Science.gov

Sample records for krimipnevik wall streetil

  1. Wonderful Walls

    ERIC Educational Resources Information Center

    Greenman, Jim

    2006-01-01

    In this article, the author emphasizes the importance of "working" walls in children's programs. Children's programs need "working" walls (and ceilings and floors) which can be put to use for communication, display, storage, and activity space. The furnishings also work, or don't work, for the program in another sense: in aggregate, they serve as…

  2. Wall Turbulence.

    ERIC Educational Resources Information Center

    Hanratty, Thomas J.

    1980-01-01

    This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)

  3. 'Stucco' Walls

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This projected mosaic image, taken by the microscopic imager, an instrument located on the Mars Exploration Rover Opportunity 's instrument deployment device, or 'arm,' shows the partial clotting or cement-like properties of the sand-sized grains within the trench wall. The area in this image measures approximately 3 centimeters (1.2 inches) wide and 5 centimeters (2 inches) tall.(This image also appears as an inset on a separate image from the rover's navigation camera, showing the location of this particular spot within the trench wall.)

  4. Wall Covering

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The attractive wall covering shown below is one of 132 styles in the Mirror Magic II line offered by The General Tire & Rubber Company, Akron, Ohio. The material is metallized plastic fabric, a spinoff from space programs. Wall coverings are one of many consumer applications of aluminized plastic film technology developed for NASA by a firm later bought by King-Seeley Thermos Company, Winchester, Massachusetts, which now produces the material. The original NASA use was in the Echo 1 passive communications satellite, a "space baloon" made of aluminized mylar; the high reflectivity of the metallized coating enabled relay of communications signals from one Earth station to another by "bouncing" them off the satellite. The reflectivity feature also made the material an extremely efficient insulator and it was subsequently widely used in the Apollo program for such purposes as temperature control of spacecraft components and insulation of tanks for fuels that must be maintained at very low temperatures. I Used as a wall covering, the aluminized material offers extra insulation, reflects light and I resists cracking. In addition to General Tire, King-Seeley also supplies wall covering material to Columbus Coated Fabrics Division of Borden, Incorporated, Columbus, Ohio, among others.

  5. Wall Art

    ERIC Educational Resources Information Center

    McGinley, Connie Q.

    2004-01-01

    The author of this article, an art teacher at Monarch High School in Louisville, Colorado, describes how her experience teaching in a new school presented an exciting visual challenge for an art teacher--monotonous brick walls just waiting for decoration. This school experienced only minimal instances of graffiti, but as an art teacher, she did…

  6. Cooling wall

    SciTech Connect

    Nosenko, V.I.

    1995-07-01

    Protecting the shells of blast furnaces is being resolved by installing cast iron cooling plates. The cooling plates become non-operational in three to five years. The problem is that defects occur in manufacturing the cooling plates. With increased volume and intensity of work placed on blast furnaces, heat on the cast iron cooling plates reduces their reliability that limits the interim repair period of blast furnaces. Scientists and engineers from the Ukraine studied this problem for several years, developing a new method of cooling the blast furnace shaft called the cooling wall. Traditional cast iron plates were replaced by a screen of steel tubes, with the area between the tubes filled with fireproof concrete. Before placing the newly developed furnace shaft into operation, considerable work was completed such as theoretical calculations, design, research of temperature fields and tension. Continual testing over many years confirms the value of this research in operating blast furnaces. The cooling wall works with water cooling as well as vapor cooling and is operating in 14 blast furnaces in the Ukraine and two in Russia, and has operated for as long as 14 years.

  7. Wind tunnel wall interference

    NASA Technical Reports Server (NTRS)

    Newman, Perry A.; Mineck, Raymond E.; Barnwell, Richard W.; Kemp, William B., Jr.

    1986-01-01

    About a decade ago, interest in alleviating wind tunnel wall interference was renewed by advances in computational aerodynamics, concepts of adaptive test section walls, and plans for high Reynolds number transonic test facilities. Selection of NASA Langley cryogenic concept for the National Transonic Facility (NTF) tended to focus the renewed wall interference efforts. A brief overview and current status of some Langley sponsored transonic wind tunnel wall interference research are presented. Included are continuing efforts in basic wall flow studies, wall interference assessment/correction procedures, and adaptive wall technology.

  8. Wall surveyor project report

    SciTech Connect

    Mullenhoff, D.J.; Johnston, B.C.; Azevedo, S.G.

    1996-02-22

    A report is made on the demonstration of a first-generation Wall Surveyor that is capable of surveying the interior and thickness of a stone, brick, or cement wall. LLNL`s Micropower Impulse Radar is used, based on emitting and detecting very low amplitude and short microwave impulses (MIR rangefinder). Six test walls were used. While the demonstrator MIR Wall Surveyor is not fieldable yet, it has successfully scanned the test walls and produced real-time images identifying the walls. It is planned to optimize and package the evaluation wall surveyor into a hand held unit.

  9. If walls could talk

    NASA Technical Reports Server (NTRS)

    Braam, J.; McIntire, L. V. (Principal Investigator)

    1999-01-01

    The plant cell wall is very complex, both in structure and function. The wall components and the mechanical properties of the wall have been implicated in conveying information that is important for morphogenesis. Proteoglycans, fragments of polysaccharides and the structural integrity of the wall may relay signals that influence cellular differentiation and growth control. Furthering our knowledge of cell wall structure and function is likely to have a profound impact on our understanding of how plant cells communicate with the extracellular environment.

  10. Fluidized wall for protecting fusion chamber walls

    SciTech Connect

    Maniscalco, J.A.; Meier, W.R.

    1982-08-17

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. Produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithiumceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  11. Halogenation of microcapsule walls

    NASA Technical Reports Server (NTRS)

    Davis, T. R.; Schaab, C. K.; Scott, J. C.

    1972-01-01

    Procedure for halogenation of confining walls of both gelatin and gelatin-phenolic resin capsules is similar to that used for microencapsulation. Ten percent halogen content renders capsule wall nonburning; any higher content enhances flame-retardant properties of selected internal phase material. Halogenation decreases permeability of wall material to encapsulated materials.

  12. The Lamportian cell wall

    SciTech Connect

    Keiliszewski, M.; Lamport, D. )

    1991-05-01

    The Lamportian Warp-Weft hypothesis suggests a cellulose-extensin interpenetrating network where extensin mechanically couples the load-bearing cellulose microfibrils in a wall matrix that is best described as a microcomposite. This model is based on data gathered from the extensin-rich walls of tomato and sycamore cell suspension culture, wherein extensin precursors are insolubilized into the wall by undefined crosslinks. The authors recent work with cell walls isolated from intact tissue as well as walls from suspension cultured cells of the graminaceous monocots maize and rice, the non-graminaceous monocot asparagus, the primitive herbaceous dicot sugar beet, and the gymnosperm Douglas Fir indicate that although extensins are ubiquitous to all plant species examined, they are not the major structural protein component of most walls examined. Amino acid analyses of intact and HF-treated walls shows a major component neither an HRGP, nor directly comparable to the glycine-rich wall proteins such as those associated with seed coat walls or the 67 mole% glycine-rich proteins cloned from petunia and soybean. Clearly, structural wall protein alternatives to extensin exist and any cell wall model must take that into account. If we assume that extracellular matrices are a priori network structures, then new Hypless' structural proteins in the maize cell wall raise questions about the sort of network these proteins create: the kinds of crosslinks involved; how they are formed; and the roles played by the small amounts of HRGPs.

  13. Fluidized wall for protecting fusion chamber walls

    SciTech Connect

    Maniscalco, James A.; Meier, Wayne R.

    1982-01-01

    Apparatus for protecting the inner wall of a fusion chamber from microexplosion debris, x-rays, neutrons, etc. produced by deuterium-tritium (DT) targets imploded within the fusion chamber. The apparatus utilizes a fluidized wall similar to a waterfall comprising liquid lithium or solid pellets of lithium-ceramic, the waterfall forming a blanket to prevent damage of the structural materials of the chamber.

  14. Wall of fundamental constants

    SciTech Connect

    Olive, Keith A.; Peloso, Marco; Uzan, Jean-Philippe

    2011-02-15

    We consider the signatures of a domain wall produced in the spontaneous symmetry breaking involving a dilatonlike scalar field coupled to electromagnetism. Domains on either side of the wall exhibit slight differences in their respective values of the fine-structure constant, {alpha}. If such a wall is present within our Hubble volume, absorption spectra at large redshifts may or may not provide a variation in {alpha} relative to the terrestrial value, depending on our relative position with respect to the wall. This wall could resolve the contradiction between claims of a variation of {alpha} based on Keck/Hires data and of the constancy of {alpha} based on Very Large Telescope data. We derive the properties of the wall and the parameters of the underlying microscopic model required to reproduce the possible spatial variation of {alpha}. We discuss the constraints on the existence of the low-energy domain wall and describe its observational implications concerning the variation of the fundamental constants.

  15. Liquid Wall Chambers

    SciTech Connect

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  16. Cell wall integrity

    PubMed Central

    Pogorelko, Gennady; Lionetti, Vincenzo; Bellincampi, Daniela; Zabotina, Olga

    2013-01-01

    The plant cell wall, a dynamic network of polysaccharides and glycoproteins of significant compositional and structural complexity, functions in plant growth, development and stress responses. In recent years, the existence of plant cell wall integrity (CWI) maintenance mechanisms has been demonstrated, but little is known about the signaling pathways involved, or their components. Examination of key mutants has shed light on the relationships between cell wall remodeling and plant cell responses, indicating a central role for the regulatory network that monitors and controls cell wall performance and integrity. In this review, we present a short overview of cell wall composition and discuss post-synthetic cell wall modification as a valuable approach for studying CWI perception and signaling pathways. PMID:23857352

  17. Domain wall filters

    SciTech Connect

    Baer, Oliver; Narayanan, Rajamani; Neuberger, Herbert; Witzel, Oliver

    2007-03-15

    We propose using the extra dimension separating the domain walls carrying lattice quarks of opposite handedness to gradually filter out the ultraviolet fluctuations of the gauge fields that are felt by the fermionic excitations living in the bulk. This generalization of the homogeneous domain wall construction has some theoretical features that seem nontrivial.

  18. 'Stucco' Walls-2

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image, taken by the microscopic imager, an instrument located on the Mars Exploration Rover Opportunity 's instrument deployment device, or 'arm,' shows the partial 'clodding' or cementation of the sand-sized grains within the trench wall. The area in this image measures approximately 3 centimeters (1.2 inches) across and makes up half of the projected 'Stucco Walls' image.

  19. Wall Finishes; Carpentry: 901895.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    The course outline is designed to provide instruction in selecting, preparing, and installing wall finishing materials. Prerequisites for the course include mastery of building construction plans, foundations and walls, and basic mathematics. Intended for use in grades 11 and 12, the course contains five blocks of study totaling 135 hours of…

  20. Thin Wall Iron Castings

    SciTech Connect

    J.F. Cuttino; D.M. Stefanescu; T.S. Piwonka

    2001-10-31

    Results of an investigation made to develop methods of making iron castings having wall thicknesses as small as 2.5 mm in green sand molds are presented. It was found that thin wall ductile and compacted graphite iron castings can be made and have properties consistent with heavier castings. Green sand molding variables that affect casting dimensions were also identified.

  1. Interactive Word Walls

    ERIC Educational Resources Information Center

    Jackson, Julie; Narvaez, Rose

    2013-01-01

    It is common to see word walls displaying the vocabulary that students have learned in class. Word walls serve as visual scaffolds and are a classroom strategy used to reinforce reading and language arts instruction. Research shows a strong relationship between student word knowledge and academic achievement (Stahl and Fairbanks 1986). As a…

  2. 22. SIDE WALL CONSTRUCTION, NORTH TRAINING WALL, LOOKING WEST FROM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. SIDE WALL CONSTRUCTION, NORTH TRAINING WALL, LOOKING WEST FROM THE SAME POINT AS VIEW NO. 21. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  3. 5. Detail of bin wall, showing the thinner exterior wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. Detail of bin wall, showing the thinner exterior wall next to the inner wall with its alternating courses of channel tile and hollow tile. - Saint Anthony Elevator No. 3, 620 Malcom Avenue, Southeast, Minneapolis, Hennepin County, MN

  4. Swimming Near the Wall

    NASA Astrophysics Data System (ADS)

    Quinn, Daniel; Moored, Keith; Dewey, Peter; Lauder, George; Smits, Alexander

    2012-11-01

    The aerodynamic loads on rectangular panels undergoing heave and pitch oscillations near a solid wall were measured using a 6-axis ATI sensor. Over a range of Strouhal numbers, reduced frequencies and flexibilities, swimming near the wall was found to increase thrust and therefore the self-propelled swimming speed. Experimental particle image velocimetry revealed an asymmetric wake structure with a momentum jet angled away from the wall. Both the thrust amplification and the asymmetric wake structure were verified and investigated further using an in-house inviscid panel method code. Supported by ONR MURI Grant N00014-08-1-0642.

  5. Anterior vaginal wall repair

    MedlinePlus

    Lentz GM. Anatomic defects of the abdominal wall and pelvic floor: abdominal and inguinal hernias, cystocele, urethrocele, ... uterine and vaginal prolapse: diagnosis and management. In: Lentz GM, Lobo RA, Gershenson DM, Katz VL, eds. ...

  6. Oscillons and domain walls

    SciTech Connect

    Hindmarsh, Mark; Salmi, Petja

    2008-05-15

    Oscillons, extremely long-lived localized oscillations of a scalar field, are shown to be produced by evolving domain wall networks in {phi}{sup 4} theory in two spatial dimensions. We study the oscillons in frequency space using the classical spectral function at zero momentum, and obtain that the velocity distribution is suppressed as {gamma}{sup -2} at large Lorentz factor {gamma}, with oscillons produced up to at least {gamma}{approx}10. This leads us to speculate that oscillons are produced at cusps, regions of the domain wall travelling near the speed of light. In order to gain some insight onto the dilute oscillon 'gas' produced by the domain walls, we prepare a denser gas by filling the simulation volume with oscillons boosted in random directions. We finish the study by revisiting collisions between oscillons and between an oscillon and a domain wall, showing that in the latter case they can pass straight through with minimal distortion.

  7. Anterior vaginal wall repair

    MedlinePlus

    ... Cystocele Anterior vaginal wall repair (surgical treatment of urinary incontinence) - series References Lentz GM. Anatomic defects of the ... 72. Read More Anterior Inflatable artificial sphincter Stress urinary incontinence Urinary catheters Urinary incontinence - injectable implant Urinary incontinence - ...

  8. Opportunity at the Wall

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The navigation camera on NASA's Mars Exploration Rover Opportunity took images during the rover's 285th martian day (Nov. 11, 2004) that are combined into this panorama. Opportunity had reached the base of 'Burns Cliff,' a portion of the inner wall of 'Endurance Crater.' This view shows rock layers in the wall, with a portion of Opportunity's solar array visible at the bottom right.

  9. Conducting Wall Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Goebel, Dan M.; Hofer, Richard R.; Mikellides, Ioannis G.; Katz, Ira; Polk, James E.; Dotson, Brandon

    2013-01-01

    A unique configuration of the magnetic field near the wall of Hall thrusters, called Magnetic Shielding, has recently demonstrated the ability to significantly reduce the erosion of the boron nitride (BN) walls and extend the life of Hall thrusters by orders of magnitude. The ability of magnetic shielding to minimize interactions between the plasma and the discharge chamber walls has for the first time enabled the replacement of insulating walls with conducting materials without loss in thruster performance. The boron nitride rings in the 6 kW H6 Hall thruster were replaced with graphite that self-biased to near the anode potential. The thruster efficiency remained over 60% (within two percent of the baseline BN configuration) with a small decrease in thrust and increase in Isp typical of magnetically shielded Hall thrusters. The graphite wall temperatures decreased significantly compared to both shielded and unshielded BN configurations, leading to the potential for higher power operation. Eliminating ceramic walls makes it simpler and less expensive to fabricate a thruster to survive launch loads, and the graphite discharge chamber radiates more efficiently which increases the power capability of the thruster compared to conventional Hall thruster designs.

  10. HVDC wall bushing studies

    SciTech Connect

    Schneider, H.M.; Lux, A.E.; Howes, D.R. )

    1990-07-01

    This report describes research conducted to determine the performance of HVDC wall bushings in different wetting conditions. The in-service behavior of these wall bushing on HVDC systems at voltages of {plus minus}450 kV and above is first described to establish the conditions under which flashovers have occurred. Laboratory tests made at the EPRI High Voltage Transmission Research Center confirm that wall bushings may flash over at rated operation voltage under conditions which are intended to be representative of those experienced on operating transmission systems. Methods for improving performance are discussed, and results of tests with several types of mitigation techniques are described. The major emphasis is placed on the application of room temperature vulcanized (RTV) silicone rubber. Clean fog is used to evaluate the characteristics of this material on post insulators. The encouraging performance of the post insulators coated with RTV is the basis for further evaluation on full scale wall bushings tested in nonuniform rain. In addition to tests on RTV coated wall bushings without pre-doposited contamination, attempts at achieving reasonable contamination layers on RV are described. By means of resistance measurements on horizontal insulators, the critical conditions which may lead to flashover on surfaces with different materials and coatings are investigated 15 refs., 39 figs., 11 tabs.

  11. Ultimate Cost of Building Walls.

    ERIC Educational Resources Information Center

    Grimm, Clayford T.; Gross, James G.

    The need for economic analysis of building walls is discussed, and the factors influencing the ultimate cost of exterior walls are studied. The present worth method is used to analyze three types of exterior non-loadbearing panel or curtain walls. Anticipated costs are expressed in terms of their present value per square foot of wall area. The…

  12. Musculoskeletal chest wall pain

    PubMed Central

    Fam, Adel G.; Smythe, Hugh A.

    1985-01-01

    The musculoskeletal structures of the thoracic wall and the neck are a relatively common source of chest pain. Pain arising from these structures is often mistaken for angina pectoris, pleurisy or other serious disorders. In this article the clinical features, pathogenesis and management of the various musculoskeletal chest wall disorders are discussed. The more common causes are costochondritis, traumatic muscle pain, trauma to the chest wall, “fibrositis” syndrome, referred pain, psychogenic regional pain syndrome, and arthritis involving articulations of the sternum, ribs and thoracic spine. Careful analysis of the history, physical findings and results of investigation is essential for precise diagnosis and effective treatment. ImagesFig. 3Fig. 4Fig. 5 PMID:4027804

  13. Axion domain wall baryogenesis

    SciTech Connect

    Daido, Ryuji; Kitajima, Naoya; Takahashi, Fuminobu

    2015-07-28

    We propose a new scenario of baryogenesis, in which annihilation of axion domain walls generates a sizable baryon asymmetry. Successful baryogenesis is possible for a wide range of the axion mass and decay constant, m≃10{sup 8}–10{sup 13} GeV and f≃10{sup 13}–10{sup 16} GeV. Baryonic isocurvature perturbations are significantly suppressed in our model, in contrast to various spontaneous baryogenesis scenarios in the slow-roll regime. In particular, the axion domain wall baryogenesis is consistent with high-scale inflation which generates a large tensor-to-scalar ratio within the reach of future CMB B-mode experiments. We also discuss the gravitational waves produced by the domain wall annihilation and its implications for the future gravitational wave experiments.

  14. Thermal treatment wall

    DOEpatents

    Aines, Roger D.; Newmark, Robin L.; Knauss, Kevin G.

    2000-01-01

    A thermal treatment wall emplaced to perform in-situ destruction of contaminants in groundwater. Thermal destruction of specific contaminants occurs by hydrous pyrolysis/oxidation at temperatures achievable by existing thermal remediation techniques (electrical heating or steam injection) in the presence of oxygen or soil mineral oxidants, such as MnO.sub.2. The thermal treatment wall can be installed in a variety of configurations depending on the specific objectives, and can be used for groundwater cleanup, wherein in-situ destruction of contaminants is carried out rather than extracting contaminated fluids to the surface, where they are to be cleaned. In addition, the thermal treatment wall can be used for both plume interdiction and near-wellhead in-situ groundwater treatment. Thus, this technique can be utilized for a variety of groundwater contamination problems.

  15. Wall turbulence control

    NASA Technical Reports Server (NTRS)

    Wilkinson, Stephen P.; Lindemann, A. Margrethe; Beeler, George B.; Mcginley, Catherine B.; Goodman, Wesley L.; Balasubramanian, R.

    1986-01-01

    A variety of wall turbulence control devices which were experimentally investigated are discussed; these include devices for burst control, alteration of outer flow structures, large eddy substitution, increased heat transfer efficiency, and reduction of wall pressure fluctuations. Control of pre-burst flow was demonstrated with a single, traveling surface depression which is phase-locked to elements of the burst production process. Another approach to wall turbulence control is to interfere with the outer layer coherent structures. A device in the outer part of a boundary layer was shown to suppress turbulence and reduce drag by opposing both the mean and unsteady vorticity in the boundary layer. Large eddy substitution is a method in which streamline curvature is introduced into the boundary layer in the form of streamwise vortices. Riblets, which were already shown to reduce turbulent drag, were also shown to exhibit superior heat transfer characteristics. Heat transfer efficiency as measured by the Reynolds Analogy Factor was shown to be as much as 36 percent greater than a smooth flat plate in a turbulent boundary layer. Large Eddy Break-Up (LEBU) which are also known to reduce turbulent drag were shown to reduce turbulent wall pressure fluctuation.

  16. A School without Walls.

    ERIC Educational Resources Information Center

    Venuti, Len Tai

    1994-01-01

    During the summer, selected students of Hawaiian ancestry who have completed seventh or eighth grade participate in a boarding program with outdoor activities such as pulling taro, star gazing, and camping. The activities eliminate walls of doubt and fear and nurture self-confidence, creativity, personal growth, leadership, and cultural awareness.…

  17. The Wall Coverings Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2012-01-01

    Students love nothing better than personalizing their space--desk, bedroom, or even their cars. This article describes a classroom challenge that gives students a chance to let their spirits soar with the invention of a new form of wall treatment. A trip to a big box store might prove to be most helpful for students to visualize their new product…

  18. Fly on the Wall

    ERIC Educational Resources Information Center

    Berry, Dave; Korpan, Cynthia

    2009-01-01

    This paper describes the implementation of a peer observation program at the University of Victoria called the Lecture Club. The observers are not interactive during the class--they are the proverbial flies on the wall. The paper identifies the program as self-developmental, discussing the attributes of this learning-to-teach and peer-sharing…

  19. A Wall of Faces

    ERIC Educational Resources Information Center

    Stevens, Lori

    2008-01-01

    Visitors to the campus of Orland High School (OHS) will never question that they have stepped into a world of the masses: kids, activity, personalities, busyness, and playfulness--a veritable cloud of mild bedlam. The wall of ceramic faces that greets a visitor in the school office is another reminder of the organized chaos that the teachers…

  20. Moisture Research - Optimizing Wall Assemblies

    SciTech Connect

    Arena, Lois; Mantha, Pallavi

    2013-05-01

    In this project, the Consortium for Advanced Residential Buildings (CARB) team evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls. Wall assemblies evaluated included code minimum walls using spray foam insulation and fiberglass batts, high R-value walls at least 12 in. thick (R-40 and R-60 assemblies), and brick walls with interior insulation.

  1. DETAIL OF CROCKETT BARN WALL CONSTRUCTION, UPPER LEVEL. The wall ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    DETAIL OF CROCKETT BARN WALL CONSTRUCTION, UPPER LEVEL. The wall construction of the Crockett barn includes a layer of diagonal sheathing that is exposed on the interior. - Crockett Farm, Barn, 1056 Fort Casey Road, Coupeville, Island County, WA

  2. 4. CONSTRUCTION DETAIL, SW CORNER, SHOWING RETAINING WALL, BRIDGE WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. CONSTRUCTION DETAIL, SW CORNER, SHOWING RETAINING WALL, BRIDGE WALL AND EROSION ON ROAD SURFACE. - Bridalveil Fall Bridge No. 3, Spanning Bridalveil Creek on carriage road, Yosemite Village, Mariposa County, CA

  3. EAST WALL OF CRYSTALLIZER WING TO THE LEFT, END WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    EAST WALL OF CRYSTALLIZER WING TO THE LEFT, END WALL OF CRUSHING MILL IN CENTER. GABLE END OF BOILING HOUSE IN LEFT BACKGROUND. VIEW FROM THE SOUTH - Kekaha Sugar Company, Sugar Mill Building, 8315 Kekaha Road, Kekaha, Kauai County, HI

  4. Typical Window, Interior Wall Paint Sequence, Wall Section, and Foundation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Typical Window, Interior Wall Paint Sequence, Wall Section, and Foundation Sections - Civilian Conservation Corps (CCC) Camp NP-5-C, Barracks No. 5, CCC Camp Historic District at Chapin Mesa, Cortez, Montezuma County, CO

  5. High-R Walls for Remodeling. Wall Cavity Moisture Monitoring

    SciTech Connect

    Wiehagen, J.; Kochkin, V.

