Science.gov

Sample records for krypton isotopic anomalies

  1. Discovery of the krypton isotopes

    SciTech Connect

    Heim, M.; Fritsch, A.; Schuh, A.; Shore, A.; Thoennessen, M.

    2010-07-15

    Thirty-two krypton isotopes have been observed so far and the discovery of these isotopes is discussed here. For each isotope a brief summary of the first refereed publication, including the production and identification method, is presented.

  2. Atom trap trace analysis of krypton isotopes

    SciTech Connect

    Bailey, K.; Chen, C. Y.; Du, X.; Li, Y. M.; Lu, Z.-T.; O'Connor, T. P.; Young, L.

    1999-11-17

    A new method of ultrasensitive isotope trace analysis has been developed. This method, based on the technique of laser manipulation of neutral atoms, has been used to count individual {sup 85}Kr and {sup 81}Kr atoms present in a natural krypton gas sample with isotopic abundances in the range of 10{sup {minus}11} and 10{sup {minus}13}, respectively. This method is free of contamination from other isotopes and elements and can be applied to several different isotope tracers for a wide range of applications. The demonstrated detection efficiency is 1 x 10{sup {minus}7}. System improvements could increase the efficiency by many orders of magnitude.

  3. Physicochemical isotope anomalies

    SciTech Connect

    Esat, T.M.

    1988-06-01

    Isotopic composition of refractory elements can be modified, by physical processes such as distillation and sputtering, in unexpected patterns. Distillation enriches the heavy isotopes in the residue and the light isotopes in the vapor. However, current models appear to be inadequate to describe the detailed mass dependence, in particular for large fractionations. Coarse- and fine-grained inclusions from the Allende meteorite exhibit correlated isotope effects in Mg both as mass-dependent fractionation and residual anomalies. This isotope pattern can be duplicated by high temperature distillation in the laboratory. A ubiquitous property of meteoritic inclusions for Mg as well as for most of the other elements, where measurements exist, is mass-dependent fractionation. In contrast, terrestrial materials such as microtektites, tektite buttons as well as lunar orange and green glass spheres have normal Mg isotopic composition. A subset of interplanetary dust particles labelled as chondritic aggregates exhibit excesses in {sup 26}Mg and deuterium anomalies. Sputtering is expected to be a dominant mechanism in the destruction of grains within interstellar dust clouds. An active proto-sun as well as the present solar-wind and solar-flare flux are of sufficient intensity to sputter significant amounts of material. Laboratory experiments in Mg show widespread isotope effects including residual {sup 26}Mg excesses and mass dependent fractionation. It is possible that the {sup 26}Mg excesses in interplanetary dust is related to sputtering by energetic solar-wind particles. The implication if the laboratory distillation and sputtering effects are discussed and contrasted with the anomalies in meteoritic inclusions the other extraterrestrial materials the authors have access to.

  4. Krypton isotope analysis using near-resonant stimulated Raman spectroscopy

    SciTech Connect

    Whitehead, C.A.; Cannon, B.D.; Wacker, J.F.

    1994-12-01

    A method for measuring low relative abundances of {sup 85}Kr in one liter or less samples of air has been under development here at Pacific Northwest Laboratory. The goal of the Krypton Isotope Laser Analysis (KILA) method is to measure ratios of 10{sup {minus}10} or less of {sup 85}Kr to more abundant stable krypton. Mass spectrometry and beta counting are the main competing technologies used in rare-gas trace analysis and are limited in application by such factors as sample size, counting times, and selectivity. The use of high-resolution lasers to probe hyperfine levels to determine isotopic abundance has received much attention recently. In this study, we report our progress on identifying and implementing techniques for trace {sup 85}Kr analysis on small gas samples in a static cell as well as limitations on sensitivity and selectivity for the technique. High-resolution pulsed and cw lasers are employed in a laser-induced fluorescence technique that preserves the original sample. This technique, is based on resonant isotopic depletion spectroscopy (RIDS) in which one isotope is optically depleted while preserving the population of a less abundant isotope. The KILA method consists of three steps. In the first step, the 1s{sub 5} metastable level of krypton is populated via radiative cascade following two-photon excitation of the 2p{sub 6} energy level. Next, using RBDS, the stable krypton isotopes are optically depleted to the ground state through the 1s{sub 4} level with the bulk of the {sup 85}Kr population being preserved. Finally, the remaining metastable population is probed to determine {sup 85}Kr concentration. The experimental requirements for each of these steps are outlined below.

  5. s-process studies - Xenon and krypton isotopic abundances

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.; Ward, R. A.

    1978-01-01

    We propose an analysis of the s-process contributions to the isotopes of xenon and krypton. The object is to aid studies of the possibility that meteorites may contain gas that was carried in presolar grains that were grown in stellar ejecta and that were not degassed prior to incorporation into parent bodies. That model suggests routine interstellar fractionation of s-isotopes from r-isotopes owing to differential incorporation into dust. We show that a deficiency of s-process nuclei cannot yield details of Xe-X, but the gross similarities are strong enough to lead one to think that such a deficiency may play a role in a more complicated explanation. We predict the existence of an s-rich complement somewhere if fractional separation of this type has played a role in Xe-X. We show that the analogous decomposition of krypton is more uncertain, and we call for measurements of neutron-capture cross sections to alleviate these uncertainties.

  6. Isotopic anomalies in extraterrestrial grains.

    PubMed

    Ireland, T R

    1996-03-01

    Isotopic compositions are referred to as anomalous if the isotopic ratios measured cannot be related to the terrestrial (solar) composition of a given element. While small effects close to the resolution of mass spectrometric techniques can have ambiguous origins, the discovery of large isotopic anomalies in inclusions and grains from primitive meteorites suggests that material from distinct sites of stellar nucleosynthesis has been preserved. Refractory inclusions, which are predominantly composed of the refractory oxides of Al, Ca, Ti, and Mg, in chondritic meteorites commonly have excesses in the heaviest isotopes of Ca, Ti, and Cr which are inferred to have been produced in a supernova. Refractory inclusions also contain excess 26Mg from short lived 26Al decay. However, despite the isotopic anomalies indicating the preservation of distinct nucleosynthetic sites, refractory inclusions have been processed in the solar system and are not interstellar grains. Carbon (graphite and diamond) and silicon carbide grains from the same meteorites also have large isotopic anomalies but these phases are not stable in the oxidized solar nebula which suggests that they are presolar and formed in the circumstellar atmospheres of carbon-rich stars. Diamond has a characteristic signature enriched in the lightest and heaviest isotopes of Xe, and graphite shows a wide range in C isotopic compositions. SiC commonly has C and N isotopic signatures which are characteristic of H-burning in the C-N-O cycle in low-mass stars. Heavier elements such as Si, Ti, Xe, Ba, and Nd, carry an isotopic signature of the s-process. A minor population of SiC (known as Grains X, ca. 1%) are distinct in having decay products of short lived isotopes 26Al (now 26Mg), 44Ti (now 44Ca), and 49V (now 49Ti), as well as 28Si excesses which are characteristic of supernova nucleosynthesis. The preservation of these isotopic anomalies allows the examination of detailed nucleosynthetic pathways in stars. PMID

  7. Titanium isotopic anomalies in meteorites

    NASA Astrophysics Data System (ADS)

    Neimeyer, S.; Lugmair, G. W.

    1984-07-01

    Studies of Ti isotopic compositions have shown that virtually every Ca-Al-rich Allende inclusion contains anomalous Ti. The present investigation is concerned with the results of a study of Ti isotopic compositions in meteorites. One objective of the study is to evaluate the possibility of a relation between oxygen and Ti anomalies, while another objective is to explore questions regarding the origin of the Ti anomalies. A summary of the major experimental findings of the study of Ti isotopic compositions is also presented. It is noted that an assessment of the implications of the Ti results favors a chemical memory type of model in which products from various nucleosynthetic sources survive in mineral grains. Isotopic heterogeneities are then preserved due to incomplete mixing and/or equilibriation with the bulk of solar system matter. Strong arguments are found to exist against a pure late supernova injection model.

  8. Titanium isotopic anomalies in meteorites

    NASA Technical Reports Server (NTRS)

    Niemeyer, S.; Lugmair, G. W.

    1984-01-01

    Studies of Ti isotopic compositions have shown that virtually every Ca-Al-rich Allende inclusion contains anomalous Ti. The present investigation is concerned with the results of a study of Ti isotopic compositions in meteorites. One objective of the study is to evaluate the possibility of a relation between oxygen and Ti anomalies, while another objective is to explore questions regarding the origin of the Ti anomalies. A summary of the major experimental findings of the study of Ti isotopic compositions is also presented. It is noted that an assessment of the implications of the Ti results favors a chemical memory type of model in which products from various nucleosynthetic sources survive in mineral grains. Isotopic heterogeneities are then preserved due to incomplete mixing and/or equilibriation with the bulk of solar system matter. Strong arguments are found to exist against a pure late supernova injection model.

  9. Chromium isotopic anomalies in the Murchison meteorite

    NASA Astrophysics Data System (ADS)

    Esat, T. M.; Ireland, T. R.

    1989-02-01

    The abundances of chromium isotopes, in refractory inclusions from the Allende meteorite, show wide-spread anomalies. The chromium isotope anomalies are similar in pattern to the anomalies discovered in Ca and Ti. The largest effects occur at the neutron-rich isotopes Ca-48, Ti-50 and Cr-54. Individual Cr-rich pink spinels, from the Murchison meteorite, exhibit large and variable excesses in Cr-53 and Cr-54 including the largest Cr-53 anomaly so far reported. Magnesium isotopes, in Murchison Cr-poor blue spinels, also show variable anomalies in Mg-26 including mass-dependent fractionation favoring the lighter isotopes. The Cr-53, Cr-54 and Mg-26 anomalies in Murchison spinels are indicative of a heterogeneous distribution of magnesium and chromium isotopes in the early solar nebula and require a contribution from several nucleosynthetic components in addition to physicochemical processing.

  10. Zinc Isotope Anomalies in bulk Chondrites

    NASA Astrophysics Data System (ADS)

    Savage, P. S.; Boyet, M.; Moynier, F.

    2014-09-01

    This study is the first to demonstrate that Zn isotope anomalies are present in bulk primitive meteorites, consistent with the injection of material derived from a neutron-rich supernova source into the solar nebula.

  11. Chromium isotopic anomalies in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.

    1986-01-01

    Abundances of the chromium isotopes in terrestrial and bulk meteorite samples are identical to 0.01 percent. However, Ca-Al-rich inclusions from the Allende meteorite show endemic isotopic anomalies in chromium which require at least three nucleosynthetic components. Large anomalies at Cr-54 in a special class of inclusions are correlated with large anomalies at Ca-48 and Ti-50 and provide strong support for a component reflecting neutron-rich nucleosynthesis at nuclear statistical equilibrium. This correlation suggests that materials from very near the core of an exploding massive star may be injected into the interstellar medium.

  12. S-process krypton of variable isotopic composition in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Ott, Urlich; Begemann, Friedrich; Yang, Yongmann; Epstein, Samuel

    1988-01-01

    Data are reported which, for the first time, permit the derivation of the full isotopic spectrum of s-process krypton with reasonable precision. It is shown that this s-Kr in a residue from the Murchison meteorite did not originate in one single s-process but rather is a mixture of contributions from stellar environments where the density of free neutrons was not the same. The astrophysical conditions under which this krypton was produced were distinct from those that have been invoked to explain the solar system s-process abundance. Similar to the C-13-rich carbon component in an aliquot of the same residue, the s-process Kr from different astrophysical sites has retained its identity during the accumulation and subsequent history of the meteorite.

  13. Isotopic anomalies - Chemical memory of Galactic evolution

    NASA Technical Reports Server (NTRS)

    Clayton, Donald D.

    1988-01-01

    New mechanisms for the chemical memory of isotopic anomalies are proposed which are based on the temporal change during the chemical evolution of the Galaxy of the isotopic composition of the mean ejecta from stars. Because of the differing temporal evolution of primary and secondary products of nucleosynthesis, the isotopic composition of the bulk interstellar medium changes approximately linearly with time, and thus any dust component having an age different from that of average dust will be isotopically anomalous. Special attention is given to C, O, Mg, Si, and isotopically heavy average-stellar condensates of SiC.

  14. Mass Spectrometric Measurement of Martian Krypton and Xenon Isotopic Abundance

    NASA Technical Reports Server (NTRS)

    Mahaffy, P.; Mauersberger, K.

    1993-01-01

    The Viking gas chromatograph mass spectrometer experiment provided significant data on the atmospheric composition at the surface of Mars, including measurements of several isotope ratios. However, the limited dynamic range of this mass spectrometer resulted in marginal measurements for the important Kr and Xe isotopic abundance. The Xe-129 to Xe-132 ratio was measured with an uncertainty of 70%, but none of the other isotope ratios for these species were obtained. Accurate measurement of the Xe and Kr isotopic abundance in this atmosphere provides an important data point in testing theories of planetary formation and atmospheric evolution. The measurement is also essential for a stringent test for the Martian origin of the SNC meteorites, since the Kr and Xe fractionation pattern seen in gas trapped in glassy nodules of an SNC (EETA 79001) is unlike any other known solar system resevoir. Current flight mass spectrometer designs combined with the new technology of a high-performance vacuum pumping system show promise for a substantial increase in gas throughput and the dynamic range required to accurately measure these trace species. Various aspects of this new technology are discussed.

  15. Development of an improved detector for krypton-81 and other noble-gas isotopes

    SciTech Connect

    Hurst, G.S.

    1988-08-25

    Phase 1 studies focused on the annealing (transient melting) of silicon and germanium targets with a krypton-fluoride (KrF) excimer laser. A suitable target of a semiconducting material--as a means of storing noble gas atoms--is a key component of a device called the RISTRON for counting isotopes of a noble gas. A means for isotopic selective counting of atoms such as 39Ar for ocean water circulation studies and 81Kr for groundwater and ice-cap dating would be of considerable interest to earth scientists. In the RISTRON, ions are created by resonance ionization of neutral krypton atoms released from one of the targets by pulsed laser melting, and these ions are implanted in a second target after isotopic enrichment. The studies evaluated the space charge or plasma effects created as an undesirable by-product of the annealing of a semiconductor with a pulsed excimer laser. The studies showed that the space charge produced when either silicon or germanium is annealed with a KrF laser can be removed with modest electric fields in less than one microsecond.

  16. Use of a krypton isotope for rapid ion changeover at the Lawrence Berkeley Laboratory 88-inch cyclotron

    NASA Technical Reports Server (NTRS)

    Soli, George A.; Nichols, Donald K.

    1989-01-01

    An isotope of krypton, Kr86, has been combined with a mix of Ar, Ne, and N ions at the electron cyclotron resonance (ECR) source, at the Lawrence Berkeley Laboratory cyclotron, to provide rapid ion changeover in Single Event Phenomena (SEP) testing. The new technique has been proved out successfully by a recent Jet Propulsion Laboratory (JPL) test in which it was found that there was no measurable contamination from other isotopes.

  17. Isotopic anomalies from neutron reactions during explosive carbon burning

    NASA Technical Reports Server (NTRS)

    Lee, T.; Schramm, D. N.; Wefel, J. P.; Blake, J. B.

    1979-01-01

    The heavy isotopic anomalies observed recently in the fractionation and unknown nuclear inclusions from the Allende meteorite are explained by neutron reactions during the explosive carbon burning (ECB). This model produces heavy anomalies in the same zone where Al-26 and O-16 are produced, thus reducing the number of source zones required for the isotopic anomalies. Unlike the classical r-process, the ECB n-process avoids the problem with the Sr anomaly and may resolve the problem of conflicting time scales between Al-26 and the r-process isotopes I-129 and Pu-244. Experimental studies of Zr and Ce isotopic composition are proposed to test this model.

  18. The Role of Triaxiality in Shape-Coexistence in Light Krypton Isotopes

    NASA Astrophysics Data System (ADS)

    Fischer, S. M.; Lister

    2008-04-01

    Shape co-existence in lead^1 and krypton^2-4 isotopes has become a cutting-edge topic in understanding the structure of heavier nuclei. Prediction of the relative binding energies of different shapes, and understanding the mixing between configurations presents a discriminating challenge to nuclear theory. In ^72,74,76Kr the occurrence of two well bound shapes has been demonstrated through the observation of low-lying J^π = 0^+ isomers and through radioactive beam Coulomb excitation. Roughly speaking, the shapes correspond to oblate-like and prolate-like configurations. However, the exact shapes, and the role of triaxiality has yet to be fully explored. We present new results from ``in-beam'' heavy-ion spectroscopy on ^74Kr which shows that the population of the isomer is mainly through a gamma vibrational band and that considerable mixing is involved between the states built on the isomer and the gamma band. This research was supported by the DOE Office of Nuclear Physics under contract DE-AC02-06CH11357. ^1A. N. Andreyev et al., Nature 405, 430 (2000) ^2E. Clement et al., Phys. Rev. C 75, 054313 (2007) ^3E. Bouchez et al., Phys. Rev. Lett. 90, 082502 (2003) ^4M. Bender et al., Phys. Rev. C 74, 024312 (2006)

  19. The identification of meteorite inclusions with isotope anomalies

    NASA Astrophysics Data System (ADS)

    Papanastassiou, D. A.; Brigham, C. A.

    1989-03-01

    Ca-Al refractory inclusions with characteristic chemical and mineralogical compositions show an enhanced occurrence of 20 pct of isotope anomalies reflecting unknown nucleosynthetic effects for O and Mg. The anomalies are characterized by large isotope fractionation in Mg, apparent deficits in Mg-26/Mg-24, and large correlated effects for isotopes of Ca, Ti, and Cr. These isotope patterns define exotic components depleted in the most neutron-rich isotopes of Ca, Ti, and Cr, or components depleted in isotopes produced in explosive O and Si burning. An opaque assemblage within one of the inclusions yields isotope anomalies in Cr similar to the bulk inclusion and must be intrinsically part of the inclusion and not a trapped, foreign grain aggregate.

  20. Nucleosynthetic strontium isotope anomalies in carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Yokoyama, Tetsuya; Fukami, Yusuke; Okui, Wataru; Ito, Nobuaki; Yamazaki, Hiroshi

    2015-04-01

    Precise Sr isotopic compositions in samples from sequential acid leaching experiments have been determined for three carbonaceous chondrites, Allende, Murchison, and Tagish Lake, together with those in the bulk aliquots of these meteorites. The chondritic acid leachates and residues were characterized by Sr isotope anomalies with variable μ84Sr values (106 relative deviation from a standard material) ranging from +120 to - 4700 ppm, documenting multiple nucleosynthetic sources within a single meteorite. In addition, the μ84Sr patterns across leaching samples for individual chondrites differed from one another. The highest μ84Sr values were observed for leaching Step 3 (HCl+H2O, 75 °C) for Allende and Murchison likely because of the incorporation of calcium and aluminum-rich inclusions (CAIs). In contrast, extremely low μ84Sr values were observed in the later fractions (Steps 6 and 7) for Murchison and Tagish Lake, suggesting the existence of s-process-enriched presolar SiC grains derived from AGB stars. A μ84Sr-ɛ54Cr diagram was prepared with the CAIs and bulk aliquots of carbonaceous chondrites and other meteorites (noncarbonaceous) that were plotted separately; however, they still formed a global positive correlation. CAIs presented the highest μ84Sr and ɛ54Cr values, whereas carbonaceous chondrites and noncarbonaceous meteorites had intermediate and the lowest μ84Sr and ɛ54Cr values, respectively. The positive trend was interpreted as resulting from global thermal processing in which sublimation of high μ84Sr and ɛ54Cr carriers generated the excess μ84Sr and ɛ54Cr signatures in CAIs, while noncarbonaceous planetesimals accreted from materials that underwent significant thermal processing and thus had relatively low μ84Sr and ɛ54Cr values. Apart from the global trend, the carbonaceous chondrites and noncarbonaceous meteorites both exhibited intrinsic variations that highlight an isotopic dichotomy similar to that observed in other isotope

  1. Titanium isotopic anomalies in chondrules from carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Niemeyer, S.

    1988-02-01

    Isotopic analyses of Ti from a suite of eight Allende chondrules were conducted to determine whether any relationship exists between the composition and structure of a chondrule and the Ti isotopic patterns. Four of the eight chondrules displayed well-resolved anomalies with respect to Ti-50/Ti-46 ratio, which ranged from a Ti-50 deficit of two epsilon-units to a T-50 excess of nine epsilon-units. No clear link was found between the structure of the chondrules and the Ti anomalies (although the chondrule with by far the largest Ti isotopic anomaly was also Al-rich, suggesting that there might exist a complicated relationship between the degree of refractory enrichment and the magnitude of Ti isotopic anomalies.

  2. Some key issues in isotopic anomalies - Astrophysical history and aggregation

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1982-01-01

    Astrophysical history, particularly that period extending from stellar nucleosynthesis events to the formation of meteorites, is discussed as the key element for the understanding of isotopic anomalies in meteorites. The bulk homogeneity of the interstellar medium is considered, and it is argued that, despite the presence of spatial inhomogeneities due to different nucleosynthesis rates in different parts of the galaxy and supernova ejecta, a cosmic chemical memory of nucleosynthesis patterns, rather than an inhomogeneous injection, is the source of isotopic anomalies. According to this view, volatility patterns and some isotopic patterns are mapped onto a grain-size spectrum, and the FUN systematics may be explained by interstellar sputtering. Furthermore, meteoritic He and Ne abundances are inferred to be presolar, and the ubiquitous titanium isotopic anomalies are explained by processes of chemical fixation and condensation in varying environments.

  3. Barium and neodymium isotopic anomalies in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Mcculloch, M. T.; Wasserburg, G. J.

    1978-01-01

    The discovery of Ba and Nd isotopic anomalies in two inclusions from the Allende meteorite is reported. The inclusions are Ca-Al-rich objects typical of the type considered as high-temperature condensation products in the solar nebula and contain distinctive Mg and O isotopic anomalies of the FUN (mass Fractionation, Unknown Nuclear processes) type. Mass-spectrometry results are discussed which show that inclusion C1 has anomalies in Ba at masses 134 and 136, while inclusion EK1-4-1 exhibits large marked negative anomalies at 130, 132, 134, and 136, as well as a positive anomaly at 137. It is also found that inclusion EK1-4-1 shows marked negative anomalies in Nd at masses 142, 146, 148, and 150, in addition to a positive anomaly at 145. These isotopic shifts are attributed to addition of r-process nuclei rather than mass fractionation. It is suggested that an onion-shell supernova explosion followed by injection into the solar nebula is the most likely generic model that may explain the observations.

  4. Zinc isotope anomalies. [in Allende meteorite

    NASA Technical Reports Server (NTRS)

    Volkening, J.; Papanastassiou, D. A.

    1990-01-01

    The Zn isotope composition in refractory-element-rich inclusions of the Allende meteorite are determined. Typical inclusions contain normal Zn. A unique inclusion of the Allende meteorite shows an excess for Zn-66 of 16.7 + or - 3.7 eu (1 eu = 0.01 percent) and a deficit for Zn-70 of 21 + or - 13 eu. These results indicate the preservation of exotic components even for volatile elements in this inclusion. The observed excess Zn-66 correlates with excesses for the neutron-rich isotopes of Ca-48, Ti-50, Cr-54, and Fe-58 in the same inclusion.

  5. Zinc isotope anomalies in Allende meteorite inclusions

    NASA Technical Reports Server (NTRS)

    Loss, R. D.; Lugmair, G. W.

    1990-01-01

    The isotopic compositions of Zn, Cr, Ti, and Ca have been measured in a number of CAIs from the Allende meteorite. The aim was to test astrophysical models which predict large excesses of Zn-66 to accompany excesses in the neutron-rich isotopes of Ca, Ti, Cr, and Ni. Some of the CAIs show clearly resolved but small excesses for Zn-66 which are at least an order of magnitude smaller than predicted. This result may simply reflect the volatility and chemical behavior of Zn as compared to the other (more refractory) anomalous elements found in these samples. Alternatively, revision of parameters and assumptions used for the model calculations may be required.

  6. Endemic Mo Isotopic Anomalies in Iron and Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Papanastassiou, D. A.; Wasserburg, G. J.; Ngo, H. H.

    2004-01-01

    Mo in refractory interstellar grains shows large isotope anomalies. Recent Mo studies showed isotope effects in Allende and Murchison, and in iron meteorites, mesosiderites, and pallasites. Excesses of p- and r-process isotopes (or depletion of sprocess isotopes) of up to 3.5 epsilon units (epsilon u=parts in 10(exp 4)) were reported. We have reported on endemic isotope anomalies in Ru. Other workers have resolved no isotope anomalies for Mo or Ru and have claimed that the work by others is incorrect. Because Ru isotopes can interfere at Mo-96, Mo-98, Mo-100, we improved the chemical separations and eliminated interferences. For Mo work, we used the same solutions from which we separated and analyzed Ru. Three of the iron meteorites (Coahuila, Cape York, and Cape of Good Hope) were chosen for their large Mo isotopic effects. Mo was loaded on outgassed Re filaments, and then reduced; we used Ba(OH)2-NaOH as emitter, and measured Mo in static mode, as MoO3(-). We used Mo-98/Mo-96 for the mass fractionation correction (exponential law). No interferences from Ru or Zr isotopes were detected using the electron multiplier and no corrections were needed. For results on Mo standards we show 2 sigma(not 2 sigma mean) external precision better than: 0.7 epsilon u for Mo-94/Mo-96 and Mo-95/Mo-96; 1.0 epsilon u for Mo-92/Mo-96 and Mo-97/Mo-96; 1.4 epsilon u for Mo-100/Mo-96. Reproducibility for Mo standards is shown as contours (blue lines).

  7. The longevity of the South Pacific isotopic and thermal anomaly

    USGS Publications Warehouse

    Staudigel, H.; Park, K.-H.; Pringle, M.; Rubenstone, J.L.; Smith, W.H.F.; Zindler, A.

    1991-01-01

    The South Pacific is anomalous in terms of the Sr, Nd, and Pb isotope ratios of its hot spot basalts, a thermally enhanced lithosphere, and possibly a hotter mantle. We have studied the Sr, Nd, and Pb isotope characteristics of 12 Cretaceous seamounts in the Magellans, Marshall and Wake seamount groups (western Pacific Ocean) that originated in this South Pacific Isotopic and Thermal Anomaly (SOPITA). The range and values of isotope ratios of the Cretaceous seamount data are similar to those of the island chains of Samoa, Tahiti, Marquesas and Cook/Austral in the SOPITA. These define two major mantle components suggesting that isotopically extreme lavas have been produced at SOPITA for at least 120 Ma. Shallow bathymetry, and weakened lithosphere beneath some of the seamounts studied suggests that at least some of the thermal effects prevailed during the Cretaceous as well. These data, in the context of published data, suggest: 1. (1)|SOPITA is a long-lived feature, and enhanced heat transfer into the lithosphere and isotopically anomalous mantle appear to be an intrinsic characteristic of the anomaly. 2. (2)|The less pronounced depth anomaly during northwesterly plate motion suggests that some of the expressions of SOPITA may be controlled by the direction of plate motion. Motion parallel to the alignment of SOPITA hot spots focusses the heat (and chemical input into the lithosphere) on a smaller cross section than oblique motion. 3. (3)|The lithosphere in the eastern and central SOPITA appears to have lost its original depleted mantle characteristics, probably due to enhanced plume/lithosphere interaction, and it is dominated by isotopic compositions derived from plume materials. 4. (4)|We speculate (following D.L. Anderson) that the origin of the SOPITA, and possibly the DUPAL anomaly is largely due to focussed subduction through long periods of the geological history of the earth, creating a heterogeneous distribution of recycled components in the lower mantle

  8. A spectacular nitrogen isotope anomaly in Bencubbin

    NASA Technical Reports Server (NTRS)

    Prombo, C. A.; Clayton, R. N.

    1985-01-01

    Results of isotopic measurements on an unusual stony-iron meteorite named Bencubbin, which was found in Western Australia in 1930, are reported. Nitrogen from both the metallic and stony parts of the Bencubbin meteorite was analyzed, and in both materials large excesses of (15)N were found, resulting in values of the (14)N/(15)N abundance ratios as low as 137. That is, (15)N is enriched in Bencubbin by about a factor of two relative to terrestrial nitrogen. This is the largest (15)N enrichment of any known natural material. The effect is so large that chemical processes are probably inadequate to account for it. Nuclear processes which may be responsible for the anomalous isotope abundance are discussed.

  9. Isotopic anomalies from neutron reactions during explosive carbon burning

    NASA Technical Reports Server (NTRS)

    Lee, T.; Schramm, D. N.; Wefel, J. P.; Blake, J. B.

    1978-01-01

    The possibility that the newly discovered correlated isotopic anomalies for heavy elements in the Allende meteorite were synthesized in the secondary neutron capture episode during the explosive carbon burning, the possible source of the O-16 and Al-26 anomalies, is examined. Explosive carbon burning calculations under typical conditions were first performed to generate time profiles of temperature, density, and free particle concentrations. These quantities were inputted into a general neutron capture code which calculates the resulting isotopic pattern from exposing the preexisting heavy seed nuclei to these free particles during the explosive carbon burning conditions. The interpretation avoids the problem of the Sr isotopic data and may resolve the conflict between the time scales inferred from 1-129, Pu-244, and Al-26.

  10. Palladium Isotopic Evidence for Nucleosynthetic and Cosmogenic Isotope Anomalies in IVB Iron Meteorites

    NASA Astrophysics Data System (ADS)

    Mayer, Bernhard; Wittig, Nadine; Humayun, Munir; Leya, Ingo

    2015-08-01

    The origin of ubiquitous nucleosynthetic isotope anomalies in meteorites may represent spatial and/or temporal heterogeneity in the sources that supplied material to the nascent solar nebula, or enhancement by chemical processing. For elements beyond the Fe peak, deficits in s-process isotopes have been reported in some (e.g., Mo, Ru, W) but not all refractory elements studied (e.g., Os) that, among the iron meteorites, are most pronounced in IVB iron meteorites. Palladium is a non-refractory element in the same mass region as Mo and Ru. In this study, we report the first precise Pd isotopic abundances from IVB irons to test the mechanisms proposed for the origin of isotope anomalies. First, this study determined the existence of a cosmogenic neutron dosimeter from the reaction 103Rh(n, β-)104Pd in the form of excess 104Pd, correlated with excess 192Pt, in IVB irons. Second, all IVB irons show a deficit of the s-process only isotope 104Pd (\\varepsilon 104Pd = -0.48 ± 0.24), an excess of the r-only isotope 110Pd (\\varepsilon 110Pd = +0.46 ± 0.12), and no resolvable anomaly in the p-process 102Pd (\\varepsilon 102Pd = +1 ± 1). The magnitude of the Pd isotope anomaly is about half that predicted from a uniform depletion of the s-process yields from the correlated isotope anomalies of refractory Mo and Ru. The discrepancy is best understood as the result of nebular processing of the less refractory Pd, implying that all the observed nucleosynthetic anomalies in meteorites are likely to be isotopic relicts. The Mo-Ru-Pd isotope systematics do not support enhanced rates of the 22Ne(α,n)25Mg neutron source for the solar system s-process.

  11. Iron isotope anomalies. [in carbonaceous meteorites

    NASA Technical Reports Server (NTRS)

    Voelkening, J.; Papanastassiou, D. A.

    1989-01-01

    Precise determinations of the Fe isotope abundances yield identical results for a terrestrial standard and for samples of carbonaceous meteorites. Fe-54/Fe-56 = 0.062669; Fe-57/Fe-56 = 0.023261 + or - 0.000002; and Fe-58/Fe-56 = 0.0031132 + or - 0.0000011 are found. Refractory element-rich inclusions from the Allende carbonaceous meteorite yield hints of deficits in Fe-57/Fe-56 of up to -3.9 + or - 2.6 parts in 10,000 and a hint of excess in Fe-58/Fe-56 of up to 27 + or - 11 parts in 10,000. One special (FUN) inclusion shows a large excess of 2.9 percent, uniquely attributable to Fe-58. This excess correlates with large excesses in the same inclusion in the neutron-rich isotopes Ca-48, Ti-50 and Cr-54. These results strengthen the evidence for an exotic nucleosynthetic component produced by neutron-rich, statistical equilibrium burning, and injected into the interstellar medium.

  12. More on Ru Endemic Isotope Anomalies in Meteorites

    NASA Technical Reports Server (NTRS)

    Papanastassiou, D. A.; Chen, J. H.; Wasserburg, G. J.

    2004-01-01

    We reported last year on endemic isotope anomalies for Ru in iron meteorites, pallasites, ordinary chondrites, and on a whole-rock sample of Allende. We have extended the Ru measurements to more meteorites, to refractory Ca-Al-rich inclusions (CAI) from Allende, and to a whole rock sample of Murchison (CM2). In a companion abstract we report on new measurements for the Mo isotopes, in some of the same samples. There has been a renewed interest in searching for isotope anomalies in this nuclide region, as Ru and Mo include many isotopes from r-, s-, and p-process nucleosynhesis. Furthermore, the Ru and Mo p-process isotopes show atypically high abundances, which have been hard to explain through the standard nucleosynthetic processes. Effects are possible in Ru-98 and Ru-99 from Tc-98 (with a poorly known t(sub 1/2)=4.2 to 10Ma) and from Tc-99 (t(sub 1/2)=0.21Ma). Natural Tc is now extinct on Earth due to the short half-lives, but may have been present in the early solar system. Both radiogenic and general isotope anomalies are important in understanding the processes for the formation of the early solar system. The current emphasis on Ru and Mo is also the result of the development of Negative-ion Thermal Ionization Mass Spectrometry and of Multiple-Collector, Inductively-Coupled-Mass-Spectrometry. We have also developed specific chemical siparation techniques for Ru, which eliminated mass interference effects.

  13. NEUTRON-RICH CHROMIUM ISOTOPE ANOMALIES IN SUPERNOVA NANOPARTICLES

    SciTech Connect

    Dauphas, N.; Remusat, L.; Papanastassiou, D. A.; Guan, Y.; Ma, C.; Eiler, J. M.; Chen, J. H.; Roskosz, M.; Stodolna, J.

    2010-09-10

    Neutron-rich isotopes with masses near that of iron are produced in Type Ia and II supernovae (SNeIa and SNeII). Traces of such nucleosynthesis are found in primitive meteorites in the form of variations in the isotopic abundance of {sup 54}Cr, the most neutron-rich stable isotope of chromium. The hosts of these isotopic anomalies must be presolar grains that condensed in the outflows of SNe, offering the opportunity to study the nucleosynthesis of iron-peak nuclei in ways that complement spectroscopic observations and can inform models of stellar evolution. However, despite almost two decades of extensive search, the carrier of {sup 54}Cr anomalies is still unknown, presumably because it is fine grained and is chemically labile. Here, we identify in the primitive meteorite Orgueil the carrier of {sup 54}Cr anomalies as nanoparticles (<100 nm), most likely spinels that show large enrichments in {sup 54}Cr relative to solar composition ({sup 54}Cr/{sup 52}Cr ratio >3.6 x solar). Such large enrichments in {sup 54}Cr can only be produced in SNe. The mineralogy of the grains supports condensation in the O/Ne-O/C zones of an SNII, although a Type Ia origin cannot be excluded. We suggest that planetary materials incorporated different amounts of these nanoparticles, possibly due to late injection by a nearby SN that also delivered {sup 26}Al and {sup 60}Fe to the solar system. This idea explains why the relative abundance of {sup 54}Cr and other neutron-rich isotopes vary between planets and meteorites. We anticipate that future isotopic studies of the grains identified here will shed new light on the birth of the solar system and the conditions in SNe.

  14. Neutron-poor Nickel Isotope Anomalies in Meteorites

    NASA Astrophysics Data System (ADS)

    Steele, Robert C. J.; Coath, Christopher D.; Regelous, Marcel; Russell, Sara; Elliott, Tim

    2012-10-01

    We present new, mass-independent, Ni isotope data for a range of bulk chondritic meteorites. The data are reported as ɛ60Ni58/61, ɛ62Ni58/61, and ɛ64Ni58/61, or the parts per ten thousand deviations from a terrestrial reference, the NIST SRM 986 standard, of the 58Ni/61Ni internally normalized 60Ni/61Ni, 62Ni/61Ni, and 64Ni/61Ni ratios. The chondrites show a range of 0.15, 0.29, and 0.84 in ɛ60Ni58/61, ɛ62Ni58/61, and ɛ64Ni58/61 relative to a typical sample precision of 0.03, 0.05, and 0.08 (2 s.e.), respectively. The carbonaceous chondrites show the largest positive anomalies, enstatite chondrites have approximately terrestrial ratios, though only EH match Earth's composition within uncertainty, and ordinary chondrites show negative anomalies. The meteorite data show a strong positive correlation between ɛ62Ni58/61 and ɛ64Ni58/61, an extrapolation of which is within the error of the average of previous measurements of calcium-, aluminium-rich inclusions. Moreover, the slope of this bulk meteorite array is 3.003 ± 0.166 which is within the error of that expected for an anomaly solely on 58Ni. We also determined to high precision (~10 ppm per AMU) the mass-dependent fractionation of two meteorite samples which span the range of ɛ62Ni58/61 and ɛ64Ni58/61. These analyses show that "absolute" ratios of 58Ni/61Ni vary between these two samples whereas those of 62Ni/61Ni and 64Ni/61Ni do not. Thus, Ni isotopic differences seem most likely explained by variability in the neutron-poor 58Ni, and not correlated anomalies in the neutron-rich isotopes, 62Ni and 64Ni. This contrasts with previous inferences from mass-independent measurements of Ni and other transition elements which invoked variable contributions of a neutron-rich component. We have examined different nucleosynthetic environments to determine the possible source of the anomalous material responsible for the isotopic variations observed in Ni and other transition elements within bulk samples. We find

  15. NEUTRON-POOR NICKEL ISOTOPE ANOMALIES IN METEORITES

    SciTech Connect

    Steele, Robert C. J.; Coath, Christopher D.; Regelous, Marcel; Elliott, Tim; Russell, Sara

    2012-10-10

    We present new, mass-independent, Ni isotope data for a range of bulk chondritic meteorites. The data are reported as {epsilon}{sup 60}Ni{sub 58/61}, {epsilon}{sup 62}Ni{sub 58/61}, and {epsilon}{sup 64}Ni{sub 58/61}, or the parts per ten thousand deviations from a terrestrial reference, the NIST SRM 986 standard, of the {sup 58}Ni/{sup 61}Ni internally normalized {sup 60}Ni/{sup 61}Ni, {sup 62}Ni/{sup 61}Ni, and {sup 64}Ni/{sup 61}Ni ratios. The chondrites show a range of 0.15, 0.29, and 0.84 in {epsilon}{sup 60}Ni{sub 58/61}, {epsilon}{sup 62}Ni{sub 58/61}, and {epsilon}{sup 64}Ni{sub 58/61} relative to a typical sample precision of 0.03, 0.05, and 0.08 (2 s.e.), respectively. The carbonaceous chondrites show the largest positive anomalies, enstatite chondrites have approximately terrestrial ratios, though only EH match Earth's composition within uncertainty, and ordinary chondrites show negative anomalies. The meteorite data show a strong positive correlation between {epsilon}{sup 62}Ni{sub 58/61} and {epsilon}{sup 64}Ni{sub 58/61}, an extrapolation of which is within the error of the average of previous measurements of calcium-, aluminium-rich inclusions. Moreover, the slope of this bulk meteorite array is 3.003 {+-} 0.166 which is within the error of that expected for an anomaly solely on {sup 58}Ni. We also determined to high precision ({approx}10 ppm per AMU) the mass-dependent fractionation of two meteorite samples which span the range of {epsilon}{sup 62}Ni{sub 58/61} and {epsilon}{sup 64}Ni{sub 58/61}. These analyses show that 'absolute' ratios of {sup 58}Ni/{sup 61}Ni vary between these two samples whereas those of {sup 62}Ni/{sup 61}Ni and {sup 64}Ni/{sup 61}Ni do not. Thus, Ni isotopic differences seem most likely explained by variability in the neutron-poor {sup 58}Ni, and not correlated anomalies in the neutron-rich isotopes, {sup 62}Ni and {sup 64}Ni. This contrasts with previous inferences from mass-independent measurements of Ni and other

  16. On isotopic anomalies in samarium. [in Allende meteorite

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1979-01-01

    The solar isotopic composition of Sm is decomposed into s, r, and p components. The anomaly pattern discovered by Lugmair et al. (1978) in EK1-04 Allende inclusion can be presented as a fractionation of the average s-pattern from the average r-pattern. This representation requires a fractionation of 0.029%/(amu) and either (1) a 0.42% deficiency of s relative to r and a 0.15% deficiency of p relative to r, or (2) a 0.42% excess of r relative to s and a 0.27% excess of p relative to s. The nature of this anomaly suggest a systematic physical fractionation of r, s, and p nuclei from each other in the initial condition leading to EK1-04. A neighboring supernova injection would not be expected to produce this anomaly.

  17. On krypton isotopic abundances in the sun and in the solar wind

    NASA Technical Reports Server (NTRS)

    Marti, K.

    1980-01-01

    The Kr isotopic systematics in the meteorite Pesyanoe which is known to contain solar-type gases, are reported. Discrepancies in the isotopic data of fractions released at stepwise increasing temperatures cannot be reconciled with spallation Kr components, although spallation effects are significant. Fractionation mechanisms on the parent body and in the solar wind source region are considered and the implications for solar abundances discussed.

  18. Wolf-Rayet Stars and the Isotopic Anomaly Connection

    NASA Astrophysics Data System (ADS)

    Arnould, M.; Paulus, G.; Meynet, G.

    1993-07-01

    Isotopic anomalies are now known to be carried by high-temperature inclusions of primitive meteorites that formed from solar reservoirs out of equilibrium with the rest of the solar nebula, as well as by various types of grains (diamond, graphite, SiC) that are considered to be of circumstellar origin, and have survived the process of incorporation into the solar system (see e.g. [1] for a recent review). Such anomalies provide new clues to many important astrophysical problems, and raise the question of their nucleosynthetic origin. In fact, they offer the exciting perspective of confronting abundance observations with nucleosynthesis models for a very limited number of events, even possibly a single one. This situation is in marked contrast with the one encountered when trying to understand the bulk solar system composition. Up to now, Red Giant stars, massive mass loosing objects (of the Wolf-Rayet type), novae or supernovae have been proposed as possible contributors to the observed anomalies. In this paper, we revisit the role that could possibly be played in that respect by Wolf-Rayet (WR) stars. Wolf-Rayet stars are appealing isotopic anomaly contributors for many reasons. In particular (1) they are observed to loose mass at very large rates that can exceed 10^-5M solar masses yr^-l, the ejected material being contaminated with the products of hydrogen and helium burning, and (2) certain WR stars are known to make dust episodically in their winds [e.g., 2]. In addition, the role of WR stars would be well in line with the "bing-bang" model for the isotopic anomalies promoted by Reeves [3]. The aim of this contribution is to extent and update previous calculations [4,5] of the isotopic anomalies that could be carried by the wind of WR stars of various masses and initial compositions during different phases of their evolution, those anomalies possibly loading circumstellar WR grains. The calculation of the WR wind composition is performed on grounds of detailed

  19. Mass Fractionation Laws, Mass-Independent Effects, and Isotopic Anomalies

    NASA Astrophysics Data System (ADS)

    Dauphas, Nicolas; Schauble, Edwin A.

    2016-06-01

    Isotopic variations usually follow mass-dependent fractionation, meaning that the relative variations in isotopic ratios scale with the difference in mass of the isotopes involved (e.g., δ17O ≈ 0.5×δ18O). In detail, however, the mass dependence of isotopic variations is not always the same, and different natural processes can define distinct slopes in three-isotope diagrams. These variations are subtle, but improvements in analytical capabilities now allow precise measurement of these effects and make it possible to draw inferences about the natural processes that caused them (e.g., reaction kinetics versus equilibrium isotope exchange). Some elements, in some sample types, do not conform to the regularities of mass-dependent fractionation. Oxygen and sulfur display a rich phenomenology of mass-independent fractionation, documented in the laboratory, in the rock record, and in the modern atmosphere. Oxygen in meteorites shows isotopic variations that follow a slope-one line (δ17O ≈ δ18O) whose origin may be associated with CO photodissociation. Sulfur mass-independent fractionation in ancient sediments provides the tightest constraint on the oxygen partial pressure in the Archean and the timing of Earth's surface oxygenation. Heavier elements also show departures from mass fractionation that can be ascribed to exotic effects associated with chemical reactions such as magnetic effects (e.g., Hg) or the nuclear field shift effect (e.g., U or Tl). Some isotopic variations in meteorites and their constituents cannot be related to the terrestrial composition by any known process, including radiogenic, nucleogenic, and cosmogenic effects. Those variations have a nucleosynthetic origin, reflecting the fact that the products of stellar nucleosynthesis were not fully homogenized when the Solar System formed. Those anomalies are found at all scales, from nanometer-sized presolar grains to bulk terrestrial planets. They can be used to learn about stellar

  20. Investigation of cold collision in a two isotope magneto-optical trap for Krypton atoms

    NASA Astrophysics Data System (ADS)

    Singh, S.; Tiwari, V. B.; Kale, Y. B.; Mishra, S. R.; Rawat, H. S.

    2015-09-01

    We report simultaneous cooling and trapping of metastable 84Kr (84Kr*) and metastable 86Kr (86Kr*) atoms by overlapping the cooling laser beams for these different isotopes in the same region of a magneto-optical trap (MOT). Approximately 2 × 105 atoms of each isotope were trapped in this two isotope-MOT (TIMOT). We have investigated the heteronuclear collision trap loss rates for each isotope due to the presence of cold atoms of other isotope using the TIMOT loading curves. The two body heteronuclear loss rate coefficient {β }{84Kr*-{}86Kr*} (i.e. for the loss of 84Kr* due to presence of 86Kr*) and the reciprocal loss rate coefficient {β }{86Kr*-{}84Kr*} (i.e. for the loss of 86Kr* due to presence of 84Kr*) are measured to be (8.7 ± 0.8) × 10-10 cm3 s-1 and (8.8 ± 0.8) × 10-10 cm3 s-1 respectively for laser beam intensity values of 21 mW cm-2 (for cooling of 84Kr*) and 64 mW cm-2 (for cooling of 86Kr*). The dependence of heteronuclear cold collision loss rate on cooling laser beams intensity has also been studied and compared with homonuclear cold collision loss rate.

  1. MULTIPLE ORIGINS OF NITROGEN ISOTOPIC ANOMALIES IN METEORITES AND COMETS

    SciTech Connect

    Aleon, Jerome

    2010-10-20

    Isotopic fractionation and mixing calculations compared with coupled hydrogen and nitrogen isotopic composition of organic molecules from primitive chondrites, interplanetary dust particles (IDPs), and comets C/1995 O1 (Hale-Bopp) and 81P/Wild2 reveal that meteoritic and cometary organic matter contains three different isotopic components of different origins. (1) A major component of carbonaceous chondrites, IDPs, and comets Hale-Bopp and Wild2 shows correlated H and N isotopic compositions attributable to isotope exchange between an organic matter of solar composition and a reservoir formed by ion-molecule reactions at T < 25 K under conditions where competing reactions are strongly inhibited, possibly in the final evolutionary stages of the presolar cloud core, or more likely in the coldest outer regions of the solar protoplanetary disk. (2) In carbonaceous chondrites, IDPs, and comet Wild2, this component is mixed with a {sup 15}N-rich component having identical {sup 15}N and D enrichments relative to the protosolar gas. Temperatures > 100 K deduced from the low D/H ratio and an anti-correlation between the abundance of this component and meteoritic age indicate a late origin in the solar protoplanetary disk. N{sub 2} self-shielding and the non-thermal nucleosynthesis of {sup 15}N upon irradiation are possible but unlikely sources of this component, and a chemical origin is preferred. (3) An interstellar component with highly fractionated hydrogen isotopes and unfractionated nitrogen isotopes is present in ordinary chondrites. A dominantly solar origin of D and {sup 15}N excesses in primitive solar system bodies shows that isotopic anomalies do not necessarily fingerprint an interstellar origin and implies that only a very small fraction of volatile interstellar matter survived the events of solar system formation.

  2. Isotopically distinct reservoirs in the solar nebula: Isotope anomalies in Vigarano meteorite inclusions

    NASA Technical Reports Server (NTRS)

    Loss, R. D.; Lugmair, G. W.; Davis, A. M.; Macpherson, G. J.

    1994-01-01

    The isotopic compositions of Mg, Ca, Ti, Cr, Zn, Sr, Ba, Nd, and Sm were measured in four relatively unaltered refractory inclusions from the Vigarano carbonaceous chondrite meteorite. Three of the inclusions (USNM 1623-2, 1623-3, and 1623-8) show similar Mg, Ca, Ti, and Cr isotopic compositions to those found in most inclusions in the Allende carbonaceous chondrite. This indicates that these Vigarano inclusions sampled the same isotopic reservoirs as the majority of the Allende inclusions that isotope signatures in the latter were not significantly modified by the secondary alteration that permeates most Allende inclusions. In contrast, inclusion 1623-5 has large deficits in Mg-26, Ca-48, and Ti-50 and small but distinct Cr-54, Zn-66, Sr-84, Ba-135, Ba-137, and Sm-144 anomalies. The magnitudes of these unusual anomalies in the refractory elements are within analytical uncertainty of those found in the Allende 'FUN" inclusion C1, yet 1623-5 has a very different bulk chemical composition from C1. The fact that 1623-5 and C1 have identical isotopic anomalies yet have significantly distinct major and trace element contents provide convincing evidence for the presence of isotopically distinct reservoirs in the early solar system.

  3. Titanium isotopic anomalies in hibonites from the Murchison carbonaceous chondrite

    NASA Astrophysics Data System (ADS)

    Ireland, T. R.; Compston, W.; Heydegger, H. R.

    1985-09-01

    The isotopic compositions of titanium in eight grains of hibonite (CaAl12O19) from the carbonaceous chondrite Murchison have been determined by high precision secondary ion mass spectrometry using an ion microprobe. The titanium in the hibonites varies greatly in Ti-50 from about -42 to +8 permil (relative to terrestrial) with smaller (up to 4 permil), but clearly resolvable, effects in Ti-46 and Ti-48. These results confirm the presence of widespread negative anomalies suggested by the results of Hutcheon et al. (1983) on hibonites from Murchison. The magnitude of these variations seems explicable only in terms of nucleogenic processes which produced extremely variable titanium isotopic abundances in the hibonite source materials. The hibonites evidently did not participate to the same extent as most material in the mixing and homogenisation processes that accompanied the formation and later evolution of the solar system.

  4. The atmosphere of Mars - Detection of krypton and xenon

    NASA Technical Reports Server (NTRS)

    Owen, T.; Biemann, K.; Biller, J. E.; Lafleur, A. L.; Rushneck, D. R.; Howarth, D. W.

    1976-01-01

    Krypton and xenon have been discovered in the Martian atmosphere with the mass spectrometer on the second Viking lander. Krypton is more abundant than xenon. The relative abundances of the krypton isotopes appear normal, but the ratio of xenon-129 to xenon-132 is enhanced on Mars relative to the terrestrial value for this ratio. Some possible implications of these findings are discussed.

  5. The isotopic homogeneity in the early solar system: Revisiting the CAI oxygen isotopic anomaly

    NASA Astrophysics Data System (ADS)

    Ozima, M.; Yamada, A.

    2009-12-01

    Since the first discovery of the mass-independently fractionated oxygen isotopes in anhydrous, high temperature Ca-Al rich inclusion minerals in carbonaceous meteorites (CAIs) by Clayton et al. (1), their common occurrence in primitive meteorites has generally been regarded to reflect some fundamental process prevalent in the early solar nebula. The CAI oxygen isotopic composition is uniquely characterized by (i) large mass independent isotopic fractionation and (ii) their isotopic data in an oxygen three isotope plot (δ17O - δ18O (δ17O ≡ {(17O/16O)/(17O/16O)SMOW - 1} × 1000) yield nearly a straight line with a slope 1.0. In establishing these characteristics, ion microprobe analyses has played a central role, especially an isotopic mapping technique (isotopography) was crucial (e.g., 2). The extraordinary oxygen isotopic ratio in CAIs is widely attributed to the self-shielding absorption of UV radiation in CO, one of the dominant chemical compounds in the early solar nebula (3). However, the self-shielding scenario necessarily leads to the unusual prediction that a mean solar oxygen isotopic composition differs from most of planetary bodies including Earth, Moon, and Mars. If the self-shielding process were indeed responsible to the CAI oxygen isotopic anomaly, this would require a fundamental revision of the current theory of the origin of the solar system, which generally assumes the initial total vaporization of nebula material to give rise to isotopic homogenization. The GENESIS mission launched in 2001(4), which collected oxygen in the solar wind was hoped to resolve the isotopic composition of the Sun. However, because of difficulties in correcting for instrumental and more importantly for intrinsic isotopic fractionation between the SW and the Sun, a final answer is yet to be seen (5). Here, we show on the basis of the oxygen isotopic fractionation systematics that the self shielding hypothesis cannot explain the key characteristics of the CAI oxygen

  6. Large sulfur-isotope anomaly in nonvolcanic sulfate aerosol and its implications for the Archean atmosphere

    PubMed Central

    Shaheen, Robina; Abaunza, Mariana M.; Jackson, Teresa L.; McCabe, Justin; Savarino, Joël; Thiemens, Mark H.

    2014-01-01

    Sulfur-isotopic anomalies have been used to trace the evolution of oxygen in the Precambrian atmosphere and to document past volcanic eruptions. High-precision sulfur quadruple isotope measurements of sulfate aerosols extracted from a snow pit at the South Pole (1984–2001) showed the highest S-isotopic anomalies (Δ33S = +1.66‰ and Δ36S = +2‰) in a nonvolcanic (1998–1999) period, similar in magnitude to Pinatubo and Agung, the largest volcanic eruptions of the 20th century. The highest isotopic anomaly may be produced from a combination of different stratospheric sources (sulfur dioxide and carbonyl sulfide) via SOx photochemistry, including photoexcitation and photodissociation. The source of anomaly is linked to super El Niño Southern Oscillation (ENSO) (1997–1998)-induced changes in troposphere–stratosphere chemistry and dynamics. The data possess recurring negative S-isotope anomalies (Δ36S = −0.6 ± 0.2‰) in nonvolcanic and non-ENSO years, thus requiring a second source that may be tropospheric. The generation of nonvolcanic S-isotopic anomalies in an oxidizing atmosphere has implications for interpreting Archean sulfur deposits used to determine the redox state of the paleoatmosphere. PMID:25092338

  7. Large sulfur-isotope anomaly in nonvolcanic sulfate aerosol and its implications for the Archean atmosphere.

    PubMed

    Shaheen, Robina; Abaunza, Mariana M; Jackson, Teresa L; McCabe, Justin; Savarino, Joël; Thiemens, Mark H

    2014-08-19

    Sulfur-isotopic anomalies have been used to trace the evolution of oxygen in the Precambrian atmosphere and to document past volcanic eruptions. High-precision sulfur quadruple isotope measurements of sulfate aerosols extracted from a snow pit at the South Pole (1984-2001) showed the highest S-isotopic anomalies (Δ(33)S = +1.66‰ and Δ(36)S = +2‰) in a nonvolcanic (1998-1999) period, similar in magnitude to Pinatubo and Agung, the largest volcanic eruptions of the 20th century. The highest isotopic anomaly may be produced from a combination of different stratospheric sources (sulfur dioxide and carbonyl sulfide) via SOx photochemistry, including photoexcitation and photodissociation. The source of anomaly is linked to super El Niño Southern Oscillation (ENSO) (1997-1998)-induced changes in troposphere-stratosphere chemistry and dynamics. The data possess recurring negative S-isotope anomalies (Δ(36)S = -0.6 ± 0.2‰) in nonvolcanic and non-ENSO years, thus requiring a second source that may be tropospheric. The generation of nonvolcanic S-isotopic anomalies in an oxidizing atmosphere has implications for interpreting Archean sulfur deposits used to determine the redox state of the paleoatmosphere. PMID:25092338

  8. On strontium isotopic anomalies and odd-A p-process abundances. [in solar system

    NASA Technical Reports Server (NTRS)

    Clayton, D. D.

    1978-01-01

    Several aspects of the nucleosynthesis of Sr isotopes are considered in an attempt to shed light on the problem of the Sr isotopic anomalies discovered in an inclusion of the Allende meteorite. Decomposition of the Sr isotopes into average r-, s-, and p-process nucleosynthetic classes is performed. It is suggested that the Allende inclusion most likely has an excess of s-process Sr and that the initial Sr-87/Sr-86 isotopic ratio is probably slightly more primitive than basaltic achondrites. The results also show that Sn-115 is mostly due to the r-process and that odd-A yields are very small. It is concluded that if the Sr anomaly in the inclusion is an average s enhancement, it argues somewhat in favor of a model of gas/dust fractionation of s and r isotopes during accumulation of the inclusion parent in the protosolar cloud.

  9. Endemic Ru Isotopic Anomalies in Iron Meteorites and in Allende

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Papanastassiou, D. A.; Wasserburg, G. J.

    2003-01-01

    Small variations for Mo isotopes have been observed recently in the Allende meteorite and in iron meteorites, mesosiderites, and pallasites, using ICPMS. Large effects for Mo have been reported for leaches of Orgueil and in SiC and graphite from Murchison. Variations for Mo in bulk Allende and in Murchison have also been presented by NTIMS. Effects in Ru isotopes can define further the preserved exotic r, s, and p contributions in this mass region, and possible effects in Ru-98 and Ru-99 from Tc-98 (4.2 Ma half-life) and Tc-99 (0.21 Ma half-life). Previous attempts at determination of Ru isotopes yielded no resolved effects. The present work represents a substantial improvement in precision over the earlier work. Chemical and mass spectrometric analytical techniques are presented to determine the Ru isotope compositions in terrestrial standards and in meteorites.

