium Vibrio fischeri. The chemical treatment with the system nano-TiO2/H2O2/UV promoted 43%, 14%, 38% and 31% reductions in color, aromatics content, COD and TPC, respectively. However no toxicity reduction was observed. The combination with a biological treatment increased the reduction of COD and TPC as well as a reduction in toxicity. The treatment with P. chrysosporium promoted the highest reduction in toxicity, but P. sajor caju was responsible for the best reduction in COD and TPC. However, the biological treatment was more effective when no hydrogen peroxide was used in the pre-treatment. PMID:25723133

  20. Comparison of natural (olive mill wastewater) and synthetic surfactant for soil water repellency mitigation in the Mediterranean region

    NASA Astrophysics Data System (ADS)

    Diamantis, Vasileios; Pagorogon, Lorvi; Gazani, Eleutheria; Gkiougkis, Ioannis; Pliakas, Fotios

    2010-05-01

    This study explores, for the first time, the potential effectiveness of olive mill wastewater (OMW) as an alternative to industrial surfactants in decreasing soil water repellency. The OMW was characterized by high concentrations of short-chain fatty acids, mainly butyric, propionic and acetic, which contributed approximately to 1/3 of the organic load. It was applied diluted (1:1 with freshwater) in an agricultural field in NE Greece affected by water repellency, at a rate of ~ 4.3 L/m2. For comparison, a commercial soil surfactant was used according to the instructions of the manufacturer (0.8 mL/m2). The use of commercial surfactant was very efficient in decreasing water repellency immediately after application. The number of wettable samples (WDPT < 5 s) increased to ~ 50% (compared to 13% for the control soil) seven (7) days after treatment application. Diluted olive mill wastewater (50%) did not show any improvement in soil wettability immediately after application, but gradually was comparable effective to the surfactant treatment. The number of wettable samples showed a continuous increase from 13 to 25 and 54% after 7, 22 and 37 days from OMW application. In conclusion, OMW was found to be effective in decreasing soil water repellency. This suggests the potential of OMW as a natural surfactant. Its longer-term effects, however, have yet to be established. It is demonstrated that the short-chain fatty acids present in OMW play a critical role towards its surface-active properties. Keywords: Olive mill wastewater; short-chain fatty acids; biosurfactant; natural surfactant; water repellency mitigation.

  1. Use of Pichia fermentans and Candida sp. strains for the biological treatment of stored olive mill wastewater.

    PubMed

    Taccari, Manuela; Ciani, Maurizio

    2011-12-01

    Of 105 isolates screened for growth on plates containing olive mill wastewater (OMW), five were selected and identified as Pichia fermentans (Y1, Y4) and Candida sp. (Y2, Y11, and Y18). On the basis of their ability to use phenol at 716 mg l(-1), strains Y2 (15% reduction) and Y4 (18% reduction) were then used to detoxify stored OMW under various operational conditions. Yeast treatment of OMW increased the pH and, in the best conditions (aeration and no glucose addition), the COD decreased (47%) and phytotoxicity was also decreased (56%) probably due to the changes in the composition of phenolic compounds. PMID:21785989

  2. Odor control in evaporation ponds treating olive mill wastewater through the use of Ca(OH)2.

    PubMed

    Lagoudianaki, E; Manios, T; Geniatakis, M; Frantzeskaki, N; Manios, V

    2003-01-01

    Different amounts of Ca(OH)2 were added in 2 L beakers containing 1 L of olive mill wastewater (OMW). The mixture was stirred for 45 min and left to settle. Wastewater analysis was used in order to determine the effect of the different amounts of calcium hydroxide in the treating process, three days after the application. The Odor Detection Threshold was used for determining the effect of the treatment in the odors produced in the beakers, three and 30 days after. Both sets of measurements indicated an important reduction in wastewater pollutants and odor emission when 10 g/L of Ca(OH)2 were added. In order to evaluate these results in more realistic conditions. 10 L plastic containers were filled with 6 L of OMW, relevant amounts of Ca(OH)2 were added, the mixture was stirred manually and left to settle in the open. Again, 10 g/L of calcium hydroxide produced the best results in odor reduction and wastewater treatment. PMID:14533921

  3. Comparison of the efficiencies of attached- versus suspended-growth SBR systems in the treatment of recycled paper mill wastewater.

    PubMed

    Muhamad, Mohd Hafizuddin; Sheikh Abdullah, Siti Rozaimah; Abu Hasan, Hassimi; Abd Rahim, Reehan Adnee

    2015-11-01

    The complexity of residual toxic organics from biologically treated effluents of pulp and paper mills is a serious concern. To date, it has been difficult to choose the best treatment technique because each of the available options has advantages and drawbacks. In this study, two different treatment techniques using laboratory-scale aerobic sequencing batch reactors (SBRs) were tested with the same real recycled paper mill effluent to evaluate their treatment efficiencies. Two attached-growth SBRs using granular activated carbon (GAC) with and without additional biomass and a suspended-growth SBR were used in the treatment of real recycled paper mill effluent at a chemical oxygen demand (COD) level in the range of 800-1300 mg/L, a fixed hydraulic retention time of 24 h and a COD:N:P ratio of approximately 100:5:1. The efficiency of this biological treatment process was studied over a 300-day period. The six most important wastewater quality parameters, namely, chemical oxygen demand (COD), turbidity, ammonia (expressed as NH3-N), phosphorus (expressed as PO4(3)-P), colour, and suspended solids (SS), were measured to compare the different treatment techniques. It was determined that these processes were able to almost completely and simultaneously eliminate COD (99%) and turbidity (99%); the removals of NH3-N (90-100%), PO4(3)-P (66-78%), colour (63-91%), and SS (97-99%) were also sufficient. The overall performance results confirmed that an attached-growth SBR system using additional biomass on GAC is a promising configuration for wastewater treatment in terms of performance efficiency and process stability under fluctuations of organic load. Hence, this hybrid system is recommended for the treatment of pulp and paper mill effluents. PMID:26311084

  4. Efficacy of olive mill wastewater for protecting Bacillus thuringiensis formulation from UV radiations.

    PubMed

    Jallouli, Wafa; Sellami, Sameh; Sellami, Maissa; Tounsi, Slim

    2014-12-01

    The effectiveness of 10 low-cost UV-absorbers in protecting Bacillus thuringiensis subsp. kurstaki BLB1 toxins against inactivation by UV-A and UV-B irradiation was evaluated in this study. Among them, two by-products, molasses and olive mill wastewater (OMW) were selected for further studies. They were tested at different concentrations of 0.05, 0.1, 0.15 and 0.2% using the para-aminobenzoic acid (PABA) as a common UV protectant. Interestingly, addition of PABA and OMW to BLB1 formulations was found to be most effective in protecting BLB1 spores at 90.8 and 76.4% respectively and in preserving delta-endotoxin concentration at a level of 81.7 and 72.2%, respectively when used at a concentration of 0.2%. The lowest preserved spores (46.3%) and delta-endotoxin level (12.4%) was found using molasses. In contrast, spore count and delta-endotoxin concentration were completely reduced after an exposure of unprotected Bt strain BLB1 to UV radiations up to 96h. SDS-PAGE analysis of protected and unprotected samples revealed that delta-endotoxin bands (130, 65-70kDa) were conserved until 96h of UV exposure in presence of PABA or OMW compared with their disappearance in presence of molasses after 72h of exposure and their dramatically decline from 8h of exposure in unprotected mixture. A complete loss of larvicidal toxicity against Ephestia kuehniella was found after 24h of exposure in absence of any UV-absorber. Addition of OMW or PABA offered the highest levels of insecticidal activity with 63.2 and 74.7% of residual toxicity, respectively. Whereas, molasses addition, as UV protectant retained only 26.3% of residual activity after 96h of exposure. Therefore, addition of OMW by-product to Bt formulation may be a suitable alternative to others synthetic chemical compounds. OMW may also provided added value, be environmentally friendly and less hazardous, when used at low concentration. PMID:25093915

  5. Recovery of antioxidants from olive mill wastewaters: a viable solution that promotes their overall sustainable management.

    PubMed

    Kalogerakis, Nicolas; Politi, Maria; Foteinis, Spyros; Chatzisymeon, Efthalia; Mantzavinos, Dionissios

    2013-10-15

    Olive mill wastewaters (OMW) are rich in water-soluble polyphenolic compounds that show remarkable antioxidant properties. In this work, the recovery yield of compounds, such as hydroxytyrosol and tyrosol, as well as total phenols (TPh) from real OMW was investigated. Antioxidants were recovered by means of liquid-liquid solvent extraction. For this purpose, a laboratory-scale pilot unit was established and the effect of various organic solvents, namely ethyl acetate, diethyl ether and a mixture of chloroform/isopropyl alcohol, on process efficiency was investigated. It was found that the performance of the three extraction systems decreased in the order: ethyl acetate > chloroform/isopropanol > diethyl ether, in terms of their antioxidant recovery yield. It was estimated that treatment of 1 m(3) OMW with ethyl acetate could provide 0.247 kg hydroxytyrosol, 0.062 kg tyrosol and 3.44 kg of TPh. Furthermore, the environmental footprint of the whole liquid-liquid extraction system was estimated by means of the life cycle assessment (LCA) methodology to provide the best available and most sustainable extraction technique. From an environmental perspective, it was found that ethyl acetate and diethyl ether had similar environmental impacts. Specifically, for the production of 1 g hydroxytyrosol, tyrosol or TPh, 13.3, 53.1 or 0.949 kg CO2 equivalent would be released to the atmosphere, respectively. On the other hand, the chloroform/isopropyl alcohol mixture had detrimental effects onto ecosystems, human health and fossil fuels resources. In total, ethyl acetate yields low environmental impacts and high antioxidant recovery yield and thus it can be considered as the best solution, both from the environmental and technical point of view. Three alternative scenarios to improve the recovery performance and boost the sustainability of the ethyl acetate extraction system were also investigated and their total environmental impacts were estimated. It was found that

  6. Syntrophic co-culture of Bacillus subtilis and Klebsiella pneumonia for degradation of kraft lignin discharged from rayon grade pulp industry.