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  6. High-R Walls for Remodeling: Wall Cavity Moisture Monitoring

    SciTech Connect

    Wiehagen, J.; Kochkin, V.

    2012-12-01

    The focus of the study is on the performance of wall systems, and in particular, the moisture characteristics inside the wall cavity and in the wood sheathing. Furthermore, while this research will initially address new home construction, the goal is to address potential moisture issues in wall cavities of existing homes when insulation and air sealing improvements are made.

  7. 25. NORTH TRAINING WALL, EAST SECTION, SIDE WALL CONSTRUCTION, LOOKING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. NORTH TRAINING WALL, EAST SECTION, SIDE WALL CONSTRUCTION, LOOKING WEST FROM A POINT ABOUT 500 FEET FROM THE MIDDLE HARBOR PARK FISHING PIER. (Panoramic view 1 of 2). - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  8. 38. NORTHEAST ROOM, SECOND FLOOR, SOUTH WALL. ROOM COMPLETELY WALLED ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    38. NORTHEAST ROOM, SECOND FLOOR, SOUTH WALL. ROOM COMPLETELY WALLED WITH RANDOM WIDTH BOARDS WHICH WERE PAPERED OR PLASTERED OVER. THIS WAS TYPICAL THROUGHOUT HOUSE EXCEPT FOR WOOD PANELED WALLS - John Mark Verdier House, 801 Bay & Scott Streets, Beaufort, Beaufort County, SC

  9. The Dielectric Wall Accelerator

    SciTech Connect

    Caporaso, George J.; Chen, Yu-Jiuan; Sampayan, Stephen E.

    2009-01-01

    The Dielectric Wall Accelerator (DWA), a class of induction accelerators, employs a novel insulating beam tube to impress a longitudinal electric field on a bunch of charged particles. The surface flashover characteristics of this tube may permit the attainment of accelerating gradients on the order of 100 MV/m for accelerating pulses on the order of a nanosecond in duration. A virtual traveling wave of excitation along the tube is produced at any desired speed by controlling the timing of pulse generating modules that supply a tangential electric field to the tube wall. Because of the ability to control the speed of this virtual wave, the accelerator is capable of handling any charge to mass ratio particle; hence it can be used for electrons, protons and any ion. The accelerator architectures, key technologies and development challenges will be described.

  10. Domain Walls with Strings Attached

    SciTech Connect

    Shmakova, Marina

    2001-08-20

    We have constructed a bulk and brane action of IIA theory which describes a pair of BPS domain walls on S{sub 1}/Z{sub 2}, with strings attached. The walls are given by two orientifold O8-planes with coincident D8-branes and F1-D0-strings are stretched between the walls. This static configuration satisfies all matching conditions for the string and domain wall sources and has 1/4 of unbroken supersymmetry.

  11. Bumper wall for plasma device

    DOEpatents

    Coultas, Thomas A.

    1977-01-01

    Operation of a plasma device such as a reactor for controlled thermonuclear fusion is facilitated by an improved bumper wall enclosing the plasma to smooth the flow of energy from the plasma as the energy impinges upon the bumper wall. The bumper wall is flexible to withstand unequal and severe thermal shocks and it is readily replaced at less expense than the cost of replacing structural material in the first wall and blanket that surround it.

  12. Molded Concrete Center Mine Wall

    NASA Technical Reports Server (NTRS)

    Lewis, E. V.

    1987-01-01

    Proposed semiautomatic system forms concrete-foam wall along middle of coal-mine passage. Wall helps support roof and divides passage into two conduits needed for ventilation of coal face. Mobile mold and concrete-foam generator form sections of wall in place.

  13. [Chest wall reconstruction after resection of malignant chest wall tumors].

    PubMed

    Ayabe, H; Oka, T; Akamine, S; Takahashi, T; Nagayasu, T

    1998-05-01

    Full-thickness chest wall resection is performed for complete removal of primary and secondary malignant chest wall tumors. Large defects of the chest wall after resection must be repaired to maintain adequate ventilation, to protect important intrathoracic structures, and to preserve cosmetic integrity. Various materials have been utilized over the years to replace the rigid chest wall. At present, Marlex mesh and a composite of Marlex mesh and methylmethacrylate are frequently used to reconstruct rigid chest wall defects. On the other hand, to replace the soft part of the chest wall and cover the rigid materials, pedicled muscle flaps, myocutaneous flaps, or omentum are used. Major pedicled flaps include the pectoralis major, rectus abdominis and latissimus dorsi muscular, and musculocutaneous flaps. Techniques are now available to repair any chest wall site, and to restore chest continuity in patients whose tumors are curatively resected. PMID:9656244

  14. Left ventricular wall stress compendium.

    PubMed

    Zhong, L; Ghista, D N; Tan, R S

    2012-01-01

    Left ventricular (LV) wall stress has intrigued scientists and cardiologists since the time of Lame and Laplace in 1800s. The left ventricle is an intriguing organ structure, whose intrinsic design enables it to fill and contract. The development of wall stress is intriguing to cardiologists and biomedical engineers. The role of left ventricle wall stress in cardiac perfusion and pumping as well as in cardiac pathophysiology is a relatively unexplored phenomenon. But even for us to assess this role, we first need accurate determination of in vivo wall stress. However, at this point, 150 years after Lame estimated left ventricle wall stress using the elasticity theory, we are still in the exploratory stage of (i) developing left ventricle models that properly represent left ventricle anatomy and physiology and (ii) obtaining data on left ventricle dynamics. In this paper, we are responding to the need for a comprehensive survey of left ventricle wall stress models, their mechanics, stress computation and results. We have provided herein a compendium of major type of wall stress models: thin-wall models based on the Laplace law, thick-wall shell models, elasticity theory model, thick-wall large deformation models and finite element models. We have compared the mean stress values of these models as well as the variation of stress across the wall. All of the thin-wall and thick-wall shell models are based on idealised ellipsoidal and spherical geometries. However, the elasticity model's shape can vary through the cycle, to simulate the more ellipsoidal shape of the left ventricle in the systolic phase. The finite element models have more representative geometries, but are generally based on animal data, which limits their medical relevance. This paper can enable readers to obtain a comprehensive perspective of left ventricle wall stress models, of how to employ them to determine wall stresses, and be cognizant of the assumptions involved in the use of specific models

  15. Gullies in Crater Wall

    NASA Technical Reports Server (NTRS)

    2004-01-01

    6 April 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows gullies in the wall of a large impact crater in Newton Basin near 41.9oS, 158.1oW. Such gullies may have formed by downslope movement of wet debris--i.e., water. Unfortunately, because the responsible fluid (if there was one) is no longer present today, only the geomorphology of the channels and debris aprons can be used to deduce that water might have been involved. The image covers an area about 3 km (1.9 mi) across. Sunlight illuminates the scene from the upper left.

  16. Axions from wall decay

    SciTech Connect

    Chang, S; Hagmann, C; Sikivie, P

    2001-01-08

    The authors discuss the decay of axion walls bounded by strings and present numerical simulations of the decay process. In these simulations, the decay happens immediately, in a time scale of order the light travel time, and the average energy of the radiated axions is {approx_equal} 7m{sub a} for v{sub a}/m{sub a} {approx_equal} 500. is found to increase approximately linearly with ln(v{sub a}/m{sub a}). Extrapolation of this behavior yields {approx_equal} 60 m{sub a} in axion models of interest.

  17. Dynamical domain wall and localization

    NASA Astrophysics Data System (ADS)

    Toyozato, Yuta; Higuchi, Masafumi; Nojiri, Shin'ichi

    2016-03-01

    Based on the previous works (Toyozato et al., 2013 [24]; Higuchi and Nojiri, 2014 [25]), we investigate the localization of the fields on the dynamical domain wall, where the four-dimensional FRW universe is realized on the domain wall in the five-dimensional space-time. Especially we show that the chiral spinor can localize on the domain wall, which has not been succeeded in the past works as the seminal work in George et al. (2009) [23].

  18. Asymptotic dynamics of monopole walls

    NASA Astrophysics Data System (ADS)

    Cross, R.

    2015-08-01

    We determine the asymptotic dynamics of the U(N) doubly periodic BPS monopole in Yang-Mills-Higgs theory, called a monopole wall, by exploring its Higgs curve using the Newton polytope and amoeba. In particular, we show that the monopole wall splits into subwalls when any of its moduli become large. The long-distance gauge and Higgs field interactions of these subwalls are Abelian, allowing us to derive an asymptotic metric for the monopole wall moduli space.

  19. Oven wall panel construction

    DOEpatents

    Ellison, Kenneth; Whike, Alan S.

    1980-04-22

    An oven roof or wall is formed from modular panels, each of which comprises an inner fabric and an outer fabric. Each such fabric is formed with an angle iron framework and somewhat resilient tie-bars or welded at their ends to flanges of the angle irons to maintain the inner and outer frameworks in spaced disposition while minimizing heat transfer by conduction and permitting some degree of relative movement on expansion and contraction of the module components. Suitable thermal insulation is provided within the module. Panels or skins are secured to the fabric frameworks and each such skin is secured to a framework and projects laterally so as slidingly to overlie the adjacent frame member of an adjacent panel in turn to permit relative movement during expansion and contraction.

  20. Bacterial Cell Wall Components

    NASA Astrophysics Data System (ADS)

    Ginsberg, Cynthia; Brown, Stephanie; Walker, Suzanne

    Bacterial cell-surface polysaccharides cells are surrounded by a variety of cell-surface structures that allow them to thrive in extreme environments. Components of the cell envelope and extracellular matrix are responsible for providing the cells with structural support, mediating intercellular communication, allowing the cells to move or to adhere to surfaces, protecting the cells from attack by antibiotics or the immune system, and facilitating the uptake of nutrients. Some of the most important cell wall components are polysaccharide structures. This review discusses the occurrence, structure, function, and biosynthesis of the most prevalent bacterial cell surface polysaccharides: peptidoglycan, lipopolysaccharide, arabinogalactan, and lipoarabinomannan, and capsular and extracellular polysaccharides. The roles of these polysaccharides in medicine, both as drug targets and as therapeutic agents, are also described.

  1. Alveolar wall relations.

    PubMed

    Gil, J

    1982-01-01

    We have presented a highly dynamic view of the alveolar septum and its main enclosed structure, the dense capillary network. The septal or perimicrovascular interstitium is the space between alveolar epithelial sheets after exclusion of the capillary network. It contains cells, fibers, and a viscous matrix. Capillaries form a very complex network, which closely follows the geometry of the terminal airways and participates in functional adaptations of the wall, particularly septal pleating. The level of filling and configuration of different capillaries ranging from collapse to full distension are variable, depending on factors such as transmural balance of forces but also on tissular configuration. Alveolar flooding of any cause will produce an immediate change of capillary configuration and volume. PMID:6953828

  2. 10. VIEW OF LAMINARFLOW FILTER WALL NEAR SOUTH WALL OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW OF LAMINAR-FLOW FILTER WALL NEAR SOUTH WALL OF CLEAN ROOM (102). NOTE GROUNDING CABLES NEAR BASEBOARD IN LOWER RIGHT BACKGROUND. WHITE SQUARE IN FOREGROUND IS A FLOOR DRAIN COVERED WITH TAPE. - Vandenberg Air Force Base, Space Launch Complex 3, Vehicle Support Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  3. North wall, central part, showing partial partition wall at left. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    North wall, central part, showing partial partition wall at left. This area is labeled “Pioneering Research” on drawing copy NV-35-B-5 (submitted with HABS No. NV-35-B) (series 2 of 4) - Bureau of Mines Metallurgical Research Laboratory, Original Building, Date Street north of U.S. Highway 93, Boulder City, Clark County, NV

  4. 7. INTERIOR, MAIN GARAGE, SOUTHERN WALL, FROM CLOSE TO WALL, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. INTERIOR, MAIN GARAGE, SOUTHERN WALL, FROM CLOSE TO WALL, LOOKING SOUTH, SHOWING 'GAMEWELL' FIRE ALARM TAPE CONTROL SYSTEM (TECHNOLOGY CIRCA 1910) AT CENTER, AND ENTRY TO OFFICE AT FAR RIGHT. - Oakland Naval Supply Center, Firehouse, East of Fourth Street, between A & B Streets, Oakland, Alameda County, CA

  5. Great Wall of China

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This ASTER sub-image covers a 12 x 12 km area in northern Shanxi Province, China, and was acquired January 9, 2001. The low sun angle, and light snow cover highlight a section of the Great Wall, visible as a black line running diagonally through the image from lower left to upper right. The Great Wall is over 2000 years old and was built over a period of 1000 years. Stretching 4500 miles from Korea to the Gobi Desert it was first built to protect China from marauders from the north.

    This image is located at 40.2 degrees north latitude and 112.8 degrees east longitude.

    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra satellite. The instrument was built by Japan's Ministry of International Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. Dr. Anne Kahle at NASA's Jet Propulsion Laboratory, Pasadena, Calif., is the U.S. Science team leader; Moshe Pniel of JPL is the project manager. ASTER is the only high resolution imaging sensor on Terra. The primary goal of the ASTER mission is to obtain high-resolution image data in 14 channels over the entire land surface, as well as black and white stereo images. With revisit time of between 4 and 16 days, ASTER will provide the capability for repeat coverage of changing areas on Earth's surface.

    The broad spectral coverage and high spectral resolution of ASTER will provide scientists in numerous disciplines with critical information for surface mapping, and monitoring dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats, monitoring potentially active volcanoes, identifying crop stress, determining cloud morphology and physical properties, wetlands Evaluation, thermal pollution monitoring, coral reef degradation, surface temperature mapping of soils and geology, and

  6. Ultrathin antibiotic walled microcapsules.

    PubMed

    Khopade, Ajay J; Arulsudar, N; Khopade, Surekha A; Hartmann, J

    2005-01-01

    Ultrathin microcapsules comprised of anionic polyelectrolytes (PE) and a polycationic aminoglycoside (AmG) antibiotic drug were prepared by depositing PE/AmG multilayers on zinc oxide (ZnO) colloid particles using the layer-by-layer self-assembly technique and subsequently dissolving the ZnO templated cores. The polyelectrolytes, dextran sulfate sodium (DxS) and poly(styrenesulfonate) (PSS), were selected owing to their different backbone structure. An aminoglycoside, tobramycin sulfate (TbS), was used for studying DxS/TbS or PSS/TbS multilayer films. The multilayer growth on ZnO cores was characterized by alternating zeta potential values that were different for the DxS/TbS and PSS/TbS multilayers due to the PE chemistry and its interaction with Zn(2+) ions. Transmission and scanning electron microscopy provide evidence of PE/TbS multilayer coating on ZnO core particles. The slow acid-decomposition of the ZnO cores using weak organic acids and the presence of sufficient quantity of Zn(2+) in the dispersion were required to produce antibiotic multilayer capsules. There was no difference in the morphological characteristics of the two types of capsules; although, the yield for [PSS/TbS](5) capsules was significantly higher than for [DxS/TbS](5) capsules which was related to the physicochemical properties of DxS/TbS/Zn(2+) and PSS/TbS/Zn(2+) complexes forming the capsule wall. The TbS quantity in the multilayer films was determined using a quartz crystal microbalance and high performance liquid chromatography techniques which showed less TbS loading in both, capsules and multilayers on planar gold substrate, than the theoretical DxS:TbS or PSS:TbS stoichiometric ratio. The decomposition of the [PE/TbS](6) multilayers was fastest in physiological buffer followed by mannitol and water. The decomposition rate of the [PSS/TbS](6) multilayers was slower than [DxS/TbS](6) monolayers. The incomplete decomposition of DxS/TbS under saline conditions suggests the major role of

  7. Mirage mirror on the wall

    NASA Astrophysics Data System (ADS)

    Kosa, T.; Palffy-Muhoray, P.

    2000-12-01

    We discuss mirages formed near a sun-heated wall, and consider the underlying physics. The temperature and refractive index variations in air near the wall are estimated, and a simple approximate picture of ray propagation is presented. Estimates of the thermal decay length and ray curvature are compared with experimental observations.

  8. Moisture Research - Optimizing Wall Assemblies

    SciTech Connect

    Arena, L.; Mantha, P.

    2013-05-01

    The Consortium for Advanced Residential Buildings (CARB) evaluated several different configurations of wall assemblies to determine the accuracy of moisture modeling and make recommendations to ensure durable, efficient assemblies. WUFI and THERM were used to model the hygrothermal and heat transfer characteristics of these walls.

  9. Channel Wall Landslides

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The multiple landslides in this VIS image occur along a steep channel wall. Note the large impact crater in the context image. The formation of the crater may have initially weakened that area of the surface prior to channel formation.

    Image information: VIS instrument. Latitude -2.7, Longitude 324.8 East (35.2 West). 19 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  10. Wall Shear Stress, Wall Pressure and Near Wall Velocity Field Relationships in a Whirling Annular Seal

    NASA Technical Reports Server (NTRS)

    Morrison, Gerald L.; Winslow, Robert B.; Thames, H. Davis, III

    1996-01-01

    The mean and phase averaged pressure and wall shear stress distributions were measured on the stator wall of a 50% eccentric annular seal which was whirling in a circular orbit at the same speed as the shaft rotation. The shear stresses were measured using flush mounted hot-film probes. Four different operating conditions were considered consisting of Reynolds numbers of 12,000 and 24,000 and Taylor numbers of 3,300 and 6,600. At each of the operating conditions the axial distribution (from Z/L = -0.2 to 1.2) of the mean pressure, shear stress magnitude, and shear stress direction on the stator wall were measured. Also measured were the phase averaged pressure and shear stress. These data were combined to calculate the force distributions along the seal length. Integration of the force distributions result in the net forces and moments generated by the pressure and shear stresses. The flow field inside the seal operating at a Reynolds number of 24,000 and a Taylor number of 6,600 has been measured using a 3-D laser Doppler anemometer system. Phase averaged wall pressure and wall shear stress are presented along with phase averaged mean velocity and turbulence kinetic energy distributions located 0.16c from the stator wall where c is the seal clearance. The relationships between the velocity, turbulence, wall pressure and wall shear stress are very complex and do not follow simple bulk flow predictions.

  11. Cell wall proteomics of crops

    PubMed Central

    Komatsu, Setsuko; Yanagawa, Yuki

    2012-01-01

    Cell wall proteins play key roles in cell structure and metabolism, cell enlargement, signal transduction, responses to environmental stress, and many other physiological events. Agricultural crops are often used for investigating stress tolerance because cultivars with differing degrees of tolerance are available. Abiotic and biotic stress factors markedly influence the geographical distribution and yields of many crop species. Crop cell wall proteomics is of particular importance for improving crop productivity, particularly under unfavorable environmental conditions. To better understand the mechanisms underlying stress response in crops, cell wall proteomic analyses are being increasingly utilized. In this review, the methods of purification and purity assays of cell wall protein fractions from crops are described, and the results of protein identification using gel-based and gel-free proteomic techniques are presented. Furthermore, protein composition of the cell walls of rice, wheat, maize, and soybean are compared, and the role of cell wall proteins in crops under flooding and drought stress is discussed. This review will be useful for clarifying the role of the cell wall of crops in response to environmental stresses. PMID:23403621

  12. Reduction of wind tunnel wall interference by controlled wall flow

    NASA Technical Reports Server (NTRS)

    Bernstein, S. (Editor); Joppa, R. G.

    1975-01-01

    An alternate method of testing was developed in which flow through the porous walls of the tunnel was actively controlled so as to approximate free air conditions in the neighborhood of the model during the test. The amount and distribution of the controlled flow through the walls is computed using a potential flow representation of the model based on the measured lift. Theoretical analysis is presented to prove the convergence of the method to free air conditions and to substantiate the general three-dimensional theory of operation when the normal flow distribution is continuous. A two-dimensional tunnel was constructed to evaluate the concept. Results show that substantial reduction of wall interference may be achieved with relatively low values of porosity of actively controlled walls.

  13. 27. "TEST STAND; STRUCTURAL; SIDEWALL, NORTH WALL AND SOUTH WALL ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    27. "TEST STAND; STRUCTURAL; SIDEWALL, NORTH WALL AND SOUTH WALL FRAMING ELEVATIONS." Specifications No. ENG-04353-55-72; Drawing No. 60-09-12; sheet 27 of 148; file no. 1320/78. Stamped: RECORD DRAWING - AS CONSTRUCTED. Below stamp: Contract no. 4338, Rev. B; date: 15 April 1957. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  14. Domain walls riding the wave.

    SciTech Connect

    Karapetrov, G.; Novosad, V.; Materials Science Division

    2010-11-01

    Recent years have witnessed a rapid proliferation of electronic gadgets around the world. These devices are used for both communication and entertainment, and it is a fact that they account for a growing portion of household energy consumption and overall world consumption of electricity. Increasing the energy efficiency of these devices could have a far greater and immediate impact than a gradual switch to renewable energy sources. The advances in the area of spintronics are therefore very important, as gadgets are mostly comprised of memory and logic elements. Recent developments in controlled manipulation of magnetic domains in ferromagnet nanostructures have opened opportunities for novel device architectures. This new class of memories and logic gates could soon power millions of consumer electronic devices. The attractiveness of using domain-wall motion in electronics is due to its inherent reliability (no mechanical moving parts), scalability (3D scalable architectures such as in racetrack memory), and nonvolatility (retains information in the absence of power). The remaining obstacles in widespread use of 'racetrack-type' elements are the speed and the energy dissipation during the manipulation of domain walls. In their recent contribution to Physical Review Letters, Oleg Tretiakov, Yang Liu, and Artem Abanov from Texas A&M University in College Station, provide a theoretical description of domain-wall motion in nanoscale ferromagnets due to the spin-polarized currents. They find exact conditions for time-dependent resonant domain-wall movement, which could speed up the motion of domain walls while minimizing Ohmic losses. Movement of domain walls in ferromagnetic nanowires can be achieved by application of external magnetic fields or by passing a spin-polarized current through the nanowire itself. On the other hand, the readout of the domain state is done by measuring the resistance of the wire. Therefore, passing current through the ferromagnetic wire is

  15. Economics of abdominal wall reconstruction.

    PubMed

    Bower, Curtis; Roth, J Scott

    2013-10-01

    The economic aspects of abdominal wall reconstruction are frequently overlooked, although understandings of the financial implications are essential in providing cost-efficient health care. Ventral hernia repairs are frequently performed surgical procedures with significant economic ramifications for employers, insurers, providers, and patients because of the volume of procedures, complication rates, the significant rate of recurrence, and escalating costs. Because biological mesh materials add significant expense to the costs of treating complex abdominal wall hernias, the role of such costly materials needs to be better defined to ensure the most cost-efficient and effective treatments for ventral abdominal wall hernias. PMID:24035086

  16. Wall Insulation; BTS Technology Fact Sheet

    SciTech Connect

    Southface Energy Institute; Tromly, K.

    2000-11-07

    Properly sealed, moisture-protected, and insulated walls help increase comfort, reduce noise, and save on energy costs. This fact sheet addresses these topics plus advanced framing techniques, insulation types, wall sheathings, and steps for effective wall construction and insulation.

  17. Fly on the Wall

    NASA Technical Reports Server (NTRS)

    Mulenburg, Gerald

    2003-01-01

    The email was addressed not only to me, but also to all the Project Knowledge Sharing Community at Ames Research Center. We were invited to sit in on a major project review as a new experiment in knowledge sharing. This first-of-its-kind opportunity had been conceived by Claire Smith, who leads the knowledge sharing program, as well as heading up the Center's Project Leadership Development Program and serving as coordinator of the APPL-West program at Ames. The objective was to offer Ames project practitioners the opportunity to observe project-review processes as they happen. Not that I haven't participated in my share of project reviews, but this seemed like a great way for me to get up-to-date about a new project, the Kepler mission, and to experience a review from a new perspective. Typically, when you're being reviewed, it's difficult to see what's happening objectively-the same way it is on a project. Presenters are always thinking, 'Okay, what's on my slides? How much time do I have left? What are they going to ask me?' So when Claire's email pinged on my computer, I quickly responded by asking her to save a place for me. It was to be an informational review about progress on the project: what the team had done, where they were going, and what they needed to do to get there. There were people on the project team from all over the United States, and it was the first time for them to get together from all aspects of the project. For our part, as observers, we were asked to abide by a couple of rules: Don't ask any questions. and don't talk about the specifics of what we saw or heard. The idea was that we weren't supposed to be noticed. We weren't to buzz around and bother people. Hence the name for this experinient: Fly on the Wall.