  10. Carbon Isotopic tests on the Origins of the Shuram Anomaly from the San Juan Fm., Peru

    NASA Astrophysics Data System (ADS)

    Hodgin, E. B.

    2015-12-01

    Carbon isotope anomalies are associated with perturbations to the carbon cycle that offer insight into the geochemical evolution of the Earth. The largest Carbon isotope anomaly in earth history is the Shuram, which remains poorly understood in spite of being linked to the oxygenation of earth, the rise of metazoans, and a complete reorganization of the carbon cycle. From a basin transect of the carbonate-dominated San Juan Formation in southern Peru, we present evidence for the first clear example of the Shuram isotope anomaly in South America. Unique to this succession are ~140 meters of organic-rich black shale within the anomaly, containing as much as 4% TOC. Preliminary data from the organic-rich black shales of the San Juan Fm. confirm that δ13Corg is relatively invariant and does not covary with δ13Ccarb. These observations are consistent with other Shuram sections and support various models: an exogenous carbon source, an enlarged dissolved organic carbon pool, as well as authigenic carbonate production in organic-rich anoxic sediments. Critical tests of these models have been complicated by a paucity of organics in Shuram facies worldwide. Further analyses of the robust organics from the Shuram facies of the San Juan Fm. therefore hold promise in shedding light on the origin of the Shuram isotope anomaly and critical earth history events to which it has been linked.

  11. Anomalies.

    ERIC Educational Resources Information Center

    Online-Offline, 1999

    1999-01-01

    This theme issue on anomalies includes Web sites, CD-ROMs and software, videos, books, and additional resources for elementary and junior high school students. Pertinent activities are suggested, and sidebars discuss UFOs, animal anomalies, and anomalies from nature; and resources covering unexplained phenonmenas like crop circles, Easter Island,…

  12. Sulfur and Hydrogen Isotope Anomalies in Meteorite Sulfonic Acids

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Thiemens, Mark H.; Jackson, Teresa L.; Chang, Sherwood

    1997-01-01

    Intramolecular carbon, hydrogen, and sulfur isotope ratios were measured on a homologous series of organic sulfonic acids discovered in the Murchison meteorite. Mass-independent sulfur isotope fractionations were observed along with high deuterium/hydrogen ratios. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low-temperature environment that is consistent with that of interstellar clouds. Sulfur-33 enrichments observed in methanesulfonic acid could have resulted from gas-phase ultraviolet irradiation of a precursor, carbon disulfide. The source of the sulfonic acid precursors may have been the reactive interstellar molecule carbon monosulfide.

  13. Isotopic Anomalies in Organic Nanoglobules from Comet 81P/Wild 2: Comparison to Murchison Nanoglobules and Isotopic Anomalies Induced in Terrestrial Organics by Electron Irradiation

    SciTech Connect

    De Gregorio, B.; Stroud, R; Nittler, L; Alexander, C; Kilcoyne, A; Zega, T

    2010-01-01

    Nanoglobules are a form of organic matter found in interplanetary dust particles and primitive meteorites and are commonly associated with {sup 15}N and D isotopic anomalies that are suggestive of interstellar processes. We report the discovery of two isotopically-anomalous organic globules from the Stardust collection of particles from Comet 81P/Wild 2 and compare them with nanoglobules from the Murchison CM2 meteorite. One globule from Stardust Cometary Track 80 contains highly aromatic organic matter and a large {sup 15}N anomaly ({delta}{sup 15}N = 1120{per_thousand}). Associated, non-globular, organic matter from this track is less enriched in {sup 15}N and contains a mixture of aromatic and oxidized carbon similar to bulk insoluble organic material (IOM) from primitive meteorites. The second globule, from Cometary Track 2, contains non-aromatic organic matter with abundant nitrile ({single_bond}C{triple_bond}N) and carboxyl ({single_bond}COOH) functional groups. It is significantly enriched in D ({delta}D = 1000{per_thousand}) but has a terrestrial {sup 15}N/{sup 14}N ratio. Experiments indicate that similar D enrichments, unaccompanied by {sup 15}N fractionation, can be reproduced in the laboratory by electron irradiation of epoxy or cyanoacrylate. Thus, a terrestrial origin for this globule cannot be ruled out, and, conversely, exposure to high-energy electron irradiation in space may be an important factor in producing D anomalies in organic materials. For comparison, we report two Murchison globules: one with a large {sup 15}N enrichment and highly aromatic chemistry analogous to the Track 80 globule and the other only moderately enriched in {sup 15}N with IOM-like chemistry. The observation of organic globules in Comet 81P/Wild 2 indicates that comets likely sampled the same reservoirs of organic matter as did the chondrite parent bodies. The observed isotopic anomalies in the globules are most likely preserved signatures of low temperature (<10 K

  14. Isotopic anomalies in organic nanoglobules from Comet 81P/Wild 2: Comparison to Murchison nanoglobules and isotopic anomalies induced in terrestrial organics by electron irradiation

    NASA Astrophysics Data System (ADS)

    De Gregorio, Bradley T.; Stroud, Rhonda M.; Nittler, Larry R.; Alexander, Conel M. O.'D.; Kilcoyne, A. L. David; Zega, Thomas J.

    2010-08-01

    Nanoglobules are a form of organic matter found in interplanetary dust particles and primitive meteorites and are commonly associated with 15N and D isotopic anomalies that are suggestive of interstellar processes. We report the discovery of two isotopically-anomalous organic globules from the Stardust collection of particles from Comet 81P/Wild 2 and compare them with nanoglobules from the Murchison CM2 meteorite. One globule from Stardust Cometary Track 80 contains highly aromatic organic matter and a large 15N anomaly (δ 15N = 1120‰). Associated, non-globular, organic matter from this track is less enriched in 15N and contains a mixture of aromatic and oxidized carbon similar to bulk insoluble organic material (IOM) from primitive meteorites. The second globule, from Cometary Track 2, contains non-aromatic organic matter with abundant nitrile ( sbnd C tbnd N) and carboxyl ( sbnd COOH) functional groups. It is significantly enriched in D (δD = 1000‰) but has a terrestrial 15N/ 14N ratio. Experiments indicate that similar D enrichments, unaccompanied by 15N fractionation, can be reproduced in the laboratory by electron irradiation of epoxy or cyanoacrylate. Thus, a terrestrial origin for this globule cannot be ruled out, and, conversely, exposure to high-energy electron irradiation in space may be an important factor in producing D anomalies in organic materials. For comparison, we report two Murchison globules: one with a large 15N enrichment and highly aromatic chemistry analogous to the Track 80 globule and the other only moderately enriched in 15N with IOM-like chemistry. The observation of organic globules in Comet 81P/Wild 2 indicates that comets likely sampled the same reservoirs of organic matter as did the chondrite parent bodies. The observed isotopic anomalies in the globules are most likely preserved signatures of low temperature (<10 K) chemistry in the interstellar medium or perhaps the outer regions of the solar nebula. In other

  15. Carbon dioxide and oxygen isotope anomalies in the mesosphere and stratosphere

    SciTech Connect

    Thiemens, M.H.; Jackson, T.; Zipf, E.C.

    1995-11-10

    Isotopic ({delta}{sup 17}O and {delta}{sup 18}O) measurements of stratospheric and mesospheric carbon dioxide (CO{sub 2}) and oxygen (O{sub 2}), along with trace species concentrations (N{sub 2}O, CO, and CO{sub 2}), were made in samples collected from a rocket-borne cryogenic whole air sampler. A large mass-independent isotopic anomaly was observed in CO{sub 2}, which may in part derive from photochemical coupling to ozone (O{sub 3}). The data also require an additional isotopic fractionation process, which is presently unidentified. Mesospheric O{sub 2} isotope ratios differed from those in the troposphere and stratosphere. The cause of this isotopic variation in O{sub 2} is presently unknown. The inability to account for these observations represents a fundamental gap in the understanding of the O{sub 2} chemistry in the stratosphere and mesosphere. 28 refs., 2 figs., 1 tab.

  16. Isotopic Anomalies in a Uranium Cluster Formed by Lais

    NASA Astrophysics Data System (ADS)

    van de Walle, J.; Tarento, R. J.; Joyes, P.

    A study of a Au-U liquid alloy ion source (LAIS) where uranium is enriched in its lighter element (20% 235U, 80% 238U) has been performed by high resolution mass spectrometry. Monoatomic species Au+, Au2+, U2+, U3+ and polyatomic species Au+n, Up+n, AunU+ are observed. The monoatomic results are well explained by the Kingham postionization process. Au+n and AunU+ species present an interesting odd-even effect characteristic of monovalent elements. The main result of this preliminary letter is a heteroisotope anomaly which appears in U+2, U+3 and U4+3 emission where only homoisotopes are detected. A similar phenomenon was reported for Cu+2 and Ge+2 in a previous work and was attributed to a higher state of excitation of emitted heteroisotope aggregates which explode as they fly to the collector.1,2

  17. Oxygen Isotope Anomalies in Orgueil Corundum: Confirmation of Presolar Origin

    NASA Astrophysics Data System (ADS)

    Huss, G. R.; Hutcheon, I. D.; Fahey, A. J.; Wasserburg, G. J.

    1993-07-01

    In a study of Mg isotopes in oxide grains from an Orgueil SiC-spinel-rich residue, [1] reported a corundum grain with ^26Mg*/^27Al = 8.9 x 10^-4, a value ~18 times greater than the canonical 5 x 10^-5 value characteristic of refractory phases formed in the solar nebula. Comparable ratios had previously been found only in carbon-rich interstellar materials, SiC and graphite, [2] leading [1] to suggest that Orgueil corundum B is a pre-solar oxide grain. Subsequently, [3] discovered Murchison corundum 83-5 with a sirnilar ^26Mg*/^27Al of 8.7 x 10^-4; the very unusual oxygen isotope composition (delta^17O = 1072 +- 59 per mil, delta^18O = -244 per mil) led [3] to conclude 83-5 is an interstellar oxide grain. The Panurge ion probe was used to determine ^170/^160 and ^180/^160 ratios in 27 Orgueil oxide grains--16 corundum, 2 hibonite, and 9 spinel--and in 6 Allende spinels. Orgueil corundum B has an extreme ^17O excess (delta^17O = 1394 +- 178 per mil (2sigma(mean)) and a hint of an ^18O depletion (delta^18O = -65 +- 64 per mil) (Fig. 1). The extraordinary enrichments in ^26Mg* and ^17O identify Orgueil B as an interstellar oxide grain. Orgueil B and Murchison 83-5 have remarkably similar O- and Mg-isotope compositions. Red giant stars are enriched in ^17O with ^17O/^18O >~ 1 [4], suggesting these stars are a likely source of the interstellar corundum. Production of ^26Al during H-burning in AGB stars also appears to account for the ^26Mg* excess [5,6]. Condensation of corundum in the circumstellar envelope must occur before dredge up of processed material from the stellar interior decreases ^17O/^16O and creates a C-rich atmosphere. The oxygen isotope compositions of the remaining oxide grains fall into three groups (Fig. 1). All but six corundums and one Orgueil spinel exhibit ^16O excesses and lie along the ^16O-mixing line with compositions similar to those of corundum and spinel from Murchison LS, LU, and CFO(sub)c [7]. Data from Allende spinels cluster about a

  18. Calcium-48 isotopic anomalies in bulk chondrites and achondrites: Evidence for a uniform isotopic reservoir in the inner protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Dauphas, Nicolas; Chen, James H.; Zhang, Junjun; Papanastassiou, Dimitri A.; Davis, Andrew M.; Travaglio, Claudia

    2014-12-01

    Thermal ionization mass spectrometry (TIMS) was used to measure the calcium isotopic compositions of carbonaceous, ordinary, enstatite chondrites as well as eucrites and aubrites. We find that after correction for mass-fractionation by internal normalization to a fixed 42Ca/44Ca ratio, the 43Ca/44Ca and 46Ca/44Ca ratios are indistinguishable from terrestrial ratios. In contrast, the 48Ca/44Ca ratios show significant departure from the terrestrial composition (from -2 ε in eucrites to +4 ε in CO and CV chondrites). Isotopic anomalies in ε48Ca correlate with ε50Ti: ε 48Ca=(1.09±0.11)×ε 50Ti+(0.03±0.14). Further work is needed to identify the carrier phase of 48Ca-50Ti anomalies but we suggest that it could be perovskite and that the stellar site where these anomalies were created was also responsible for the nucleosynthesis of the bulk of the solar system inventory of these nuclides. The Earth has identical 48Ca isotopic composition to enstatite chondrites (EH and EL) and aubrites. This adds to a long list of elements that display nucleosynthetic anomalies at a bulk planetary scale but show identical or very similar isotopic compositions between enstatite chondrites, aubrites, and Earth. This suggests that the inner protoplanetary disk was characterized by a uniform isotopic composition (IDUR for Inner Disk Uniform Reservoir), sampled by enstatite chondrites and aubrites, from which the Earth drew most of its constituents. The terrestrial isotopic composition for 17O, 48Ca, 50Ti, 62Ni, and 92Mo is well reproduced by a mixture of 91% enstatite, 7% ordinary, and 2% carbonaceous chondrites. The Earth was not simply made of enstatite chondrites but it formed from the same original material that was later modified by nebular and disk processes. The Moon-forming impactor probably came from the same region as the other embryos that made the Earth, explaining the strong isotopic similarity between lunar and terrestrial rocks.

  19. Oxygen isotope anomaly observed in water vapor from Alert, Canada and the implication for the stratosphere

    PubMed Central

    Lin, Ying; Clayton, Robert N.; Huang, Lin; Nakamura, Noboru; Lyons, James R.

    2013-01-01

    To identify the possible anomalous oxygen isotope signature in stratospheric water predicted by model studies, 25 water vapor samples were collected in 2003−2005 at Alert station, Canada (82°30′N), where there is downward transport of stratospheric air to the polar troposphere, and were analyzed for δ17O and δ18O relative to Chicago local precipitation (CLP). The latter was chosen as a reference because the relatively large evaporative moisture source should erase any possible oxygen isotope anomaly from the stratosphere. A mass-dependent fractionation coefficient for meteoric waters, λMDF(H2O) = 0.529 ± 0.003 [2σ standard error (SE)], was determined from 27 CLP samples collected in 2003−2005. An oxygen isotopic anomaly of Δ17O = 76 ± 16 ppm (2σ SE) was found in water vapor samples from Alert relative to CLP. We propose that the positive oxygen isotope anomalies observed at Alert originated from stratospheric ozone, were transferred to water in the stratosphere, and subsequently mixed with tropospheric water at high latitudes as the stratospheric air descended into the troposphere. On the basis of this ground signal, the average Δ17O in stratospheric water vapor predicted by a steady-state box model is ∼40‰. Seven ice core samples (1930−1991) from Dasuopu glacier (Himalayas, China) and Standard Light Antarctic Precipitation did not show an obvious oxygen isotope anomaly, and Vienna Standard Mean Ocean Water exhibited a negative Δ17O relative to CLP. Six Alert snow samples collected in March 2011 and measured at Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France, had 17Oexcess of 45 ± 5 ppm (2σ SE) relative to Vienna Standard Mean Ocean Water. PMID:24009339

  20. Oxygen isotope anomaly observed in water vapor from Alert, Canada and the implication for the stratosphere.

    PubMed

    Lin, Ying; Clayton, Robert N; Huang, Lin; Nakamura, Noboru; Lyons, James R

    2013-09-24

    To identify the possible anomalous oxygen isotope signature in stratospheric water predicted by model studies, 25 water vapor samples were collected in 2003-2005 at Alert station, Canada (82°30'N), where there is downward transport of stratospheric air to the polar troposphere, and were analyzed for δ(17)O and δ(18)O relative to Chicago local precipitation (CLP). The latter was chosen as a reference because the relatively large evaporative moisture source should erase any possible oxygen isotope anomaly from the stratosphere. A mass-dependent fractionation coefficient for meteoric waters, λMDF(H2O) = 0.529 ± 0.003 [2σ standard error (SE)], was determined from 27 CLP samples collected in 2003-2005. An oxygen isotopic anomaly of Δ(17)O = 76 ± 16 ppm (2σ SE) was found in water vapor samples from Alert relative to CLP. We propose that the positive oxygen isotope anomalies observed at Alert originated from stratospheric ozone, were transferred to water in the stratosphere, and subsequently mixed with tropospheric water at high latitudes as the stratospheric air descended into the troposphere. On the basis of this ground signal, the average Δ(17)O in stratospheric water vapor predicted by a steady-state box model is ∼40‰. Seven ice core samples (1930-1991) from Dasuopu glacier (Himalayas, China) and Standard Light Antarctic Precipitation did not show an obvious oxygen isotope anomaly, and Vienna Standard Mean Ocean Water exhibited a negative Δ(17)O relative to CLP. Six Alert snow samples collected in March 2011 and measured at Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France, had (17)Oexcess of 45 ± 5 ppm (2σ SE) relative to Vienna Standard Mean Ocean Water. PMID:24009339

  1. Krypton oxides under pressure.

    PubMed

    Zaleski-Ejgierd, Patryk; Lata, Pawel M

    2016-01-01

    Under high pressure, krypton, one of the most inert elements is predicted to become sufficiently reactive to form a new class of krypton compounds; krypton oxides. Using modern ab-initio evolutionary algorithms in combination with Density Functional Theory, we predict the existence of several thermodynamically stable Kr/O species at elevated pressures. In particular, our calculations indicate that at approx. 300 GPa the monoxide, KrO, should form spontaneously and remain thermo- and dynamically stable with respect to constituent elements and higher oxides. The monoxide is predicted to form non-molecular crystals with short Kr-O contacts, typical for genuine chemical bonds. PMID:26830129

  2. Krypton oxides under pressure

    PubMed Central

    Zaleski-Ejgierd, Patryk; Lata, Pawel M.

    2016-01-01

    Under high pressure, krypton, one of the most inert elements is predicted to become sufficiently reactive to form a new class of krypton compounds; krypton oxides. Using modern ab-initio evolutionary algorithms in combination with Density Functional Theory, we predict the existence of several thermodynamically stable Kr/O species at elevated pressures. In particular, our calculations indicate that at approx. 300 GPa the monoxide, KrO, should form spontaneously and remain thermo- and dynamically stable with respect to constituent elements and higher oxides. The monoxide is predicted to form non-molecular crystals with short Kr-O contacts, typical for genuine chemical bonds. PMID:26830129

  3. The sp-process and Allende isotope anomalies in calcium and titanium

    NASA Astrophysics Data System (ADS)

    Harris, M. J.

    1983-01-01

    The goal of the study described here is to show that partial nuclear destruction of the Ca isotopes can reproduce the EK-1-4-1 pattern and can simultaneously produce the Ti anomaly observed in that inclusion. The parameterized approach adopted here yields little information about a likely stellar site. Considerations of time scale and proton density, however, both point to a hydrostatic O burning zone, with which the required s-process-like initial composition is compatible. The temperatures involved, however, are considerably lower than those estimated by Arnett (1977) and Weaver, Zimmerman, and Woosley (1978). It is found that slow proton captures on nuclei with Z between 18 and 25 at temperatures in the range where T9 ranges from 1.25 to 1.7 can reproduce the Ca isotopic anomaly in Allende Ca-Al-rich FUN inclusion EK-1-4-1. It is noted that at T9 = 1.55, the required proton exposure approximately reproduces the Ek-1-4-1 Ti anomaly also. Under these conditions, the production of long-lived Ca-41 and Mn-53, as well as of an anomaly in Cr, is predicted.

  4. Model Calculations of Continuous-Wave Laser Ionization of Krypton

    SciTech Connect

    Bret D. Cannon

    1999-07-27

    This report describes modeling of a scheme that uses continuous-wave (CW) lasers to ionize selected isotopes of krypton with high isotopic selectivity. The models predict that combining this ionization scheme with mass spectrometric measurement of the resulting ions can be the basis for ultra-sensitive methods to measure {sup 85}Kr in the presence of a 10{sup 11} excess of the stable krypton isotopes. Two experimental setups are considered in this model: the first setup is for krypton as a static gas, the second is for krypton in an atomic beam. In the static gas experiment, for a total krypton press of 10{sup {minus}4} torr and 10 W of power in the cavity, the model predicts a total krypton ion current of 4.6 x 10{sup 8} s{sup {minus}1} and for a {sup 85}Kr/Kr of 10{sup {minus}11} a {sup 85}Kr ion current of 3.5 s{sup {minus}1} or about 10,000 per hour. The atomic beam setup allowed higher isotopic selectivity; the model predicts a {sup 85}Kr ion current of 18 s{sup {minus}1} or 65,000 per hour.

  5. Sulfur and Hydrogen Isotope Anomalies in Organic Compounds from the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, G. W.; Thiemens, M. H.; Jackson, T.; Chang, Sherwood

    1996-01-01

    Isotopic measurements have been made on organic sulfur and phosphorus compounds recently discovered in the Murchison meteorite. Carbon, hydrogen and sulfur measurements were performed on individual members of the organic sulfur compounds, alkyl sulfonates; and carbon and hydrogen measurements were made on bulk alkyl phosphonates. Cooper and Chang reported the first carbon isotopic measurements of Murchison organic sulfonates, providing insight into the potential synthetic mechanisms of these and, possibly, other organic species. Hydrogen isotopic measurements of the sulforiates now reveal deuterium excesses ranging from +660 to +2730 %. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low temperature astrophysical environment consistent with that of dense molecular clouds. Measurements of the sulfur isotopes provide further constraints on the origin and mechanism of formation of these organic molecules. Recently, there has been growing documentation of sulfur isotopic anomalies in meteoritic material. Thiemens and Jackson have shown that some bulk ureilites possess excess S-33 and Thiemens et al. have reported excess S-33 in an oldhamite separate from the Norton County meteorite. Rees and Thode reported a large S-33 excess in an Allende acid residue, however, attempts to verify this measurements have been unsuccessful, possibly due to the heterogeneous nature of the carrier phase. With the recognition that sulfur isotopes may reflect chemistry in the protosolar nebula or the precursor molecular cloud, identification of potential carriers is of considerable interest. In the present study, the stable isotopes of sulfur were measured in methane sulfonic acid extracted from the Murchison meteorite. The isotopic composition was found to be: (delta)S-33 = 2.48 %, (delta)S-34 = 2.49 % and (delta)S-36 = 6.76 %. Based upon analysis of more than 60 meteoritic and numerous terrestrial samples, the mass fractionation lines are

  6. Nucleosynthetic W isotope anomalies and the Hf-W chronometry of Ca-Al-rich inclusions

    NASA Astrophysics Data System (ADS)

    Kruijer, Thomas S.; Kleine, Thorsten; Fischer-Gödde, Mario; Burkhardt, Christoph; Wieler, Rainer

    2014-10-01

    Ca-Al-rich inclusions (CAI) are the oldest dated objects formed in the solar system and are pivotal reference points in early solar system chronology. Knowledge of their initial 182Hf/180Hf and 182W/184W is essential, not only for obtaining precise Hf-W ages relative to the start of the solar system, but also to assess the distribution of short-lived radionuclides in the early solar nebula. However, the interpretation of Hf-W data for CAI is complicated by nucleosynthetic W isotope variations. To explore their extent and nature, and to better quantify the initial Hf and W isotope compositions of the solar system, we obtained Hf-W data for several fine- and coarse-grained CAI from three CV3 chondrites. The fine-grained CAI exhibit large and variable anomalies in ε183W (εiW equals 0.01% deviation from terrestrial values), extending to much larger anomalies than previously observed in CAI, and reflecting variable abundances of s- and r-process W isotopes. Conversely, the coarse-grained (mostly type B) inclusions show only small (if any) nucleosynthetic W isotope anomalies. The investigated CAI define a precise correlation between initial ε182W and ε183W, providing a direct empirical means to correct the ε182W of any CAI for nucleosynthetic isotope anomalies using their measured ε183W. After correction for nucleosynthetic W isotope variations, the CAI data define an initial 182Hf/180Hf of (1.018±0.043)×10-4 and an initial ε182W of -3.49±0.07. The Hf-W formation intervals of the angrites D'Orbigny and Sahara 99555 relative to this CAI initial is 4.8±0.6 Ma, in good agreement with Al-Mg ages of these two angrites. This renders a grossly heterogeneous distribution of 26Al in the inner solar system unlikely, at least in the region were CAI and angrites formed.

  7. Sulfur and Hydrogen Isotope Anomalies in Organic Compounds from the Murchison Meteorite

    NASA Astrophysics Data System (ADS)

    Cooper, G. W.; Thiemens, M. H.; Jackson, T.; Chang, S.

    1995-09-01

    Carbon, hydrogen and sulfur isotopic measurements have been made on individual members of a recently discovered class of organic sulfur compounds, alkyl sulfonates, in the Murchison meteorite. Cooper and Chang (1) reported the first carbon isotopic measurements of Murchison organic sulfonates, providing insight into potential synthetic mechanisms of these, and possibly other, organic species. Hydrogen isotopic measurements of the sulfonates now reveal deuterium excesses ranging from +660 to +2730 per mil. The deuterium enrichments indicate formation of the hydrocarbon portion of these compounds in a low temperature astrophysical environment consistent with that of dense molecular clouds. Measurement of the sulfur isotopes provide further constraints on the origin and mechanism of formation of these organic molecules. Recently, there has been growing documentation of sulfur isotopic anomalies in meteoritic material. Thiemens and Jackson (2) have shown that some bulk ureilites possess excess 33S and Thiemens et al. (3) have reported excess 33S in an oldhamite separate from Norton County. Rees and Thode (4) reported a large 33S excess in an Allende acid residue, however, attempts to verify this measurement have been unsuccessful, possibly due to the heterogeneous nature of the carrier phase. With the recognition that sulfur isotopes may reflect nebular chemistry, identification of potential carriers is of considerable interest. In the present study the three stable isotopes of sulfur were measured in methane sulfonate extracted from the Murchison meteorite. The isotopic composition was found to be delta 33S=2.48, delta 34S=2.49 and delta 36S = 6.76 per mil. Based upon analysis of more than 60 meteoritic, and numerous terrestrial samples, the mass fractionation lines are defined by 33Delta = delta 33S-0.50 delta 34S and 36Delta = delta 36S -1.97 delta 34S. From these relations a 33Delta = 1.24 per mil and 36Delta = 0.89 per mil is observed. These anomalies

  8. Calcium isotopic anomalies and the lack of aluminum-26 in an unusual Allende inclusion

    NASA Technical Reports Server (NTRS)

    Lee, T.; Russell, W. A.; Wasserburg, G. J.

    1979-01-01

    This letter reports the discovery of an unusual Allende inclusion that is rich in hibonite, Ca(Al, Ti, Mg)12O19, the most refractory and possibly the most primitive major oxide mineral from the solar nebula. The Mg and Ca isotopic compositions of this hibonite-rich inclusion are studied in order to investigate the distribution of Al-26 in the solar system and to extend the search for isotopic anomalies. The Mg results indicate that no Mg isotopic anomalies are present, that the initial Al-26/Al-27 ratio for the inclusion when it crystallized was less than 200 billionths, and that the Mg mass-fractionation effect in the inclusion must be less than about 20 per mil/amu for the hibonite and 10 per mil/amu for other phases. The Ca studies reveal that large Ca mass-fractionation effects of about 7.5 per mil/amu are present and that additional small 'nonlinear' effects of presumably nuclear origin at a level of about 1 to 2 per mil are present in at least Ca-42. A plausible model for the evolution of the hibonite-rich inclusion is outlined.

  9. Oxygen Isotope Anomaly in the Carbonate Fractions of Aerosols and its Potential to Assess Urban Pollution

    NASA Astrophysics Data System (ADS)

    Shaheen, R.; Abramian, A.; Dominguez, G.; Jackson, T.; Thiemens, M. H.

    2008-12-01

    = 0.887) was observed between oxygen isotope anomaly (Δ17O) in the carbonate fraction of coarse aerosols and urban index, indicating that the isotope anomaly of carbonates can be used as a proxy for urban pollution. Additionally, controlled laboratory experiments to understand the origin of isotope anomaly in the carbonate fraction of aerosols will be discussed.

  10. Update and improvement of the global krypton-85 emission inventory.

    PubMed

    Ahlswede, Jochen; Hebel, Simon; Ross, J Ole; Schoetter, Robert; Kalinowski, Martin B

    2013-01-01

    Krypton-85 is mainly produced in nuclear reactors by fission of uranium and plutonium and released during chopping and dissolution of spent fuel rods in nuclear reprocessing facilities. As noble gas it is suited as a passive tracer for evaluation of atmospheric transport models. Furthermore, research is ongoing to assess its quality as an indicator for clandestine reprocessing activities. This paper continues previous efforts to compile a comprehensive historic emission inventory for krypton-85. Reprocessing facilities are the by far largest emitters of krypton-85. Information on sources and calculations used to derive the annual krypton-85 emission is provided for all known reprocessing facilities in the world. In addition, the emission characteristics of two plants, Tokai (Japan) and La Hague (France), are analysed in detail using emission data with high temporal resolution. Other types of krypton-85 sources are power reactors, naval reactors and isotope production facilities. These sources contribute only little or negligible amounts of krypton-85 compared to the large reprocessing facilities. Taking the decay of krypton-85 into account, the global atmospheric inventory is estimated to about 5500 PBq at the end of 2009. The correctness if the inventory has been proven by meteorological simulations and its error is assumed to be in the range of a few percent. PMID:22858641

  11. Hibonite-bearing microspherules - A new type of refractory inclusions with large isotopic anomalies

    NASA Technical Reports Server (NTRS)

    Ireland, T. R.; Fahey, A. J.; Zinner, E. K.

    1991-01-01

    This paper presents petrographic description as well as results on the major- and trace-element chemistry and on Mg, Ca, and Ti isotopic compositions of three refractory inclusions, including 3413-1/31 inclusion from Lance and Murchison 7-228 and 7-753, the mineralogy of which is dominated by the oxide minerals spinel, hibonite, and perovskite. The microspherules examined seem to constitute a separate class of refractory inclusions, characterized by a distinct morphology and mineralogy; large excesses of Ca-48 and Ti-50, and Mg-26 depletions. It is suggested that this type of inclusions must have formed early, prior to the dilution of isotopic anomalies by mixing processes, and in an area characterized by excesses of Ca-48 and Ti-50, depletions of Mg-26, and a lack of Al-26.

  12. Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars.

    PubMed

    Shaheen, R; Abramian, A; Horn, J; Dominguez, G; Sullivan, R; Thiemens, Mark H

    2010-11-23

    The debate of life on Mars centers around the source of the globular, micrometer-sized mineral carbonates in the ALH84001 meteorite; consequently, the identification of Martian processes that form carbonates is critical. This paper reports a previously undescribed carbonate formation process that occurs on Earth and, likely, on Mars. We identified micrometer-sized carbonates in terrestrial aerosols that possess excess (17)O (0.4-3.9‰). The unique O-isotopic composition mechanistically describes the atmospheric heterogeneous chemical reaction on aerosol surfaces. Concomitant laboratory experiments define the transfer of ozone isotopic anomaly to carbonates via hydrogen peroxide formation when O(3) reacts with surface adsorbed water. This previously unidentified chemical reaction scenario provides an explanation for production of the isotopically anomalous carbonates found in the SNC (shergottites, nakhlaites, chassignites) Martian meteorites and terrestrial atmospheric carbonates. The anomalous hydrogen peroxide formed on the aerosol surfaces may transfer its O-isotopic signature to the water reservoir, thus producing mass independently fractionated secondary mineral evaporites. The formation of peroxide via heterogeneous chemistry on aerosol surfaces also reveals a previously undescribed oxidative process of utility in understanding ozone and oxygen chemistry, both on Mars and Earth. PMID:21059939

  13. Detection of oxygen isotopic anomaly in terrestrial atmospheric carbonates and its implications to Mars

    PubMed Central

    Shaheen, R.; Abramian, A.; Horn, J.; Dominguez, G.; Sullivan, R.; Thiemens, Mark H.

    2010-01-01

    The debate of life on Mars centers around the source of the globular, micrometer-sized mineral carbonates in the ALH84001 meteorite; consequently, the identification of Martian processes that form carbonates is critical. This paper reports a previously undescribed carbonate formation process that occurs on Earth and, likely, on Mars. We identified micrometer-sized carbonates in terrestrial aerosols that possess excess 17O (0.4–3.9‰). The unique O-isotopic composition mechanistically describes the atmospheric heterogeneous chemical reaction on aerosol surfaces. Concomitant laboratory experiments define the transfer of ozone isotopic anomaly to carbonates via hydrogen peroxide formation when O3 reacts with surface adsorbed water. This previously unidentified chemical reaction scenario provides an explanation for production of the isotopically anomalous carbonates found in the SNC (shergottites, nakhlaites, chassignites) Martian meteorites and terrestrial atmospheric carbonates. The anomalous hydrogen peroxide formed on the aerosol surfaces may transfer its O-isotopic signature to the water reservoir, thus producing mass independently fractionated secondary mineral evaporites. The formation of peroxide via heterogeneous chemistry on aerosol surfaces also reveals a previously undescribed oxidative process of utility in understanding ozone and oxygen chemistry, both on Mars and Earth. PMID:21059939

  14. The NO+O{sub 3} reaction: A triple oxygen isotope perspective on the reaction dynamics and atmospheric implications for the transfer of the ozone isotope anomaly

    SciTech Connect

    Savarino, J.; Morin, S.; Baroni, M.; Bhattacharya, S. K.; Doussin, J.-F.

    2008-05-21

    Atmospheric nitrate shows a large oxygen isotope anomaly ({delta} {sup 17}O), characterized by an excess enrichment of {sup 17}O over {sup 18}O, similar to the ozone molecule. Modeling and observations assign this specific isotopic composition mainly to the photochemical steady state that exists in the atmosphere between ozone and nitrate precursors, namely, the nitrogen oxides (NO{sub x}=NO+NO{sub 2}). However, this transfer is poorly quantified and is built on unverified assumptions about which oxygen atoms of ozone are transferred to NO{sub x}, greatly weakening any interpretation of the nitrate oxygen isotopic composition in terms of chemical reaction pathways and the oxidation state of the atmosphere. With the aim to improve our understanding and quantify how nitrate inherits this unusual isotopic composition, we have carried out a triple isotope study of the reaction NO+O{sub 3}. Using ozone intramolecular isotope distributions available in the literature, we have found that the central atom of the ozone is abstracted by NO with a probability of (8{+-}5)%({+-}2{sigma}) at room temperature. This result is at least qualitatively supported by dynamical reaction experiments, the non-Arrhenius behavior of the kinetic rate of this reaction, and the kinetic isotope fractionation factor. Finally, we have established the transfer function of the isotope anomaly of O{sub 3} to NO{sub 2}, which is described by the linear relationship {delta} {sup 17}O(NO{sub 2})=Ax{delta} {sup 17}O(O{sub 3})+B, with A=1.18{+-}0.07({+-}1{sigma}) and B=(6.6{+-}1.5) per mille ({+-}1{sigma}). Such a relationship can be easily incorporated into models dealing with the propagation of the ozone isotope anomaly among oxygen-bearing species in the atmosphere and should help to better interpret the oxygen isotope anomaly of atmospheric nitrate in terms of its formation reaction pathways.

  15. The NO +O3 reaction: A triple oxygen isotope perspective on the reaction dynamics and atmospheric implications for the transfer of the ozone isotope anomaly

    NASA Astrophysics Data System (ADS)

    Savarino, J.; Bhattacharya, S. K.; Morin, S.; Baroni, M.; Doussin, J.-F.

    2008-05-01

    Atmospheric nitrate shows a large oxygen isotope anomaly (ΔO17), characterized by an excess enrichment of O17 over O18, similar to the ozone molecule. Modeling and observations assign this specific isotopic composition mainly to the photochemical steady state that exists in the atmosphere between ozone and nitrate precursors, namely, the nitrogen oxides (NOx=NO+NO2). However, this transfer is poorly quantified and is built on unverified assumptions about which oxygen atoms of ozone are transferred to NOx, greatly weakening any interpretation of the nitrate oxygen isotopic composition in terms of chemical reaction pathways and the oxidation state of the atmosphere. With the aim to improve our understanding and quantify how nitrate inherits this unusual isotopic composition, we have carried out a triple isotope study of the reaction NO +O3. Using ozone intramolecular isotope distributions available in the literature, we have found that the central atom of the ozone is abstracted by NO with a probability of (8±5)%(±2σ) at room temperature. This result is at least qualitatively supported by dynamical reaction experiments, the non-Arrhenius behavior of the kinetic rate of this reaction, and the kinetic isotope fractionation factor. Finally, we have established the transfer function of the isotope anomaly of O3 to NO2, which is described by the linear relationship ΔO17(NO2)=A ×ΔO17(O3)+B, with A =1.18±0.07(±1σ) and B =(6.6±1.5)‰(±1σ). Such a relationship can be easily incorporated into models dealing with the propagation of the ozone isotope anomaly among oxygen-bearing species in the atmosphere and should help to better interpret the oxygen isotope anomaly of atmospheric nitrate in terms of its formation reaction pathways.

  16. Analysis of krypton-85 and krypton-81 in a few liters of air.

    PubMed

    Tu, Le-Yi; Yang, Guo-Min; Cheng, Cun-Feng; Liu, Gu-Liang; Zhang, Xiang-Yang; Hu, Shui-Ming

    2014-04-15

    Long-lived radioactive krypton isotopes, (81)Kr (t1/2 = 229,000 year) and (85)Kr (t1/2 = 10.76 year), are ideal tracers. (81)Kr is cosmogenic and can be used for dating groundwater beyond the (14)C age. (85)Kr is a fission product and can be applied in atmospheric studies, nuclear safety inspections, and dating young groundwater. It has long been a challenge to analyze radio-krypton in small samples, in which the total number of such isotopes can be as low as 1 × 10(5). This work presents a system developed to analyze (81)Kr and (85)Kr from a few liters of air samples. A separation system based on cryogenic distillation and gas chromatographic separation is used to extract krypton gas with an efficiency of over 90% from air samples of 1-50 L. (85)Kr/Kr and (81)Kr/Kr ratios in krypton gases are determined from single-atom counting using a laser-based atom trap. In order to test the performance of the system, we have analyzed various samples collected from ambient air and extracted from groundwater, with a minimum size of 1 L. The system can be applied to analyze (81)Kr and (85)Kr in environmental samples including air, groundwater, and ices. PMID:24641193

  17. Cerium anomaly across the mid-Tournaisian carbon isotope excursion (TICE)

    NASA Astrophysics Data System (ADS)

    Jiang, G.; Morales, D. C.; Maharjan, D. K.

    2015-12-01

    The Early Mississippian (ca. 359-345 Ma) represents one of the most important greenhouse-icehouse climate transitions in Earth history. Closely associated with this critical transition is a prominent positive carbon isotope excursion (δ13C ≥ +5‰) that has been documented from numerous stratigraphic successions across the globe. This δ13C excursion, informally referred to as the TICE (mid-Tournaisian carbon isotope excursion) event, has been interpreted as resulting from enhanced organic carbon burial, with anticipated outcomes including the lowering of atmospheric CO2 and global cooling, the growth of continental ice sheets and sea-level fall, and the increase of ocean oxygenation and ocean redox changes. The casual relationship between these events has been addressed from various perspectives but not yet clearly demonstrated. To document the potential redox change associated with the perturbation of the carbon cycle, we have analyzed rare earth elements (REE) and trace elements across the TICE in two sections across a shallow-to-deep water transect in the southern Great Basin (Utah and Nevada), USA. In both sections, the REE data show a significant positive cerium (Ce) anomaly (Ce/Ce* = Ce/(0.5La+0.5Pr)). Prior to the positive δ13C shift, most Ce/Ce* values are around 0.3 (between 0.2 and 0.4). Across the δ13C peak, Ce/Ce* values increase up to 0.87, followed by a decrease back to 0.2~0.3 after the δ13C excursion (Figure 1). The positive Ce anomaly is best interpreted as recording expansion of oxygen minimum zone and anoxia resulted from increased primary production. This is consistent with a significant increase of nitrogen isotopes (δ15N) across the δ13C peak. Integration of the carbon, nitrogen, and REE data demonstrates a responsive earth systems change linked to the perturbation of the Early Mississippian carbon cycle.

  18. Heavy-ion isotopic anomalies in He-3 rich solar particle events

    NASA Astrophysics Data System (ADS)

    Mason, G. M.; Mazur, J. E.; Halmilton, D. C.

    1994-04-01

    We have measured the approximately 1 MeV/nucleon heavy-ion mass composition during a series of (3)He-rich solar particle events during 1992 July using the University of Maryland instrument on the SAMPEX spacecraft. In addition to enhancements of He-3/He-4 of approximately 103 to 104 larger than coronal values, these events also showed typical enhancements of heavy nuclei of up to a factor of approximately 10 compared with large solar particle events. Over the energy range of approximately 0.4 - 4.0 MeV/nucleon the spectra of both he isotopes as well as heavier ions C, N, O, Ne, Mg, Si, S, Ca+Ar, and Fe were found to be power laws in enegy per nucleon with nearly identical spectral indices, indicating that both the He and heavier ions were accelerated by the same mechanism. We obtain upper limits of approximately 15 for possible enrichments of neutron-rich isotopes of C, N, O, and Fe compared to large solar particle events; however, we find Ne-22/Ne-20 = 0.29 +/- 0.10, an enhancement of a factor of 3-4 compared with large solar particle event abundances. We also find evidence of enrichments of approximately 2-3 for Mg-25/Mg-24 and Mg-26/Mg-24, although the uncertainties are large. Thus while at least one of the heavy elements shows isotopic enhancements of neutron-rich isotopes, the mechanisms that produce the extremely large He-3 enrichments apparently do not produce similarly dramatic isotopic anomalies in the heavy nuclei. These observations constrain possible acceleration models and may indicate that the particles are energized in solar coronal locations enhanced in heavy ions.

  19. Krypton and xenon in the atmosphere of Venus

    NASA Technical Reports Server (NTRS)

    Donahue, T. M.; Hoffman, J. H.; Hodges, R. R., Jr.

    1981-01-01

    The paper reports a determination by the Pioneer Venus large probe neutral mass spectrometer of upper limits to the concentration of krypton and xenon along with most of their isotopes in the atmosphere of Venus. The upper limit to the krypton mixing ratio is estimated at 47 ppb, with a very conservative estimate at 69 ppb. The probable upper limit to the sum of the mixing ratios of the isotopes Xe-128, Xe-129, Xe-130, Xe-131, and Xe-132 is 40 ppb by volume, with a very conservative upper limit three times this large.

  20. Large isotopic anomalies of Si, C, N and noble gases in interstellar silicon carbide from the Murray meteorite

    NASA Astrophysics Data System (ADS)

    Zinner, E.; Ming, T.; Anders, E.

    1987-12-01

    Primitive meteorites contain several noble gas components with anomalous isotopic compositions which imply that they - and their solid 'carrier' phases - are of exotic, pre-solar origin. The authors found that minor fractions of the Murray meteorite contain two minerals not previously seen in meteorites: silicon carbide and an amorphous Si-O phase. They report ion microprobe analyses of these phases which reveal very large isotopic anomalies in silicon, nitrogen and carbon, exceeding the highest anomalies previously measured by factors of up to ≡50. It is concluded that these phases are circumstellar grains from carbon-rich stars, whose chemical inertness allowed them to survive in exceptionally well-preserved form.

  1. Strong water isotopic anomalies in the martian atmosphere: probing current and ancient reservoirs.

    PubMed

    Villanueva, G L; Mumma, M J; Novak, R E; Käufl, H U; Hartogh, P; Encrenaz, T; Tokunaga, A; Khayat, A; Smith, M D

    2015-04-10

    We measured maps of atmospheric water (H2O) and its deuterated form (HDO) across the martian globe, showing strong isotopic anomalies and a significant high deuterium/hydrogen (D/H) enrichment indicative of great water loss. The maps sample the evolution of sublimation from the north polar cap, revealing that the released water has a representative D/H value enriched by a factor of about 7 relative to Earth's ocean [Vienna standard mean ocean water (VSMOW)]. Certain basins and orographic depressions show even higher enrichment, whereas high-altitude regions show much lower values (1 to 3 VSMOW). Our atmospheric maps indicate that water ice in the polar reservoirs is enriched in deuterium to at least 8 VSMOW, which would mean that early Mars (4.5 billion years ago) had a global equivalent water layer at least 137 meters deep. PMID:25745065

  2. Strong water isotopic anomalies in the martian atmosphere: Probing current and ancient reservoirs

    NASA Astrophysics Data System (ADS)

    Villanueva, G. L.; Mumma, M. J.; Novak, R. E.; Käufl, H. U.; Hartogh, P.; Encrenaz, T.; Tokunaga, A.; Khayat, A.; Smith, M. D.

    2015-04-01

    We measured maps of atmospheric water (H2O) and its deuterated form (HDO) across the martian globe, showing strong isotopic anomalies and a significant high deuterium/hydrogen (D/H) enrichment indicative of great water loss. The maps sample the evolution of sublimation from the north polar cap, revealing that the released water has a representative D/H value enriched by a factor of about 7 relative to Earth’s ocean [Vienna standard mean ocean water (VSMOW)]. Certain basins and orographic depressions show even higher enrichment, whereas high-altitude regions show much lower values (1 to 3 VSMOW). Our atmospheric maps indicate that water ice in the polar reservoirs is enriched in deuterium to at least 8 VSMOW, which would mean that early Mars (4.5 billion years ago) had a global equivalent water layer at least 137 meters deep.

  3. Strong Water Isotopic Anomalies in the Martian Atmosphere: Probing Current and Ancient Reservoirs

    NASA Technical Reports Server (NTRS)

    Villanueva, G. L.; Mumma, M. J.; Novak, R. E.; Käufl, H. U.; Hartogh, P.; Encrenaz, T.; Tokunaga, A.; Khayat, A.; Smith, M. D.

    2015-01-01

    We measured maps of atmospheric water (H2O) and its deuterated form (HDO) across the martian globe, showing strong isotopic anomalies and a significant high deuterium/hydrogen (D/H) enrichment indicative of great water loss. The maps sample the evolution of sublimation from the north polar cap, revealing that the released water has a representative D/H value enriched by a factor of about 7 relative to Earth's ocean [Vienna standard mean ocean water (VSMOW)]. Certain basins and orographic depressions show even higher enrichment, whereas high-altitude regions show much lower values (1 to 3 VSMOW). Our atmospheric maps indicate that water ice in the polar reservoirs is enriched in deuterium to at least 8 VSMOW, which would mean that early Mars (4.5 billion years ago) had a global equivalent water layer at least 137 meters deep.

  4. Krypton Ion Thruster Performance

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Williams, George J.

    1992-01-01

    Preliminary data were obtained from a 30 cm ion thruster operating on krypton propellant over the input power range of 0.4 to 5.5 kW. The data presented are compared and contrasted to the data obtained with xenon propellant over the same input power envelope. Typical krypton thruster efficiency was 70 percent at a specific impulse of approximately 5000 s, with a maximum demonstrated thrust to power ratio of approximately 42 mN/kW at 2090 s specific impulse and 1580 watts input power. Critical thruster performance and component lifetime issues were evaluated. Order of magnitude power throttling was demonstrated using a simplified power-throttling strategy.

  5. Krypton ion thruster performance

    NASA Technical Reports Server (NTRS)

    Patterson, Michael J.; Williams, George J., Jr.

    1992-01-01

    Preliminary data were obtained from a 30 cm ion thruster operating on krypton propellant over the input power range of 0.4-5.5 kW. The data are presented, and compared and contrasted to those obtained with xenon propellant over the same input power envelope. Typical krypton thruster efficiency was 70 percent at a specific impulse of approximately 5000 s, with a maximum demonstrated thrust-to-power ratio of approximately 42 mN/kW at 2090 s specific impulse and 1580 watts input power. Critical thruster performance and component lifetime issues were evaluated. Order-of-magnitude power throttling was demonstrated using a simplified power-throttling strategy.

  6. Ca ISOTOPE EFFECTS IN ORGUEIL LEACHATES AND THE IMPLICATIONS FOR THE CARRIER PHASES OF {sup 54}Cr ANOMALIES

    SciTech Connect

    Moynier, Frederic; Podosek, Frank A.; Brannon, Joyce; Simon, Justin I.; DePaolo, Donald J.; Meyer, Bradley S. E-mail: fap@levee.wustl.ed E-mail: Justin.I.Simon@NASA.go E-mail: mbradle@clemson.ed

    2010-07-20

    Primitive meteorites contain small {sup 40}Ca excesses, in addition to rare anomalies in {sup 48}Ca. Refractory inclusions from Vigarano and Allende have larger {sup 40}Ca and resolvable {sup 48}Ca anomalies. These results imply that Ca isotopic heterogeneities were still present in the early solar system at both the mineral and whole-rock scale. The absence of correlated Ca isotope anomalies in leachates from the CI1 chondrite Orgueil containing large {sup 54}Cr anomalies has implications on the origin of the Cr anomalies. {sup 54}Cr has to be produced either in massive stars during s-process nucleosynthesis without accompanying {sup 48}Ca or in particular zones in the rare Type Ia supernovae. In the latter case, {sup 54}Cr has been produced in a zone predominantly enriched in Cr and {sup 54}Cr and not mixed with other zones, or {sup 54}Cr has been produced together with other neutron-rich nuclides and there has been subsequent decoupling of this material in the star, in the solar system, or in the laboratory.

  7. Erosion during accretion: Consequences for planetary iron-silicate ratios and tungsten isotope anomalies

    NASA Astrophysics Data System (ADS)

    Dwyer, C. A.; Nimmo, F.; Asphaug, E. I.; O'Brien, D. P.; Chambers, J.

    2011-12-01

    The late stages of planetary accretion involve stochastic, large collisions [1]. Although such collisions are usually assumed to result in perfect mergers, many of the collisions may instead result in hit-and-run events [2, 3] or erosion of existing bodies' mantles [4]. Impact-related erosion can have profound consequences for the rate and style of accretion [5] and the bulk chemistries of terrestrial planets [6]. Here we present some preliminary investigations into the occurrence of erosional collisions during late-stage accretion and consequences for the bulk chemistry and isotopic characteristics of the resulting planets. We have performed a preliminary investigation into the nature of late-stage accretion using an N-body simulation in which the different possible collision outcomes are treated in a more realistic manner than hitherto. The simulation starts with 155 planetesimals of roughly lunar mass; at the end, four bodies remain with masses of 0.83, 0.62, 0.33, and 0.02 Mearth. Collisional efficiency is parametrized based on the results of [7]. The results of the collisions, especially highly disruptive collisions, are idealized in order to be computationally tractable; in particular, bodies smaller than a minimum mass are not permitted. To track the bulk compositional evolution of the bodies, we assume all are initially chondritic. We alter the bulk chemistry after an impact according to a scheme which is based on the assumption that mantle material is much more likely to be eroded than core material. We track the tungsten isotopic evolution of each body using the method of [8] and treat the extent of core-mantle equilibration as a free parameter. The stochastic nature of planetary accretion means that even with perfect mergers, the tungsten isotope anomaly (eW) of the final bodies will vary, due to variations in the timing of the impacts which create the final bodies. Irrespective of accretion style, the extent of core re-equilibration affects e

  8. Delineating the effect of El-Nino Southern Oscillations using oxygen and sulfur isotope anomalies of sulfate aerosols

    NASA Astrophysics Data System (ADS)

    Shaheen, R.; Abaunza Quintero, M. M.; Jackson, T.; McCabe, J.; Savarino, J. P.; Thiemens, M. H.

    2013-12-01

    Sulfate aerosols, unlike greenhouse gases, contribute to global cooling by acting as cloud condensation nuclei in the troposphere and by directly reflecting solar radiation in the stratosphere. To understand the long-term effect of natural and anthropogenic sulfate aerosol on the climate cycle, it is critical to obtain a clear picture of the factors controlling the transport and transformation of sulfate aerosols. We have employed both oxygen triple isotopes and sulfur quadruple isotopes on sulfates from Antarctic ice samples to define the oxidation history, long range transport dynamics, and sources of sulfate aerosols over time. The measurements are used to deconvolve the impact of natural and anthropogenic aerosols on the stratospheric sulfate aerosol composition. Sulfate aerosols were extracted from a snow pit at the South Pole (1979-2002) with a high resolution temporal (6 month) record of the winter and summer seasons covering two largest volcanic events, Pinatubo and El-chichon and three largest ENSO events of the century. All three oxygen and four sulfur isotopes were measured on the extracted sulfate (Shaheen et al., 2013). The high temperature pyrolysis (1000oC) of silver sulfate yielded O2 and SO2. The oxygen triple isotopic composition of the O2 gas was used to determine the oxidation history of sulfate aerosol and SO2 gas obtained during this reaction was utilized to measure sulfur quadruple isotopes following appropriate reaction chemistry (Farquhar et al., 2001). The data revealed that oxygen isotope anomalies in Antarctic aerosols (Δ17O = 0.8-3.7‰) from 1990 to 2001 are strongly linked to the variation in ozone levels in the upper stratosphere/lower stratosphere. The variations in ozone levels are reflective of the intensity of the ENSO events and changes in relative humidity in the atmosphere during this time period. Sulfate concentrations and sulfur quadruple isotopic composition and associated anomalies were used to elucidate the sources of

  9. Ice Ih anomalies: Thermal contraction, anomalous volume isotope effect, and pressure-induced amorphization.

    PubMed

    Salim, Michael A; Willow, Soohaeng Yoo; Hirata, So

    2016-05-28

    Ice Ih displays several anomalous thermodynamic properties such as thermal contraction at low temperatures, an anomalous volume isotope effect (VIE) rendering the volume of D2O ice greater than that of H2O ice, and a pressure-induced transition to the high-density amorphous (HDA) phase. Furthermore, the anomalous VIE increases with temperature, despite its quantum-mechanical origin. Here, embedded-fragment ab initio second-order many-body perturbation (MP2) theory in the quasiharmonic approximation (QHA) is applied to the Gibbs energy of an infinite, proton-disordered crystal of ice Ih at wide ranges of temperatures and pressures. The quantum effect of nuclei moving in anharmonic potentials is taken into account from first principles without any empirical or nonsystematic approximation to either the electronic or vibrational Hamiltonian. MP2 predicts quantitatively correctly the thermal contraction at low temperatures, which is confirmed to originate from the volume-contracting hydrogen-bond bending modes (acoustic phonons). It qualitatively reproduces (but underestimates) the thermal expansion at higher temperatures, caused by the volume-expanding hydrogen-bond stretching (and to a lesser extent librational) modes. The anomalous VIE is found to be the result of subtle cancellations among closely competing isotope effects on volume from all modes. Consequently, even ab initio MP2 with the aug-cc-pVDZ and aug-cc-pVTZ basis sets has difficulty reproducing this anomaly, yielding qualitatively varied predictions of the sign of the VIE depending on such computational details as the choice of the embedding field. However, the temperature growth of the anomalous VIE is reproduced robustly and is ascribed to the librational modes. These solid-state MP2 calculations, as well as MP2 Born-Oppenheimer molecular dynamics, find a volume collapse and a loss of symmetry and long-range order in ice Ih upon pressure loading of 2.35 GPa or higher. Concomitantly, rapid softening of

  10. Ice Ih anomalies: Thermal contraction, anomalous volume isotope effect, and pressure-induced amorphization

    NASA Astrophysics Data System (ADS)

    Salim, Michael A.; Willow, Soohaeng Yoo; Hirata, So

    2016-05-01

    Ice Ih displays several anomalous thermodynamic properties such as thermal contraction at low temperatures, an anomalous volume isotope effect (VIE) rendering the volume of D2O ice greater than that of H2O ice, and a pressure-induced transition to the high-density amorphous (HDA) phase. Furthermore, the anomalous VIE increases with temperature, despite its quantum-mechanical origin. Here, embedded-fragment ab initio second-order many-body perturbation (MP2) theory in the quasiharmonic approximation (QHA) is applied to the Gibbs energy of an infinite, proton-disordered crystal of ice Ih at wide ranges of temperatures and pressures. The quantum effect of nuclei moving in anharmonic potentials is taken into account from first principles without any empirical or nonsystematic approximation to either the electronic or vibrational Hamiltonian. MP2 predicts quantitatively correctly the thermal contraction at low temperatures, which is confirmed to originate from the volume-contracting hydrogen-bond bending modes (acoustic phonons). It qualitatively reproduces (but underestimates) the thermal expansion at higher temperatures, caused by the volume-expanding hydrogen-bond stretching (and to a lesser extent librational) modes. The anomalous VIE is found to be the result of subtle cancellations among closely competing isotope effects on volume from all modes. Consequently, even ab initio MP2 with the aug-cc-pVDZ and aug-cc-pVTZ basis sets has difficulty reproducing this anomaly, yielding qualitatively varied predictions of the sign of the VIE depending on such computational details as the choice of the embedding field. However, the temperature growth of the anomalous VIE is reproduced robustly and is ascribed to the librational modes. These solid-state MP2 calculations, as well as MP2 Born-Oppenheimer molecular dynamics, find a volume collapse and a loss of symmetry and long-range order in ice Ih upon pressure loading of 2.35 GPa or higher. Concomitantly, rapid softening of

  11. O-16 excesses in Murchison and Murray hibonites - A case against a late supernova injection origin of isotopic anomalies in O, Mg, Ca, and Ti

    NASA Technical Reports Server (NTRS)

    Fahey, A. J.; Goswami, J. N.; Mckeegan, K. D.; Zinner, E. K.