    PubMed

    Yadav, Sangeeta; Chandra, Ram

    2015-07-01

    In order to search the degradability of kraft lignin, the potential bacterial strains Bacillus subtilis (GU193980) and Klebsiella pneumoniae (GU193981) were isolated, screened and applied in axenic and co-culture conditions. Results revealed that mixed culture showed better decolorization efficiency (80%) and reduction of pollution parameters (COD 73% and BOD 62%) than axenic culture. This indicated syntrophic growth of these two bacteria rather than any antagonistic effect. The HPLC analysis of degraded samples of kraft lignin has shown the reduction in peak area compared to control, suggesting that decrease in color intensity might be largely attributed to the degradation of lignin by isolated bacteria. Further, the GC-MS analysis showed that most of the compounds detected in control were diminished after bacterial treatment. Further, the seed germination test using Phaseolus aureus has supported the detoxification of bacterial decolorized kraft lignin for environmental safety. All these observations have revealed that the developed bacterial co-culture was capable for the effective degradation and decolorization of lignin containing rayon grade pulp mill wastewater for environmental safety. PMID:26141897

  7. Hemicellulose isolation, characterization, and the production of xylo-oligosaccharides from the wastewater of a viscose fiber mill.

    PubMed

    Zhang, Yuedong; Yu, Guang; Li, Bin; Mu, Xindong; Peng, Hui; Wang, Haisong

    2016-05-01

    Viscose fiber mills generate a lot of wastewater enriched with hemicelluloses. The structure of the hemicellulose in the wastewater was characterized and the hemicellulose was isolated to produce xylo-oligosaccharides (XOS). It was confirmed that the hemicellulose was mainly 4-O-methylglucuronoxylan with a small amount of glucomannan and xyloglucan. The 4-O-methylglucuronoxylan was completely de-acetylated and linear with a few 4-O-methyl glucuronic acid attached. After purified by the acid precipitation and washing, the hemicellulose was pretreated by dilute acid, and then subjected to xylanase hydrolysis. After the dilute H2SO4 pretreatment at pH 2.6 and 150°C for 30min and the followed xylanase hydrolysis (65IU/g xylan), the total XOS yield was improved from 0.215 to 0.578g/g xylan. The percentage of XOS in the final sugar product was 68.9%. These results demonstrated the potential economical and environmental benefits of the process to utilize the byproducts from viscose fiber mills. PMID:26877018

  8. Ozonation and ultrafiltration for the treatment of olive mill wastewaters: effect of key operating conditions and integration schemes.

    PubMed

    Martins, Rui C; Ferreira, Ana M; Gando-Ferreira, Licínio M; Quinta-Ferreira, Rosa M

    2015-10-01

    With the objective of reaching suitable techniques for olive mill wastewater treatment, ozonation and ultrafiltration were studied individually and combined. A continuous reactor was run for the treatment of a phenolic mixture mimicking an actual olive mill wastewater (OMW) by ozonation. The effect of the main operating parameters was analysed (pH, liquid flow rate and ozone inlet concentration). The increase of pH and ozone dose improved ozonation efficiency. As expected, the highest residence time led to higher steady-state degradation (35 % of chemical oxygen demand (COD) abatement). Even if the rise on ozone inlet gas concentration was able to remove COD in a higher extent, it should be taken into consideration that with the lowest oxidant load (15 g O3/m(3)), the maximum steady-state biochemical oxygen demand (BOD5)/COD ratio was reached which would reduce the process costs. These operating conditions (pH 9, 1 mL/min of liquid flow rate and 15 g O3/m(3)) were applied to an actual OMW leading to 80 % of phenolic content abatement and 12 % of COD removal at the steady state. Regarding ultrafiltration, it was concluded that the best total phenolic content (TPh) and COD abatement results (55 and 15 %) are attained for pH 9 and using a transmembrane pressure drop of 1 bar. Among the integration schemes that were tested, ultrafiltration followed by ozonation was able to reach 93 and 20 % of TPh and COD depletion, respectively. Moreover, this sequence led to an effluent with a BOD5/COD ratio of about 0.55 which means that it likely can be posteriorly refined in a municipal wastewater treatment plant. PMID:26013744

  9. Augmentation of biodegradability of olive mill wastewater by electrochemical pre-treatment: effect on phytotoxicity and operating cost.

    PubMed

    Hanafi, F; Belaoufi, A; Mountadar, M; Assobhei, O

    2011-06-15

    In order to exploit the fertilizer value of olive oil mill wastewaters (OMW), a novel method has been developed for its treatment. OMW effluents were pre-treated first by electrocoagulation using aluminum electrode and then by a biological process using a selected strain of Aspergillus niger van Tieghem. The effect of treatments was assessed through COD removal, reduction of total phenols, and decrease of phytotoxicity using durum wheat (Triticum durum) seeds. This sequential treatment scheme was capable of reducing concentration of organics, phenolics and phytotoxicity. The goal of this investigation was achieved, the phytotoxicity was completely removed and the germination index was 106% of OMW after sequential treatment. It can be concluded that the sequential process of OMW treatment might serve for the production of a fertilizer which is able to improve the growth of plants. These results are encouraging in the context of developing a low-budget technology for the effective management of OMW. PMID:21435785

  10. Characterisation of Paenibacillus jamilae strains that produce exopolysaccharide during growth on and detoxification of olive mill wastewaters.

    PubMed

    Aguilera, Margarita; Quesada, Maria Teresa; Del Aguila, Víctor Guerra; Morillo, José Antonio; Rivadeneyra, Maria Angustias; Ramos-Cormenzana, Alberto; Monteoliva-Sánchez, Mercedes

    2008-09-01

    A total of 10 bacterial strains were isolated from a compost of corn treated with olive mill wastewaters (OMW) and selected by their capacity to synthesize exopolysaccharides (EPS). Morphological, physiological, biochemical and nutritional tests were used for a phenotypic study. A numerical analysis showed that all strains were 90% similar to each other. A DNA-DNA hybridization assay confirmed that all the strains belonged to Paenibacillus jamilae species. All the characterized strains were able to produce EPS growing on OMW batch cultures. The strain which was able to produce the highest EPS yield was chosen to perform an assay for testing its putative detoxifying activity, and it showed to reduce more than half the toxic capacity of the OMW. The results presented in this study, indicated the possible perspectives for using these bacterial strains to produce EPS and contribute to the bioremediation of the waste waters that are produced in the olive oil elaboration process. PMID:18054485

  11. Box-Behnken Design Application to Study Leaching of Pyrolusite from Manganese Mining Residue Using Olive Mill Wastewater as Reductant

    NASA Astrophysics Data System (ADS)

    Alaoui, Abdallah; El Kacemi, K.; El Ass, K.; Kitane, S.; El Bouzidi, S.

    2015-05-01

    The leaching capacity of olive mill wastewater (OMW) for pyrolusite mine tailings (MnO2) was evaluated using the Box-Behnken experimental design of response surface methodology. The selected test parameters include the concentration of sulfuric acid, the OMW dosage chemical oxygen demand (COD), the solid/liquid ratio S/ L, and particle size. It was determined that the MnO2 dissolution increased with an increase in the sulfuric acid concentration and the OMW dosage, and with a decrease in the solid/liquid ratio. The particle size does not have significant influence on the manganese recovery. A quadratic polynomial model has been developed to predict the amount of manganese extraction from pyrolusite for other operating conditions that were not directly tested. The leaching ability was evaluated based on manganese recovery (Mn%) and the removal capability of chemical oxygen demand (COD%). The predicted values for the responses agreed well with experimental values; R 2 (correlation coefficient) values for Mn% and COD% were 0.9602 and 0.9687, respectively. Within the design space, the optimum conditions for the lixiviation of MnO2 in terms of manganese recovery and COD removal were established and include [H2SO4] of 3 mol L-1, OMW in range of 23 g L-1 to 25 g L-1 COD, and pulp density in range of 90 g L-1 to 100 g L-1. Under these conditions, the response values generated by the model are Mn% ˜49% and COD% >40%. These values show good agreement with those obtained in the validation test. This study has demonstrated that it is possible to use the olive mill wastewater as a reductant agent to recover manganese from a pyrolusite mining residue.