  18. My Big Wall

    NASA Technical Reports Server (NTRS)

    Espinosa, Paul S.

    2002-01-01

    It was June and I was in Yosemite National Park in California, 2,000-feet off the ground. I was climbing El Capitan, a majestic 3,000-foot high, mile-wide granite monolith--one of the most sought after and spectacular rock climbs in the world. After three days of climbing on its sheer face, and having completed the most difficult part of the route, my partner and I were heading down. A thunderstorm lasting all night and into the morning had soaked our tiny perch and all our worldly possessions. We began rappelling down the vertical wall by sliding to the ends of two 50meter ropes tied together and looped through a set of fixed rings bolted into the rock. At the end of the ropes was another rappel station consisting of a set of rings, placed by previous climbers for retreating parties, which we used to anchor ourselves to the rock face. We then pulled the ropes down from the rings above, threaded the ones in front of our noses and started down another rope length. Everything we brought up for our five-day climb to the summit we had to bring back down with us: ropes, climbing gear of every sort, sleeping bags, extra clothes, food, water, and other essentials. All this we either stuffed into a haul bag (an oversized reinforced duffel bag) or slung over our shoulders. The retreat was slow and methodical, akin to a train backing down a mountain, giving me ample time to think. My situation made me think about my work, mostly, about all the projects I have managed, or been involved in managing. As a NASA project manager, I have worked on a number of successful projects. I have also been involved in a number of projects I never saw the end of. I thought about all the projects I transferred off of for other opportunities, projects that were in full stride and ran out of funding, and ones put on the shelf because they would not meet a flight date. Oh yes, I have had many success, to be sure, or I would have burned out years ago. Lessons from both the successful and not

  19. Hebes Chasma Wall

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site]

    The THEMIS VIS camera is capable of capturing color images of the Martian surface using five different color filters. In this mode of operation, the spatial resolution and coverage of the image must be reduced to accommodate the additional data volume produced from using multiple filters. To make a color image, three of the five filter images (each in grayscale) are selected. Each is contrast enhanced and then converted to a red, green, or blue intensity image. These three images are then combined to produce a full color, single image. Because the THEMIS color filters don't span the full range of colors seen by the human eye, a color THEMIS image does not represent true color. Also, because each single-filter image is contrast enhanced before inclusion in the three-color image, the apparent color variation of the scene is exaggerated. Nevertheless, the color variation that does appear is representative of some change in color, however subtle, in the actual scene. Note that the long edges of THEMIS color images typically contain color artifacts that do not represent surface variation.

    This false color image of a canyon wall located in Hebes Chasma, was collected during the Southern Fall season. Hebes Chasma is located north of Valles Marineris.

    Image information: VIS instrument. Latitude -1.5, Longitude 284.5 East (75.5 West). 35 meter/pixel resolution.

    Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.

    NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for

  20. Adaptive wall testing sections (AWTS)

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.; Kilgore, Robert A.

    1987-01-01

    The lecture starts with conventional techniques of minimizing wall interference and explains the principle of wall streamlining. The history of AWTS development is highlighted, along with the benefits of wall streamlining, including minimized boundary interference, increased model size, reduced tunnel drive power, noise, and volume, as well as multiple flow field simulations to be performed using one test section. AWTS-associated problems coming from the need to adjust the test-section boundaries for each test condition are assessed, along with the requirements of a boundary-adjustment strategy. Examples of two- and three-dimensional test sections are presented, and attention is focused on residual interference and the effects of compressibility and model lift on flexible-wall contours.

  1. Plant cell walls to ethanol.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Conversion of plant cell walls to ethanol constitutes generation 2 bioethanol production. The process consists of several steps: biomass selection/genetic modification, physiochemical pretreatment, enzymatic saccharification, fermentation, and separation. Ultimately, it is desired to combine as man...

  2. Hall thruster with grooved walls

    SciTech Connect

    Li Hong; Ning Zhongxi; Yu Daren

    2013-02-28

    Axial-oriented and azimuthal-distributed grooves are formed on channel walls of a Hall thruster after the engine undergoes a long-term operation. Existing studies have demonstrated the relation between the grooves and the near-wall physics, such as sheath and electron near-wall transport. The idea to optimize the thruster performance with such grooves was also proposed. Therefore, this paper is devoted to explore the effects of wall grooves on the discharge characteristics of a Hall thruster. With experimental measurements, the variations on electron conductivity, ionization distribution, and integrated performance are obtained. The involved physical mechanisms are then analyzed and discussed. The findings help to not only better understand the working principle of Hall thruster discharge but also establish a physical fundamental for the subsequent optimization with artificial grooves.

  3. Momentum balance in wall jets

    NASA Astrophysics Data System (ADS)

    Johansson, T. Gunnar; Mehdi, Faraz; Naughton, Jonathan W.

    2012-11-01

    A plane wall jet experiment has been done to study its momentum balance. Two component laser Doppler anemometry was used to simultaneously measure the axial and wall-normal velocity components in 6 axial positions (x/H= 25, 50, 75, 100, 125 and 150) spanning from the wall all the way well into the ambient stagnant area. In this way not only the mean velocity components and Reynolds normal and shear stresses but also all their spatial derivatives were determined. In addition the wall shear stress was measured in all six axial positions using oil film interferometry. From these data all terms in the x-momentum equation, except the pressure term, could be evaluated. Later also the pressure was measured in the same profiles, and thereby also the pressure term was included in the balance. Contrary to common belief it was found that the pressure was not constant in the wall jet. The complete momentum balance is discussed and used to evaluate the roles played by the different contributing terms in different regions of the flow field in an effort to improve on our understanding of the mechanics of wall jets.

  4. Innovative Composite Wall System for Sheathing Masonry Walls

    SciTech Connect

    Wendt, Robert L.; Cavallo, James

    1997-09-25

    Existing Housing - Much of the older multifamily housing stock in the United States includes units in structures with uninsulated masonry walls. Included in this stock are two- and three-story walk-up apartments, larger apartment complexes, and public housing (both high- rise and townhouse). This older multifamily housing has seen years of heavy use that may have left the plaster wall marred or damaged. Long- term building settlement or movement may have cracked the plaster, sometimes severely. Moisture from invented kitchens and baths may have caused condensation on uninsulated exterior walls. At best this condensation has left stains on the paint or wallpaper. At worst it has supported mold and mildew growth, fouling the air and creating unhealthy living conditions. Deteriorating plaster and flaking paint also result from wet walls. The presence of flaking, lead-based paint in older (pre-1978) housing is a major public health concern. Children can suffer permanent mental handicaps and psychological disorders if they are subjected to elevated levels of lead, while adults can suffer hypertension and other maladies. Studies have found that, in some urban communities with older housing stocks, over 35% of children tested have elevated blood lead levels (Hastings, et al.: 1997). Nationally, nearly 22% of black, non-hispanic children living in pre-1946 housing were found to have elevated levels of lead in their blood (MWWR Article: February 21,1997). The deterioration of many of these walls is to the point that lead can freely enter the living space.

  5. WALLS WALLS WALLS WALLS THAT WORK, NEW WALL SYSTEMS FREE THE ADMINISTRATOR TO PLAN INTERIOR SPACES IN WHICH EDUCATIONAL NEEDS ARE PRIMARY.

    ERIC Educational Resources Information Center

    LEGGET, STANTON; QUALLS, GEORGE

    BECAUSE OF CHANGING ENROLLMENTS AND TEACHING PRACTICES, MODERN SCHOOLS NEED THE FLEXIBILITY THAT CAN BE PROVIDED BY MOVABLE OR EASILY DEMOUNTABLE WALLS. USED AS TEACHING AIDS, SPACE DIVIDERS, SPACE CHANGERS, AND DISPLAY PANELS, THESE WALLS ARE USUALLY MOST EFFECTIVE WHEN USED IN LARGE SPACES SUCH AS AUDITORIUMS, GYMNASIUMS, LIBRARIES, OR…

  6. Wall thickness effect on the resistive wall mode stability in toroidal plasmas

    SciTech Connect

    Zheng, L.-J.; Kotschenreuther, M.T.

    2005-07-15

    The effect of finite wall thickness on the stability of n=1 resistive wall modes in toroidal plasmas is investigated. A fusion reactor-relevant configuration is examined. The investigation employs a novel ideal-magnetohydrodynamics adaptive shooting code for axisymmetric plasmas, extended to take into account the wall thickness. Although finite wall thickness generally reduces the growth rate of the resistive wall modes, no contribution to stabilization is found to be made by the portion of the wall that is located beyond the critical position for perfectly conducting wall stabilization. Thus, when the inner side of the wall lies near the critical wall position, the scaling of the growth rate versus wall thickness in the realistic thick-wall calculation is significantly different from that of the usual thin-wall theory. The thin-wall estimate is relevant only when the wall is brought very close to the plasma and is not too thick.

  7. Functional domain walls in multiferroics

    NASA Astrophysics Data System (ADS)

    Meier, Dennis

    2015-11-01

    During the last decade a wide variety of novel and fascinating correlation phenomena has been discovered at domain walls in multiferroic bulk systems, ranging from unusual electronic conductance to inseparably entangled spin and charge degrees of freedom. The domain walls represent quasi-2D functional objects that can be induced, positioned, and erased on demand, bearing considerable technological potential for future nanoelectronics. Most of the challenges that remain to be solved before turning related device paradigms into reality, however, still fall in the field of fundamental condensed matter physics and materials science. In this topical review seminal experimental findings gained on electric and magnetic domain walls in multiferroic bulk materials are addressed. A special focus is put on the physical properties that emerge at so-called charged domain walls and the added functionality that arises from coexisting magnetic order. The research presented in this review highlights that we are just entering a whole new world of intriguing nanoscale physics that is yet to be explored in all its details. The goal is to draw attention to the persistent challenges and identify future key directions for the research on functional domain walls in multiferroics.

  8. MHD Electrode and wall constructions

    DOEpatents

    Way, Stewart; Lempert, Joseph

    1984-01-01

    Electrode and wall constructions for the walls of a channel transmitting the hot plasma in a magnetohydrodynamic generator. The electrodes and walls are made of a plurality of similar modules which are spaced from one another along the channel. The electrodes can be metallic or ceramic, and each module includes one or more electrodes which are exposed to the plasma and a metallic cooling bar which is spaced from the plasma and which has passages through which a cooling fluid flows to remove heat transmitted from the electrode to the cooling bar. Each electrode module is spaced from and electrically insulated from each adjacent module while interconnected by the cooling fluid which serially flows among selected modules. A wall module includes an electrically insulating ceramic body exposed to the plasma and affixed, preferably by mechanical clips or by brazing, to a metallic cooling bar spaced from the plasma and having cooling fluid passages. Each wall module is, similar to the electrode modules, electrically insulated from the adjacent modules and serially interconnected to other modules by the cooling fluid.

  9. Functional domain walls in multiferroics.

    PubMed

    Meier, Dennis

    2015-11-25

    During the last decade a wide variety of novel and fascinating correlation phenomena has been discovered at domain walls in multiferroic bulk systems, ranging from unusual electronic conductance to inseparably entangled spin and charge degrees of freedom. The domain walls represent quasi-2D functional objects that can be induced, positioned, and erased on demand, bearing considerable technological potential for future nanoelectronics. Most of the challenges that remain to be solved before turning related device paradigms into reality, however, still fall in the field of fundamental condensed matter physics and materials science. In this topical review seminal experimental findings gained on electric and magnetic domain walls in multiferroic bulk materials are addressed. A special focus is put on the physical properties that emerge at so-called charged domain walls and the added functionality that arises from coexisting magnetic order. The research presented in this review highlights that we are just entering a whole new world of intriguing nanoscale physics that is yet to be explored in all its details. The goal is to draw attention to the persistent challenges and identify future key directions for the research on functional domain walls in multiferroics. PMID:26523728

  10. Turbine airfoil with outer wall thickness indicators

    DOEpatents

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  11. Domain walls inside localised orientifolds

    NASA Astrophysics Data System (ADS)

    Blåbäck, J.; van der Woerd, E.; Van Riet, T.; Williams, M.

    2015-12-01

    The equations of motion of toroidal orientifold compactifications with fluxes are in one-to-one correspondence with gauged supergravity if the orientifold (and D-brane) sources are smeared over the compact space. This smeared limit is identical to the approximation that ignores warping. It is therefore relevant to compare quantities obtained from the gauged supergravity with the true 10d solution with localised sources. In this paper we find the correspondence between BPS domain walls in gauged SUGRA and 10D SUGRA with localised sources. Our model is the simplest orientifold with fluxes we are aware of: an O6/D6 compactification on {T}^3/{Z}_2 in massive IIA with H 3-flux. The BPS domain walls correspond to a O6/D6/NS5/D8 bound state. Our analysis reveals that the domain wall energy computed in gauged SUGRA is unaffected by the localisation of the O6/D6 sources.

  12. Random vibration of compliant wall

    NASA Technical Reports Server (NTRS)

    Yang, J.-N.; Heller, R. A.

    1976-01-01

    The paper is concerned with the realistic case of two-dimensional random motion of a membrane with bending stiffness supported on a viscoelastic spring substrate and on an elastic base plate under both subsonic and supersonic boundary layer turbulence. The cross-power spectral density of surface displacements is solved in terms of design variables of the compliant wall - such as the dimensions and material properties of the membrane (Mylar), substrate (PVC foam), and panel (aluminum) - so that a sensitivity analysis can be made to examine the influence of each design variable on the surface response statistics. Three numerical examples typical of compliant wall design are worked out and their response statistics in relation to wave drag and roughness drag are assessed. The results can serve as a guideline for experimental investigation of the drag reduction concept through the use of a compliant wall.

  13. Thermal breaking systems for metal stud walls -- Can metal stud walls perform as well as wood stud walls

    SciTech Connect

    Kosny, J.; Christian, J.E.; Desjarlais, A.O.

    1997-12-31

    Metal stud wall systems for residential buildings are gaining in popularity. Strong thermal bridges caused by highly conductive metal studs degrade the thermal performance of such walls. Several wall configurations have been developed to improve their thermal performance. The authors tried to evaluate some of these wall systems. The thermal performance of metal stud walls is frequently compared with that of wood stud walls. A reduction of the in-cavity R-value caused by the wood studs is about 10% in wood stud walls. In metal stud walls, thermal bridges generated by the metal components reduce their thermal performance by up to 55%. Today, metal stud walls are believed to be considerably less thermally effective than similar systems made of wood because steel has much higher thermal conductivity than wood. Relatively high R-values may be achieved by installing insulating sheathing, which is now widely recommended as the remedy for weak thermal performance of metal stud walls. A series of promising metal stud wall configurations was analyzed. Some of these walls were designed and tested by the authors, some were tested in other laboratories, and some were developed and forgotten a long time ago. Several types of thermal breaking systems were used in these walls. Two- and three-dimensional finite-difference computer simulations were used to analyze 20 metal stud wall configurations. Also, a series of hot-box tests were conducted on several of these walls. Test results for 22 additional metal stud walls were analyzed. Most of these walls contained conventional metal studs. Commonly used fiberglass and EPS were used as insulation materials. The most promising metal stud wall configurations have reductions in the center-of-cavity R-values of less than 20%.

  14. Program Planning Procedures Wall Chart.

    ERIC Educational Resources Information Center

    California State Dept. of Education, Sacramento. Right to Read Unit.

    These ten program planning procedure wall charts include: "Right to Read Center Data," for identifying school, grade, enrollment by grade, size of community, ethnic balance, percentage on aid for Dependent Children, and transiency rate; "Needs Assessment Summary," for information on student performance, reading program, teacher performance,…

  15. Wary Eyes Monitoring Wall Street

    ERIC Educational Resources Information Center

    Jacobson, Linda

    2008-01-01

    School business officials kept a close watch on the financial markets this week--and on district investment portfolios and teacher-retirement funds--as stock prices gyrated and once-sound institutions got government bailouts or crumbled into bankruptcy. While financial observers said it was too soon to predict how Wall Street's upheaval might…

  16. Mirror, Mirror, on the Wall.

    ERIC Educational Resources Information Center

    Flowers, Jim; Rose, M. Annette

    1998-01-01

    Students use tables of anthropometric data, their own measurements, underlying principles of physics, and math to solve a problem. The problem is to determine the height of a wall mirror, and where to mount it, so that 90% of the clientele can view their entire length without stretching or bending. (Author)

  17. Steel-framed buildings: Impacts of wall detail configurations on the whole wall thermal performance

    SciTech Connect

    Kosny, J.; Desjarlais, A.O.; Christian, J.E.

    1998-06-01

    The main objective of this paper is the influence of architectural wall details on the whole wall thermal performance. Whole wall thermal performance analysis was performed for six light gage steel-framed wall systems (some with wood components). For each wall system, all wall details were simulated using calibrated 3-D finite difference computer modeling. The thermal performance of the six steel-framed wall systems included various system details and the whole wall system thermal performance for a typical single-story ranch house. Currently, predicted heat losses through building walls are typically based on measurements of the wall system clear wall area using test methods such as ASTM C 236 or are calculated by one of the procedures recommended in the ASHRAE Handbook of Fundamentals that often is carried out for the clear wall area exclusively. In this paper, clear wall area is defined as the part of the wall system that is free of thermal anomalies due to building envelope details or thermally unaffected by intersections with other surfaces of the building envelope. Clear wall experiments or calculations normally do not include the effects of building envelope details such as corners, window and door openings, and structural intersections with roofs, floors, ceilings, and other walls. In steel-framed wall systems, these details typically consist of much more structural components than the clear wall. For this situation, the thermal properties measured or calculated for the clear wall area do not adequately represent the total wall system thermal performance. Factors that would impact the ability of today`s standard practice to accurately predict the total wall system thermal performance are the accuracy of the calculation methods, the area of the total wall that is clear wall, and the quantity and thermal performance of the various wall system details.

  18. Catalysts of plant cell wall loosening

    PubMed Central

    Cosgrove, Daniel J.

    2016-01-01

    The growing cell wall in plants has conflicting requirements to be strong enough to withstand the high tensile forces generated by cell turgor pressure while selectively yielding to those forces to induce wall stress relaxation, leading to water uptake and polymer movements underlying cell wall expansion. In this article, I review emerging concepts of plant primary cell wall structure, the nature of wall extensibility and the action of expansins, family-9 and -12 endoglucanases, family-16 xyloglucan endotransglycosylase/hydrolase (XTH), and pectin methylesterases, and offer a critical assessment of their wall-loosening activity PMID:26918182

  19. A theory for turbulent curved wall jets

    NASA Technical Reports Server (NTRS)

    Roberts, Leonard

    1986-01-01

    A simple theoretical model is proposed to describe the flow of a turbulent wall jet along a curved surface into a quiescent atmosphere. An integral method is used to solve the momentum equation and identifies three contributions to the spreading rate of the wall jet: (1) turbulent diffusion in the wall jet; (2) wall curvature; and (3) rate of change of wall curvature. Closed from approximate solutions are found for the case of a plane wall, a circular cylinder, and a logarithmic spiral surface. Comparison with experimental data for these three cases is made showing good agreement.

  20. Painful Chest Wall Swellings: Tietze Syndrome or Chest Wall Tumor?

    PubMed

    Kaplan, Tevfik; Gunal, Nesimi; Gulbahar, Gultekin; Kocer, Bulent; Han, Serdar; Eryazgan, Mehmet Ali; Ozsoy, Arzu; Naldoken, Seniha; Alhan, Aslıhan; Sakinci, Unal

    2016-04-01

    Background Tietze syndrome (TS) is an inflammatory condition characterized by chest pain and swelling of costochondral junction. Primary chest wall tumors may mimic TS. In this article, we report our experience of approximately 121 patients initially diagnosed as TS and determined chest wall tumor in some cases at the follow-up. Methods This is a retrospective review of patients diagnosed as TS by clinical examination, chest X-ray, electrocardiogram, routine laboratory tests, and computed tomography (CT) of chest: all treated and followed up between March 2001 and July 2012. There were 121 cases (41 males and 80 females; mean age, 39.6 ± 3.2 years) of TS. Results In 27 patients with initial normal radiological findings, the size of swellings had doubled during the follow-up period (mean, 8.51 ± 2.15 months). These patients were reevaluated with chest CT and bone scintigraphy and then early diagnostic biopsy was performed. Pathologic examination revealed primary chest wall tumor in 13 patients (5 malignant, 8 benign). CT had a sensitivity of 92.3% and a specificity of 64.2% in detection of tumors (kappa: 0.56, p = 0.002), whereas the sensitivity and the specificity of bone scan were 84.6 and 35.7%, respectively (kappa: 0.199, p = 0.385). Conclusion Primary chest wall tumors could mimic TS. Bone scintigraphy or CT is not specific enough to determine malignant and other benign disorders of costochondral junction. Therefore, clinicians should follow TS patients more closely, and in case of increasing size of swelling, early diagnostic biopsy should be considered. PMID:25742551

  1. Wall conditioning of JET with the ITER-Like Wall

    NASA Astrophysics Data System (ADS)

    Douai, D.; Brezinsek, S.; Esser, H. G.; Joffrin, E.; Keenan, T.; Knipe, S.; Kogut, D.; Lomas, P. J.; Marsen, S.; Nunes, I.; Philipps, V.; Pitts, R. A.; Shimada, M.; de Vries, P.; JET EFDA Contributors

    2013-07-01

    The initial conditioning cycle of JET ILW is analysed and compared with restart and operation in 2008 with a carbon dominated wall. Comparable water and oxygen decay times are observed during bake-out in both cases. Despite a 2 × 10-3 mbar l/s leak rate during plasma operation, no further wall conditioning has been necessary after plasma restart in ILW, which dramatically contrasts with 2008. Plasma O content is lower with the ILW. Higher O levels are measured after nights or week-ends, BeO layers being formed and re-eroded, but do not impact plasma operation and performance. First results on isotopic wall changeover by GDC on the ILW six months of the first D2 campaign evidence a reservoir of about 3 × 1022 atoms, i.e. ten time lower than in carbon PFCs. A study in JET of the glow discharge current distribution for different ratios of the ionization mean free paths to the vessel dimensions seems to indicate sufficient toroidal and poloidal homogeneity in ITER.

  2. Direct calculation of wall interferences and wall adaptation for two-dimensional flow in wind tunnels with closed walls

    NASA Technical Reports Server (NTRS)

    Amecke, Juergen

    1986-01-01

    A method for the direct calculation of the wall induced interference velocity in two dimensional flow based on Cauchy's integral formula was derived. This one-step method allows the calculation of the residual corrections and the required wall adaptation for interference-free flow starting from the wall pressure distribution without any model representation. Demonstrated applications are given.

  3. A Near-Wall Reynolds-Stress Closure Without Wall Normals

    NASA Technical Reports Server (NTRS)

    Yuan, S. P.; So, R. M. C.

    1997-01-01

    Turbulent wall-bounded complex flows are commonly encountered in engineering practice and are of considerable interest in a variety of industrial applications. The presence of a wall significantly affects turbulence characteristics. In addition to the wall effects, turbulent wall-bounded flows become more complicated by the presence of additional body forces (e.g. centrifugal force and Coriolis force) and complex geometry. Most near-wall Reynolds stress models are developed from a high-Reynolds-number model which assumes turbulence is homogenous (or quasi-homogenous). Near-wall modifications are proposed to include wall effects in near-wall regions. In this process, wall normals are introduced. Good predictions could be obtained by Reynolds stress models with wall normals. However, ambiguity arises when the models are applied in flows with multiple walls. Many models have been proposed to model turbulent flows. Among them, Reynolds stress models, in which turbulent stresses are obtained by solving the Reynolds stress transport equations, have been proved to be the most successful ones. To apply the Reynolds stress models to wall-bounded flows, near-wall corrections accounting for the wall effects are needed, and the resulting models are called near-wall Reynolds stress models. In most of the existing near-wall models, the near-wall corrections invoke wall normals. These wall-dependent near-wall models are difficult to implement for turbulent flows with complex geometry and may give inaccurate predictions due to the ambiguity of wall normals at corners connecting multiple walls. The objective of this study is to develop a more general and flexible near-wall Reynolds stress model without using any wall-dependent variable for wall-bounded turbulent flows. With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on Speziale et al.'s high-Reynolds-stress model with wall

  4. Walled-off pancreatic necrosis.

    PubMed

    Ramia, J M; de la Plaza, R; Quiñones-Sampedro, J E; Ramiro, C; Veguillas, P; García-Parreño, J

    2012-05-01

    Acute severe pancreatitits may be complicated by the development of 'walled-off pancreatic necrosis' (WOPN), which is characterised by a mixture of solid components and fluids on imaging studies as a consequence of organised pancreatic tissue necrosis. We present here an overview of the definition, clinical features, and diagnostic and therapeutic management of this clinical condition, which is mostly based on consensus as adequate clinical trials are lacking. PMID:22641624

  5. Through the wall solar cooker

    SciTech Connect

    Kerr, B.P.