    1987-01-01

    Ion probe measurements of the oxygen isotopic composition of seven hibonite samples from the CM chondrites Murchison and Murray are reported. All samples show large O-16 excesses relative to terrestrial oxygen. The data for all samples plot along the carbonaceous chondrite O-16-rich mixing line and show no evidence for isotopic mass fractionation effects characteristic of FUN inclusions. These hibonites have the largest Ca-48 and Ti-50 isotopic anomalies found to date; thus there is no intrinsic relationship between anomalies of a nucleosynthetic origin and isotopic mass fractionation effects. The large O-16 excess seen in the sample with the largest measured Ca-48 and Ti-50 depletions argues against a late injection of exotic material from a nearby supernova as a source for the isotopic anomalies.

  12. Developing hyperpolarized krypton-83 for nuclear magnetic resonance spectroscopy and magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Cleveland, Zackary I.

    This dissertation discusses the production of highly nonequilibrium nuclear spin polarization, referred to as hyperpolarization or hp, in the nuclear spin I = 9/2 noble gas isotope krypton-83 using spin exchange optical pumping (SEOP). This nonequilibrium polarization yields nuclear magnetic resonance (NMR) signals that are enhanced three or more orders of magnitude above those of thermally polarized krypton and enables experiments that would otherwise be impossible. Krypton-83 possesses a nuclear electric quadrupole moment that dominates the longitudinal (T1) relaxation due to coupling of the quadrupole moment to fluctuating electric field gradients generated by distortions to the spherical symmetry of the electronic environment. Relaxation slows polarization buildup and limits the maximum signal intensity but makes krypton-83 a sensitive probe of its environment. The gas-phase krypton-83 longitudinal relaxation rate increases linearly with total gas density due to binary collisions. Density independent relaxation, caused by the formation of krypton-krypton van der Waals molecules and surface adsorption, also contributes to the observed rate. Buffer gases suppress van der Waals molecule mediated relaxation by breaking apart the weakly bound krypton dimers. Surface relaxation is gas composition independent and therefore more difficult to suppress. However, this relaxation mechanism makes hp krypton-83 sensitive to important surface properties including surface-to-volume ratio, surface chemistry, and surface temperature. The presence of surfaces with high krypton adsorption affinities (i.e. hydrophobic surfaces) accelerates the relaxation times and can produce T1 contrast in hp krypton-83 magnetic resonance imaging (MRI). Tobacco smoke deposited on surfaces generates strong T1 contrast allowing the observation of smoke deposition with spatial resolution. Conversely, water adsorption on surfaces significantly lengths the T1 times due competitive surface adsorption

  13. Isotopic Anomalies in Primitive Solar System Matter: Spin-State-Dependent Fractionation of Nitrogen and Deuterium in Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Wirstrom, Eva S.; Charnley, Steven B.; Cordiner, Martin A.; Milam, Stefanie N.

    2012-01-01

    Organic material found in meteorites and interplanetary dust particles is enriched in D and N-15. This is consistent with the idea that the functional groups carrying these isotopic anomalies, nitriles and amines, were formed by ion-molecule chemistry in the protosolar nebula, Theoretical models of interstellar fractionation at low temperatures predict large enrichments in both D and N-15 and can account for the largest isotopic enrichments measured in carbonaceous meteorites. However, more recent measurements have shown that, in some primitive samples, a large N-15 enrichment does not correlate with one in D, and that some D-enriched primitive material displays little, if any, N-15 enrichment. By considering the spin-state dependence in ion-molecule reactions involving the ortho and para forms of H2, we show that ammonia and related molecules can exhibit such a wide range of fractionation for both N-15 and D in dense cloud cores. We also show that while the nitriles, HCN and HNC, contain the greatest N=15 enrichment, this is not expected to correlate with extreme D enrichment. These calculations therefore support the view that solar system N-15 and D isotopic anomalies have an interstellar heritage. We also compare our results to existing astronomical observations and briefly discuss future tests of this model.

  14. Isotopic Anomalies in Primitive Solar System Matter: Spin-State Dependent Fractionation of Nitrogen and Deuterium in Interstellar Clouds

    NASA Technical Reports Server (NTRS)

    Wirstrom, Eva S.; Charnley, Steven B.; Cordiner, Martin A.; Milan, Stefanie N.

    2012-01-01

    Organic material found in meteorites and interplanetary dust particles is enriched in D and N-15, This is consistent with the idea that the functional groups carrying these isotopic anomalies, nitriles and amines, were formed by ion-molecule chemistry in the protosolar core. Theoretical models of interstellar fractionation at low temperatures predict large enrichments in both D and N-15 and can account for the largest isotop c enrichments measured in carbonaceous meteorites, However, more recent measurements have shown that, in some primitive samples, a large N-15 enrichment does not correlate with one in D, and that some D-enriched primitive material displays little, if any, N-15 enrichment. By considering the spin-state dependence in ion-molecule reactions involving the ortho and para forms of H2, we show that ammonia and related molecules can exhibit such a wide range of fractionation for both N-15 and D in dense cloud cores, We also show that while the nitriles, HCN and HNC, contain the greatest N-15 enrichment, this is not expected to correlate with extreme D emichment. These calculations therefore support the view that Solar System N-15 and D isotopic anomalies have an interstellar heritage, We also compare our results to existing astronomical observations and briefly discuss future tests of this model.

  15. ISOTOPIC ANOMALIES IN PRIMITIVE SOLAR SYSTEM MATTER: SPIN-STATE-DEPENDENT FRACTIONATION OF NITROGEN AND DEUTERIUM IN INTERSTELLAR CLOUDS

    SciTech Connect

    Wirstroem, Eva S.; Cordiner, Martin A.; Charnley, Steven B.; Milam, Stefanie N.

    2012-09-20

    Organic material found in meteorites and interplanetary dust particles is enriched in D and {sup 15}N. This is consistent with the idea that the functional groups carrying these isotopic anomalies, nitriles and amines, were formed by ion-molecule chemistry in the protosolar nebula. Theoretical models of interstellar fractionation at low temperatures predict large enrichments in both D and {sup 15}N and can account for the largest isotopic enrichments measured in carbonaceous meteorites. However, more recent measurements have shown that, in some primitive samples, a large {sup 15}N enrichment does not correlate with one in D, and that some D-enriched primitive material displays little, if any, {sup 15}N enrichment. By considering the spin-state dependence in ion-molecule reactions involving the ortho and para forms of H{sub 2}, we show that ammonia and related molecules can exhibit such a wide range of fractionation for both {sup 15}N and D in dense cloud cores. We also show that while the nitriles, HCN and HNC, contain the greatest {sup 15}N enrichment, this is not expected to correlate with extreme D enrichment. These calculations therefore support the view that solar system {sup 15}N and D isotopic anomalies have an interstellar heritage. We also compare our results to existing astronomical observations and briefly discuss future tests of this model.

  16. Isotopic anomaly in peat nitrogen is a probable trace of acid rains caused by 1908 Tunguska bolide

    NASA Astrophysics Data System (ADS)

    Kolesnikov, E. M.; Kolesnikova, N. V.; Boettger, T.

    1998-02-01

    In peat sampled at the Tunguska Cosmic Body (TCB) explosion area, the sharp increase of the N concentration (about three-fold) and the positive N isotopic anomaly (δ 15N = + 3.5‰, see eqn) have for the first time been revealed. In contrast with the C and H effects observed earlier which were clearly limited to the epicentre area (Kolesnikov et al., 1997 in press), the same N effect has also been shown in peat sampled near the Vanavara settlement, 65 km south of the explosion epicentre. A clear connection of the observed anomalies in peat to the 1908 permafrost boundary, synchronism of the changes of δ 15N and the N concentration and also good agreement with data on the K/T boundary deposits allow us to connect the observed effects to acid rain fall-out after passage and an explosion of the TCB.

  17. Zinc isotopic composition of iron meteorites: Absence of isotopic anomalies and origin of the volatile element depletion

    NASA Astrophysics Data System (ADS)

    Chen, Heng; Nguyen, Bach Mai; Moynier, Frédéric

    2013-12-01

    High-precision Zn isotopic compositions measured by MC-ICP-MS are documented for 32 iron meteorites from various fractionally crystallized and silicate-bearing groups. The δ66Zn values range from -0.59‰ up to +5.61‰ with most samples being slightly enriched in the heavier isotopes compared with carbonaceous chondrites (0 < δ66Zn < 0.5). The δ66Zn versus δ68Zn plot of all samples defines a common linear fractionation line, which supports the hypothesis that Zn was derived from a single reservoir or from multiple reservoirs linked by mass-dependent fractionation processes. Our data for Redfields fall on a mass fractionation line and therefore refute a previous claim of it having an anomalous isotopic composition due to nonmixing of nucleosynthetic products. The negative correlation between δ66Zn and the Zn concentration of IAB and IIE is consistent with mass-dependent isotopic fractionation due to evaporation with preferential loss of lighter isotopes in the vapor phase. Data for the Zn concentrations and isotopic compositions of two IVA samples demonstrate that volatile depletion in the IVA parent body is not likely the result of evaporation. This is important evidence that favors the incomplete condensation origin for the volatile depletion of the IVA parent body.

  18. NUCLEOSYNTHETIC TUNGSTEN ISOTOPE ANOMALIES IN ACID LEACHATES OF THE MURCHISON CHONDRITE: IMPLICATIONS FOR HAFNIUM-TUNGSTEN CHRONOMETRY

    SciTech Connect

    Burkhardt, Christoph; Wieler, Rainer; Kleine, Thorsten; Dauphas, Nicolas

    2012-07-01

    Progressive dissolution of the Murchison carbonaceous chondrite with acids of increasing strengths reveals large internal W isotope variations that reflect a heterogeneous distribution of s- and r-process W isotopes among the components of primitive chondrites. At least two distinct carriers of nucleosynthetic W isotope anomalies must be present, which were produced in different nucleosynthetic environments. The co-variation of {sup 182}W/{sup 184}W and {sup 183}W/{sup 184}W in the leachates follows a linear trend that is consistent with a mixing line between terrestrial W and a presumed s-process-enriched component. The composition of the s-enriched component agrees reasonably well with that predicted by the stellar model of s-process nucleosynthesis. The co-variation of {sup 182}W/{sup 184}W and {sup 183}W/{sup 184}W in the leachates provides a means for correcting the measured {sup 182}W/{sup 184}W and {sup 182}W/{sup 183}W of Ca-Al-rich inclusions (CAI) for nucleosynthetic anomalies using the isotopic variations in {sup 183}W/{sup 184}W. This new correction procedure is different from that used previously, and results in a downward shift of the initial {epsilon}{sup 182}W of CAI to -3.51 {+-} 0.10 (where {epsilon}{sup 182}W is the variation in 0.01% of the {sup 182}W/{sup 183}W ratio relative to Earth's mantle). This revision leads to Hf-W model ages of core formation in iron meteorite parent bodies that are {approx}2 Myr younger than previously calculated. The revised Hf-W model ages are consistent with CAI being the oldest solids formed in the solar system, and indicate that core formation in some planetesimals occurred within {approx}2 Myr of the beginning of the solar system.

  19. DUPAL anomaly in the Sea of Japan: Pb, Nd, and Sr isotopic variations at the eastern Eurasian continental margin

    USGS Publications Warehouse

    Tatsumoto, M.; Nakamura, Y.

    1991-01-01

    Volcanic rocks from the eastern Eurasian plate margin (southwestern Japan, the Sea of Japan, and northeastern China) show enriched (EMI) component signatures. Volcanic rocks from the Ulreung and Dog Islands in the Sea of Japan show typical DUPAL anomaly characteristics with extremely high ??208/204 Pb (up to 143) and enriched Nd and Sr isotopic compositions (??{lunate}Nd = -3 to -5, 87Sr 86Sr = ~0.705). The ??208/204 Pb values are similar to those associated with the DUPAL anomaly (up to 140) in the southern hemisphere. Because the EMI characteristics of basalts from the Sea of Japan are more extreme than those of southwestern Japan and inland China basalts, we propose that old mantle lithosphere was metasomatized early (prior to the Proterozoic) with subduction-related fluids (not present subduction system) so that it has been slightly enriched in incompatible elements and has had a high Th/U for a long time. The results of this study support the idea that the old subcontinental mantle lithosphere is the source for EMI of oceanic basalts, and that EMI does not need to be stored at the core/ mantle boundary layer for a long time. Dredged samples from seamounts and knolls from the Yamato Basin Ridge in the Sea of Japan show similar isotopic characteristics to basalts from the Mariana arc, supporting the idea that the Yamato Basin Ridge is a spreading center causing separation of the northeast Japan Arc from Eurasia. ?? 1991.

  20. Excitation rate and background measurements during LIF studies on krypton

    NASA Astrophysics Data System (ADS)

    Whitehead, C. A.; Cannon, B. D.; Wacker, J. F.

    1993-04-01

    The Krypton Isotope Laser Analysis (KILA) method is being developed at the Pacific Northwest Laboratory (PNL) to measure Kr-85 concentrations in small air samples. The technique uses high-resolution lasers to excite individual isotopes of krypton specifically to induce Kr-85 to fluorescence for detection by optical means. Production of krypton metastables via two-photon excitation to the 2p(sub 6) state has been shown to be 0.15% efficient in 0.13 mTorr of krypton--sufficiently high to demonstrate overall feasibility of the KILA method. Since this goal was met, focus has been directed toward development of a working vacuum ultraviolet (VUV) fluorescence detection system and toward understanding the VUV background. This report describes the progress made in these two areas. The second step of the KILA process is to optically pump all except the Kr-85 isotopes from the metastable state back to the ground state using laser-induced fluorescence (LIF). The rate of this process and the VUV background afterward will determine the sensitivity and selectivity of the KILA approach. De-excitation of the metastable population was accomplished via one-photon absorption of a continuous-wave (c-w) laser to the 2p(sub 8) energy level. Non-isotopically selective de-excitation rates as high as 5 x 10(exp 5)/sec have been measured, yielding a signal-to-background ratio of g reater than 10(exp 6). The lifetime of the metastables is 1.2 msec in 200 mTorr of neon--much longer than the time required to de-excite krypton metastables and to detect fluorescence produced by Kr-85. After attaining these high de-excitation rates, a gated VUV detection system was built with a dynamic range large enough to measure a small background following de-excitation of large metastable populations. Future experiments will focus on reducing the background level by another 2-3 orders of magnitude and perfecting the isotopically selective de-excitation technique with known samples.

  1. Excitation rate and background measurements during LIF studies on krypton

    SciTech Connect

    Whitehead, C.A.; Cannon, B.D.; Wacker, J.F.

    1993-04-01

    The Krypton Isotope Laser Analysis (KILA) method is being developed at the Pacific Northwest Laboratory (PNL) to measure {sup 85}Kr concentrations in small air samples. The technique uses high-resolution lasers to excite individual isotopes of krypton specifically to induce {sup 85}Kr to fluorescence for detection by optical means. Production of krypton metastables via two-photon excitation to the 2p{sub 6} state has been shown to be 0.15% efficient in 0.13 mTorr of krypton--sufficiently high to demonstrate overall feasibility of the KILA method. Since this goal was met, focus has been directed toward development of a working vacuum ultraviolet (VUV) fluorescence detection system and toward understanding the VUV background. This report describes the progress made in these two areas. The second step of the KILA process is to optically pump all except the {sup 85}Kr isotopes from the metastable state back to the ground state using laser-induced fluorescence (LIF). The rate of this process and the VUV background afterward will determine the sensitivity and selectivity of the KILA approach. De-excitation of the metastable population was accomplished via one-photon absorption of a continuous-wave (c-w) laser to the 2p{sub 8} energy level. Non-isotopically selective de-excitation rates as high as 5 {times} 10{sup 5} sec{sup {minus}1} have been measured, yielding a signal-to-background ratio of >10{sup 6}. The lifetime of the metastables is 1.2 msec in 200 mTorr of neon--much longer than the time required to de-excite krypton metastables and to detect fluorescence produced by {sup 85}Kr. After attaining these high de-excitation rates, a gated VUV detection system was built with a dynamic range large enough to measure a small background following de-excitation of large metastable populations. Future experiments will focus on reducing the background level by another 2--3 orders of magnitude and perfecting the isotopically selective de-excitation technique with known samples.

  2. Excitation rate and background measurements during LIF studies on krypton

    SciTech Connect

    Whitehead, C.A.; Cannon, B.D.; Wacker, J.F.

    1993-04-01

    The Krypton Isotope Laser Analysis (KILA) method is being developed at the Pacific Northwest Laboratory (PNL) to measure [sup 85]Kr concentrations in small air samples. The technique uses high-resolution lasers to excite individual isotopes of krypton specifically to induce [sup 85]Kr to fluorescence for detection by optical means. Production of krypton metastables via two-photon excitation to the 2p[sub 6] state has been shown to be 0.15% efficient in 0.13 mTorr of krypton--sufficiently high to demonstrate overall feasibility of the KILA method. Since this goal was met, focus has been directed toward development of a working vacuum ultraviolet (VUV) fluorescence detection system and toward understanding the VUV background. This report describes the progress made in these two areas. The second step of the KILA process is to optically pump all except the [sup 85]Kr isotopes from the metastable state back to the ground state using laser-induced fluorescence (LIF). The rate of this process and the VUV background afterward will determine the sensitivity and selectivity of the KILA approach. De-excitation of the metastable population was accomplished via one-photon absorption of a continuous-wave (c-w) laser to the 2p[sub 8] energy level. Non-isotopically selective de-excitation rates as high as 5 [times] 10[sup 5] sec[sup [minus]1] have been measured, yielding a signal-to-background ratio of >10[sup 6]. The lifetime of the metastables is 1.2 msec in 200 mTorr of neon--much longer than the time required to de-excite krypton metastables and to detect fluorescence produced by [sup 85]Kr. After attaining these high de-excitation rates, a gated VUV detection system was built with a dynamic range large enough to measure a small background following de-excitation of large metastable populations. Future experiments will focus on reducing the background level by another 2--3 orders of magnitude and perfecting the isotopically selective de-excitation technique with known samples.

  3. Simulation of the diurnal variations of the oxygen isotope anomaly (Δ17O) of reactive atmospheric species

    NASA Astrophysics Data System (ADS)

    Morin, S.; Sander, R.; Savarino, J.

    2010-12-01

    The isotope anomaly (Δ17O) of secondary atmospheric species such as nitrate (NO3-) or hydrogen peroxyde (H2O2) has potential to provide useful constrains on their formation pathways. Indeed, the Δ17O of their precursors (NOx, HOx etc.) differs and depends on their interactions with ozone, which is the main source of non-zero Δ17O in the atmosphere. Interpreting variations of Δ17O in secondary species requires an in-depth understanding of the Δ17O of their precursors taking into account non-linear chemical regimes operating under various environmental settings. We present results from numerical simulations carried out using the atmospheric chemistry box model (CAABA/MECCA) to explicitly compute the diurnal variations of the isotope anomaly of short-lived species such as NOx and HOx. Δ17O was propagated from ozone to other species (NO, NO2, OH, HO2, RO2, NO3, N2O5, HONO, HNO3, HNO4, H2O2) according to the classical mass-balance equation, through the implementation of various sets of hypotheses pertaining to the transfer of Δ17O during chemical reactions. The model confirms that diurnal variations in Δ17O of NOx are well predicted by the photochemical steady-state relationship during the day, but that at night a different approach must be employed (i.e. "fossilization" of the Δ17O of NOx as soon as the photolytical lifetime of NOx drops below ca. 5 min). We quantify the diurnally-integrated isotopic signature (DIIS) of sources of atmospheric nitrate and H2O2 under the various environmental conditions analyzed, which is of particular relevance to larger-scale implementations of Δ17O where high computational costs cannot be afforded.

  4. Experimental Investigation of Continuous-Wave Laser Ionization of Krypton

    SciTech Connect

    Cannon, Bret D.; Shannon, Robert F.

    2001-10-30

    This report describes experimental investigations of a method that uses continuous-wave (CW) lasers to ionize selected isotopes of krypton with high isotopic selectivity. The experiments show that the ionization rate is at least a factor of 100 lower than calculated with our model that has been described in a previous report. This discrepancy may be due to a much smaller excitation cross section that expected based on previous work and/or the aberrations in the ultraviolet beam used for the first step in the excitation. Additional problems with damage to mirrors, alignment instabilities, and manufacturers halting production of key products make this approach not worth further development at this time

  5. CO self-shielding as the origin of oxygen isotope anomalies in the early solar nebula.

    PubMed

    Lyons, J R; Young, E D

    2005-05-19

    The abundances of oxygen isotopes in the most refractory mineral phases (calcium-aluminium-rich inclusions, CAIs) in meteorites have hitherto defied explanation. Most processes fractionate isotopes by nuclear mass; that is, 18O is twice as fractionated as 17O, relative to 16O. In CAIs 17O and 18O are nearly equally fractionated, implying a fundamentally different mechanism. The CAI data were originally interpreted as evidence for supernova input of pure 16O into the solar nebula, but the lack of a similar isotope trend in other elements argues against this explanation. A symmetry-dependent fractionation mechanism may have occurred in the inner solar nebula, but experimental evidence is lacking. Isotope-selective photodissociation of CO in the innermost solar nebula might explain the CAI data, but the high temperatures in this region would have rapidly erased the signature. Here we report time-dependent calculations of CO photodissociation in the cooler surface region of a turbulent nebula. If the surface were irradiated by a far-ultraviolet flux approximately 10(3) times that of the local interstellar medium (for example, owing to an O or B star within approximately 1 pc of the protosun), then substantial fractionation of the oxygen isotopes was possible on a timescale of approximately 10(5) years. We predict that similarly irradiated protoplanetary disks will have H2O enriched in 17O and 18O by several tens of per cent relative to CO. PMID:15902251

  6. Oxygen Isotopic Anomaly in Terrestrial Atmospheric Carbonates and its Implications to Understand the Role of Water on Mars

    NASA Astrophysics Data System (ADS)

    Thiemens, M. H.; Shaheen, R.

    2010-12-01

    Mineral aerosols produced from wind-blown soils are an important component of the earth system and comprise about 1000-3000 Tg.yr-1 compared to 400 Tg.yr-1 of secondary aerosols (e.g. carbonaceous substances, organics, sulfate and nitrates). Aerosols have important consequences for health, visibility and the hydrological cycle as they provide reactive surfaces for heterogeneous chemical transformation that may influence gas phase chemistry in the atmosphere. Tropospheric ozone produced in a cascade of chemical reactions involving NOx and VOC’s, can interact with aerosol surfaces to produce new compounds. Oxygen triple isotopic compositions of atmospheric carbonates have been used for the first time to track heterogeneous chemistry at the aerosol surfaces and to resolve a chemical mechanism that only occurs on particle surfaces. Fine and coarse aerosol samples were collected on filter papers in La Jolla, CA for one week. Aerosol samples were digested with phosphoric acid and released CO2 was purified chromatographically and analyzed for O isotopes after fluorination. Data indicated oxygen isotopic anomaly (Δ17O = δ17O - 0.524 δ18O) ranging from 0.9 to 3.9 per mill. Laboratory experiments revealed that adsorbed water on particle surfaces facilitates the interaction of the gaseous CO2 and O3 with formation of anomalous hydrogen peroxide and carbonates. This newly identified chemical reaction scenario provides a new explanation for production of the isotopically anomalous carbonates found in the SNC Martian meteorites and terrestrial atmospheric carbonates and it also amplifies understanding of water related processes on the surface of Mars. The formation of peroxide via this heterogeneous reaction on aerosols surface suggests a new oxidative process of utility in understanding ozone and oxygen chemistry both at Mars and Earth.

  7. Design documentation: Krypton encapsulation preconceptual design

    SciTech Connect

    Knecht, D.A.

    1994-10-01

    US EPA regulations limit the release of Krypton-85 to the environment from commercial facilities after January 1, 1983. In order to comply with these regulations, Krypton-85, which would be released during reprocessing of commercial nuclear fuel, must be collected and stored. Technology currently exists for separation of krypton from other inert gases, and for its storage as a compressed gas in steel cylinders. The requirements, which would be imposed for 100-year storage of Krypton-85, have led to development of processes for encapsulation of krypton within a stable solid matrix. The objective of this effort was to provide preconceptual engineering designs, technical evaluations, and life cycle costing data for comparison of two alternate candidate processes for encapsulation of Krypton-85. This report has been prepared by The Ralph M. Parsons Company for the US Department of Energy.

  8. Simulation of the diurnal variations of the oxygen isotope anomaly (Δ17O) of reactive atmospheric species

    NASA Astrophysics Data System (ADS)

    Morin, S.; Sander, R.; Savarino, J.

    2011-04-01

    The isotope anomaly (Δ17O) of secondary atmospheric species such as nitrate (NO3-) or hydrogen peroxide (H2O2) has potential to provide useful constrains on their formation pathways. Indeed, the Δ17O of their precursors (NOx, HOx etc.) differs and depends on their interactions with ozone, which is the main source of non-zero Δ17O in the atmosphere. Interpreting variations of Δ17O in secondary species requires an in-depth understanding of the Δ17O of their precursors taking into account non-linear chemical regimes operating under various environmental settings. This article reviews and illustrates a series of basic concepts relevant to the propagation of the Δ17O of ozone to other reactive or secondary atmospheric species within a photochemical box model. We present results from numerical simulations carried out using the atmospheric chemistry box model CAABA/MECCA to explicitly compute the diurnal variations of the isotope anomaly of short-lived species such as NOx and HOx. Using a simplified but realistic tropospheric gas-phase chemistry mechanism, Δ17O was propagated from ozone to other species (NO, NO2, OH, HO2, RO2, NO3, N2O5, HONO, HNO3, HNO4, H2O2) according to the mass-balance equations, through the implementation of various sets of hypotheses pertaining to the transfer of Δ17O during chemical reactions. The model results confirm that diurnal variations in Δ17O of NOx predicted by the photochemical steady-state relationship during the day match those from the explicit treatment, but not at night. Indeed, the Δ17O of NOx is "frozen" at night as soon as the photolytical lifetime of NOx drops below ca. 10 min. We introduce and quantify the diurnally-integrated isotopic signature (DIIS) of sources of atmospheric nitrate and H2O2, which is of particular relevance to larger-scale simulations of Δ17O where high computational costs cannot be afforded.

  9. Tales of volcanoes and El-Niño southern oscillations with the oxygen isotope anomaly of sulfate aerosol

    PubMed Central

    Shaheen, Robina; Abauanza, Mariana; Jackson, Teresa L.; McCabe, Justin; Savarino, Joel; Thiemens, Mark H.

    2013-01-01

    The ability of sulfate aerosols to reflect solar radiation and simultaneously act as cloud condensation nuclei renders them central players in the global climate system. The oxidation of S(IV) compounds and their transport as stable S(VI) in the Earth’s system are intricately linked to planetary scale processes, and precise characterization of the overall process requires a detailed understanding of the linkage between climate dynamics and the chemistry leading to the product sulfate. This paper reports a high-resolution, 22-y (1980–2002) record of the oxygen-triple isotopic composition of sulfate (SO4) aerosols retrieved from a snow pit at the South Pole. Observed variation in the O-isotopic anomaly of SO4 aerosol is linked to the ozone variation in the tropical upper troposphere/lower stratosphere via the Ozone El-Niño Southern Oscillations (ENSO) Index (OEI). Higher ∆17O values (3.3‰, 4.5‰, and 4.2‰) were observed during the three largest ENSO events of the past 2 decades. Volcanic events inject significant quantities of SO4 aerosol into the stratosphere, which are known to affect ENSO strength by modulating stratospheric ozone levels (OEI = 6 and ∆17O = 3.3‰, OEI = 11 and ∆17O = 4.5‰) and normal oxidative pathways. Our high-resolution data indicated that ∆17O of sulfate aerosols can record extreme phases of naturally occurring climate cycles, such as ENSOs, which couple variations in the ozone levels in the atmosphere and the hydrosphere via temperature driven changes in relative humidity levels. A longer term, higher resolution oxygen-triple isotope analysis of sulfate aerosols from ice cores, encompassing more ENSO periods, is required to reconstruct paleo-ENSO events and paleotropical ozone variations. PMID:23447567

  10. Tales of volcanoes and El-Nino southern oscillations with the oxygen isotope anomaly of sulfate aerosol.

    PubMed

    Shaheen, Robina; Abauanza, Mariana; Jackson, Teresa L; McCabe, Justin; Savarino, Joel; Thiemens, Mark H

    2013-10-29

    The ability of sulfate aerosols to reflect solar radiation and simultaneously act as cloud condensation nuclei renders them central players in the global climate system. The oxidation of S(IV) compounds and their transport as stable S(VI) in the Earth's system are intricately linked to planetary scale processes, and precise characterization of the overall process requires a detailed understanding of the linkage between climate dynamics and the chemistry leading to the product sulfate. This paper reports a high-resolution, 22-y (1980-2002) record of the oxygen-triple isotopic composition of sulfate (SO4) aerosols retrieved from a snow pit at the South Pole. Observed variation in the O-isotopic anomaly of SO4 aerosol is linked to the ozone variation in the tropical upper troposphere/lower stratosphere via the Ozone El-Niño Southern Oscillations (ENSO) Index (OEI). Higher (17)O values (3.3‰, 4.5‰, and 4.2‰) were observed during the three largest ENSO events of the past 2 decades. Volcanic events inject significant quantities of SO4 aerosol into the stratosphere, which are known to affect ENSO strength by modulating stratospheric ozone levels (OEI = 6 and (17)O = 3.3‰, OEI = 11 and (17)O = 4.5‰) and normal oxidative pathways. Our high-resolution data indicated that (17)O of sulfate aerosols can record extreme phases of naturally occurring climate cycles, such as ENSOs, which couple variations in the ozone levels in the atmosphere and the hydrosphere via temperature driven changes in relative humidity levels. A longer term, higher resolution oxygen-triple isotope analysis of sulfate aerosols from ice cores, encompassing more ENSO periods, is required to reconstruct paleo-ENSO events and paleotropical ozone variations. PMID:23447567

  11. Isotope systematics of Li, Sr, Nd, and volatiles in Indian Ocean MORBs of the Rodrigues Triple Junction: Constraints on the origin of the DUPAL anomaly

    NASA Astrophysics Data System (ADS)

    Nishio, Yoshiro; Nakai, Shun'ichi; Ishii, Teruaki; Sano, Yuji

    2007-02-01

    The DUPAL anomaly, a radiogenic isotope anomaly discovered in the Indian Ocean mantle, has been interpreted as due to a large-scale mantle heterogeneity. To provide new constraints on the DUPAL origin, we analyzed isotope ratios of Li, Sr, and Nd in fresh N-MORB glasses recovered from the Rodrigues Triple Junction in the Indian Ocean, and from the North Atlantic. The Li isotopic compositions of the Indian Ocean DUPAL N-MORBs were comparable to those of the North Atlantic non-DUPAL N-MORBs. The source of the DUPAL signature in Indian Ocean MORBs and the E-MORB-type enriched mantle source have quite different Li isotopic compositions. The 143Nd/ 144Nd values of both sources are significantly lower than those of the North Atlantic N-MORBs. The δ 7Li values of most oceanic island basalts with similar low 143Nd/ 144Nd signatures are also higher than those of the North Atlantic N-MORBs, except for several Koolau lavas. The Li isotope results support the recent proposal that significant amounts of recycled lower continental crust might produce the radiogenic isotope signatures of the Indian Ocean DUPAL source.

  12. Silver isotopic anomalies in iron meteorites - Cosmic-ray production and other possible sources

    NASA Technical Reports Server (NTRS)

    Reedy, R. C.

    1980-01-01

    Sources of excess Ag-107 observed in iron meteorites are investigated with emphasis on reactions of cosmic-ray particles with palladium. Cross sections for the production of the silver isotopes from palladium by energetic cosmic-ray particles are estimated to calculate spallogenic production rates relative to that of Mn-53 from iron. The upper limits for the production rates of Ag-107 and Ag-109 by energetic galactic cosmic-ray particles are 690 and 270 atoms/min/kg(Pd), respectively, and the maximum rate for making excess Ag-107 by spallation reactions is 400 atoms/min/kg(Pd). The excess Ag-107 cannot be produced by a long exposure to cosmic-ray particles, and because it is harder to make the amount of Pd-107 observed in the iron meteorites by an early intense proton irradiation than it is to make the Al-26 observed in other meteorites, it is concluded that the excess Ag-107 is due to the decay of nucleosynthetic Pd-107 in the iron meteorites.

  13. Evolution, Abundance and Biocalcification of Calcareous Nannoplankton During the Aptian (Early Cretaceous): Causes and Consequences for C Isotopic Anomalies, Climate Changes and the Carbon Cycle.

    NASA Astrophysics Data System (ADS)

    Erba, E.

    2005-12-01

    The mid Cretaceous is marked by extreme greenhouse conditions, coeval with emplacement of large igneous provinces, C isotopic anomalies, major changes in structure and composition of the oceans, and accelerated rates in the evolutionary history of calcareous plankton. The Aptian is a crucial interval to decipher links between biotic evolution and environmental pressure: it is appealing for understanding nannofloral biocalcification and feedbacks in the carbonate system and in the global carbon cycle. Ontong Java, Manihiki and Kerguelen Plateaus formed in the Aptian affecting the ocean-atmosphere system with excess CO2, changes in Ca2+ and Mg2+ concentrations, and varying nutrient cycling. Two large C isotopic anomalies are associated with episodes of prolonged high primary productivity, changes in alkality, global warming and cooling, anoxia, speciations and extinctions in planktonic communities. Nannofossil diversity, abundance and biocalcification are quantified in continuous, complete, pelagic sections to derive biosphere-geosphere interactions at short and long time scales. The early Aptian C isotopic anomaly interrupts a speciation episode in calcareous nannoplankton paralleled by a drastic reduction in nannofossil paleofluxes culminating in the nannoconid crisis preceding the Oceanic Anoxic Event 1a and the negative C isotopic spike linked to clathrate melting presumably triggered by the thermal maximum at the onset of the mid Cretaceous greenhouse climate. No extinctions are recorded. In the early late Aptian resumption of nannoconid production and appearance of several taxa are coeval with a return to normal C isotopic values. The occurrence of calpionellids and diversified planktonic foraminifers indicate successful biocalcification and restoration of the thermocline. In the late Aptian a drop in nannofossil abundance and accelerated extinction rates are associated with another C isotopic excursion under cool conditions possibly due to a prolonged volcanic

  14. Nitrogen isotope ratios of nitrate and N* anomalies in the subtropical South Pacific

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Chisato; Makabe, Akiko; Shiozaki, Takuhei; Toyoda, Sakae; Yoshida, Osamu; Furuya, Ken; Yoshida, Naohiro

    2015-05-01

    Nitrogen isotopic ratios of nitrate (δ15N-NO3-) were analyzed above 1000 m water depth along 17°S in the subtropical South Pacific during the revisit WOCE P21 cruise in 2009. The δ15N-NO3- and N* values were as high as 17‰ and as low as -18 μmol N L-1, respectively, at depths around 250 m east of 115°W, but were as low as 5‰ and as high as +1 μmol N L-1, respectively, in subsurface waters west of 170°W. The relationships among NO3- concentrations, N* values, δ15N-NO3- values, and oxygen and nitrite concentrations suggest that a few samples east of 90°W were from suboxic and nitrite-accumulated conditions and were possibly affected by in situ water column denitrification. Most of the high-δ15N-NO3- and negative-N* waters were probably generated by mixing between Subantarctic Mode Water from the Southern Ocean and Oxygen Deficit Zone Water from the eastern tropical South Pacific, with remineralization of organic matter occurring during transportation. Moreover, the relationship between δ15N-NO3- and N* values, as well as Trichodesmium abundances and size-specific nitrogen fixation rates at the surface, suggest that the low-δ15N-NO3- and positive-N* subsurface waters between 160°E and 170°W were generated by the input of remineralized particles created by in situ nitrogen fixation, mainly by Trichodesmium spp. Therefore, the δ15N values of sediments in this region are expected to reveal past changes in nitrogen fixation or denitrification rates in the subtropical South Pacific. The copyright line for this article was changed on 5 JUN 2015 after original online publication.

  15. Global Neoproterozoic (Sturtian) post-glacial sulfide-sulfur isotope anomaly recognised in Namibia

    NASA Astrophysics Data System (ADS)

    Gorjan, Paul; Walter, Malcolm R.; Swart, Roger

    2003-02-01

    The Neoproterozoic Earth experienced at least two, probably global, glaciations. Each glaciation was superceded by deposition of a layer of carbonate ('cap-carbonate') that has a distinctive lithology and depletion in 13C ( δ13C carbonate ˜ -5‰). The ˜700 Ma Sturtian glaciation is followed by deposition of a cap-carbonate and post-glacial succession which contain bacterially produced sulfides extremely enriched in 34S (average δ34S sulfide ˜ +30‰) with maximum values up to +60‰. This level of 34S enrichment in sulfides is unique to the Sturtian post-glacial succession and recognised in Australia, Canada, and China. In the Neoproterozoic of the Nama Basin, Namibia, the Gobabis Member is the basal unit of the Court Formation, which overlies the glacial Blaubeker Formation. δ13C carbonate analyses from the Gobabis Member range from -5.2 to -2.2‰ (average = -3.7‰; n = 10). δ34S sulfide ranges from +16.1 to +61.1‰ (average = +37.6‰; n = 8). These results are consistent with a Sturtian age for the Blaubeker Formation and overlying Gobabis Member, which have previously been interpreted as Sturtian. The sulfur isotopic results are comparable with δ34S sulfide in Sturtian post-glacial units of Australia, Canada and China. This adds to the evidence for correlation of the Blaubeker Formation with Sturtian glaciations on other continents. The cause of such elevated δ34S sulfide is enigmatic. Geochemical evidence suggests the sulfide was not formed from low sulfate waters nor in euxinic conditions, which discounts any known modern analogue. 34S enrichment in sulfides is therefore postulated to be caused by enrichment of 34S in contemporaneous seawater ( δ34S sulfate up to +60‰?). The rise in seawater δ34S sulfate is considered to be the result of intense bacterial sulfate reduction in an anoxic ocean during the Sturtian glaciation.

  16. First krypton-81 dating of glacial ice at Taylor Glacier, Antarctica

    NASA Astrophysics Data System (ADS)

    Severinghaus, J. P.

    2015-12-01

    A long-held dream of glaciologists has been the direct radiometric dating of ancient glacial ice. Carbon-14 is unfortunately complicated by in-situ cosmogenic production of this isotope from cosmic ray spallation on oxygen nuclei in the ice. Krypton-81 is an ideal tracer in several ways: it has no anthropogenic sources, is made in the atmosphere by cosmic ray spallation on stable krypton nuclei, and it has a half-life of 229 kyr, which is a useful age range for ancient glacial ice samples. However, the abundance of krypton-81 is dauntingly low. Recent analytical advances by a team of physicists at Argonne National Labs has now made it possible to measure practical quantities of ice (50 kg) by Atom Trap Trace Analysis (ATTA), a technique using lasers to cool krypton-81 atoms to absolute zero and trap them, enabling accurate counting of single atoms. The precision attained by this technique approaches 0.5%, implying an age accuracy of about 1000 yr for samples from the last interglacial period. Here we show that krypton-81 dating has been successfully applied for the first time, to an outcrop of ancient ice dating from the last interglacial period (125 kyr BP) at Taylor Glacier, Antarctica, which is independently dated using methane and d18O of atmospheric oxygen for stratigraphic matching to well-dated Chinese speleothem records.

  17. Carbon isotope curve and iridium anomaly in the Albian-Cenomanian paleoceanic deposits of the Eastern Kamchatka

    NASA Astrophysics Data System (ADS)

    Savelyev, D. P.; Savelyeva, O. L.; Palechek, T. N.; Pokrovsky, B. G.

    2012-04-01

    determined contents of carbon and oxygen stable isotopes in limestones and have compared the received results to isotope curves of other regions. In studied section the curve of d13C is characterized by a clearly expressed positive shift at the level of the lower carbonaceous bed. Below it and in the overlapping stratum of siliceous limestone (1 cm thickness) d13C has the values of 1.9-2.1 pro mille and above it d13C increases up to 2.5-3 pro mille. The precise d13C maximum after a sharp shift is correlatable with the form of a d13C curve of the Middle Cenomanian Tethyan sections. Accordingly, it is possible to assert, that the lower carbonaceous bed was formed during the mid-Cenomanian anoxic event (MCE). Gradual increase of d13C in the upper part of our section is similar to change of d13C in Upper Cenomanian fragments of Tethyan sections, i.e. the lower carbonaceous bed corresponds to anoxic event at the Cenomanian/Turonian boundary (OAE2). Neutron activation analysis indicates increased up to 9 ppb concentration of Ir at the bottom of the lower carbonaceous bed (inorganic part of the sample was analyzed comprising 46% of the bulk rock). This anomaly correlates in the studied section with a positive shift of d13C. Taking into account radiolarian age data this allows to correlate the anomaly with the MCE. A source of iridium and other elements of the platinum group could be basalts and hyaloclastites from the eruptions during the sedimentation period. Anoxic conditions promoted deposit enrichment in ore elements. This work was supported by the RFBR (No. 10-05-00065).

  18. Krypton based adsorption type cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Schember, Helene (Inventor)

    1987-01-01

    Krypton and monolithic porous carbon such as Saran carbon are used respectively as the sorbate and sorbent of an absorption type refrigerator to improve refrigeration efficiency and operational longevity.

  19. Krypton based adsorption type cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Schember, Helene R. (Inventor)

    1989-01-01

    Krypton and a monolithic porous carbon such as Saran carbon are used respectively as the sorbate and sorbent of an adsorption type refrigerator to improve refrigeration efficiency and operational longevity.

  20. Krypton tagging velocimetry of an underexpanded jet.

    PubMed

    Parziale, N J; Smith, M S; Marineau, E C

    2015-06-01

    In this work, we present the excitation/emission strategy, experimental setup, and results of an implementation of krypton tagging velocimetry (KTV). KTV is performed as follows: (i) seed a base flow with krypton; (ii) photosynthesize metastable krypton atoms with a frequency-doubled dye laser to form the tagged tracer; (iii) record the translation of the tagged metastable krypton by imaging the laser-induced fluorescence (LIF) that is produced with an additional dye laser. The principle strength of KTV, relative to other tagging velocimetry techniques, is the use of a chemically inert tracer. KTV results are presented for an underexpanded jet of three mixtures of varying Kr/N2 concentration. It is demonstrated that KTV can be used in gas mixtures of relatively low krypton mole fraction (0.5% Kr/99.5% N2), and the KTV data from that experiment are found to be in good agreement with an empirical fit found in the literature. We find that KTV is useful to perform instantaneous velocity measurements with metastable krypton as a chemically inert, dilute, long-lifetime tracer in gas-phase flows. PMID:26192670

  1. Preferential site occupancy observed in coexpanded argon-krypton clusters

    SciTech Connect

    Lundwall, M.; Bergersen, H.; Lindblad, A.; Oehrwall, G.; Svensson, S.; Bjoerneholm, O.; Tchaplyguine, M.

    2006-10-15

    Free heterogeneous argon-krypton clusters have been produced by coexpansion and investigated by means of x-ray photoelectron spectroscopy. By examining cluster surface and bulk binding energy shifts, relative intensities, and peak widths, we show that in the mixed argon-krypton clusters the krypton atoms favor the bulk and argon atoms are pushed to the surface. Furthermore, we show that krypton atoms in the surface layer occupy high-coordination sites and that heterogeneous argon-krypton clusters produced by coexpansion show the same surface structure as argon host clusters doped with krypton. These observations are supported by site-dependent calculations of chemical shifts.

  2. Widespread tungsten isotope anomalies and W mobility in crustal and mantle rocks of the Eoarchean Saglek Block, northern Labrador, Canada: Implications for early Earth processes and W recycling

    NASA Astrophysics Data System (ADS)

    Liu, Jingao; Touboul, Mathieu; Ishikawa, Akira; Walker, Richard J.; Graham Pearson, D.

    2016-08-01

    Well-resolved 182W isotope anomalies, relative to the present mantle, in Hadean-Archean terrestrial rocks have been interpreted to reflect the effects of variable late accretion and early mantle differentiation processes. To further explore these early Earth processes, we have carried out W concentration and isotopic measurements of Eoarchean ultramafic rocks, including lithospheric mantle rocks, meta-komatiites, a layered ultramafic body and associated crustal gneisses and amphibolites from the Uivak gneiss terrane of the Saglek Block, northern Labrador, Canada. These analyses are augmented by in situ W concentration measurements of individual phases in order to examine the major hosts of W in these rocks. Although the W budget in some rocks can be largely explained by a combination of their major phases, W in other rocks is hosted mainly in secondary grain-boundary assemblages, as well as in cryptic, unidentified W-bearing 'nugget' minerals. Whole rock W concentrations in the ultramafic rocks show unexpected enrichments relative, to elements with similar incompatibilities. By contrast, W concentrations are low in the Uivak gneisses. These data, along with the in situ W concentration data, suggest metamorphic transport/re-distribution of W from the regional felsic rocks, the Uivak gneiss precursors, to the spatially associated ultramafic rocks. All but one sample from the lithologically varied Eoarchean Saglek suite is characterized by generally uniform ∼ + 11 ppm enrichments in 182W relative to Earth's modern mantle. Modeling shows that the W isotopic enrichments in the ultramafic rocks were primarily inherited from the surrounding 182W-rich felsic precursor rocks, and that the W isotopic composition of the original ultramafic rocks cannot be determined. The observed W isotopic composition of mafic to ultramafic rocks in intimate contact with ancient crust should be viewed with caution in order to plate constraints on the early Hf-W isotopic evolution of the

  3. Determination of oxygen self-diffusion in akermanite, anorthite, diopside, and spinel: Implications for oxygen isotopic anomalies and the thermal histories of Ca-Al-rich inclusions

    SciTech Connect

    Ryerson, F.J. ); McKeegan, K.D. )

    1994-09-01

    Oxygen self-diffusion coefficients have been measured for three natural diopsidic clinopyroxenes, a natural anorthite, a synthetic magnesium aluminate spinel, and a synthetic akermanite for oxygen fugacities ranging from the NNO to IW buffers. The oxygen diffusion data are used to evaluate the effects of three different types of thermal histories upon the oxygen isotopic compositions of minerals found in Type B Ca-Al-rich inclusions (CAIBs) in carbonaceous chondrites: (1) gas-solid exchange during isothermal heating, (2) gas-solid exchange as a function of cooling rate subsequent to instantaneous heating, and (3) isotopic exchange with a gaseous reservoir during partial melting and recrystallization. With the assumptions that the mineral compositions within a CAIB were uniformly enriched in [sup 16]O prior to any thermal processing, that effective diffusion dimensions may be estimated from observed grain sizes, and that diffusion in diopside is similar to that in fassaitic clinopyroxene, none of the above scenarios can reproduce the relative oxygen isotopic anomalies observed in CAIBs without improbably long or unrealistically intense thermal histories relative to current theoretical models of nebular evolution. The failure of these simple models, coupled with recent observations of disturbed magnesium isotopic abundances and correlated petrographic features in anorthite and melilite indicative of alteration and recrystallization, suggests that the oxygen isotopic compositions of these phases may have also been modified by alteration and recrystallization possibly interspersed with multiple melting events. Because the modal abundance of spinel remains relatively constant for plausible melting scenarios, and its relatively sluggish diffusion kinetics prevent substantial equilibration, Mg-Al spinel is the most reliable indicator of the oxygen isotopic composition of precursor material which formed Type B CAIs.

  4. Correlated Si isotope anomalies and large C-13 enrichments in a family of exotic SiC grains

    NASA Technical Reports Server (NTRS)

    Stone, J.; Hutcheon, I. D.; Epstein, S.; Wasserburg, G. J.

    1991-01-01

    A hypothesis is presented to the effect that the distinctive morphological characteristics and comparatively simple Si isotope systematics identify the platy SiC crystals as a genetically related family, formed around a single isotopically heterogeneous presolar star on an association of related stars. The enrichments in C-13 and the Si isotope systematics of the platy SiC are broadly consistent with theoretical models of nucleosynthesis in low-mass, carbon stars on the ASG. The Si isotope array most plausibly reflects mixing between (Si-28)-rich material, inherited from a previous generation of stars, and material enriched in Si-29 and Si-30, produced in intershell regions by neutron capture during He-burning. The absence of a correlation between the Si and C isotopic compositions of the SiC suggests either episodic condensation of SiC, extending over several thermal pulses, in the atmosphere of a single star, or the derivation of the SiC from several stars characterized by different rates of C-13 production.

  5. Simulation of the diurnal variations of the isotope anomaly (?17O) of reactive trace gases (NOx, HOx) and implications for the ?17O of nitrate.

    NASA Astrophysics Data System (ADS)

    Morin, Samuel; Sander, Rolf; Savarino, Joël.

    2010-05-01

    The isotope anomaly of secondary atmospheric species such as nitrate (NO3-) has potential to provide useful constrains on their formation pathways. Indeed, the ?17O of their precursors (NOx, HOx etc.) differs and depends on their interactions with ozone, which is the main source of non-zero ?17O in the atmosphere. Interpreting variations of ?17O in nitrate requires an in-depth understanding of the ?17O of its precursors taking into account non-linear chemical regimes operating under various environmental settings. In addition, the role of isotope exchange reactions must be carefully accounted for. To investigate the relevance of various assessments of the isotopic signature of nitrate production pathways that have recently been proposed in the literature, an atmospheric chemistry box model (MECCA, Sander et al., 2005, ACP)) was used to explicitly compute the diurnal variations of the isotope anomaly of NOx, HOx under several conditions prevailing in the marine boundary layer. ?17O was propagated from ozone to other species (NO, NO2, OH, HO2, RO2, NO3, N2O5, HONO, HNO3, HNO4, H2O2) according to the classical mass-balance equation applied at each time step of the model (30 seconds typically). The model confirms that diurnal variations in ?17O of NOx are well predicted by the photochemical steady-state relationship introduced by Michalski et al. (2003, GRL) during the day, but that at night a different approach must be employed (e.g. « fossilization » of the ?17O of NOx as soon as the photochemical lifetime of NOx drops below ca. 5 minutes). The model also allows to evaluate the impact on ?17O of NOx and nitrate of the frequently made simplifying assumption that ?17O(HOx)=0 permil, with and without mass-independent fractionation during the H+O2-HO2 reaction. Recommendations for the modeling of ?17O of nitrate will be given, based on the extensive model work carried out. In addition, the link between diurnal variations of the ?17O of nitrate precursors and seasonal

  6. Determination of Oxygen Self-Diffusion in Akermanite, Anorthite, Diopside, and Spinel: Implications for Oxygen Isotopic Anomalies and the Thermal Histories of Ca-Al-rich Inclusions

    NASA Astrophysics Data System (ADS)

    Ryerson, F. J.; McKeegan, K. D.

    1993-07-01

    anomalies observed in CAIBs and/or yield improbably long or unrealistically intense thermal histories relative to both current theoretical models of nebular evolution and inferences from other isotopic systems. The failure of these simple models, coupled with recent observations of "disturbed" Mg isotopic abundances and petrographic features in anorthite and melilite indicative of alteration and recrystallization [5,6], suggests that the oxygen isotopic compositions of these phases may have also been modified by alteration and recrystallization during multiple melting events. Because the modal abundance of spinel remains relatively constant for plausible melting scenarios and its relatively sluggish diffusion kinetics prevent substantial equilibration, Mg-Al spinel is a reliable indicator of the oxygen isotopic composition of precursor material that formed CAIBs. References: [1] Connolly C. and Muehlenbachs K. (1988) GCA, 52, 1585-1592. [2] Elphick S. C. et al. (1988) Contrib. Mineral. Petrol., 100, 490-495. [3] Reddy K. P. and Cooper A. R. (1981) J. Am. Ceram. Soc., 64, 368-371. [4] Yunmoto H. et al. (1989) GCA, 53, 2387-2394. [5] Podosek F. A. et al. (1991) GCA, 55, 1083-1110. [6] MacPherson G. J. and Davis A. M. (1993) GCA, 57, 231-243.

  7. Factors Affecting the Efficiency of Krypton Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Peterson, Peter Y.; Jacobson, David T.; Manzella, David M.

    2004-01-01

    The krypton-fueled Hall thruster offers the possibility of high-specific impulse and long lifetime. NASA's series of Hall thrusters have demonstrated krypton efficiencies only 5 - 15% less than xenon. Larger thrusters have smaller differences in efficiency. Plasma measurements have demonstrated that efficiency is reduced due to a decrease in mass utilization. Current efforts are considering the implications of these results, and how design changes can be made to increase the efficiency of krypton Hall thrusters.

  8. Isotopic anomalies of Ne, Xe, and C in meteorites. I - Separation of carriers by density and chemical resistance

    NASA Technical Reports Server (NTRS)

    Ming, Tang; Lewis, Roy S.; Anders, Edward; Grady, M. M.; Wright, I. P.

    1988-01-01

    The carriers of presolar noble gases were studied by isotopically analyzing 19 separates from the Murray and Murchison C2 chondrites for Ne, Xe, C, and N. It is found that the carriers of Ne-E(H) and Xe-S are resistant to HCl, HF, boiling HClO4, and CrO3-H2SO4, and thus must be either diamond or some resistant carbide or oxide. The carrier of Ne-E(L) may be some form of amorphous carbon with delta C13 of about +340 percent. A new carbon component, C theta, found as 0.2-2-micron inclusions in Murchison spinel, is amorphous and contains little or no noble gas. A new heavy nitrogen component is found which has an abundance of about 1 ppm in the bulk meteorite, combusts at 450-500 C, and may be associated wtih isotopically normal carbon or with C-alpha.

  9. Isotopic anomalies of Ne, Xe, and C in meteorites. I - Separation of carriers by density and chemical resistance

    NASA Astrophysics Data System (ADS)

    Ming, T.; Lewis, R. S.; Anders, E.; Grady, M. M.; Wright, I. P.; Pillinger, C. T.

    1988-05-01

    The carriers of presolar noble gases were studied by isotopically analyzing 19 separates from the Murray and Murchison C2 chondrites for Ne, Xe, C, and N. It is found that the carriers of Ne-E(H) and Xe-S are resistant to HCl, HF, boiling HClO4, and CrO3-H2SO4, and thus must be either diamond or some resistant carbide or oxide. The carrier of Ne-E(L) may be some form of amorphous carbon with delta C13 of about +340 percent. A new carbon component, C theta, found as 0.2-2-micron inclusions in Murchison spinel, is amorphous and contains little or no noble gas. A new heavy nitrogen component is found which has an abundance of about 1 ppm in the bulk meteorite, combusts at 450-500 C, and may be associated wtih isotopically normal carbon or with C-alpha.

  10. A purity monitor for the KEDR liquid krypton calorimeter

    NASA Astrophysics Data System (ADS)

    Evtushenko, P. N.; Kotov, K. Yu.; Maslennikov, A. L.; Peleganchuk, S. V.; Snopkov, R. G.; Rogozin, A. I.; Tikhonov, Yu. A.

    2016-06-01

    We present a purity monitor for the KEDR liquid krypton calorimeter. A new method is suggested based on the usage of a short pulse of a gas discharge as a source of ultraviolet radiation for the photoproduction of electrons in a drift cell of the monitor. This paper describes the design of the monitor, the results of experiments with gaseous and liquid krypton, as well as the experience of using the developed device in the process of krypton purification for the KEDR liquid krypton calorimeter.

  11. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: A subordinate role for carbonaceous chondrites

    NASA Astrophysics Data System (ADS)

    Warren, Paul H.

    2011-11-01

    Plots such as ɛ 54Cr vs. ɛ 50Ti and ɛ 54Cr vs. Δ 17O reveal a fundamental dichotomy among planetary materials. The "carbonaceous" chondrites, by virtue of high ɛ 50Ti and high ɛ 62Ni, as well as, especially for any given Δ 17O, high ɛ 54Cr, are separated by a wide margin from all other materials. The significance of the bimodality is further manifested by several types of meteorites with petrological-geochemical characteristics that suggest membership in the opposite category from the true pedigree as revealed by the stable isotopes. Ureilites, for example, despite having diversely low Δ 17O and about the same average carbon content as the most C-rich carbonaceous chondrite, have clear stable-isotopic signatures of noncarbonaceous pedigree. The striking bimodality on the ɛ 54Cr vs. ɛ 50Ti and ɛ 54Cr vs. Δ 17O diagrams suggests that the highest taxonomic division in meteorite/planetary classification should be between carbonaceous and noncarbonaceous materials. The bimodality may be an extreme manifestation of the effects of episodic accretion of early solids in the protoplanetary nebula. However, an alternative, admittedly speculative, explanation is that the bimodality corresponds to a division between materials that originally accreted in the outer solar system (carbonaceous) and materials that accreted in the inner solar system (noncarbonaceous). In any event, both the Earth and Mars plot squarely within the noncarbonaceous composition-space. Applying the lever rule to putative mixing lines on the ɛ 50Ti vs. ɛ 54Cr and Δ 17O vs. ɛ 54Cr diagrams, the carbonaceous/(carbonaceous + noncarbonaceous) mixing ratio C/( C + NC) is most likely close to (very roughly) 24% for Earth and 9% for Mars. Estimated upper limits for C/( C + NC) are 32% for Earth and 18% for Mars. However, the uncertainties are such that isotopic data do not require or even significantly suggest that Earth has higher C/( C + NC) than Mars. Among known chondrite groups, EH yields a

  12. Anomalous Oxygen and Krypton Abundances in Interstellar Gas

    NASA Technical Reports Server (NTRS)

    Meyer, David M.