  12. Paenibacillus jamilae sp. nov., an exopolysaccharide-producing bacterium able to grow in olive-mill wastewater.

    PubMed

    Aguilera, M; Monteoliva-Sánchez, M; Suárez, A; Guerra, V; Lizama, C; Bennasar, A; Ramos-Cormenzana, A

    2001-09-01

    Endospore-forming strains were isolated from corn-compost treated with olive-mill wastewater ('alpechin'). The strains were taxonomically studied and proposed as a novel Paenibacillus species. These organisms (strains B.3T, B.7 and B.9) were particularly distinguishable from other aerobic spore-forming species by their ability to grow optimally in 100% (v/v) olive-mill wastewater at 30 degrees C and pH 7.0 and concomitant production of an interesting exopolysaccharide. Chemotaxonomic analysis revealed that MK-7 was the predominant menaquinone, the major fatty acid was anteiso C15:0 and the cell wall contained meso-diaminopimelic acid. The DNA G+C content was 40.7 mol%. Comparative sequence analysis of 16S rDNA with different reference species from the genera Bacillus, Paenibacillus, Brevibacillus, Aneurinibacillus, Alicyclobacillus, Halobacillus, Virgibacillus, Amphibacillus, Coprobacillus and Gracilibacillus indicated that the isolated strains were highly related to the genus Paenibacillus. Strain B.3T formed an evolutionary lineage distinct from other species within the evolutionary radiation encompassing the genus Paenibacillus. Strain B.3T was a close relative of Paenibacillus polymyxa, but DNA-DNA relatedness data with this species was very low (relative binding ratio < 16%). Based on the morphological and physiological characteristics, as well as on the phylogenetic position determined by 16S rDNA analysis and DNA-DNA relatedness data, it is concluded that these strains should be designated a novel species, for which the name Paenibacillus jamilae sp. nov. is proposed. The type strain is B.3T (= CECT 5266T = DSM 13815T). PMID:11594596

  13. Chemical attributes of soil fertilized with cassava mill wastewater and cultivated with sunflower.

    PubMed

    Dantas, Mara Suyane Marques; Rolim, Mário Monteiro; Duarte, Anamaria de Sousa; de Silva, Ênio Farias de França; Pedrosa, Elvira Maria Regis; Dantas, Daniel da Costa

    2014-01-01

    The use of waste arising from agroindustrial activities, such as cassava wastewater, has been steadily implemented in order to reduce environmental pollution and nutrient utilization. The aim of this study is that the changes in chemical properties of dystrophic red-yellow latosol (oxisol) were evaluated at different sampling times after reuse of cassava wastewater as an alternative to mineral fertilizer in the cultivation of sunflower, hybrid Helio 250. The experiment was conducted at the Experimental Station of the Agricultural Research Company of Pernambuco (IPA), located in Vitória de Santo Antão. The experimental design was randomized blocks with 6 × 5 subplots; six doses of cassava wastewater (0; 8.5; 17.0; 34.0; 68.0; and 136 m(3) ha(-1)); and five sampling times (21, 42, 63, 84, and 105 days after applying the cassava wastewater), with four replications. Concentrations of available phosphorus and exchangeable potassium, calcium, magnesium and sodium, pH, and electrical conductivity of the soil saturation extract were evaluated. Results indicate that cassava wastewater is an efficient provider of nutrients to the soil and thus to the plants, making it an alternative to mineral fertilizers. PMID:25610900

  14. Chemical Attributes of Soil Fertilized with Cassava Mill Wastewater and Cultivated with Sunflower

    PubMed Central

    Dantas, Mara Suyane Marques; Monteiro Rolim, Mário; Duarte, Anamaria de Sousa; de Silva, Ênio Farias de França; Maria Regis Pedrosa, Elvira; Dantas, Daniel da Costa

    2014-01-01

    The use of waste arising from agroindustrial activities, such as cassava wastewater, has been steadily implemented in order to reduce environmental pollution and nutrient utilization. The aim of this study is that the changes in chemical properties of dystrophic red-yellow latosol (oxisol) were evaluated at different sampling times after reuse of cassava wastewater as an alternative to mineral fertilizer in the cultivation of sunflower, hybrid Helio 250. The experiment was conducted at the Experimental Station of the Agricultural Research Company of Pernambuco (IPA), located in Vitória de Santo Antão. The experimental design was randomized blocks with 6 × 5 subplots; six doses of cassava wastewater (0; 8.5; 17.0; 34.0; 68.0; and 136 m3 ha−1); and five sampling times (21, 42, 63, 84, and 105 days after applying the cassava wastewater), with four replications. Concentrations of available phosphorus and exchangeable potassium, calcium, magnesium and sodium, pH, and electrical conductivity of the soil saturation extract were evaluated. Results indicate that cassava wastewater is an efficient provider of nutrients to the soil and thus to the plants, making it an alternative to mineral fertilizers. PMID:25610900

  15. Polyphenolic compounds progress during olive mill wastewater sludge and poultry manure co-composting, and humic substances building (Southeastern Tunisia).

    PubMed

    Rigane, Hafedh; Chtourou, Mohamed; Ben Mahmoud, Imen; Medhioub, Khaled; Ammar, Emna

    2015-01-01

    In Mediterranean areas, olive mill wastes pose a major environmental problem owing to their important production and their high polyphenolic compounds and organic acids concentrations. In this work, the evolution of polyphenolic compounds was studied during co-composting of olive mill wastewater sludge and poultry manure, based on qualitative (G-50 sephadex) and quantitative (Folin-Ciocalteu), as well as high pressure liquid chromatography analyses. Results showed a significant polyphenolic content decrease of 99% and a noticeable transformation of low to high molecular weight fraction during the compost maturation period. During this step, polyphenols disappearance suggested their assimilation by thermophilic bacteria as a carbon and energy source, and contributed to humic substances synthesis. Polyphenolic compounds, identified initially by high pressure liquid chromatography, disappeared by composting and only traces of caffeic, coumaric and ferulic acids were detected in the compost. In the soil, the produced compost application improved the chemical and physico-chemical soil properties, mainly fertilising elements such as calcium, magnesium, nitrogen, potassium and phosphorus. Consequently, a higher potato production was harvested in comparison with manure amendment. PMID:25502693

  16. Treatment and biotransformation of highly polluted agro-industrial wastewater from a palm oil mill into vermicompost using earthworms.

    PubMed

    Lim, Su Lin; Wu, Ta Yeong; Clarke, Charles

    2014-01-22

    In this laboratory-scale study, earthworms were introduced as biodegraders of palm oil mill effluent (POME), which is a wastewater produced from the wet process of palm oil milling. POME was absorbed into amendments (soil or rice straw) in different ratios as feedstocks for the earthworm, Eudrilus eugeniae. The presence of earthworms led to significant increases in pH, electrical conductivity, and nutrient content but decreases in the C/N ratio (0.687-75.8%), soluble chemical oxygen demand (19.7-87.9%), and volatile solids (0.687-52.7%). However, earthworm growth was reduced in all treatments by the end of the treatment process. Rice straw was a better amendment/absorbent relative to soil, with a higher nutrient content and greater reduction in soluble chemical oxygen demand with a lower C/N ratio in the vermicompost. Among all treatments investigated, the treatment with 1 part rice straw and 3 parts POME (w/v) (RS1:3) produced the best quality vermicompost with high nutritional status. PMID:24372356

  17. A focus on pressure-driven membrane technology in olive mill wastewater reclamation: state of the art.

    PubMed

    Ochando-Pulido, J M; Martinez-Ferez, A

    2012-01-01

    Direct disposal of the heavily polluted effluent from olive oil industry (olive mill wastewater, OMW) to the environment or to domestic wastewater treatment plants is actually prohibited in most countries, and conventional treatments are ineffective. Membranes are currently one of the most versatile technologies for environmental quality control. Notwithstanding, studies on OMW reclamation by membranes are still scarce, and fouling inhibition and prediction to improve large-scale membrane performance still remain unresolved. Consequently, adequately targeted pretreatment for the specific binomium membrane-feed, as well as optimized operating conditions for the proper membranes, is today's challenge to ensure threshold flux values. Several membrane materials, configurations and pore sizes have been elucidated, and also different pretreatments including sedimentation, centrifugation, biosorption, sieving, filtration and microfiltration, various types of flocculation as well as advance oxidation processes have been applied so far. Recovery of potential-value compounds, such as a variety of polyphenols highlighting oleuropein and hydroxytyrosol, has been attempted too. All this research should constitute the starting point to proceed with OMW purification beyond recycling for irrigation or depuration for sewer discharge, with the aim of complying with standards to reuse the effluent in the olive oil production process, together with cost-effective recovery of added-value compounds. PMID:23109564

  18. Electrochemical treatment of olive mill wastewater: treatment extent and effluent phenolic compounds monitoring using some uncommon analytical tools.