    1987-04-07

    This patent describes a solar appliance for extending from the interior of a kitchen through an exterior wall of the building and beyond a predetermined distance in a cantilever manner to receive and concentrate in the appliance outside of the building, solar radiation rays for cooking purposes comprising: a housing, the housing being mounted to extend from a kitchen through an external wall of a building and beyond in a cantilever manner and forming a closed oven, the oven comprising a bottom, glass top, a pair of sides and a first end positioned with access from within the kitchen and comprising an oven door, a first reflective panel member mounted above, juxtapositioned to one edge of the glass top for positioning against the outer surface of the external wall and extending laterally therefrom for receiving and directing solar rays impinging thereon through the glass top and into the oven, and a second double-sided reflective panel mounted above and juxtapositioned to the glass top and extending substantially perpendicular to the first reflective panel for receiving solar rays impinging on either side thereof, and directing the solar rays into the oven.

  6. Tube wall thickness measurement apparatus

    DOEpatents

    Lagasse, Paul R.

    1987-01-01

    An apparatus for measuring the thickness of a tube's wall for the tube's entire length and circumference by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

  7. Tube wall thickness measurement apparatus

    DOEpatents

    Lagasse, P.R.

    1985-06-21

    An apparatus for measuring the thickness of a tube's wall for the tube's entire length and radius by determining the deviation of the tube wall thickness from the known thickness of a selected standard item. The apparatus comprises a base and a first support member having first and second ends. The first end is connected to the base and the second end is connected to a spherical element. A second support member is connected to the base and spaced apart from the first support member. A positioning element is connected to and movable relative to the second support member. An indicator is connected to the positioning element and is movable to a location proximate the spherical element. The indicator includes a contact ball for first contacting the selected standard item and holding it against the spherical element. The contact ball then contacts the tube when the tube is disposed about the spherical element. The indicator includes a dial having a rotatable needle for indicating the deviation of the tube wall thickness from the thickness of the selected standard item.

  8. How do plant cell walls extend?

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1993-01-01

    This article briefly summarizes recent work that identifies the biophysical and biochemical processes that give rise to the extension of plant cell walls. I begin with the biophysical notion of stress relaxation of the wall and follow with recent studies of wall enzymes thought to catalyze wall extension and relaxation. Readers should refer to detailed reviews for more comprehensive discussion of earlier literature (Taiz, 1984; Carpita and Gibeaut, 1993; Cosgrove, 1993).

  9. Unique aspects of the grass cell wall

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Grasses are amongst the most important crops worldwide, and the composition of their cell walls is critical for uses as food, feed, and energy crops. Grass cell walls differ dramatically from dicot cell walls in terms of the major structural polysaccharides present, how those polysaccharides are lin...

  10. Behind-the-wall target identification (BWTI)

    NASA Astrophysics Data System (ADS)

    Yoon, Yeo-Sun; Amin, Moeness G.

    2009-05-01

    Through-the-wall radar imaging is of value in several civilian and defense applications. One of the challenges in through-the-wall radar imaging is the strong wall reflections which tend to persist over a long duration of time. In order to image weak and close by targets behind walls, the wall reflections should be suppressed, or at least be significantly alleviated. In this paper, we apply spatial filters across the antenna array to remove the spatial zero-frequency and low-frequency components which correspond to wall reflections. The application of spatial filters recognizes the fact that the wall EM responses do not significantly differ when viewed by the different antennas along the axis of a real or synthesized array aperture which is parallel to the wall. The proposed approach is tested with experimental data using solid wall, multi-layered wall, and cinder block wall. It is shown that the wall reflections can be effectively reduced by spatial preprocessing prior to beamforming, producing similar imaging results to those achieved when a background scene without the target is available.

  11. Neutron Probe of Building-Wall Composition

    NASA Technical Reports Server (NTRS)

    Trombka, J. I.; Evans, L. G.

    1984-01-01

    Walls of historic buildings charted by neutron radiography. Neutron source and Gamma-Ray Detector alined with each other yield map of composition of wall. Points spaced for minimal overlap based on mean free path of gamma rays emitted from wall materials. Map indicates nature and extent of changes in building materials so proper treatment is applied.

  12. Making Your Music Word Wall Work

    ERIC Educational Resources Information Center

    Leonhardt, Angela

    2011-01-01

    This article looks at what a word wall is and its use in the music classroom. The author outlines steps for creation of a word wall within the music classroom as well as the importance of such a resource. The author encourages the creation and consistent use of the word wall as leading to the development of stronger musicians and also independent,…

  13. 19. INTERIOR OF UTILITY ROOM SHOWING STUCCO WALL/DRYWALL WALL TRANSITION, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. INTERIOR OF UTILITY ROOM SHOWING STUCCO WALL/DRYWALL WALL TRANSITION, ELECTRICAL JUNCTION BOXES, BUILT-IN WALL CABINETRY, AND ELECTRICAL WALL HEATER. VIEW TO NORTHEAST. - Bishop Creek Hydroelectric System, Plant 4, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA

  14. The cell wall of Fusarium oxysporum.

    PubMed

    Schoffelmeer, E A; Klis, F M; Sietsma, J H; Cornelissen, B J

    1999-01-01

    Sugar analysis of isolated cell walls from three formae speciales of Fusarium oxysporum showed that they contained not only glucose and (N-acetyl)-glucosamine, but also mannose, galactose, and uronic acids, presumably originating from cell wall glycoproteins. Cell wall glycoproteins accounted for 50-60% of the total mass of the wall. X-ray diffraction studies showed the presence of alpha-1, 3-glucan in the alkali-soluble cell wall fraction and of beta-1, 3-glucan and chitin in the alkali-insoluble fraction. Electron microscopy and lectin binding studies indicated that glycoproteins form an external layer covering an inner layer composed of chitin and glucan. PMID:10441453

  15. Asymmetric counter propagation of domain walls

    NASA Astrophysics Data System (ADS)

    Andrade-Silva, I.; Clerc, M. G.; Odent, V.

    2016-07-01

    Far from equilibrium systems show different states and domain walls between them. These walls, depending on the type of connected equilibria, exhibit a rich spatiotemporal dynamics. Here, we investigate the asymmetrical counter propagation of domain walls in an in-plane-switching cell filled with a nematic liquid crystal. Experimentally, we characterize the shape and speed of the domain walls. Based on the molecular orientation, we infer that the counter propagative walls have different elastic deformations. These deformations are responsible of the asymmetric counter propagating fronts. Theoretically, based on symmetry arguments, we propose a simple bistable model under the influence of a nonlinear gradient, which qualitatively describes the observed dynamics.

  16. Experimental investigation of wall shock cancellation and reduction of wall interference in transonic testing

    NASA Technical Reports Server (NTRS)

    Ferri, A.; Roffe, G.

    1975-01-01

    A series of experiments were performed to evaluate the effectiveness of a three-dimensional land and groove wall geometry and a variable permeability distribution to reduce the interference produced by the porous walls of a supercritical transonic test section. The three-dimensional wall geometry was found to diffuse the pressure perturbations caused by small local mismatches in wall porosity permitting the use of a relatively coarse wall porosity control to reduce or eliminate wall interference effects. The wall porosity distribution required was found to be a sensitive function of Mach number requiring that the Mach number repeatability characteristics of the test apparatus be quite good. The effectiveness of a variable porosity wall is greatest in the upstream region of the test section where the pressure differences across the wall are largest. An effective variable porosity wall in the down stream region of the test section requires the use of a slightly convergent test section geometry.

  17. POROUS WALL, HOLLOW GLASS MICROSPHERES

    SciTech Connect

    Sexton, W.

    2012-06-30

    Hollow Glass Microspheres (HGM) is not a new technology. All one has to do is go to the internet and Google{trademark} HGM. Anyone can buy HGM and they have a wide variety of uses. HGM are usually between 1 to 100 microns in diameter, although their size can range from 100 nanometers to 5 millimeters in diameter. HGM are used as lightweight filler in composite materials such as syntactic foam and lightweight concrete. In 1968 a patent was issued to W. Beck of the 3M{trademark} Company for 'Glass Bubbles Prepared by Reheating Solid Glass Particles'. In 1983 P. Howell was issued a patent for 'Glass Bubbles of Increased Collapse Strength' and in 1988 H. Marshall was issued a patent for 'Glass Microbubbles'. Now Google{trademark}, Porous Wall, Hollow Glass Microspheres (PW-HGMs), the key words here are Porous Wall. Almost every article has its beginning with the research done at the Savannah River National Laboratory (SRNL). The Savannah River Site (SRS) where SRNL is located has a long and successful history of working with hydrogen and its isotopes for national security, energy, waste management and environmental remediation applications. This includes more than 30 years of experience developing, processing, and implementing special ceramics, including glasses for a variety of Department of Energy (DOE) missions. In the case of glasses, SRS and SRNL have been involved in both the science and engineering of vitreous or glass based systems. As a part of this glass experience and expertise, SRNL has developed a number of niches in the glass arena, one of which is the development of porous glass systems for a variety of applications. These porous glass systems include sol gel glasses, which include both xerogels and aerogels, as well as phase separated glass compositions, that can be subsequently treated to produce another unique type of porosity within the glass forms. The porous glasses can increase the surface area compared to 'normal glasses of a 1 to 2 order of

  18. Mechanism of bubble detachment from vibrating walls

    SciTech Connect

    Kim, Dongjun; Park, Jun Kwon Kang, Kwan Hyoung; Kang, In Seok

    2013-11-15

    We discovered a previously unobserved mechanism by which air bubbles detach from vibrating walls in glasses containing water. Chaotic oscillation and subsequent water jets appeared when a wall vibrated at greater than a critical level. Wave forms were developed at water-air interface of the bubble by the wall vibration, and water jets were formed when sufficiently grown wave-curvatures were collapsing. Droplets were pinched off from the tip of jets and fell to the surface of the glass. When the solid-air interface at the bubble-wall attachment point was completely covered with water, the bubble detached from the wall. The water jets were mainly generated by subharmonic waves and were generated most vigorously when the wall vibrated at the volume resonant frequency of the bubble. Bubbles of specific size can be removed by adjusting the frequency of the wall's vibration.

  19. Wall conditioning in JT-60

    NASA Astrophysics Data System (ADS)

    Arai, T.; Yamamoto, M.; Akino, N.; Kodama, K.; Nakamura, H.; Niikura, S.; Takatsu, H.; Shimizu, M.; Ohkubo, M.; Ohta, M.; JT-60 Team

    1987-02-01

    The vacuum vessel of JT-60 has a volume of 160 m 3 and a vacuum side surface of 2750 m 2 containing the surfaces of the first wall and many types of ports. The first wall is made of 20 μm TiC coated molybdenum and Inconel 625, bolted to the inner surface of the vacuum vessel. The vacuum vessel is evacuated with four identical pumping systems with a total pumping speed of 29 m 3/s for hydrogen. The wall conditioning procedure consisted of two wipes with special cloths wetted by freon after hot water and freon jet cleaning, and three bakeouts were carried out before the first plasma production. An ultimate pressure of 7.4 × 10 -7 Pa and an outgassing rate of 6.8 × 10 -10 Pa m 3/s m 2 were obtained. Low current pulse discharge cleaning (TDC) was carried out for two weeks at a vacuum vessel temperature of 200°C. The TDC is performed typically with a plasma current of 30 kA, a pulse duration of 40 ms, a repetition period in the range from 0.3 s to 1.2 s, a hydrogen pressure of 5.0 × 10 -3 Pa, and a toroidal field of 0.45 T. The TDC conditioning for 50 h removed a quantity of water vapor corresponding to approximately 0.3 g. The main residual gases consisting of hydrocarbons, were monitored in addition to hydrogen and carbon monoxide.

  20. Workshop on First Wall Coating

    NASA Astrophysics Data System (ADS)

    Kamada, K.; Fukutomi, M.

    1982-03-01

    Impurity control and first wall design in the JT 60 long pulse Tokamak is discussed. The present state of coating technology in Japan is reviewed with emphasis on fabrication methods and the characterization of thin coated films available by plasma spraying and chemical and physical vapor deposition. Surface preparation, radiation damage, internal stress, crystal structure and bonding are considered as well as the application of silicon carbide, titanium nitride, titanium carbide, titanium boride, and chromium nitride coatings by magnetron sputtering, long plating, electron beam evaporation, and gas absorption and reactive r.f. sputtering.

  1. An improved resistive wall monitor

    SciTech Connect

    Fellenz, Brian; Crisp, Jim

    1998-12-10

    Resistive wall monitors were designed and built for the Fermilab Main Injector project. These devices measure longitudinal beam current from 3 KHz to 4 GHz with a 1 ohm gap impedance. The new design provides a larger aperture and a calibration port to improve the accuracy of single-bunch intensity measurements. Microwave absorber material is used to reduce interference from spurious electromagnetic waves traveling inside the beam pipe. Several types of ferrite materials were evaluated for the absorber. Inexpensive ferrite rods were selected and assembled in an array forming the desired geometry without machining.

  2. Tevatron Resistive Wall Current Monitor

    SciTech Connect

    Crisp, J.; Fellenz, B.; /Fermilab

    2011-01-01

    Resistive Wall Current Monitors (RWCM) were designed and built for the Fermilab Tevatron (Tev) project. These devices measure longitudinal beam current from 3 KHz to 6 GHz with 1.34 ohm gap impedance. There are two RWCM's installed a few feet apart in the Tevatron, upstream RWCM is used for general purpose use, downstream RWCM is dedicated for longitudinal parameters of coalesced beam bunches and bunch intensities. The design provides a calibration or test port for injecting test signals. Microwave absorber material is used to reduce interference from spurious electromagnetic waves traveling inside the beam pipe. This paper will do an overview how the RWCM was designed and its test results.

  3. An improved resistive wall monitor

    SciTech Connect

    Fellenz, B.; Crisp, J.

    1998-12-01

    Resistive wall monitors were designed and built for the Fermilab Main Injector project. These devices measure longitudinal beam current from 3 KHz to 4 GHz with a 1 ohm gap impedance. The new design provides a larger aperture and a calibration port to improve the accuracy of single-bunch intensity measurements. Microwave absorber material is used to reduce interference from spurious electromagnetic waves traveling inside the beam pipe. Several types of ferrite materials were evaluated for the absorber. Inexpensive ferrite rods were selected and assembled in an array forming the desired geometry without machining. {copyright} {ital 1998 American Institute of Physics.}

  4. First Wall and Operational Diagnostics

    SciTech Connect

    Lasnier, C; Allen, S; Boedo, J; Groth, M; Brooks, N; McLean, A; LaBombard, B; Sharpe, J; Skinner, C; Whyte, D; Rudakov, D; West, W; Wong, C

    2006-06-19

    In this chapter we review numerous diagnostics capable of measurements at or near the first wall, many of which contribute information useful for safe operation of a tokamak. There are sections discussing infrared cameras, visible and VUV cameras, pressure gauges and RGAs, Langmuir probes, thermocouples, and erosion and deposition measurements by insertable probes and quartz microbalance. Also discussed are dust measurements by electrostatic detectors, laser scattering, visible and IR cameras, and manual collection of samples after machine opening. In each case the diagnostic is discussed with a view toward application to a burning plasma machine such as ITER.

  5. Speech About the Great Wall

    NASA Astrophysics Data System (ADS)

    Yang, Chen Ning

    2013-05-01

    Of all the sights that I saw during that trip, the one that provoked the most thought on my part was the Great Wall. The Great Wall defies imagination. It is simple and strong. It winds gracefully up and down. It scales slowly but steadily the distant hill, to disappear down into the valley beyond, only to climb again, inexorably, to surmount the next mountain in its path. As one examines the individual stones with which it was built, one realizes how much sweat and blood there must have been in its complex history. As one looks at the overall structure, at its strength and elegance, its real significance begins to emerge. It is long. It is tenacious. It is flexible in every turn, but is persistent and persisting in the long range development. Its overall unity of purpose is what gives it strength and character. And its overall unity of purpose is what makes it one of the man-made structures on the surface of the earth to become first visible to a visitor approaching our planet from outer space...

  6. Domain wall fermion quenched spectroscopy

    NASA Astrophysics Data System (ADS)

    Malureanu, Catalin Ionut

    We measure y and the hadron spectrum on quenched ensembles using the domain wall fermion formulation. For the first time a 1/mf behavior of y for small valence masses has been observed. Our measurements of y on two different volumes of 83 x 32 and 163 x 32 at β = 5.85 suggest the behavior goes away on large enough volumes. Extensive spectrum calculations were done on 8 3 x 32 lattices at β = 5.7 and 5.85 corresponding roughly to a box size of 1.6 fm and 1.0 fm respectively. We have investigated five values of the extent of the fifth dimension Ls = 10, 16, 24, 32 and 48 with valence masses in the range 0.02 to 0.2 for the β = 5.7 ensemble and two values of Ls = 10 and 16 with valence masses in the range 0.02 to 0.08 for the β = 5.85 ensemble. Our pion remains massive in the infinite Ls extrapolation. This may be a finite volume effect. The nucleon to rho mass ratio stays constant at 1.4(1). Scaling violations for domain wall fermions are smaller roughly by a factor of four compared to the scaling violations in similar calculations done with staggered fermions.

  7. Tube wall temperature monitoring technique

    SciTech Connect

    Granton, R.L.

    1985-07-01

    In 1977, Monsanto and Conoco undertook the construction of a new, modern technology ethylene plant at Chocolate Bayou, near Alvin, Texas. This plant included high severity cracking furnaces with potential tube wall temperatures considerably higher than any we had previously experienced. Furnace on-stream time between decokes, a factor in the economics of plant operation, was limited by tube wall temperature, thus requiring its accurate knowledge. Earlier work with other ethylene furnaces had also demonstrated our lack of knowledge concerning high temperature measurements in a furnace firebox environment. This had to change. An outside consultant was called upon to provide a threeday workshop on radiant tube temperature sensing. The workshop consisted of two days of formal training in the theory and practice of temperature measurement and one day of field training. This workshop was conducted at a site away from the plant. Approximately 20 engineers (manufacturing and technical groups) attended. The major topics covered by this workshop are as follows: radiant tube temperature sensing, radiation situation of radiant tubes, g.a. method: sample calculations, noncontact sensors: methods of specifying and purchasing, thermal imager strategies, calibration of noncontact sensors, avoiding problems with noncontact sensors, optical aids to radiant tube viewing, tube temperature management and its environmental implications, and contact temperature sensors.

  8. SRNL POROUS WALL GLASS MICROSPHERES

    SciTech Connect

    Wicks, G; Leung Heung, L; Ray Schumacher, R

    2008-04-15

    The Savannah River National Laboratory (SRNL) has developed a new medium for storage of hydrogen and other gases. This involves fabrication of thin, Porous Walled, Hollow Glass Microspheres (PW-HGMs), with diameters generally in the range of 1 to several hundred microns. What is unique about the glass microballons is that porosity has been induced and controlled within the thin, one micron thick walls, on the scale of 10 to several thousand Angstroms. This porosity results in interesting properties including the ability to use these channels to fill the microballons with special absorbents and other materials, thus providing a contained environment even for reactive species. Gases can now enter the microspheres and be retained on the absorbents, resulting in solid-state and contained storage of even reactive species. Also, the porosity can be altered and controlled in various ways, and even used to filter mixed gas streams within a system. SRNL is involved in about a half dozen different programs involving these PW-HGMs and an overview of some of these activities and results emerging are presented.

  9. Moss cell walls: structure and biosynthesis

    PubMed Central

    Roberts, Alison W.; Roberts, Eric M.; Haigler, Candace H.

    2012-01-01

    The genome sequence of the moss Physcomitrella patens has stimulated new research examining the cell wall polysaccharides of mosses and the glycosyl transferases that synthesize them as a means to understand fundamental processes of cell wall biosynthesis and plant cell wall evolution. The cell walls of mosses and vascular plants are composed of the same classes of polysaccharides, but with differences in side chain composition and structure. Similarly, the genomes of P. patens and angiosperms encode the same families of cell wall glycosyl transferases, yet, in many cases these families have diversified independently in each lineage. Our understanding of land plant evolution could be enhanced by more complete knowledge of the relationships among glycosyl transferase functional diversification, cell wall structural and biochemical specialization, and the roles of cell walls in plant adaptation. As a foundation for these studies, we review the features of P. patens as an experimental system, analyses of cell wall composition in various moss species, recent studies that elucidate the structure and biosynthesis of cell wall polysaccharides in P. patens, and phylogenetic analysis of P. patens genes potentially involved in cell wall biosynthesis. PMID:22833752

  10. Modifying crops to increase cell wall digestibility.

    PubMed

    Jung, Hans-Joachim G; Samac, Deborah A; Sarath, Gautam

    2012-04-01

    Improving digestibility of roughage cell walls will improve ruminant animal performance and reduce loss of nutrients to the environment. The main digestibility impediment for dicotyledonous plants is highly lignified secondary cell walls, notably in stem secondary xylem, which become almost non-digestible. Digestibility of grasses is slowed severely by lignification of most tissues, but these cell walls remain largely digestible. Cell wall lignification creates an access barrier to potentially digestible wall material by rumen bacteria if cells have not been physically ruptured. Traditional breeding has focused on increasing total dry matter digestibility rather than cell wall digestibility, which has resulted in minimal reductions in cell wall lignification. Brown midrib mutants in some annual grasses exhibit small reductions in lignin concentration and improved cell wall digestibility. Similarly, transgenic approaches down-regulating genes in monolignol synthesis have produced plants with reduced lignin content and improved cell wall digestibility. While major reductions in lignin concentration have been associated with poor plant fitness, smaller reductions in lignin provided measurable improvements in digestibility without significantly impacting agronomic fitness. Additional targets for genetic modification to enhance digestibility and improve roughages for use as biofuel feedstocks are discussed; including manipulating cell wall polysaccharide composition, novel lignin structures, reduced lignin/polysaccharide cross-linking, smaller lignin polymers, enhanced development of non-lignified tissues, and targeting specific cell types. Greater tissue specificity of transgene expression will be needed to maximize benefits while avoiding negative impacts on plant fitness.cauliflower mosiac virus (CaMV) 35S promoter. PMID:22325867

  11. The State of the GeoWall

    NASA Astrophysics Data System (ADS)

    Morin, P. J.; Leigh, J.; van Keken, P.; Johnson, A.

    2003-12-01

    The GeoWall stereo projection technology has been widely adopted within Earth Science. Over 20,000 undergraduate students per year use a GeoWall in classroom and lab settings at over 80 institutions around the world using over 200 GeoWalls. We believe that critical mass for this technology has been reached in the Earth Science. Many collaborations have been initiated. With Iris, GeoWall is exploring new ways to monitor seismic networks in real-time and to visualize extremely large, whole Earth seismic simulations. We are also working with a number of drilling organizations including JOI, DOSECC and LacCore to bring modern visualization technology to core interpretation and drill site selection. Also, over 15 museums now have or are building GeoWalls for informal education. Much of the science that is being performed on the GeoWall is finding its way directly into the classroom and science museum. One of the success stories has been the GeoWall Consortium's interaction with industry. The basic hardware for the GeoWall has been spun off to companies that now sell variations of the hardware. In addition, many software companies including ESRI and Dynamic Graphics have added support for the GeoWall in their products. The future of GeoWall is four fold. Curriculum development will bring more material to all GeoWall users. Assessment of the curriculum and educational psychology will give us GeoWall best practices. In technology development, the GeoWall 2 is a 20+ million pixel, tiled display which brings more resolution to the Earth Sciences than ever. To support research the consortium is developing a volume rendering application to visualize extremely large datasets.

  12. Near wall flow parameters in the blade end-wall corner region

    NASA Technical Reports Server (NTRS)

    Bhargava, R. K.; Raj, R.

    1989-01-01

    The effects of secondary end-wall corner flows on near wall flow parameters in turbomachinary are studied. Important near wall flow parameters such as the wall shear stress vector, the mean wall pressure, the wall pressure fluctuations, and the correlation of the wall pressure fluctuation with the velocity fluctuation in three-dimensional turbulent flows are first experimentally investigated. The blade end-wall corner region is simulated by mounting airfoil section of symmetric blades on both sides of the flat plate with semicircular leading edge. Observed changes in the maximum values of the wall shear stress and its location from the corner line could be associated with the streching and attenuation of the horseshoe vortex. The values of wall pressure fluctuation intensity in the blade end-wall corner region are found to be influenced by the changes of the strength of the horseshoe vortex. The correlation of the wall pressure fluctuation with the velocity fluctuation indicated higher values of correlation coefficient in the inner region as compared to the outer region of the shear layer. The values of wall pressure-velocity correlation coefficient in the blade end-wall corner region also decrease in the streamwise direction while increasing in the presence of favorable and adverse pressure gradients.