    2004-01-01

    The primary objective of this program was to obtain FUSE observations of the interstellar H2 absorption toward a sample of stars observed with the HST STIS spectrograph as part of the ISM SNAP Survey. This Survey was designed to produce a database of high quality, high resolution W spectra from which interstellar gas-phase elemental abundances could be derived for large portions of the Galaxy. In particular, oxygen and krypton were chosen as excellent tracers for measuring the homogeneity of the interstellar gas due to their weak depletion into dust grains. The gas-phase 0 and Kr abundances relative to total hydrogen column density had previously been shown with HST GHRS measurements to be essentially constant in the local Milky Way. One of the main motivations of the ISM SNAP Survey was to determine if this constancy held at greater distances and in denser sightlines (where depletion into dust could be a possibility). The initial ISM SNAP STIS observations indicated a number of sightlines with unusual 0 and Kr abundances relative to the measured H I column densities. Since the appropriate benchmark for accurate abundance comparisons is the total hydrogen column density (H I plus H2), FUSE observations of interstellar H2 were carried out in these sightlines in order to determine if they represent cases of true abundance anomalies.

  13. Search for extinct natural radioactivity of Pb205 via thallium-isotope anomalies in chondrites and lunar soil.

    NASA Technical Reports Server (NTRS)

    Huey, J. M.; Kohman, T. P.

    1972-01-01

    Thallium and Pb204 contents were determined by stable-isotope-dilution analysis in 16 chondrites, one achondrite, and Apollo 11 and 12 lunar fines. Meteoritic thallium contents vary over a large range, 0.02 to 100 ppb, corresponding to the fact that thallium is a highly fractionated volatile element. Lunar thallium contents are less than 5 ppb. The Tl205/Tl203 ratio was determined in most of the samples, with precision ranging from 0.03% to several percent depending mainly on the amount of thallium present. No variations from the terrestrial ratio were observed. The chondritic isochron slope for Pb205 (13.8-m.y. half-life) is less than or equal to 0.00009 (99% confidence level), corresponding to an interval of at least 60 m.y. and possibly exceeding 120 m.y. between the termination of s-process nucleosynthesis and the lead-thallium fractionations.

  14. Determination of the hyperfine structure constants of the 87Rb and 85Rb 4 D5 /2 state and the isotope hyperfine anomaly

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Liu, Huifeng; Yang, Guang; Yang, Baodong; Wang, Junmin

    2014-11-01

    The hyperfine structure (hfs) splittings of the 4 D5 /2 state for two isotopes of 87Rb and 85Rb atoms are measured based on double-resonance optical pumping spectra in a 5 S1 /2-5 P3 /2-4 D5 /2 ladder-type atomic system. The frequency calibration is performed by employing a wideband fiber-pigtailed phase-type electro-optic modulator together with a Fabry-Pérot cavity to cancel the error arising from nonlinear frequency scanning. The hfs magnetic dipole constant A of the 4 D5 /2 state is determined to be -16.801 ± 0.005 MHz for 87Rb and -4.978 ± 0.004 MHz for 85Rb . The hfs electric quadrupole constant B of the 4 D5 /2 state is determined to be 3.645 ± 0.030 MHz for 87Rb and 6.560 ± 0.052 MHz for 85Rb . The values of A and B for the 87Rb4 D5 /2 state are twice as accurate as previous work with thermal atoms using a femtosecond laser comb and the values of A and B for the 85Rb4 D5 /2 state are 3 times and 25 times more accurate than previous work in laser-cooled atoms using Fabry-Pérot interferometer, respectively. According to this high precision of the hfs constants and the previously measured nuclear g factors of the two isotopes, the value of the d -electron hyperfine anomaly 87Δ85(4 D5 /2 ) is derived to be -0.0041 ± 0.0009.

  15. HETEROGENEOUS ISOTOPIC ANOMALIES OF SM AND GD IN THE NORTON COUNTY METEORITE: EVIDENCE FOR IRRADIATION FROM THE ACTIVE EARLY SUN

    SciTech Connect

    Hidaka, Hiroshi; Kondo, Tomoyo; Yoneda, Shigekazu

    2012-02-20

    Large and heterogeneous isotopic variations of {sup 150}Sm/{sup 149}Sm and {sup 158}Gd/{sup 157}Gd due to neutron capture reactions caused by cosmic-ray irradiation were found in chemical and mineral separates from the Norton County meteorite. The light-colored separates, consisting mainly of enstatite (Mg{sub 2}Si{sub 2}O{sub 6}), have a very large neutron fluence of 1.98 Multiplication-Sign 10{sup 17} n cm{sup -2}, which is 10 times higher than that of the whole rock. Furthermore, four chemical separates showed a large variation in neutron fluences, ranging from 1.82 Multiplication-Sign 10{sup 16} to 1.87 Multiplication-Sign 10{sup 17} n cm{sup -2}. The variable amounts of neutron fluences from a small single fragment of the Norton County meteorite cannot be simply explained by single-stage cosmic-ray irradiation in space. Rare earth element (REE) analyses revealed that the fractions with high neutron fluences have similar chemical properties to those in the early condensates in the solar system, showing depletions of Eu and Yb in their REE abundance patterns. The data provide evidence for an activity of the early Sun (T Tauri), suggesting the migration of early and intense irradiation materials into the Norton County meteorite's parent body.

  16. Geochemical Fingerprinting of Trans-Atlantic African Dust Based on Radiogenic Sr-Nd-Hf Isotopes and Rare Earth Element Anomalies

    NASA Astrophysics Data System (ADS)

    Pourmand, A.; Prospero, J. M.; Sharifi, A.

    2014-12-01

    Mineral dust is an important component of Earth's climate system and biogeochemical cycles on a global scale. In order to understand the relationship between climate processes in the source areas and the properties of aerosols at distant receptor sites, we must be able to identify the source provenance of dust. Here we present a multiproxy study that characterizes the temporal variability in the geochemical composition of long-range African dust (LRAD) collected between 2003 and 2011 in the trade winds on the Caribbean island of Barbados. We find systematic differences between Sr-Nd-Hf isotopic composition and rare earth element anomalies of individual dust events and evidence of seasonal shifts in dust source activity and transport. These results indicate that coherent geochemical source signatures of LRAD can be preserved even after transport across thousands of kilometers. We investigated the possibility of identifying the potential source areas through comparisons with literature data. However, these data are almost entirely based on measurements of soil and sediment samples; this could lead to biases because of soil-aerosol particle size and composition differences. Nonetheless, our data suggest that many samples are linked to sources in Mali and sub-Saharan regions. Radiogenic Nd-Hf composition of aerosols can potentially be a useful proxy to study the proximity of mineral dust sources to depositional sites. In order to establish firmer links between LRAD and dust source areas, however, we require much more data on the geochemical composition of aerosols from potential source areas in North Africa.

  17. Geochemical Fingerprinting of Trans-Atlantic African Dust Based on Radiogenic Sr-Nd-Hf Isotopes and Rare Earth Element Anomalies

    NASA Astrophysics Data System (ADS)

    Pourmand, Ali; Prospero, Joseph; Sharifi, Arash

    2015-04-01

    Mineral dust is an important component of Earth's climate system and biogeochemical cycles on a global scale. In order to understand the relationship between climate processes in the source areas and the properties of aerosols at distant receptor sites, we must be able to identify the source provenance of dust. Here we present a multiproxy study that characterizes the temporal variability in the geochemical composition of long-range African dust (LRAD) collected between 2003 and 2011 in the trade winds on the Caribbean island of Barbados. We find systematic differences between Sr-Nd-Hf isotopic composition and rare earth element anomalies of individual dust events and evidence of seasonal shifts in dust source activity and transport. These results indicate that coherent geochemical source signatures of LRAD can be preserved even after transport across thousands of kilometers. We investigated the possibility of identifying the potential source areas through comparisons with literature data. However, these data are almost entirely based on measurements of soil and sediment samples; this could lead to biases because of soil-aerosol particle size and composition differences. Nonetheless, our data suggest that many samples are linked to sources in Mali and sub-Saharan regions. Radiogenic Nd-Hf composition of aerosols can potentially be a useful proxy to study the proximity of mineral dust sources to depositional sites. In order to establish firmer links between LRAD and dust source areas, however, we require much more data on the geochemical composition of aerosols from potential source areas in North Africa.

  18. A Distant Planet: Finding Superman's Krypton

    NASA Astrophysics Data System (ADS)

    Ricca, B.

    2016-01-01

    In 2012, Neil deGrasse Tyson made headlines when he appeared in a Superman comic book and pinpointed a real planet (located in Corvus) that matched the description of Superman's homeworld, the fictional planet of Krypton. This story tracked all over the world. Why? I will look at the figure of Superman, whose backstory—orphan from an exploding planet—is somehow known by everyone from the age of eight on. I will look at how specific astronomical phenomena (in the sky and in the news) may have inspired Superman's young teenaged creators in the 1930s to create this iconic modern myth—a myth, like many, grounded in astronomy. My goal is to show that comics—which we normally think of as juvenile, throwaway entertainment— actually tried to base themselves (and certainly were inspired by) actual astronomical events in the thirties and forties, made more accessible to the public by new scientific explanations, including a real supernova that may have inspired the destruction of Krypton.

  19. Solid state storage of radioactive krypton in a silica matrix

    SciTech Connect

    Tingey, G.L.; Lytle, J.M.; Gray, W.J.; Wheeler, K.R.

    1980-12-01

    The feasibility of loading a low density SiO/sub 2/ glass with krypton for storage of radioactive /sup 85/Kr has been demonstrated by studies using non-radioactive krypton. A 96% SiO/sub 2/ glass with 28% porosity was heated at an elevated pressure of Kr gas to a temperature of 850 to 900/sup 0/C and held at that temperature to sinter the glass-krypton composite to a density of about 2 g/cm/sup 3/. A krypton content of 30 cm/sup 3/ of Kr(STP)/cm/sup 3/ of glass has been demonstrated when loading pressures of 140 MPa are used. Krypton release rates from the glass are lower than reported for any other waste form considered currently. At 420/sup 0/C a diffusion parameter, D/r/sub 0//sup 2/, of 8.66 x 10/sup -13/ min/sup -1/ was determined which leads to a total release of 0.7% of the krypton in 10 years. Release rates increase moderately with increasing temperature up to 600/sup 0/C and increase rapidly above 600/sup 0/C. The lower loading pressures (about 40 MPa) may appear to yield a more favorable product from the point of view of krypton release than the high pressures. Advantages and disadvantages of the technique are given in the conclusions section.

  20. Stable Isotope Anomalies and Low Chloride Concentrations in Pore Water of CH4-Rich Sediments at the Tanegashima Mud Volcano, Japan

    NASA Astrophysics Data System (ADS)

    Nakayama, N.; Tsunogai, U.; Ashi, J.; Gamo, T.

    2004-12-01

    Pore water from sediments collected at a Tanegashima mud volcano was analyzed for δ 13C (PDB) of dissolved CH4 together with other chemical components, Cl- and SO42-, and the δ 18O and δ D (SMOW). The Tanegashima mud volcanoes are located at the water depths from 1400 m to 1800 m, off Tanegashima island between Ryukyu trench and Ryukyu arc of Japan. It is situated at the end of south-western convergent plate boundary on Nankai-trough, which forms a part of Philippine Sea plate subducting under Eurasian plate. This cruise was conducted as a part of the JNOC (Japan National Oil Corporation) geochemical survey by R/V Hakurei-maru II. The concentrations of CH4 were generally higher than 100 micro-mol/kg. Its highest concentration (715 micro-mol/kg) was found in the crest core of a mud volcano. The δ 13C values ranged from -32 to -50 ‰ . C2H6 was detected only in the pore waters collected from the vicinity of the crest of the mud volcano. The highest δ 13C (around -22 ‰ ) and low C1/C2 concentration ratios (less than 100) were measured at the crest site, supporting the thermogenical production of methane. Other geochemical anomalies were also observed in the crest pore water. The concentrations of Cl- in the pore water at this site were extremely depleted to a minimum of 350 mmol/kg. The Cl- anomaly has not been previously reported for pore water from mud volcanoes around Japan. An endmember of isotopic composition of the fluid is estimated to be +12 ‰ for δ 18O and -40 ‰ for δ D. From these results we conclude that the most likely process to reduce pore water salinity is primarily the mixing of clay mineral dehydration water with seawater. The thermogenic methane found in the crest pore waters of the Tanegashima mud volcano may be brought from the depths of sediments due to the migration of fluid evolved by mineral the dehydration process.

  1. Low-energy positron interactions with krypton

    SciTech Connect

    Makochekanwa, C.; Machacek, J. R.; Jones, A. C. L.; Caradonna, P.; Slaughter, D. S.; McEachran, R. P.; Sullivan, J. P.; Buckman, S. J.; Bellm, S.; Lohmann, B.; Fursa, D. V.; Bray, I.; Mueller, D.W.; Stauffer, A. D.; Hoshino, M.

    2011-03-15

    Cross sections for positron scattering from krypton have been measured with an energy resolution of {approx}60 meV over the energy range 0.5-60 eV. Absolute values of the grand total ({sigma}{sub GT}), positronium formation ({sigma}{sub Ps}), and grand total minus positronium formation ({sigma}{sub GT}-{sigma}{sub Ps},) cross sections are presented. Theoretical estimations of {sigma}{sub GT} and {sigma}{sub GT}-{sigma}{sub Ps} are also performed for this target using the convergent close-coupling method and the relativistic optical potential approach. We also provide experimental and theoretical results for elastic differential cross sections, for selected energies both below and above the Ps threshold. Where available, the present results are compared to both experimental and theoretical values from the literature.

  2. Photoassociative Spectroscopy of Ultracold Argon and Krypton

    NASA Astrophysics Data System (ADS)

    Omar, M. K.; Williams, W. D.; Sukenik, C. I.

    2016-05-01

    We report on photoassociative spectroscopy experiments performed separately on ultracold 40 Ar and ultracold 84 Kr with the spectroscopy laser tuned around the trapping transition for each species (ns[ 3 / 2 ] 2 --> np[ 5 / 2 ] 3 where n = 4 for argon and n = 5 for krypton). Previous studies in argon observed several discrete features in the spectrum that have now been positively identified as arising from otherwise undetectable frequency sidebands on the spectroscopy laser and not from molecular structure. Spectra have been taken over a range of laser intensities and show a broad (several GHz) signature of single photon photo-association, but with no individual vibrational levels resolved. We will discuss our results and compare our spectra to those obtained in ultracold, noble gas photoassociative spectroscopy experiments conducted by other groups in recent years. Supported in part by the National Science Foundation, Award, No. PHY-0855290.

  3. Stress enhanced diffusion of krypton ions in polycrystalline titanium

    SciTech Connect

    Nsengiyumva, S.; Raji, A. T.; Rivière, J. P.; Britton, D. T.; Härting, M.

    2014-07-14

    An experimental investigation on the mutual influence of pre-existing residual stress and point defect following ion implantation is presented. The study has been carried out using polycrystalline titanium samples energetically implanted with krypton ions at different fluences. Ion beam analysis was used to determine the concentration profile of the injected krypton ions, while synchrotron X-ray diffraction has been used for stress determination. Ion beam analysis and synchrotron X-ray diffraction stress profile measurements of the implanted titanium samples show a clear evidence of stress-enhanced diffusion of krypton ions in titanium. It is further observed that for the titanium samples implanted at low fluence, ion implantation modifies the pre-existing residual stress through the introduction of point and open volume defects. The stress fields resulting from the ion implantation act to drift the krypton inclusions towards the surface of titanium.

  4. CAMPing by the sea: Evidence for synchrony of volcanism and the end-Triassic extinction and carbon isotope anomaly from a marine Triassic-Jurassic boundary section

    NASA Astrophysics Data System (ADS)

    Pálfy, J.; Zajzon, N.

    2012-04-01

    The end-Triassic extinction (ETE) is one of the five largest Phanerozoic mass extinctions, associated with and likely triggered by rapid and severe environmental change. Volcanism in the Central Atlantic Magmatic Province (CAMP) has been proposed as the main trigger, but direct evidence for this linkage is scarce. To help constrain scenarios for the Triassic-Jurassic boundary (TJB) events, we obtained a temporally highly resolved, multidisciplinary dataset from the Kendlbachgraben section in the Northern Calcareous Alps in Austria. The section belongs to the same paleogeographic unit (Eiberg Basin) and share similar stratigraphies with the newly selected base Jurassic GSSP at Kuhjoch. The topmost beds of the Rhaetian Kössen Formation yielded an REE pattern that differs from all other levels in an enrichment of heavy REEs, hinting at some minor contribution from mantle-derived magmatic material to the sedimentary basin. Micromineralogy of the same bed revealed pseudomorphs of altered, euhedral pyroxene and amphibole crystals. Their well-faceted morphology excludes any terrestrial weathering and transport, but is consistent with their origin from air-fallen distal mafic volcanic ash. Peculiar spherical or rounded grains, altered to illite/aluminoceladonite were also observed, likely representing altered volcanic glass. The dominant clay mineral of this bed is low- to medium-charged smectite, accompanied by vermiculite, both typical alteration products of mafic rocks. These features from a bed deposited very near to the TJB are interpreted as direct evidence of CAMP volcanism, immediately preceding the main extinction event and the initial negative carbon isotope anomaly. Clay mineralogy of the Rhaetian-Hettangian Kendlbach Formation (overlying the Kössen Formation) reveals a kaolinite-dominated interval at the base of the formation, followed by an illite-dominated interval. Thus a hot and humid period may have characterized the TJB, in agreement with a previously

  5. Holonomy anomalies

    SciTech Connect

    Bagger, J.; Nemeschansky, D.; Yankielowicz, S.

    1985-05-01

    A new type of anomaly is discussed that afflicts certain non-linear sigma models with fermions. This anomaly is similar to the ordinary gauge and gravitational anomalies since it reflects a topological obstruction to the reparametrization invariance of the quantum effective action. Nonlinear sigma models are constructed based on homogeneous spaces G/H. Anomalies arising when the fermions are chiral are shown to be cancelled sometimes by Chern-Simons terms. Nonlinear sigma models are considered based on general Riemannian manifolds. 9 refs. (LEW)

  6. Krypton and xenon in lunar fines

    NASA Technical Reports Server (NTRS)

    Basford, J. R.; Dragon, J. C.; Pepin, R. O.; Coscio, M. R., Jr.; Murthy, V. R.

    1973-01-01

    Data from grain-size separates, stepwise-heated fractions, and bulk analyses of 20 samples of fines and breccias from five lunar sites are used to define three-isotope and ordinate intercept correlations in an attempt to resolve the lunar heavy rare gas system in a statistically valid approach. Tables of concentrations and isotope compositions are given.

  7. Kinetic modelling of krypton fluoride laser systems

    SciTech Connect

    Jancaitis, K.S.

    1983-11-01

    A kinetic model has been developed for the KrF* rare gas halide laser system, specifically for electron-beam pumped mixtures of krypton, fluorine, and either helium or argon. The excitation produced in the laser gas by the e-beam was calculated numerically using an algorithm checked by comparing the predicted ionization yields in the pure rare gases with their experimental values. The excitation of the laser media by multi-kilovolt x-rays was also modeled and shown to be similar to that produced by high energy electrons. A system of equations describing the transfer of the initial gas excitation into the laser upper level was assembled using reaction rate constants from both experiment and theory. A one-dimensional treatment of the interaction of the laser radiation with the gas was formulated which considered spontaneous and stimulated emission and absorption. The predictions of this model were in good agreement with the fluorescence signals and gain and absorption measured experimentally.

  8. Bangui Anomaly

    NASA Technical Reports Server (NTRS)

    Taylor, Patrick T.

    2004-01-01

    Bangui anomaly is the name given to one of the Earth s largest crustal magnetic anomalies and the largest over the African continent. It covers two-thirds of the Central African Republic and therefore the name derives from the capitol city-Bangui that is also near the center of this feature. From surface magnetic survey data Godivier and Le Donche (1962) were the first to describe this anomaly. Subsequently high-altitude world magnetic surveying by the U.S. Naval Oceanographic Office (Project Magnet) recorded a greater than 1000 nT dipolar, peak-to-trough anomaly with the major portion being negative (figure 1). Satellite observations (Cosmos 49) were first reported in 1964, these revealed a 40nT anomaly at 350 km altitude. Subsequently the higher altitude (417-499km) POGO (Polar Orbiting Geomagnetic Observatory) satellite data recorded peak-to-trough anomalies of 20 nT these data were added to Cosmos 49 measurements by Regan et al. (1975) for a regional satellite altitude map. In October 1979, with the launch of Magsat, a satellite designed to measure crustal magnetic anomalies, a more uniform satellite altitude magnetic map was obtained. These data, computed at 375 km altitude recorded a -22 nT anomaly (figure 2). This elliptically shaped anomaly is approximately 760 by 1000 km and is centered at 6%, 18%. The Bangui anomaly is composed of three segments; there are two positive anomalies lobes north and south of a large central negative field. This displays the classic pattern of a magnetic anomalous body being magnetized by induction in a zero inclination field. This is not surprising since the magnetic equator passes near the center of this body.

  9. The krypton and xenon markets up to the year 2000

    NASA Astrophysics Data System (ADS)

    Hammarlund, Nils

    1992-05-01

    Krypton and xenon are rare gases which are found in air in concentrations of about 1.14 and 0.087 ppm, respectively. They are produced in specially equipped, very large air separation units by adding a special raw gas extraction unit. Then this raw gas is purified and the krypton and xenon are separated by cryogenic methods. These rare gases are used in the lamp industry, for medical applications and in laser and research applications. The market for krypton and xenon is growing. The production capacity for these gases is limited and this results in a cyclic behavior of availability and market price. In the next few years, 10-20 million liters of krypton and one to two million liters of xenon will become available on the market due to new investments in the USA, South Africa and the AGA AB joint venture in the USSR. The total world production capacity of krypton and xenon will increase to 60-80 million liters. To influence the availability of these gases it is important to have close partnership between user and producer, which will realize bright and unorthodox ideas for the supply and use of these rare gases.

  10. Influence of radiation damage on krypton diffusion in silicon carbide

    NASA Astrophysics Data System (ADS)

    Friedland, E.; Hlatshwayo, T. T.; van der Berg, N. G.; Mabena, M. C.

    2015-07-01

    Diffusion of krypton in poly and single crystalline silicon carbide is investigated and compared with the previously obtained results for xenon, which pointed to a different diffusion mechanism than observed for chemically active elements. For this purpose 360 keV krypton ions were implanted in commercial 6H-SiC and CVD-SiC wafers at room temperature, 350 °C and 600 °C. Width broadening of the implantation profiles and krypton retention during isochronal and isothermal annealing up to temperatures of 1400 °C was determined by RBS-analysis, whilst in the case of 6H-SiC damage profiles were simultaneously obtained by α-particle channeling. Little diffusion and no krypton loss was detected in the initially amorphized and eventually recrystallized surface layer of cold implanted 6H-SiC during annealing up to 1200 °C. Above that temperature thermal etching of the implanted surface became increasingly important. No diffusion or krypton loss is detected in the hot implanted 6H-SiC samples during annealing up to 1400 °C. Radiation damage dependent grain boundary diffusion is observed at 1300 °C in CVD-SiC. The results seem to indicate, that the chemically inert noble gas atoms do not form defect-impurity complexes, which strongly influence the diffusion behavior of other diffusors in silicon carbide.

  11. 10 CFR 30.19 - Self-luminous products containing tritium, krypton-85, or promethium-147.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Self-luminous products containing tritium, krypton-85, or..., krypton-85, or promethium-147. (a) Except for persons who manufacture, process, produce, or initially transfer for sale or distribution self-luminous products containing tritium, krypton-85, or...

  12. 10 CFR 30.19 - Self-luminous products containing tritium, krypton-85, or promethium-147.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Self-luminous products containing tritium, krypton-85, or..., krypton-85, or promethium-147. (a) Except for persons who manufacture, process, produce, or initially transfer for sale or distribution self-luminous products containing tritium, krypton-85, or...

  13. 10 CFR 30.19 - Self-luminous products containing tritium, krypton-85, or promethium-147.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Self-luminous products containing tritium, krypton-85, or..., krypton-85, or promethium-147. (a) Except for persons who manufacture, process, produce, or initially transfer for sale or distribution self-luminous products containing tritium, krypton-85, or...

  14. 10 CFR 30.19 - Self-luminous products containing tritium, krypton-85, or promethium-147.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Self-luminous products containing tritium, krypton-85, or..., krypton-85, or promethium-147. (a) Except for persons who manufacture, process, produce, or initially transfer for sale or distribution self-luminous products containing tritium, krypton-85, or...

  15. 10 CFR 30.19 - Self-luminous products containing tritium, krypton-85, or promethium-147.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Self-luminous products containing tritium, krypton-85, or..., krypton-85, or promethium-147. (a) Except for persons who manufacture, process, produce, or initially transfer for sale or distribution self-luminous products containing tritium, krypton-85, or...

  16. Neutron capture time scale of the s-process, estimated from s-process krypton in a meteorite

    NASA Technical Reports Server (NTRS)

    Matsuda, J.-I.; Lewis, R. S.; Anders, E.

    1980-01-01

    A krypton fraction enriched in s-process isotopes was extracted from a mineral fraction of the Murchison C2 chondrite. The (Kr-86)/(Kr-84) ratio is enhanced by 6 standard deviations, showing that significant amounts of Kr-86 were made in the s-process, despite the short, 10.8 yr beta-decay half-life of its precursor, Kr-85. Judging from this sample, the mean neutron capture time in the s-process was on the order of 5-100 yr for nuclei with cross sections of 125 mb.

  17. Metastable Krypton Beam Source via Two-Photon Pumping Technique

    SciTech Connect

    Wong, W.W.; Young, L.

    2003-01-01

    Metastable beams of rare gas atoms have wide applications in chemical analysis of samples, as well as in aiding understanding of fundamental processes and physical attributes. Most current sources of metastable rare gas atomic beams, however, are limited in their flux density, which greatly reduces their utility in applications such as low level trace analysis and precision measurements. Previous work has demonstrated feasibility of metastable krypton production via two-photon pumping, and this paper extends that possibility into beam form. Further optimization on this scheme, moreover, promises 100-fold increase of metastable krypton flux density over that of an rf-driven discharge.

  18. Atom Trap, Krypton-81, and Saharan Water

    SciTech Connect

    Lu, Zheng-Tian

    2005-08-24

    Since radiocarbon dating was first demonstrated in 1949, the field of trace analyses of long-lived cosmogenic isotopes has seen steady growth in both analytical methods and applicable isotopes. The impact of such analyses has reached a wide range of scientific and technological areas. A new method, named Atom Trap Trace Analysis (ATTA), was developed by our group and used to analyze {sup 81}Kr (t{sub 1/2} = 2.3 x 10{sup 5} years, isotopic abundance {approx} 1 x 10{sup -12}) in environmental samples. In this method, individual {sup 81}Kr atoms are selectively captured and detected with a laser-based atom trap. {sup 81}Kr is produced by cosmic rays in the upper atmosphere. It is the ideal tracer for dating ice and groundwater in the age range of 10{sup 4}-10{sup 6} years. As the first real-world application of ATTA, we have determined the mean residence time of the old groundwater in the Nubian Aquifer located underneath the Sahara Desert. Moreover, this method of capturing and probing atoms of rare isotopes is also applied to experiments that study exotic nuclear structure and test fundamental symmetries.

  19. Anomalous krypton in the Allende meteorite

    NASA Technical Reports Server (NTRS)

    Frick, U.

    1977-01-01

    The reported investigation provides important new data for the heavy noble gases, especially Kr, in the Allende meteorite. The data are used to criticize the original model of Lewis et al. (1975) based on the noble gas data of these researchers. The conclusions reached in the investigation support alternative models which have been mainly based on Xe data by Lewis et al. (1975, 1977). Because of the relatively high noble gas abundances in the separates studied, disturbance from nuclear effects occurring in situ such as spallation and neutron capture is insignificant, offering an opportunity to study primordial Ar, Kr, and Xe. The isotopic and abundance data obtained from the samples largely confirm the noble gas results of Lewis et al. (1975, 1977) where isotopic correlations agree with the correlations of the considered samples. It is found that both Kr and Xe data are consistent with a two component mixture of 'ordinary' as well as 'anomalous' planetary gases.

  20. DOWN'S ANOMALY.

    ERIC Educational Resources Information Center

    PENROSE, L.S.; SMITH, G.F.

    BOTH CLINICAL AND PATHOLOGICAL ASPECTS AND MATHEMATICAL ELABORATIONS OF DOWN'S ANOMALY, KNOWN ALSO AS MONGOLISM, ARE PRESENTED IN THIS REFERENCE MANUAL FOR PROFESSIONAL PERSONNEL. INFORMATION PROVIDED CONCERNS (1) HISTORICAL STUDIES, (2) PHYSICAL SIGNS, (3) BONES AND MUSCLES, (4) MENTAL DEVELOPMENT, (5) DERMATOGLYPHS, (6) HEMATOLOGY, (7)…

  1. Empirical evaluation of the radiative cooling coefficient for krypton gas in the FTU plasma

    SciTech Connect

    Fournier, K.B.; Pacella, D.; Gregory, B.C.; May, M.J.; Mazzitelli, G.; Gabellieri, L.; Leigheb, M.; Finkenthal, M.; Stutman, D.; Soukanovskii, V.; Goldstein, W.H.

    1997-11-18

    For future fusion reactors, a careful balance must be achieved between the cooling of the outer plasma via impurity radiation and the deleterious effects of inevitable core penetration by impurity ions. We have injected krypton gas into the Frascati Tokamak Upgrade (FTU) plasma. The measured visible bremsstrahlung and bolometric signals from krypton have been inverted and the resulting radial impurity density profile and power loss profile for krypton gas are extracted. Using the measured electron density and temperature profiles, the radiative cooling coefficient for krypton is derived. The level of intrinsic impurities (Mo, Cr, Mn and Fe) in the plasma during the krypton puffing is monitored with a VUV SPRED spectrometer. Models for krypton emissivity from the literature are compared to our measured results. 7 figs.

  2. Auger decay of 3p-ionized krypton

    SciTech Connect

    Jonauskas, V.; Kucas, S.; Karazija, R.

    2011-11-15

    A theoretical study of Auger cascades during the decay of 3p{sub 1/2} and 3p{sub 3/2} vacancies in krypton has been performed by level-by-level calculations using a wide configuration interaction basis. Auger spectra for all steps of the cascades are presented and are compared with the existing experimental data. Good agreement of our results with the branching ratios of ions measured by a coincidence technique is obtained.

  3. Dust Particle Growth in a Sputtering Discharge with Krypton

    SciTech Connect

    Tawidian, H.; Mikikian, M.; Lecas, T.; Boufendi, L.

    2011-11-29

    Dust particles are grown in the PKE chamber by sputtering materials. The sputtering efficiency and the gas phase reactions can be affected by the gas type and particularly by the ion mass. Due to the presence of growing dust particles, the huge loss of electrons can trigger many instabilities in the plasma. These instabilities, the growth kinetics and the structure of the dust cloud, are compared by using two different gases: argon and krypton.

  4. Electron impact excitation of autoionising states of krypton

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K.; Trajmar, S.

    1978-01-01

    Energy-loss spectra of krypton in the region between 21 and 29 eV have been obtained at electron impact energies of 30, 60 and 100 eV. For each energy, the angular distribution of intensities has been measured at 5, 10 and 15 deg scattering angles. Assignments of spectral features found in this region are suggested and a comparison is made with previous measurements.

  5. Characterization of a Diverging Cusped Field Thruster Operating on Krypton

    NASA Astrophysics Data System (ADS)

    MacDonald-Tenenbaum, Natalia; Tango, Landon; Hargus, William, Jr.; Nakles, Michael

    2014-10-01

    The Diverging Cusped Field Thruster (DCFT) is a low-power plasma with a cusped magnetic field profile. The magnetic fields have strong gradients that cause energetic electrons to mirror back and forth within the discharge chamber, enhancing propellant ionization. Radial portions of the magnetic field are seen only at magnet interfaces, thereby mitigating the ion impingement and heat flux to the channel walls that reduces thruster lifetime. The DCFT has been studied extensively while operating on xenon. This work represents the initial efforts at characterizing the DCFT operating on krypton. Krypton has gained interest in recent years as an alternate propellant for plasma propulsion, mainly because its lower cost has the potential to provide great savings for satellite missions. The results presented include a mapping of changes in the DCFT's discharge current with varying applied anode voltages and propellant mass flow rates, and frequency analysis of the discharge current oscillations. Additionally, time-averaged and time-synchronized laser induced fluorescence velocimetry are used to examine the ionization and acceleration regions of the discharge channel in an effort to better understand the dynamics of the thruster operation on krypton.

  6. Accurate ab initio potential for the krypton dimer and transport properties of the low-density krypton gas.

    PubMed

    Waldrop, Jonathan M; Song, Bo; Patkowski, Konrad; Wang, Xiaopo

    2015-05-28

    A new highly accurate potential energy curve for the krypton dimer was constructed using coupled-cluster calculations up to the singles, doubles, triples, and perturbative quadruples level, including corrections for core-core and core-valence correlation and for relativistic effects. The ab initio data points were fitted to an analytic potential which was used to compute the most important transport properties of the krypton gas. The viscosity, thermal conductivity, self-diffusion coefficient, and thermal diffusion factor were calculated by the kinetic theory at low density and temperatures from 116 to 5000 K. The comparisons with literature experimental data as well as with values from other pair potentials indicate that our new potential is superior to all previous ones. The transport property values computed in this work are recommended as standard values over the complete temperature range. PMID:26026447

  7. Statistical clumped isotope signatures

    PubMed Central

    Röckmann, T.; Popa, M. E.; Krol, M. C.; Hofmann, M. E. G.

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  8. Statistical clumped isotope signatures.

    PubMed

    Röckmann, T; Popa, M E; Krol, M C; Hofmann, M E G

    2016-01-01

    High precision measurements of molecules containing more than one heavy isotope may provide novel constraints on element cycles in nature. These so-called clumped isotope signatures are reported relative to the random (stochastic) distribution of heavy isotopes over all available isotopocules of a molecule, which is the conventional reference. When multiple indistinguishable atoms of the same element are present in a molecule, this reference is calculated from the bulk (≈average) isotopic composition of the involved atoms. We show here that this referencing convention leads to apparent negative clumped isotope anomalies (anti-clumping) when the indistinguishable atoms originate from isotopically different populations. Such statistical clumped isotope anomalies must occur in any system where two or more indistinguishable atoms of the same element, but with different isotopic composition, combine in a molecule. The size of the anti-clumping signal is closely related to the difference of the initial isotope ratios of the indistinguishable atoms that have combined. Therefore, a measured statistical clumped isotope anomaly, relative to an expected (e.g. thermodynamical) clumped isotope composition, may allow assessment of the heterogeneity of the isotopic pools of atoms that are the substrate for formation of molecules. PMID:27535168

  9. Abundance Anomaly of the 13C Isotopic Species of c-C3H2 in the Low-mass Star Formation Region L1527

    NASA Astrophysics Data System (ADS)

    Yoshida, Kento; Sakai, Nami; Tokudome, Tomoya; López-Sepulcre, Ana; Watanabe, Yoshimasa; Takano, Shuro; Lefloch, Bertrand; Ceccarelli, Cecilia; Bachiller, Rafael; Caux, Emmanuel; Vastel, Charlotte; Yamamoto, Satoshi

    2015-07-01

    The rotational spectral lines of c-C3H2 and two kinds of the 13C isotopic species, c-{}13{{CCCH}}2 ({C}2v symmetry) and c-{{CC}}13{{CH}}2 (Cs symmetry), have been observed in the 1–3 mm band toward the low-mass star-forming region L1527. We have detected 7, 3, and 6 lines of c-C3H2, c-{}13{{CCCH}}2, and c-{{CC}}13{{CH}}2, respectively, with the Nobeyama 45 m telescope and 34, 6, and 13 lines, respectively, with the IRAM 30 m telescope, where seven, two, and two transitions, respectively, are observed with both telescopes. With these data, we have evaluated the column densities of the normal and 13C isotopic species. The [c-C3H2]/[c-{}13{{CCCH}}2] ratio is determined to be 310 ± 80, while the [c-C3H2]/[c-{{CC}}13{{CH}}2] ratio is determined to be 61 ± 11. The [c-C3H2]/[c-{}13{{CCCH}}2] and [c-C3H2]/[c-{{CC}}13{{CH}}2] ratios expected from the elemental 12C/13C ratio are 60–70 and 30–35, respectively, where the latter takes into account the statistical factor of 2 for the two equivalent carbon atoms in c-C3H2. Hence, this observation further confirms the dilution of the 13C species in carbon-chain molecules and their related molecules, which are thought to originate from the dilution of 13C+ in the gas-phase C+ due to the isotope exchange reaction: {}13{{{C}}}++{CO}\\to {}13{CO}+{{{C}}}+. Moreover, the abundances of the two 13C isotopic species are different from each other. The ratio of c-{}13{{CCCH}}2 species relative to c-{{CC}}13{{CH}}2 is determined to be 0.20 ± 0.05. If 13C were randomly substituted for the three carbon atoms, the [c-{}13{{CCCH}}2]/[c-{{CC}}13{{CH}}2] ratio would be 0.5. Hence, the observed ratio indicates that c-{{CC}}13{{CH}}2 exists more favorably. Possible origins of the different abundances are discussed. Based on observations carried out with the IRAM 30 m Telescope and the NRO 45 m Telescope. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). NRO is a branch of the National Astronomical Observatory of Japan

  10. Internal plasma potential measurements of a Hall thruster using xenon and krypton propellant

    SciTech Connect

    Linnell, Jesse A.; Gallimore, Alec D.

    2006-09-15

    For krypton to become a realistic option for Hall thruster operation, it is necessary to understand the performance gap between xenon and krypton and what can be done to reduce it. A floating emissive probe is used with the Plasmadynamics and Electric Propulsion Laboratory's High-speed Axial Reciprocating Probe system to map the internal plasma potential structure of the NASA-173Mv1 Hall thruster [R. R. Hofer, R. S. Jankovsky, and A. D. Gallimore, J. Propulsion Power 22, 721 (2006); and ibid.22, 732 (2006)] using xenon and krypton propellant. Measurements are taken for both propellants at discharge voltages of 500 and 600 V. Electron temperatures and electric fields are also reported. The acceleration zone and equipotential lines are found to be strongly linked to the magnetic-field lines. The electrostatic plasma lens of the NASA-173Mv1 Hall thruster strongly focuses the xenon ions toward the center of the discharge channel, whereas the krypton ions are defocused. Krypton is also found to have a longer acceleration zone than the xenon cases. These results explain the large beam divergence observed with krypton operation. Krypton and xenon have similar maximum electron temperatures and similar lengths of the high electron temperature zone, although the high electron temperature zone is located farther downstream in the krypton case.

  11. 10 CFR 32.22 - Self-luminous products containing tritium, krypton-85 or promethium-147: Requirements for license...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Self-luminous products containing tritium, krypton-85 or... containing tritium, krypton-85 or promethium-147: Requirements for license to manufacture, process, produce... self-luminous products containing tritium, krypton-85, or promethium-147, or to initially transfer...

  12. 10 CFR 32.22 - Self-luminous products containing tritium, krypton-85 or promethium-147: Requirements for license...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Self-luminous products containing tritium, krypton-85 or... containing tritium, krypton-85 or promethium-147: Requirements for license to manufacture, process, produce... self-luminous products containing tritium, krypton-85, or promethium-147, or to initially transfer...

  13. 10 CFR 32.22 - Self-luminous products containing tritium, krypton-85 or promethium-147: Requirements for license...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Self-luminous products containing tritium, krypton-85 or... containing tritium, krypton-85 or promethium-147: Requirements for license to manufacture, process, produce... self-luminous products containing tritium, krypton-85, or promethium-147, or to initially transfer...

  14. 10 CFR 32.22 - Self-luminous products containing tritium, krypton-85 or promethium-147: Requirements for license...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Self-luminous products containing tritium, krypton-85 or... containing tritium, krypton-85 or promethium-147: Requirements for license to manufacture, process, produce... self-luminous products containing tritium, krypton-85, or promethium-147, or to initially transfer...

  15. 10 CFR 32.22 - Self-luminous products containing tritium, krypton-85 or promethium-147: Requirements for license...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Self-luminous products containing tritium, krypton-85 or... containing tritium, krypton-85 or promethium-147: Requirements for license to manufacture, process, produce... self-luminous products containing tritium, krypton-85, or promethium-147, or to initially transfer...

  16. Krypton gas cylinders as a source of radiation.

    PubMed

    Fischer, Helmut W; Bielefeld, Tom; Hettwig, Bernd

    2010-07-01

    A standard 40 foot shipping container with a cargo of pressurized krypton gas in 159 steel cylinders, which had triggered a radiation alarm, was investigated to address radiation safety and illicit nuclear trafficking concerns. The investigation included contamination and dose rate measurements as well as in situ high resolution gamma spectroscopy. The dose rate measurements gave a maximum value of 0.07 microSv h(-1) above background (0.08 to 0.11 microSv h(-1)) on the cylinder surface and no detectable increase above background at distances of 1 m and higher. Contamination monitor readings showed a similar relative increase (plus 8 cpm) above background (about 12 cpm) to the dose rate readings. Quantitative gamma spectroscopy revealed a contamination of the gas with 85Kr at a level of 3.5 x 10(5) Bq kg(-1). This value was found to be consistent with analytical and numerical estimates based on current data for atmospheric 85Kr, which is captured from ambient air together with stable krypton during the production process. This incident demonstrates an apparent lack of radiation-related knowledge by those who handle krypton gas, as well as by border control personnel and emergency responders. We therefore propose to improve labeling and documentation standards for such shipments. This effort may be facilitated by introducing the new category of "technically enhanced artificial radioactive material," or "TEARM" (similar to the existing "naturally occurring radioactive material" or "NORM" and "technically enhanced naturally occurring radioactive material" or "TENORM" categories). PMID:20539125

  17. Investigation of the thermal and photochemical reactions of ozone with styrene in argon and krypton matrices

    NASA Astrophysics Data System (ADS)

    Coleman, Bridgett E.; Ault, Bruce S.

    2012-09-01

    The matrix isolation technique, combined with infrared spectroscopy and twin jet codeposition, has been used to characterize intermediates formed during the ozonolysis of styrene. Absorptions assigned to early intermediates grew in after warming the matrix from 19 K to 68 K in the twin jet krypton matrix experiments. A number of these absorptions have been assigned to the primary ozonide, formaldehyde-O-oxide Criegee intermediate, and secondary ozonide of styrene, transient species not previously observed for this system. In contrast, the room temperature reaction of ozone with styrene led to the observation of "late," stable products of this ozonolysis reaction. These product absorptions were observed after merged jet deposition, followed by cryogenic trapping in solid argon. Irradiation with λ ⩾ 220 nm of merged and twin jet argon matrices involving ozone led to O atom production and subsequent reaction with styrene. Identification of intermediates formed during the ozonolysis of styrene was further supported by 18O isotopic labeling experiments as well as theoretical density functional calculations at the B3LYP/6-311G++(d,2p) level.

  18. Gauge anomalies, gravitational anomalies, and superstrings

    SciTech Connect

    Bardeen, W.A.

    1985-08-01

    The structure of gauge and gravitational anomalies will be reviewed. The impact of these anomalies on the construction, consistency, and application of the new superstring theories will be discussed. 25 refs.

  19. Krypton-85 hydrofracture engineering feasibility and safety evaluation

    SciTech Connect

    Peretz, F.J.; Muller, M.E.; Pan, P.Y.

    1981-07-01

    Engineering studies have been made to determine the hazards associated with the disposal of /sup 85/Kr using the hydrofracture process. To assess the hazards, an effort has been made to identify the equipment required to entrain and dissolve the noble gas into the grout stream at hydrofracture pressure (up to 350 bar). Off-the-shelf or slightly modified equipment has been identified for safe and effective compression and gas-grout mixing. Each monthly injection disposes of 1.6 x 10/sup 6/ Ci of /sup 85/Kr. By connecting only one gas cylinder to the injection system at a time, the maximum amount of krypton likely to be released as a result of equipment failure is limited to 128,000 Ci. An evaluation by Los Alamos Technical Associates shows that releasing this amount of gas in less than one hour under worst-case meteorological conditions through a 30-m stack would result in a whole-body dose of 170 millirem at a distance of 1 km from the facility. A krypton collection and recovery system can further reduce this dose to 17 millirem; increasing the distance to the site boundary to 3 km can also reduce the dose by a factor of ten. Lung and skin dose estimates are 1.6 and 120 times the whole-body dose, respectively. These are all worst-case values; releases under more typical conditions would result in a significantly lower dose. No insurmountable safety or engineering problems have been identified.

  20. Quantum beats in attosecond time-resolved autoionization of krypton

    NASA Astrophysics Data System (ADS)

    Cheng, Yan; Chini, Michael; Tong, Xiao-Min; Chew, Andrew; Biedermann, Julius; Wu, Yi; Cunningham, Eric; Chang, Zenghu

    2015-05-01

    The recent development of attosecond transient absorption spectroscopy (ATAS) has allowed probing of electron dynamics in atoms with few-femtosecond to sub-cycle time scales. Recently, the contribution of quantum beating to the two-color multi-photon excitation process has been proposed and demonstrated in the attosecond transient absorption experiment in the bound state of atoms. Here we performed an attosecond transient absorption experiment with krypton atoms, the attosecond pulse launched electronic wave packets composed of multiple bound excited states and spin-orbit coupling induced autoionization states of krypton atoms. Quantum beats were observed in the autoionizing states near the ionization threshold. Recurrences were observed in the 4s24p5(2 P° 1/2) 6d, 4s24p5(2 P°1/2) 7d, 4s24p5(2 P° 1/2) 8d states with periods of 5-10 fs. The relative phase among these autoionizing states can be retrieved from such measurement, thus allowed the reconstruction of the valence state wave packets. This material is based upon work supported by Army Research Office, Air Force Office of Scientific Research, the National Science Foundation, and the DARPA PULSE program by a grant from AMRDEC.

  1. Supershort avalanche electron beam in SF6 and krypton

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Tarasenko, Victor F.; Gu, Jianwei; Baksht, Evgeni Kh.; Beloplotov, Dmitry V.; Burachenko, Alexander G.; Yan, Ping; Lomaev, Mikhail I.; Shao, Tao

    2016-03-01

    Runaway electrons play an important role in the avalanche formation in nanosecond- and subnanosecond- pulse discharges. In this paper, characteristics of a supershort avalanche electron beam (SAEB) generated at the subnanosecond and nanosecond breakdown in sulfur hexafluoride (SF6 ) in an inhomogeneous electric field were studied. One pulser operated at negative polarity with voltage pulse amplitude of ˜130 kV and rise time of 0.3 ns. The other pulser operated at negative polarity with voltage pulse amplitude of 70 kV and rise time of ˜1.6 ns . SAEB parameters in SF6 are compared with those obtained in krypton (Kr), nitrogen (N2 ), air, and mixtures of SF6 with krypton or nitrogen. Experimental results showed that SAEB currents appeared during the rise-time of the voltage pulse for both pulsers. Moreover, amplitudes of the SAEB current in SF6 and Kr approximately ranged from several to tens of milliamps at atmospheric pressure, which were smaller than those in N2 and air (ranging from hundreds of milliamps to several amperes). Furthermore, the concentration of SF6 additive could significantly reduce the SAEB current in N2-SF6 mixture, but it slightly affected the SAEB current in Kr -SF6 mixture because of the atomic/molecular ionization cross section of the gas had a much greater impact on the SAEB current rather than the electronegativity.

  2. ANOMALY STRUCTURE OF SUPERGRAVITY AND ANOMALY CANCELLATION

    SciTech Connect

    Butter, Daniel; Gaillard, Mary K.

    2009-06-10

    We display the full anomaly structure of supergravity, including new D-term contributions to the conformal anomaly. This expression has the super-Weyl and chiral U(1){sub K} transformation properties that are required for implementation of the Green-Schwarz mechanism for anomaly cancellation. We outline the procedure for full anomaly cancellation. Our results have implications for effective supergravity theories from the weakly coupled heterotic string theory.

  3. The elliptic anomaly

    NASA Technical Reports Server (NTRS)

    Janin, G.; Bond, V. R.

    1980-01-01

    An independent variable different from the time for elliptic orbit integration is used. Such a time transformation provides an analytical step-size regulation along the orbit. An intermediate anomaly (an anomaly intermediate between the eccentric and the true anomaly) is suggested for optimum performances. A particular case of an intermediate anomaly (the elliptic anomaly) is defined, and its relation with the other anomalies is developed.

  4. Reconstruction of the West Pacific ENSO precipitation anomaly using the compound-specific hydrogen isotopic record of marine lake sediments of Palau

    NASA Astrophysics Data System (ADS)

    Smittenberg, R. H.; Sachs, J. P.; Dawson, M. N.

    2004-12-01

    There is still much uncertainty whether the El Niño Southern Oscillation (ENSO) will become stronger or more frequent in a warming global climate. A principal reason for this uncertainty stems from a glaring lack of paleoclimate data in the equatorial Pacific, which hampers model validation. To partly resolve this data deficiency, sediments of three marine anoxic lakes were cored in Palau, an island group that lies in the heart of the West Pacific Warm Pool. The lakes contain seawater that seeps through fissures in the surrounding karst, and they are permanently stratified due to fresh water input provided by the year-round wet climate (map 1970-2000 = 3.7m). During ENSO events, however, the islands suffer from drought. The surface water hydrogen isotopic compositions in the lakes are sensitive to the relative proportions of D-depleted rainwater and D-enriched seawater, and are therefore sensitive to ENSO events. The lake surface water H/D values are recorded by algal and bacterial biomarkers that are preserved well in the highly organic and anoxic sediments, which accumulate relatively fast (mean 1 mm/yr). Ongoing down core measurement will eventually result in a precipitation proxy record of the islands. To obtain endmember D/H values, a comprehensive set of water samples from sea, lakes and rain water was obtained, as well as suspended particulate matter. Higher plant biomarker D/H values derived from the jungle vegetation surrounding the lakes may render supporting climatic proxy data, being influenced by evapotranspiration. Some lakes are inhabited by millions of jellyfish (Mastigias) that live in symbiosis with zooxanthellae. The jellyfish of one of the investigated lakes disappeared completely after the last large ENSO event in 1998 (returning in 2000-01), and a correlation is suggested. To reconstruct the history of jellyfish occurrence, jellyfish and sedimentary lipids were extracted and compared. In addition to a possible ENSO proxy record, this

  5. Measurement of the Radiative Cooling Coefficient of Krypton Gas in the Frascati Tokamak Upgrade

    NASA Astrophysics Data System (ADS)

    Fournier, K. B.; Goldstein, W. H.; Pacella, D.; Mazzitelli, G.; Gabellieri, L.; Leigheb, M.; de Angelis, R.; May, M. J.; Regan, S. P.; Stutman, D.; Soukhanovskii, V.; Finkenthal, M.; Moos, H. W.

    1997-11-01

    For future fusion reactors, a careful balance must be achieved between the cooling of the outer plasma via impurity radiation and the deleterious effects of inevitable core penetration by impurity ions. We extract the krypton impurity radial profile and the radiative cooling rate for krypton gas in the Frascati Tokamak Upgrade (FTU). The measured bolometric, soft x-ray and visible bremmstrhalung signals are Abel inverted and then incorporated in an analytic model. Using the known (calculated) ionization state distribution, the radial power loss profile for krypton is derived. Anamolous transport is assumed to have a negligible affect on the total krypton radiation profile; this assumption is confirmed using the derived krypton radiation rate in a plasma transport modeling code. The level of intrinsic impurities (Mo, Cr, Mn and Fe) in the plasma during the krypton puffing is monitored with a VUV SPRED spectrometer. Models for krypton emissivity from the literature are compared to our measured results. These initial results are part of a multiwavelength impurity spectroscopy campaign that will measure transport profiles and basic atomic data in the FTU. Work carried out under the auspices of the U.S. DoE, Contract No. W-7405-ENG-48.

  6. Investigation of many-body forces in krypton and xenon

    SciTech Connect

    Salacuse, J.J.; Egelstaff, P.A.

    1988-10-15

    The simplicity of the state dependence at relatively high temperatures ofthe many-body potential contribution to the pressure and energy has been pointed out previously (J. Ram and P. A. Egelstaff, J. Phys. Chem. Liq. 14, 29 (1984); A. Teitsima and P. A. Egelstaff, Phys. Rev. A 21, 367 (1980)). In this paper, we investigate how far these many-body potential terms may be represented by simple models in the case of krypton on the 423-, 273-, 190-, and 150-K isotherms, and xenon on the 170-, 210-, and 270-K isotherms. At the higher temperatures the best agreement is found for the mean-field type of theory, and some consequences are pointed out. On the lower isotherms a state point is found where the many-body energy vanishes, and large departures from mean-field behavior are observed. This is attributed to the influence of short-ranged many-body forces.

  7. The NA62 Liquid Krypton calorimeter readout architecture

    NASA Astrophysics Data System (ADS)

    Ceccucci, A.; Fantechi, R.; Farthouat, P.; Ryjov, V.; De Simone, N.; Venditti, S.

    2016-01-01

    The NA62 experiment [1] at the CERN SPS (Super Proton Synchrotron) accelerator studies the ultra-rare decays of charged kaons. The high-resolution Liquid Krypton (LKr) electromagnetic calorimeter of the former NA48 experiment [2] is a key component of the experiment photon-veto system. The new LKr readout system comprises 14,000 14-bit ADC acquisition channels, 432× 1 Gbit Ethernet data request and readout links routed by 28× 10 Gbit network switches to the experiment computer farm, and timing, trigger and control (TTC) distribution system. This paper presents the architecture of the LKr readout and TTC systems, the overall performance and the first successfully collected experiment physics data.

  8. The NA62 liquid Krypton calorimeter's new readout system

    NASA Astrophysics Data System (ADS)

    Ceccucci, A.; Fantechi, R.; Farthouat, P.; Lamanna, G.; Rouet, J.; Ryjov, V.; Venditti, S.

    2014-01-01

    The NA62 experiment [1] at CERN SPS (Super Proton Synchrotron) accelerator aims at studying Kaon decays with high precision. The high resolution Liquid Krypton (LKr) calorimeter, built for the NA48 [2] experiment, is a crucial part of the experiment photon-veto system; to cope with the new requirements, the back-end electronics of the LKr had to be completely renewed. Due to the huge number of the calorimeter readout channels ( ~ 14 K) and the maintenance requirement over 10 years of the experiment lifetime, the decision to sub-contract the development and production to industry was taken in 2011. This paper presents the primary test results of the Calorimeter REAdout Module (CREAM) [3] prototype delivered by the manufacturer in March 2013. All essential features, analog performance, data processing and readout, are covered.

  9. Sheath oscillation characteristics and effect on near-wall conduction in a krypton Hall thruster

    SciTech Connect

    Zhang, Fengkui Kong, Lingyi; Li, Chenliang; Yang, Haiwei; Li, Wei

    2014-11-15

    Despite its affordability, the krypton Hall-effect thruster in applications always had problems in regard to performance. The reason for this degradation is studied from the perspective of the near-wall conductivity of electrons. Using the particle-in-cell method, the sheath oscillation characteristics and its effect on near-wall conduction are compared in the krypton and xenon Hall-effect thrusters both with wall material composed of BNSiO{sub 2}. Comparing these two thrusters, the sheath in the krypton-plasma thruster will oscillate at low electron temperatures. The near-wall conduction current is only produced by collisions between electrons and wall, thereby causing a deficiency in the channel current. The sheath displays spatial oscillations only at high electron temperature; electrons are then reflected to produce the non-oscillation conduction current needed for the krypton-plasma thruster. However, it is accompanied with intensified oscillations.

  10. Sheath oscillation characteristics and effect on near-wall conduction in a krypton Hall thruster

    NASA Astrophysics Data System (ADS)

    Zhang, Fengkui; Kong, Lingyi; Li, Chenliang; Yang, Haiwei; Li, Wei

    2014-11-01

    Despite its affordability, the krypton Hall-effect thruster in applications always had problems in regard to performance. The reason for this degradation is studied from the perspective of the near-wall conductivity of electrons. Using the particle-in-cell method, the sheath oscillation characteristics and its effect on near-wall conduction are compared in the krypton and xenon Hall-effect thrusters both with wall material composed of BNSiO 2 . Comparing these two thrusters, the sheath in the krypton-plasma thruster will oscillate at low electron temperatures. The near-wall conduction current is only produced by collisions between electrons and wall, thereby causing a deficiency in the channel current. The sheath displays spatial oscillations only at high electron temperature; electrons are then reflected to produce the non-oscillation conduction current needed for the krypton-plasma thruster. However, it is accompanied with intensified oscillations.

  11. DEVELOPMENT OF A HYDROGEN MORDENITE SORBENT FOR THE CAPTURE OF KRYPTON FROM USED NUCLEAR FUEL REPROCESSING OFF-GAS STREAMS

    SciTech Connect

    Mitchell Greenhalgh; Troy G. Garn; Jack D. Law

    2014-04-01

    A novel new sorbent for the separation of krypton from off-gas streams resulting from the reprocessing of used nuclear fuel has been developed and evaluated. A hydrogen mordenite powder was successfully incorporated into a macroporous polymer binder and formed into spherical beads. The engineered form sorbent retained the characteristic surface area and microporosity indicative of mordenite powder. The sorbent was evaluated for krypton adsorption capacities utilizing thermal swing operations achieving capacities of 100 mmol of krypton per kilogram of sorbent at a temperature of 191 K. A krypton adsorption isotherm was also obtained at 191 K with varying krypton feed gas concentrations. Adsorption/desorption cycling effects were also evaluated with results indicating that the sorbent experienced no decrease in krypton capacity throughout testing.

  12. Photolytic separation of isotopes in cryogenic solution

    DOEpatents

    Freund, Samuel M.; Maier, II, William B.; Holland, Redus F.; Beattie, Willard H.