    PubMed

    Belaid, Chokri; Khadraoui, Moncef; Mseddii, Salma; Kallel, Monem; Elleuch, Boubaker; Fauvarque, Jean Frangois

    2013-01-01

    Problems related with industrials effluents can be divided in two parts: (1) their toxicity associated to their chemical content which should be removed before discharging the wastewater into the receptor media; (2) and the second part is linked to the difficulties of pollution characterisation and monitoring caused by the complexity of these matrixes. This investigation deals with these two aspects, an electrochemical treatment method of an olive mill wastewater (OMW) under platinized expanded titanium electrodes using a modified Grignard reactor for toxicity removal as well as the exploration of the use of some specific analytical tools to monitor effluent phenolic compounds elimination. The results showed that electrochemical oxidation is able to remove/mitigate the OMW pollution. Indeed, 87% of OMW color was removed and all aromatic compounds were disappeared from the solution by anodic oxidation. Moreover, 55% of the chemical oxygen demand (COD) and the total organic carbon (TOC) were reduced. On the other hand, UV-Visible spectrophotometry, Gaz chromatography/mass spectrometry, cyclic voltammetry and 13C Nuclear Magnetic Resonance (NMR) showed that the used treatment seems efficaciously to eliminate phenolic compounds from OMW. It was concluded that electrochemical oxidation in a modified Grignard reactor is a promising process for the destruction of all phenolic compounds present in OMW. Among the monitoring analytical tools applied, cyclic voltammetry and 13C NMR a re among th e techniques that are introduced for thefirst time to control the advancement of the OMW treatment and gave a close insight on polyphenols disappearance. PMID:23586318

  19. Treatment of olive-mill wastewater from a two-phase process by chemical oxidation on an industrial scale.

    PubMed

    Nieto, L M; Hodaifa, G; Vives, S R; Casares, J A G; Driss, S B; Grueso, R

    2009-01-01

    This study offers a solution for reducing the environmental effect of wastewaters generated by the olive-oil industry. Olive-oil companies produce variable quantities of wastewaters, which require treatment for disposal or reuse. Today, regulations are becoming increasingly strict regarding the parameters measured in these effluents. In Spain, the resolution by the president of the Hydrographical Confederation of the Guadalquivir on water use 2004 set parameter limits as follows: pH = 6.0-9.0, total suspended solid = 500 mg/L; and COD and BOD(5) (20)=1,500 mg O(2)/L. For the year 2006, maximum values for COD and BOD(5) (20) were fixed at 1,000 mg O(2)/L. To solve this problem, a study has been made to derive irrigation water from the above-mentioned effluents through chemical oxidation based on the Fenton's process. This would be first step towards using a closed-circuit system in olive-oil mills to treat and reuse effluents. PMID:19474497

  20. Effects of olive mill wastewater physico-chemical treatments on polyphenol abatement and Italian ryegrass (Lolium multiflorum Lam.) germinability.

    PubMed

    Barbera, A C; Maucieri, C; Ioppolo, A; Milani, M; Cavallaro, V

    2014-04-01

    Direct spreading on agricultural lands may represent an environmentally friendly disposal method and a possible use of water and nutrients from olive mill wastewaters (OMWs). However, the agronomic use of OMWs is limited, among others by polyphenols, which exert phytotoxic effects. Activated charcoal (AC) has been recognized as a very effective agent for polyphenol abatement, as it enables an irreversible process of phenol adsorption. Addition of calcium hydroxide (Ca(OH)2) has also been described as a cheap and effective method in polyphenols abatement. However, the effects of Ca(OH)2 addition to OMW on seed germination are unclear. In this paper, the effects of AC and/or Ca(OH)2 on OMW polyphenols abatement, and Lolium multiflorum seed germination have been investigated. The highest polyphenols removal, approximately 95%, was observed when 80 g L(-1) of AC was added to OMWs (the maximum dose in this investigation). The addition of Ca(OH)2 not only improved the effectiveness of the AC treatment but also resulted in a significant rise in Lolium seed germination at the highest AC doses (60 and 80 g L(-1)). Considering the high salinity (7300 μS cm(-1)) of these wastewaters, low quantities of Ca(OH)2 may also exert a protective effect on soil structure counteracting the sodium-induced dispersion through the binding action of calcium cation on clays and organic matter. PMID:24289894

  1. Toxicity of solid residues resulting from wastewater treatment with nanomaterials.

    PubMed

    Nogueira, Verónica; Lopes, Isabel; Rocha-Santos, Teresa; Gonçalves, Fernando; Pereira, Ruth

    2015-08-01

    Nanomaterials (NMs) are widely recommended for wastewater treatments due to their unique properties. Several studies report the different advantages of nanotechnology in the remediation of wastewaters, but limited research has been directed toward the fate and potential impacts of the solid residues (SRs) produced after the application of such technologies. The present work aimed at investigating the ecotoxicity of SRs resulting from the treatment of three effluents (OOMW, kraft pulp mill, and mining drainage) with two NMs (TiO2 and Fe2O3). The invertebrate Chironomus riparius was selected as test organism and exposed to the residues. The effect on percentage of survival and growth was assessed. Results showed that the SRs from the treatments nano-TiO2(1.0gL(-1))/H2O2(0.5M) and nano-Fe2O3(1.0gL(-1))/H2O2(1.0M) from OOMW and nano-Fe2O3(0.75gL(-1))/H2O2(0.01M) from kraft pulp mill effluent exhibited lethal toxicity to C. riparius. Only the exposure to SRs resulting from the treatment with nano-Fe2O3(0.75gL(-1))/H2O2(0.01M) applied to the kraft pulp mill effluent significantly affected the growth rate based on the head capsule width. In terms of growth rate, based on the body length, it decreased significantly after exposure to the SRs from the treatments nano-TiO2 (1.0gL(-1)) and nano-Fe2O3(0.75gL(-1))/H2O2(0.01M) of kraft paper mill effluent and nano-Fe2O3(1.0gL(-1))/H2O2(1.0M) of OOMW. According to our study the SRs can promote negative effects on C. riparius. However, the effects are dependent on the type of effluent treated as well as on the organic and inorganic compounds attached to the NMs. PMID:26057932

  2. Involvement of microbial populations during the composting of olive mill wastewater sludge.

    PubMed

    Abid, N; Chamkha, M; Godon, J J; Sayadi, S

    2007-07-01

    Olive mill waste water sludge obtained by the electro-Fenton oxidation of olive mill waste water was composted in a bench scale reactor. The evolution of microbial species within the composter was investigated using a respirometric test and by means of both cultivation-dependent and independent approaches (Polymerase Chain Reaction-Single Strand Conformation Polymorphism, PCR SSCP). During the period of high respiration rate (7-24 days), cultivation method showed that thermophilic bacteria as well as actinomycetes dominated over eumycetes. During the composting process, the PCR-SSCP method showed a higher diversity of the bacterial community than the eukaryotic one. After 60 days of composting, the compost exhibited a microbial stability and a clear absence of phytotoxicity. PMID:17674648

  3. Kraft black liquor delivery systems

    SciTech Connect

    Adams, T.N.; Empie, H.L.; Obuskovic, N.; Spielbauer, T.M.

    1990-02-01

    Improvement of spray nozzles for black liquor injection into kraft recovery furnaces is expected to result from obtaining a controlled, well-defined droplet size distribution. Work this year has centered on defining the capabilities of commercial black liquor nozzles currently in use. Considerations of the observed mechanism of droplet formation suggest a major revision is needed in the theory of how droplets form from these nozzles. High resolution, high sensitivity video has been shown to be superior to flash x-ray as a technique for measuring the droplet size distribution as well as the formation history. An environmentally sound spray facility capable of spraying black liquor at temperatures up to normal firing conditions is being constructed before data acquisition continues. Preliminary correlations have been developed between liquor properties, nozzle design, and droplet size. Three aspects of nozzle design have been investigated: droplet size distribution, fluid sheet thickness, and flow and pressure drop characteristics. The standard deviation about the median droplet size for black liquor is nearly the same as the for a wide variety of other fluids and nozzle types. Preliminary correlation for fluid sheet thickness on the plate of a splashplate nozzle show the strong similarities of black liquor to other fluids. The flow and pressure drop characteristic of black liquor nozzle, follow a simple two-term relationship similar to other flow devices. This means that in routine mill operation of black liquor nozzles only the fluid acceleration in the nozzle is important, viscous losses are quiet small. 21 refs., 53 figs., 10 tabs.

  4. Reducing the pollutant load of olive mill wastewater by photocatalytic membranes and monitoring the process using both tyrosinase biosensor and COD test

    NASA Astrophysics Data System (ADS)

    Martini, Elisabetta; Tomassetti, Mauro; Campanella, Luigi; Fortuna, Antonio

    2013-12-01

    Photocatalytic technique had already been employed in the treatment of olive mill wastewater (OMW) using the photocatalysis in suspension. The coupling of photocatalytic and membrane techniques should result in a very powerful process bringing great innovation to OMW depollution. Despite the potential advantages using these hybrid photoreactors, research on the combined use of photocatalysis and membranes has so far not been sufficiently developed. The present paper describes a study to assess the photocatalytic efficacy of a new ceramic membrane containing titanium dioxide, irradiated by UV light, used to abate the pollutant load of olive mill wastewater. Good results were obtained (more than 90% of the phenol content was removed and the COD decrease was of the order of 46-51 % in 24 h) particularly using the ceramic membrane compared with those offered by analogous catalytic membranes made of metallic or polymeric materials.