  13. Architecture of dermatophyte cell Walls: Electron microscopic and biochemical analysis

    NASA Technical Reports Server (NTRS)

    Nozawa, Y.; Kitajima, Y.

    1984-01-01

    A review with 83 references on the cell wall structure of dermatophytes is presented. Topics discussed include separation and preparation of cell walls; microstructure of cell walls by electron microscopy; chemical composition of cell walls; structural model of cell walls; and morphological structure of cell walls.

  14. Wall Interference Study of the NTF Slotted Tunnel Using Bodies of Revolution Wall Signature Data

    NASA Technical Reports Server (NTRS)

    Iyer, Venkit; Kuhl, David D.; Walker, Eric L.

    2004-01-01

    This paper is a description of the analysis of blockage corrections for bodies of revolution for the slotted-wall configuration of the National Transonic Facility (NTF) at the NASA Langley Research Center (LaRC). A wall correction method based on the measured wall signature is used. Test data from three different-sized blockage bodies and four wall ventilation settings were analyzed at various Mach numbers and unit Reynolds numbers. The results indicate that with the proper selection of the boundary condition parameters, the wall correction method can predict blockage corrections consistent with the wall measurements for Mach numbers as high as 0.95.

  15. Hydrodynamics of ultra-relativistic bubble walls

    NASA Astrophysics Data System (ADS)

    Leitao, Leonardo; Mégevand, Ariel

    2016-04-01

    In cosmological first-order phase transitions, gravitational waves are generated by the collisions of bubble walls and by the bulk motions caused in the fluid. A sizeable signal may result from fast-moving walls. In this work we study the hydrodynamics associated to the fastest propagation modes, namely, ultra-relativistic detonations and runaway solutions. We compute the energy injected by the phase transition into the fluid and the energy which accumulates in the bubble walls. We provide analytic approximations and fits as functions of the net force acting on the wall, which can be readily evaluated for specific models. We also study the back-reaction of hydrodynamics on the wall motion, and we discuss the extrapolation of the friction force away from the ultra-relativistic limit. We use these results to estimate the gravitational wave signal from detonations and runaway walls.

  16. Chest wall resection for extrapulmonary tumor.

    PubMed

    Long, W P; Kline, R; Levine, E A

    1997-09-01

    Despite progress in early detection of breast cancer, a minority of women continue to present with extensive disease which may necessitate chest wall resection. Between 1992 and 1996, 14 patients were treated by surgical resection of the chest wall and reconstruction by the LSU Sections of Surgical Oncology and Plastic Surgery. Indications included resection of primary tumor, resection of recurrent tumor, and resection of radiation therapy induced damage to the chest wall. We report chest wall excision and reconstruction with no operative mortality and minor surgical morbidity in 21% of cases. Local control was achieved in 13 of 14 cases. Additionally we report uniform success in the palliation of ulcerating, painful, or infected chest wall lesions. Approximately 25% of patients treated for breast cancer and followed up for more than 6 months have remained free of disease. Chest wall resection is a useful modality in selected patients with extensive disease. PMID:9316348

  17. Seismic behavior of geogrid reinforced slag wall

    SciTech Connect

    Edincliler, Ayse; Baykal, Gokhan; Saygili, Altug

    2008-07-08

    Flexible retaining structures are known with their high performance under earthquake loads. In geogrid reinforced walls the performance of the fill material and the interface of the fill and geogrid controls the performance. Geosynthetic reinforced walls in seismic regions must be safe against not only static forces but also seismic forces. The objective of this study is to determine the behavior of a geogrid reinforced slag wall during earthquake by using shaking table experiments. This study is composed of three stages. In the first stage the physical properties of the material to be used were determined. In the second part, a case history involving the use of slag from steel industry in the construction of geogrid reinforced wall is presented. In the third stage, the results of shaking table tests conducted using model geogrid wall with slag are given. From the results, it is seen that slag can be used as fill material for geogrid reinforced walls subjected to earthquake loads.

  18. Orbital Fracture: Significance of lateral wall

    PubMed Central

    Alsuhaibani, Adel H.

    2010-01-01

    The lateral orbital wall is the strongest among other orbital walls. However, it is commonly fractured in the setting of severe facial trauma. The fracture usually occurs at the sphenozygomatic suture line. In general, patients with lateral wall fractures are commonly young male who may present with mid facial swelling and some degree of deformity. In some cases, lateral orbital wall fracture may be associated with visual loss or change in mental status due to associated intracranial injury. Imaging studies with computed tomography is important in the proper diagnosis and planning of the surgical intervention. Management of intracranial or eye injuries should be undertaken on emergent basis. Thereafter, significantly displaced lateral wall fractures need to be repaired on timely basis. Proper realignment of the plane of the lateral orbital wall at the sphenozygomatic suture along with the other complex articulations of the zygomatic bone is necessary for proper functional and aesthetic outcome. PMID:23960875

  19. Domain wall dynamics in cylindrical nanomagnet

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Soumik; Singh, Amrita; Ghosh, Arindam

    2011-06-01

    The stochasticity associated with domain wall nucleation and propagation in a cylinderical nanowire has been studied using time resolved resistance measurement in presence of magnetic field. We have shown that the propagation stochasticity of domain wall in a cylindrical nanowire is reflected in the magnetic field dependent velocity distribution whereas the stochasticity involved in the domain wall nucleation can be effectively tuned by varying the angle between the direction of applied magnetic field and the long axis of the cylinder.

  20. Electron-wall Interaction in Hall Thrusters

    SciTech Connect

    Y. Raitses; D. Staack; M. Keidar; N.J. Fisch

    2005-02-11

    Electron-wall interaction effects in Hall thrusters are studied through measurements of the plasma response to variations of the thruster channel width and the discharge voltage. The discharge voltage threshold is shown to separate two thruster regimes. Below this threshold, the electron energy gain is constant in the acceleration region and therefore, secondary electron emission (SEE) from the channel walls is insufficient to enhance electron energy losses at the channel walls. Above this voltage threshold, the maximum electron temperature saturates.

  1. Textural break foundation wall construction modules

    DOEpatents

    Phillips, Steven J.

    1990-01-01

    Below-grade, textural-break foundation wall structures are provided for inhibiting diffusion and advection of liquids and gases into and out from a surrounding hydrogeologic environment. The foundation wall structure includes a foundation wall having an interior and exterior surface and a porous medium disposed around a portion of the exterior surface. The structure further includes a modular barrier disposed around a portion of the porous medium. The modular barrier is substantially removable from the hydrogeologic environment.

  2. Panelized wall system with foam core insulation

    DOEpatents

    Kosny, Jan; Gaskin, Sally

    2009-10-20

    A wall system includes a plurality of wall members, the wall members having a first metal panel, a second metal panel, and an insulating core between the first panel and the second panel. At least one of the first panel and the second panel include ridge portions. The insulating core can be a foam, such as a polyurethane foam. The foam can include at least one opacifier to improve the k-factor of the foam.

  3. First wall for polarized fusion reactors

    DOEpatents

    Greenside, Henry S.; Budny, Robert V.; Post, Jr., Douglass E.

    1988-01-01

    Depolarization mechanisms arising from the recycling of the polarized fuel at the limiter and the first-wall of a fusion reactor are greater than those mechanisms in the plasma. Rapid depolarization of the plasma is prevented by providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec.sup.-1.

  4. Virtual gap dielectric wall accelerator

    SciTech Connect

    Caporaso, George James; Chen, Yu-Jiuan; Nelson, Scott; Sullivan, Jim; Hawkins, Steven A

    2013-11-05

    A virtual, moving accelerating gap is formed along an insulating tube in a dielectric wall accelerator (DWA) by locally controlling the conductivity of the tube. Localized voltage concentration is thus achieved by sequential activation of a variable resistive tube or stalk down the axis of an inductive voltage adder, producing a "virtual" traveling wave along the tube. The tube conductivity can be controlled at a desired location, which can be moved at a desired rate, by light illumination, or by photoconductive switches, or by other means. As a result, an impressed voltage along the tube appears predominantly over a local region, the virtual gap. By making the length of the tube large in comparison to the virtual gap length, the effective gain of the accelerator can be made very large.

  5. Beetle Kill Wall at NREL

    ScienceCinema

    None

    2013-05-29

    When it comes to designing an interior decorative feature for one of the most energy efficient office buildings in the world, very few would consider bringing in a beetle to do the job. But thats what happened at the U.S. Department of Energy's (DOE) Research Support Facility (RSF) located on the National Renewable Energy Laboratory (NREL) campus.In June, the RSF will become home to more than 800 workers from DOE and NREL and building visitors will be greeted with a soaring, two-story high wall entirely covered with wood harvested from the bark beetle infestation that has killed millions of pine trees in the Western U.S. But, the use of beetle kill wood is just one example of the resources being leveraged to make the RSF a model for sustainability and one more step toward NRELs goal to be a net zero energy campus.

  6. Beetle Kill Wall at NREL

    SciTech Connect

    2010-01-01

    When it comes to designing an interior decorative feature for one of the most energy efficient office buildings in the world, very few would consider bringing in a beetle to do the job. But thats what happened at the U.S. Department of Energy's (DOE) Research Support Facility (RSF) located on the National Renewable Energy Laboratory (NREL) campus.In June, the RSF will become home to more than 800 workers from DOE and NREL and building visitors will be greeted with a soaring, two-story high wall entirely covered with wood harvested from the bark beetle infestation that has killed millions of pine trees in the Western U.S. But, the use of beetle kill wood is just one example of the resources being leveraged to make the RSF a model for sustainability and one more step toward NRELs goal to be a net zero energy campus.

  7. Fillability of Thin-Wall Steel Castings

    SciTech Connect

    Robert C. Voigt; Joseph Bertoletti; Andrew Kaley; Sandi Ricotta; Travis Sunday

    2002-07-30

    The use of steel components is being challenged by lighter nonferrous or cast iron components. The development of techniques for enhancing and ensuring the filability of thin-wall mold cavities is most critical for thinner wall cast steel production. The purpose of this research was to develop thin-wall casting techniques that can be used to reliably produce thin-wall castings from traditional gravity poured sand casting processes. The focus of the research was to enhance the filling behavior to prevent misrunds. Experiments were conducted to investigate the influence of various foundry variables on the filling of thin section steel castings. These variables include casting design, heat transfer, gating design, and metal fluidity. Wall thickness and pouring temperature have the greatest effect on casting fill. As wall thickness increases the volume to surface area of the casting increases, which increases the solidification time, allowing the metal to flow further in thicker sect ions. Pouring time is another significant variable affecting casting fill. Increases or decreases of 20% in the pouring time were found to have a significant effect on the filling of thin-wall production castings. Gating variables, including venting, pouring head height, and mold tilting also significantly affected thin-wall casting fill. Filters offer less turbulent, steadier flow, which is appropriate for thicker castings, but they do not enhance thin-wall casting fill.

  8. The formation and evolution of domain walls

    NASA Technical Reports Server (NTRS)

    Press, William H.; Ryden, Barbara S.; Spergel, David N.

    1991-01-01

    Domain walls are sheet-like defects produced when the low energy vacuum has isolated degenerate minima. The researchers' computer code follows the evolution of a scalar field, whose dynamics are determined by its Lagrangian density. The topology of the scalar field determines the evolution of the domain walls. This approach treats both wall dynamics and reconnection. The researchers investigated not only potentials that produce single domain walls, but also potentials that produce a network of walls and strings. These networks arise in axion models where the U(1) Peccei-Quinn symmetry is broken into Z sub N discrete symmetries. If N equals 1, the walls are bounded by strings and the network quickly disappears. For N greater than 1, the network of walls and strings behaved qualitatively just as the wall network shown in the figures given here. This both confirms the researchers' pessimistic view that domain walls cannot play an important role in the formation of large scale structure and implies that axion models with multiple minimum can be cosmologically disastrous.

  9. First wall for polarized fusion reactors

    DOEpatents

    Greenside, H.S.; Budny, R.V.; Post, D.E. Jr.

    1985-01-29

    A first-wall or first-wall coating for use in a fusion reactor having polarized fuel may be formed of a low-Z non-metallic material having slow spin relaxation, i.e., a depolarization rate greater than 1 sec/sup -1/. Materials having these properties include hydrogenated and deuterated amorphous semiconductors. A method for preventing the rapid depolarization of a polarized plasma in a fusion device may comprise the step of providing a first-wall or first-wall coating formed of a low-Z, non-metallic material having a depolarization rate greater than 1 sec/sup -1/.

  10. Confinement and localization on domain walls

    NASA Astrophysics Data System (ADS)

    Auzzi, R.; Bolognesi, S.; Shifman, M.; Yung, A.

    2009-02-01

    We continue the studies of localization of the U(1) gauge fields on domain walls. Depending on dynamics of the bulk theory the gauge field localized on the domain wall can be either in the Coulomb phase or squeezed into flux tubes implying (Abelian) confinement of probe charges on the wall along the wall surface. First, we consider a simple toy model with one flavor in the bulk at weak coupling (a minimal model) realizing the latter scenario. We then suggest a model presenting an extension of the Seiberg-Witten theory which is at strong coupling, but all theoretical constructions are under full control if we base our analysis on a dual effective action. Finally, we compare our findings with the wall in a “nonminimal” theory with two distinct quark flavors that had been studied previously. In this case the U(1) gauge field trapped on the wall is exactly massless because it is the Goldstone boson of a U(1) symmetry in the bulk spontaneously broken on the wall. The theory on the wall is in the Coulomb phase. We explain why the mechanism of confinement discussed in the first part of the paper does not work in this case, and strings are not formed on the walls.

  11. Molecular regulation of plant cell wall extensibility

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1998-01-01

    Gravity responses in plants often involve spatial and temporal changes in cell growth, which is regulated primarily by controlling the ability of the cell wall to extend. The wall is thought to be a cellulose-hemicellulose network embedded in a hydrated matrix of complex polysaccharides and a small amount of structural protein. The wall extends by a form of polymer creep, which is mediated by expansins, a novel group of wall-loosening proteins. Expansins were discovered during a molecular dissection of the "acid growth" behavior of cell walls. Expansin alters the rheology of plant walls in profound ways, yet its molecular mechanism of action is still uncertain. It lacks detectable hydrolytic activity against the major components of the wall, but it is able to disrupt noncovalent adhesion between wall polysaccharides. The discovery of a second family of expansins (beta-expansins) sheds light on the biological role of a major group of pollen allergens and implies that expansins have evolved for diverse developmental functions. Finally, the contribution of other processes to wall extensibility is briefly summarized.

  12. Walls and chains of planar Skyrmions

    SciTech Connect

    Harland, Derek; Ward, R. S.

    2008-02-15

    In planar (baby) Skyrme systems, there may be extended linear structures which resemble either domain walls or chains of skyrmions, depending on the choice of potential and boundary conditions. We show that systems with a single vacuum, for example, with potential V=1-{phi}{sub 3}, admit chain solutions, whereas walls are ruled out by the uniqueness of the vacuum. On the other hand, in double-vacuum systems such as V=(1/2)(1-{phi}{sub 3}{sup 2}), one has stable wall solutions, but there are no stable chains; the walls may be viewed as the primary objects in such systems, with skyrmions being made out of them.

  13. A Near-Wall Reynolds-Stress Closure without Wall Normals

    NASA Technical Reports Server (NTRS)

    Yuan, S. P.; So, R. M. C.

    1997-01-01

    With the aid of near-wall asymptotic analysis and results of direct numerical simulation, a new near-wall Reynolds stress model (NNWRS) is formulated based on the SSG high-Reynolds-stress model with wall-independent near-wall corrections. Only one damping function is used for flows with a wide range of Reynolds numbers to ensure that the near-wall modifications diminish away from the walls. The model is able to reproduce complicated flow phenomena induced by complex geometry, such as flow recirculation, reattachment and boundary-layer redevelopment in backward-facing step flow and secondary flow in three-dimensional square duct flow. In simple flows, including fully developed channel/pipe flow, Couette flow and boundary-layer flow, the wall effects are dominant, and the NNWRS model predicts less degree of turbulent anisotropy in the near-wall region compared with a wall-dependent near-wall Reynolds Stress model (NWRS) developed by So and colleagues. The comparison of the predictions given by the two models rectifies the misconception that the overshooting of skin friction coefficient in backward-facing step flow prevalent in those near-wall, models with wall normal is caused by he use of wall normal.

  14. Electromagnetic approaches to wall characterization, wall mitigation, and antenna design for through-the-wall radar systems

    NASA Astrophysics Data System (ADS)

    Thajudeen, Christopher

    Through-the-wall imaging (TWI) is a topic of current interest due to its wide range of public safety, law enforcement, and defense applications. Among the various available technologies such as, acoustic, thermal, and optical imaging, which can be employed to sense and image targets of interest, electromagnetic (EM) imaging, in the microwave frequency bands, is the most widely utilized technology and has been at the forefront of research in recent years. The primary objectives for any Through-the-Wall Radar Imaging (TWRI) system are to obtain a layout of the building and/or inner rooms, detect if there are targets of interest including humans or weapons, determine if there are countermeasures being employed to further obscure the contents of a building or room of interest, and finally to classify the detected targets. Unlike conventional radar scenarios, the presence of walls, made of common construction materials such as brick, drywall, plywood, cinder block, and solid concrete, adversely affects the ability of any conventional imaging technique to properly image targets enclosed within building structures as the propagation through the wall can induce shadowing effects on targets of interest which may result in image degradation, errors in target localization, and even complete target masking. For many applications of TWR systems, the wall ringing signals are strong enough to mask the returns from targets not located a sufficient distance behind the wall, beyond the distance of the wall ringing, and thus without proper wall mitigation, target detection becomes extremely difficult. The results presented in this thesis focus on the development of wall parameter estimation, and intra-wall and wall-type characterization techniques for use in both the time and frequency domains as well as analysis of these techniques under various real world scenarios such as reduced system bandwidth scenarios, various wall backing scenarios, the case of inhomogeneous walls, presence

  15. Corrections to the thin wall approximation in general relativity

    NASA Technical Reports Server (NTRS)

    Garfinkle, David; Gregory, Ruth

    1989-01-01

    The question is considered whether the thin wall formalism of Israel applies to the gravitating domain walls of a lambda phi(exp 4) theory. The coupled Einstein-scalar equations that describe the thick gravitating wall are expanded in powers of the thickness of the wall. The solutions of the zeroth order equations reproduce the results of the usual Israel thin wall approximation for domain walls. The solutions of the first order equations provide corrections to the expressions for the stress-energy of the wall and to the Israel thin wall equations. The modified thin wall equations are then used to treat the motion of spherical and planar domain walls.

  16. 5. 'Stones for Wing Walls, Tunnel Walls, BeltCourse and Coping,' ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. 'Stones for Wing Walls, Tunnel Walls, Belt-Course and Coping,' Southern Pacific Standard Plan Tunnels, ca. 1909. - Central Pacific Transcontinental Railroad, Sacramento to Nevada state line, Sacramento, Sacramento County, CA

  17. External Insulation of Masonry Walls and Wood Framed Walls

    SciTech Connect

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  18. External Insulation of Masonry Walls and Wood Framed Walls

    SciTech Connect

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1” to 1 ½”), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  19. When walls are no longer barriers: perception of wall height in parkour.

    PubMed

    Taylor, J Eric T; Witt, Jessica K; Sugovic, Mila

    2011-01-01

    Through training, skilled parkour athletes (traceurs) overcome everyday obstacles, such as walls, that are typically insurmountable. Traceurs and untrained novices estimated the height of walls and reported their anticipated ability to climb the wall. The traceurs perceived the walls as shorter than did novices. This result suggests that perception is scaled by the perceiver's anticipated ability to act, and is consistent with the action-specific account of perception. PMID:21936305

  20. Revisiting the Ladder on a Wall Problem

    ERIC Educational Resources Information Center

    Salu, Yehuda

    2011-01-01

    The problem of a ladder leaning on a wall has been a staple of introductory physics for years. It is discussed in numerous physics textbooks and in journals. Now, it even has an Internet presence. Postings from students seek help for "ladder on a wall" problems. A quick review of those postings would show that they all deal with frictionless…

  1. Life Behind the Wall: Palestinian Students Online

    ERIC Educational Resources Information Center

    Hart, Doug

    2007-01-01

    In this article, the author discusses an online youth magazine that his Palestinian students developed. In April of 2006, they launched the inaugural edition of their teen e-zine, "Behind the Wall." With the help of his brother-in-law, students, along with a computer programmer, the "Behind the Wall" website was constructed. The intent of "Behind…

  2. Safranine fluorescent staining of wood cell walls.

    PubMed

    Bond, J; Donaldson, L; Hill, S; Hitchcock, K

    2008-06-01

    Safranine is an azo dye commonly used for plant microscopy, especially as a stain for lignified tissues such as xylem. Safranine fluorescently labels the wood cell wall, producing green/yellow fluorescence in the secondary cell wall and red/orange fluorescence in the middle lamella (ML) region. We examined the fluorescence behavior of safranine under blue light excitation using a variety of wood- and fiber-based samples of known composition to interpret the observed color differentiation of different cell wall types. We also examined the basis for the differences in fluorescence emission using spectral confocal microscopy to examine lignin-rich and cellulose-rich cell walls including reaction wood and decayed wood compared to normal wood. Our results indicate that lignin-rich cell walls, such as the ML of tracheids, the secondary wall of compression wood tracheids, and wood decayed by brown rot, tend to fluoresce red or orange, while cellulose-rich cell walls such as resin canals, wood decayed by white rot, cotton fibers and the G-layer of tension wood fibers, tend to fluoresce green/yellow. This variation in fluorescence emission seems to be due to factors including an emission shift toward red wavelengths combined with dye quenching at shorter wavelengths in regions with high lignin content. Safranine fluorescence provides a useful way to differentiate lignin-rich and cellulose-rich cell walls without counterstaining as required for bright field microscopy. PMID:18802812

  3. Revisiting the Ladder on a Wall Problem

    NASA Astrophysics Data System (ADS)

    Salu, Yehuda

    2011-05-01

    The problem of a ladder leaning on a wall has been a staple of introductory physics for years. It is discussed in numerous physics textbooks and in journals.1-4 Now, it even has an Internet presence. Postings from students seek help for "ladder on a wall" problems. A quick review of those postings would show that they all deal with frictionless walls. This is also how the situation is presented in most textbooks. One may get the impression that the friction between a ladder and a wall is always negligible, or that dealing with it is so difficult that it should be left out of the realm of introductory physics. The truth of the matter is that the magnitude of the friction coefficient between a ladder and a wall is not much different from that with the floor, and that friction with the wall is an important part of the conditions for having a static ladder. This paper derives a simple relationship between the friction coefficients of the ladder with the floor (μ1) and with the wall (μ2), when the ladder is in static equilibrium. Figure 1 shows the forces that act on a ladder that leans on a wall.

  4. Drag reduction at a plane wall

    NASA Technical Reports Server (NTRS)

    Hill, D. C.

    1993-01-01

    The objective is to determine by analytical means how drag on a plane wall may be modified favorably using a minimal amount of flow information - preferably only information at the wall. What quantities should be measured? How should that information be assimilated in order to arrive at effective control? As a prototypical problem, incompressible, viscous flow, governed by the Navier-Stokes equations, past a plane wall at which the no-slip condition was modified was considered. The streamwise and spanwise velocity components are required to be zero, but the normal component is to be specified according to some control law. The challenge is to choose the wall-normal velocity component based on flow conditions at the wall so that the mean drag is as small as possible. There can be no net mass flux through the wall, and the total available control energy is constrained. A turbulent flow is highly unsteady and has detailed spatial structure. The mean drag on the wall is the integral over the wall of the local shear forces exerted by the fluid, which is then averaged in time; it is a 'macroscopic' property of the flow. It is not obvious how unsteady boundary control is to be applied in order to modify the mean flow most effectively, especially in view of the non- self-adjoint nature of the governing equations. An approximate analytical solution to the suboptimal scheme is pursued.

  5. Ballistic Limit Equation for Single Wall Titanium

    NASA Technical Reports Server (NTRS)

    Ratliff, J. M.; Christiansen, Eric L.; Bryant, C.