    1985-01-01

    Separation of carbon isotopes by photolysis of CS.sub.2 in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distribution of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of .sup.13 CS.sub.2 is greater than that of .sup.12 CS.sub.2 (because the absorption of 206 nm radiation is greater for .sup.13 CS.sub.2), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.

  13. Photolytic separation of isotopes in cryogenic solution

    DOEpatents

    Freund, S.M.; Maier, W.B. II; Holland, R.F.; Battie, W.H.

    Separation of carbon isotopes by photolysis of CS/sub 2/ in cryogenic solutions of nitrogen, krypton and argon with 206 nm light from an iodine resonance lamp is reported. The spectral distributionn of the ultraviolet absorption depends on solvent. Thus, in liquid nitrogen the photolytic decomposition rate of /sup 13/CS/sub 2/ is greater than that of /sup 12/CS/sub 2/ (because the absorption of 206 nm radiation is greater for /sup 13/CS/sub 2/), whereas in liquid krypton and liquid argon the reverse is true. The shift in ultraviolet spectrum is a general phenomenon readily characterized as a function of solvent polarizability, and exhibits behavior similar to that for vibrational transitions occurring in the infrared.

  14. Pathway to Cryogen Free Production of Hyperpolarized Krypton-83 and Xenon-129

    PubMed Central

    Six, Joseph S.; Hughes-Riley, Theodore; Stupic, Karl F.; Pavlovskaya, Galina E.; Meersmann, Thomas

    2012-01-01

    Hyperpolarized (hp) 129Xe and hp 83Kr for magnetic resonance imaging (MRI) are typically obtained through spin-exchange optical pumping (SEOP) in gas mixtures with dilute concentrations of the respective noble gas. The usage of dilute noble gases mixtures requires cryogenic gas separation after SEOP, a step that makes clinical and preclinical applications of hp 129Xe MRI cumbersome. For hp 83Kr MRI, cryogenic concentration is not practical due to depolarization that is caused by quadrupolar relaxation in the condensed phase. In this work, the concept of stopped flow SEOP with concentrated noble gas mixtures at low pressures was explored using a laser with 23.3 W of output power and 0.25 nm linewidth. For 129Xe SEOP without cryogenic separation, the highest obtained MR signal intensity from the hp xenon-nitrogen gas mixture was equivalent to that arising from 15.5±1.9% spin polarized 129Xe in pure xenon gas. The production rate of the hp gas mixture, measured at 298 K, was 1.8 cm3/min. For hp 83Kr, the equivalent of 4.4±0.5% spin polarization in pure krypton at a production rate of 2 cm3/min was produced. The general dependency of spin polarization upon gas pressure obtained in stopped flow SEOP is reported for various noble gas concentrations. Aspects of SEOP specific to the two noble gas isotopes are discussed and compared with current theoretical opinions. A non-linear pressure broadening of the Rb D1 transition was observed and taken into account for the qualitative description of the SEOP process. PMID:23209620

  15. Lymphatic Anomalies Registry

    ClinicalTrials.gov

    2016-07-26

    Lymphatic Malformation; Generalized Lymphatic Anomaly (GLA); Central Conducting Lymphatic Anomaly; CLOVES Syndrome; Gorham-Stout Disease ("Disappearing Bone Disease"); Blue Rubber Bleb Nevus Syndrome; Kaposiform Lymphangiomatosis; Kaposiform Hemangioendothelioma/Tufted Angioma; Klippel-Trenaunay Syndrome; Lymphangiomatosis

  16. An experimental study of the isotopic enrichment in Ar, Kr, and Xe when trapped in water ice

    NASA Technical Reports Server (NTRS)

    Notesco, G.; Laufer, D.; Bar-Nun, A.; Owen, T.

    1999-01-01

    The isotopic enrichment of argon, krypton, and xenon, when trapped in water ice, was studied experimentally. The isotopes were found to be enriched according to their (m1/m2)1/2 ratio. These enrichment factors could be useful for comparison among the uncertain cosmic or solar isotopic ratios, the hopeful in situ cometary ratio, and those in Earth's atmosphere, in the context of cometary delivery of volatiles to Earth.

  17. Shock Compression of Cryogenic Noble Gas Mixtures: Xenon - Krypton

    NASA Astrophysics Data System (ADS)

    Root, Seth; Magyar, Rudolph; Lemke, Raymond; Mattsson, Thomas

    2013-06-01

    In past work, we have examined the multi-Mbar response of cryogenically cooled liquid xenon and liquid krypton measuring their Hugoniots to 8 Mbar. These results were utilized in the development of new EOS models for Xe and Kr to use in high energy density physics applications. The previous work demonstrated the usefulness of integrating high accuracy shock compression experiments with DFT to generate the basis for equation of state (EOS) models. In many physics applications, such as Z-pinch experiments, gas mixtures are used instead. However, we do not have reliable experimental data on these mixtures to provide informed decisions about the EOS models or mixture rules. To improve our understanding of mixtures at extreme conditions, we performed dynamic compression experiments using Sandia's Z - facility on a 70/30 molar ratio Kr/Xe cryogenically cooled liquid mixture. We measured the Hugoniot state and reshock state of the liquid mixture to several Mbar. The experimental data validated the DFT simulations for identical molar ratio mixtures. The combined experimental and DFT results are used to assess the EOS models and test the mixture rules. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Securities Administration under Contract No. DE-AC04-94AL85000.

  18. Modified effective range analysis of electron scattering from krypton

    NASA Astrophysics Data System (ADS)

    Fedus, Kamil

    2014-10-01

    The elastic cross sections for electron scattering on krypton from zero energy up to 10 eV have been analyzed by the modified effective range method. A simple model based on the analytical solution of the Schrödinger equation with the polarization potential using explicitly determined scattering phase shifts for the three lowest partial waves describes the elastic differential, integral and momentum transfer cross sections up to the energy threshold of the first inelastic process well. In detail, the contribution of the long-range polarization potential to the scattering phase shift is exactly expressed, while the contribution of the short-range effects is modelled by simple quadratic expressions (the effective range expansions). The effective range parameters are determined empirically by comparison with the latest experimental differential cross sections. Presently, the calculated integral and momentum transfer cross sections are validated against numerous electron scattering experiments and the most recent quantum-mechanical theories. To complete the picture, the two-term Boltzmann analysis is employed to determine the electron transport coefficients; the agreement with the electron swarm experimental data is found to be very good.

  19. Large area electron beam pumped krypton fluoride laser amplifier

    SciTech Connect

    Sethian, J.D.; Obenschain, S.P.; Gerber, K.A.; Pawley, C.J.; Serlin, V.; Sullivan, C.A.; Webster, W.; Deniz, A.V.; Lehecka, T.; McGeoch, M.W.; Altes, R.A.; Corcoran, P.A.; Smith, I.D.; Barr, O.C.

    1997-06-01

    Nike is a recently completed multi-kilojoule krypton fluoride (KrF) laser that has been built to study the physics of direct drive inertial confinement fusion. This paper describes in detail both the pulsed power and optical performance of the largest amplifier in the Nike laser, the 60 cm amplifier. This is a double pass, double sided, electron beam-pumped system that amplifies the laser beam from an input of 50 J to an output of up to 5 kJ. It has an optical aperture of 60 cm {times} 60 cm and a gain length of 200 cm. The two electron beams are 60 cm high {times} 200 cm wide, have a voltage of 640 kV, a current of 540 kA, and a flat top power pulse duration of 250 ns. A 2 kG magnetic field is used to guide the beams and prevent self-pinching. Each electron beam is produced by its own Marx/pulse forming line system. The amplifier has been fully integrated into the Nike system and is used on a daily basis for laser-target experiments. {copyright} {ital 1997 American Institute of Physics.}

  20. Inertial Fusion Target Physics Advantages with the Krypton Fluoride Laser

    NASA Astrophysics Data System (ADS)

    Obenschain, Stephen

    2010-11-01

    The krypton fluoride (KrF) laser's short wavelength, broad bandwidth and capability to provide extremely uniform target illumination are advantages towards obtaining high gain direct drive implosions. The short wavelength helps suppress deleterious laser-plasma instabilities, and allows one to employ higher ablation pressures. In addition, the KrF architecture allows one to zoom down the focal diameter to follow the size of the imploding pellet, thereby improving the coupling efficiency. The NRL researchers have been conducting theoretical and experimental studies to quantify the beneficial effects of utilizing KrF light. Experiments using the Nike facility have confirmed that KrF light significantly increases the threshold for laser-plasma instability. This presentation will discuss the observed target physics with KrF light and its effects towards facilitating the high gains needed for power production with inertial fusion. Simulations indicate that shock ignited designs can achieve gains above 200 with KrF energies as low a 1 megajoule. For fusion energy a laser driver must be capable of high repetition rates (5-10 Hz) along with adequate efficiency and durability. The Electra KrF 30-cm aperture electron-beam-pumped amplifier has demonstrated long duration continuous operation at high-repetition rates. This and other advances show that the KrF laser should be able to meet the requirements.

  1. First Detection of Krypton and Xenon in a White Dwarf

    NASA Technical Reports Server (NTRS)

    Werner, Klaus; Rauch, Thomas; Ringat, Ellen; Kruk, Jeffrey W.

    2012-01-01

    We report on the first detection of the noble gases krypton (Z = 36) and xenon (54) in a white dwarf. About 20 KrVI-VII and Xe VI-VII lines were discovered in the ultraviolet spectrum of the hot DO-type white dwarf RE 0503-289. The observations, performed with the Far Ultraviolet Spectroscopic Explorer, also reveal highly ionized photospheric lines from other trans-iron group elements, namely Ga (31), Ge (32), As (33), Se (34), Mo (42), Sn (50), Te (52), and I (53), from which gallium and molybdenum are new discoveries in white dwarfs, too. For Kr and Xe, we performed an NLTE analysis and derived mass fractions of log Kr = -4.3 plus or minus 0.5 and log Xe = -4.2 plus or minus 0.6, corresponding to an enrichment by factors of 450 and 3800, respectively, relative to the Sun. The origin of the large overabundances is unclear. We discuss the roles of neutron-capture nucleosynthesis in the-precursor star and radiation-driven diffusion. It is possible that diffusion is insignificant and thaI the observed metal abundances constrain the evolutionary history of the star. Its hydrogen deficiency may be the consequence of a late helium-shell nash or a binary white dwarf merger.

  2. FIRST DETECTION OF KRYPTON AND XENON IN A WHITE DWARF

    SciTech Connect

    Werner, Klaus; Rauch, Thomas; Ringat, Ellen; Kruk, Jeffrey W.

    2012-07-01

    We report on the first detection of the noble gases krypton (Z = 36) and xenon (54) in a white dwarf. About 20 Kr VI- VII and Xe VI- VII lines were discovered in the ultraviolet spectrum of the hot DO-type white dwarf RE 0503-289. The observations, performed with the Far Ultraviolet Spectroscopic Explorer, also reveal highly ionized photospheric lines from other trans-iron group elements, namely Ga (31), Ge (32), As (33), Se (34), Mo (42), Sn (50), Te (52), and I (53), from which gallium and molybdenum are new discoveries in white dwarfs, too. For Kr and Xe, we performed an NLTE analysis and derived mass fractions of log Kr = -4.3 {+-} 0.5 and log Xe = -4.2 {+-} 0.6, corresponding to an enrichment by factors of 450 and 3800, respectively, relative to the Sun. The origin of the large overabundances is unclear. We discuss the roles of neutron-capture nucleosynthesis in the precursor star and radiation-driven diffusion. It is possible that diffusion is insignificant and that the observed metal abundances constrain the evolutionary history of the star. Its hydrogen deficiency may be the consequence of a late helium-shell flash or a binary white dwarf merger.

  3. High-energy krypton fluoride lasers for inertial fusion.

    PubMed

    Obenschain, Stephen; Lehmberg, Robert; Kehne, David; Hegeler, Frank; Wolford, Matthew; Sethian, John; Weaver, James; Karasik, Max

    2015-11-01

    Laser fusion researchers have realized since the 1970s that the deep UV light from excimer lasers would be an advantage as a driver for robust high-performance capsule implosions for inertial confinement fusion (ICF). Most of this research has centered on the krypton-fluoride (KrF) laser. In this article we review the advantages of the KrF laser for direct-drive ICF, the history of high-energy KrF laser development, and the present state of the art and describe a development path to the performance needed for laser fusion and its energy application. We include descriptions of the architecture and performance of the multi-kilojoule Nike KrF laser-target facility and the 700 J Electra high-repetition-rate KrF laser that were developed at the U.S. Naval Research Laboratory. Nike and Electra are the most advanced KrF lasers for inertial fusion research and energy applications. PMID:26560597

  4. Radioactive Iodine and Krypton Control for Nuclear Fuel Reprocessing Facilities

    SciTech Connect

    N. R. Soelberg; J. D. Law; T. G. Garn; M. Greenhalgh; R. T. Jubin; P. Thallapally; D. M. Strachan

    2013-08-01

    The removal of volatile radionuclides generated during used nuclear fuel reprocessing in the US is almost certain to be necessary for the licensing of a reprocessing facility in the US. Various control technologies have been developed, tested, or used over the past 50 years for control of volatile radionuclide emissions from used fuel reprocessing plants. The US DOE has sponsored, since 2009, an Off-gas Sigma Team to perform research and development focused on the most pressing volatile radionuclide control and immobilization problems. In this paper, we focus on the control requirements and methodologies for 85Kr and 129I. Numerous candidate technologies have been studied and developed at laboratory and pilot-plant scales in an effort to meet the need for high iodine control efficiency and to advance alternatives to cryogenic separations for krypton control. Several of these show promising results. Iodine decontamination factors as high as 105, iodine loading capacities, and other adsorption parameters including adsorption rates have been demonstrated under some conditions for both silver zeolite (AgZ) and Ag-functionalized aerogel. Sorbents, including an engineered form of AgZ and selected metal organic framework materials (MOFs), have been successfully demonstrated to capture Kr and Xe without the need for separations at cryogenic temperatures.

  5. Krypton charge exchange cross sections for Hall effect thruster models

    SciTech Connect

    Hause, Michael L.; Prince, Benjamin D.; Bemish, Raymond J.

    2013-04-28

    Following discharge from a Hall effect thruster, charge exchange occurs between ions and un-ionized propellant atoms. The low-energy cations produced can disturb operation of onboard instrumentation or the thruster itself. Charge-exchange cross sections for both singly and doubly charged propellant atoms are required to model these interactions. While xenon is the most common propellant currently used in Hall effect thrusters, other propellants are being considered, in particular, krypton. We present here guided-ion beam measurements and comparisons to semiclassical calculations for Kr{sup +} + Kr and Kr{sup 2+} + Kr cross sections. The measurements of symmetric Kr{sup +} + Kr charge exchange are in good agreement with both the calculations including spin-orbit effects and previous measurements. For the symmetric Kr{sup 2+} + Kr reaction, we present cross section measurements for center-of-mass energies between 1 eV and 300 eV, which spans energies not previously examined experimentally. These cross section measurements compare well with a simple one-electron transfer model. Finally, cross sections for the asymmetric Kr{sup 2+} + Kr {yields} Kr{sup +} + Kr{sup +} reaction show an onset near 12 eV, reaching cross sections near constant value of 1.6 A{sup 2} with an exception near 70-80 eV.

  6. Thermal beam of metastable krypton atoms produced by optical excitation

    SciTech Connect

    Ding, Y.; Hu, S.-M.; Bailey, K.; Davis, A. M.; Dunford, R. W.; Lu, Z.-T.; O'Connor, T. P.; Young, L.

    2007-02-15

    A room-temperature beam of krypton atoms in the metastable 5s[3/2]{sub 2} level is demonstrated via an optical excitation method. A Kr-discharge lamp is used to produce vacuum ultraviolet photons at 124 nm for the first-step excitation from the ground level 4p{sup 6} {sup 1}S{sub 0} to the 5s[3/2]{sub 1} level. An 819 nm Ti:sapphire laser is used for the second-step excitation from 5s[3/2]{sub 1} to 5s[3/2]{sub 2} followed by a spontaneous decay to the 5s[3/2]{sub 2} metastable level. A metastable atomic beam with an angular flux density of 3x10{sup 14} s{sup -1} sr{sup -1} is achieved at the total gas flow rate of 0.01 cm{sup 3}/s at STP (or 3x10{sup 17} at./s). The dependences of the flux on the gas flow rate, laser power, and lamp parameters are investigated.

  7. Analysis of spacecraft anomalies

    NASA Technical Reports Server (NTRS)

    Bloomquist, C. E.; Graham, W. C.

    1976-01-01

    The anomalies from 316 spacecraft covering the entire U.S. space program were analyzed to determine if there were any experimental or technological programs which could be implemented to remove the anomalies from future space activity. Thirty specific categories of anomalies were found to cover nearly 85 percent of all observed anomalies. Thirteen experiments were defined to deal with 17 of these categories; nine additional experiments were identified to deal with other classes of observed and anticipated anomalies. Preliminary analyses indicate that all 22 experimental programs are both technically feasible and economically viable.

  8. The atmosphere of Mars near the surface - Isotope ratios and upper limits on noble gases

    NASA Technical Reports Server (NTRS)

    Biemann, K.; Lafleur, A. L.; Owen, T.; Rushneck, D. R.; Howarth, D. W.

    1976-01-01

    Several analyses of the Martian atmosphere have been carried out with the mass spectrometer in the molecular-analysis experiment. The ratios of abundant isotopes of carbon and oxygen are within 10 per cent of terrestrial values, whereas nitrogen-15 is considerably enriched on Mars. Argon-38 has been detected, and new limits on abundances of krypton and xenon have been set. The limit on krypton is sufficiently low to suggest that the inventories of volatile substances on Mars and on earth may be distinctly different.

  9. 32.8-nm X-ray laser produced in a krypton cluster jet

    SciTech Connect

    Ivanova, E P; Vinokhodov, A Yu

    2013-12-31

    We have interpreted the well-known experimental quantum yield data for a 32.8-nm X-ray laser operating at the 3d{sup 9}4d (J = 0) – 3d{sup 9}4p (J = 1) transition of Kr{sup 8+} with the use of gaseous krypton or a krypton cluster jet. Proceeding from our model we propose a novel scheme for the 32.8-nm laser produced in a krypton cluster jet. The quantum yield is shown to saturate for a plasma length of ∼300 μm, a krypton ion density n{sub Kr} ∼ (4 – 9) × 10{sup 19} cm{sup -3}, and an electron temperature Te ∼ 5000 eV. In this case, the energy conversion coefficient amounts to ∼5 × 10{sup -3} of the pump pulse energy. We propose the experimental setup for producing a highefficiency subpicosecond X-ray laser in a krypton cluster jet. (lasers)

  10. Krypton separation from ambient air for application in collinear fast beam laser spectroscopy.

    PubMed

    Mohamed, Tarek; Strohaber, James; Nava, Ricardo; Kolomenskii, Alexandre; Thonnard, Norbert; Schuessler, Hans A

    2012-07-01

    A portable apparatus for the separation of krypton from environmental air samples was tested. The apparatus is based on the cryogenic trapping of gases at liquid nitrogen temperature followed by controlled releases at higher temperatures. The setup consists of a liquid nitrogen trap for the removal of H(2)O and CO(2), followed by charcoal-filled coils that sequentially collect and release krypton and other gases providing four stages of gas chromatography to achieve separation and purification of krypton from mainly N(2), O(2), and Ar. Residual reactive gases remaining after the final stage of chromatography are removed with a hot Ti sponge getter. A thermal conductivity detector is used to monitor the characteristic elution times of the various components of condensed gases in the traps during step-wise warming of the traps from liquid nitrogen temperatures to 0 °C, and then to 100 °C. This allows optimizing the switching times of the valves between the stages of gas chromatography so that mainly krypton is selected and loaded to the next stage while exhausting the other gases using a He carrier. A krypton separation efficiency of ~80 % was determined using a quadrupole mass spectrometer. PMID:22549732

  11. Discovery of Cadmium, Indium, and Tin Isotopes

    NASA Astrophysics Data System (ADS)

    Amos, Stephanie; Thoennessen, Michael

    2009-10-01

    As of today, no comprehensive study has been made covering the initial observations and identifications of isotopes. A project has been undertaken at MSU to document the discovery of all the known isotopes. The criteria defining discovery of a given isotope is the publication of clear mass and element assignment in a refereed journal. Prior to the current work the documentation of the discovery of eleven elements had been completed^1. These elements are cerium^2, arsenic, gold, tungsten, krypton, silver, vanadium, einsteinium, iron, barium, and cobalt. We will present the new documentation for the cadmium, indium, and tin isotopes. Thirty-seven cadmium isotopes, thirty-eight indium isotopes, and thirty-eight tin isotopes have been discovered so far. The description for each discovered isotope includes the year of discovery, the article published on the discovery, the article's author, the method of production, the method of identification, and any previous information concerning the isotope discovery. A summary and overview of all ˜500 isotopes documented so far as a function of discovery year, method and place will also be presented. ^1http://www.nscl.msu.edu/˜thoennes/2009/discovery.htm ^2J.Q. Ginepro, J. Snyder, and M. Thoennessen, At. Data Nucl. Data. Tables, in press (2009), doi:10.1016/j.adt.2009.06.002

  12. Equation of state of dense neon and krypton plasmas in the partial ionization regime

    SciTech Connect

    Chen, Q. F. Zheng, J.; Gu, Y. J.; Li, Z. G.

    2015-12-15

    The compression behaviors of dense neon and krypton plasmas over a wide pressure-temperature range are investigated by self-consistent fluid variational theory. The ionization degree and equation of state of dense neon and krypton are calculated in the density-temperature range of 0.01–10 g/cm{sup 3} and 4–50 kK. A region of thermodynamic instability is found which is related to the plasma phase transition. The calculated shock adiabat and principal Hugoniot of liquid krypton are in good agreement with available experimental data. The predicted results of shock-compressed liquid neon are presented, which provide a guide for dynamical experiments or numerical first-principle calculations aimed at studying the compression properties of liquid neon in the partial ionization regime.

  13. Krypton Adsorption on Zeolite-Templated Carbon and Anomalous Surface Thermodynamics.

    PubMed

    Murialdo, Maxwell; Stadie, Nicholas P; Ahn, Channing C; Fultz, Brent

    2015-07-28

    Krypton adsorption was measured at eight temperatures between 253 and 433 K on a zeolite-templated carbon and two commercial carbons. The data were fitted using a generalized Langmuir isotherm model and thermodynamic properties were extracted. Differing from that on commercial carbons, krypton adsorption on the zeolite-templated carbon is accompanied by an increasing isosteric enthalpy of adsorption, rising by up to 1.4 kJ mol(-1) as a function of coverage. This increase is a result of enhanced adsorbate-adsorbate interactions promoted by the ordered, nanostructured surface of the adsorbent. An assessment of the strength and nature of these adsorbate-adsorbate interactions is made by comparing the measured isosteric enthalpies of adsorption (and other thermodynamic quantities) to fundamental metrics of intermolecular interactions of krypton and other common gases. PMID:26136159

  14. Elastic electron scattering in krypton in the energy range from 5 to 10 eV

    SciTech Connect

    Linert, Ireneusz; Mielewska, Brygida; Zubek, Mariusz; King, George C.

    2010-01-15

    Differential cross sections for elastic electron scattering in krypton have been measured at the energies of 5,7.5, and 10 eV over the scattering angle range from 30 deg. to 180 deg. The measurements for backward scattering employed the magnetic angle-changing technique. These differential cross sections have been integrated to yield the elastic integral and momentum transfer cross sections at the above energies. These new results are compared with the most recent measurements and calculations of the respective cross sections in krypton. The dependence of the differential cross sections on atomic polarizability of the heavier rare gas atoms argon, krypton, and xenon has also been investigated over the electron energy range 5-30 eV and for forward, backward, and intermediate scattering angles.

  15. Molecular dynamics study of diffusion of krypton in water at different temperatures

    NASA Astrophysics Data System (ADS)

    Bhandari, Dipendra; Adhikari, N. P.

    2016-04-01

    Molecular dynamics study of diffusion of two krypton atoms in 300 SPC/E water molecules at temperatures 293, 303, 313, 323 and 333 K has been carried out. Self-diffusion coefficient of krypton and water along with their mutual diffusion coefficients are estimated. Self-diffusion coefficient for krypton is calculated by using Mean Square Displacement (MSD) method and Velocity Autocorrelation (VACF) method, while that for water is calculated by using MSD method only. The mutual diffusion coefficient is estimated by using the Darken’s relation. The diffusion coefficients are found to follow the Arrhenius behavior. The structural properties of the system have been estimated by the study of solute-solute, solvent-solvent, and solute-solvent Radial Distribution Function (RDF).

  16. Wavelengths and lifetimes of transitions in highly-ionized krypton

    SciTech Connect

    Barry, H.G.; Dunford, R.W.; Gemmel, D.S.

    1995-08-01

    We began a program to test relativistic Hartree-Fock calculations in 3-, 4-, and 5- electron systems by making precision wavelength and lifetime measurements. This is an extension of previous work at ATLAS in which we obtained precision lifetime and wavelength measurements in one- and two-electron systems. We are starting by making accurate wavelength and lifetime measurements of the spectra of multielectron krypton in the far ultraviolet region, at wavelengths of 50 to 400 {Angstrom}. Although there was considerable theoretical progress in this area recently, little accurate data exists for ions above Z=18, except for the wavelengths of the lithium-like transitions. Our spectra are taken using a beam-foil chamber coupled to a 2.2-m McPherson grazing incidence monochromator. This system was upgraded recently to provide efficient light collection and to take advantage of the time structure of ATLAS. The exit slits of the monochromator were replaced by a position-sensitive channel plate with high spatial and time resolution. The channel plate is mounted on a movable chariot on the Rowland circle of the monochromator. The chariot can be translated along the circle, and it can be rotated about a tangent point of the circle. This latter movement allows us to optimize resolution and efficiency depending on the needs of the experiment. Backgrounds due to electrons, neutrons, gamma rays, and dark count from the detector are greatly reduced using a time window (1-2 ns) triggered from the ATLAS beam pulse structure (82 ns pulse separation).

  17. Self-Associating Behavior of Acetone in Liquid Krypton.

    PubMed

    De Beuckeleer, Liene I; Herrebout, Wouter A

    2016-02-18

    Acetone molecules are inclined to self-associate through dipole-dipole interactions because of their large dipole moment. Infrared spectroscopy of compounds dissolved in liquid noble gases supported by high level ab initio calculations allows investigating the self-associating behavior and determining the thermodynamical properties. In this study, infrared spectra of various concentrations of acetone dissolved in liquid krypton are recorded at constant temperature. Overlapping monomer and dimer spectra are separated by analyzing the obtained data sets with numerical methods based on least-squares fitting. Although acetone is known to self-associate, only a few spectral features have been presented in literature before. In this study, the application of new numerical approaches succeeds in resolving overlapping spectra and allows observing isolated acetone dimer absorption bands for the complete mid infrared spectrum. By use of data sets of spectra recorded at temperatures between 134 and 142 K, the experimental standard dimerization enthalpy was determined to be -10.8 kJ mol(-1). MP2/aug-cc-pVDZ calculations predicted a stacked and planar dimer geometry of which the stacked geometry is more stable. Combining MP2 energies and single point corrections involving CCSD(T) calculations and complete basis set extrapolations based on the MP2/aug-cc-pVDZ equilibrium geometry lead to complexation energy of -28.4 kJ mol(-1) for the stacked geometry and -15.1 kJ mol(-1) for the planar geometry. The corresponding values for the complexation enthalpies in solution, obtained by combining these values with corrections for thermal and solvent influences are -13.7 and -5.8 kJ mol(-1). PMID:26805773

  18. [Kimmerle's anomaly and stroke].

    PubMed

    Barsukov, S F; Antonov, G I

    1992-10-01

    The anomaly of cranio-vertebral area can frequently be the reason of acute cerebrovascular disorders in vertebro-basilar field. The frequent C1 pathology in the Kimmerle's anomaly. The anatomic studies has shown that 30% of people had this type of anomaly. This pathology can lead to severe vascular diseases of cerebrum because of the squeezing effect upon vertebral arteries in the zone of osteal ponticulus of the rear arch of atlas. PMID:1481402

  19. Purely-long-range krypton molecules in singly and doubly excited binding potentials

    SciTech Connect

    Smith, Z. S.; Harmon, A.; Banister, J.; Norman, R.; Hoogeboom-Pot, K.; Walhout, M.

    2010-01-15

    Diatomic potentials for krypton are computed and also probed experimentally. For a probe-laser wavelength near 811 nm, several strong dipole-dipole interactions produce purely-long-range potential wells in the singly excited manifold of (s+p) potentials and in the doubly excited manifold of (p+p) and (s+d) potentials. Evidence of resonant photoassociation into bound states of these potential wells is observed in the emission of ions and ultraviolet photons from a magneto-optically trapped krypton cloud.

  20. Emission in argon and krypton at 147 nm excited by runaway-electron-induced diffusion discharge

    SciTech Connect

    Gerasimov, Gennadii N; Krylov, B E; Lomaev, Mikhail I; Rybka, D V; Tarasenko, Viktor F

    2010-05-26

    Plasma emission of a pulsed diffuse discharge produced at increased pressures due to the preionisation of the gap by runaway electrons is studied in argon, krypton, and xenon. Nanosecond voltage pulses with the amplitude {approx}220 kV were applied to the discharge gap. It is shown that the presence of xenon ({approx}0.01%) in argon and krypton leads to the emergence of high-power narrowband radiation at awavelength of 147 nm. It is assumed that this radiation belongs to the bands of heteronuclear molecules Xe*Ar and Xe*Kr.

  1. X-ray Emission Wavelengths of Argon, Krypton, Xenon, and Curium

    NASA Astrophysics Data System (ADS)

    Kleykamp, H.

    1992-03-01

    The wavelengths of the L series of argon, krypton and xenon, the K series of argon, and the M series of curium were measured by means of wavelength dispersive X-ray microanalysis. The specimens for the investigations were TiC layers which had been HF sputtered under reduced argon pressure by the PVD method, krypton and xenon implanted zeolites, and a curium doped borosilicate glass. The obtained relative intensities of the X-ray emission lines were normalized to the maximum intensity of the line of the respective series

  2. Breaking through the Glass Ceiling: The Correlation Between the Self-Diffusivity in and Krypton Permeation through Deeply Supercooled Liquid Nanoscale Methanol Films

    SciTech Connect

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2010-03-28

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures near (100-115 K) the glass transition temperature, Tg (103 K). Layered films, consisting of CH3OH and CD3OH, are deposited ontop of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above Tg. The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

  3. Breaking through the glass ceiling: The correlation between the self-diffusivity in and krypton permeation through deeply supercooled liquid nanoscale methanol films

    NASA Astrophysics Data System (ADS)

    Smith, R. Scott; Matthiesen, Jesper; Kay, Bruce D.

    2010-03-01

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures (100-115 K) near the glass transition temperature, Tg (103 K). Layered films, consisting of CH3OH and CD3OH, are deposited on top of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above Tg. The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare-gas permeation technique as a tool for probing the diffusivity of supercooled liquids.

  4. Taussig-Bing Anomaly

    PubMed Central

    Konstantinov, Igor E.

    2009-01-01

    Taussig-Bing anomaly is a rare congenital heart malformation that was first described in 1949 by Helen B. Taussig (1898–1986) and Richard J. Bing (1909–). Although substantial improvement has since been achieved in surgical results of the repair of the anomaly, management of the Taussig-Bing anomaly remains challenging. A history of the original description of the anomaly, the life stories of the individuals who first described it, and the current outcomes of its surgical management are reviewed herein. PMID:20069085

  5. Deactivation of krypton atoms in the metastable 5s({sup 3}P{sub 2}) state in collisions with krypton and argon atoms

    SciTech Connect

    Zayarnyi, D A; L'dov, A Yu; Kholin, I V

    2009-09-30

    The collision deactivation of the metastable 5s[3/2]{sub 2}{sup o}({sup 3}P{sub 2}) state of krypton atoms is studied by the absorption probe method in electron-beam-excited high-pressure Ar-Kr mixtures with a low krypton content. The rate constants of plasma-chemical reactions Kr* + Kr + Ar {yields} Kr{sub 2}* + Ar [(4.1{+-}0.4)x10{sup -33} cm{sup 6} s{sup -1}] and Kr* + 2Ar {yields} ArKr* + Ar (less than 10{sup -35} cm{sup 6} s{sup -1}) are measured for the first time and the rate constant of the reaction Kr* + Ar {yields} products + Ar [(3.8{+-}0.4)x10{sup -15} cm{sup 3} s{sup -1}] is refined. (active media)

  6. Beta-decay study of neutron rich isotopes of Bromine and Krypton

    SciTech Connect

    Miernik, Krzysztof A; Gross, Carl J; Grzywacz, Robert Kazimierz; Madurga, M; Mendez, II, Anthony J; Miller, D.; Padgett, S; Paulauskas, Stanley V; Rykaczewski, Krzysztof Piotr; Stracener, Daniel W; Wolinska-Cichocka, Marzena; Zganjar, E. F.; Batchelder, J. C.; Brewer, N.T.; Cartegni, L.; Fijalkowska, Aleksandra G; Hamilton, J. H.; Hwang, J. K.; Ilyushkin, S.; Jost, Carola U; Karny, M.; Korgul, A.; Krolas, W.; Liu, S.H.; Ramayya, A. V.; Surman, Rebecca; Winger, J. A.; Wolinska-Cichocka, M

    2013-01-01

    Short lived neutron rich nuclei including 93 Br, 93 Kr and 94 Kr were produced in proton induced fission of 238 U at the HRIBF in Oak Ridge. Their beta decay was studied by means of a high resolution on line mass separator and beta gamma spectroscopy methods. The half life of 93Br T1/2 = 152(8) ms and delayed branching ratio of Pn = 53-8+11 may be compared to the previously reported values of T1/2 = 102(10) ms and Pn = 68(7)%. At the same time the half life of 94Kr T1/2 = 227(14) ms and B delayed branching ratio of Pn = 1.9+0.6 0.2 % of 93Kr are in very good agreement with literature values. The decay properties of 93Br include four new gamma transitions following beta delayed neutron emission.

  7. Quenching of the resonance 5s({sup 3}P{sub 1}) state of krypton atoms in collisions with krypton and helium atoms

    SciTech Connect

    Zayarnyi, D A; L'dov, A Yu; Kholin, I V

    2014-11-30

    The processes of collision quenching of the resonance 5s[3/2]{sub 1}{sup o}({sup 3}P{sub 1}) state of the krypton atom are studied by the absorption probe method in electron-beam-excited high-pressure He – Kr mixtures with a low content of krypton. The rate constants of plasmochemical reactions Kr* + Kr + He → Kr*{sub 2} + He [(4.21 ± 0.42) × 10{sup -33} cm{sup 6} s{sup -1}], Kr* + 2He → HeKr* + He [(4.5 ± 1.2) × 10{sup -36} cm{sup 6} s{sup -1}] and Kr* + He → products + He [(2.21 ± 0.22) × 10{sup -15} cm{sup 3} s{sup -1}] are measured for the first time. The rate constants of similar reactions are refined for krypton in the metastable 5s[3/2]{sub 2}{sup o} ({sup 3}P{sub 2}) state. (laser applications and other topics in quantum electronics)

  8. Competing Orders and Anomalies.

    PubMed

    Moon, Eun-Gook

    2016-01-01

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation "laws" could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the 't Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed. PMID:27499184

  9. Competing Orders and Anomalies

    NASA Astrophysics Data System (ADS)

    Moon, Eun-Gook

    2016-08-01

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation “laws” could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the ’t Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed.

  10. Competing Orders and Anomalies

    PubMed Central

    Moon, Eun-Gook

    2016-01-01

    A conservation law is one of the most fundamental properties in nature, but a certain class of conservation “laws” could be spoiled by intrinsic quantum mechanical effects, so-called quantum anomalies. Profound properties of the anomalies have deepened our understanding in quantum many body systems. Here, we investigate quantum anomaly effects in quantum phase transitions between competing orders and striking consequences of their presence. We explicitly calculate topological nature of anomalies of non-linear sigma models (NLSMs) with the Wess-Zumino-Witten (WZW) terms. The non-perturbative nature is directly related with the ’t Hooft anomaly matching condition: anomalies are conserved in renormalization group flow. By applying the matching condition, we show massless excitations are enforced by the anomalies in a whole phase diagram in sharp contrast to the case of the Landau-Ginzburg-Wilson theory which only has massive excitations in symmetric phases. Furthermore, we find non-perturbative criteria to characterize quantum phase transitions between competing orders. For example, in 4D, we show the two competing order parameter theories, CP(1) and the NLSM with WZW, describe different universality class. Physical realizations and experimental implication of the anomalies are also discussed. PMID:27499184

  11. Isotopic microanalysis of returned comet nucleus samples

    NASA Technical Reports Server (NTRS)

    Zinner, Ernst

    1989-01-01

    If isotopic measurements of interplanetary dust particles (IDPs) and primitive meteorites can serve as a guide to the isotopic analysis of returned comet nucleus material, an essential requirement will be the capability for microanalysis. The reason is that in both types of extraterrestrial samples large isotopic heterogeneities on a small spatial scale have become apparent once it was possible to measure isotopes in small samples. In the discovery of large isotopic anomalies the ion microprobe has played a significant role because of its high spatial resolution for isotopic ratio measurements. The largest isotopic anomalies in C, N, O, Mg, Si, Ca and Ti found to date were measured by ion microprobe mass spectrometry. The most striking examples are D/H measurements in IDPs and isotopic measurements of C, N and Si in SiC from the CM chondrites Murray and Murchison.

  12. Effective and accurate approach for modeling of commensurate-incommensurate transition in krypton monolayer on graphite.

    PubMed

    Ustinov, E A

    2014-10-01

    Commensurate-incommensurate (C-IC) transition of krypton molecular layer on graphite received much attention in recent decades in theoretical and experimental researches. However, there still exists a possibility of generalization of the phenomenon from thermodynamic viewpoint on the basis of accurate molecular simulation. Recently, a new technique was developed for analysis of two-dimensional (2D) phase transitions in systems involving a crystalline phase, which is based on accounting for the effect of temperature and the chemical potential on the lattice constant of the 2D layer using the Gibbs-Duhem equation [E. A. Ustinov, J. Chem. Phys. 140, 074706 (2014)]. The technique has allowed for determination of phase diagrams of 2D argon layers on the uniform surface and in slit pores. This paper extends the developed methodology on systems accounting for the periodic modulation of the substrate potential. The main advantage of the developed approach is that it provides highly accurate evaluation of the chemical potential of crystalline layers, which allows reliable determination of temperature and other parameters of various 2D phase transitions. Applicability of the methodology is demonstrated on the krypton-graphite system. Analysis of phase diagram of the krypton molecular layer, thermodynamic functions of coexisting phases, and a method of prediction of adsorption isotherms is considered accounting for a compression of the graphite due to the krypton-carbon interaction. The temperature and heat of C-IC transition has been reliably determined for the gas-solid and solid-solid system. PMID:25296827

  13. The refractive index of krypton for lambda in the closed interval 168-288 nm

    NASA Technical Reports Server (NTRS)

    Smith, P. L.; Parkinson, W. H.; Huber, M. C. E.

    1975-01-01

    The index of refraction of krypton has been measured at 27 wavelengths between and including 168 and 288 nm. The probable error of each measurement is plus or minus 0.1%. Our results are compared with other measurements. Our data are about 3.8% smaller than those of Abjean et al.

  14. Use of krypton laser stimulation in the treatment of dry eye syndrome

    NASA Astrophysics Data System (ADS)

    Kecik, Tadeusz; Switka-Wieclawska, Iwona; Ciszewska, Joanna; Portacha, Lidia

    1991-08-01

    We''d like to present the use of krypton laser stimulation in the treatment of dry eye syndrom. 10 patients with dry eye syndrom were treated with irradiation of the lacrimal gland. Schirmer test and break up time were performed before and after therapy. After 10 days of treatment we observed higher value of secreted tear amount.

  15. Müllerian anomalies.

    PubMed

    Gell, Jennifer S

    2003-11-01

    The reproductive organs in both males and females consist of gonads, internal ductal structures, and external genitalia. Normal sexual differentiation is dependent on the genetic sex determined by the presence or absence of the Y chromosome at fertilization. Testes develop under the influence of the Y chromosome and ovaries develop when no Y chromosome is present. In the absence of testes and their normal hormonal products, sexual differentiation proceeds along the female pathway, resulting in a normal female phenotype. Anatomic gynecologic anomalies occur when there is failure of normal embryologic ductal development. These anomalies include congenital absence of the vagina as well as defects in lateral and vertical fusion of the Müllerian ducts. Treatment of müllerian anomalies begins with the correct identification of the anomaly and an understanding of the embryologic origin. This includes evaluation for other associated anomalies such as renal or skeletal abnormalities. After correct identification, treatment options include nonsurgical as well as surgical intervention. This chapter serves to review the embryology and development of the reproductive system and to describe common genital tract anomalies. Details of surgical or nonsurgical correction of these anomalies are presented. PMID:14724770

  16. Behavioral economics without anomalies.

    PubMed Central

    Rachlin, H

    1995-01-01

    Behavioral economics is often conceived as the study of anomalies superimposed on a rational system. As research has progressed, anomalies have multiplied until little is left of rationality. Another conception of behavioral economics is based on the axiom that value is always maximized. It incorporates so-called anomalies either as conflicts between temporal patterns of behavior and the individual acts comprising those patterns or as outcomes of nonexponential time discounting. This second conception of behavioral economics is both empirically based and internally consistent. PMID:8551195

  17. Krypton and xenon fractionation in North American tektites

    NASA Astrophysics Data System (ADS)

    Palma, R. L.; Rao, M. N.; Rowe, M. W.; Koeberl, C.

    1997-01-01

    Elemental and isotopic compositions of the noble gases have been determined in six North American tektites (4 bediasites and 2 georgiaites) and one Ivory Coast tektite. Radiogenically produced 4He may explain the large 4He/36Ar ratios measured relative to air, despite significant diffusive losses. The neon isotopic composition is enriched in 20Ne consistent with a single stage mass fractionation process. The enormous 20Ne/36Ar enrichments observed in all tektite samples, similar to those reported from other tektites and impact glasses, are attributed to atmospheric diffusion into the samples following solidification. The North American tektites show a systematic increase in 84Kr/36Ar and 132Xe/36Ar relative to air, with enrichments greater than those determined for any other tektite group or terrestrial samples other than shales. These enrichments are inconsistent with existing models of dissolving Kr and Xe in tektite glass without elemental fractionation at atmospheric pressures equivalent to ~40 km altitude. The Kr and Xe isotopic compositions are indistinguishable from atmospheric within experimental uncertainty.

  18. Dual diaphragmatic anomalies.

    PubMed

    Padmanabhan, Arjun; Thomas, Abin Varghese

    2016-01-01

    Although diaphragmatic anomalies such as an eventration and hiatus hernia are commonly encountered in incidental chest X-ray imaging, the presence of concomitant multiple anomalies is extremely rare. This is all the more true in adults. Herein, we present the case of a 75-year-old female, while undergoing a routine chest X-ray imaging, was found to have eventration of right hemidiaphragm along with a hiatus hernia as well. PMID:27625457

  19. Dual diaphragmatic anomalies

    PubMed Central

    Padmanabhan, Arjun; Thomas, Abin Varghese

    2016-01-01

    Although diaphragmatic anomalies such as an eventration and hiatus hernia are commonly encountered in incidental chest X-ray imaging, the presence of concomitant multiple anomalies is extremely rare. This is all the more true in adults. Herein, we present the case of a 75-year-old female, while undergoing a routine chest X-ray imaging, was found to have eventration of right hemidiaphragm along with a hiatus hernia as well.

  20. Anomalies and entanglement entropy

    NASA Astrophysics Data System (ADS)

    Nishioka, Tatsuma; Yarom, Amos

    2016-03-01

    We initiate a systematic study of entanglement and Rényi entropies in the presence of gauge and gravitational anomalies in even-dimensional quantum field theories. We argue that the mixed and gravitational anomalies are sensitive to boosts and obtain a closed form expression for their behavior under such transformations. Explicit constructions exhibiting the dependence of entanglement entropy on boosts is provided for theories on spacetimes with non-trivial magnetic fluxes and (or) non-vanishing Pontryagin classes.

  1. On isostatic geoid anomalies

    NASA Technical Reports Server (NTRS)

    Haxby, W. F.; Turcotte, D. L.

    1978-01-01

    In regions of slowly varying lateral density changes, the gravity and geoid anomalies may be expressed as power series expansions in topography. Geoid anomalies in isostatically compensated regions can be directly related to the local dipole moment of the density-depth distribution. This relationship is used to obtain theoretical geoid anomalies for different models of isostatic compensation. The classical Pratt and Airy models give geoid height-elevation relationships differing in functional form but predicting geoid anomalies of comparable magnitude. The thermal cooling model explaining ocean floor subsidence away from mid-ocean ridges predicts a linear age-geoid height relationship of 0.16 m/m.y. Geos 3 altimetry profiles were examined to test these theoretical relationships. A profile over the mid-Atlantic ridge is closely matched by the geoid curve derived from the thermal cooling model. The observed geoid anomaly over the Atlantic margin of North America can be explained by Airy compensation. The relation between geoid anomaly and bathymetry across the Bermuda Swell is consistent with Pratt compensation with a 100-km depth of compensation.

  2. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas.

    PubMed

    Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard

    2016-03-21

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower. PMID:27004873

  3. State-of-the-art ab initio potential energy curve for the krypton atom pair and thermophysical properties of dilute krypton gas

    NASA Astrophysics Data System (ADS)

    Jäger, Benjamin; Hellmann, Robert; Bich, Eckard; Vogel, Eckhard

    2016-03-01

    A new reference krypton-krypton interatomic potential energy curve was developed by means of quantum-chemical ab initio calculations for 36 interatomic separations. Highly accurate values for the interaction energies at the complete basis set limit were obtained using the coupled-cluster method with single, double, and perturbative triple excitations as well as t-aug-cc-pV5Z and t-aug-cc-pV6Z basis sets including mid-bond functions, with the 6Z basis set being newly constructed for this study. Higher orders of coupled-cluster terms were considered in a successive scheme up to full quadruple excitations. Core-core and core-valence correlation effects were included. Furthermore, relativistic effects were studied not only at a scalar relativistic level using second-order direct perturbation theory, but also utilizing full four-component and Gaunt-effect computations. An analytical pair potential function was fitted to the interaction energies, which is characterized by a depth of 200.88 K with an estimated standard uncertainty of 0.51 K. Thermophysical properties of low-density krypton were calculated for temperatures up to 5000 K. Second and third virial coefficients were obtained from statistical thermodynamics. Viscosity and thermal conductivity as well as the self-diffusion coefficient were computed using the kinetic theory of gases. The theoretical results are compared with experimental data and with results for other pair potential functions from the literature, especially with those calculated from the recently developed ab initio potential of Waldrop et al. [J. Chem. Phys. 142, 204307 (2015)]. Highly accurate experimental viscosity data indicate that both the present ab initio pair potential and the one of Waldrop et al. can be regarded as reference potentials, even though the quantum-chemical methods and basis sets differ. However, the uncertainties of the present potential and of the derived properties are estimated to be considerably lower.

  4. A multi-isotopic and trace element investigation of the Cretaceous-Tertiary boundary layer at Stevns Klint, Denmark - inferences for the origin and nature of siderophile and lithophile element geochemical anomalies

    NASA Astrophysics Data System (ADS)

    Frei, Robert; Frei, Karin M.

    2002-10-01

    Os, Sr, Nd and Pb isotope data were collected from a profile across the Cretaceous-Tertiary (K-T) boundary layer at Stevns Klint, Denmark. ɛNd [ T=65 Ma] values from within the boundary layer (Fish Clay) are lower by ˜1 ɛ unit than those of the underlying Maastrichtian limestone and the overlying Danian chalk sequences. Systematic profile-upward changes of Pb, Sr and Os isotopic compositions and concentrations in the boundary layer cannot be accounted for by in situ growth of daughter products since the sedimentation of the Fish Clay. While Os, Nd and Pb isotopes indicate the admixing of less radiogenic components to the Fish Clay, Sr isotopes show elevated radiogenic values in the boundary layer, relative to the carbonate sequences beneath and above it. The sudden change in lithophile (e.g., Sr, Pb and Nd) isotope compositions at the base of the Fish Clay and profile-upward trends of 87Sr/ 86Sr and 206Pb/ 204Pb ratios towards those of the overlying Danian chalk are interpreted to reflect recovery from enhanced, acid rain-induced continental (local?) weathering input to the seawater. However, a continental crustal source is invalid for the siderophile element Os. In the light of evidence from chromium isotopes for a cosmic origin of the platinum group elements (PGEs) and certain moderately siderophile elements (Cr, Ni, Co, V) in K-T boundary sediments, including Stevns Klint [Shukolyukov and Lugmair, Science 282 (1998) 927-929], and supported by the finding of projectile debris [Bauluz et al., Earth Planet. Sci. Lett. 182 (2000) 127-136] and the occurrence of abundant Ni-rich spinel at many K-T sites [Robin et al., Nature 363 (1993) 615-617; Kyte, Nature 396 (1998) 237-239], we favor to explain the sudden drop of 187Os/ 188Os ratios from 0.210 to 0.160 at the K-T boundary to derive from global fall-out of extraterrestrial matter. The present 186Os/ 188Os ratio of 0.119836±0.000004 measured in the basal layer of the Fish Clay is within the uncertainty a

  5. Astrometric solar system anomalies

    SciTech Connect

    Nieto, Michael Martin; Anderson, John D

    2009-01-01

    There are at least four unexplained anomalies connected with astrometric data. perhaps the most disturbing is the fact that when a spacecraft on a flyby trajectory approaches the Earth within 2000 km or less, it often experiences a change in total orbital energy per unit mass. next, a secular change in the astronomical unit AU is definitely a concern. It is increasing by about 15 cm yr{sup -1}. The other two anomalies are perhaps less disturbing because of known sources of nongravitational acceleration. The first is an apparent slowing of the two Pioneer spacecraft as they exit the solar system in opposite directions. Some astronomers and physicists are convinced this effect is of concern, but many others are convinced it is produced by a nearly identical thermal emission from both spacecraft, in a direction away from the Sun, thereby producing acceleration toward the Sun. The fourth anomaly is a measured increase in the eccentricity of the Moon's orbit. Here again, an increase is expected from tidal friction in both the Earth and Moon. However, there is a reported unexplained increase that is significant at the three-sigma level. It is produent to suspect that all four anomalies have mundane explanations, or that one or more anomalies are a result of systematic error. Yet they might eventually be explained by new physics. For example, a slightly modified theory of gravitation is not ruled out, perhaps analogous to Einstein's 1916 explanation for the excess precession of Mercury's perihelion.

  6. Transpupillary CW YAG laser coagulation. A comparison with argon green and krypton red lasers.

    PubMed

    Peyman, G A; Conway, M D; House, B

    1983-08-01

    The authors have developed a CW YAG laser for transpupillary coagulation. The effects of CW YAG coagulation on the retina, retinal vessels, and fovea were compared with those produced by the krypton red and argon green lasers. To produce threshold coagulative lesions in monkeys and rabbits, we needed five to ten times more energy with the CW YAG than with the krypton red or argon green lasers. Nerve fiber damage was observed only when coagulating retinal vessels with the argon green laser. At the parameters used, none of the lasers damaged the sensory retina of the fovea. The CW YAG may be used as a new mode of laser coagulation in the treatment of retinal diseases. PMID:6688868

  7. Photochemistry of the ozone-water complex in cryogenic neon, argon, and krypton matrixes.

    PubMed

    Tsuge, Masashi; Tsuji, Kazuhide; Kawai, Akio; Shibuya, Kazuhiko

    2013-12-12

    The photochemistry of ozone-water complexes and the wavelength dependence of the reactions were studied by matrix isolation FTIR spectrometry in neon, argon, and krypton matrixes. Hydrogen peroxide was formed upon the irradiation of UV light below 355 nm. Quantitative analyses of the reactant and product were performed to evaluate the matrix cage effect of the photoreaction. In argon and krypton matrixes, a bimolecular O((1)D) + H2O → H2O2 reaction was found to occur to form hydrogen peroxide, where the O((1)D) atom generated by the photolysis of ozone diffused in the cryogenic solids to encounter water. In a neon matrix, hydrogen peroxide was generated through intracage photoreaction of the ozone-water complex, indicating that a neon matrix medium is most appropriate to study the photochemistry of the ozone-water complex. PMID:24252115

  8. Demonstrate the removal efficiency and capacity of MOF materials for krypton recovery

    SciTech Connect

    Thallapally, Praveen K.; Liu, Jian; Strachan, Denis M.

    2013-08-23

    Metal organic framework materials (MOFs) were developed and tested in support of the U.S. Department of Energy Office of Nuclear Energy, Fuel Cycle Technology Separations and Waste Forms Campaign. Specifically, materials are being developed for the removal of xenon (Xe) and krypton (Kr) from gaseous products of nuclear fuel reprocessing unit operations. Two metal organic framework structures were investigated in greater detail to demonstrate the removal efficiency and capacity of MOF materials for krypton recovery. Our two bed breakthrough measurements on NiDOBDC and FMOFCu indicate these materials can capture and separate parts per million levels of Xe and Kr from air. The removal efficiency and adsorption capacity for Kr on these two MOFs were further increased upon removal of Xe upfront.

  9. Measurement of the K?2/K?1 ratio in heliumlike krypton

    SciTech Connect

    Beiersdorfer, P; Gu, M F; Brown, G V; Chen, H; Kelley, R; Kilbourne, C A; Porter, F S; Smith, A J; Thorn, D B

    2008-08-25

    We report the measurement of the K{beta}{sub 2}/K{beta}{sub 1} ratio of He-like krypton using the SuperEBIT electron beam ion trap at the Lawrence Livermore National Laboratory. The energy of these lines are about 15 keV, which is twice as high as the energy of such lines measured before. A comparison with theoretical predictions shows poor agreement, concerning the trend uncovered earlier where the measured result is considerably larger than predicted.

  10. High-Power Krypton Hall Thruster Technology Being Developed for Nuclear-Powered Applications

    NASA Technical Reports Server (NTRS)

    Jacobson, David T.; Manzella, David H.

    2004-01-01

    The NASA Glenn Research Center has been performing research and development of moderate specific impulse, xenon-fueled, high-power Hall thrusters for potential solar electric propulsion applications. These applications include Mars missions, reusable tugs for low-Earth-orbit to geosynchronous-Earth-orbit transportation, and missions that require transportation to libration points. This research and development effort resulted in the design and fabrication of the NASA-457M Hall thruster that has been tested at input powers up to 95 kW. During project year 2003, NASA established Project Prometheus to develop technology in the areas of nuclear power and propulsion, which are enabling for deep-space science missions. One of the Project-Prometheus-sponsored Nuclear Propulsion Research tasks is to investigate alternate propellants for high-power Hall thruster electric propulsion. The motivation for alternate propellants includes the disadvantageous cost and availability of xenon propellant for extremely large scale, xenon-fueled propulsion systems and the potential system performance benefits of using alternate propellants. The alternate propellant krypton was investigated because of its low cost relative to xenon. Krypton propellant also has potential performance benefits for deep-space missions because the theoretical specific impulse for a given voltage is 20 percent higher than for xenon because of krypton's lower molecular weight. During project year 2003, the performance of the high-power NASA-457M Hall thruster was measured using krypton as the propellant at power levels ranging from 6.4 to 72.5 kW. The thrust produced ranged from 0.3 to 2.5 N at a discharge specific impulse up to 4500 sec.

  11. Unusual mercury isotopic compositions in aqueous environment

    NASA Astrophysics Data System (ADS)

    Chen, J.; Hintelmann, H.; Zheng, W.; Feng, X.; Cai, H.; Wang, Z.; Yuan, S.

    2014-12-01

    Preliminary studies have demonstrated both mass-dependent fractionation (MDF) and mass-independent fractionation (MIF) of Hg isotopes in natural samples. Laboratory experiments showed that photochemical reduction of inorganic mercury (iHg) and methylmercury (MMHg) and liquid-vapour evaporation could produce MIF of odd Hg isotopes. This was thought to cause the MIF actually observed in aquatic organisms. Although isotopic measurements of Hg in aqueous environment would give direct evidence, little data was reported for surface water samples. Recent work reported, unexpectedly, positive MIF of odd Hg isotopes in both precipitation and ambient air, in contrast with the prediction of laboratory experiments and measurements of Hg accumulated in lichens . Intriguingly, MIF of even-mass Hg isotope (200Hg) was also recently determined in the atmosphere. In contrast with the now mainstream observation of odd Hg isotope anomaly that has several theoretical explanations, the hitherto mysterious even Hg isotope anomalies were neither reported in laboratory experiments, nor predicted by isotope fractionation mechanisms, highlighting the importance of further study on Hg isotopes in variable systems. Our measurements of lichens and lake water samples from different countries show for the first time significant Δ200Hg in surface terrestrial reservoirs, realizing a direct connection of even Hg isotope anomaly in the terrestrial reservoirs to the atmospheric deposition, and fulfilling the gap of Δ200Hg between the atmosphere and the terrestrial receptors. The specific odd Hg isotope compositions determined in lake waters also support the atmosphere contribution, and may be directly linked to the high Δ199Hg values largely determined and manifested on the top of aqueous food web. Our data show that the watershed Hg input is another contributing source, rather than the in-lake processes, to explain the lacustrine Hg isotope anomalies. Interestingly, lake sediments are isotopically

  12. Quenching of krypton atoms in the metastable 5s ({sup 3}P{sub 2}) state in collisions with krypton and helium atoms

    SciTech Connect

    Zayarnyi, D A; L'dov, A Yu; Kholin, I V

    2013-08-31

    We have used the absorption probe method to study the processes of collisional quenching of the metastable 5s [3/2]{sup o}{sub 2}({sup 3}P{sub 2}) state of the krypton atom in electron-beam-excited high-pressure He – Kr mixtures with a low content of krypton. The rate constants of plasma-chemical reactions Kr* + Kr + He → Kr*{sub 2}+He [(2.88 ± 0.29) × 10{sup -33} cm{sup 6} s{sup -1}], Kr* + 2He → HeKr* + He [(4.6 ± 1.3) × 10{sup -36} cm{sup 6} s{sup -1}] and Kr* + He → products + He [(1.51 ± 0.15) × 10{sup -15} cm{sup 3} s{sup -1}] are measured for the first time. The rate constants of similar reactions in the Ar – Kr mixture are refined. (active media)

  13. Liquid xenon purification, de-radonation (and de-kryptonation)

    SciTech Connect

    Pocar, Andrea

    2015-08-17

    Liquid xenon detectors are at the forefront of rare event physics, including searches for neutrino-less double beta decay and WIMP dark matter. The xenon for these experiments needs to be purified from chemical impurities such as electronegative atoms and molecules, which absorb ionization electrons, and VUV (178 nm) scintillation light-absorbing chemical species. In addition, superb purification from radioactive impurities is required. Particularly challenging are radioactive noble isotopes ({sup 85}Kr,{sup 39,42}Ar,{sup 220,222}Rn). Radon is a particularly universal problem, due to the extended decay sequence of its daughters and its ubiquitous presence in detector materials. Purification and de-radonation of liquid xenon are addressed with particular focus on the experience gained with the EXO-200 neutrino-less double beta decay detector.