  5. Clarification of olive mill and winery wastewater by means of clay-polymer nanocomposites.

    PubMed

    Rytwo, Giora; Lavi, Roy; Rytwo, Yuval; Monchase, Hila; Dultz, Stefan; König, Tom N

    2013-01-01

    Highly polluted effluents from olive mills and wineries, among others, are unsuitable for discharge into standard sewage-treatment plants due to the large amounts of organic and suspended matter. Efficiency of all management practices for such effluents depends on an effective pretreatment that lowers the amount of suspended solids. Such pretreatments are usually based on three separate stages, taking a total of 2 to 6h: coagulation-neutralizing the colloids, flocculation-aggregating the colloids into larger particles, and separation via filtration or decanting. Previous studies have presented the concept of coagoflocculation based on the use of clay-polymer nanocomposites. This process adds a higher density clay particle to the flocs, accelerating the process to between 15 and 60 min. This study examined suitable nanocomposites based on different clays and polymers. The charge of the compounds increased proportionally to the polymer-to-clay ratio. X-ray diffraction (XRD) measurements indicated that in sepiolite-based nanocomposites there is no change in the structure of the mineral, whereas in smectite-based nanocomposites, the polymer intercalates between the clay layers and increases the spacing depending on the polymer-to-clay ratio. Efficiency of the coagoflocculation process was studied with a dispersion analyzer. Sequential addition of olive mill or winery effluents with a boosting dose of nanocomposites may yield a very efficient and rapid clarification pretreatment. PMID:23178773

  6. Roles of Lignin Peroxidase and Manganese Peroxidase from Phanerochaete chrysosporium in the Decolorization of Olive Mill Wastewaters

    PubMed Central

    Sayadi, S.; Ellouz, R.

    1995-01-01

    The relative contributions of lignin peroxidase (LiP) and manganese peroxidase (MnP) to the decolorization of olive mill wastewaters (OMW) by Phanerochaete chrysosporium were investigated. A relatively low level (25%) of OMW decolorization was found with P. chrysosporium which was grown in a medium with a high Mn(II) concentration and in which a high level of MnP (0.65 (mu)M) was produced. In contrast, a high degree of OMW decolorization (more than 70%) was observed with P. chrysosporium which was grown in a medium with a low Mn(II) concentration but which resulted in a high level of LiP activity (0.3 (mu)M). In this culture medium, increasing the Mn(II) concentration resulted in decreased levels of OMW decolorization and LiP activity. Decolorization by reconstituted cultures of P. chrysosporium was found to be more enhanced by the addition of isolated LiP than by the addition of isolated MnP. The highest OMW decolorization levels were obtained at low initial chemical oxygen demands combined with high levels of extracellular LiP. These data, plus the positive effect of veratryl alcohol on OMW decolorization and LiP activity, indicate that culture conditions which yield high levels of LiP activity lead to high levels of OMW decolorization. PMID:16534959

  7. Integration of traditional systems and advanced oxidation process technologies for the industrial treatment of olive mill wastewaters.

    PubMed

    Amaral-Silva, Nuno; Martins, Rui C; Castro-Silva, Sérgio; Quinta-Ferreira, Rosa M

    2016-10-01

    A complete industrial treatment system (involving the integration of coagulation/flocculation and Fenton processes) to depurate real wastewaters coming from two-phase olive oil production mills has been studied. The experimental results indicated that at the end of this combined strategy, involving a primary physical separation stage followed by Fenton's chemical oxidation, chemical oxygen demand (COD) is reduced up to 90% and total polyphenols' concentration is decreased up to 92%. The treated stream biodegradability (BOD5/COD) reached 0.52 and the Total Suspended Solids (TSSs) and Total Dissolved Solids (TDSs) decreased up to 95% and 69%, respectively. Fenton's procedure was optimized bearing in mind the pH adjustment step, different procedures for hydrogen peroxide addition and the use of coagulants instead of the chemical precipitation (by raising pH) to promote iron sludge settling. Our results demonstrated that pH (3.0 ± 0.1) control during the oxidation reaction improves the oxidation efficiency. Moreover, the final NaOH addition is essential to a better sludge formation and consequent precipitation of the residual iron removing also some organic matter. PMID:26878594

  8. Feed supplemented with polyphenolic byproduct from olive mill wastewater processing improves the redox status in blood and tissues of piglets.

    PubMed

    Gerasopoulos, Konstantinos; Stagos, Dimitrios; Petrotos, Konstantinos; Kokkas, Stylianos; Kantas, Dimitrios; Goulas, Panagiotis; Kouretas, Dimitrios

    2015-12-01

    In the present study, a polyphenolic byproduct from olive mill wastewater (OMWW) was used for making piglet feed with antioxidant activity. For examining the antioxidant capacity of the feed, 30 piglets of 20 d old were divided into two groups receiving basal or experimental feed for 30 d. Blood and tissue samples were drawn at days 2, 20, 35 and 50 post-birth. The tissues collected were brain, heart, kidney, liver, lung, quadriceps muscle, pancreas, spleen and stomach. The antioxidant effects of the experimental feed were assessed by measuring oxidative stress biomarkers in blood and tissues. The oxidative stress markers were total antioxidant capacity (TAC), glutathione (GSH), catalase activity (CAT), protein carbonyls (CARB) and thiobarbituric acid reactive species (TBARS). The results showed that piglets fed with diet supplemented with OMWW polyphenols had significantly increased antioxidant mechanisms in blood and the majority of the tested tissues as shown by increases in TAC, CAT and GSH compared to control group. Moreover, piglets fed with the experimental feed exhibited decreased oxidative stress-induced damage to lipids and proteins as shown by decreases in TBARS and CARB respectively. This is the first study in which OMWW polyphenols were used for making pig feed with antioxidant activity. PMID:26561741

  9. Biological treatment of two-phase olive mill wastewater (TPOMW, alpeorujo): polyhydroxyalkanoates (PHAs) production by Azotobacter strains.

    PubMed

    Cerrone, Federico; Sánchez-Peinado, Maria del Mar; Juárez-Jimenez, Belén; González-López, Jesús; Pozo, Clementina

    2010-03-01

    Azotobacter chroococcum H23 (CECT 4435), Azotobacter vinelandii UWD, and Azotobacter vinelandii (ATCC 12837), members of the family Pseudomonadaceae, were used to evaluate their capacity to grow and accumulate polyhydroxyalkanoates (PHAs) using two-phase olive mill wastewater (TPOMW, alpeorujo) diluted at different concentrations as the sole carbon source. The PHAs amounts (g/l) increased clearly when the TPOMW samples were previously digested under anaerobic conditions. The MNR analysis demonstrated that the bacterial strains formed only homopolymers containing beta-hydroxybutyrate, either when grown in diluted TPOMW medium or diluted anaerobically digested TPOMW medium. COD values of the diluted anaerobically digested waste were measured before and after the aerobic PHA-storing phase, and a clear reduction (72%) was recorded after 72 h of incubation. The results obtained in this study suggest the perspectives for using these bacterial strains to produce PHAs from TPOMW, and in parallel, contribute efficiently to the bioremediation of this waste. This fact seems essential if bioplastics are to become competitive products. PMID:20372033

  10. Comparative study of olive oil mill wastewater treatment using free and immobilized Coriolopsis polyzona and Pycnoporus coccineus.

    PubMed

    Neifar, Mohamed; Jaouani, Atef; Martínez, María Jesús; Penninckx, Michel J

    2012-10-01

    The efficiency of the two white-rot fungi Pycnoporus coccineus and Coriolopsis polyzona in the Olive Oil Mill Wastewater (OOMW) treatment was investigated. Both fungi were active in the decolourisation and COD removal of OOMW at 50 g/L COD, but only the first fungus remains effective on the crude effluent (COD=100 g/L). Moreover P. coccineus was less affected by oxygen supplementation and exhibited a high tolerance to agitation in comparison to C. polyzona. However, it required a nitrogen supplementation to obtain faster and higher COD removal. To overcome the negative effect of agitation on fungi growth and efficiency, immobilisation of C. polyzona and P. coccineus in polyurethane foam was applied. The immobilized system showed better COD decreases during three consecutive batches without remarkable loss of performances. The results obtained in this study suggested that immobilized C. polyzona and especially immobilized P. coccineus might be applicable to a large scale for the removal colour and COD of OOMW. PMID:23124741

  11. Olive mill wastewater evaporation management using PCA method Case study of natural degradation in stabilization ponds (Sfax, Tunisia).

    PubMed

    Jarboui, Raja; Sellami, Fatma; Azri, Chafai; Gharsallah, Néji; Ammar, Emna

    2010-04-15

    Olive mill wastewater (OMW) evaporation ponds management was investigated in five serial evaporation open-air multiponds of 50 ha located in Sfax (Tunisia). Physico-chemical parameters and microbial flora evolution were considered. Empirical models describing the OMW characteristic changes with the operation time were established and Principal Component Analysis (PCA) described the correlation between physico-chemical and biological parameters. COD, BOD, total solids, polyphenols and electrical conductivity exhibited first-order models. Four groups exhibited high correlations. The first included temperature, density, COD, TSS, TS, BOD, VS, TOC, TKN, polyphenols and minerals. The second group was made up of yeasts and moulds. The third group was established with phenolic compounds, total sugars, fats, total phosphorous, NH(4)(+) and pH. The fourth group was constituted by exclusively aerobic bacteria. Bacterial-growth toxic effect was exhibited by high organic load, ash content and polyphenols, whereas moulds and yeasts were more adapted to OMW. During the storage, all the third group parameter values decreased and were inversely related to the others. In the last pond, COD, BOD, TS and TSS rates were reduced by 40%, 50%, 50% and 75% respectively. The evaporation and the biological activity were the main processes acting, predicting the OMW behavior during evaporation in air-open ponds. PMID:20036054

  12. Enhanced reduction of phenol content and toxicity in olive mill wastewaters by a newly isolated strain of Coriolopsis gallica.