    2009-01-01

    Hypervelocity impact tests and hydrocode simulations were used to determine the ballistic limit equation (BLE) for perforation of a titanium wall, as a function of wall thickness. Two titanium alloys were considered, and separate BLEs were derived for each. Tested wall thicknesses ranged from 0.5mm to 2.0mm. The single-wall damage equation of Cour-Palais [ref. 1] was used to analyze the Ti wall's shielding effectiveness. It was concluded that the Cour-Palais single-wall equation produced a non-conservative prediction of the ballistic limit for the Ti shield. The inaccurate prediction was not a particularly surprising result; the Cour-Palais single-wall BLE contains shield material properties as parameters, but it was formulated only from tests of different aluminum alloys. Single-wall Ti shield tests were run (thicknesses of 2.0 mm, 1.5 mm, 1.0 mm, and 0.5 mm) on Ti 15-3-3-3 material custom cut from rod stock. Hypervelocity impact (HVI) tests were used to establish the failure threshold empirically, using the additional constraint that the damage scales with impact energy, as was indicated by hydrocode simulations. The criterion for shield failure was defined as no detached spall from the shield back surface during HVI. Based on the test results, which confirmed an approximately energy-dependent shield effectiveness, the Cour-Palais equation was modified.

  6. Dzyaloshinskii-Moriya Domain Walls in Nanotubes

    NASA Astrophysics Data System (ADS)

    Tretiakov, Oleg; Goussev, Arseni; Robbins, J. M.; Slastikov, Valeriy

    2015-03-01

    We study domain walls in thin ferromagnetic nanotubes with Dzyaloshinskii-Moriya interaction (DMI). Dramatic effects arise from the interplay of space curvature and spin-orbit induced DMI on the domain wall structure in these systems. The domain walls become narrower in systems with DMI and curvature. Moreover, the domain walls created in such nanotubes can propagate without Walker breakdown for arbitrary applied currents, thus allowing for a robust and controlled domain-wall motion. The domain-wall velocity is directly proportional to the non-adiabatic spin transfer torque current term and is insensitive to the adiabatic current term. Application of an external magnetic field along the nanotube axis triggers rich dynamical response of the curved domain wall. In particular, we show that the propagation velocity is a non-linear function of both the applied field and DMI, and strongly depends on the orientation and chirality of the wall. We acknowledge support by the Grants-in-Aid for Scientific Research (No. 25800184 and No. 25247056) from the MEXT, Japan and SpinNet.

  7. Reduced order modeling of wall turbulence

    NASA Astrophysics Data System (ADS)

    Moin, Parviz

    2015-11-01

    Modeling turbulent flow near a wall is a pacing item in computational fluid dynamics for aerospace applications and geophysical flows. Gradual progress has been made in statistical modeling of near wall turbulence using the Reynolds averaged equations of motion, an area of research where John Lumley has made numerous seminal contributions. More recently, Lumley and co-workers pioneered dynamical systems modeling of near wall turbulence, and demonstrated that the experimentally observed turbulence dynamics can be predicted using low dimensional dynamical systems. The discovery of minimal flow unit provides further evidence that the near wall turbulence is amenable to reduced order modeling. The underlying rationale for potential success in using low dimensional dynamical systems theory is based on the fact that the Reynolds number is low in close proximity to the wall. Presumably for the same reason, low dimensional models are expected to be successful in modeling of the laminar/turbulence transition region. This has been shown recently using dynamic mode decomposition. Furthermore, it is shown that the near wall flow structure and statistics in the late and non-linear transition region is strikingly similar to that in higher Reynolds number fully developed turbulence. In this presentation, I will argue that the accumulated evidence suggests that wall modeling for LES using low dimensional dynamical systems is a profitable avenue to pursue. The main challenge would be the numerical integration of such wall models in LES methodology.

  8. Differential scanning calorimetry of plant cell walls

    SciTech Connect

    Lin, Liangshiou; Varner, J.E. ); Yuen, H.K. )

    1991-03-15

    High-sensitivity differential scanning calorimetry has been used to study the phase transition of cell wall preparations of the elongating and mature regions of soybean hypocotyls and of celery epidermis and collenchyma strands. A step-like transition believed to be glass transition was observed in walls isolated from the elongating region of soybean hypocotyls at 52.9C. Addition of 1 mM CaCl{sub 2} to the cell wall preparation increased the transition temperature to 60.8C and greatly reduced the transition magnitude. In walls from the mature region, the transition was small and occurred at a higher temperature (60.1C). Addition of calcium to the mature region cell wall had little effect on the transition. Based on the known interactions between calcium and pectin, the authors propose that calcium affects the glass transition by binding to the polygalacturonate backbone of wall pectin, resulting in a more rigid wall with a smaller transition at a higher temperature. The mature region either has more calcium in the wall or has more methyl-esterified pectin, making it less responsive to added calcium.

  9. Artificial Climbing Wall Design and Use.

    ERIC Educational Resources Information Center

    Cinnamon, Jerry

    Climbing walls can be designed to satisfy the needs of both untrained and experienced climbers offering these people a place to learn their craft as well as a place for them to keep their skills honed during off seasons. Users of the artificial wall can be classified into special groups, such as "Youth at Risk," who are engaged in challenge/growth…

  10. 14 CFR 121.245 - Fire walls.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Fire walls. 121.245 Section 121.245 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.245 Fire walls. Each...

  11. 14 CFR 121.245 - Fire walls.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Fire walls. 121.245 Section 121.245 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.245 Fire walls. Each...

  12. Risk Assessment of Energy-Efficient Walls

    SciTech Connect

    Pallin, Simon B.; Hun, Diana E.; Jackson, Roderick K.; Kehrer, Manfred

    2014-12-01

    This multi-year project aims to provide the residential construction industry with energy-efficient wall designs that are moisture durable. The present work focused on the initial step of this project, which is to develop a moisture durability protocol that identifies energy efficient wall designs that have a low probability of experiencing moisture problems.

  13. Modifying crops to increase cell wall digestibility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Improving digestibility of roughage cell walls will improve ruminant animal performance and reduce loss of nutrients to the environment. The main digestibility impediment for dicotyledonous plants are highly lignified secondary cell walls, notably in stem secondary xylem, which become almost non-dig...

  14. 14 CFR 121.245 - Fire walls.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Fire walls. 121.245 Section 121.245 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.245 Fire walls. Each...

  15. 14 CFR 121.245 - Fire walls.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Fire walls. 121.245 Section 121.245 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.245 Fire walls. Each...

  16. 14 CFR 121.245 - Fire walls.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Fire walls. 121.245 Section 121.245 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR CARRIERS..., FLAG, AND SUPPLEMENTAL OPERATIONS Special Airworthiness Requirements § 121.245 Fire walls. Each...

  17. Mechanics of the Toxoplasma gondii oocyst wall

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The ability of microorganisms to survive under extreme conditions is closely related to the physicochemical properties of their wall. In the ubiquitous protozoan parasite Toxoplasma gondii, the oocyst stage possesses a bilayered wall that protects the dormant but potentially infective parasites from...

  18. Interactive Word Walls: Transforming Content Vocabulary Instruction

    ERIC Educational Resources Information Center

    Jackson, Julie; Tripp, Sherry; Cox, Kimberly

    2011-01-01

    Word walls are designed to serve as visual scaffolds and are a common classroom tool used to support reading and language arts instruction. To support vocabulary development in science and support students who are ELLs, Husty and Jackson (2008) created interactive word walls that resemble semantic maps (Masters, Mori, and Mori 1993). Semantic maps…

  19. Near-wall serpentine cooled turbine airfoil

    SciTech Connect

    Lee, Ching-Pang

    2014-10-28

    A serpentine coolant flow path is formed by inner walls in a cavity between pressure and suction side walls of a turbine airfoil, the cavity partitioned by one or more transverse partitions into a plurality of continuous serpentine cooling flow streams each having a respective coolant inlet.

  20. Steel shear walls, behavior, modeling and design

    SciTech Connect

    Astaneh-Asl, Abolhassan

    2008-07-08

    In recent years steel shear walls have become one of the more efficient lateral load resisting systems in tall buildings. The basic steel shear wall system consists of a steel plate welded to boundary steel columns and boundary steel beams. In some cases the boundary columns have been concrete-filled steel tubes. Seismic behavior of steel shear wall systems during actual earthquakes and based on laboratory cyclic tests indicates that the systems are quite ductile and can be designed in an economical way to have sufficient stiffness, strength, ductility and energy dissipation capacity to resist seismic effects of strong earthquakes. This paper, after summarizing the past research, presents the results of two tests of an innovative steel shear wall system where the boundary elements are concrete-filled tubes. Then, a review of currently available analytical models of steel shear walls is provided with a discussion of capabilities and limitations of each model. We have observed that the tension only 'strip model', forming the basis of the current AISC seismic design provisions for steel shear walls, is not capable of predicting the behavior of steel shear walls with length-to-thickness ratio less than about 600 which is the range most common in buildings. The main reasons for such shortcomings of the AISC seismic design provisions for steel shear walls is that it ignores the compression field in the shear walls, which can be significant in typical shear walls. The AISC method also is not capable of incorporating stresses in the shear wall due to overturning moments. A more rational seismic design procedure for design of shear walls proposed in 2000 by the author is summarized in the paper. The design method, based on procedures used for design of steel plate girders, takes into account both tension and compression stress fields and is applicable to all values of length-to-thickness ratios of steel shear walls. The method is also capable of including the effect of

  1. Anther Wall Formation in Solanaceae Species

    PubMed Central

    CARRIZO GARCÍA, CAROLINA

    2002-01-01

    Anther wall formation was studied in 32 species belonging to 27 genera of Solanaceae. Dicotyledonous and basic types of wall formation were observed, as well as several deviations due to subsequent periclinal divisions in the layers formed (middle layers and sometimes the endothecium). One type of wall formation was observed in each species. Some genera are uniform in their type of wall formation, while others are heterogeneous; a similar situation was observed at the tribal level. Summarizing all reported information on anther wall formation in the Solanaceae, 64 % of species show the basic type, while the remaining 36 % show the dicotyledonous type. Thus, neither type predominates, and no single type characterizes genera, tribes or the entire family. PMID:12451025

  2. Natural Paradigms of Plant Cell Wall Degradation

    SciTech Connect

    Wei, H.; Xu, Q.; Taylor, L. E.; Baker, J. O.; Tucker, M. P.; Ding, S. Y.

    2009-01-01

    Natural processes of recycling carbon from plant cell walls are slow but very efficient, generally involving microbial communities and their secreted enzymes. Efficient combinations of microbial communities and enzymes act in a sequential and synergistic manner to degrade plant cell walls. Recent understanding of plant cell wall ultra-structure, as well as the carbon metabolism, ATP production, and ecology of participating microbial communities, and the biochemical properties of their cellulolytic enzymes have led to new perspectives on saccharification of biomass. Microbial communities are dynamic functions of the chemical and structural compositions of plant cell wall components. The primitive 'multicellularity' exhibited by certain cellulolytic microorganisms may play a role in facilitating cell-cell communication and cell-plant cell wall-substrate interaction.

  3. Automotion of domain walls for spintronic interconnects

    SciTech Connect

    Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2014-06-07

    We simulate “automotion,” the transport of a magnetic domain wall under the influence of demagnetization and magnetic anisotropy, in nanoscale spintronic interconnects. In contrast to spin transfer driven magnetic domain wall motion, the proposed interconnects operate without longitudinal charge current transfer, with only a transient current pulse at domain wall creation and have favorable scaling down to the 20 nm dimension. Cases of both in-plane and out-of-plane magnetization are considered. Analytical dependence of the velocity of domain walls on the angle of magnetization are compared with full micromagnetic simulations. Deceleration, attenuation and disappearance, and reflection of domain walls are demonstrated through simulation. Dependences of the magnetization angle on the current pulse parameters are studied. The energy and delay analysis suggests that automotion is an attractive option for spintronic logic interconnects.

  4. 2003 Plant Cell Walls Gordon Conference

    SciTech Connect

    Daniel J. Cosgrove

    2004-09-21

    This conference will address recent progress in many aspects of cell wall biology. Molecular, genetic, and genomic approaches are yielding major advances in our understanding of the composition, synthesis, and architecture of plant cell walls and their dynamics during growth, and are identifying the genes that encode the machinery needed to make their biogenesis possible. This meeting will bring together international scientists from academia, industry and government labs to share the latest breakthroughs and perspectives on polysaccharide biosynthesis, wood formation, wall modification, expansion and interaction with other organisms, and genomic & evolutionary analyses of wall-related genes, as well as to discuss recent ''nanotechnological'' advances that take wall analysis to the level of a single cell.

  5. Gravitational waves from collapsing domain walls

    SciTech Connect

    Hiramatsu, Takashi; Kawasaki, Masahiro; Saikawa, Ken'ichi E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2010-05-01

    We study the production of gravitational waves from cosmic domain walls created during phase transition in the early universe. We investigate the process of formation and evolution of domain walls by running three dimensional lattice simulations. If we introduce an approximate discrete symmetry, walls become metastable and finally disappear. This process might occur by a pressure difference between two vacua if a quantum tunneling is neglected. We calculate the spectrum of gravitational waves produced by collapsing metastable domain walls. Extrapolating the numerical results, we find that the signal of gravitational waves produced by domain walls whose energy scale is around 10{sup 10}-10{sup 12}GeV will be observable in the next generation gravitational wave interferometers.

  6. Automotion of domain walls for spintronic interconnects

    NASA Astrophysics Data System (ADS)

    Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2014-06-01

    We simulate "automotion," the transport of a magnetic domain wall under the influence of demagnetization and magnetic anisotropy, in nanoscale spintronic interconnects. In contrast to spin transfer driven magnetic domain wall motion, the proposed interconnects operate without longitudinal charge current transfer, with only a transient current pulse at domain wall creation and have favorable scaling down to the 20 nm dimension. Cases of both in-plane and out-of-plane magnetization are considered. Analytical dependence of the velocity of domain walls on the angle of magnetization are compared with full micromagnetic simulations. Deceleration, attenuation and disappearance, and reflection of domain walls are demonstrated through simulation. Dependences of the magnetization angle on the current pulse parameters are studied. The energy and delay analysis suggests that automotion is an attractive option for spintronic logic interconnects.

  7. Metal stud wall systems -- Thermal disaster, or modern wall systems with highly efficient thermal insulation?

    SciTech Connect

    Kosny, J.; Christian, J.E.; Desjarlais, A.O.

    1997-11-01

    Because steel has higher thermal conductivity than wood and intense heat transfer occurs through the metal wall components, thermal performances of a metal stud wall are significantly lower than for similar wood stud walls. A reduction of the in-cavity R-value caused by the wood studs is about 10% in wood stud walls. That is why metal stud walls are believed to be considerably less thermally effective than similar made of wood. However, properly designed metal stud walls can be as thermally effective as wood stud walls. Relatively high R-values may be achieved by installing insulating sheathing, which is widely used as a remedy for a weak thermal performance of metal stud walls. A series of the promising metal stud wall configurations is analyzed using results of finite difference computer modeling and guarded hotbox tests. Some of these walls were designed and tested in the ORNL Building Technology Center, some were tested in other laboratories, and some walls were developed and forgotten long time ago. Also, a novel concept of combined foam-metal studs is considered. The main aim of the present paper is to prove that it is possible to build metal stud walls which perform as well as wood stud walls. The key lies in designing; metal stud wall systems have to be treated in a special way with particular consideration to the high thermal conduction of metal components. In the discussed collection of the efficient metal stud wall configurations, reductions of the in-cavity R-value caused by metal studs are between 10 and 20%.

  8. Charged domain walls in ferroelectrics

    NASA Astrophysics Data System (ADS)

    Sluka, Tomas

    2014-03-01

    Solid interfaces including compositionally homogeneous ferroic domain walls (DWs) display uniquely distorted electronic structures and ionic displacements. Their intrinsic properties may therefore be fundamentally different from those of their parent matrices. Indeed, phenomena like semiconductor-metal transition, the quantum Hall effect, magnetoresistance and superconductivity were discovered at hetero-interfaces between transition metal oxides and elevated photoactivity and conductivity were reported at (multi-) ferroic DWs. Unlike hetero-interfaces, the DWs provide ``perfect'' structure by nature and can be written, displaced, and erased inside a material monolith of functioning devices. Theory predicts the existence of charged DWs which seemingly violate electrostatic compatibility due to head-to-head and tail-to-tail polarization discontinuity, but are stable because bound polarization charge is compensated by mobile charge carriers including quasi-two-dimensional electron gas. This talk will introduce current theory, engineering, control and characteristics of charged DWs, which are mobile, extremely wide and exhibit steady metallic-like conductivity up to 109 times that of the insulating bulk.

  9. Channels on Bakhuysen Crater Wall

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Portion of channels on the wall of Bakhuysen crater (MOC 10605). These channels (22.1oS, 344.9oW) are the best examples of integrated drainage reminiscent of terrestrial systems. The pattern is topographically controlled; the relationships emphasized by light-colored sediments viewed in this low incidence angle (11.2o), nadir viewing (emission angle = 1.5o) image. The crater rim is marked by the escarpment running diagonally in the middle left to upper right of the image (downtrack scale = 8.4 m/pixel, crosstrack = 5.8 m/pixel). No channels outside the crater rim. This suggests that the source of the fluid was confined within the crater.

    Malin Space Science Systems and the California Institute of Technology built the MOC using spare hardware from the Mars Observer mission. MSSS operates the camera from its facilities in San Diego, CA. The Jet Propulsion Laboratory's Mars Surveyor Operations Project operates the Mars Global Surveyor spacecraft with its industrial partner, Lockheed Martin Astronautics, from facilities in Pasadena, CA and Denver, CO.

  10. Classification of chest wall diseases.

    PubMed

    Pozzi, E; Gulotta, C

    1993-01-01

    Several disorders of the thoracic cage are known to cause respiratory failure, by means of relatively simple mechanisms, such as the increased work of breathing, which results in alveolar hypoventilation. A variety of pathogenic mechanisms may be considered, as functions of the types of thoracic disorders present. As causes of these additional potential mechanisms, we considered the following: 1) ventilation-perfusion (V/Q) inhomogeneity; 2) inability to cough; 3) malformation or acquired defect of the respiratory centres; and 4) excess blood volume and fluid retention, which aggravate work of breathing and V/Q inhomogeneity. All of these disorders can be grouped into two major categories (which nevertheless have some of the pathophysiology in common): the mechanical syndrome and the neuromuscular or paralytic syndrome. In this paper we discuss chest wall diseases falling into the first category; namely, kyphoscoliosis, fibrothorax, thoracoplasty, ankylosing spondylitis and obesity-hypoventilation. Congenital deformities of the thoracic cage, which do not have important effects on ventilatory apparatus (e.g. pectus excavatum and pectus carinatum), were also considered. PMID:8472068

  11. Wall induced turbulence distortions of optical measurements

    NASA Astrophysics Data System (ADS)

    Gustafsson, Ove K. S.; Henriksson, Markus; Sjöqvist, Lars

    2009-09-01

    Optical measurements and tests of optical instruments are often performed through an opened window or from the roof of an elevated building. This can also be a common situation for free-space optical (FSO) communication systems. Wind friction in combination with solar heating of the wall and the ground will create increased turbulence in a boundary layer close to the wall. For an outgoing laser beam this thin region of strong turbulence causes beam wander, beam broadening and beam break-up. For imaging and detection systems angle of arrival fluctuations and image blurring may result. In an attempt to estimate the strength of the atmospheric turbulence in the layer at the wall the refractive index structure constant (Cn2) was measured with an ultra sonic anemometer as a function of distance from the wall. The measurements were performed at the lower part of a window that was open just enough to give space for the anemometer. The window was placed 10 m above ground in a 12 m high building, with brick wall below the window and wooden panel above the window. Measurements of the turbulence as a function of distance from the wall were performed during different times of the day to study the influence of sun heating of the wall. The measured average Cn2 shows an exponentially decreasing function of distance from the wall. The exponential decay of Cn2 depends on the time of the day. The highest measured value of Cn2 was approximately 3x10-11 m-2/3 near the wall. The influence of wall turbulence is discussed with respect to its influence on laser beam propagation.

  12. Final Report for "Stabilization of resistive wall modes using moving metal walls"

    SciTech Connect

    Forest, Cary B.

    2014-02-05

    The UW experiment used a linear pinch experiment to study the stabilization of MHD by moving metal walls. The methodology of the experiment had three steps. (1) Identify and understand the no-wall MHD instability limits and character, (2) identify and understand the thin-wall MHD instabilities (re- sistive wall mode), and then (3) add the spinning wall and understand its impact on stability properties. During the duration of the grant we accomplished all 3 of these goals, discovered new physics, and completed the experiment as proposed.

  13. Evolution of string-wall networks and axionic domain wall problem

    SciTech Connect

    Hiramatsu, Takashi; Kawasaki, Masahiro; Saikawa, Ken'ichi E-mail: kawasaki@icrr.u-tokyo.ac.jp

    2011-08-01

    We study the cosmological evolution of domain walls bounded by strings which arise naturally in axion models. If we introduce a bias in the potential, walls become metastable and finally disappear. We perform two dimensional lattice simulations of domain wall networks and estimate the decay rate of domain walls. By using the numerical results, we give a constraint for the bias parameter and the Peccei-Quinn scale. We also discuss the possibility to probe axion models by direct detection of gravitational waves produced by domain walls.

  14. Wall shear stress measurement in blade end-wall corner region

    NASA Technical Reports Server (NTRS)

    Bhargava, R.; Raj, R.; Boldman, D. R.

    1987-01-01

    The magnitude and the direction of wall shear stress and surface pressure in the blade end-wall corner region were investigated. The measurements were obtained on a specially designed Preston tube, the tip of which could be concentrically rotated about its axis of rotation at the measurement location. The magnitude of wall shear stress in the vicinity of the corner was observed to increase significantly (170 percent) compared to its far-upstream value; the increase was consistently higher on the blade surface compared to the value on the plate surface of the blade end-wall corner. On both surfaces in the blade end-wall corner, the variation of the wall shear stress direction was found to be more predominant in the vicinity of the blade leading-edge location. The trend of the measured wall shear stress direction showed good agreement with the limiting streamline directions obtained from the flow visualization studies.

  15. Flow Characteristics of Plane Wall Jet with Side Walls on Both Sides

    NASA Astrophysics Data System (ADS)

    Imao, Shigeki; Kikuchi, Satoshi; Kozato, Yasuaki; Hayashi, Takayasu

    Flow characteristics of a two-dimensional jet with side walls have been studied experimentally. Three kinds of cylindrical walls and a flat wall were provided as the side walls, and they were combined and attached to a nozzle. Nine types of side wall conditions were investigated. Velocity was measured by a hot-wire probe and the separation point was measured by a Pitot tube. Mean velocity profiles, the growth of the jet half-width, the decay of jet maximum velocity, and the attachment distance were clarified. When cylindrical walls with different radii are installed, the flow pattern changes markedly depending on the velocity of the jet. A striking increase in the jet half-width is related to the separation of flow from the smaller cylindrical wall just behind the nozzle.

  16. Consistently inconsistent, the posterior vaginal wall.

    PubMed

    Hale, Douglass S; Fenner, Dee

    2016-03-01

    Posterior vaginal wall prolapse is one of the most common prolapses encountered by gynecological surgeons. What appears to be a straightforward condition to diagnose and treat surgically for physicians has proven to be frustratingly unpredictable with regard to symptom relief for patients. Functional disorders such as dyssynergic defecation and constipation are often attributed to posterior vaginal wall prolapse. Little scientific evidence supports this assumption, emphasizing that structure and function are not synonymous when treating posterior vaginal wall prolapse. Rectoceles, enteroceles, sigmoidoceles, peritoneoceles, rectal and intraanal intussusception, rectal prolapse, and descending perineal syndrome are all conditions that have an impact on the posterior vaginal wall. All too often these different anatomic conditions are treated with the same surgical approach, addressing a posterior vaginal wall bulge with a traditional posterior colporrhaphy. Studies that examine the correlation between stage of posterior wall prolapse and patient symptoms have failed to reliably do so. Surgical outcomes measured by prolapse staging appear successful, yet patient expectations are often not met. As increasing attention is being placed on patient satisfaction outcomes concerning surgical treatments, this fact will need to be addressed. Surgeons will have to clearly communicate what can and what cannot be expected with surgical repair of posterior vaginal wall prolapse. PMID:26348375

  17. Electron-wall interaction in Hall thrusters

    SciTech Connect

    Raitses, Y.; Staack, D.; Keidar, M.; Fisch, N.J.