  14. Thermal and Isotopic Anomalies when pd Cathodes are Electrolyzed in Electrolytes Containing Th-Hg Salts Dissolved at Micromolar Concentration in C2H5OD/D2O Mixtures

    NASA Astrophysics Data System (ADS)

    Celani, F.; Spallone, A.; Righi, E.; Trenta, G.; Catena, C.; D'Agostaro, G.; Quercia, P.; Andreassi, V.; Marini, P.; di Stefano, V.; Nakamura, M.; Mancini, A.; Sona, P. G.; Fontana, F.; Gamberale, L.; Garbelli, D.; Falcioni, F.; Marchesini, M.; Novaro, E.; Mastromatteo, U.

    2005-12-01

    Discussed in this paper is the evolution of work that started by using the M. Fleischmann and S. Pons method and ended by using thin palladium wires electrolyzed in an electrolyte consisting of slightly acidic heavy alcohol-water solution containing thorium (Th) and mercury (Hg) salts at micromolar concentrations. The resulting large and dynamic loading of the Pd wires was studied. The recent use of thorium instead of strontium resulted in thermal anomalies and detection of new elements in larger amounts. The results with Sr are qualitatively in agreement with what was found by Y. Iwamura (Mitsubishi Heavy Industries) using multilayers of Pd-CaO-Pd-Sr in flowing deuterium gas. Most results seem to be in agreement with a "multi-body resonance fusion of deuterons" model recently developed by A.Takahashi (Osaka University).

  15. Comparison in the analytical performance between krypton and argon glow discharge plasmas as the excitation source for atomic emission spectrometry.

    PubMed

    Wagatsuma, Kazuaki

    2009-04-01

    The emission characteristics of ionic lines of nickel, cobalt, and vanadium were investigated when argon or krypton was employed as the plasma gas in glow discharge optical emission spectrometry. A dc Grimm-style lamp was employed as the excitation source. Detection limits of the ionic lines in each iron-matrix alloy sample were compared between the krypton and the argon plasmas. Particular intense ionic lines were observed in the emission spectra as a function of the discharge gas (krypton or argon), such as the Co II 258.033 nm for krypton and the Co II 231.707 nm for argon. The explanation for this is that collisions with the plasma gases dominantly populate particular excited levels of cobalt ion, which can receive the internal energy from each gas ion selectively, for example, the 3d(7)4p (3)G(5) (6.0201 eV) for krypton and the 3d(7)4p (3)G(4) (8.0779 eV) for argon. In the determination of nickel as well as cobalt in iron-matrix samples, more sensitive ionic lines could be found in the krypton plasma rather than the argon plasma. Detection limits in the krypton plasma were 0.0039 mass% Ni for the Ni II 230.299-nm line and 0.002 mass% Co for the Co II 258.033-nm line. However, in the determination of vanadium, the argon plasma had better analytical performance, giving a detection limit of 0.0023 mass% V for the V II 309.310-nm line. PMID:19277614

  16. QCD trace anomaly

    SciTech Connect

    Andersen, Jens O.; Leganger, Lars E.; Strickland, Michael; Su, Nan

    2011-10-15

    In this brief report we compare the predictions of a recent next-to-next-to-leading order hard-thermal-loop perturbation theory (HTLpt) calculation of the QCD trace anomaly to available lattice data. We focus on the trace anomaly scaled by T{sup 2} in two cases: N{sub f}=0 and N{sub f}=3. When using the canonical value of {mu}=2{pi}T for the renormalization scale, we find that for Yang-Mills theory (N{sub f}=0) agreement between HTLpt and lattice data for the T{sup 2}-scaled trace anomaly begins at temperatures on the order of 8T{sub c}, while treating the subtracted piece as an interaction term when including quarks (N{sub f}=3) agreement begins already at temperatures above 2T{sub c}. In both cases we find that at very high temperatures the T{sup 2}-scaled trace anomaly increases with temperature in accordance with the predictions of HTLpt.

  17. Modeling the Pioneer anomaly

    NASA Astrophysics Data System (ADS)

    Leibovitz, Jacques

    2007-04-01

    Scientists continue their attempts to model the observed Pioneer anomaly (PA) as an artifact of measurement or of equipment operation. Scientists also explore ``new physics'' as a possible explanation, but they have eliminated dark matter (DM). Here, the main arguments used to eliminate DM are refuted and then the anomaly is modeled by application of Newton laws to the observed macroscopic properties of DM. Around a central mass M, the modeling predicts a DM distribution that produces the PA at short distances (R smaller than 188 AU) from a star like the Sun, and a flat rotation curve at sufficiently large distances from the center of a galaxy. Below about 188 AU from the Sun, the modeling predicts that the anomaly may be expressed as PA = 8.3E-8 [R̂(-2)] -- 1 cm (s)̂(-2). It shows that the anomaly remains fairly constant down to 5 AU, decreases significantly from 5 AU to 1 AU where it becomes zero and changes sign below a distance of 1 AU, then increases rapidly in magnitude as R decreases in that range. Verifiable tests are proposed. Some related topics for future research are proposed.

  18. Anomaly discrimination in hyperspectral imagery

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Yu; Paylor, Drew; Chang, Chein-I.

    2014-05-01

    Anomaly detection finds data samples whose signatures are spectrally distinct from their surrounding data samples. Unfortunately, it cannot discriminate the anomalies it detected one from another. In order to accomplish this task it requires a way of measuring spectral similarity such as spectral angle mapper (SAM) or spectral information divergence (SID) to determine if a detected anomaly is different from another. However, this arises in a challenging issue of how to find an appropriate thresholding value for this purpose. Interestingly, this issue has not received much attention in the past. This paper investigates the issue of anomaly discrimination which can differentiate detected anomalies without using any spectral measure. The ideas are to makes use unsupervised target detection algorithms, Automatic Target Generation Process (ATGP) coupled with an anomaly detector to distinguish detected anomalies. Experimental results show that the proposed methods are indeed very effective in anomaly discrimination.

  19. Si isotope homogeneity of the solar nebula

    SciTech Connect

    Pringle, Emily A.; Savage, Paul S.; Moynier, Frédéric; Jackson, Matthew G.; Barrat, Jean-Alix E-mail: savage@levee.wustl.edu E-mail: moynier@ipgp.fr E-mail: Jean-Alix.Barrat@univ-brest.fr

    2013-12-20

    The presence or absence of variations in the mass-independent abundances of Si isotopes in bulk meteorites provides important clues concerning the evolution of the early solar system. No Si isotopic anomalies have been found within the level of analytical precision of 15 ppm in {sup 29}Si/{sup 28}Si across a wide range of inner solar system materials, including terrestrial basalts, chondrites, and achondrites. A possible exception is the angrites, which may exhibit small excesses of {sup 29}Si. However, the general absence of anomalies suggests that primitive meteorites and differentiated planetesimals formed in a reservoir that was isotopically homogenous with respect to Si. Furthermore, the lack of resolvable anomalies in the calcium-aluminum-rich inclusion measured here suggests that any nucleosynthetic anomalies in Si isotopes were erased through mixing in the solar nebula prior to the formation of refractory solids. The homogeneity exhibited by Si isotopes may have implications for the distribution of Mg isotopes in the solar nebula. Based on supernova nucleosynthetic yield calculations, the expected magnitude of heavy-isotope overabundance is larger for Si than for Mg, suggesting that any potential Mg heterogeneity, if present, exists below the 15 ppm level.

  20. Influence of krypton atoms on the structure of hydrogenated amorphous carbon deposited by plasma enhanced chemical vapor deposition

    SciTech Connect

    Oliveira, M. H. Jr.; Viana, G. A.; Marques, F. C.; Lima, M. M. Jr. de; Cros, A.; Cantarero, A.

    2010-12-15

    Hydrogenated amorphous carbon (a-C:H) films were prepared by plasma enhanced chemical vapor deposition using methane (CH{sub 4}) plus krypton (Kr) mixed atmosphere. The depositions were performed as function of the bias voltage and krypton partial pressure. The goal of this work was to study the influence of krypton gas on the physical properties of a-C:H films deposited on the cathode electrode. Krypton concentration up to 1.6 at. %, determined by Rutherford Back-Scattering, was obtained at high Kr partial pressure and bias of -120 V. The structure of the films was analyzed by means of optical transmission spectroscopy, multi-wavelength Raman scattering and Fourier Transform Infrared spectroscopy. It was verified that the structure of the films remains unchanged up to a concentration of Kr of about 1.0 at. %. A slight graphitization of the films occurs for higher concentration. The observed variation in the film structure, optical band gap, stress, and hydrogen concentration were associated mainly with the subplantation process of hydrocarbons radicals, rather than the krypton ion energy.

  1. Antler anomalies in tule elk

    USGS Publications Warehouse

    Gogan, Peter J.P.; Jessup, David A.; Barrett, Reginald H.

    1988-01-01

    Antler anomalies were evident in tule elk (Cervus elaphus nannodes) within 1 yr of reintroduction to Point Reyes, California (USA). These anomalies are consistent with previously described mineral deficiency-induced anomalies in cervids. The elk were judged deficient in copper. Low levels of copper in soils and vegetation at the release site, exacerbated by possible protein deficiency due to poor range conditions, are postulated as likely causes of the antler anomalies.

  2. Microbeam titanium isotopic analysis by resonance ionization mass spectrometry

    SciTech Connect

    Spiegel, D.R.; Davis, A.M.; Clayton, R.N. . Enrico Fermi Inst.); Pellin, M.J.; Calaway, W.F.; Burnett, J.W.; Coon, S.R.; Young, C.E.; Gruen, D.M. )

    1991-01-01

    The importance of isotopic anomalies in refractory inclusions in meteorites is well established. Measurements of the anomalies using conventional mass spectrometry are often rendered difficult, however, by isobarically interfering isotopes: for example, {sup 48}Ti and {sup 48}Ca. Resonance ionization mass spectrometry (RIMS) can substantially reduce isobaric interferences in a number of systems. We have employed RIMS for the in situ detection of Ti atoms sputtered from pure Ti metal and from several terrestrial oxides containing both Ti and Ca. Tunable lasers were employed to resonantly ionize neutral Ti atoms. We have chosen Ti specifically because of the importance of Ti isotopic anomalies in cosmochemistry.

  3. Mass Anomalies on Ganymede

    NASA Technical Reports Server (NTRS)

    Schubert, G.; Anderson, J. D.; Jacobson, R. A.; Lau, E. L.; Moore, W. B.; Palguta, J.

    2004-01-01

    Radio Doppler data from two Ganymede encounters (G1 and G2) on the first two orbits in the Galileo mission have been analyzed previously for gravity information . For a satellite in hydrostatic equilibrium, its gravitational field can be modeled adequately by a truncated spherical harmonic series of degree two. However, a fourth degree field is required in order to fit the second Galileo flyby (G2). This need for a higher degree field strongly suggests that Ganymede s gravitational field is perturbed by a gravity anomaly near the G2 closest approach point (79.29 latitude, 123.68 west longitude). In fact, a plot of the Doppler residuals , after removal of the best-fit model for the zero degree term (GM) and the second degree moments (J2 and C22), suggests that if an anomaly exists, it is located downtrack of the closest approach point, closer to the equator.

  4. Radioactive Iodine and Krypton Control for Nuclear Fuel Reprocessing Facilities

    SciTech Connect

    Soelberg, Nicolas R.; Garn, Troy; Greenhalgh, Mitchell; Law, Jack; Jubin, Robert T.; Strachan, Denis M.; Thallapally, Praveen K.

    2013-07-22

    Nuclear fission results in the production of fission products and activation products, some of which tend to be volatile during used fuel reprocessing. These can evolve in volatile species in the reprocessing facility off-gas streams, depending on the separations and reprocessing technologies that are used. Radionuclides that have been identified as “volatile radionuclides” are noble gases (most notably isotopes of Kr and Xe); 3H; 14C; and 129I. Radionuclides that tend to form volatile species that evolve into reprocessing facility off-gas systems are more challenging to efficiently control compared to radionuclides that tend to stay in solid or liquid phases. Future used fuel reprocessing facilities in the United States can require efficient capture of some volatile radionuclides in their off-gas streams to meet regulatory emission requirements. In aqueous reprocessing, these radionuclides are most commonly expected to evolve into off-gas streams in tritiated water [3H2O (T2O) and 3HHO (THO)], radioactive CO2, noble gases, and gaseous HI, I2, or volatile organic iodides. The fate and speciation of these radionuclides from a non-aqueous fuel reprocessing facility is less well known at this time, but active investigations are in progress. An Off-Gas Sigma Team was formed in late FY 2009 to integrate and coordinate the Fuel Cycle Research and Development (FCR&D) activities directed towards the capture and sequestration of the these volatile radionuclides (Jubin 2012a). The Sigma Team concept was envisioned to bring together multidisciplinary teams from across the DOE complex that would work collaboratively to solve the technical challenges and to develop the scientific basis for the capture and immobilization technologies such that the sum of the efforts was greater than the individual parts. The Laboratories currently participating in this effort are Argonne National Laboratory (ANL), Idaho National Laboratory (INL), Oak Ridge National Laboratory (ORNL), Pacific

  5. Design and construction of a cryogenic distillation device for removal of krypton for liquid xenon dark matter detectors.

    PubMed

    Wang, Zhou; Bao, Lei; Hao, Xihuan; Ju, Yonglin

    2014-01-01

    Liquid xenon (Xe) is one of the commendable detecting media for the dark matter detections. However, the small content of radioactive krypton-85 ((85)Kr) always exists in the commercial xenon products. An efficient cryogenic distillation system to remove this krypton (Kr) from commercial xenon products has been specifically designed, developed, and constructed in order to meet the requirements of the dark matter experiments with high- sensitivity and low-background. The content of krypton in regular commercial xenon products can be reduced from 10(-9) to 10(-12), with 99% xenon collection efficiency at maximum flow rate of 5 kg/h (15SLPM). The purified xenon gases produced by this distillation system can be used as the detecting media in the project of Panda X, which is the first dark matter detector developed in China. PMID:24517821

  6. Krypton K-Shell X-Ray Spectra Recorded by the HENEX Spectrometer

    SciTech Connect

    J. Seely; C. Back; C. Constantin, R. Lee; H. Chung; L. Hudson; C. Szabo; A. Henins; G. Holland; R. Atkin; L. Marlin

    2005-01-04

    High resolution x-ray spectra were recorded by the High Energy Electronic X-Ray (HENEX) spectrometer from a variety of targets irradiated by the Omega laser at the Laboratory for Laser Energetics. The HENEX spectrometer utilizes four reflection crystals covering the 1 keV to 20 keV energy range and one quartz(10-11) transmission crystal (Lau geometry) covering the 11 keV to 40 keV range. The time-integrated spectral images were recorded on five CMOS x-ray detectors. In the spectra recorded from krypton-filled gasbag and hohlraum targets, the helium-like K-shell transitions n=1-2, 1-3, and 1-4 appeared in the 13 keV to 17 keV energy range. A number of additional spectral features were observed at energies lower than the helium-like n=1-3 and n=1-4 transitions. Based on computational simulations of the spectra using the FLYCHK/FLYSPEC codes, which included opacity effects, these additional features are identified to be inner-shell transitions from the Li-like through N-like krypton charge states. The comparisons of the calculated and observed spectra indicate that these transitions are characteristic of the plasma conditions immediately after the laser pulse when the krypton density is 2x1018 cm-3 and the electron temperature is in the range 2.8 keV to 3.2 keV. These spectral features represent a new diagnostic for the charge state distribution, the density and electron temperature, and the plasma opacity. Laboratory experiments indicate that it is feasible to record K-shell spectra from gold and higher Z targets in the > 60 keV energy range using a Ge(220) transmission crystal.

  7. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    NASA Astrophysics Data System (ADS)

    Chu, X. X.; Zhang, M. M.; Zhang, D. X.; Xu, D.; Qian, Y.; Liu, W.

    2014-01-01

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H2 from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H2 in helium recycle gas are less than 1 ppb.

  8. Electron-Photon Polarization Correlation Study of Neon, Argon and Krypton Excitation by Electron Impact

    NASA Astrophysics Data System (ADS)

    Zheng, Shuanghai

    1993-01-01

    The electron impact excitation of the 3s ^' (1/2) ^0_1 state in neon, the 4s^' (1/2) ^0_1 state in argon and the 5s (3/2) ^0_1 state in krypton have been studied using the electron-photon polarization correlation technique. The two linear coherence parameters P_1 and P_2 have been measured and the alignment angle gamma and the linear polarization P ^+_{rm lin} of the angular part of the collisionally induced excited state charge cloud were extracted from the measured P _1 and P_2 parameters. We measured P_1 and P_2 in neon at an impact energy of 50 eV, in argon at impact energies of 50 eV, 40 eV, 30 eV and 25 eV, and in krypton at impact energies of 50 eV and 30 eV and electron scattering angles up to 55^circ in all cases. A comparison with theoretical predictions from first-order perturbative theories such as a Distorted Wave Born Approximation (DWBA) and a First Order Many Body Theory (FOMBT) was made. At 50 eV in neon and argon, the agreement between experiment and theory is generally good at small scattering angles up to 25^circ and somewhat poorer at larger scattering angles. At 50 eV in krypton, the agreement between experiment and theory is generally good at scattering angles up to 40 ^circ. The measurements in argon (40 eV, 30 eV, and 25 eV) generally follow the trend of the theoretical predictions, but it was found that the experimentally measured coherence parameters appear to be shifted towards larger scattering angles compared to the theoretical predictions as the impact energy is decreased. At 30 eV in krypton, very good agreement between experiment and theory was found over the entire range of electron scattering angles (up to 55^circ). The level of agreement between experiment and theory indicates that the DWBA and FOMBT appear to provide a better description of the collision process for a more complex target. We also found that the alignment angle gamma is the parameter which is perhaps least sensitive to the details of the collision.

  9. Cryogenic system with GM cryocooler for krypton, xenon separation from hydrogen-helium purge gas

    SciTech Connect

    Chu, X. X.; Zhang, D. X.; Qian, Y.; Liu, W.; Zhang, M. M.; Xu, D.

    2014-01-29

    In the thorium molten salt reactor (TMSR), fission products such as krypton, xenon and tritium will be produced continuously in the process of nuclear fission reaction. A cryogenic system with a two stage GM cryocooler was designed to separate Kr, Xe, and H{sub 2} from helium purge gas. The temperatures of two stage heat exchanger condensation tanks were maintained at about 38 K and 4.5 K, respectively. The main fluid parameters of heat transfer were confirmed, and the structural heat exchanger equipment and cold box were designed. Designed concentrations after cryogenic separation of Kr, Xe and H{sub 2} in helium recycle gas are less than 1 ppb.

  10. Angular distribution of Auger electrons due to 3d-shell ionization of krypton

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1977-01-01

    Cross sections for electron impact ionization of krypton due to ejection of a 3rd shell electron have been calculated using screened hydrogenic and Hartree-Slater wave functions for target atom. While the total ionization cross sections in the two approximations are within 10% of each other, the Auger electron angular distribution, related to cross sections for specific magnetic quantum numbers of the 3rd electrons, is widely different in the two approximations. The angular distribution due to Hartree-Slater approximation is in excellent agreement with measurement. The physical reason for the discrepancies in the two approximations is explained.

  11. Angular distribution of Auger electrons due to 3d-shell impact ionization of krypton

    NASA Technical Reports Server (NTRS)

    Omidvar, K.

    1977-01-01

    Cross sections for electron impact ionization of krypton due to ejection of a 3d-shell electron have been calculated using screened hydrogenic and Hartree-Slater wavefunctions for the target atom. While the total ionization cross sections in the two approximations are within 10% of each other, the Auger electron angular distribution, related to cross sections for specific magnetic quantum numbers of the 3d electrons, are widely different in the two approximations. The angular distribution due to the Hartree-Slater approximation is in excellent agreement with measurement. The physical reason for the discrepancies in the two approximations is explained.

  12. Vibrational characterization of the 1:1 iodine-benzene complex isolated in solid krypton.

    PubMed

    Kiviniemi, Tiina; Hulkko, Eero; Kiljunen, Toni; Pettersson, Mika

    2008-06-12

    The structure and properties of a 1:1 iodine-benzene complex isolated in an inert krypton matrix at low temperature have been studied with infrared and resonance Raman spectroscopy and with MP2 calculations. The structure of the ground-state complex is found to be unsymmetric, and the I-I vibrational frequency is found to be red-shifted by 3.94 cm(-1) upon complexation. The experimental data agree well with computational results, leading to the conclusion that the I2-Bz complex structure is not axial but of above-bond type, identically with other halogen-benzene complexes. PMID:18489172

  13. Inner-shell excitations of krypton 3d investigated by electron impact with high resolution

    SciTech Connect

    Yuan Zhensheng; Zhu Linfan; Liu Xiaojing; Li Wenbin; Cheng Huadong; Sun Jianmin; Xu Kezun

    2005-06-15

    The inner-shell excitation spectra of krypton 3d electrons were measured at scattering angles of 0 deg. and 4 deg. by a fast-electron energy-loss spectrometer at an incident energy of 2.5 keV with an energy resolution better than 80 meV. Some interesting optically forbidden transitions were observed and the natural widths of the optically allowed and optically forbidden transitions were analyzed. It shows that the natural widths for the resonances having the same core hole are nearly equal, no matter whether they are optically allowed, optically forbidden, or different members of a Rydberg series.

  14. Commensurate-incommensurate transition of monolayer krypton on graphite by helium-atom scattering

    NASA Astrophysics Data System (ADS)

    Chung, S.; Kara, A.; Larese, J. Z.; Leung, W. Y.; Frankl, And D.

    1987-04-01

    The commensurate-incommensurate transition of monolayer krypton films on a graphite single-crystal substrate is observed by helium-atom diffraction for transition temperatures in the range 50-60 K. The change in lattice spacing appears continuous, with an upper limit of 0.3% on a possible jump, with no detectable hysteresis. The slightly incommensurate phase is disordered but apparently well correlated. The spatial correlation length changes in a possibly discontinuous manner. A decrease of specular and diffracted intensities while the film is still commensurate is observed. This may be due to incoherent elastic scattering from isolated defects, or possibly to increased inelastic scattering.

  15. Hypercharged anomaly mediation.

    PubMed

    Dermísek, Radovan; Verlinde, Herman; Wang, Lian-Tao

    2008-04-01

    We show that, in string models with the minimal supersymmetric standard model residing on D-branes, the bino mass can be generated in a geometrically separated hidden sector. Hypercharge mediation thus naturally teams up with anomaly mediation. The mixed scenario predicts a distinctive yet viable superpartner spectrum, provided that the ratio alpha between the bino and gravitino mass lies in the range 0.05 < or = |alpha| < or = 0.25 and m(3/2) > or = 35 TeV. We summarize some of the experimental signatures of this scenario. PMID:18517937

  16. High-accuracy mass measurements of neutron-rich Kr isotopes

    SciTech Connect

    Delahaye, P.; Kellerbauer, A.; Audi, G.; Lunney, D.; Blaum, K.; George, S.; Carrel, F.; Herfurth, F.; Yazidjian, C.; Herlert, A.; Schweikhard, L.; Kluge, H.-J.

    2006-09-15

    The atomic masses of the neutron-rich krypton isotopes {sup 84,86-95}Kr have been determined with the tandem Penning trap mass spectrometer ISOLTRAP with uncertainties ranging from 20 to 220 ppb. The masses of the short-lived isotopes {sup 94}Kr and {sup 95}Kr were measured for the first time. The masses of the radioactive nuclides {sup 89}Kr and {sup 91}Kr disagree by 4 and 6 standard deviations, respectively, from the present Atomic-Mass Evaluation database. The resulting modification of the mass surface with respect to the two-neutron separation energies as well as implications for mass models and stellar nucleosynthesis are discussed.

  17. Satellite magnetic anomalies over subduction zones - The Aleutian Arc anomaly

    NASA Technical Reports Server (NTRS)

    Clark, S. C.; Frey, H.; Thomas, H. H.

    1985-01-01

    Positive magnetic anomalies seen in MAGSAT average scalar anomaly data overlying some subduction zones can be explained in terms of the magnetization contrast between the cold subducted oceanic slab and the surrounding hotter, nonmagnetic mantle. Three-dimensional modeling studies show that peak anomaly amplitude and location depend on slab length and dip. A model for the Aleutian Arc anomaly matches the general trend of the observed MAGSAT anomaly if a slab thickness of 7 km and a relatively high (induced plus viscous) magnetization contrast of 4 A/m are used. A second source body along the present day continental margin is required to match the observed anomaly in detail, and may be modeled as a relic slab from subduction prior to 60 m.y. ago.

  18. Isotopic Biogeochemistry

    NASA Technical Reports Server (NTRS)

    Hayes, J. M.

    1985-01-01

    An overview is provided of the biogeochemical research. The funding, productivity, personnel and facilities are reviewed. Some of the technical areas covered are: carbon isotopic records; isotopic studies of banded iron formations; isotope effects in microbial systems; studies of organic compounds in ancient sediments; and development in isotopic geochemistry and analysis.

  19. Breaking through the glass ceiling: the correlation between the self-diffusivity in and krypton permeation through deeply supercooled liquid nanoscale methanol films.

    PubMed

    Smith, R Scott; Matthiesen, Jesper; Kay, Bruce D

    2010-03-28

    Molecular beam techniques, temperature-programmed desorption (TPD), and reflection absorption infrared spectroscopy (RAIRS) are used to explore the relationship between krypton permeation through and the self-diffusivity of supercooled liquid methanol at temperatures (100-115 K) near the glass transition temperature, T(g) (103 K). Layered films, consisting of CH(3)OH and CD(3)OH, are deposited on top of a monolayer of Kr on a graphene covered Pt(111) substrate at 25 K. Concurrent Kr TPD and RAIRS spectra are acquired during the heating of the composite film to temperatures above T(g). The CO vibrational stretch is sensitive to the local molecular environment and is used to determine the supercooled liquid diffusivity from the intermixing of the isotopic layers. We find that the Kr permeation and the diffusivity of the supercooled liquid are directly and quantitatively correlated. These results validate the rare-gas permeation technique as a tool for probing the diffusivity of supercooled liquids. PMID:20370128

  20. The XXXXY Chromosome Anomaly

    PubMed Central

    Zaleski, Witold A.; Houston, C. Stuart; Pozsonyi, J.; Ying, K. L.

    1966-01-01

    The majority of abnormal sex chromosome complexes in the male have been considered to be variants of Klinefelter's syndrome but an exception should probably be made in the case of the XXXXY individual who has distinctive phenotypic features. Clinical, radiological and cytological data on three new cases of XXXXY syndrome are presented and 30 cases from the literature are reviewed. In many cases the published clinical and radiological data were supplemented and re-evaluated. Mental retardation, usually severe, was present in all cases. Typical facies was observed in many; clinodactyly of the fifth finger was seen in nearly all. Radiological examination revealed abnormalities in the elbows and wrists in all the 19 personally evaluated cases, and other skeletal anomalies were very frequent. Cryptorchism is very common and absence of Leydig's cells may differentiate the XXXXY chromosome anomaly from polysomic variants of Klinefelter's syndrome. The relationship of this syndrome to Klinefelter's syndrome and to Down's syndrome is discussed. ImagesFig. 1Fig. 2Fig. 3Fig. 4Fig. 5Fig. 6Fig. 7Fig. 8Fig. 9Fig. 10Fig. 11Fig. 12Fig. 13Fig. 14Fig. 15 PMID:4222822

  1. Trace anomaly driven inflation

    NASA Astrophysics Data System (ADS)

    Hawking, S. W.; Hertog, T.; Reall, H. S.

    2001-04-01

    This paper investigates Starobinsky's model of inflation driven by the trace anomaly of conformally coupled matter fields. This model does not suffer from the problem of contrived initial conditions that occurs in most models of inflation driven by a scalar field. The universe can be nucleated semiclassically by a cosmological instanton that is much larger than the Planck scale provided there are sufficiently many matter fields. There are two cosmological instantons: the four sphere and a new ``double bubble'' solution. This paper considers a universe nucleated by the four sphere. The AdS/CFT correspondence is used to calculate the correlation function for scalar and tensor metric perturbations during the ensuing de Sitter phase. The analytic structure of the scalar and tensor propagators is discussed in detail. Observational constraints on the model are discussed. Quantum loops of matter fields are shown to strongly suppress short scale metric perturbations, which implies that short distance modifications of gravity would probably not be observable in the cosmic microwave background. This is probably true for any model of inflation provided there are sufficiently many matter fields. This point is illustrated by a comparison of anomaly driven inflation in four dimensions and in a Randall-Sundrum brane-world model.

  2. Automated anomaly detection processor

    NASA Astrophysics Data System (ADS)

    Kraiman, James B.; Arouh, Scott L.; Webb, Michael L.

    2002-07-01

    Robust exploitation of tracking and surveillance data will provide an early warning and cueing capability for military and civilian Law Enforcement Agency operations. This will improve dynamic tasking of limited resources and hence operational efficiency. The challenge is to rapidly identify threat activity within a huge background of noncombatant traffic. We discuss development of an Automated Anomaly Detection Processor (AADP) that exploits multi-INT, multi-sensor tracking and surveillance data to rapidly identify and characterize events and/or objects of military interest, without requiring operators to specify threat behaviors or templates. The AADP has successfully detected an anomaly in traffic patterns in Los Angeles, analyzed ship track data collected during a Fleet Battle Experiment to detect simulated mine laying behavior amongst maritime noncombatants, and is currently under development for surface vessel tracking within the Coast Guard's Vessel Traffic Service to support port security, ship inspection, and harbor traffic control missions, and to monitor medical surveillance databases for early alert of a bioterrorist attack. The AADP can also be integrated into combat simulations to enhance model fidelity of multi-sensor fusion effects in military operations.

  3. Unintentional fatal intoxications with mitragynine and O-desmethyltramadol from the herbal blend Krypton.

    PubMed

    Kronstrand, Robert; Roman, Markus; Thelander, Gunilla; Eriksson, Anders

    2011-05-01

    The leaves of Kratom, a medicinal plant in Southeast Asia, have been used as an herbal drug for a long time. At least one of the alkaloids present in Kratom, mitragynine, is a mu-receptor agonist. Both Kratom and an additional preparation called Krypton are available via the internet. It seems to consist of powdered Kratom leaves with another mu-receptor agonist, O-desmethyltramadol, added. O-Desmethyltramadol is an active metabolite of tramadol, a commonly prescribed analgesic. We present nine cases of intoxication, occurring in a period of less than one year, where both mitragynine and O-desmethyltramadol were detected in the postmortem blood samples. Neither tramadol nor N-desmethyltramadol was present in these samples, which implies that the ingested drug was O-desmethyltramadol. The blood concentrations of mitragynine, determined by ultra-performance liquid chromatography-tandem mass spectrometry, ranged from 0.02 to 0.18 μg/g, and O-desmethyltramadol concentrations, determined by gas chromatography with nitrogen-specific detection, ranged from 0.4 to 4.3 μg/g. We believe that the addition of the potent mu-receptor agonist O-desmethyltramadol to powdered leaves from Kratom contributed to the unintentional death of the nine cases presented and conclude that intake of Krypton is not as harmless as it often is described on internet websites. PMID:21513619

  4. Self-Organized Patterns of Spots In DC Glow Microdischarges in Krypton

    NASA Astrophysics Data System (ADS)

    Zhu, Weidong; Almeida, Pedro G. C.; Benilov, Mikhail S.; Santos, Diego F.; Niraula, Prajwal

    2013-09-01

    Self-organized patterns of cathodic spots have been observed in DC microdischarges in xenon. Modeling of microdischarges in xenon has revealed existence of multiple solutions. Some of the solutions describe normal discharges, others describe 2D patterns of cathodic spots, and others describe 3D patterns similar to those observed in experiments. A very interesting question is why modes with self-organized patterns have been observed in DC microdischarges in xenon but not in other gases. Modeling suggests that self-organized patterns can be observed in gases other than xenon provided that conditions are right. In the present work, self-organized patterns of spots observed in DC microdischarges in krypton are reported. The experiments are guided by modeling and the discharge device employed in the experiments consists of a molybdenum foil as the anode, an aluminum oxide plate as the dielectric spacer and another molybdenum foil as the cathode. Each layer of the device is 0.25 mm thick. Circular openings of 0.75 mm in diameter are prepared on both anode and dielectric spacer and are aligned. The whole device is assembled by Torr Seal epoxy. Research grade krypton is used to fill the chamber to a pressure of 200-1200 Torr. This work was supported by FCT through the projects PTDC/FIS-PLA/2708/2012 and PEst-OE/MAT/UI0219/2011.

  5. A GCMC simulation and experimental study of krypton adsorption/desorption hysteresis on a graphite surface.

    PubMed

    Prasetyo, Luisa; Horikawa, Toshihide; Phadungbut, Poomiwat; Johnathan Tan, Shiliang; Do, D D; Nicholson, D

    2016-09-15

    Adsorption isotherms and isosteric heats of krypton on a highly graphitized carbon black, Carbopack F, have been studied with a combination of Monte Carlo simulation and high-resolution experiments at 77K and 87K. Our investigation sheds light on the microscopic origin of the experimentally observed, horizontal hysteresis loop in the first layer, and the vertical hysteresis-loop in the second layer, and is found to be in agreement with our recent Monte Carlo simulation study (Diao et al., 2015). From detailed analysis of the adsorption isotherm, the latter is attributed to the compression of an imperfect solid-like state in the first layer, to form a hexagonally packed, solid-like state, immediately following the first order condensation of the second layer. To ensure that capillary condensation in the confined spaces between microcrystallites of Carbopack F does not interfere with these hysteresis loops, we carried out simulations of krypton adsorption in the confined space of a wedge-shaped pore that mimics the interstices between particles. These simulations show that, up to the third layer, any such interference is negligible. PMID:27343464

  6. Effective and accurate approach for modeling of commensurate–incommensurate transition in krypton monolayer on graphite

    SciTech Connect

    Ustinov, E. A.

    2014-10-07

    Commensurate–incommensurate (C-IC) transition of krypton molecular layer on graphite received much attention in recent decades in theoretical and experimental researches. However, there still exists a possibility of generalization of the phenomenon from thermodynamic viewpoint on the basis of accurate molecular simulation. Recently, a new technique was developed for analysis of two-dimensional (2D) phase transitions in systems involving a crystalline phase, which is based on accounting for the effect of temperature and the chemical potential on the lattice constant of the 2D layer using the Gibbs–Duhem equation [E. A. Ustinov, J. Chem. Phys. 140, 074706 (2014)]. The technique has allowed for determination of phase diagrams of 2D argon layers on the uniform surface and in slit pores. This paper extends the developed methodology on systems accounting for the periodic modulation of the substrate potential. The main advantage of the developed approach is that it provides highly accurate evaluation of the chemical potential of crystalline layers, which allows reliable determination of temperature and other parameters of various 2D phase transitions. Applicability of the methodology is demonstrated on the krypton–graphite system. Analysis of phase diagram of the krypton molecular layer, thermodynamic functions of coexisting phases, and a method of prediction of adsorption isotherms is considered accounting for a compression of the graphite due to the krypton–carbon interaction. The temperature and heat of C-IC transition has been reliably determined for the gas–solid and solid–solid system.

  7. First-principles calculations of the stability and incorporation of helium, xenon and krypton in uranium

    SciTech Connect

    B. Beeler; B. Good; S. Rashkeev; M. Baskes; M. Okuniewski

    2012-06-01

    While metallic fuels have a long history of reactor use, their fundamental physical and thermodynamic properties are not well understood. Many metallic nuclear fuels are body-centered cubic alloys of uranium that swell under fission conditions, creating fission product gases such as helium, xenon and krypton. In this paper, helium, xenon, and krypton point defects are investigated in the a and ? phases of metallic uranium using first principles calculations. A density functional theory (DFT) framework is utilized with projector augmented-wave (PAW) pseudopotentials. Formation and incorporation energies of He, Xe, and Kr are calculated at various defect positions for the prediction of fission gas behavior in uranium. In most cases, defect energies follow a size effect, with helium incorporation and formation energies being the smallest. The most likely position for the larger Xe and Kr atoms in uranium is the substitutional site. Helium atoms are likely to be found in a wide variety of defect positions due to the comparable formation energies of all defect configurations analyzed. This is the first detailed study of the stability and incorporation of fission gases in uranium.

  8. Short wavelength laser calculations for electron pumping in neon-like krypton (Kr XXVII)

    NASA Technical Reports Server (NTRS)

    Feldman, U.; Bhatia, A. K.; Suckewer, S.

    1983-01-01

    Calculations of electron impact collision strengths and spontaneous radiative decay rates are made for neon-like krypton (Kr XXVII) for the 2s2 2p6, 2s2 2p5 3s, 2s2 2p5 3p, and 2s2 2p5 3d configurations. From these atomic data, the level populations as a function of the electron density are calculated at two temperatures, 1 x 10 to the 7th K and 3 x 10 to the 7th K. An analysis of level populations reveals that a volume of krypton in which a significant number of the ions are in the Kr XXVII degree of ionization can produce a significant gain in transition between the 2s2 2p5 3s and 2s2 2p5 3p configurations. At an electron density of 1 x 10 to the 19th/cu cm the plasma length has to be of the order of 1 m; at a density of 1 x 10 to the 21st/cu cm the length is reduced to approximately 0.5 cm; and at an electron density of 1 x 10 to the 22nd/cu cm the length of the plasma is further reduced to approximately 1 mm.

  9. Photon W value for krypton in the M-shell transition region.

    PubMed

    Saito, N; Suzuki, I H

    2001-09-01

    Absolute W values for krypton have been measured for incident X rays with energies in the range of 85 to 1000 eV, using monochromatic synchrotron radiation and a multiple-electrode ion chamber technique that yields the absolute intensity of the X-ray beam and the photoabsorption cross section. To improve the purity of the incident X rays, the electron storage ring was operated at an energy lower than the normal mode, and thin filters were used. The W values are derived from the measured photon intensity and photoabsorption cross section, using the mean charges of the residual ions obtained in previous work. A considerable oscillation of the W values with the photon energy was found in the region near the krypton 3d electron ionization edge. The results are discussed and compared with data in the literature for low-energy electrons and with the calculations from a model that includes multiple photoionization effects related to inner-shell ionization. PMID:11500141

  10. Diagnosis of high-temperature implosions using low- and high-opacity Krypton lines

    SciTech Connect

    Yaakobi, B.; Epstein, R.; Hooper, C.F. Jr.; Haynes, D.A. Jr.

    1996-04-01

    High-temperature laser target implosions can be achieved by using relatively thin-shell targets, and they can be. diagnosed by doping the fuel with krypton and measuring K-shell and L-shell lines. Electron temperatures of up to 5 keV at modest compressed densities ({approximately}1-5g/cm{sup 3}) are predicted for such experiments, with ion temperatures peaking above 10 keV at the center. It is found that the profiles of low-opacity (optically thin) lines in the expected density range are dominated by the Doppler broadening and can provide a measurement of the ion temperature if spectrometers of spectral resolution {Delta}{lambda}/{lambda} {ge} 1000 are used. For high-opacity lines, obtained with a higher krypton fill pressure, the measurement of the escape factor can yield the {rho}R of the compressed fuel. At higher densities, Stark broadening of low-opacity lines becomes important and can provide a density measurement, whereas lines of higher opacity can be used to estimate the extent of mixing.

  11. Diffusion coefficient of krypton atoms in helium gas at low and moderate temperatures

    NASA Astrophysics Data System (ADS)

    Bouazza, M. T.; Bouledroua, M.

    In the present work, using the Chapman-Enskog method for dilute gases, the diffusion coefficients of ground krypton atoms in a very weakly ionized helium buffer gas are revisited. The calculations are carried out quantum mechanically in the range of low and moderate temperatures. The 1 Σ+ potential-energy curve via which Kr approaches He is constructed from the most recent ab initio energy points. The reliable data points used in the construction are smoothly connected to adequate long- and short-range forms. The calculations of the classical second virial coefficients and the Boyle temperature of the helium-krypton mixture are also discussed. These coefficients and their variations in terms of temperature are analysed by adopting the constructed HeKr potential and the Lennard-Jones form that fits it. The diffusion and elastic cross sections are also explored and the resonance features they exhibit are closely examined. The variation law of the diffusion coefficients with temperature is determined for typical values of density and pressure. The coefficients show excellent agreement with the available experimental data; the discrepancies do not exceed 5%.

  12. Four-body interaction energy for compressed solid krypton from quantum theory.

    PubMed

    Tian, Chunling; Wu, Na; Liu, Fusheng; Saxena, Surendra K; Zheng, Xingrong

    2012-07-28

    The importance of the four-body contribution in compressed solid krypton was first evaluated using the many-body expansion method and the coupled cluster theory with full single and double excitations plus perturbative treatment of triples. All different four-atom clusters existing in the first- and second-nearest neighbor shells of face-centered cubic krypton were considered, and both self-consistent-field Hartree-Fock and correlation parts of the four-body interaction were accurately determined from the ambient conditions up to eightfold volume compression. We find that the four-body interaction energy is negative at compression ratio lower than 2, where the dispersive forces play a dominant role. With increasing the compression, the four-body contribution becomes repulsive and significantly cancels the over-softening effects of the three-body potential. The obtained equation of state (EOS) was compared with the experiments and the density-functional theory calculations. It shows that combination of the four-body effects with two- and three-body interactions leads to an excellent agreement with EOS measurements throughout the whole experimental range 0-130 GPa, and extends the prediction to 300 GPa. PMID:22852598

  13. Quantum anomalies in dense matter

    SciTech Connect

    Son, D.T.; Zhitnitsky, Ariel R.

    2004-10-01

    We consider the effects of quantum anomalies involving the baryon current for high-density matter. In the effective Lagrangian, the anomaly terms describe the interaction of three light fields: the electromagnetic photons A{sub {mu}}, neutral light Nambu-Goldstone bosons ({pi}, {eta}, {eta}{sup '}), and the superfluid phonon. The anomaly induced interactions lead to a number of interesting phenomena which may have phenomenological consequences observable in neutron stars.

  14. Neutron and Charged-Particle Induced Cross Sections for Radiochemistry in the Region of Bromine and Krypton

    SciTech Connect

    Hoffman, R; Dietrich, F; Bauer, R; Kelley, K; Mustafa, M

    2004-07-23

    We have developed a set of modeled nuclear reaction cross sections for use in radiochemical diagnostics. Systematics for the input parameters required by the Hauser-Feshbach statistical model were developed and used to calculate neutron and proton induced nuclear reaction cross sections in the mass region of bromine and krypton (34 {le} Z {le} 37, 40 {le} N {le} 47).

  15. Simulation of the transition radiation detection conditions in the ATLAS TRT detector filled with argon and krypton gas mixtures

    SciTech Connect

    Boldyrev, A. S.; Maevskiy, A. S.

    2015-12-15

    Performance of the Transition Radiation Tracker (TRT) at the ATLAS experiment with argon and krypton gas mixtures was simulated. The efficiency of transition radiation registration, which is necessary for electron identification, was estimated along with the electron identification capabilities under such conditions.

  16. Rare Upper Airway Anomalies.

    PubMed

    Windsor, Alanna; Clemmens, Clarice; Jacobs, Ian N

    2016-01-01

    A broad spectrum of congenital upper airway anomalies can occur as a result of errors during embryologic development. In this review, we will describe the clinical presentation, diagnosis, and management strategies for a few select, rare congenital malformations of this system. The diagnostic tools used in workup of these disorders range from prenatal tests to radiological imaging, swallowing evaluations, indirect or direct laryngoscopy, and rigid bronchoscopy. While these congenital defects can occur in isolation, they are often associated with disorders of other organ systems or may present as part of a syndrome. Therefore workup and treatment planning for patients with these disorders often involves a team of multiple specialists, including paediatricians, otolaryngologists, pulmonologists, speech pathologists, gastroenterologists, and geneticists. PMID:26277452

  17. Genetics of lymphatic anomalies

    PubMed Central

    Brouillard, Pascal; Boon, Laurence; Vikkula, Miikka

    2014-01-01

    Lymphatic anomalies include a variety of developmental and/or functional defects affecting the lymphatic vessels: sporadic and familial forms of primary lymphedema, secondary lymphedema, chylothorax and chylous ascites, lymphatic malformations, and overgrowth syndromes with a lymphatic component. Germline mutations have been identified in at least 20 genes that encode proteins acting around VEGFR-3 signaling but also downstream of other tyrosine kinase receptors. These mutations exert their effects via the RAS/MAPK and the PI3K/AKT pathways and explain more than a quarter of the incidence of primary lymphedema, mostly of inherited forms. More common forms may also result from multigenic effects or post-zygotic mutations. Most of the corresponding murine knockouts are homozygous lethal, while heterozygotes are healthy, which suggests differences in human and murine physiology and the influence of other factors. PMID:24590274

  18. Nolen-Schiffer anomaly

    SciTech Connect

    Pieper, S.C.; Wiringa, R.B.

    1995-08-01

    The Argonne v{sub 18} potential contains a detailed treatment of the pp, pn and nn electromagnetic potential, including Coulomb, vacuum polarization, Darwin Foldy and magnetic moment terms, all with suitable form factors and was fit to pp and pn data using the appropriate nuclear masses. In addition, it contains a nuclear charge-symmetry breaking (CSB) term adjusted to reproduce the difference in the experimental pp and nn scattering lengths. We have used these potential terms to compute differences in the binding energies of mirror isospin-1/2 nuclei (Nolen-Schiffer [NS] anomaly). Variational Monte Carlo calculations for the {sup 3}He-{sup 3}H system and cluster variational Monte Carlo for the {sup 15}O-{sup 15}N and {sup 17}F-{sup 17}O systems were made. In the first case, the best variational wave function for the A = 3 nuclei was used. However, because our {sup 16}O wave function does not reproduce accurately the {sup 16}O rms radius, to which the NS anomaly is very sensitive, we adjusted the A = 15 and A = 17 wave functions to reproduce the experimental density profiles. Our computed energy differences for these three systems are 0.757 {plus_minus} .001, 3.544 {plus_minus} .018 and 3.458 {plus_minus} .040 MeV respectively, which are to be compared with the experimental differences of 0.764, 3.537, and 3.544 MeV. Most of the theoretical uncertainties are due to uncertainties in the experimental rms radii. The nuclear CSB potential contributes 0.066, 0.188, and 0.090 MeV to these totals. We also attempted calculations for A = 39 and A = 41. However, in these cases, the experimental uncertainties in the rms radius make it impossible to extract useful information about the contribution of the nuclear CSB potential.

  19. Identification of isotopically primitive interplanetary dust particles: A NanoSIMS isotopic imaging study

    SciTech Connect

    Floss, C; Stadermann, F J; Bradley, J P; Dai, Z R; Bajt, S; Graham, G; Lea, A S

    2005-09-02

    We have carried out a comprehensive survey of the isotopic compositions (H, B, C, N, O, S) of a suite of interplanetary dust particles (IDPs), including both cluster and individual particles. Isotopic imaging with the NanoSIMS shows the presence of numerous discrete hotspots that are strongly enriched in {sup 15}N, including the largest {sup 15}N enrichments ({approx}1300 {per_thousand}) observed in IDPs to date. A number of the IDPs also contain larger regions with more modest enrichments in {sup 15}N, leading to average bulk N isotopic compositions that are {sup 15}N-enriched in these IDPs. Although C isotopic compositions are normal in most of the IDPs, two {sup 15}N-rich N-hotspots have correlated {sup 13}C anomalies. CN{sup -}/C{sup -} ratios suggest that most of the {sup 15}N-rich hotspots are associated with relatively N-poor carbonaceous matter, although specific carriers have not been determined. H isotopic distributions are similar to those of N: D anomalies are present both as distinct very D-rich hotspots and as larger regions with more modest enrichments. Nevertheless, H and N isotopic anomalies are not directly correlated, consistent with results from previous studies. Oxygen isotopic imaging shows the presence of abundant presolar silicate grains in the IDPs. The O isotopic compositions of the grains are similar to those found in presolar oxide and silicate grains from primitive meteorites. Most of the silicate grains in the IDPs have isotopic ratios consistent with meteoritic Group 1 oxide grains, indicating origins in oxygen-rich red giant and asymptotic giant branch stars, but several presolar silicates exhibit the {sup 17}O and {sup 18}O enrichments of Group 4 oxide grains, whose origin is less well understood. Based on their N isotopic compositions, the IDPs studied here can be divided into two groups. One group is characterized as being ''isotopically primitive'' and consists of those IDPs that have anomalous bulk N isotopic compositions. These

  20. Seismic data fusion anomaly detection

    NASA Astrophysics Data System (ADS)

    Harrity, Kyle; Blasch, Erik; Alford, Mark; Ezekiel, Soundararajan; Ferris, David

    2014-06-01

    Detecting anomalies in non-stationary signals has valuable applications in many fields including medicine and meteorology. These include uses such as identifying possible heart conditions from an Electrocardiography (ECG) signals or predicting earthquakes via seismographic data. Over the many choices of anomaly detection algorithms, it is important to compare possible methods. In this paper, we examine and compare two approaches to anomaly detection and see how data fusion methods may improve performance. The first approach involves using an artificial neural network (ANN) to detect anomalies in a wavelet de-noised signal. The other method uses a perspective neural network (PNN) to analyze an arbitrary number of "perspectives" or transformations of the observed signal for anomalies. Possible perspectives may include wavelet de-noising, Fourier transform, peak-filtering, etc.. In order to evaluate these techniques via signal fusion metrics, we must apply signal preprocessing techniques such as de-noising methods to the original signal and then use a neural network to find anomalies in the generated signal. From this secondary result it is possible to use data fusion techniques that can be evaluated via existing data fusion metrics for single and multiple perspectives. The result will show which anomaly detection method, according to the metrics, is better suited overall for anomaly detection applications. The method used in this study could be applied to compare other signal processing algorithms.

  1. Medical management of vascular anomalies.

    PubMed

    Trenor, Cameron C

    2016-03-01

    We have entered an exciting era in the care of patients with vascular anomalies. These disorders require multidisciplinary care and coordination and dedicated centers have emerged to address this need. Vascular tumors have been treated with medical therapies for many years, while malformations have been historically treated with endovascular and operative procedures. The recent serendipitous discoveries of propranolol and sirolimus for vascular anomalies have revolutionized this field. In particular, sirolimus responses are challenging the dogma that vascular malformations are not biologically active. While initially explored for lymphatic anomalies, sirolimus is now being used broadly throughout the spectrum of vascular anomalies. Whether medical therapies are reserved for refractory patients or used first line is currently dependent on the experience and availability of alternative therapies at each institution. On the horizon, we anticipate new drugs targeting genes and pathways involved in vascular anomalies to be developed. Also, combinations of medications and protocols combining medical and procedural approaches are in development for refractory patients. PMID:27607327

  2. Congenital Anomalies of the Nose.

    PubMed

    Funamura, Jamie L; Tollefson, Travis T

    2016-04-01

    Congenital anomalies of the nose range from complete aplasia of the nose to duplications and nasal masses. Nasal development is the result of a complex embryologic patterning and fusion of multiple primordial structures. Loss of signaling proteins or failure of migration or proliferation can result in structural anomalies with significant cosmetic and functional consequences. Congenital anomalies of the nose can be categorized into four broad categories: (1) aplastic or hypoplastic, (2) hyperplastic or duplications, (3) clefts, and (4) nasal masses. Our knowledge of the embryologic origin of these anomalies helps dictate subsequent work-up for associated conditions, and the appropriate treatment or surgical approach to manage newborns and children with these anomalies. PMID:27097134

  3. Correlated Nitrogen And Carbon Anomalies In An Anhydrous Interplanetary Dust Particles

    SciTech Connect

    Floss, C; Stadermann, F J; Bradley, J; Dai, Z; Graham, G

    2003-10-31

    Given the ubiquitous presence of H and N isotopic anomalies in interplanetary dust particles (IDPs) and their probable association with carbonaceous material, the lack of similar isotopic anomalies in C has been a major conundrum. We report here the first observation of correlated N and C isotopic anomalies in organic matter from an anhydrous non-cluster IDP. The {sup 15}N composition of the anomalous region is the highest seen to date in an IDP and is accompanied by a moderate depletion in {sup 13}C. Theoretical models suggest that low temperature formation of organic compounds in cold interstellar molecular clouds does produce C and N fractionations, but it remains to be seen if these models can reproduce the specific effects we observe here.

  4. System for closure of a physical anomaly

    DOEpatents

    Bearinger, Jane P; Maitland, Duncan J; Schumann, Daniel L; Wilson, Thomas S

    2014-11-11

    Systems for closure of a physical anomaly. Closure is accomplished by a closure body with an exterior surface. The exterior surface contacts the opening of the anomaly and closes the anomaly. The closure body has a primary shape for closing the anomaly and a secondary shape for being positioned in the physical anomaly. The closure body preferably comprises a shape memory polymer.

  5. Computation of thermodynamic and transport properties to predict thermophoretic effects in an argon-krypton mixture.

    PubMed

    Miller, Nicholas A T; Daivis, Peter J; Snook, Ian K; Todd, B D

    2013-10-14

    Thermophoresis is the movement of molecules caused by a temperature gradient. Here we report the results of a study of thermophoresis using non-equilibrium molecular dynamics simulations of a confined argon-krypton fluid subject to two different temperatures at thermostated walls. The resulting temperature profile between the walls is used along with the Soret coefficient to predict the concentration profile that develops across the channel. We obtain the Soret coefficient by calculating the mutual diffusion and thermal diffusion coefficients. We report an appropriate method for calculating the transport coefficients for binary systems, using the Green-Kubo integrals and radial distribution functions obtained from equilibrium molecular dynamics simulations of the bulk fluid. Our method has the unique advantage of separating the mutual diffusion and thermal diffusion coefficients, and calculating the sign and magnitude of their individual contributions to thermophoresis in binary mixtures. PMID:24116632

  6. Broadband low-density radiation source utilising argon, krypton, and xenon chlorides

    SciTech Connect

    Shuaibov, Aleksandr K; Dashchenko, Arkadii I; Shevera, Igor V

    2002-03-31

    The parameters of a broadband excimer radiation source emitting in the 175-310-nm range and excited by a dc glow discharge in an Ar-Kr-Xe-Cl{sub 2} mixture are studied. The emission spectrum of the discharge consists of the ArCl, KrCl, XeCl, and Cl{sub 2} molecular emission bands. The optimal partial pressure of argon in the mixture is 1.3 kPa, those of krypton and xenon are 0.24 kPa each, and the partial chlorine pressure is in the 0.15-0.30-kPa range. The UV-VUV radiation power emitted from the entire side surface of the discharge tube amounts to 4-6 W for an efficiency of 15%-25%. The radiation source is of interest for applications in photometry, microelectronics, photochemistry, and medicine. (nonlinear optical phenomena)

  7. Computational modeling of Krypton gas puffs with tailored mass density profiles on Z

    SciTech Connect

    Jennings, C. A.; Ampleford, D. J.; Lamppa, D. C.; Hansen, S. B.; Jones, B.; Harvey-Thompson, A. J.; Jobe, M.; Strizic, T.; Reneker, J.; Rochau, G. A.; Cuneo, M. E.

    2015-05-15

    Large diameter multi-shell gas puffs rapidly imploded by high current (∼20 MA, ∼100 ns) on the Z generator of Sandia National Laboratories are able to produce high-intensity Krypton K-shell emission at ∼13 keV. Efficiently radiating at these high photon energies is a significant challenge which requires the careful design and optimization of the gas distribution. To facilitate this, we hydrodynamically model the gas flow out of the nozzle and then model its implosion using a 3-dimensional resistive, radiative MHD code (GORGON). This approach enables us to iterate between modeling the implosion and gas flow from the nozzle to optimize radiative output from this combined system. Guided by our implosion calculations, we have designed gas profiles that help mitigate disruption from Magneto-Rayleigh–Taylor implosion instabilities, while preserving sufficient kinetic energy to thermalize to the high temperatures required for K-shell emission.

  8. Double shock front formation in cylindrical radiative blast waves produced by laser irradiation of krypton gas

    SciTech Connect

    Kim, I.; Quevedo, H. J.; Feldman, S.; Bang, W.; Serratto, K.; McCormick, M.; Aymond, F.; Dyer, G.; Bernstein, A. C.; Ditmire, T.