    PubMed

    Daâssi, Dalel; Belbahri, Lassaad; Vallat, Armelle; Woodward, Steve; Nasri, Moncef; Mechichi, Tahar

    2014-02-01

    The search for novel microorganisms able to degrade olive mill wastewaters (OMW) and withstand the toxic effects of the initially high phenolic concentrations is of great scientific and industrial interest. In this work, the possibility of reducing the phenolic content of OMW using new isolates of fungal strains (Coriolopsis gallica, Bjerkandera adusta, Trametes versicolor, Trichoderma citrinoviride, Phanerochaete chrysosporium, Gloeophyllum trabeum, Trametes trogii, and Fusarium solani) was investigated. In vitro, all fungal isolates tested caused an outstanding decolorization of OMW. However, C. gallica gave the highest decolorization and dephenolization rates at 30 % v/v OMW dilution in water. Fungal growth in OMW medium was affected by several parameters including phenolic compound concentration, nitrogen source, and inoculum size. The optimal OMW medium for the removal of phenolics and color was with the OMW concentration (in percent)/[(NH4)2SO4]/inoculum ratio of 30:6:3. Under these conditions, 90 and 85 % of the initial phenolic compounds and color were removed, respectively. High-pressure liquid chromatography analysis of extracts from treated and untreated OMW showed a clear and substantial reduction in phenolic compound concentrations. Phytotoxicity, assessed using radish (Raphanus sativus) seeds, indicated an increase in germination index of 23-92 % when a 30 % OMW concentration was treated with C. gallica in different dilutions (1/2, 1/4, and 1/8). PMID:23979847

  13. Dose and frequency dependent effects of olive mill wastewater treatment on the chemical and microbial properties of soil.

    PubMed

    Magdich, Salwa; Ben Ahmed, Chedlia; Jarboui, Raja; Ben Rouina, Béchir; Boukhris, Makki; Ammar, Emna

    2013-11-01

    Olive mill wastewater (OMW) is a problematic by-product of olive oil production. While its high organic load and polyphenol concentrations are associated with troublesome environmental effects, its rich mineral and organic matter contents represent valuable nutrients. This study aimed to investigate the valorization of this waste biomass as a potential soil conditioner and fertilizer in agriculture. OMW was assayed at three doses 50, 100, and 200 m(3) ha(-1) year(-1)) over three successive years in olive fields. The effects of the effluent on the physico-chemical and microbial properties of soil-layers were assessed. The findings revealed that the pH of the soil decreased but electrical conductivity and organic matter, total nitrogen, sodium, and potassium soil contents increased in proportion with OMW concentration and frequency of application. While no variations were observed in phosphorus content, slow increases were recorded in calcium and magnesium soil contents. Compared to their control soil counterparts, aerobic bacteria and fungi increased in proportion with OMW spreading rates. The models expressing the correlation between progress parameters and OMW doses were fitted into a second degree polynomial model. Principal component analysis showed a strong correlation between soil mineral elements and microorganisms. These parameters were not related to phosphorus and pH. PMID:23880238

  14. Selective Enrichment of a Methanol-Utilizing Consortium Using Pulp and Paper Mill Waste Streams

    NASA Astrophysics Data System (ADS)

    Mockos, Gregory R.; Smith, William A.; Loge, Frank J.; Thompson, David N.

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater. Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Wasteactivated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of 4 days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24-h feed/ decant cycles ranged from 79 to 89%, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste-activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen-limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen-limited conditions. This indicates that selectively enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  15. Selective enrichment of a methanol-utilizing consortium using pulp & paper mill waste streams

    SciTech Connect

    Gregory R. Mockos; William A. Smith; Frank J. Loge; David N. Thompson

    2007-04-01

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater . Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25°C with a hydraulic residence time and a solids retention time of four days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24 hour feed/decant cycles ranged from 79 to 89 %, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen limited conditions. This indicates that selectively-enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents.

  16. Selective enrichment of a methanol-utilizing consortium using pulp and paper mill waste streams.

    PubMed

    Mockos, Gregory R; Smith, William A; Loge, Frank J; Thompson, David N

    2008-03-01

    Efficient utilization of carbon inputs is critical to the economic viability of the current forest products sector. Input carbon losses occur in various locations within a pulp mill, including losses as volatile organics and wastewater. Opportunities exist to capture this carbon in the form of value-added products such as biodegradable polymers. Waste-activated sludge from a pulp mill wastewater facility was enriched for 80 days for a methanol-utilizing consortium with the goal of using this consortium to produce biopolymers from methanol-rich pulp mill waste streams. Five enrichment conditions were utilized: three high-methanol streams from the kraft mill foul condensate system, one methanol-amended stream from the mill wastewater plant, and one methanol-only enrichment. Enrichment reactors were operated aerobically in sequencing batch mode at neutral pH and 25 degrees C with a hydraulic residence time and a solids retention time of 4 days. Non-enriched waste activated sludge did not consume methanol or reduce chemical oxygen demand. With enrichment, however, the chemical oxygen demand reduction over 24-h feed/decant cycles ranged from 79 to 89%, and methanol concentrations dropped below method detection limits. Neither the non-enriched waste-activated sludge nor any of the enrichment cultures accumulated polyhydroxyalkanoates (PHAs) under conditions of nitrogen sufficiency. Similarly, the non-enriched waste activated sludge did not accumulate PHAs under nitrogen-limited conditions. By contrast, enriched cultures accumulated PHAs to nearly 14% on a dry weight basis under nitrogen-limited conditions. This indicates that selectively enriched pulp mill waste activated sludge can serve as an inoculum for PHA production from methanol-rich pulp mill effluents. PMID:18418753

  17. Determination of labile copper, cobalt, and chromium in textile mill wastewater

    SciTech Connect

    Crain, J.S.; Essling, A.M.; Kiely, J.T.

    1997-01-01

    Copper, chromium, and cobalt species present in filtered wastewater effluent were separated by cation exchange and reverse phase chromatography. Three sample fractions were obtained: one containing metal cations (i.e., trivalent Cr, divalent Cu, and divalent Co), one containing organic species (including metallized dyes), and one containing other unretained species. The metal content of each fraction was determined by inductively coupled plasma atomic emission spectroscopy (ICP-AES). The sum of the corrected data was compared to the metal content of a filtered effluent aliquot digested totally with fuming sulfuric acid. Other aliquots of the filtered effluent were spiked with the metals of interest and digested to confirm chemical yield and accuracy. Method detection limits were consistently below 20 {mu}g L{sup -1} for Cu, 30 {mu}g L{sup -1} for Co, and 10 {mu}g L{sup -1} for Cr. Spike recoveries for undifferentiated Cu and Cr were statistically indistinguishable from unity; although Co spike recoveries were slightly low ({approximately}95%), its chemical yield was 98%. Copper retention on the sodium sulfonate cation exchange resin was closely correlated with the [EDTA]/[Cu] ratio, suggesting that metals retained upon the cation exchange column were assignable to labile metal species; however, mass balances for all three elements, though reasonable ({approximately}90%), were significantly different from unity. Mechanical factors may have contributed to the material loss, but other data suggest that some metal species reacted irreversibly with the reverse phase column. 3 refs., 2 figs., 4 tabs.

  18. Decolourisation of palm oil mill biogas plant wastewater using Poly-Diallyldimethyl Ammonium Chloride (polyDADMAC) and other chemical coagulants

    NASA Astrophysics Data System (ADS)

    Zahrim, A. Y.; Dexter, Z. D.

    2016-06-01

    Palm oil mill effluent was expected as a future source of renewable biogas. Nevertheless,colours in palm oil mill biogas plant wastewater (POMBPW) causes negative perception among the public and the wastewater is difficult to be treated biologically. In this study, the performance of various chemical coagulants i.e., calcium lactate, magnesium hydroxide, ferric chloride, aluminium chlorohydrate i.e. CK-800, CK-1000, and polyDADMAC, forPOMBPW colour removal were investigated. PolyDADMAC (1,000 mg/L) shows best colour removal (∼48%). The main coagulation process with polyDADMACcould be due to charge neutralization-bridging mechanism. The zeta potential analysis supports the finding where the value became positive as the dosage increases. The addition of polyDADMAC has increased the conductivity of the treated wastewater up to 9.22%; however, the final pH is maintained (8.0-8.3). It can be deduced that polyDADMAC has potential to treat POMBPW at low dosage.

  19. Synergetic effect between photocatalytic degradation and adsorption processes on the removal of phenolic compounds from olive mill wastewater.