    2005-05-15

    Electron-wall interaction effects in Hall thrusters are studied through measurements of the plasma response to variations of the thruster channel width and the discharge voltage. The discharge voltage threshold is shown to separate two thruster regimes. Below this threshold, the electron energy gain is constant in the acceleration region and therefore, secondary electron emission (SEE) from the channel walls is insufficient to enhance electron energy losses at the channel walls. Above this voltage threshold, the maximum electron temperature saturates. This result seemingly agrees with predictions of the temperature saturation, which recent Hall thruster models explain as a transition to space-charge saturated regime of the near-wall sheath. However, in the experiment, the maximum saturation temperature exceeds by almost three times the critical value estimated under the assumption of a Maxwellian electron energy distribution function. The channel narrowing, which should also enhance electron-wall collisions, causes unexpectedly larger changes of the plasma potential distribution than does the increase of the electron temperature with the discharge voltage. An enhanced anomalous crossed-field mobility (near wall or Bohm-type) is suggested by a hydrodynamic model as an explanation to the reduced electric field measured inside a narrow channel. We found, however, no experimental evidence of a coupling between the maximum electron temperature and the location of the accelerating voltage drop, which might have been expected due to the SEE-induced near-wall conductivity.

  18. Dynamic response of cantilever retaining walls

    SciTech Connect

    Veletsos, A.S.; Younan, A.H.; Bandyopadhyay, K.

    1996-10-01

    A critical evaluation is made of the response to horizontal ground shaking of flexible cantilever retaining walls that are elastically constrained against rotation at their base. The retained medium is idealized as a uniform, linear, viscoelastic stratum of constant thickness and semi-infinite extent in the horizontal direction. The parameters varied include the flexibilities of the wall and its base, the properties of the retained medium, and the characteristics of the ground motion. In addition to long-period, effectively static excitations, both harmonic base motions and an actual earthquake record are considered. The response quantities examined include the displacements of the wall relative to the moving base, the wall pressures, and the associated shears and bending moments. The method of analysis employed is described only briefly, emphasis being placed on the presentation and interpretation of the comprehensive numerical solutions. It is shown that, for realistic wall flexibilities, the maximum wall forces are significantly lower than those obtained for fixed-based rigid walls and potentially of the same order of magnitude as those computed by the Mononobe-Okabe method.

  19. Domain wall geometry controls conduction in ferroelectrics.

    PubMed

    Vasudevan, R K; Morozovska, A N; Eliseev, E A; Britson, J; Yang, J-C; Chu, Y-H; Maksymovych, P; Chen, L Q; Nagarajan, V; Kalinin, S V

    2012-11-14

    A new paradigm of domain wall nanoelectronics has emerged recently, in which the domain wall in a ferroic is itself an active device element. The ability to spatially modulate the ferroic order parameter within a single domain wall allows the physical properties to be tailored at will and hence opens vastly unexplored device possibilities. Here, we demonstrate via ambient and ultrahigh-vacuum (UHV) scanning probe microscopy (SPM) measurements in bismuth ferrite that the conductivity of the domain walls can be modulated by up to 500% in the spatial dimension as a function of domain wall curvature. Landau-Ginzburg-Devonshire calculations reveal the conduction is a result of carriers or vacancies migrating to neutralize the charge at the formed interface. Phase-field modeling indicates that anisotropic potential distributions can occur even for initially uncharged walls, from polarization dynamics mediated by elastic effects. These results are the first proof of concept for modulation of charge as a function of domain wall geometry by a proximal probe, thereby expanding potential applications for oxide ferroics in future nanoscale electronics. PMID:22994244

  20. Low-cost sustainable wall construction system

    SciTech Connect

    Vohra, A.; Rosenfeld, A.H.

    1998-07-01

    Houses with no wall cavities, such as those made of adobe, stone, brick, or block, have poor thermal properties but are rarely insulated because of the cost and difficulty of providing wall insulation. A simple, low-cost technique using loose-fill indigenous materials has been demonstrated for the construction of highly insulated walls or the retrofit of existing walls in such buildings. Locally available pumice, in sandbags stacked along the exterior wall of an adobe house in New Mexico, added a thermal resistance (R) of 16 F{sm{underscore}bullet}ft{sup 2}{sm{underscore}bullet}h/Btu (2.8 m{sup 2}{sm{underscore}bullet}K/W). The total cost of the sandbag insulation wall retrofit was $3.76 per square foot ($40.50/m{sup 2}). Computer simulations of the adobe house using DOE 2.1E show savings of $275 per year, corresponding to 50% reduction in heating energy consumption. The savings-to-investment ratio ranges from 1.1 to 3.2, so the cost of conserved energy is lower than the price of propane, natural gas and electric heat, making the system cost-effective. Prototype stand-alone walls were also constructed using fly ash and sawdust blown into continuous polypropylene tubing, which was folded between corner posts as it was filled to form the shape of the wall. Other materials could also be used. The inexpensive technique solves the problem of insulating solid-wall hours and constructing new houses without specialized equipment and skills, thereby saving energy, reducing greenhouse gas emissions, and improving comfort for people in many countries. The US Department of Energy (DOE) has filed patent applications on this technology, which is part of a DOE initiative on sustainable building envelope materials and systems.

  1. Discrete wall jets in quiescent air

    NASA Technical Reports Server (NTRS)

    Mclean, J. D.; Herring, H. J.

    1974-01-01

    An experimental investigation was made of turbulent jet flows resulting from small, round nozzles discharging parallel to a smooth, flat wall in quiescent air. Nozzle axes were located 3.0 nozzle diameters above the wall surface. The case of a single nozzle and the case of a spanwise array of equally spaced nozzles were investigated. Several forms of approximate velocity profile similarity were noted, and the flow from the array of nozzles was seen to approach the form of a two-dimensional wall jet.

  2. Fluorescent Labeling of Yeast Cell Wall Components.

    PubMed

    Okada, Hiroki; Ohya, Yoshikazu

    2016-01-01

    Yeast cells stained with a fluorescent dye that specifically binds to one of the cell wall components can be observed under a fluorescent microscope. Visualization of the components 1,3-β-glucan, mannoproteins, and/or chitin not only provides information concerning the cell wall, but also reveals clues about various cellular activities such as cell polarity, vesicular transport, establishment of budding pattern, apical and isotropic bud growth, and replicative cell age. This protocol describes a standard method for visualizing different components of the yeast cell wall. PMID:27480714

  3. Refractive index of plant cell walls

    NASA Technical Reports Server (NTRS)

    Gausman, H. W.; Allen, W. A.; Escobar, D. E.

    1974-01-01

    Air was replaced with media of higher refractive indices by vacuum infiltration in leaves of cucumber, blackeye pea, tomato, and string bean plants, and reflectance of noninfiltrated and infiltrated leaves was spectrophotometrically measured. Infiltrated leaves reflected less light than noninfiltrated leaves over the 500-2500-nm wavelength interval because cell wall-air interfaces were partly eliminated. Minimal reflectance should occur when the average refractive index of plant cell walls was matched by the infiltrating fluid. Although refractive indices that resulted in minimal reflectance differed among the four plant genera, an average value of 1.425 approximates the refractive index of plant cell walls for the four plant genera.

  4. Thoracic Wall Reconstruction in Advanced Breast Tumours

    PubMed Central

    Daigeler, A.; Harati, K.; Goertz, O.; Hirsch, T.; Behr, B.; Lehnhardt, M.; Kolbenschlag, J.

    2014-01-01

    In advanced mammary tumours, extensive resections, sometimes involving sections of the thoracic wall, are often necessary. Plastic surgery reconstruction procedures offer sufficient opportunities to cover even large thoracic wall defects. Pedicled flaps from the torso but also free flap-plasties enable, through secure defect closure, the removal of large, ulcerated, painful or bleeding tumours with moderate donor site morbidity. The impact of thoracic wall resection on the respiratory mechanism can be easily compensated for and patientsʼ quality of life in the palliative stage of disease can often be improved. PMID:24976636

  5. Abdominal wall reconstruction with implantable meshes.

    PubMed

    Masden, Derek; Felder, John M; Iorio, Matthew L; Bhanot, Parag; Attinger, Christopher E

    2011-01-01

    Abdominal wall defects present a difficult problem for the reconstructive surgeon. Over the years, numerous implantable materials have becomes available to aid the surgeon in recreating the abdominal wall. This spectrum of implants includes permanent synthetic meshes, absorbable meshes, composite meshes and biomaterials. This review includes the pros and cons for the commercially available abdominal wall implants as well as a review of the literature regarding outcomes for each material. This review will provide the surgeon with current evidence-based information on implantable abdominal materials to be able to make a more informed decision about which implant to use. PMID:21663579

  6. Wall shear stress manifolds and near wall flow topology in aneurysms

    NASA Astrophysics Data System (ADS)

    Arzani, Amirhossein; Gambaruto, Alberto M.; Chen, Guoning; Shadden, Shawn C.

    2015-11-01

    Transport of atherogenic and thrombogenic chemicals near the vessel wall highly influences atherosclerosis and thrombosis. The high Schmidt number of these species leads to a thin concentration boundary layer near the wall. The wall shear stress (WSS) vector field can be scaled to obtain the near wall velocity in this region, thus providing first order approximation to near wall transport. In this study, the complex blood flow in patient-specific abdominal aortic aneurysms was considered. Lagrangian tracking of surface-bound tracers representing near wall species was employed to identify Lagrangian coherent structures (LCS) for the WSS surface vector field. The WSS LCS matched the stable and unstable manifolds of saddle type fixed points of the time-average WSS vector field, due to the quasi-steady nature of these near wall transport processes. A WSS exposure time measure is introduced to quantify the concentration of near wall species. The effect of diffusion and normal flow on these structures is investigated. The WSS LCS highly influence the concentration of near wall species, and provide a template for near-wall transport.

  7. Combined Visualization of Wall Thickness and Wall Shear Stress for the Evaluation of Aneurysms.

    PubMed

    Glaßer, Sylvia; Lawonn, Kai; Hoffmann, Thomas; Skalej, Martin; Preim, Bernhard

    2014-12-01

    For an individual rupture risk assessment of aneurysms, the aneurysm's wall morphology and hemodynamics provide valuable information. Hemodynamic information is usually extracted via computational fluid dynamic (CFD) simulation on a previously extracted 3D aneurysm surface mesh or directly measured with 4D phase-contrast magnetic resonance imaging. In contrast, a noninvasive imaging technique that depicts the aneurysm wall in vivo is still not available. Our approach comprises an experiment, where intravascular ultrasound (IVUS) is employed to probe a dissected saccular aneurysm phantom, which we modeled from a porcine kidney artery. Then, we extracted a 3D surface mesh to gain the vessel wall thickness and hemodynamic information from a CFD simulation. Building on this, we developed a framework that depicts the inner and outer aneurysm wall with dedicated information about local thickness via distance ribbons. For both walls, a shading is adapted such that the inner wall as well as its distance to the outer wall is always perceivable. The exploration of the wall is further improved by combining it with hemodynamic information from the CFD simulation. Hence, the visual analysis comprises a brushing and linking concept for individual highlighting of pathologic areas. Also, a surface clustering is integrated to provide an automatic division of different aneurysm parts combined with a risk score depending on wall thickness and hemodynamic information. In general, our approach can be employed for vessel visualization purposes where an inner and outer wall has to be adequately represented. PMID:26356964

  8. A one piece wall box for space electronics

    SciTech Connect

    Greenwood, W.H.

    1995-05-01

    In extraterrestrial applications, satellite payloads have printed circuit modules that are housed in boxes or chassis. The box may be a one piece wall or a segmented wall. These two wall options are compared for function and cost.

  9. 8. VIEW OF CROSS SECTION OF THE EASTERNMOST WALL SEGMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW OF CROSS SECTION OF THE EASTERNMOST WALL SEGMENT THAT SHOWS THE TRENCHING AND 1960 PIPELINE CORRIDOR BETWEEN THE WALL SEGMENTS, LOOKING WEST-NORTHWEST - Rock Wall, North side of Battle Creek Canyon, Shingletown, Shasta County, CA

  10. 26. NORTH TRAINING WALL, CLOSE UP VIEW OF EAST SECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    26. NORTH TRAINING WALL, CLOSE UP VIEW OF EAST SECTION SIDE WALL, LOW TIDE. (Panoramic view 2 of 2). - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  11. 14. INTERIOR VIEW OF FIREPLACE AND SURROUNDING WALL IN FIRST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    14. INTERIOR VIEW OF FIREPLACE AND SURROUNDING WALL IN FIRST FLOOR, NORTHWEST PARLOR, NORTH WALL, WITH SCALE (NOTE WALL STENCILING) - George W. Eckhart House, 810 Main Street, Wheeling, Ohio County, WV

  12. Artificial Rock Climbing Walls--Innovative Adventure Environments.

    ERIC Educational Resources Information Center

    Attarian, Aram

    1989-01-01

    The history, advantages, and disadvantages of artificial rock climbing walls (used to instruct individuals in the sport of rock climbing) are discussed. Additional topics include designing an artificial wall, types of walls, various uses, and risk management. (IAH)

  13. 15. MASONRY DETAIL NO. 1, NORTH TRAINING WALL, LOOKING DOWN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. MASONRY DETAIL NO. 1, NORTH TRAINING WALL, LOOKING DOWN UPON THE WALL SURFACE FROM THE ADJACENT RIPRAP. - Oakland Harbor Training Walls, Mouth of Federal Channel to Inner Harbor, Oakland, Alameda County, CA

  14. Cell Wall Remodeling Enzymes Modulate Fungal Cell Wall Elasticity and Osmotic Stress Resistance

    PubMed Central

    Ene, Iuliana V.; Walker, Louise A.; Schiavone, Marion; Lee, Keunsook K.; Martin-Yken, Hélène; Dague, Etienne; Gow, Neil A. R.; Munro, Carol A.

    2015-01-01

    ABSTRACT The fungal cell wall confers cell morphology and protection against environmental insults. For fungal pathogens, the cell wall is a key immunological modulator and an ideal therapeutic target. Yeast cell walls possess an inner matrix of interlinked β-glucan and chitin that is thought to provide tensile strength and rigidity. Yeast cells remodel their walls over time in response to environmental change, a process controlled by evolutionarily conserved stress (Hog1) and cell integrity (Mkc1, Cek1) signaling pathways. These mitogen-activated protein kinase (MAPK) pathways modulate cell wall gene expression, leading to the construction of a new, modified cell wall. We show that the cell wall is not rigid but elastic, displaying rapid structural realignments that impact survival following osmotic shock. Lactate-grown Candida albicans cells are more resistant to hyperosmotic shock than glucose-grown cells. We show that this elevated resistance is not dependent on Hog1 or Mkc1 signaling and that most cell death occurs within 10 min of osmotic shock. Sudden decreases in cell volume drive rapid increases in cell wall thickness. The elevated stress resistance of lactate-grown cells correlates with reduced cell wall elasticity, reflected in slower changes in cell volume following hyperosmotic shock. The cell wall elasticity of lactate-grown cells is increased by a triple mutation that inactivates the Crh family of cell wall cross-linking enzymes, leading to increased sensitivity to hyperosmotic shock. Overexpressing Crh family members in glucose-grown cells reduces cell wall elasticity, providing partial protection against hyperosmotic shock. These changes correlate with structural realignment of the cell wall and with the ability of cells to withstand osmotic shock. PMID:26220968

  15. [A case of abdominal wall actinomycosis].

    PubMed

    Kim, Kyung Hoon; Lee, Jin Soo; Cho, Hyeong Jun; Choi, Seung Bong; Cheung, Dae Young; Kim, Jin Il; Lee, In Kyu

    2015-04-01

    Actinomycosis is a chronic suppurative granulomatous infectious disease caused by actinomyces species that is characterized by formation of characteristic clumps called as sulfur granules. Abdominal actinomycosis is a rare disease and is often difficult to diagnose before operation. Abdominal actinomycosis infiltrating into the abdominal wall and adhering to the colon is even rarer. Most abdominal actinomycosis develops after operation, trauma or inflammatory bowel disease, and is also considered as an opportunistic infection in immunocompromised patient with underlying malignancy, diabetes mellitus, human immunodeficiency virus infection, etc. Actinomycosis is diagnosed based on histologic demonstration of sulfur granules in surgically resected specimen or pus, and treatment consists of long-term penicillin based antibiotics therapy with or without surgical resection. Herein, we report an unusual case of abdominal wall actinomycosis which developed in a patient after acupuncture and presented as abdominal wall mass that was first mistaken for abdominal wall invasion of diverticulum perforation. PMID:25896158

  16. Intercostal hemangioma of the chest wall

    PubMed Central

    Hamzík, Julian

    2016-01-01

    The authors describe a case of a 36-year-old patient who had six months’ pain of the thoracic spine and left chest. A soft slowly growing resistance was present on the dorso-lateral side of the left chest wall, in the range of the seventh to ninth rib. According to the medical history, the patient did not have any prior trauma and malignancy. A well-defined tumor of the left chest wall with calcifications, which grew to the seventh and eighth intercostal space, was present on computed tomography (CT) and magnetic resonance (MR) scans. The patient underwent resection of the tumor with the chest wall and reconstruction with polypropylene mesh. Histologically, it was a venous hemangioma, one of very rare tumors of the chest wall. PMID:27212983

  17. Development and pathologies of the arterial wall.

    PubMed

    Seidelmann, Sara B; Lighthouse, Janet K; Greif, Daniel M

    2014-06-01

    Arteries consist of an inner single layer of endothelial cells surrounded by layers of smooth muscle and an outer adventitia. The majority of vascular developmental studies focus on the construction of endothelial networks through the process of angiogenesis. Although many devastating vascular diseases involve abnormalities in components of the smooth muscle and adventitia (i.e., the vascular wall), the morphogenesis of these layers has received relatively less attention. Here, we briefly review key elements underlying endothelial layer formation and then focus on vascular wall development, specifically on smooth muscle cell origins and differentiation, patterning of the vascular wall, and the role of extracellular matrix and adventitial progenitor cells. Finally, we discuss select human diseases characterized by marked vascular wall abnormalities. We propose that continuing to apply approaches from developmental biology to the study of vascular disease will stimulate important advancements in elucidating disease mechanism and devising novel therapeutic strategies. PMID:24071897

  18. The Structure of Plant Cell Walls

    PubMed Central

    McNeil, Michael; Albersheim, Peter; Taiz, Lincoln; Jones, Russell L.

    1975-01-01

    The walls of barley (Hordeum vulgare var. Himalaya) aleurone cells are composed of two major polysaccharides, arabinoxylan (85%) and cellulose (8%). The cell wall preparations contain 6% protein, but this protein does not contain detectable amounts of hydroxyproline. The arabinoxylan has a linear 1,4-xylan backbone; 33% of the xylosyl residues are substituted at the 2 and/or 3 position with single arabinofuranosyl residues. The results of in vitro cellulose binding experiments support the hypothesis that noncovalent bonds between the arabinoxylan chains and cellulose fibers play a part in maintaining wall structure. It is suggested that bonding between the arabinoxylan chains themselves is also utilized in forming the walls. PMID:16659029

  19. Genetics Home Reference: abdominal wall defect

    MedlinePlus

    ... size and can usually be diagnosed early in fetal development, typically between the tenth and fourteenth weeks of ... organs at the abdominal wall opening late in fetal development may also contribute to organ injury. Intestinal damage ...

  20. Domain wall manipulation with a magnetic tip.

    PubMed

    Stapelfeldt, T; Wieser, R; Vedmedenko, E Y; Wiesendanger, R

    2011-07-01

    A theoretical concept of local manipulation of magnetic domain walls is introduced. In the proposed procedure, a domain wall is driven by a spin-polarized current induced by a magnetic tip, as used in a scanning tunneling microscope, placed above a magnetic nanostripe and then moved along its long axis with a current flowing through the vacuum barrier. The angular momentum from the spin-polarized current exerts a torque on the magnetic moments underneath the tip and leads to a displacement of the domain wall. Particularly, the manipulation of a ferromagnetic 180° transverse domain wall has been studied by means of Landau-Lifshitz-Gilbert dynamics and Monte Carlo simulations. Different relative orientations of the tip and the sample magnetization have been considered. PMID:21797636

  1. Domain walls as probes of gravity

    SciTech Connect

    Dvali, Gia; Gabadadze, Gregory; Pujolas, Oriol; Rahman, Rakibur

    2007-06-15

    We show that domain walls are probes that enable one to distinguish large-distance modified gravity from general relativity (GR) at short distances. For example, low-tension domain walls are stealth in modified gravity, while they do produce global gravitational effects in GR. We demonstrate this by finding exact solutions for various domain walls in the DGP model. A wall with tension lower than the fundamental Planck scale does not inflate and has no gravitational effects on a 4D observer, since its 4D tension is completely screened by gravity itself. We argue that this feature remains valid in a generic class of models of infrared modified gravity. As a byproduct, we obtain exact solutions for supermassive codimension-2 branes.

  2. Cell wall remodeling under abiotic stress

    PubMed Central

    Tenhaken, Raimund

    2015-01-01

    Plants exposed to abiotic stress respond to unfavorable conditions on multiple levels. One challenge under drought stress is to reduce shoot growth while maintaining root growth, a process requiring differential cell wall synthesis and remodeling. Key players in this process are the formation of reactive oxygen species (ROS) and peroxidases, which initially cross-link phenolic compounds and glycoproteins of the cell walls causing stiffening. The function of ROS shifts after having converted all the peroxidase substrates in the cell wall. If ROS-levels remain high during prolonged stress, OH°-radicals are formed which lead to polymer cleavage. In concert with xyloglucan modifying enzymes and expansins, the resulting cell wall loosening allows further growth of stressed organs. PMID:25709610

  3. The soft-wall standard model

    SciTech Connect

    Batell, Brian; Sword, Daniel; Gherghetta, Tony

    2008-12-01

    We explore the possibility of modeling electroweak physics in a warped extra dimension with a soft wall. The infrared boundary is replaced with a smoothly varying dilaton field that provides a dynamical spacetime cutoff. We analyze gravity, gauge fields, and fermions in the soft-wall background and obtain a discrete spectrum of Kaluza-Klein states which can exhibit linear Regge-like behavior. Bulk Yukawa interactions give rise to nonconstant fermion mass terms, leading to fermion localization in the soft-wall background and a possible explanation of the standard model flavor structure. Furthermore we construct electroweak models with custodial symmetry, where the gauge symmetry is broken with a bulk Higgs condensate. The electroweak constraints are not as stringent as in hard-wall models, allowing Kaluza-Klein masses of order the TeV scale.

  4. On thick domain walls in general relativity

    NASA Technical Reports Server (NTRS)

    Goetz, Guenter; Noetzold, Dirk

    1989-01-01

    Planar scalar field configurations in general relativity differ considerably from those in flat space. It is shown that static domain walls of finite thickness in curved space-time do not possess a reflection symmetry. At infinity, the space-time tends to the Taub vacuum on one side of the wall and to the Minkowski vacuum (Rindler space-time) on the other. Massive test particles are always accelerated towards the Minkowski side, i.e., domain walls are attractive on the Taub side, but repulsive on the Minkowski side (Taub-vacuum cleaner). It is also proved that the pressure in all directions is always negative. Finally, a brief comment is made concerning the possibility of infinite, i.e., bigger than horizon size, domain walls in our universe. All of the results are independent of the form of the potential V(phi) greater than or equal to 0 of the scalar field phi.

  5. Ring connection for porous combustor wall panels

    NASA Technical Reports Server (NTRS)

    Verdouw, Albert J. (Inventor)

    1980-01-01

    A gas turbine engine combustor assembly of unique configuration has an outer wall made up of a plurality of axially extending multi-layered porous metal panels joined together at butt joints therebetween by a reinforcing and heat dissipation ring and a unique weld configuration to prevent thermal erosion of the ends of the porous metal panels at the butt joints; the combustor further including a unique inner wall made up of a plurality of like axially extending multi-layered porous metal panels joined at butt joints by a reinforcing and heat dissipation ring on the inner surface of the inner wall panels and an improved butt weld joint that prevents thermal erosion of the ends of the porous metal inner wall panels.

  6. Axions from cosmic string and wall decay

    SciTech Connect

    Hagmann, Chris

    2010-08-30

    If inflation occurred with a reheat temperature > T{sub PQ}, axions from the decay of global axion strings and domain walls would make an important contribution to the cosmological energy density, comparable to that from vacuum misalignment. Several groups have numerically studied the evolution of axion strings and walls in the past, however substantial uncertainties remain in their contribution to the present density {Omega}{sub a,string+wall{approx}}1-100(f{sub a}/10{sup 12} GeV){sup 7/6}, where f{sub a} is the axion decay constant. I will describe the numerical methods used in our simulations and show results for several string and wall configurations.

  7. Axions from cosmic string and wall decay

    SciTech Connect

    Hagmann, C A

    2010-03-10

    If inflation occurred with a reheat temperature > T{sub PQ}, axions from the decay of global axion strings and domain walls would make an important contribution to the cosmological energy density, comparable to that from vacuum misalignment. Several groups have numerically studied the evolution of axion strings and walls in the past, however substantial uncertainties remain in their contribution to the present density {Omega}{sub a,string+wall} {approx} 1-100 (f{sub a}/10{sup 12} GeV){sup 7/6}, where f{sub a} is the axion decay constant. I will describe the numerical methods used in our simulations and show results for several string and wall configurations.