    2013-12-15

    Radiative blast waves were created by irradiating a krypton cluster source from a supersonic jet with a high intensity femtosecond laser pulse. It was found that the radiation from the shock surface is absorbed in the optically thick upstream medium creating a radiative heat wave that travels supersonically ahead of the main shock. As the blast wave propagates into the heated medium, it slows and loses energy, and the radiative heat wave also slows down. When the radiative heat wave slows down to the transonic regime, a secondary shock in the ionization precursor is produced. This paper presents experimental data characterizing both the initial and secondary shocks and numerical simulations to analyze the double-shock dynamics.

  9. Spectral distribution of the two-photon decay of He-like krypton

    SciTech Connect

    Ali, R.; Ahmad, I.; Berry, H.G.

    1995-08-01

    The 2 {sup 1}S{sub 0} state in helium-like ions is forbidden to decay to the ground state by the emission of a single photon so the dominant decay mode is emission of two E1 photons. The energies of the individual photons have a continuous distribution with a broad peak at half the transition energy and the sum of the energies of the two photons is equal to the transition energy. The shape of the continuum single-photon spectrum provides a sensitive probe of the calculation of the transition probability for this decay and we have started a program to make a precision measurement of the spectral shape of the decay of the 2 {sup 1}S{sub 0} level in He-like krypton in order to test the calculations.

  10. Computation of thermodynamic and transport properties to predict thermophoretic effects in an argon-krypton mixture

    NASA Astrophysics Data System (ADS)

    Miller, Nicholas A. T.; Daivis, Peter J.; Snook, Ian K.; Todd, B. D.

    2013-10-01

    Thermophoresis is the movement of molecules caused by a temperature gradient. Here we report the results of a study of thermophoresis using non-equilibrium molecular dynamics simulations of a confined argon-krypton fluid subject to two different temperatures at thermostated walls. The resulting temperature profile between the walls is used along with the Soret coefficient to predict the concentration profile that develops across the channel. We obtain the Soret coefficient by calculating the mutual diffusion and thermal diffusion coefficients. We report an appropriate method for calculating the transport coefficients for binary systems, using the Green-Kubo integrals and radial distribution functions obtained from equilibrium molecular dynamics simulations of the bulk fluid. Our method has the unique advantage of separating the mutual diffusion and thermal diffusion coefficients, and calculating the sign and magnitude of their individual contributions to thermophoresis in binary mixtures.

  11. Computational modeling of Krypton gas puffs with tailored mass density profiles on Z

    SciTech Connect

    Jennings, Christopher A.; Ampleford, David J.; Lamppa, Derek C.; Hansen, Stephanie B.; Jones, Brent Manley; Harvey-Thompson, Adam James; Jobe, Marc Ronald Lee; Reneker, Joseph; Rochau, Gregory A.; Cuneo, Michael Edward; Strizic, T.

    2015-05-18

    Large diameter multi-shell gas puffs rapidly imploded by high current (~20 MA, ~100 ns) on the Z generator of Sandia National Laboratories are able to produce high-intensity Krypton K-shell emission at ~13 keV. Efficiently radiating at these high photon energies is a significant challenge which requires the careful design and optimization of the gas distribution. To facilitate this, we hydrodynamically model the gas flow out of the nozzle and then model its implosion using a 3-dimensional resistive, radiative MHD code (GORGON). This approach enables us to iterate between modeling the implosion and gas flow from the nozzle to optimize radiative output from this combined system. Furthermore, guided by our implosion calculations, we have designed gas profiles that help mitigate disruption from Magneto-Rayleigh–Taylor implosion instabilities, while preserving sufficient kinetic energy to thermalize to the high temperatures required for K-shell emission.

  12. Computational modeling of Krypton gas puffs with tailored mass density profiles on Z

    DOE PAGESBeta

    Jennings, Christopher A.; Ampleford, David J.; Lamppa, Derek C.; Hansen, Stephanie B.; Jones, Brent Manley; Harvey-Thompson, Adam James; Jobe, Marc Ronald Lee; Reneker, Joseph; Rochau, Gregory A.; Cuneo, Michael Edward; et al

    2015-05-18

    Large diameter multi-shell gas puffs rapidly imploded by high current (~20 MA, ~100 ns) on the Z generator of Sandia National Laboratories are able to produce high-intensity Krypton K-shell emission at ~13 keV. Efficiently radiating at these high photon energies is a significant challenge which requires the careful design and optimization of the gas distribution. To facilitate this, we hydrodynamically model the gas flow out of the nozzle and then model its implosion using a 3-dimensional resistive, radiative MHD code (GORGON). This approach enables us to iterate between modeling the implosion and gas flow from the nozzle to optimize radiativemore » output from this combined system. Furthermore, guided by our implosion calculations, we have designed gas profiles that help mitigate disruption from Magneto-Rayleigh–Taylor implosion instabilities, while preserving sufficient kinetic energy to thermalize to the high temperatures required for K-shell emission.« less

  13. Statistical analysis of the electrical breakdown time delay distributions in krypton

    NASA Astrophysics Data System (ADS)

    Maluckov, Čedomir A.; Karamarković, Jugoslav P.; Radović, Miodrag K.; Pejović, Momčilo M.

    2006-08-01

    The statistical analysis of the experimentally observed electrical breakdown time delay distributions in the krypton-filled diode tube at 2.6mbar is presented. The experimental distributions are obtained on the basis of 1000 successive and independent measurements. The theoretical electrical breakdown time delay distribution is evaluated as the convolution of the statistical time delay with exponential, and discharge formative time with Gaussian distribution. The distribution parameters are estimated by the stochastic modelling of the time delay distributions, and by comparing them with the experimental distributions for different relaxation times, voltages, and intensities of UV radiation. The transition of distribution shapes, from Gaussian-type to the exponential-like, is investigated by calculating the corresponding skewness and excess kurtosis parameters. It is shown that the mathematical model based on the convolution of two random variable distributions describes experimentally obtained time delay distributions and the separation of the total breakdown time delay to the statistical and formative time delay.

  14. Statistical analysis of the electrical breakdown time delay distributions in krypton

    SciTech Connect

    Maluckov, Cedomir A.; Karamarkovic, Jugoslav P.; Radovic, Miodrag K.; Pejovic, Momcilo M.

    2006-08-15

    The statistical analysis of the experimentally observed electrical breakdown time delay distributions in the krypton-filled diode tube at 2.6 mbar is presented. The experimental distributions are obtained on the basis of 1000 successive and independent measurements. The theoretical electrical breakdown time delay distribution is evaluated as the convolution of the statistical time delay with exponential, and discharge formative time with Gaussian distribution. The distribution parameters are estimated by the stochastic modelling of the time delay distributions, and by comparing them with the experimental distributions for different relaxation times, voltages, and intensities of UV radiation. The transition of distribution shapes, from Gaussian-type to the exponential-like, is investigated by calculating the corresponding skewness and excess kurtosis parameters. It is shown that the mathematical model based on the convolution of two random variable distributions describes experimentally obtained time delay distributions and the separation of the total breakdown time delay to the statistical and formative time delay.

  15. Phase behavior of mixed submonolayer films of krypton and xenon on graphite.

    PubMed

    Patrykiejew, A; Sokołowski, S

    2012-04-14

    Using the results of extensive Monte Carlo simulations in the canonical and grand canonical ensembles, we discuss the phase behavior of mixed submonolayer films of krypton and xenon adsorbed on the graphite basal plane. The calculations have been performed using two- and three-dimensional models of the systems studied. It has been demonstrated that out-of-plane motion does not affect the properties of the films as long as the total density is well below the monolayer completion and at moderate temperatures. For the total densities close to the monolayer completion, the promotion of particles to the second layer considerably affects the film properties. Our results are in a reasonable agreement with the available experimental data. The melting point of submonolayer films has been shown to exhibit non-monotonous changes with the film composition, and reaches minimum for the xenon concentration of about 50%. At the temperatures below the melting point, the structure of solid phases depends upon the film composition and the temperature; one can also distinguish commensurate and incommensurate phases. Two-dimensional calculations have demonstrated that for the xenon concentration between about 15% and 65% the adsorbed film exhibits the formation of a superstructure, in which each Xe atom is surrounded by six Kr atoms. This superstructure is stable only at very low temperatures and transforms into the mixed commensurate (√3×√3)R30° phase upon the increase of temperature. Such a superstructure does not appear when a three-dimensional model is used. Grand canonical ensemble calculations allowed us to show that for the xenon concentration of about 3% the phase diagram topology of monolayer films changes from the krypton-like (with incipient triple point) to the xenon-like (with ordinary triple point). PMID:22502538

  16. Binning of satellite magnetic anomalies

    NASA Technical Reports Server (NTRS)

    Goyal, H. K.; Vonfrese, R. R. B.; Hinze, W. J.

    1985-01-01

    Crustal magnetic anomaly signals over satellite orbits were simulated to investigate numerical averaging as an anomaly estimator. Averaging as an anomaly estimator involves significant problems concerning spatial and amplitude smoothing of the satellite magnetic observations. The results of simulations suggest that the error of numerical averaging constitutes a small and relatively minor component of the total error-budget of higher orbital anomaly estimates, whereas for lower orbital estimates numerical averaging error increases substantially. As an alternative to numerical averaging, least-squares collocation was investigated and observed to produce substantially more accurate anomaly estimates, particularly as the orbital elevation of prediction was decreased towards the crustal sources. In contrast to averaging, collocation is a significantly more resource-intensive procedure to apply because of the practical, but surmountable problems related to establishing and inverting the covariance matrix for accurate anomaly prediction. However, collocation may be much more effectively used to exploit the anomaly details contained in the lower orbital satellite magnetic data for geologic analysis.

  17. Reliability of CHAMP Anomaly Continuations

    NASA Technical Reports Server (NTRS)

    vonFrese, Ralph R. B.; Kim, Hyung Rae; Taylor, Patrick T.; Asgharzadeh, Mohammad F.

    2003-01-01

    CHAMP is recording state-of-the-art magnetic and gravity field observations at altitudes ranging over roughly 300 - 550 km. However, anomaly continuation is severely limited by the non-uniqueness of the process and satellite anomaly errors. Indeed, our numerical anomaly simulations from satellite to airborne altitudes show that effective downward continuations of the CHAMP data are restricted to within approximately 50 km of the observation altitudes while upward continuations can be effective over a somewhat larger altitude range. The great unreliability of downward continuation requires that the satellite geopotential observations must be analyzed at satellite altitudes if the anomaly details are to be exploited most fully. Given current anomaly error levels, joint inversion of satellite and near- surface anomalies is the best approach for implementing satellite geopotential observations for subsurface studies. We demonstrate the power of this approach using a crustal model constrained by joint inversions of near-surface and satellite magnetic and gravity observations for Maude Rise, Antarctica, in the southwestern Indian Ocean. Our modeling suggests that the dominant satellite altitude magnetic anomalies are produced by crustal thickness variations and remanent magnetization of the normal polarity Cretaceous Quiet Zone.

  18. s-Process Os isotope enrichment in ureilites by planetary processing

    NASA Astrophysics Data System (ADS)

    Goderis, S.; Brandon, A. D.; Mayer, B.; Humayun, M.

    2015-12-01

    Ubiquitous nucleosynthetic isotope anomalies relative to the terrestrial isotopic composition in Mo, Ru, and other elements are known from both bulk chondrites and differentiated meteorites, but Os isotope ratios reported from such meteorites have been found to be indistinguishable from the terrestrial value. The carriers of s- and r-process Os must thus have been homogeneously distributed in the solar nebula. As large Os isotope anomalies are known from acid leachates and residues of primitive chondrites, the constant relative proportions of presolar s- and r-process carriers in such chondrites must have been maintained during nebular processes. It has long been assumed that partial melting of primitive chondrites would homogenize the isotopic heterogeneity carried by presolar grains. Here, ureilites, carbon-rich ultramafic achondrites dominantly composed of olivine and low-Ca pyroxene, are shown to be the first differentiated bulk Solar System materials for which nucleosynthetic Os isotope anomalies have been identified. These anomalies consist of enrichment in s-process Os heterogeneously distributed in different ureilites. Given the observed homogeneity of Os isotopes in all types of primitive chondrites, this Os isotope variability among ureilites must have been caused by selective removal of s-process-poor Os host phases, probably metal, during rapid localized melting on the ureilite parent body. While Mo and Ru isotope anomalies for all meteorites measured so far exhibit s-process deficits relative to the Earth, the opposite holds for the Os isotope anomalies in ureilites reported here. This might indicate that the Earth preferentially accreted olivine-rich restites and inherited a s-process excess relative to smaller meteorite bodies, consistent with Earth's high Mg/Si ratio and enrichment of s-process nuclides in Mo, Ru, and Nd isotopes. Our new Os isotope results imply that caution must be used when applying nucleosynthetic isotope anomalies as provenance

  19. Atmospheric Methane Growth Anomalies, 2007 - Present

    NASA Astrophysics Data System (ADS)

    Lowry, D.; Dlugokencky, E. J.; Fisher, R. E.; Nisbet, E. G.; Lanoiselle, M.; France, J.

    2012-12-01

    Several marked growth anomalies in atmospheric methane have occurred since 2007. In particular there has been sustained growth in methane in the Southern Hemisphere. This southern growth anomaly is among the larger excursions in the global methane record so far occurring in the 21st century, yet in contrast to Arctic emission, it has had little attention. The increase in methane began in 2007 and continued through early-2012. In the zonal average from the Equator to 30°S, annual increases reached 7.9 ppb/yr in 2007, remained at 7.0 ppb/yr in 2008, fell to around 2.5 ppb/yr in 2009, then increased to 7.9 ppb/yr in 2010. To consider one specific site, recent data from Ascension Island (which samples South Atlantic air almost exclusively) suggests growth of ~11 ppb/yr from July 2010 to July 2011 (winter to winter) falling to 8 ppb/yr over Jan 2011 - Jan 2012 (summer to summer). Isotopic data for 2011 show 13C enrichments and depletions that may suggest inputs from tropical / subtropical fire and wetland sources, respectively. Despite the size of the southern anomaly, there has been virtually no discussion of its causes. Several possibilities exist: some or all may have occurred: 1) that methane emission from southern wetland (late wet season) and fire (dry season) sources increased sharply during this period; 2) that the southern OH methane sink has decreased; 3) that changes in atmospheric circulation patterns have increased inter-hemispheric transport. It is possible that a major factor was high La Nina rainfall in key areas draining into wetlands in southern tropical Africa and Latin America. Tropical methane sources emit roughly 200 Tg methane annually to the atmosphere, nearly two-fifths of the global budget. Thus changes in tropical sources, if sustained on this scale, can have global significance. However the observational network generally is so sparse in the tropics that identifying causes of methane growth events is more akin to guesswork than evidence

  20. Classifying sex biased congenital anomalies

    SciTech Connect

    Lubinsky, M.S.

    1997-03-31

    The reasons for sex biases in congenital anomalies that arise before structural or hormonal dimorphisms are established has long been unclear. A review of such disorders shows that patterning and tissue anomalies are female biased, and structural findings are more common in males. This suggests different gender dependent susceptibilities to developmental disturbances, with female vulnerabilities focused on early blastogenesis/determination, while males are more likely to involve later organogenesis/morphogenesis. A dual origin for some anomalies explains paradoxical reductions of sex biases with greater severity (i.e., multiple rather than single malformations), presumably as more severe events increase the involvement of an otherwise minor process with opposite biases to those of the primary mechanism. The cause for these sex differences is unknown, but early dimorphisms, such as differences in growth or presence of H-Y antigen, may be responsible. This model provides a useful rationale for understanding and classifying sex-biased congenital anomalies. 42 refs., 7 tabs.

  1. Genetics Home Reference: Peters anomaly

    MedlinePlus

    ... the anterior segment is abnormal, leading to incomplete separation of the cornea from the iris or the ... anomaly type I is characterized by an incomplete separation of the cornea and iris and mild to ...

  2. Coordinated Analysis of Isotopic Anomalies in Antarctic Micrometeorites

    NASA Astrophysics Data System (ADS)

    Haenecour, P.; Floss, C.; Wang, A.; Yada, T.

    2014-06-01

    We carry out coordinated analysis (NanoSIMS 50, Auger Nanoprobe, Raman spectroscopy) of presolar grains (silicates, oxides, SiC) and ^15N-enriched carbonaceous matter in fine-grained Antarctic micrometeorites.

  3. Satellite elevation magnetic anomaly maps

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J. (Principal Investigator)

    1982-01-01

    The problem of inverting 2 deg average MAGSAT scalar anomalies for the region 80 W, 60 E longitude and 40 S, 70 N latitude was attempted on the LARS computer; however, the effort was aborted due to insufficient allocation of CPU-time. This problem is currently being resubmitted and should be implemented shortly for quantitative comparison with free-air gravity anomaly, geothermal, and tectonic data.

  4. Aeromagnetic anomalies over faulted strata

    USGS Publications Warehouse

    Grauch, V.J.S.; Hudson, Mark R.

    2011-01-01

    High-resolution aeromagnetic surveys are now an industry standard and they commonly detect anomalies that are attributed to faults within sedimentary basins. However, detailed studies identifying geologic sources of magnetic anomalies in sedimentary environments are rare in the literature. Opportunities to study these sources have come from well-exposed sedimentary basins of the Rio Grande rift in New Mexico and Colorado. High-resolution aeromagnetic data from these areas reveal numerous, curvilinear, low-amplitude (2–15 nT at 100-m terrain clearance) anomalies that consistently correspond to intrasedimentary normal faults (Figure 1). Detailed geophysical and rock-property studies provide evidence for the magnetic sources at several exposures of these faults in the central Rio Grande rift (summarized in Grauch and Hudson, 2007, and Hudson et al., 2008). A key result is that the aeromagnetic anomalies arise from the juxtaposition of magnetically differing strata at the faults as opposed to chemical processes acting at the fault zone. The studies also provide (1) guidelines for understanding and estimating the geophysical parameters controlling aeromagnetic anomalies at faulted strata (Grauch and Hudson), and (2) observations on key geologic factors that are favorable for developing similar sedimentary sources of aeromagnetic anomalies elsewhere (Hudson et al.).

  5. Overgrowth syndromes with vascular anomalies.

    PubMed

    Blei, Francine

    2015-04-01

    Overgrowth syndromes with vascular anomalies encompass entities with a vascular anomaly as the predominant feature vs those syndromes with predominant somatic overgrowth and a vascular anomaly as a more minor component. The focus of this article is to categorize these syndromes phenotypically, including updated clinical criteria, radiologic features, evaluation, management issues, pathophysiology, and genetic information. A literature review was conducted in PubMed using key words "overgrowth syndromes and vascular anomalies" as well as specific literature reviews for each entity and supportive genetic information (e.g., somatic mosaicism). Additional searches in OMIM and Gene Reviews were conducted for each syndrome. Disease entities were categorized by predominant clinical features, known genetic information, and putative affected signaling pathway. Overgrowth syndromes with vascular anomalies are a heterogeneous group of disorders, often with variable clinical expression, due to germline or somatic mutations. Overgrowth can be focal (e.g., macrocephaly) or generalized, often asymmetrically (and/or mosaically) distributed. All germ layers may be affected, and the abnormalities may be progressive. Patients with overgrowth syndromes may be at an increased risk for malignancies. Practitioners should be attentive to patients having syndromes with overgrowth and vascular defects. These patients require proactive evaluation, referral to appropriate specialists, and in some cases, early monitoring for potential malignancies. Progress in identifying vascular anomaly-related overgrowth syndromes and their genetic etiology has been robust in the past decade and is contributing to genetically based prenatal diagnosis and new therapies targeting the putative causative genetic mutations. PMID:25937473

  6. California GAMA Special Study. Development of a Capability for the Analysis of Krypton-85 in Groundwater Samples

    SciTech Connect

    Visser, Ate; Bibby, Richard K.; Moran, Jean E.; Singleton, Michael J.; Esser, Bradley K.

    2015-06-01

    A capability for the analysis of krypton-85 (85Kr) in groundwater samples was developed at LLNL. Samples are collected by extracting gas from 2000-4000 L of groundwater at the well, yielding approximately 0.2 cm3 STP krypton. Sample collection takes 1 to 4 hours. Krypton is purified in the laboratory using a combination of molecular sieve and activated charcoal traps, and transferred to a liquid scintillation vial. The 85Kr activity is measured by liquid scintillation on a Quantulus 1220 liquid scintillation counter from PerkinElmer. The detection limit for a typical 0.2 cm3Kr sample size is 11% of the present day activity in air, corresponding to the decay corrected activity in air in 1987. The typical measurement uncertainty is below 10% for recently recharged samples. Six groundwater samples were collected, purified and counted. 85Kr was not detected in any of the samples counted at LLNL. 85Kr was detected by the low level counting laboratory of Bern University in all samples between 1.5 and 6.6 decays per minute per cm3 krypton, corresponding to decay corrected activities in air between 1971 and 1985. The new capability is an excellent complement to tritium-helium, expanding the existing suite of age dating tools available to the GAMA program (35S, 3H/3He, 14C and radiogenic helium). 85Kr can replace 3H/3He in settings where 3H/3He ages are impossible to determine (for example where terrigenic helium overwhelms tritiogenic helium) and provides additional insight into travel time distributions in complex mixed groundwater systems.

  7. Pseudopotential calculations for elastic scattering of slow electrons (0--20 eV) from noble gases. II. Krypton

    SciTech Connect

    Plenkiewicz, B.; Plenkiewicz, P.; Houee-Levin, C.; Jay-Gerin, J.

    1988-12-15

    The pseudopotential calculations of Plenkiewicz et al. on electrons colliding with argon are extended to consider the elastic electron-krypton scattering system. Phase shifts, differential, total, and momentum-transfer cross sections are obtained for incident electron energies in the range 0--20 eV. Our results are found to be in very good agreement with available experimental data and other theoretical results.

  8. Monitoring of kratom or Krypton intake in urine using GC-MS in clinical and forensic toxicology.

    PubMed

    Philipp, Anika A; Meyer, Markus R; Wissenbach, Dirk K; Weber, Armin A; Zoerntlein, Siegfried W; Zweipfenning, Peter G M; Maurer, Hans H

    2011-04-01

    The Thai medicinal plant Mitragyna speciosa (kratom) is misused as a herbal drug. Besides this, a new herbal blend has appeared on the drugs of abuse market, named Krypton, a mixture of O-demethyltramadol (ODT) and kratom. Therefore, urine drug screenings should include ODT and focus on the metabolites of the kratom alkaloids mitragynine (MG), paynantheine (PAY), speciogynine (SG), and speciociliatine (SC). The aim of this study was to develop a full-scan gas chromatography-mass spectrometry procedure for monitoring kratom or Krypton intake in urine after enzymatic cleavage of conjugates, solid-phase extraction, and trimethylsilylation. With use of reconstructed mass chromatography with the ions m/z 271, 286, 329, 344, 470, 526, 528, and 586, the presence of MG, 16-carboxy-MG, 9-O-demethyl-MG, and/or 9-O-demethyl-16-carboxy-MG could be indicated, and in case of Krypton, with m/z 58, 84, 116, 142, 303, 361, 393, and 451, the additional presence of ODT and its nor metabolite could be indicated. Compounds were identified by comparison with their respective reference spectra. Depending on the plant type, dose, administration route, and/or sampling time, further metabolites of MG, PAY, SG, and SC could be detected. The limits of detection (signal-to-noise ratio of 3) were 100 ng/ml for the parent alkaloids and 50 ng/ml for ODT. As mainly metabolites of the kratom alkaloids were detected in urine, the detectability of kratom was tested successfully using rat urine after administration of a common user's dose of MG. As the metabolism in humans was similar, this procedure should be suitable to prove an intake of kratom or Krypton. PMID:21153588

  9. Development and evaluation of a silver mordenite composite sorbent for the partitioning of xenon from krypton in gas compositions

    DOE PAGESBeta

    Garn, Troy G.; Greenhalgh, Mitchell; Law, Jack D.

    2015-12-22

    A new engineered form composite sorbent for the selective separation of xenon from krypton in simulant composition off-gas streams resulting from the reprocessing of used nuclear fuel has been developed and evaluated. A sodium mordenite powder was incorporated into a macroporous polymer binder, formed into spherical beads and successfully converted to a 9 wt.% silver form composite sorbent. The final engineered form sorbent retained the characteristic surface area indicative of sodium mordenite powder. The sorbent was evaluated for xenon adsorption potential with capacities measured as high as 30 millimoles of xenon per kilogram of sorbent achieved at ambient temperature andmore » 460 millimoles of xenon per kilogram sorbent at 220 K. Xenon/krypton selectivity was calculated to be 22.4 with a 1020 µL/L xenon, 150 µL/L krypton in a balance of air feed gas at 220 K. Furthermore, adsorption/desorption thermal cycling effects were evaluated with results indicating sorbent performance was not significantly impacted while undergoing numerous adsorption/desorption thermal cycles.« less

  10. Development and evaluation of a silver mordenite composite sorbent for the partitioning of xenon from krypton in gas compositions

    SciTech Connect

    Garn, Troy G.; Greenhalgh, Mitchell; Law, Jack D.

    2015-12-22

    A new engineered form composite sorbent for the selective separation of xenon from krypton in simulant composition off-gas streams resulting from the reprocessing of used nuclear fuel has been developed and evaluated. A sodium mordenite powder was incorporated into a macroporous polymer binder, formed into spherical beads and successfully converted to a 9 wt.% silver form composite sorbent. The final engineered form sorbent retained the characteristic surface area indicative of sodium mordenite powder. The sorbent was evaluated for xenon adsorption potential with capacities measured as high as 30 millimoles of xenon per kilogram of sorbent achieved at ambient temperature and 460 millimoles of xenon per kilogram sorbent at 220 K. Xenon/krypton selectivity was calculated to be 22.4 with a 1020 µL/L xenon, 150 µL/L krypton in a balance of air feed gas at 220 K. Furthermore, adsorption/desorption thermal cycling effects were evaluated with results indicating sorbent performance was not significantly impacted while undergoing numerous adsorption/desorption thermal cycles.

  11. Isotope separation

    DOEpatents

    Bartlett, Rodney J.; Morrey, John R.

    1978-01-01

    A method and apparatus is described for separating gas molecules containing one isotope of an element from gas molecules containing other isotopes of the same element in which all of the molecules of the gas are at the same electronic state in their ground state. Gas molecules in a gas stream containing one of the isotopes are selectively excited to a different electronic state while leaving the other gas molecules in their original ground state. Gas molecules containing one of the isotopes are then deflected from the other gas molecules in the stream and thus physically separated.

  12. Toward Baseline Software Anomalies in NASA Missions

    NASA Technical Reports Server (NTRS)

    Layman, Lucas; Zelkowitz, Marvin; Basili, Victor; Nikora, Allen P.

    2012-01-01

    In this fast abstract, we provide preliminary findings an analysis of 14,500 spacecraft anomalies from unmanned NASA missions. We provide some baselines for the distributions of software vs. non-software anomalies in spaceflight systems, the risk ratings of software anomalies, and the corrective actions associated with software anomalies.

  13. MAGSAT anomaly map and continental drift

    NASA Technical Reports Server (NTRS)

    Lemouel, J. L. (Principal Investigator); Galdeano, A.; Ducruix, J.

    1981-01-01

    Anomaly maps of high quality are needed to display unambiguously the so called long wave length anomalies. The anomalies were analyzed in terms of continental drift and the nature of their sources is discussed. The map presented confirms the thinness of the oceanic magnetized layer. Continental magnetic anomalies are characterized by elongated structures generally of east-west trend. Paleomagnetic reconstruction shows that the anomalies found in India, Australia, and Antarctic exhibit a fair consistency with the African anomalies. It is also shown that anomalies are locked under the continents and have a fixed geometry.

  14. Non-relativistic scale anomalies

    NASA Astrophysics Data System (ADS)

    Arav, Igal; Chapman, Shira; Oz, Yaron

    2016-06-01

    We extend the cohomological analysis in arXiv:1410.5831 of anisotropic Lifshitz scale anomalies. We consider non-relativistic theories with a dynamical critical exponent z = 2 with or without non-relativistic boosts and a particle number symmetry. We distinguish between cases depending on whether the time direction does or does not induce a foliation structure. We analyse both 1 + 1 and 2 + 1 spacetime dimensions. In 1 + 1 dimensions we find no scale anomalies with Galilean boost symmetries. The anomalies in 2 + 1 dimensions with Galilean boosts and a foliation structure are all B-type and are identical to the Lifshitz case in the purely spatial sector. With Galilean boosts and without a foliation structure we find also an A-type scale anomaly. There is an infinite ladder of B-type anomalies in the absence of a foliation structure with or without Galilean boosts. We discuss the relation between the existence of a foliation structure and the causality of the field theory.

  15. Experimental Anomalies in Neutrino Physics

    NASA Astrophysics Data System (ADS)

    Palamara, Ornella

    2014-03-01

    In recent years, experimental anomalies ranging in significance (2.8-3.8 σ) have been reported from a variety of experiments studying neutrinos over baselines less than 1 km. Results from the LSND and MiniBooNE short-baseline νe /νe appearance experiments show anomalies which cannot be described by oscillations between the three standard model neutrinos (the ``LSND anomaly''). In addition, a re-analysis of the anti-neutrino flux produced by nuclear power reactors has led to an apparent deficit in νe event rates in a number of reactor experiments (the ``reactor anomaly''). Similarly, calibration runs using 51Cr and 37Ar radioactive sources in the Gallium solar neutrino experiments GALLEX and SAGE have shown an unexplained deficit in the electron neutrino event rate over very short distances (the ``Gallium anomaly''). The puzzling results from these experiments, which together may suggest the existence of physics beyond the Standard Model and hint at exciting new physics, including the possibility of additional low-mass sterile neutrino states, have raised the interest in the community for new experimental efforts that could eventually solve this puzzle. Definitive evidence for sterile neutrinos would be a revolutionary discovery, with implications for particle physics as well as cosmology. Proposals to address these signals by employing accelerator, reactor and radioactive source experiments are in the planning stages or underway worldwide. In this talk some of these will be reviewed, with emphasis on the accelerator programs.

  16. Origin of the DUPAL anomaly in mantle xenoliths of Patagonia (Argentina) and geodynamic consequences

    NASA Astrophysics Data System (ADS)

    Mazzucchelli, Maurizio; Cipriani, Anna; Hémond, Christophe; Zanetti, Alberto; Bertotto, Gustavo Walter; Cingolani, Carlos Alberto

    2016-04-01

    The sub-continental lithospheric mantle of South America has been known for some time to carry the DUPAL isotope anomaly as seen in volcanics from the Paraná volcanic province. However, this has not allowed discriminating whether the DUPAL anomaly is a primary feature of the mantle source or acquired during the upwelling and emplacement of the primary magmas. We discovered mantle xenoliths from the Tres Lagos location in Patagonia that carry evidence of percolation by metasomatic melts that imparted the DUPAL isotope anomaly signature. We discuss a model that requires four isotope components (LCC, EM2, HIMU and DM) to account for the Sr, Nd and Pb isotope variability of our samples. We propose that upwelling of hot astenosphere during the Miocene could have triggered the melting of the LCC and EM2 components carrying the DUPAL anomaly, previously entrained in the subcontinental mantle by subduction. These ascending melts would have then metasomatised the local SCLM characterised by DMM and HIMU geochemical affinity generating the hybrid DUPAL-bearing mantle sampled by the Tres Lagos xenoliths.

  17. Measuring anomaly with algorithmic entropy

    NASA Astrophysics Data System (ADS)

    Solano, Wanda M.

    Anomaly detection refers to the identification of observations that are considered outside of normal. Since they are unknown to the system prior to training and rare, the anomaly detection problem is particularly challenging. Model based techniques require large quantities of existing data are to build the model. Statistically based techniques result in the use of statistical metrics or thresholds for determining whether a particular observation is anomalous. I propose a novel approach to anomaly detection using wavelet based algorithmic entropy that does not require modeling or large amounts of data. My method embodies the concept of information distance that rests on the fact that data encodes information. This distance is large when little information is shared, and small when there is greater information sharing. I compare my approach with several techniques in the literature using data obtained from testing of NASA's Space Shuttle Main Engines (SSME)

  18. Spacecraft environmental anomalies expert system

    NASA Technical Reports Server (NTRS)

    Koons, H. C.; Gorney, D. J.

    1988-01-01

    A microcomputer-based expert system is being developed at the Aerospace Corporation Space Sciences Laboratory to assist in the diagnosis of satellite anomalies caused by the space environment. The expert system is designed to address anomalies caused by surface charging, bulk charging, single event effects and total radiation dose. These effects depend on the orbit of the satellite, the local environment (which is highly variable), the satellite exposure time and the hardness of the circuits and components of the satellite. The expert system is a rule-based system that uses the Texas Instruments Personal Consultant Plus expert system shell. The completed expert system knowledge base will include 150 to 200 rules, as well as a spacecraft attributes database, an historical spacecraft anomalies database, and a space environment database which is updated in near real-time. Currently, the expert system is undergoing development and testing within the Aerospace Corporation Space Sciences Laboratory.

  19. Graph anomalies in cyber communications

    SciTech Connect

    Vander Wiel, Scott A; Storlie, Curtis B; Sandine, Gary; Hagberg, Aric A; Fisk, Michael

    2011-01-11

    Enterprises monitor cyber traffic for viruses, intruders and stolen information. Detection methods look for known signatures of malicious traffic or search for anomalies with respect to a nominal reference model. Traditional anomaly detection focuses on aggregate traffic at central nodes or on user-level monitoring. More recently, however, traffic is being viewed more holistically as a dynamic communication graph. Attention to the graph nature of the traffic has expanded the types of anomalies that are being sought. We give an overview of several cyber data streams collected at Los Alamos National Laboratory and discuss current work in modeling the graph dynamics of traffic over the network. We consider global properties and local properties within the communication graph. A method for monitoring relative entropy on multiple correlated properties is discussed in detail.

  20. Boundary terms of conformal anomaly

    NASA Astrophysics Data System (ADS)

    Solodukhin, Sergey N.

    2016-01-01

    We analyze the structure of the boundary terms in the conformal anomaly integrated over a manifold with boundaries. We suggest that the anomalies of type B, polynomial in the Weyl tensor, are accompanied with the respective boundary terms of the Gibbons-Hawking type. Their form is dictated by the requirement that they produce a variation which compensates the normal derivatives of the metric variation on the boundary in order to have a well-defined variational procedure. This suggestion agrees with recent findings in four dimensions for free fields of various spins. We generalize this consideration to six dimensions and derive explicitly the respective boundary terms. We point out that the integrated conformal anomaly in odd dimensions is non-vanishing due to the boundary terms. These terms are specified in three and five dimensions.

  1. Low-energy-electron transmission in solid krypton and xenon films

    NASA Astrophysics Data System (ADS)

    Steinberger, I. T.; Bass, A. D.; Shechter, R.; Sanche, L.

    1993-09-01

    Low-energy-electron-transmission (LEET) spectra of krypton and xenon films deposited on a platinum substrate exhibit a peak at an energy somewhat below the center of the respective Γ3/2n=1 exciton band. The peaks were systematically studied as a function of the film thickness. They were attributed to a process in which an electron loses a large part of its energy by creating a Γ3/2n=1 exciton and consequently ends up in the conduction band of the rare-gas solid beneath the vacuum level. A simple model was formulated, taking into account the shape of the optical-absorption band and the image forces at the sample boundaries. Fitting the position, width, and height of the experimentally observed peaks in the thickest films (~100 monolayers or more) lead to the determination of the conduction-band energy V0 and exciton band parameters in good agreement with the results of photoelectric and optical-absorption experiments. However, for thinner films the LEET peaks were much broader than predicted by theory. The possible reasons for this behavior are discussed in brief.

  2. Effects of pulmonary inhalation on hyperpolarized krypton-83 magnetic resonance T1 relaxation

    NASA Astrophysics Data System (ADS)

    Stupic, K. F.; Elkins, N. D.; Pavlovskaya, G. E.; Repine, J. E.; Meersmann, T.

    2011-07-01

    The 83Kr magnetic resonance (MR) relaxation time T1 of krypton gas in contact with model surfaces was previously found to be highly sensitive to surface composition, surface-to-volume ratio, and surface temperature. The work presented here explored aspects of pulmonary 83Kr T1 relaxation measurements in excised lungs from healthy rats using hyperpolarized (hp) 83Kr with approximately 4.4% spin polarization. MR spectroscopy without spatial resolution was applied to the ex vivo lungs that actively inhale hp 83Kr through a custom designed ventilation system. Various inhalation schemes were devised to study the influence of anatomical dead space upon the measured 83Kr T1 relaxation times. The longitudinal 83Kr relaxation times in the distal airways and the respiratory zones were independent of the lung inhalation volume, with T1 = 1.3 s and T1 = 1.0 s, depending only on the applied inhalation scheme. The obtained data were highly reproducible between different specimens. Further, the 83Kr T1 relaxation times in excised lungs were unaffected by the presence of up to 40% oxygen in the hp gas mixture. The results support the possible importance of 83Kr as a biomarker for evaluating lung function.

  3. Dynamics of xenon, krypton, and methane monolayers in registry with graphite

    SciTech Connect

    Hakim, T.M.; Glyde, H.R.; Chui, S.T.

    1988-01-15

    The self-consistent phonon (SCP) theory is used to study the dynamics of monolayers of xenon, krypton, and methane adsorbed on graphite. Only the ..sqrt..3 x ..sqrt..3 solid phase is considered. It is shown that the phonon energies of the Xe monolayers are very similar to those of their floating counterparts, while the interaction of the Kr and CH/sub 4/ monolayers with the graphite significantly affects the phonon dispersion curves. The gap in the phonon dispersion curves at the center of the Brillouin zone is computed as a function of temperature. At a critical temperature, the gap goes spontaneously to zero and a transition from a locked-in commensurate phase to a floating phase takes place. This transition appears to describe the commensurate to floating transition in CH/sub 4/ well. A simple model of the floating transition is compared to the full SCP calculations. The one-phonon dynamic form factor, including the cubic anharmonic term, and phonon lifetimes are also evaluated for Kr and CH/sub 4/.

  4. Multielectron coincidence study of the double Auger decay of 3d-ionized krypton

    SciTech Connect

    Andersson, E.; Hedin, L.; Rubensson, J.-E.; Karlsson, L.; Feifel, R.; Fritzsche, S.; Linusson, P.; Eland, J. H. D.

    2010-10-15

    Multielectron coincidence data for triple ionization of krypton have been recorded above the 3d ionization threshold at two photon energies (140 and 150 eV). Three principal transition pathways have been observed, two involving double Auger transitions from Kr{sup +}, and one involving single Auger transitions from Kr{sup 2+} created by direct single-photon double ionization. The decay of the 3d{sup 9} {sup 2}D{sub 5/2,3/2} states in Kr{sup +} has been analyzed in some detail and is found to be strongly dominated by cascade processes where two electrons with well-defined energies are emitted. The decay paths leading to the 4s{sup 2}4p{sup 3} {sup 4}S, {sup 2}D, and {sup 2}P states of Kr{sup 3+} are analyzed and energies of seven intermediate states in Kr{sup 2+} are given. A preliminary investigation of the decay paths from Kr{sup +} 3d{sup 9}4p{sup 5}nl shake-up states has also been carried out.

  5. The nature and role of the gold-krypton interactions in small neutral gold clusters.

    PubMed

    Mancera, Luis A; Benoit, David M

    2015-03-26

    We investigate the nature and role of krypton embedding in small neutral gold clusters. For some of these clusters, we observe a particular site-dependent character of the Kr binding that does not completely follow the criterion of binding at low-coordinated sites, widely accepted for interaction of a noble gas with closed-shell metal systems such as metal surfaces. We aim at understanding the effect of low dimensionality and open-shell electronic structure of the odd-numbered clusters on the noble gas-metal cluster interaction. First, we investigate the role of attractive and repulsive forces, and the frontier molecular orbitals. Second, we investigate the Au-Kr interaction in terms of reactivity and bonding character. We use a reactivity index derived from Fukui formalism, and criteria provided by the electron localization function (ELF), in order to classify the type of bonding. We carry out this study on the minimum energy structures of neutral gold clusters, as obtained using pseudo potential plane-wave density functional theory (DFT). A model is proposed that includes the effect of attractive electrostatic, van der Waals and repulsive forces, together with effects originating from orbital overlap. This satisfactorily explains minimum configurations of the noble gas-gold cluster systems, the site preference of the noble gas atoms, and changes in electronic properties. PMID:25742369

  6. Effect of Grain Boundaries on Krypton Segregation Behavior in Irradiated Uranium Dioxide

    SciTech Connect

    Valderrama, Billy; He, Lingfeng; Henderson, Hunter B.; Pakarinen, Janne; Jaques, Brian; Gan, Jian; Butt, Darryl P.; Allen, Todd R.; Manuel, Michele V.

    2014-11-01

    Fission products, such as krypton (Kr), are known to be insoluble within UO2, segregating towards grain boundaries, eventually leading to a lowering of the thermal conductivity and fuel swelling. Recent computational studies have identified that differences in grain boundary structure have a significant effect on the segregation behavior of fission products. However, experimental work supporting these simulations is lacking. Atom probe tomography was used to measure the Kr distribution across grain boundaries in UO2. Polycrystalline depleted-UO2 samples was irradiated with 0.7 and 1.8 MeV Kr-ions and annealed to 1000ºC, 1300ºC, and 1600°C for 1 hour to produce a Kr-bubble dominated microstructure. The results of this work indicate a strong dependence of Kr concentration as a function of grain boundary structure. Temperature also influences grain boundary chemistry with greater Kr concentration evident at higher temperatures, resulting in a reduced Kr concentration in the bulk. While Kr migration is active at elevated temperatures, no changes in grain size or texture were observed in the irradiated UO2 samples.

  7. Krypton tagging velocimetry in a turbulent Mach 2.7 boundary layer

    NASA Astrophysics Data System (ADS)

    Zahradka, D.; Parziale, N. J.; Smith, M. S.; Marineau, E. C.

    2016-05-01

    The krypton tagging velocimetry (KTV) technique is applied to the turbulent boundary layer on the wall of the "Mach 3 Calibration Tunnel" at Arnold Engineering Development Complex (AEDC) White Oak. Profiles of velocity were measured with KTV and Pitot-pressure probes in the Mach 2.7 turbulent boundary layer comprised of 99 % {N}2/1 % Kr at momentum-thickness Reynolds numbers of {Re}_{\\varTheta }= 800, 1400, and 2400. Agreement between the KTV- and Pitot-derived velocity profiles is excellent. The KTV and Pitot velocity data follow the law of the wall in the logarithmic region with application of the Van Driest I transformation. The velocity data are analyzed in the outer region of the boundary layer with the law of the wake and a velocity-defect law. KTV-derived streamwise velocity fluctuation measurements are reported and are consistent with data from the literature. To enable near-wall measurement with KTV (y/δ ≈ 0.1-0.2), an 800-nm longpass filter was used to block the 760.2-nm read-laser pulse. With the longpass filter, the 819.0-nm emission from the re-excited Kr can be imaged to track the displacement of the metastable tracer without imaging the reflection and scatter from the read-laser off of solid surfaces. To operate the Mach 3 AEDC Calibration Tunnel at several discrete unit Reynolds numbers, a modification was required and is described herein.

  8. Effect of Grain Boundaries on Krypton Segregation Behavior in Irradiated Uranium Dioxide

    NASA Astrophysics Data System (ADS)

    Valderrama, Billy; He, Lingfeng; Henderson, Hunter B.; Pakarinen, Janne; Jaques, Brian; Gan, Jian; Butt, Darryl P.; Allen, Todd R.; Manuel, Michele V.

    2014-12-01

    Fission products, such as krypton (Kr), are known to be insoluble within UO2, segregating toward grain boundaries and eventually leading to a lowering in thermal conductivity and fuel swelling. Recent computational studies have identified that differences in grain boundary structure have a significant effect on the segregation behavior of fission products. However, experimental work supporting these simulations is lacking. Atom probe tomography was used to measure the Kr distribution across grain boundaries in UO2. Polycrystalline depleted UO2 samples were irradiated with 0.7 MeV and 1.8 MeV Kr-ions and annealed to 1000°C, 1300°C, and 1600°C for 1 h to produce a Kr-bubble dominated microstructure. The results of this work indicate a strong dependence of Kr concentration as a function of grain boundary structure. Temperature also influences grain boundary chemistry with greater Kr concentration evident at higher temperatures, resulting in a reduced Kr concentration in the bulk. Although Kr segregation takes place at elevated temperatures, no change in grain size or texture was observed in the irradiated UO2 samples.

  9. Effects of Pulmonary Inhalation on Hyperpolarized Krypton-83 Magnetic Resonance T1 Relaxation

    PubMed Central

    Stupic, K.F.; Elkins, N.D.; Pavlovskaya, G.E.; Repine, J.E.; Meersmann, T.

    2011-01-01

    The 83Kr magnetic resonance (MR) relaxation time T1 of krypton gas in contact with model surfaces was previously found to be highly sensitive to surface composition, surface to volume ratio, and surface temperature. The current work explored aspects of pulmonary 83Kr T1 relaxation measurements in excised lungs from healthy rats using hyperpolarized (hp) 83Kr with approximately 4.4 % spin polarization. MR spectroscopy without spatial resolution was applied to the ex vivo lungs that actively inhale hp 83Kr through a custom designed ventilation system. Various inhalation schemes were devised to explore the influence of anatomical dead space upon the measured 83Kr T1 relaxation times. The longitudinal 83Kr relaxation times in the distal airways and the respiratory zones were independent of the lung inhalation volume, with T1 = 1.3 s and T1 = 1.0 s, depending only on the applied inhalation scheme. The obtained data was highly reproducible between different specimens. Further, the 83Kr T1 relaxation times in excised lungs were unaffected by the presence of up to 40% oxygen in the hp gas mixture. The results support the possible importance of 83Kr as a biomarker for evaluating lung function. PMID:21628780

  10. Impact of high dose krypton ion irradiation on corrosion behavior of laser beam welded zircaloy-4

    SciTech Connect

    Wan Qian . E-mail: wanqian99@tsinghua.org.cn; Bai Xinde; Zhang Xiangyu

    2006-02-02

    In order to study the effect of krypton ion irradiation on the aqueous corrosion behavior of laser beam welded zircaloy-4 (LBWZr4), the butt weld joint of zircaloy-4 was made by means of a carbon dioxide laser, subsequently the LBWZr4 samples were irradiated with Kr ions using an accelerator at an energy of 300 keV, with a dose range from 1 x 10{sup 15} to 3 x 10{sup 16} ions/cm{sup 2} at about 150 deg. C. Three-sweep potentiodynamic polarization measurement was employed to evaluate the aqueous corrosion behavior of Kr-irradiated LBWZr4 in a 0.5 M H{sub 2}SO{sub 4} solution. Scanning electron microscopy (SEM) was used to examine the surface topography of the Kr-irradiated LBWZr4 after the potentiodynamic polarization measurement. Transmission electron microscopy was employed to examine the change of microstructures in the irradiated surface. The polarization tests showed that compared with the passive current density of the as-received LBWZr4, the Kr-irradiated LBWZr4 is much lower; however, with the irradiation dose increasing from 1 x 10{sup 15} to 3 x 10{sup 16} ions/cm{sup 2}, the passive current density, closely related to the surface corrosion resistance, increased remarkably. The mechanism of the corrosion behavior transformation was due to the recrystallization of the amorphous phase induced by the lower ion irradiation.

  11. Effects of dispersion forces on the structure and thermodynamics of fluid krypton

    PubMed

    Jakse; Bomont; Charpentier; Bretonnet

    2000-09-01

    Semianalytical and numerical calculations are performed to predict the structural and thermodynamic properties of low-density Kr fluid. Assuming that the interatomic forces can be modelled by a pairwise potential plus the three-body Axilrod-Teller potential, two different routes are explored. The first one is based on the hybridized mean spherical approximation integral equation of the theory of liquids and the second one uses large-scale molecular dynamics (MD). Algorithms for MD simulation are constructed on parallel machines to reduce the amount of computer time induced by the calculations of the three-body forces and the pair-correlation function. Our results obtained with the two methods mentioned above are in quite good agreement with the recent small-angle neutron-scattering experiments [Formisano et al., Phys. Rev. Lett. 79, 221 (1997); Benmore et al., J. Phys.: Condens. Matter 11, 3091 (1999)]. Moreover, the reliability of the asymptotic form of the integral equation is assessed for the specific case of dispersion forces including the three-body contributions, by an analysis at low wave vector and low density. It is seen that the effects of the Axilrod-Teller triple-dipole potential cannot be ignored to describe the structure and the thermodynamic properties of fluid krypton even at low density. PMID:11088867

  12. Krypton-79m: a new radionuclide for applications in nuclear medicine

    SciTech Connect

    Myers, W.G.; Dahl, J.R.; Graham, M.C.

    1986-09-01

    Krypton-79m emits 130-keV gamma rays in 27 +/- 1% of its disintegrations and decays with a half-life of 50 +/- 3 sec. It is generated readily by bombarding nearly saturated aqueous solutions of bromide salts, or bromoform, with 14-MeV protons. The 79mKr is swept out continuously as it is produced by bubbling helium upward through the liquids. Up to 200 mCi per I are obtained of the resulting mixture of gases. The 79mKr + helium is mixed with about five volumes of air and then driven continuously through a small-bore tube to an Anger scintillation camera located approximately 200 yards away. The rate of flow is adjusted so that the amounts of 13-sec 81mKr and of 35-hr 79Kr are inconsequential at the time and point of use. When the gases are inhaled, good images of the lungs are obtained with an Anger scintillation camera. The trachea and bronchi commonly are revealed also.

  13. A thermal beam of metastable krypton atoms produced by optical excitation.

    SciTech Connect

    Ding, Y.; Hu, S.-M.; Bailey, K.; Davis, A. M.; Dunford, R. W.; Lu, Z.-T.; O'Connor, T. P.; Young, L.; Univ. of Chicago; Univ. of Science and Technology of China

    2007-02-08

    A room-temperature beam of krypton atoms in the metastable 5s[3/2]{sub 2} level is demonstrated via an optical excitation method. A Kr-discharge lamp is used to produce vacuum ultraviolet photons at 124 nm for the first-step excitation from the ground level 4p{sup 6} {sup 1}S{sub 0} to the 5s[3/2]{sub 1} level. An 819 nm Ti:sapphire laser is used for the second-step excitation from 5s[3/2]{sub 1} to 5s[3/2]{sub 2} followed by a spontaneous decay to the 5s[3/2]{sub 2} metastable level. A metastable atomic beam with an angular flux density of 3 x 10{sup 14} s{sup -1} sr{sup -1} is achieved at the total gas flow rate of 0.01 cm{sup 3}/s at STP (or 3 x 10{sup 17} at./s). The dependences of the flux on the gas flow rate, laser power, and lamp parameters are investigated.

  14. Solidification and fcc- to metastable hcp- phase transition in krypton under modulating dynamic pressures

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Yin; Yoo, Choong-Shik; Kim, Minseob; Liermann, Hanns-Peter; Cynn, Hyunchae; Jenei, Zsolt; Evans, William

    2014-03-01

    We describe high-pressure kinetic studies of the solidification, melting and fcc-hcp transitions of Krypton under dynamic loading conditions, using a dynamic-diamond anvil cell (d-DAC) coupled with time-resolved x-ray diffraction. The time-resolved diffraction patterns and dynamic pressure responses show compression-rate dependencies associated with both the decay and growth time constants of the liquid-solid and solid-liquid transitions. According to the Avrami equation, both the solidified and melting processes are spontaneous nucleation and a rod-like (1-D) growth. Furthermore, under dynamic loading conditions, Kr-hcp forms from fcc close to the melting line. The nucleation time of fcc and hcp are very fast, with little dependence of compression rates or shorter than the time resolutions. The threshold pressure for the formation of Kr-hcp is ~ 0.8 GPa at the dynamic loadings of 0.004-13 GPa/s. This work was carried out at DESY. This work was performed under the auspices of DOE by LLNL under contracts(W-7405-Eng-48 and DE-AC52-07NA27344) and funded by the LDRD(11-ERD-046). The work at WSU was funded by NSF-DMR(1203834), DTRA(HDTRA1-12-01-0020).

  15. Branchial Anomalies: Diagnosis and Management

    PubMed Central

    Azeez, Arun; Thada, Nikhil Dinaker; Rao, Pallavi; Prasad, Kishore Chandra

    2014-01-01

    Objective. To find out the incidence of involvement of individual arches, anatomical types of lesions, the age and sex incidence, the site and side of predilection, the common clinical features, the common investigations, treatment, and complications of the different anomalies. Setting. Academic Department of Otolaryngology, Head and Neck Surgery. Design. A 10 year retrospective study. Participants. 30 patients with clinically proven branchial anomalies including patients with bilateral disease totaling 34 lesions. Main Outcome Measures. The demographical data, clinical features, type of branchial anomalies, and the management details were recorded and analyzed. Results and Observations. The mean age of presentation was 18.67 years. Male to female sex ratio was 1.27 : 1 with a male preponderance. Of the 34 lesions, maximum incidence was of second arch anomalies (50%) followed by first arch. We had two cases each of third and fourth arch anomalies. Only 1 (3.3%) patients of the 30 presented with lesion at birth. The most common pathological type of lesions was fistula (58.82%) followed by cyst. 41.18% of the lesions occurred on the right side. All the patients underwent surgical excision. None of our patients had involvement of facial nerve in first branchial anomaly. All patients had tracts going superficial to the facial nerve. Conclusion. Confirming the extent of the tract is mandatory before any surgery as these lesions pass in relation to some of the most vital structures of the neck. Surgery should always be the treatment option. injection of dye, microscopic removal and inclusion of surrounding tissue while excising the tract leads to a decreased incidence of recurrence. PMID:24772172

  16. Ru isotope heterogeneity in the solar protoplanetary disk

    NASA Astrophysics Data System (ADS)

    Fischer-Gödde, Mario; Burkhardt, Christoph; Kruijer, Thomas S.; Kleine, Thorsten

    2015-11-01

    Nucleosynthetic isotope anomalies in bulk chondrites and differentiated meteorites reflect variable proportions of isotopically diverse presolar components in bulk planetary bodies, but the origin of these heterogeneities is not well understood. Here, the Ru isotope composition of a comprehensive suite of iron meteorites and bulk samples of ordinary, enstatite and carbonaceous chondrites, as well as acid leachates and an insoluble residue of the Allende chondrite are examined using newly developed multi-collector inductively coupled plasma mass spectrometry techniques. Except for IAB iron meteorites and enstatite chondrites, all investigated meteorites show well-resolved Ru isotope anomalies. Of these, within-group Ru isotopic variations observed for samples from a given chemical group of iron meteorites reflect secondary neutron capture induced Ru isotope shifts during prolonged cosmic ray-exposure. After correction of these cosmogenic effects using Pt isotopes as a neutron-dose monitor, the remaining Ru isotope anomalies are nucleosynthetic in nature and are consistent with a deficit in s-process Ru in iron meteorite parent bodies. Similarly, Ru isotope anomalies in bulk ordinary and carbonaceous chondrites also reflect a deficiency in s-process Ru. The sequential dissolution of Allende reveals the presence of an HF-soluble s-process carrier, which is either an unidentified presolar phase or a component that incorporated s-process Ru liberated from SiC grains during nebular or parent body processes. We show that varying proportions of the s-process carrier identified in Allende resulted in the correlated Ru isotope anomalies observed for bulk meteorites, and that all meteorites (except possibly IAB irons and enstatite chondrites) are depleted in this s-process component relative to Ru from the Earth's mantle. Bulk meteorites exhibit correlated Ru and Mo isotope anomalies, reflecting variable deficits of a common s-process component, but some iron meteorites and

  17. Genetic basis for vascular anomalies.

    PubMed

    Kirkorian, A Yasmine; Grossberg, Anna L; Püttgen, Katherine B

    2016-03-01

    The fundamental genetics of many isolated vascular anomalies and syndromes associated with vascular anomalies have been elucidated. The rate of discovery continues to increase, expanding our understanding of the underlying interconnected molecular pathways. This review summarizes genetic and clinical information on the following diagnoses: capillary malformation, venous malformation, lymphatic malformation, arteriovenous malformation, PIK3CA-related overgrowth spectrum (PROS), Proteus syndrome, SOLAMEN syndrome, Sturge-Weber syndrome, phakomatosis pigmentovascularis, congenital hemangioma, verrucous venous malformation, cutaneomucosal venous malformation, blue rubber bleb nevus syndrome, capillary malformation-arteriovenous malformation syndrome, Parkes-Weber syndrome, and Maffucci syndrome. PMID:27607321

  18. Boundary anomalies and correlation functions

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Wei

    2016-08-01

    It was shown recently that boundary terms of conformal anomalies recover the universal contribution to the entanglement entropy and also play an important role in the boundary monotonicity theorem of odd-dimensional quantum field theories. Motivated by these results, we investigate relationships between boundary anomalies and the stress tensor correlation functions in conformal field theories. In particular, we focus on how the conformal Ward identity and the renormalization group equation are modified by boundary central charges. Renormalized stress tensors induced by boundary Weyl invariants are also discussed, with examples in spherical and cylindrical geometries.

  19. IUPAC Project: Terminology and definition of quantities related to the isotope distribution in elements with more than two stable isotopes

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Angert, A.; Bergquist, B.; Brand, W.; Ono, S.; Röckmann, T.; Savarino, J.