    PubMed

    Baransi, Katie; Dubowski, Yael; Sabbah, Isam

    2012-03-01

    The photocatalytic degradation of two phenolic compounds, p-coumaric acid and caffeic acid, was performed with a suspended mixture of TiO(2) and powdered activated carbon (PAC) (at pH=3.4 and 8). Adsorption, direct photolysis and photocatalytic degradation were studied under different pH and UV light sources (sunlight vs. 365nm UV lamps). The potential for reusing this catalyst mixture in sequential photocatalytic runs was examined as well. Quantum yields for the direct photolysis of caffeic acid under solar and artificial 365nm light were calculated (for the first time) as 0.005 and 0.011, respectively. A higher removal rate of contaminants by either adsorption or photocatalysis was obtained at a low pH (pH 4). Furthermore, the addition of PAC increased the removal efficiency of the phenolic compounds. Fast removal of the pollutants from the solution over three sequential runs was achieved only when both TiO(2) and PAC were present. This suggests that at medium phenolic concentrations, the presence of PAC as a co-sorbent reduces surface poisoning of the TiO(2) catalyst and hence improves photocatalysis degradation of phenolic pollutants. The adsorption equilibrium of caffeic acid or p-coumaric acid on TiO(2), PAC and the combined mixture of TiO(2) and PAC follows the Langmuir isotherm model. Experiments with PAC TiO(2) mixture and olive mill wastewater (anaerobically treated and diluted by a factor of 10) showed higher removal of polyphenols than of chemical oxygen demand (COD). 87% removal of total polyphenols, compared to 58% of COD, was achieved after 24h of exposure to 365nm irradiation (7.6W/m(2)) in the presence of a suspended mixture of TiO(2) and PAC, indicating "self-selectivity" of polyphenols. PMID:22153960

  20. Effects of seasonal olive mill wastewater applications on hydrological and biological soil properties in an olive orchard in Israel

    NASA Astrophysics Data System (ADS)

    Steinmetz, Zacharias; Kurtz, Markus; Peikert, Benjamin; Zipori, Isaac; Dag, Arnon; Schaumann, Gabriele E.

    2014-05-01

    During olive oil production in Mediterranean countries, large amounts of olive mill wastewater (OMW) are generated within a short period of time. OMW has a high nutrient content and could serve as fertilizer when applied on land. However, its fatty and phenolic constituents have adverse effects on hydrological and biological soil properties. It is still unknown how seasonal fluctuations in temperature and precipitation influence the fate and effect of OMW components on soil in a long-term perspective. An appropriate application season could mitigate negative consequences of OMW while preserving its beneficial effects. In order to investigate this, 14 L OMW m-2 were applied to different plots of an olive orchard in Gilat, Israel, in winter, spring, and summer, respectively. Hydrological soil properties (water drop penetration time, hydraulic conductivity, dynamic contact angle), physicochemical parameters (pH, EC, soluble ions, phenolic compounds, organic matter), and biological degradation (bait-lamina test) were measured to assess the soil state after OMW application. After one rainy season following OMW application, the soil quality of summer treatments significantly decreased compared to the control. This was particularly apparent in a ten-fold higher soil water repellency, a three-times lower biodegradation performance, and a four-fold higher content of phenolic compounds. 1.5 years after the last OMW application, the soil properties of winter treatments were comparable to the control, which suggests a certain recovery potential of the soil. Spring treatments resulted in an intermediate response compared to summer and winter treatments, but without any precipitation following OMW application. Strongest OMW effects were found in the top soil layers. Further research is needed to quantify the effect of spring treatments as well as to gain further insight into leaching effects, the composition of organic OMW constituents, and the kinetics of their degradation in

  1. Thermal pretreatment of olive mill wastewater for efficient methane production: control of aromatic substances degradation by monitoring cyclohexane carboxylic acid.

    PubMed

    Pontoni, Ludovico; d'Antonio, Giuseppe; Esposito, Giovanni; Fabbricino, Massimiliano; Frunzo, Luigi; Pirozzi, Francesco

    2015-01-01

    Anaerobic digestion is investigated as a sustainable depurative strategy of olive oil mill wastewater (OOMW). The effect of thermal pretreatment on the anaerobic biodegradation of aromatic compounds present in (OMWW) was investigated. The anaerobic degradation of phenolic compounds, well known to be the main concern related to this kind of effluents, was monitored in batch anaerobic tests at a laboratory scale on samples pretreated at mild (80±1 °C), intermediate (90±1 °C) and high temperature (120±1 °C). The obtained results showed an increase of 34% in specific methane production (SMP) for OMWW treated at the lowest temperature and a decrease of 18% for treatment at the highest temperature. These results were related to the different decomposition pathways of the lignocellulosic compounds obtained in the tested conditions. The decomposition pathway was determined by measuring the concentrations of volatile organic acids, phenols, and chemical oxygen demand (COD) versus time. Cyclohexane carboxylic acid (CHCA) production was identified in all the tests with a maximum concentration of around 200 µmol L(-1) in accordance with the phenols degradation, suggesting that anaerobic digestion of aromatic compounds follows the benzoyl-CoA pathway. Accurate monitoring of this compound was proposed as the key element to control the process evolution. The total phenols (TP) and total COD removals were, with SMP, the highest (TP 62.7%-COD 63.2%) at 80 °C and lowest (TP 44.9%-COD 32.2%) at 120 °C. In all cases, thermal pretreatment was able to enhance the TP removal ability (up to 42% increase). PMID:25624137

  2. Olive oil mill wastewaters before and after treatment: a critical review from the ecotoxicological point of view.

    PubMed

    Justino, Celine I L; Pereira, Ruth; Freitas, Ana C; Rocha-Santos, Teresa A P; Panteleitchouk, Teresa S L; Duarte, Armando C

    2012-03-01

    The olive oil mill wastewater (OMW) is a problematic and polluting effluent which may degrade the soil and water quality, with critical negative impacts on ecosystems functions and services provided. The main purpose of this review paper is presenting the state of the art of OMW treatments focusing on their efficiency to reduce OMW toxicity, and emphasizing the role of ecotoxicological tests on the evaluation of such efficiency before the up-scale of treatment methodologies being considered. In the majority of research works, the reduction of OMW toxicity is related to the degradation of phenolic compounds (considered as the main responsible for the toxic effects of OMW on seed germination, on bacteria, and on different species of soil and aquatic invertebrates) or the decrease of chemical oxygen demand content, which is not scientifically sound. Batteries of ecotoxicological tests are not applied before and after OMW treatments as they should be, thus leading to knowledge gaps in terms of accurate and real assessment of OMW toxicity. Although the toxicity of OMW is usually high, the evaluation of effects on sub-lethal endpoints, on individual and multispecies test systems, are currently lacking, and the real impacts yielded by its dilution, in freshwater trophic chains of receiving systems can not be assessed. As far as the terrestrial compartment is considered, ecotoxicological data available include tests only with plants and the evaluation of soil microbial parameters, reflecting concerns with the impacts on crops when using OMW for irrigation purposes. The evaluation of its ecotoxicity to other edaphic species were not performed giving rise to a completely lack of knowledge about the consequences of such practice on other soil functions. OMW production is a great environmental problem in Mediterranean countries; hence, engineers, chemists and ecotoxicologists should face this problem together to find an ecologically friend solution. PMID:22042608

  3. Removal of boron from ceramic industry wastewater by adsorption-flocculation mechanism using palm oil mill boiler (POMB) bottom ash and polymer.

    PubMed

    Chong, Mei Fong; Lee, Kah Peng; Chieng, Hui Jiun; Syazwani Binti Ramli, Ili Izyan

    2009-07-01

    Boron is extensively used in the ceramic industry for enhancing mechanical strength of the tiles. The discharge of boron containing wastewater to the environment causes severe pollution problems. Boron is also dangerous for human consumption and causes organisms' reproductive impediments if the safe intake level is exceeded. Current methods to remove boron include ion-exchange, membrane filtration, precipitation-coagulation, biological and chemical treatment. These methods are costly to remove boron from the wastewater and hence infeasible for industrial wastewater treatment. In the present research, adsorption-flocculation mechanism is proposed for boron removal from ceramic wastewater by using Palm Oil Mill Boiler (POMB) bottom ash and long chain polymer or flocculant. Ceramic wastewater is turbid and milky in color which contains 15 mg/L of boron and 2000 mg/L of suspended solids. The optimum operating conditions for boron adsorption on POMB bottom ash and flocculation using polymer were investigated in the present research. Adsorption isotherm of boron on bottom ash was also investigated to evaluate the adsorption capacity. Adsorption isotherm modeling was conducted based on Langmuir and Freundlich isotherms. The results show that coarse POMB bottom ash with particle size larger than 2 mm is a suitable adsorbent where boron is removed up to 80% under the optimum conditions (pH=8.0, dosage=40 g bottom ash/300 ml wastewater, residence time=1h). The results also show that KP 1200 B cationic polymer is effective in flocculating the suspended solids while AP 120 C anionic polymer is effective in flocculating the bottom ash. The combined cationic and anionic polymers are able to clarify the ceramic wastewater under the optimum conditions (dosage of KP 1200 B cationic polymer=100 mg/L, dosage of AP 120 C anionic polymer=50 mg/L, mixing speed=200 rpm). Under the optimum operating conditions, the boron and suspended solids concentration of the treated wastewater were

  4. Evaluation of phytotoxicity effect of olive mill wastewater treated by different technologies on seed germination of barley (Hordeum vulgare L.).