  8. Cheaper Fabrication Of Tube-Wall Components

    NASA Technical Reports Server (NTRS)

    Bales, Daniel A.; Joyce, James R.

    1993-01-01

    Relatively inexpensive method of forming metal tubes into wall component devised. One initially selects ordinary, imprecisely dimensioned tubes having passed both pressure test and inspections for wall thickness and surface imperfections, and tubes bonded to each other in shorter, simpler procedure. Eliminates need for progressive die forming and attendant inspections after forming steps. Also applicable in fabrication of heat exchangers and other unitary assemblies of tubes.

  9. Shear wall experiments and design in Japan

    SciTech Connect

    Park, Y.J.; Hofmayer, C.

    1994-12-01

    This paper summarizes the results of recent survey studies on the available experimental data bases and design codes/standards for reinforced concrete (RC) shear wall structures in Japan. Information related to the seismic design of RC reactor buildings and containment structures was emphasized in the survey. The seismic requirements for concrete structures, particularly those related to shear strength design, are outlined. Detailed descriptions are presented on the development of Japanese shear wall equations, design requirements for containment structures, and ductility requirements.

  10. Thin Wall Cast Iron: Phase II

    SciTech Connect

    Doru M. Stefanescu

    2005-07-21

    The development of thin-wall technology allows the designers of energy consuming equipment to select the most appropriate material based on cost/material properties considerations, and not solely on density. The technology developed in this research project will permit the designers working for the automotive industry to make a better informed choice between competing materials and thin wall cast iron, thus decreasing the overall cost of the automobile.

  11. Residual interference and wind tunnel wall adaption

    NASA Technical Reports Server (NTRS)

    Mokry, Miroslav

    1989-01-01

    Measured flow variables near the test section boundaries, used to guide adjustments of the walls in adaptive wind tunnels, can also be used to quantify the residual interference. Because of a finite number of wall control devices (jacks, plenum compartments), the finite test section length, and the approximation character of adaptation algorithms, the unconfined flow conditions are not expected to be precisely attained even in the fully adapted stage. The procedures for the evaluation of residual wall interference are essentially the same as those used for assessing the correction in conventional, non-adaptive wind tunnels. Depending upon the number of flow variables utilized, one can speak of one- or two-variable methods; in two dimensions also of Schwarz- or Cauchy-type methods. The one-variable methods use the measured static pressure and normal velocity at the test section boundary, but do not require any model representation. This is clearly of an advantage for adaptive wall test section, which are often relatively small with respect to the test model, and for the variety of complex flows commonly encountered in wind tunnel testing. For test sections with flexible walls the normal component of velocity is given by the shape of the wall, adjusted for the displacement effect of its boundary layer. For ventilated test section walls it has to be measured by the Calspan pipes, laser Doppler velocimetry, or other appropriate techniques. The interface discontinuity method, also described, is a genuine residual interference assessment technique. It is specific to adaptive wall wind tunnels, where the computation results for the fictitious flow in the exterior of the test section are provided.

  12. Cell Wall Metabolism in Ripening Fruit

    PubMed Central

    Ahmed, Ahmed Elrayah; Labavitch, John M.

    1980-01-01

    Mature `Bartlett' pear (Pyrus communis) fruits were ripened at 20 C. Fruits at different stages of ripeness were homogenized, and extracts of the low speed pellet (crude cell wall) were prepared. These extracts contained polygalacturonase, pectin esterase, and activity against seven p-nitrophenyl glycoside substrates. Polygalacturonase, α-galactosidase, and α-mannosidase increased in activity as the fruit ripened. Cellulase and activities against pear wall xylan and arabinan were absent from the extracts. PMID:16661276

  13. On investigating wall shear stress in two-dimensional plane turbulent wall jets

    NASA Astrophysics Data System (ADS)

    Mehdi, Faraz; Johansson, Gunnar; White, Christopher; Naughton, Jonathan

    2012-11-01

    Mehdi & White [Exp Fluids 50:43-51(2011)] presented a full momentum integral based method for determining wall shear stress in zero pressure gradient turbulent boundary layers. They utilized the boundary conditions at the wall and at the outer edge of the boundary layer. A more generalized expression is presented here that uses just one boundary condition at the wall. The method is mathematically exact and has an advantage of having no explicit streamwise gradient terms. It is successfully applied to two different experimental plane turbulent wall jet datasets for which independent estimates of wall shear stress were known. Complications owing to experimental inaccuracies in determining wall shear stress from the proposed method are also discussed.

  14. Role of cell wall deconstructing enzymes in the proanthocyanidin-cell wall adsorption-desorption phenomena.

    PubMed

    Castro-López, Liliana del Rocío; Gómez-Plaza, Encarna; Ortega-Regules, Ana; Lozada, Daniel; Bautista-Ortín, Ana Belén

    2016-04-01

    The transference of proanthocyanidins from grapes to wine is quite low. This could be due, among other causes, to proanthocyanidins being bound to grape cell wall polysaccharides, which are present in high concentrations in the must. Therefore, the effective extraction of proanthocyanidins from grapes will depend on the ability to disrupt these associations, and, in this respect, enzymes that degrade these polysaccharides could play an important role. The main objective of this work was to test the behavior of proanthocyanidin-cell wall interactions when commercial maceration enzymes are present in the solution. The results showed that cell wall polysaccharides adsorbed a high amount of proanthocyanidins and only a limited quantity of proanthocyanidins could be desorbed from the cell walls after washing with a model solution. The presence of enzymes in the solution reduced the proanthocyanidin-cell wall interaction, probably through the elimination of pectins from the cell wall network. PMID:26593523

  15. Shape dynamics of growing cell walls.

    PubMed

    Banerjee, Shiladitya; Scherer, Norbert F; Dinner, Aaron R

    2016-04-14

    We introduce a general theoretical framework to study the shape dynamics of actively growing and remodeling surfaces. Using this framework we develop a physical model for growing bacterial cell walls and study the interplay of cell shape with the dynamics of growth and constriction. The model allows us to derive constraints on cell wall mechanical energy based on the observed dynamics of cell shape. We predict that exponential growth in cell size requires a constant amount of cell wall energy to be dissipated per unit volume. We use the model to understand and contrast growth in bacteria with different shapes such as spherical, ellipsoidal, cylindrical and toroidal morphologies. Coupling growth to cell wall constriction, we predict a discontinuous shape transformation, from partial constriction to cell division, as a function of the chemical potential driving cell wall synthesis. Our model for cell wall energy and shape dynamics relates growth kinetics with cell geometry, and provides a unified framework to describe the interplay between shape, growth and division in bacterial cells. PMID:26953519

  16. Structure of Plant Cell Walls 1

    PubMed Central

    Ishii, Tadashi; Thomas, Jerry; Darvill, Alan; Albersheim, Peter

    1989-01-01

    Considerable information has been obtained about the primary structures of suspension-cultured sycamore (Acer pseudoplatanus) cell-wall pectic polysaccharides, i.e. rhamnogalacturonan I, rhamnogalacturonan II, and homogalacturonan. However, these polysaccharides, which are solubilized from the walls by endo-α-1,4-polygalacturonase, account for only about half of the pectic polysaccharides known to be present in sycamore cell walls. We now report that, after exhaustive treatment with endo-α-1,4-polygalacturonase, additional pectic polysaccharides were extracted from sycamore cell walls by treatment with Na2CO3 at 1 and 22°C. These previously uncharacterized polysaccharides accounted for ∼4% of the cell wall. Based on the glycosyl and glycosyl-linkage compositions and the nature of the products obtained by treating the quantitatively predominant NaCO3-extracted polysaccharides with lithium metal dissolved in ethylenediamine, the polysaccharides were found to strongly resemble rhamnogalacturonan I. However, unlike rhamnogalacturonan I that characteristically had equal amounts of 2- and 2,4-linked rhamnosyl residues in its backbone, the polysaccharides extracted in Na2CO3 at 1°C had markedly disparate ratios of 2- to 2,4-linked rhamnosyl residues. We concluded that polysaccharides similar to rhamnogalacturonan I but with different degrees of branching are present in the walls of suspension-cultured sycamore cells. PMID:16666559

  17. Vapor Wall Deposition in Chambers: Theoretical Considerations

    NASA Astrophysics Data System (ADS)

    McVay, R.; Cappa, C. D.; Seinfeld, J.

    2014-12-01

    In order to constrain the effects of vapor wall deposition on measured secondary organic aerosol (SOA) yields in laboratory chambers, Zhang et al. (2014) varied the seed aerosol surface area in toluene oxidation and observed a clear increase in the SOA yield with increasing seed surface area. Using a coupled vapor-particle dynamics model, we examine the extent to which this increase is the result of vapor wall deposition versus kinetic limitations arising from imperfect accommodation of organic species into the particle phase. We show that a seed surface area dependence of the SOA yield is present only when condensation of vapors onto particles is kinetically limited. The existence of kinetic limitation can be predicted by comparing the characteristic timescales of gas-phase reaction, vapor wall deposition, and gas-particle equilibration. The gas-particle equilibration timescale depends on the gas-particle accommodation coefficient αp. Regardless of the extent of kinetic limitation, vapor wall deposition depresses the SOA yield from that in its absence since vapor molecules that might otherwise condense on particles deposit on the walls. To accurately extrapolate chamber-derived yields to atmospheric conditions, both vapor wall deposition and kinetic limitations must be taken into account.

  18. From soft walls to infrared branes

    SciTech Connect

    Gersdorff, Gero von

    2010-10-15

    Five-dimensional warped spaces with soft walls are generalizations of the standard Randall-Sundrum compactifications, where instead of an infrared brane one has a curvature singularity (with vanishing warp factor) at finite proper distance in the bulk. We project the physics near the singularity onto a hypersurface located a small distance away from it in the bulk. This results in a completely equivalent description of the soft wall in terms of an effective infrared brane, hiding any singular point. We perform explicitly this calculation for two classes of soft wall backgrounds used in the literature. The procedure has several advantages. It separates in a clean way the physics of the soft wall from the physics of the five-dimensional bulk, facilitating a more direct comparison with standard two-brane warped compactifications. Moreover, consistent soft walls show a sort of universal behavior near the singularity which is reflected in the effective brane Lagrangian. Thirdly, for many purposes, a good approximation is obtained by assuming the bulk background away from the singularity to be the usual Randall-Sundrum metric, thus making the soft wall backgrounds better analytically tractable. We check the validity of this procedure by calculating the spectrum of bulk fields and comparing it to the exact result, finding very good agreement.

  19. Secondary cell walls: biosynthesis and manipulation.

    PubMed

    Kumar, Manoj; Campbell, Liam; Turner, Simon

    2016-01-01

    Secondary cell walls (SCWs) are produced by specialized plant cell types, and are particularly important in those cells providing mechanical support or involved in water transport. As the main constituent of plant biomass, secondary cell walls are central to attempts to generate second-generation biofuels. Partly as a consequence of this renewed economic importance, excellent progress has been made in understanding how cell wall components are synthesized. SCWs are largely composed of three main polymers: cellulose, hemicellulose, and lignin. In this review, we will attempt to highlight the most recent progress in understanding the biosynthetic pathways for secondary cell wall components, how these pathways are regulated, and how this knowledge may be exploited to improve cell wall properties that facilitate breakdown without compromising plant growth and productivity. While knowledge of individual components in the pathway has improved dramatically, how they function together to make the final polymers and how these individual polymers are incorporated into the wall remain less well understood. PMID:26663392

  20. Cell Wall Development in Maize Coleoptiles 1

    PubMed Central

    Carpita, Nicholas C.

    1984-01-01

    The physical bases for enhancement of growth rates induced by auxin involve changes in cell wall structure. Changes in the chemical composition of the primary walls during maize (Zea mays L. cv WF9 × Bear 38) coleoptile development were examined to provide a framework to study the nature of auxin action. This report documents that the primary walls of maize cells vary markedly depending on developmental state; polymers synthesized and deposited in the primary wall during cell division are substantially different from those formed during cell elongation. The embryonal coleoptile wall is comprised of mostly glucuronoarabinoxylan (GAX), xyloglucan, and polymers enriched in 5-arabinosyl linkages. During development, both GAX and xyloglucan are synthesized, but the 5-arabinosyls are not. Rapid coleoptile elongation is accompanied by synthesis of a mixed-linked glucan that is nearly absent from the embryonal wall. A GAX highly substituted with mostly terminal arabinofuranosyl units is also synthesized during elongation and, based on pulse-chase studies, exhibits turnover possibly to xylans with less substitution via loss of the arabinosyl and glucuronosyl linkages. Images Fig. 2 PMID:16663799

  1. Dynamic response of flexible retaining walls

    SciTech Connect

    Younan, A.H.; Veletsos, A.S.; Bandyopadhyay, K.

    1997-01-01

    Making use of an extension of a recently proposed, relatively simple, approximate method of analysis, a critical evaluation is made of the response to horizontal ground shaking of flexible walls retaining a uniform, linear, viscoelastic stratum of constant thickness and semiinfinite extent in the horizontal direction. Both cantilever and top-supported walls are examined. Following a detailed description of the method and of its rate of convergence, comprehensive numerical solutions are presented that elucidate the action of the system and the effects of the various parameters involved. The parameters varied include the flexibility of the wall, the condition of top support, and the characteristics of the ground motion. The effects of both harmonic base motions and an actual earthquake record are examined. Special attention is paid to the effects of long-period, effectively static excitations. A maximum dynamic response is then expressed as the product of the corresponding static response and an appropriate amplification or deamplification factor. The response quantities examined include the displacements of the wall relative to the moving base, the dynamic wall pressures, and the total wall force, base shear and base moment.

  2. First wall and blanket design for a high wall loading compact tokamak power reactor

    SciTech Connect

    Sviatoslavsky, I.N.; Abdel-Khalik, S.I.; Corradini, M.L.; El-Afify, M.; Huh, K.Y.; Kuleinski, G.L.; Wittenberg, L.J.

    1985-07-01

    Among the specific limitations which tend to complicate a compact high wall loading (HWL) tokamak reactor design are high surface and nuclear heating, compactness leading to crowded components, unlikely breeding on the inboard side and frequent first wall/blanket replacement. This paper describes the mechanical, thermal hydraulic and tritium aspects of an improved blanket design for a high ..beta.. (20%), high wall loading (R 10 MW/m/sup 2/) compact fusion power reactor of 1000 MW /sub th/ power output.

  3. Adaptive wall technology for minimization of wall interferences in transonic wind tunnels

    NASA Technical Reports Server (NTRS)

    Wolf, Stephen W. D.

    1988-01-01

    Modern experimental techniques to improve free air simulations in transonic wind tunnels by use of adaptive wall technology are reviewed. Considered are the significant advantages of adaptive wall testing techniques with respect to wall interferences, Reynolds number, tunnel drive power, and flow quality. The application of these testing techniques relies on making the test section boundaries adjustable and using a rapid wall adjustment procedure. A historical overview shows how the disjointed development of these testing techniques, since 1938, is closely linked to available computer support. An overview of Adaptive Wall Test Section (AWTS) designs shows a preference for use of relatively simple designs with solid adaptive walls in 2- and 3-D testing. Operational aspects of AWTS's are discussed with regard to production type operation where adaptive wall adjustments need to be quick. Both 2- and 3-D data are presented to illustrate the quality of AWTS data over the transonic speed range. Adaptive wall technology is available for general use in 2-D testing, even in cryogenic wind tunnels. In 3-D testing, more refinement of the adaptive wall testing techniques is required before more widespread use can be planned.

  4. Reduced-order model for near-wall dynamics with implications to wall-models

    NASA Astrophysics Data System (ADS)

    Schmid, Peter; Sayadi, Taraneh

    2014-11-01

    The near-wall resolution requirements of wall-resolved large eddy simulations (LES) are almost as high as those of direct numerical simulations (DNS). This restriction severely limits the applicability of LES in high-Reynolds-number flows and complex geometries that are typical of engineering configurations. An alternative to the wall-resolved LES is the wall-modeled simulation, where the resolution requirement is relaxed by prescribing wall-stresses in the vicinity of walls. One such way of providing accurate values of wall-stresses is based on optimal flow-control techniques. In this study we propose models to extend the terminology of predictive control-based wall-models to complex geometries, by defining transfer functions relating the mean velocity to the second moments at an optimal planar location. As a result the added calculation in the near-wall region (for example RANS) will be omitted and replaced by boundary conditions described by pre-existing transfer functions. The relevant transfer functions are extracted using a data-driven as well as model-based approach. The predicted transfer functions are then compared to their system-identified equivalent for verification.

  5. Double-walled carbon nanotube processing.

    PubMed

    Moore, Katherine E; Tune, Daniel D; Flavel, Benjamin S

    2015-05-27

    Single-walled carbon nanotubes (SWCNTs) have been the focus of intense research, and the body of literature continues to grow exponentially, despite more than two decades having passed since the first reports. As well as extensive studies of the fundamental properties, this has seen SWCNTs used in a plethora of applications as far ranging as microelectronics, energy storage, solar cells, and sensors, to cancer treatment, drug delivery, and neuronal interfaces. On the other hand, the properties and applications of double-walled carbon nanotubes (DWCNTs) have remained relatively under-explored. This is despite DWCNTs not only sharing many of the same unique characteristics of their single-walled counterparts, but also possessing an additional suite of potentially advantageous properties arising due to the presence of the second wall and the often complex inter-wall interactions that arise. For example, it is envisaged that the outer wall can be selectively functionalized whilst still leaving the inner wall in its pristine state and available for signal transduction. A similar situation arises in DWCNT field effect transistors (FETs), where the outer wall can provide a convenient degree of chemical shielding of the inner wall from the external environment, allowing the excellent transconductance properties of the pristine nanotubes to be more fully exploited. Additionally, DWCNTs should also offer unique opportunities to further the fundamental understanding of the inter-wall interactions within and between carbon nanotubes. However, the realization of these goals has so far been limited by the same challenge experienced by the SWCNT field until recent years, namely, the inherent heterogeneity of raw, as-produced DWCNT material. As such, there is now an emerging field of research regarding DWCNT processing that focuses on the preparation of material of defined length, diameter and electronic type, and which is rapidly building upon the experience gained by the broader

  6. Genetic resources for maize cell wall biology.

    PubMed

    Penning, Bryan W; Hunter, Charles T; Tayengwa, Reuben; Eveland, Andrea L; Dugard, Christopher K; Olek, Anna T; Vermerris, Wilfred; Koch, Karen E; McCarty, Donald R; Davis, Mark F; Thomas, Steven R; McCann, Maureen C; Carpita, Nicholas C

    2009-12-01

    Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions. PMID:19926802

  7. Crystal Melting and Wall Crossing Phenomena

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masahito

    This paper summarizes recent developments in the theory of Bogomol'nyi-Prasad-Sommerfield (BPS) state counting and the wall crossing phenomena, emphasizing in particular the role of the statistical mechanical model of crystal melting. This paper is divided into two parts, which are closely related to each other. In the first part, we discuss the statistical mechanical model of crystal melting counting BPS states. Each of the BPS states contributing to the BPS index is in one-to-one correspondence with a configuration of a molten crystal, and the statistical partition function of the melting crystal gives the BPS partition function. We also show that smooth geometry of the Calabi-Yau manifold emerges in the thermodynamic limit of the crystal. This suggests a remarkable interpretation that an atom in the crystal is a discretization of the classical geometry, giving an important clue as such to the geometry at the Planck scale. In the second part, we discuss the wall crossing phenomena. Wall crossing phenomena states that the BPS index depends on the value of the moduli of the Calabi-Yau manifold, and jumps along real codimension one subspaces in the moduli space. We show that by using type IIA/M-theory duality, we can provide a simple and an intuitive derivation of the wall crossing phenomena, furthermore clarifying the connection with the topological string theory. This derivation is consistent with another derivation from the wall crossing formula, motivated by multicentered BPS extremal black holes. We also explain the representation of the wall crossing phenomena in terms of crystal melting, and the generalization of the counting problem and the wall crossing to the open BPS invariants.

  8. Moving Towards Domain Wall Devices in Ferroics

    NASA Astrophysics Data System (ADS)

    Gregg, Marty

    Domain walls in ferroelectric, ferroelastic and multiferroic oxides are distinct functional materials in their own right. They can be conducting, or even superconducting, when surrounding domains are insulating; they can demonstrate magnetism when the surrounding bulk is non-magnetic and they can contain ordered electrical dipoles when the matrix containing them is non-polar. Since domain walls can also be created, destroyed, and controllably moved from place to place, there is an amazing opportunity for us to design new forms of devices in which functionality is actively and dynamically deployed (now you see it; now you don't). This is the essence of the emerging field known as ``domain wall nanoelectronics''. In time, this arena of research could change the way we think of nanoscale functional devices, moving increasingly towards agile circuitry and neuromorphic device architectures. While the control of domain wall injection, movement and annihilation has been developed rather well in the nanomagnetics community (in race-track and domain wall logic research), similar research has not been widely performed in nanoscale ferroelectrics, ferroelastics and multiferroics. This talk will discuss progress that has been made to date and the way in which nanomagnetics research can be used as a source of inspiration. Site-specific domain wall injection and motion control in both proper and improper ferroelectrics using inhomogeneous electric and elastic fields, as well as dielectric patterning in uniaxial ferroelectrics, will be specifically considered. As will be shown, sufficient control has been developed to allow the creation of a diode for domain wall motion in ferroelectrics, for example. The author acknowledges support from the Engineering and Physical Sciences Research Council (EPSRC).

  9. Structural domain walls in polar hexagonal manganites

    NASA Astrophysics Data System (ADS)

    Kumagai, Yu

    2014-03-01

    The domain structure in the multiferroic hexagonal manganites is currently intensely investigated, motivated by the observation of intriguing sixfold topological defects at their meeting points [Choi, T. et al,. Nature Mater. 9, 253 (2010).] and nanoscale electrical conductivity at the domain walls [Wu, W. et al., Phys. Rev. Lett. 108, 077203 (2012).; Meier, D. et al., Nature Mater. 11, 284 (2012).], as well as reports of coupling between ferroelectricity, magnetism and structural antiphase domains [Geng, Y. et al., Nano Lett. 12, 6055 (2012).]. The detailed structure of the domain walls, as well as the origin of such couplings, however, was previously not fully understood. In the present study, we have used first-principles density functional theory to calculate the structure and properties of the low-energy structural domain walls in the hexagonal manganites [Kumagai, Y. and Spaldin, N. A., Nature Commun. 4, 1540 (2013).]. We find that the lowest energy domain walls are atomically sharp, with {210}orientation, explaining the orientation of recently observed stripe domains and suggesting their topological protection [Chae, S. C. et al., Phys. Rev. Lett. 108, 167603 (2012).]. We also explain why ferroelectric domain walls are always simultaneously antiphase walls, propose a mechanism for ferroelectric switching through domain-wall motion, and suggest an atomistic structure for the cores of the sixfold topological defects. This work was supported by ETH Zurich, the European Research Council FP7 Advanced Grants program me (grant number 291151), the JSPS Postdoctoral Fellowships for Research Abroad, and the MEXT Elements Strategy Initiative to Form Core Research Center TIES.

  10. Crystal Melting and Wall Crossing Phenomena

    NASA Astrophysics Data System (ADS)

    Yamazaki, Masahito

    2010-02-01

    This paper summarizes recent developments in the theory of Bogomol'nyi-Prasad-Sommerfield (BPS) state counting and the wall crossing phenomena, emphasizing in particular the role of the statistical mechanical model of crystal melting. This paper is divided into two parts, which are closely related to each other. In the first part, we discuss the statistical mechanical model of crystal melting counting BPS states. Each of the BPS state contributing to the BPS index is in one-to-one correspondence with a configuration of a molten crystal, and the statistical partition function of the melting crystal gives the BPS partition function. We also show that smooth geometry of the Calabi-Yau manifold emerges in the thermodynamic limit of the crystal. This suggests a remarkable interpretation that an atom in the crystal is a discretization of the classical geometry, giving an important clue as to the geometry at the Planck scale.In the second part we discuss the wall crossing phenomena. Wall crossing phenomena states that the BPS index depends on the value of the moduli of the Calabi-Yau manifold, and jumps along real codimension one subspaces in the moduli space. We show that by using type IIA/M-theory duality, we can provide a simple and an intuitive derivation of the wall crossing phenomena, furthermore clarifying the connection with the topological string theory. This derivation is consistent with another derivation from the wall crossing formula, motivated by multi-centered BPS extremal black holes. We also explain the representation of the wall crossing phenomena in terms of crystal melting, and the generalization of the counting problem and the wall crossing to the open BPS invariants.