    PubMed

    Rusan, Munir J M; Albalasmeh, Ammar A; Zuraiqi, Said; Bashabsheh, Mohammad

    2015-06-01

    Olive-mill wastewater (OMW) is a by-product effluent of olive oil extraction process that is produced in large amount in the Mediterranean region. OMW is believed to induce phytotoxic effect on organisms including seed germination and plant growth. The objective of this study was to evaluate the impact of untreated and treated OMW with different techniques on seed germination of barley (Hordeum vulgare L.). The following treatments were investigated: (1) tap water (control); (2) OMW treated by aerobic biological technology in a Jacto Reactor (JR); (3) OMW treated by solar fenton oxidation (SFO); (4) OMW treated by microfiltration followed by nanofiltration (MF+NF); (5) OMW treated by microfiltration followed by reverse osmosis (MF+RO) process; (6) diluted OMW with tap water (25 % OMW); (7) diluted OMW with tap water (50 % OMW); (8) diluted OMW with tap water (75 % OMW); and (9) untreated OMW (100 % OMW). A germination test was conducted in an incubator at temperature of 23 (∘)C. In each petri dish, a filter paper was mounted and ten seeds of barley were placed on the filter paper. Five milliliter of water were added to each petri dish. The seed germination was determined by counting the number of germinated seeds to calculate the percentage of germination (G %). Germination rate index (GRI), seed vigor index (SVI), and phytotoxicity index (PI) were also calculated. Then, the dry weights and lengths of the shoots and the roots of the germinated seeds were measured. The results show that 100, 75, and 50 %OMW were very phytotoxic and completely prohibited seed germination. However, phytotoxicity decreased significantly following treatments of OMW with all techniques investigated and by the 25 % OMW dilution, as results of removing the phenols and other phytotoxic organic compounds from the OMW or by diluting it. This was evidenced by relative enhancement of the dry weights and lengths of shoot and root as well as the G %, GRI, SVG, and PI. It was concluded that if

  5. Optimization of the coagulation-flocculation process for pulp mill wastewater treatment using a combination of uniform design and response surface methodology.

    PubMed

    Wang, Jian-Ping; Chen, Yong-Zhen; Wang, Yi; Yuan, Shi-Jie; Yu, Han-Qing

    2011-11-01

    Pulp mill wastewater was treated using the coagulation-flocculation process with aluminum chloride as the coagulant and a modified natural polymer, starch-g-PAM-g-PDMC [polyacrylamide and poly (2-methacryloyloxyethyl) trimethyl ammonium chloride], as the flocculant. A novel approach with a combination of response surface methodology (RSM) and uniform design (UD) was employed to evaluate the effects and interactions of three main influential factors, coagulant dosage, flocculant dosage and pH, on the treatment efficiency in terms of the supernatant turbidity and lignin removals as well as the water recovery. The optimal conditions obtained from the compromise of the three desirable responses, supernatant turbidity removal, lignin removal and water recovery efficiency, were as follows: coagulant dosage of 871 mg/L, flocculant dosage of 22.3 mg/L and pH 8.35. Confirmation experiments demonstrated that such a combination of the UD and RSM is a powerful and useful approach for optimizing the coagulation-flocculation process for the pulp mill wastewater treatment. PMID:21920576

  6. Physical and oxidative stability of functional olive oil-in-water emulsions formulated using olive mill wastewater biophenols and whey proteins.

    PubMed

    Caporaso, Nicola; Genovese, Alessandro; Burke, Róisín; Barry-Ryan, Catherine; Sacchi, Raffaele

    2016-01-01

    The present paper reports on the use of phenolic extracts from olive mill wastewater (OMW) in model olive oil-in-water (O/W) emulsions to study their effect on their physical and chemical stability. Spray-dried OMW polyphenols were added to a model 20% olive O/W emulsion stabilized with whey protein isolate (WPI) and xanthan gum, in phosphate buffer solution at pH 7. The emulsions were characterised under accelerated storage conditions (40 °C) up to 30 days. Physical stability was evaluated by analysing the creaming rate, mean particle size distribution and mean droplet size, viscosity and rheological properties, while chemical stability was assessed through the measurement of primary and secondary oxidation products. The rheological behaviour and creaming stability of the emulsions were dramatically improved by using xanthan gum, whereas the concentration of WPI and the addition of encapsulated OMW phenolics did not result in a significant improvement of physical stability. The formation of oxidation products was higher when higher concentrations of encapsulated polyphenols were used, indicating a possible binding with the WPI added in the system as a natural emulsifier. This paper might help in solving the issue of using the olive mill wastewater from olive processing in formulating functional food products with high antioxidant activity and improved health properties. PMID:26692051

  7. Effect of shortening kraft pulping integrated with extended oxygen delignification on biorefinery process performance of eucalyptus.

    PubMed

    Li, Jing; Zhang, Chunyun; Hu, Huichao; Chai, Xin-Sheng

    2016-02-01

    The aim of this work was to study the impact of shortening kraft pulping (KP) process integrated with extended oxygen delignification (OD) on the biorefinery process performance of eucalyptus. Data showed that using kraft pulps with high kappa number could improve the delignification efficiency of OD, reduce hexenuronic acid formation in kraft pulps. Pulp viscosity for a target kappa number of ∼10 was comparable to that obtained from conventional KP and OD process. The energy and alkali consumption in the integrated biorefinery process could be optimized when using a KP pulp with kappa number of ∼27. The process could minimize the overall methanol formation, but greater amounts of carbonate and oxalate were formed. The information from this study will be helpful to the future implementation of short-time KP integrated with extended OD process in actual pulp mill applications for biorefinery, aiming at further improvement in the biorefinery effectiveness of hardwood. PMID:26706725

  8. Detoxification of Olive Mill Wastewater and Bioconversion of Olive Crop Residues into High-Value-Added Biomass by the Choice Edible Mushroom Hericium erinaceus.

    PubMed

    Koutrotsios, Georgios; Larou, Evangelia; Mountzouris, Konstantinos C; Zervakis, Georgios I

    2016-09-01

    Environmentally acceptable disposal of olive cultivation residues (e.g., olive prunings; olive pruning residues (OLPR)) and olive mill wastes is of paramount importance since they are generated in huge quantities within a short time. Moreover, olive mill wastewater (OMW) or sludge-like effluents ("alperujo"; two-phase olive mill waste (TPOMW)) are highly biotoxic. Hericium erinaceus is a white-rot fungus which produces choice edible mushrooms on substrates rich in lignocellulosics, and its suitability for the treatment of olive by-products was examined for the first time. Fungal growth resulted in a notable reduction of OMW's pollution parameters (i.e., 65 % decolorization, 47 % total phenolic reduction, and 52 % phytotoxicity decrease) and correlated with laccase and manganese peroxidase activities. Solid-state fermentation of various mixtures of OLPR, TPOMW, and beech sawdust (control) by H. erinaceus qualified OLPR in subsequent cultivation experiments, where it exhibited high mushroom yields and biological efficiency (31 %). Analyses of proximate composition and bioactive compound content revealed that mushrooms deriving from OLPR substrates showed significantly higher crude fat, total glucan, β-glucan, total phenolics, and ferric-reducing antioxidant potential values than the control. H. erinaceus demonstrated the potential to detoxify OMW and bioconvert OLPR into high-quality biomass, and hence, this fungus could be successfully exploited for the treatment of such by-products. PMID:27138726

  9. [Treatment of olive mill wastewater by a process combining an intensive treatment (Jet-Loop reactor) followed by an extensive treatment (stabilization ponds)].

    PubMed

    Jail, A; Boukhoubza, F; Nejmeddine, A; Duarte, J C; Sayadi, S; Hassani, L

    2010-04-14

    Olive oil mill wastewater (OMW) is generally recognized as an environmentally troublesome by-product of the olive oil industry as its disposal without any treatment is known to cause serious environmental problems. However, this effluent has a high fertilizing power and constitutes, with urban wastewater, an important low-cost source. Biological treatment of OMW, with a process combining an aerobic reactor, 'Jet-Loop', and waste stabilization ponds, was investigated for possible agricultural reuse. The focus of the present study was to evaluate the contribution and the complementarity of the two systems in the total OMW treatment. Bio-treatment was performed using a 100-litre Jet-Loop reactor working volume achieving a chemical oxygen demand (COD) and phenolic compounds maximum removal rate of 72% and 68%, respectively, at a hydraulic retention time of 10 days. Co-treatment of OMW and domestic wastewater in waste stabilization ponds, with a hydraulic retention time of 22 days, reached a global removal rate of 66% for COD while no trace of phenolic compounds was detected on this level during the entire treatment period. Dynamics of faecal coliforms in stabilization ponds showed a total removal rate of 99.9% (3 logarithmic units (Log.U)). Preliminary results of agronomic tests on the ray-grass have evaluated the fertilizing effect of the final effluent resulting from the co-treatment. PMID:20480828

  10. 40 CFR Appendix E to Part 63 - Monitoring Procedure for Nonthoroughly Mixed Open Biological Treatment Systems at Kraft Pulp...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Mixed Open Biological Treatment Systems at Kraft Pulp Mills Under Unsafe Sampling Conditions E Appendix..., App. E Appendix E to Part 63—Monitoring Procedure for Nonthoroughly Mixed Open Biological Treatment... pollutants (HAP) concentrations from an open biological treatment unit. It is assumed that inlet and...