    2012-04-01

    The objective of IUPAC Project 2009-046-2-200 (http://www.iupac.org/web/ins/2009-046-2-200) is to define terminology and to identify the most suitable definitions of quantities that characterise the isotope distribution in elements with more than two stable isotopes, including so-called mass-independent fractionation, non-mass dependent fractionation, isotope anomaly, 17O excess, etc. Most atmospheric oxygen-bearing species show deviations in their triple oxygen isotope ratios from mass-dependent fractionation (MDF) relationships predicted by the theories of Urey, Bigeleisen and Mayer. Similar deviations have also been found in sulphur and other elements with more than two stables isotopes (e.g. Hg, Cd, Zn), often preserved in non-atmospheric reservoirs, including rocks, minerals, soils, ice and waters. Despite the ubiquity of this type of isotope anomaly, there has never been an attempt to clearly define the terminology and physical quantities used to measure these anomalies and the processes that lead to their formation. Terms like mass-independent fractionation, non-mass dependent fractionation, isotope anomaly, isotope excess etc. have been used in the historic and recent literature, but are often not carefully distinguished. The realisation that MDF comprises a range of possible relationships between the isotopes of one element led to further complications because it meant that apparent isotope anomalies could be created by a combination of different MDF processes. At the moment, at least four different definitions to quantify isotope anomalies are being used. Furthermore, coefficients used in these definitions vary, which makes the comparison of data from different sources very difficult, even for experts. A consistent set of recommendations on how to express and quantify the isotope distribution in elements with more than two stable isotopes is highly warranted. From our experience as academic teachers, we are woefully aware how impenetrable the field is for

  20. Observational manifestations of anomaly inflow

    SciTech Connect

    Boyarsky, Alexey; Shaposhnikov, Mikhail

    2005-10-15

    In theories with chiral couplings, one of the important consistency requirements is that of the cancellation of a gauge anomaly. In particular, this is one of the conditions imposed on the hypercharges in the standard model. However, anomaly cancellation condition of the standard model looks unnatural from the perspective of a theory with extra dimensions. Indeed, if our world were embedded into an odd-dimensional space, then the full theory would be automatically anomaly-free. In this paper we discuss the physical consequences of anomaly noncancellation for effective 4-dimensional field theory. We demonstrate that in such a theory parallel electric and magnetic fields get modified. In particular, this happens for any particle possessing both electric charge and magnetic moment. This effect, if observed, can serve as a low energy signature of extra dimensions. On the other hand, if such an effect is absent or is very small, then from the point of view of any theory with extra dimensions it is just another fine-tuning and should acquire theoretical explanation.

  1. Thermal anomalies in stressed Teflon.

    NASA Technical Reports Server (NTRS)

    Lee, S. H.; Wulff, C. A.

    1972-01-01

    In the course of testing polytetrafluoroethylene (Teflon) as a calorimetric gasketing material, serendipity revealed a thermal anomaly in stressed film that occurs concomitantly with the well-documented 25 C transition. The magnitude of the excess energy absorption - about 35 cal/g - is suggested to be related to the restricted thermal expansion of the film.

  2. Coral can have growth anomalies

    EPA Science Inventory

    Coral growth anomalies (GAs) are changes in the coral cells that deposit the calcium carbonate skeleton. They usually appear as raised areas of the skeleton and tissue that are different from the surrounding normal areas on the same colony. The features include abnormal shape a...

  3. Numerical anomalies mimicking physical effects

    NASA Astrophysics Data System (ADS)

    Menikoff, R.

    Numerical simulations of flows with shock waves typically use finite-difference shock-capturing algorithms. These algorithms give a shock a numerical width in order to generate the entropy increase that must occur across a shock wave. For algorithms in conservation form, steady-state shock waves are insensitive to the numerical dissipation because of the Hugoniot jump conditions. However, localized numerical errors occur when shock waves interact. Examples are the 'excess wall heating' in the Noh problem (shock reflected from rigid wall), errors when a shock impacts a material interface or an abrupt change in mesh spacing, and the start-up error from initializing a shock as a discontinuity. This class of anomalies can be explained by the entropy generation that occurs in the transient flow when a shock profile is formed or changed. The entropy error is localized spatially but under mesh refinement does not decrease in magnitude. Similar effects have been observed in shock tube experiments with partly dispersed shock waves. In this case, the shock has a physical width due to a relaxation process. An entropy anomaly from a transient shock interaction is inherent in the structure of the conservation equations for fluid flow. The anomaly can be expected to occur whenever heat conduction can be neglected and a shock wave has a non-zero width, whether the width is physical or numerical. Thus, the numerical anomaly from an artificial shock width mimics a real physical effect.

  4. Hyperfine Anomalies in Fr: Boundaries of the Spherical Single Particle Model

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Tandecki, M.; Collister, R.; Aubin, S.; Behr, J. A.; Gomez, E.; Gwinner, G.; Orozco, L. A.; Pearson, M. R.; Sprouse, G. D.; FrPNC Collaboration

    2015-07-01

    We have measured the hyperfine splitting of the 7 P1 /2 state at the 100 ppm level in Fr isotopes (206g,206m,207,209,213,221Fr) near the closed neutron shell (N =126 in 213Fr). The measurements in five isotopes and a nuclear isomeric state of francium, combined with previous determinations of the 7 S1 /2 splittings, reveal the spatial distribution of the nuclear magnetization, i.e., the Bohr-Weisskopf effect. We compare our results with a simple shell model consisting of unpaired single valence nucleons orbiting a spherical nucleus, and find good agreement over a range of neutron-deficient isotopes (207-213Fr). Also, we find near-constant proton anomalies for several even-N isotopes. This identifies a set of Fr isotopes whose nuclear structure can be understood well enough for the extraction of weak interaction parameters from parity nonconservation studies.

  5. Hyperfine Anomalies in Fr: Boundaries of the Spherical Single Particle Model.

    PubMed

    Zhang, J; Tandecki, M; Collister, R; Aubin, S; Behr, J A; Gomez, E; Gwinner, G; Orozco, L A; Pearson, M R; Sprouse, G D

    2015-07-24

    We have measured the hyperfine splitting of the 7P_{1/2} state at the 100 ppm level in Fr isotopes (^{206g,206m,207,209,213,221}Fr) near the closed neutron shell (N=126 in ^{213}Fr). The measurements in five isotopes and a nuclear isomeric state of francium, combined with previous determinations of the 7S_{1/2} splittings, reveal the spatial distribution of the nuclear magnetization, i.e., the Bohr-Weisskopf effect. We compare our results with a simple shell model consisting of unpaired single valence nucleons orbiting a spherical nucleus, and find good agreement over a range of neutron-deficient isotopes (^{207-213}Fr). Also, we find near-constant proton anomalies for several even-N isotopes. This identifies a set of Fr isotopes whose nuclear structure can be understood well enough for the extraction of weak interaction parameters from parity nonconservation studies. PMID:26252677

  6. [Summary of 2004 Chinese National Conference on oral and maxillofacial vascular anomalies].

    PubMed

    Zheng, Jia-Wei; Zhang, Zhi-Yuan; Zheng, Cang-Shang; Zhou, Qi

    2004-08-01

    Congenital vascular anomalies have been the subject of much controversy and confusion over the years, many remain to be investigated and resolved. Authorized by the Managing Director Board of Chinese Stomatological Association (CSA), 2004 Chinese National Conference on Oral and Maxillofacial Vascular Anomalies was successfully held on July 15 to 18, 2004 in Shenzhen Grand Hotel. The conference was sponsored by Chinese Society of Oral and Maxillofacial Surgery (CSOMS), and undertaken by the Second People's Hospital of Shenzhen city. Professor ZHANG Zhen-kang, president of CSA, Professor QIU Wei-liu, president of CSOMS and academician of Chinese Academy of Engineers, and Professor LIU Bao-lin, vice president of CSOMS were present and made important speech at the meeting. More than 120 delegates nationwide attended this conference. Through a 3-day of oral presentation and discussion, the terminology, classification, treatment selection and outcome measurement of oral and maxillofacial hemangioma and vascular malformations were concerted among the delegates. Hemangiomas and vascular malformations have been recognized as distinct diseases that exhibit unique properties and behavior that demand an appropriately tailored treatment plan. The classification of Waner and Suen was adopted and different treatment modalities were reviewed and advocated for different lesions. Delegates were most interested in intralesional injection of Pingyangmycin for venous malformations, Krypton laser photodynamic therapy of venular malformations, Nd:YAG laser therapy for deep head and neck venous malformations after surgical exposure of the lesions, as well as "double" embolization of large venous malformations reported by Professor QIN Zhong-ping. The conference witnessed the foundation of the Division of Vascular Anomalies, Chinese Society of Oral and Maxillofacial Surgery. PMID:15349690

  7. Probing the Isotopic Composition of Surface Waters Across Isotopic Extremes of Cryogenian Carbonates

    NASA Astrophysics Data System (ADS)

    Bosak, T.; Matys, E. D.; Bird, L. R.; Macdonald, F. A.; Freeman, K. H.

    2012-12-01

    Neoproterozoic carbonate strata record unusually large and positive carbon isotope values (δ13Ccarb from 4 to 10 per mil), and stratigraphically extensive large negative carbon isotope excursions (δ13Ccarb < -5 per mil). Mechanisms that account for the magnitude, the facies distribution and the global abundance of these isotopically extreme carbonates in Neoproterozoic successions remain poorly understood. Little is also known about organisms and metabolisms that cycled carbon in these carbonate strata, because they rarely contain well-preserved organic-rich fossils. To better understand the cycling of carbon during the deposition of the 715-635 Ma Tayshir member of the Tsagaan Oloom Formation, Mongolia, we analyzed δ13Cfossil of two types of organic fossils that occur in 13C- enriched carbonates (+ 5 to 9.9 per mil) and within 13C-depleted carbonates of the Tayshir anomaly (-3 to -6 per mil). Because these organic microfossils are remarkably similar to the tests of modern planktonic, herbivorous tintinnid ciliates and benthic macroscopic red algae, respectively, they can be used as tracers of organic matter production in surface waters. Fossil tests were extracted by acid maceration, cleaned and analyzed morphologically and microscopically. Their carbon isotopic composition was measured using a nano-scaled elemental analyzer inlet (nano-EA-IRMS), with ±1 per mil analytical precision. To date, we analyzed 12 samples of 100-150 organic tests, representing 3 different fossiliferous parts of the Tayshir anomaly (δ13Ccarb < -3 per mil) and 3 different strata predating the Tayshir anomaly (δ13Ccarb > +5 per mil), respectively. More samples, including those of fossil algae and tests from the carbonate strata overlying the Tayshir anomaly, are currently being analyzed. Initial data reveal a rather constant isotopic composition of organic carbon in fossil tests (δ13Cfossil), with values of -23 ±1 per mil both within 13C-enriched and 13C-depleted carbonates. The

  8. Evidence of magnetic isotope effects during thermochemical sulfate reduction

    PubMed Central

    Oduro, Harry; Harms, Brian; Sintim, Herman O.; Kaufman, Alan J.; Cody, George; Farquhar, James

    2011-01-01

    Thermochemical sulfate reduction experiments with simple amino acid and dilute concentrations of sulfate reveal significant degrees of mass-independent sulfur isotope fractionation. Enrichments of up to 13‰ for 33S are attributed to a magnetic isotope effect (MIE) associated with the formation of thiol-disulfide, ion-radical pairs. Observed 36S depletions in products are explained here by classical (mass-dependent) isotope effects and mixing processes. The experimental data contrasts strongly with multiple sulfur isotope trends in Archean samples, which exhibit significant 36S anomalies. These results support an origin other than thermochemical sulfate reduction for the mass-independent signals observed for early Earth samples. PMID:21997216

  9. Lunar and Planetary Science XXXV: Isotopes in Meteorites

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session"Isotopes in Meteorites" consisted of the following presentations:The Common Property of Isotopic Anomalies in Meteorites; Revised Production Rates for 22Na and 54Mn in Meteorites Using Cross Sections Measured for Neutron-induced Reactions; Modeling of 14C and 10Be Production Rates in Meteorites and Lunar Samples; Investigating Xenon Isotopic Fractionation During Rayleigh-type Distillation; The Mean Life Squared Relationship for Abundances of Extinct Radioactivities; and Magnesium Isotopic Fractionation of Forsterite During Evaporation from Different Crystallographic Surfaces.

  10. Isotopic chirality

    SciTech Connect

    Floss, H.G.

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  11. Transuranium isotopes

    SciTech Connect

    Hoffman, D.C.

    1985-12-01

    The needs of the research community for the production of transuranium isotopes, the quantities required, the continuity of production desired, and what a new steady state neutron source would have to provide to satisfy these needs are discussed. Examples of past frontier research which need these isotopes as well as an outline of the proposed Large Einsteinium Activation Program, LEAP, which requires roughly ten times the current production of /sup 254/Es are given. 15 refs., 5 figs., 4 tabs.

  12. Large negative Ti-50 anomalies in refractory inclusions from the Murchison carbonaceous chondrite - Evidence for incomplete mixing of neutron-rich supernova ejecta into the solar system

    NASA Technical Reports Server (NTRS)

    Hinton, Richard W.; Davis, Andrew M.; Scatena-Wachel, Debra E.

    1987-01-01

    An ion microprobe was used to measure Ti-50 variations in hibonite-rich inclusions from the Murchison chondrite. Both deficits and excesses of the isotope were found, depending on the inclusion being scanned. The anomalies were not correlated with the mineralogy, chemical composition, other isotopic anomalies of Ti, etc. The lack of correlations indicates that the cosmic chemical memory model (Clayton, 1981) cannot explain the observed variations. The Ti-50 concentrations may have originated when a supernova explosion triggered the collapse of a molecular cloud that formed the solar system. The solar system Ti-50 anomalies were from the cloud, not the progenitor star.

  13. Emission characteristics of pulse-periodic barrier-discharge plasma in a mixture of krypton with argon and liquid freon vapor

    NASA Astrophysics Data System (ADS)

    Shuaibov, A. K.; Minya, A. I.; Gritsak, R. V.; Gomoki, Z. T.

    2014-02-01

    Radiation of a nanosecond barrier discharge in a mixture of krypton, argon, and carbon-tetrachloride vapor is studied in the spectral range of 150-300 nm. The plasma radiation spectra and the dependences of the intensities of the 258 nm Cl2( D' → A'), 222 nm KrCl( B → X), and 175 nm ArCl( B → X) bands on the partial pressure of liquid freon vapor, argon, and krypton, as well as on the discharge excitation conditions, are studied. The optimal compositions of gas mixtures for creating a broadband UV-VUV emitter based on the band system of argon chloride, krypton chloride, and chlorine molecule are determined.

  14. Solvation of fluoroform and fluoroform-dimethylether dimer in liquid krypton: a theoretical cryospectroscopic study.

    PubMed

    Kohls, Emilija; Mishev, Anastas; Pejov, Ljupčo

    2013-08-01

    A hybrid, sequential statistical physics-quantum mechanical electronic-quantum mechanical nuclei approach has been applied to study the C-H stretching frequencies of bare fluoroform dissolved in liquid krypton under cryogenic conditions (at ~130 K), as well as upon blue shifting hydrogen bonding interactions with dimethylether in the same solvent. The structure of the liquid at 130 K was generated by Monte Carlo simulations of cryogenic Kr solutions containing either fluoroform or fluoroform and dimethylether molecules. Statistically uncorrelated configurations were appropriately chosen from the equilibrated MC runs and supermolecular clusters containing solute and solvent molecules (either standalone or embedded in the "bulk" part of the solvent treated as a polarizable continuum) were subjected to quantum mechanical electronic (QMel) and subsequent quantum mechanical nuclei (QMnuc) calculations. QMel calculations were implemented to generate the in-liquid 1D intramolecular C-H stretching vibrational potential of the fluoroform moiety and subsequently in the QMnuc phase the corresponding anharmonic C-H stretching frequency was computed by diagonalization techniques. Finally, the constructed vibrational density of states histograms were compared to the experimental Raman bands. The calculated anharmonic vibrational frequency shifts of the fluoroform C-H stretching mode upon interaction with dimethylether in liquid Kr are in very good agreement with the experimental data (20.3 at MP2 level vs. 16.6 cm(-1) experimentally). Most of this relatively large frequency blue shift is governed by configurations characterized by a direct C-H···O contact between monomers. The second population detected during MC simulations, characterized by reversed orientation of the monomers, has a minor contribution to the spectral appearance. The experimentally observed trend in the corresponding bandwidths is also correctly reproduced by our theoretical approach. Solvation of the

  15. Adsorptive Separation and Sequestration of Krypton, I and C14 on Diamond Nanoparticles

    SciTech Connect

    Ghosh, Tushar; Loyalka, Sudarsha; Prelas, Mark; Viswanath, Dabir

    2015-03-31

    The objective of this research proposal was to address the separation and sequestration of Kr and I from each other using nano-sized diamond particles and retaining these in diamond until they decay to the background level or can be used as a byproduct. Following removal of Kr and I, an adsorbent will be used to adsorb and store CO2 from the CO2 rich stream. A Field Enhanced Diffusion with Optical Activation (FEDOA-a large scale process that takes advantage of thermal, electrical, and optical activation to enhance the diffusion of an element into diamond structure) was used to load Kr and I on micron or nano sized particles having a larger relative surface area. The diamond particles can be further increased by doping it with boron followed by irradiation in a neutron flux. Previous studies showed that the hydrogen storage capacity could be increased significantly by using boron-doped irradiated diamond particles. Diamond powders were irradiated for a longer time by placing them in a quartz tube. The surface area was measured using a Quantachrome Autosorb system. No significant increase in the surface area was observed. Total surface area was about 1.7 m2/g. This suggests the existence of very minimal pores. Interestingly it showed hysteresis upon desorption. A reason for this may be strong interaction between the surface and the nitrogen molecules. Adsorption runs at higher temperatures did not show any adsorption of krypton on diamond. Use of a GC with HID detector to determine the adsorption capacity from the breakthrough curves was attempted, but experimental difficulties were encountered.

  16. The detection of fast neutral fragments following the photodissociation of krypton cluster ions

    NASA Astrophysics Data System (ADS)

    Smith, J. A.; Winkel, J. F.; Jones, A. B.; Stace, A. J.; Whitaker, B. J.

    1994-05-01

    Mass and kinetic energy resolved krypton cluster ions, Kr+n, have been photodissociated in the entrance to a time-of-flight (TOF) device of variable length. The subsequent deflection of all ions allowed for time resolved measurements to be undertaken on the neutral photofragments. Following the absorption of a photon (hν=2.33 eV), all cluster ions up to Kr+25 were found to eject one or, possibly, two neutral atoms with relatively high kinetic energies. An analysis of the laser polarization dependence of this event showed that the atoms are ejected on a time scale which is short compared with the rotational period of a cluster (10-100 ps). Remaining internal energy within the cluster ions is dissipated through the further loss of neutral atoms, but with low kinetic energies. The latter process is found to be isotropic with respect to the angle of polarization of the laser radiation. Kinetic energy releases calculated from the TOF spectra exhibit a gradual decline as a function of cluster size out as far as Kr+13 and, thereafter, maintain a constant value. This pattern of behavior is significantly different from that observed previously [Smith et al., J. Chem. Phys. 97, 397 (1992)] for argon cluster ions, Ar+n. A careful analysis of the kinetic energy data for Kr+3 photodissociation reveals that, in at least one of the reaction paths, the Kr+ fragment can only be formed in the ground spin-orbit state. This observation implies that photofragmentation proceeds via a 1(1/2)g←1(1/2)u transition. The implications of this result for the analogous Ar+3 photofragmentation are discussed.

  17. Studies on the photochemical and thermal dissociation synthesis of krypton difluoride

    SciTech Connect

    Kinkead, S.A.; FitzPatrick, J.R.; Foropoulos, J. Jr.; Kissane, R.J.; Purson, J.D.

    1993-08-01

    Like dioxygen difluoride (O{sub 2}F{sub 2}), KrF{sub 2} can be produced by thermal dissociation or photochemical synthesis from the elements; however, the yields are invariably much less than those obtained for O{sub 2}F{sub 2}. For example, while irradiation of liquid O{sub 2}/F{sub 2} mixtures at {minus}196{degrees}C through a sapphire window with an unfiltered 1,000W uv lamp provides in excess of 3g of O{sub 2}F{sub 2} per hour, the yield of KrF{sub 2} under identical circumstances is approximately 125 mg/hr. In this report, the yield of KrF{sub 2} in quartz and Pyrex{trademark} photochemical reactors has been examined as a function of irradiation wavelength, irradiation power, and Kr: F{sub 2} mole ratio. The uv-visible spectrum of KrF{sub 2} has also been recorded for comparison with earlier work, and the quantum yield for photodissociation at two wavelengths determined. The synthesis of KrF{sub 2} using large thermal gradients has also been examined using resistively heated nickel filaments to thermally dissociate the F{sub 2} in close proximity to liquid nitrogen-cooled metal surfaces. As a net result, KrF{sub 2} has been produced in yields in excess of 1.75 g/hr for extended periods in photochemical systems, and 2.3 g/hr for shorter periods in thermally dissociative reactors. This paper summarizes the results of examining parametrically several different types of reactors for efficiency of producing krypton difluoride.

  18. Dielectronic recombination and resonant transfer excitation processes for helium-like krypton

    NASA Astrophysics Data System (ADS)

    Hu, Xiao-Li; Qu, Yi-Zhi; Zhang, Song-Bin; Zhang, Yu

    2012-10-01

    The relativistic configuration interaction method is employed to calculate the dielectronic recombination (DR) cross sections of helium-like krypton via the 1s2lnl' (n = 2, 3, ..., 15) resonances. Then, the resonant transfer excitation (RTE) processes of Kr34+ colliding with H, He, H2, and CHx (x = 0-4) targets are investigated under the impulse approximation. The needed Compton profiles of targets are obtained from the Hartree—Fock wave functions. The RTE cross sections are strongly dependent on DR resonant energies and strengths, and the electron momentum distributions of the target. For H2 and H targets, the ratio of their RTE cross sections changes from 1.85 for the 1s2l2l' to 1.88 for other resonances, which demonstrates the weak molecular effects on the Compton profiles of H2. For CHx (x = 0-4) targets, the main contribution to the RTE cross section comes from the carbon atom since carbon carries 6 electrons; as the number of hydrogen increases in CHx, the RTE cross section almost increases by the same value, displaying the strong separate atom character for the hydrogen. However, further comparison of the individual orbital contributions of C(2p, 2s, 1s) and CH4(1t2, 2a1, 1a1) to the RTE cross sections shows that the molecular effects induce differences of about 25.1%, 19.9%, and 0.2% between 2p-1t2, 2s-2a1, and 1s-1a1 orbitals, respectively.

  19. Local gravity anomalies produced by dislocation sources.

    USGS Publications Warehouse

    Savage, J.C.

    1984-01-01

    Dilatancy, in general, does not correspond to the absence of a free air anomaly, as might be suggested by the special case of a spherical source of dilatation. For two-dimensional models a cylindrical source of dilatation produces no free air gravity anomaly, dip-slip faulting produces no Bouguer anomaly, and open cracks produce a Bouguer anomaly equal to that which would be produced had the material within the crack been mined out without deforming the solid. -from Author

  20. Anomaly constraints on monopoles and dyons

    SciTech Connect

    Csaki, Csaba; Shirman, Yuri; Terning, John

    2010-06-15

    Fermions with magnetic charges can contribute to anomalies. We derive the axial anomaly and gauge anomalies for monopoles and dyons, and find eight new gauge anomaly cancellation conditions in a general theory with both electric and magnetic charges. As a by-product, we also extend the Zwanziger two-potential formalism to include the {theta} parameter, and elaborate on the condition for CP invariance in theories with fermionic dyons.

  1. Loop anomalies in the causal approach

    NASA Astrophysics Data System (ADS)

    Grigore, Dan-Radu

    2015-01-01

    We consider gauge models in the causal approach and study one-loop contributions to the chronological products and the anomalies they produce. We prove that in order greater than 4 there are no one-loop anomalies. Next we analyze one-loop anomalies in the second- and third-order of the perturbation theory. We prove that the even parity contributions (with respect to parity) do not produce anomalies; for the odd parity contributions we reobtain the well-known result.

  2. The Palladium Isotopic Composition in Iron Meteorites

    NASA Technical Reports Server (NTRS)

    Chen, J. H.; Papanastassiou, D. A.

    2005-01-01

    Ru, Mo and Pd are very useful indicators for the identification of nucleosynthetic components. We have developed techniques for Pd isotopes, in an effort to check the extent of isotopic effects in this mass region and for a Pt-group element which is less refractory than Ru. Stable Pd isotopes are produced by the process only (102Pd), the s-process only (104Pd), the process only (Pd-110) and by both the r- and s-processes (Pd-105, Pd-106, Pd-108). Kelly and Wasserburg reported a hint of a shift in 102Pd (approx. 25(epsilon)u; 1(epsilon)u (triple bonds) 0.01%) in Santa Clara. Earlier searches for Mo and Ru isotopic anomalies were either positive or negative.

  3. Survey of Anomaly Detection Methods

    SciTech Connect

    Ng, B

    2006-10-12

    This survey defines the problem of anomaly detection and provides an overview of existing methods. The methods are categorized into two general classes: generative and discriminative. A generative approach involves building a model that represents the joint distribution of the input features and the output labels of system behavior (e.g., normal or anomalous) then applies the model to formulate a decision rule for detecting anomalies. On the other hand, a discriminative approach aims directly to find the decision rule, with the smallest error rate, that distinguishes between normal and anomalous behavior. For each approach, we will give an overview of popular techniques and provide references to state-of-the-art applications.

  4. Model selection for anomaly detection

    NASA Astrophysics Data System (ADS)

    Burnaev, E.; Erofeev, P.; Smolyakov, D.

    2015-12-01

    Anomaly detection based on one-class classification algorithms is broadly used in many applied domains like image processing (e.g. detection of whether a patient is "cancerous" or "healthy" from mammography image), network intrusion detection, etc. Performance of an anomaly detection algorithm crucially depends on a kernel, used to measure similarity in a feature space. The standard approaches (e.g. cross-validation) for kernel selection, used in two-class classification problems, can not be used directly due to the specific nature of a data (absence of a second, abnormal, class data). In this paper we generalize several kernel selection methods from binary-class case to the case of one-class classification and perform extensive comparison of these approaches using both synthetic and real-world data.

  5. Inter-annual Variations and Trend Analyses of Precipitation and Vapor Isotopes with a Global Isotope Circulation Model and Observations

    NASA Astrophysics Data System (ADS)

    Yoshimura, K.; Oki, T.

    2006-12-01

    An atmosphere, land, sea surface, and river-coupled global isotope circulation model has been developed and it successfully reproduced spatial distribution of precipitation and vapor isotopes as well as those of "real" daily to inter-annual cycles provided by GNIP. A relationship between ENSO and simulated isotope ratio anomaly shows significant signals in DJF. They show lows in Greenland, southern USA and center of the Pacific, and highs in the northern North America, South America, and center of Asia in El Nino periods. Mostly vice versa in La Nina periods. In low latitude zones, it corresponds with the anomaly variations of precipitation amount, but in high latitudes, isotopes show original information on complex water circulation. Further investigation will be done by the presentation. Long-term trends of anomaly of precipitation isotopes are interesting, too. The observation show significant increase of precipitation isotope ratio over west Europe and the simulation agrees with it. Very simply speaking, when hydrologic cycle is enhanced, precipitation isotope will be increased, because the residence time of vapor becomes shorter. The trends in GNIP and the model is well agreed with Dirmeyer and Brubaker's (2006) finding the increase trend of recycling ratio in Northern Hemisphere. GNIP, we often regard it as "already understood", still has unknown to be tackled with.

  6. Pigmentary anomalies and hearing loss.

    PubMed

    Toriello, Helga V

    2011-01-01

    A number of syndromes that include hearing loss in the phenotype also have pigmentary anomalies as a component manifestation. One of the most common of these is Waardenburg syndrome, which includes hypopigmentation and sensorineural hearing loss in the phenotype. There are four types of Waardenburg syndrome, distinguishable from each other by clinical findings. However, there are several other syndromes which include not only hypopigmentation, but also hyperpigmentation in the phenotype. This paper serves as a review of many of these syndromes. PMID:21358185

  7. Cloacal anomaly with bladder tumor

    PubMed Central

    Seth, Amlesh; Ram, Ishwar

    2013-01-01

    A rare case of squamous cell carcinoma of bladder occurring in a 36-year-old female with persistent cloacal anomaly who presented with frequency, urgency, dysuria, and recurrent urinary tract infection is reported. Contrast Enhanced Computed Tomography with three dimensional reconstruction showed presence of bladder tumor and persistent cloaca. She underwent pelvic exenteration and wet colostomy. Histopathologic findings revealed locally advanced moderately differentiated squamous cell carcinoma. PMID:23956519

  8. Prenatal diagnosis of cloacal anomaly.

    PubMed

    Cacciaguerra, S; Lo Presti, L; Di Leo, L; Grasso, S; Gangarossa, S; Di Benedetto, V; Di Benedetto, A

    1998-02-01

    The authors present a case of prenatal diagnosis of cloacal anomaly, characterized by the presence of oligohydramnios and cystic pelvic mass with changing features during observation. Postnatal study confirmed the presence of a recto-cloacal fistula, with a high confluence of the urinary, genital and intestinal systems. Both parents had a chromosome 9 inversion (p11q13), but the child was chromosomally normal. PMID:9561584

  9. Anomalies and Discrete Chiral Symmetries

    SciTech Connect

    Creutz, M.

    2009-09-07

    The quantum anomaly that breaks the U(1) axial symmetry of massless multi-flavored QCD leaves behind a discrete flavor-singlet chiral invariance. With massive quarks, this residual symmetry has a close connection with the strong CP-violating parameter theta. One result is that if the lightest quarks are degenerate, then a first order transition will occur when theta passes through pi. The resulting framework helps clarify when the rooting prescription for extrapolating in the number of flavors is valid.

  10. Columbus Payloads Flow Rate Anomalies

    NASA Technical Reports Server (NTRS)

    Quaranta, Albino; Bufano, Gaetana; DePalo, Savino; Holt, James M.; Szigetvari, Zoltan; Palumberi, Sergio; Hinderer, S.

    2011-01-01

    The Columbus Active Thermal Control System (ATCS) is the main thermal bus for the pressurized racks working inside the European laboratory. One of the ATCS goals is to provide proper water flow rate to each payload (P/L) by controlling actively the pressure drop across the common plenum distribution piping. Overall flow measurement performed by the Water Pump Assembly (WPA) is the only flow rate monitor available at system level and is not part of the feedback control system. At rack activation the flow rate provided by the system is derived on ground by computing the WPA flow increase. With this approach, several anomalies were raised during these 3 years on-orbit, with the indication of low flow rate conditions on the European racks FSL, BioLab, EDR and EPM. This paper reviews the system and P/Ls calibration approach, the anomalies occurred, the engineering evaluation on the measurement approach and the accuracy improvements proposed, the on-orbit test under evaluation with NASA and finally discusses possible short and long term solutions in case of anomaly confirmation.

  11. Canadian Network for Isotopes in Precipitation (CNIP)and Isotope Climatology and Hydroclimatology in Canada

    NASA Astrophysics Data System (ADS)

    Birks, S. J.; Edwards, T. W.; Gibson, J. J.

    2002-12-01

    The distribution of stable isotopes in precipitation provides fundamental information about the partitioning of the global atmospheric water budget, and hence about key aspects of Earth's climate, that cannot be discerned using other means. Although continuing demand exists for monitoring of isotopes in precipitation to define isotopic input functions for local hydrologic studies or for calibration of isotopic indicators of paleoclimate, based on longterm averages and climatological norms, awareness is also growing of the significant value of the monthly snapshots of the precipitation isotope field provided by the IAEA/WMO Global Network for Isotopes in Precipitation and its affiliated national networks as benchmark maps of the ongoing and dynamic evolution of the global water cycle. An initiative within the Canadian Network for Isotopes in Precipitation program includes development of a spatial and temporal database incorporating Canadian data to create a gridded isotope overlay compatible with gridded pressure and flux field data from the NCAR/CDAS Re-analysis Project. This database includes interpolated fields of our current best approximations of climatological isotopic means in addition to the original monthly data for the period 1997-2000. Studies are underway to test the sensitivity of the isotope-climate signal in precipitation to changes in these parameters utilizing perturbations in local climate arising from the El Nino/Southern Oscillation (ENSO). Intriguing results have been obtained from preliminary studies incorporating pressure and flux field data for the 1997-98 El Nino with CNIP isotope overlays. The strongest climate anomalies were found during the winter following the 1997 El Nino event, consistent with the expected strengthening of the Pacific North American pattern during this period. Comparisons of the isotopic fields with climate fields illustrate the complexity and dynamic nature of isotope climate not evident in time-series of data from

  12. New isotopic clues to solar system formation

    NASA Technical Reports Server (NTRS)

    Lee, T.

    1979-01-01

    The presence of two new extinct nuclides Al-26 and Pd-107 with half lives of approximately one million years in the early solar system implies that there were nucleosynthetic activities involving a great many elements almost at the instant of solar system formation. Rate gas and oxygen isotopic abundance variations ('anomalies') relative to the 'cosmic' composition were observed in a variety of planetary objects, which indicates that isotopic heterogeneities caused by the incomplete mixing of distinct nucleosynthesis components permeate the entire solar system. These new results have major implications for cosmochronology, nucleosynthesis theory, star formation, planetary heating, and the genetic relationship between different planetary bodies

  13. Global anomalies and effective field theory

    NASA Astrophysics Data System (ADS)

    Golkar, Siavash; Sethi, Savdeep

    2016-05-01

    We show that matching anomalies under large gauge transformations and large diffeomorphisms can explain the appearance and non-renormalization of couplings in effective field theory. We focus on thermal effective field theory, where we argue that the appearance of certain unusual Chern-Simons couplings is a consequence of global anomalies. As an example, we show that a mixed global anomaly in four dimensions fixes the chiral vortical effect coefficient (up to an overall additive factor). This is an experimentally measurable prediction from a global anomaly. For certain situations, we propose a simpler method for calculating global anomalies which uses correlation functions rather than eta invariants.

  14. Stable platinum isotope measurements in presolar nanodiamonds by TEAMS.

    PubMed

    Wallner, A; Melber, K; Merchel, S; Ott, U; Forstner, O; Golser, R; Kutschera, W; Priller, A; Steier, P

    2013-01-01

    Nanodiamonds are stardust grains commonly found in primitive meteorites. They survived the formation of the solar system and kept their own individuality. Measurements of trace-element isotopic signatures in these grains will help understanding heavy element nucleosynthesis in massive stars and dust formation from their ejecta. We have continued previous attempts to search for stable Pt isotope anomalies in nanodiamonds via trace element accelerator mass spectrometry (TEAMS). The installation of a new injector beam line at the VERA facility allowed studying low traces of stable elements in different materials. Moreover, recent experiments showed that VERA provides the required measurement precision together with a low Pt machine background. Here, we observed for the first time an indication for enhancements of (198)Pt/(195)Pt isotope ratios in two diamond residues prepared by different chemical separation techniques from the Allende meteorite. Variations in other isotopic ratios were within analytical uncertainty, and no anomaly was identified in a third diamond fraction. PMID:23565017

  15. Stable platinum isotope measurements in presolar nanodiamonds by TEAMS

    PubMed Central

    Wallner, A.; Melber, K.; Merchel, S.; Ott, U.; Forstner, O.; Golser, R.; Kutschera, W.; Priller, A.; Steier, P.

    2013-01-01

    Nanodiamonds are stardust grains commonly found in primitive meteorites. They survived the formation of the solar system and kept their own individuality. Measurements of trace-element isotopic signatures in these grains will help understanding heavy element nucleosynthesis in massive stars and dust formation from their ejecta. We have continued previous attempts to search for stable Pt isotope anomalies in nanodiamonds via trace element accelerator mass spectrometry (TEAMS). The installation of a new injector beam line at the VERA facility allowed studying low traces of stable elements in different materials. Moreover, recent experiments showed that VERA provides the required measurement precision together with a low Pt machine background. Here, we observed for the first time an indication for enhancements of 198Pt/195Pt isotope ratios in two diamond residues prepared by different chemical separation techniques from the Allende meteorite. Variations in other isotopic ratios were within analytical uncertainty, and no anomaly was identified in a third diamond fraction. PMID:23565017

  16. ISOTOPE SEPARATORS

    DOEpatents

    Bacon, C.G.

    1958-08-26

    An improvement is presented in the structure of an isotope separation apparatus and, in particular, is concerned with a magnetically operated shutter associated with a window which is provided for the purpose of enabling the operator to view the processes going on within the interior of the apparatus. The shutier is mounted to close under the force of gravity in the absence of any other force. By closing an electrical circuit to a coil mouated on the shutter the magnetic field of the isotope separating apparatus coacts with the magnetic field of the coil to force the shutter to the open position.

  17. Improved modeling of two-dimensional transitions in dense phases on crystalline surfaces. Krypton-graphite system.

    PubMed

    Ustinov, E A

    2015-02-21

    This paper presents a refined technique to describe two-dimensional phase transitions in dense fluids adsorbed on a crystalline surface. Prediction of parameters of 2D liquid-solid equilibrium is known to be an extremely challenging problem, which is mainly due to a small difference in thermodynamic functions of coexisting phases and lack of accuracy of numerical experiments in case of their high density. This is a serious limitation of various attempts to circumvent this problem. To improve this situation, a new methodology based on the kinetic Monte Carlo method was applied. The methodology involves analysis of equilibrium gas-liquid and gas-solid systems undergoing an external potential, which allows gradual shifting parameters of the phase coexistence. The interrelation of the chemical potential and tangential pressure for each system is then treated with the Gibbs-Duhem equation to obtain the point of intersection corresponding to the liquid/solid-solid equilibrium coexistence. The methodology is demonstrated on the krypton-graphite system below and above the 2D critical temperature. Using experimental data on the liquid-solid and the commensurate-incommensurate transitions in the krypton monolayer derived from adsorption isotherms, the Kr-graphite Lennard-Jones parameters have been corrected resulting in a higher periodic potential modulation. PMID:25702018

  18. Temperature Programmed Desorption of Quench-condensed Krypton and Acetone in Air; Selective Concentration of Ultra-trace Gas Components.

    PubMed

    Suzuki, Taku T; Sakaguchi, Isao

    2016-01-01

    Selective concentration of ultra-trace components in air-like gases has an important application in analyzing volatile organic compounds in the gas. In the present study, we examined quench-condensation of the sample gas on a ZnO substrate below 50 K followed by temperature programmed desorption (TPD) (low temperature TPD) as a selective gas concentration technique. We studied two specific gases in the normal air; krypton as an inert gas and acetone as a reactive gas. We evaluated the relationship between the operating condition of low temperature TPD and the lowest detection limit. In the case of krypton, we observed the selective concentration by exposing at 6 K followed by thermal desorption at about 60 K. On the other hand, no selectivity appeared for acetone although trace acetone was successfully concentrated. This is likely due to the solvent effect by a major component in the air, which is suggested to be water. We suggest that pre-condensation to remove the water component may improve the selectivity in the trace acetone analysis by low temperature TPD. PMID:27063719

  19. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    SciTech Connect

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-10-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.

  20. Novel Sorbent Development and Evaluation for the Capture of Krypton and Xenon from Nuclear Fuel Reprocessing Off-Gas Streams

    SciTech Connect

    Troy G. Garn; Mitchell R. Greenhalgh; Jack D. Law

    2013-09-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, INL sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up.

  1. Novel sorbent development and evaluation for the capture of krypton and xenon from nuclear fuel reprocessing off-gas stream

    SciTech Connect

    Garn, T.G.; Greenhalgh, M.R.; Law, J.D.

    2013-07-01

    The release of volatile radionuclides generated during Used Nuclear Fuel reprocessing in the US will most certainly need to be controlled to meet US regulatory emission limits. A US DOE sponsored Off-Gas Sigma Team has been tasked with a multi-lab collaborative research and development effort to investigate and evaluate emissions and immobilization control technologies for the volatile radioactive species generated from commercial Used Nuclear Fuel (UNF) Reprocessing. Physical Adsorption technology is a simpler and potential economical alternative to cryogenic distillation processes that can be used for the capture of krypton and xenon and has resulted in a novel composite sorbent development procedure using synthesized mordenite as the active material. Utilizing the sorbent development procedure, Idaho National Laboratory sigma team members have developed two composite sorbents that have been evaluated for krypton and xenon capacities at ambient and 191 K temperature using numerous test gas compositions. Adsorption isotherms have been generated to predict equilibration and maximum capacities enabling modeling to support process equipment scale-up. (authors)

  2. How Large is the Mass Independent O-17 Anomaly in the Atmosphere?

    NASA Astrophysics Data System (ADS)

    Luz, B.; Angert, A.; Barkan, E.; Bender, M. L.

    2002-12-01

    The isotopic composition of atmospheric oxygen is controlled by biological mechanisms, the hydrological cycle and stratospheric photochemistry. The biological mechanisms include photosynthetic oxygen production of identical isotopic composition as the substrate water and oxygen uptake by various mechanisms with mass dependent fractionation. Fractionation in the hydrological cycle is also mass dependent. In contrast, stratospheric photochemistry also removes oxygen, but fractionates the isotopic composition of the remaining gas in a mass-independent way. As a result atmospheric oxygen becomes anomalous (O-17 depleted) with respect to oxygen of the global atmosphere that would have been produced in the absence of stratospheric photochemistry. For estimating the magnitude of this anomaly, it is necessary to know the triple isotope fractionations of the relevant global processes. In the present research we carried out experiments in order to determine the ratio between the discriminations against O-17 and O-18 in dark respiration and in photorespiration. The obtained values are 0.518 and 0.506 respectively, and are different than in meteoric water fractionation (0.525). Assuming that the latter value applies to leaf-water (the substrate of all terrestrial photosynthesis), we estimate the magnitude of the anomaly as 258 permeg. This figure is significantly larger than 117 permeg estimated from stratospheric mass balance. Alternatively, by talking the 117 permeg value as representative of the anomaly, we calculate the ratio between the discriminations against O-17 and O-18 in leaf water as 0.511. Clearly, if we are to correctly estimate the atmospheric anomaly, careful determination of the triple isotope composition of global leaf-water is a prerequisite.

  3. Satellite GN and C Anomaly Trends

    NASA Technical Reports Server (NTRS)

    Robertson, Brent; Stoneking, Eric

    2003-01-01

    On-orbit anomaly records for satellites launched from 1990 through 2001 are reviewed to determine recent trends of un-manned space mission critical failures. Anomalies categorized by subsystems show that Guidance, Navigation and Control (GN&C) subsystems have a high number of anomalies that result in a mission critical failure when compared to other subsystems. A mission critical failure is defined as a premature loss of a satellite or loss of its ability to perform its primary mission during its design life. The majority of anomalies are shown to occur early in the mission, usually within one year from launch. GN&C anomalies are categorized by cause and equipment type involved. A statistical analysis of the data is presented for all anomalies compared with the GN&C anomalies for various mission types, orbits and time periods. Conclusions and recommendations are presented for improving mission success and reliability.

  4. Trends in environmentally induced spacecraft anomalies

    NASA Technical Reports Server (NTRS)

    Wilkinson, Daniel C.

    1989-01-01

    The Spacecraft Anomaly Data Base was useful in identifying trends in anomaly occurrence. Trends alone do not provide quantitative testimony to a spacecraft's reliability, but they do indicate areas that command closer study. An in-depth analysis of a specific anomaly can be expensive and difficult without access to the spacecraft. Statistically verified anomaly trends can provide a good reference point to begin anomaly analysis. Many spacecraft experience an increase in anomalies during the period of several days centered on the solar equinox, a period that is also correlated with sun eclipse at geostationary altitude and an increase in major geomagnetic storms. Increase anomaly occurrence can also be seen during the local time interval between midnight and dawn. This local time interval represents a region in Earth's near space that experiences an enhancement in electron plasma density due to a migration from the magnetotail during or following a geomagnetic substorm.

  5. Brine history indicated by argon, krypton, chlorine, bromine, and iodine analyses of fluid inclusions from the Mississippi Valley type lead-fluorite-barite deposits at Hansonburg, New Mexico

    USGS Publications Warehouse

    Böhlke, J.K.; Irwin, J.J.

    1992-01-01

    Argon, krypton, chlorine, bromine, and iodine were measured in a homogeneous population of high-salinity hydrothermal fluid inclusions from the Tertiary-age Mississippi Valley-type (MVT) lead-fluorite-barite deposits at Hansonburg, New Mexico to establish new types of evidence for the history of both the fluid and the major dissolved salts. Noble gases and halogens in fluid inclusions containing 10-10-10-9 L of brine (Cl = 3 molal) were analyzed by laser microprobe noble-gas mass spectrometry (lmngms) on neutron-irradiated samples. The concentrations of 36Ar (4.7 ?? 10-8 molal) and 84Kr 1.8 ?? 10-9 molal) in the fluid inclusions are equal to those of fresh surface waters in equilibrium with air at approximately 20 ?? 5??. The mole ratios of Br Cl (1.2 ?? 10-4) and I Cl (1-2 ?? 10-6) are among the lowest measured in any natural waters, similar to those of modern brines formed by dissolution of Permian NaCl-bearing evaporites in southeast New Mexico. 40Ar 36Ar ratios (600) are twice that of air, and indicate that the fluid inclusions had excess radiogenic 40Ar (1.4 ?? 10-5 molal) when trapped. The amount of excess 40Ar appears to be too large to have been acquired with Cl by congruent dissolution of halite-bearing evaporites, and possibly too small to have been acquired with Pb by congruent dissolution of granitic basement rocks with Proterozoic KAr ages. From the lmngms data, combined with published Pb and S isotope data, we infer the following sequence of events in the history of the Hansonburg MVT hydrothermal brine: (1) the brine originated as relatively dilute meteoric water, and it did not gain or lose atmospheric Ar or Kr after recharge; (2) the originally dilute fluid acquired the bulk of its Cl and sulfate in the subsurface after recharge by dissolving halite-bearing Permian? marine evaporites; (3) the high salinity brine then acquired most of its Pb and excess radiogenic 40Ar from interactions with aquifer rocks other than evaporites, possibly clastic

  6. Molybdenum Isotopes in Some Iron Meteorites

    NASA Astrophysics Data System (ADS)

    Qi, L.; Masuda, A.

    1992-07-01

    Measurement of all seven stable Mo isotopes in iron meteorites has been continued for study of possible direct evidences for processes of nucleosynthesis in the pre-solar stage and information on extinct radioactive nuclides. Mo in iron meteorite was extracted by using recently developed chemical separation method [1], then loaded on 5 pass zone refined Re ribbon. Molybdenum isotope analysis was performed [2] in a VG SECTOR 54-30 thermal ionization mass spectrometer using a Faraday collector in peak jumping mode. The measured ratios of Mo were normalized provisionally to ^94Mo/^98Mo = 0.3802. Particular caution was drawn on the isobaric interferences of Zr, Ru, etc., which were negligible as a result. A small but distinct anomaly of Mo isotopes was found in Acuna iron meteorite. The normalized data show a growth trend from ^92Mo to ^97Mo, and this increment decreased suddenly at ^98Mo, then slightly increased at ^100Mo. The isotope variations might be explained as a result of excess s-process component (^95Mo to ^98Mo) contained in the sample. Gibeon suggested that isotopic anomalies at ^92Mo, ^95Mo, and ^97Mo are about -3-epsilon, -1.2-epsilon, and -0.5-epsilon respectively. It is difficult to give a perfect explanation to the observed data at present. However, it is interesting to note that ^92Mo (N=50) has a closed shell and only ^95Mo and ^97Mo are even-odd nuclides in all seven stable Mo isotopes and the 30-keV Maxwellian-averaged neutron capture cross sections for ^95Mo and ^97Mo are about 3 times bigger than others [3]. The depletions at ^95Mo and ^97Mo might be attributed to the higher cross section for their destruction by (n, gamma) reaction. The apparent opposite aberrations are found for Odessa iron. We reported anomalies of Mo isotopes in a specimen of Sikhote-Alin iron meteorite [4,5]. Further investigations have shown that the isotopic compositions of Mo in this iron are heterogeneous and that the "general anomaly" of Mo isotopes is related with the

  7. Determination of the separation efficiencies of a single-stage cryogenic distillation setup to remove krypton out of xenon by using a (83m)Kr tracer method.

    PubMed

    Rosendahl, S; Brown, E; Cristescu, I; Fieguth, A; Huhmann, C; Lebeda, O; Murra, M; Weinheimer, C

    2015-11-01

    The separation of krypton and xenon is of particular importance for the field of direct dark matter search with liquid xenon detectors. The intrinsic contamination of the xenon with radioactive (85)Kr makes a significant background for these kinds of low count-rate experiments and has to be removed beforehand. This can be achieved by cryogenic distillation, a technique widely used in industry, using the different vapor pressures of krypton and xenon. In this paper, we present an investigation on the separation performance of a single stage distillation system using a radioactive (83m)Kr-tracer method. The separation characteristics under different operation conditions are determined for very low concentrations of krypton in xenon at the level of (83m)Kr/Xe = 1.9 ⋅ 10(-15), demonstrating, that cryogenic distillation in this regime is working. The observed separation is in agreement with the expectation from the different volatilities of krypton and xenon. This cryogenic distillation station is the first step on the way to a multi-stage cryogenic distillation column for the next generation of direct dark matter experiment XENON1T. PMID:26628169

  8. Hot Flow Anomalies at Venus

    NASA Technical Reports Server (NTRS)

    Collinson, G. A.; Sibeck, David Gary; Boardsen, Scott A.; Moore, Tom; Barabash, S.; Masters, A.; Shane, N.; Slavin, J.A.; Coates, A.J.; Zhang, T. L.; Sarantos, M.

    2012-01-01

    We present a multi-instrument study of a hot flow anomaly (HFA) observed by the Venus Express spacecraft in the Venusian foreshock, on 22 March 2008, incorporating both Venus Express Magnetometer and Analyzer of Space Plasmas and Energetic Atoms (ASPERA) plasma observations. Centered on an interplanetary magnetic field discontinuity with inward convective motional electric fields on both sides, with a decreased core field strength, ion observations consistent with a flow deflection, and bounded by compressive heated edges, the properties of this event are consistent with those of HFAs observed at other planets within the solar system.

  9. Anomaly detection for internet surveillance

    NASA Astrophysics Data System (ADS)

    Bouma, Henri; Raaijmakers, Stephan; Halma, Arvid; Wedemeijer, Harry

    2012-06-01

    Many threats in the real world can be related to activity of persons on the internet. Internet surveillance aims to predict and prevent attacks and to assist in finding suspects based on information from the web. However, the amount of data on the internet rapidly increases and it is time consuming to monitor many websites. In this paper, we present a novel method to automatically monitor trends and find anomalies on the internet. The system was tested on Twitter data. The results showed that it can successfully recognize abnormal changes in activity or emotion.

  10. Hot flow anomalies at Venus

    NASA Astrophysics Data System (ADS)

    Collinson, G. A.; Sibeck, D. G.; Masters, A.; Shane, N.; Slavin, J. A.; Coates, A. J.; Zhang, T. L.; Sarantos, M.; Boardsen, S.; Moore, T. E.; Barabash, S.

    2012-04-01

    We present a multi-instrument study of a hot flow anomaly (HFA) observed by the Venus Express spacecraft in the Venusian foreshock, on 22 March 2008, incorporating both Venus Express Magnetometer and Analyzer of Space Plasmas and Energetic Atoms (ASPERA) plasma observations. Centered on an interplanetary magnetic field discontinuity with inward convective motional electric fields on both sides, with a decreased core field strength, ion observations consistent with a flow deflection, and bounded by compressive heated edges, the properties of this event are consistent with those of HFAs observed at other planets within the solar system.

  11. Space Weather, Cosmic Rays, and Satellite Anomalies

    NASA Astrophysics Data System (ADS)

    Lev, Dorman

    Results are presented of the Satellite Anomaly Project, which aims to improve the methods of safeguarding satellites in the Earth’s magnetosphere from the negative effects of the space environment. Anomaly data from the USSR and Russian “Kosmos” series satellites in the period 1971-1999 are combined into one database, together with similar information on other spacecraft. This database contains, beyond the anomaly information, various characteristics of space weather: geomagnetic activity indices (Ap, AE and Dst), fluxes and fluencies of electrons and protons at different energies, high energy cosmic ray variations and other solar, interplanetary and solar wind data. A comparative analysis of the distribution of each of these parameters relative to satellite anomalies was carried out for the total number of anomalies (about 6000 events), and separately for high altitude orbit satellites ( 5000 events) and low altitude (about 800 events). No relation was found between low and high altitude satellite anomalies. Daily numbers of satellite anomalies, averaged by a superposed epoch method around sudden storm commencements and proton event onsets for high (>1500 km) and low (<1500 km) altitude orbits revealed a big difference in behavior. Satellites were divided into several groups according to their orbital characteristics (altitude and inclination). The relation of satellite anomalies to the environmental parameters was found to be different for various orbits, and this should be taken into account when developing anomaly frequency models. The preliminary anomaly frequency models are presented.

  12. Conductivity Anomalies in Central Europe

    NASA Astrophysics Data System (ADS)

    Neska, Anne

    2016-01-01

    This paper is a review of studies which, by applying the magnetotelluric, geomagnetic deep sounding, and magnetovariational sounding methods (the latter refers to usage of the horizontal magnetic tensor), investigate Central Europe for zones of enhanced electrical conductivity. The study areas comprise the region of the Trans-European Suture Zone (i.e. the south Baltic region and Poland), the North German Basin, the German and Czech Variscides, the Pannonian Basin (Hungary), and the Polish, Slovakian, Ukrainian, and Romanian Carpathians. This part of the world is well investigated in terms of data coverage and of the density of published studies, whereas the certainty that the results lead to comprehensive interpretations varies within the reviewed literature. A comparison of spatially coincident or adjacent studies reveals the important role that the data coverage of a distinct conductivity anomaly plays for the consistency of results. The encountered conductivity anomalies are understood as linked to basin sediments, asthenospheric upwelling, large differences in lithospheric age, and—this concerns most of them, which all concentrate in the middle crust—tectonic boundaries that developed during all mountain building phases that have taken place on the continent.

  13. Changes of charge radii and hyperfine interactions of the Dy isotopes

    NASA Astrophysics Data System (ADS)

    Clark, D. L.; Greenlees, G. W.

    1982-10-01

    A continuous wave dye laser and a thermal atomic beam were used to measure the optical isotope shifts and hyperfine splittings for the 5547 Å, 5639 Å, 5652 Å, 5974 Å, and the 5989 Å transition of the seven stable isotopes of dysprosium. The hyperfine splitting of the odd-A isotopes has been analyzed using the formalism of Sanders and Beck and the hyperfine anomaly has been extracted. Comparison with calculations using Nilsson wave functions is presented. The isotope shift measurements have been analyzed with published electronic and muonic x-ray isotope shifts to yield δ values and some estimates of the specific mass shift constant. NUCLEAR STRUCTURE 156-164Dy. Measured optical isotope shifts and hyperfine splittings. Deduced δ, A(4f126s 6p), B(4f126s 6p), and the hyperfine anomaly. Laser spectroscopy on atomic beams.

  14. The origin of the 'FUN' anomalies and the high temperature inclusions in the Allende meteorite. [Fractionation and Unknown Nuclear processes

    NASA Technical Reports Server (NTRS)

    Consolmagno, G. J.; Cameron, A. G. W.

    1980-01-01

    The discovery of isotopic anomalies in white inclusions of the meteorite Allende has led to fundamental questions concerning the origin of these anomalies and of the white inclusions themselves. An analysis of the 'FUN' anomalies in the inclusions C1 and EK1-4-1 demonstrates that these isotopic anomalies may be decomposed into individual nucleosynthetic components, which have been subjected to separate mass and component fractionations. There is no evidence that any freshly-synthesized material injected into the primitive solar nebula was of abnormal isotopic composition, or that the FUN anomalies were due to an injection of unusual material. Rather, they show the effects of large mass fractionations and an unusual mixture of normal nucleosynthetic material, likely to be in the form of interstellar grains whose size or chemistry served as a memory for the nucleosynthetic origins of their constituent atoms. Giant gaseous protoplanets, as described for the early solar nebula by Cameron (1978), are a potential site for achieving both mass and component fractionations, and for producing white inclusions in general.

  15. Minor congenital anomalies and ataxic cerebral palsy.

    PubMed Central

    Miller, G

    1989-01-01

    The incidence of minor congenital anomalies was examined in 36 patients with ataxic cerebral palsy, in unaffected family members, and in 100 unrelated control subjects. None of the control subjects or family members had more than four anomalies, and 25 of 36 (69%) of the patients had more than four. The distribution of anomalies differed considerably, with 60% of the index cases having seven or more, and 94% of the controls having three or less. The number occurring in the patients was significantly more than in their relatives. Of the 25 patients with more than four anomalies, 16 (64%) had undergone potentially adverse perinatal or early postnatal events. Thus minor congenital anomalies were considerably more frequent in those with ataxic cerebral palsy than in related or unrelated control subjects. These anomalies may be markers of early prenatal factors that contributed to the adverse outcome either directly or by predisposing to perinatal difficulties. PMID:2751330

  16. Sea level anomalies exacerbate beach erosion

    NASA Astrophysics Data System (ADS)

    Theuerkauf, Ethan J.; Rodriguez, Antonio B.; Fegley, Stephen R.; Luettich, Richard A.

    2014-07-01

    Sea level anomalies are intra-seasonal increases in water level forced by meteorological and oceanographic processes unrelated to storms. The effects of sea level anomalies on beach morphology are unknown but important to constrain because these events have been recognized over large stretches of continental margins. Here, we present beach erosion measurements along Onslow Beach, a barrier island on the U.S. East Coast, in response to a year with frequent sea level anomalies and no major storms. The anomalies enabled extensive erosion, which was similar and in most places greater than the erosion that occurred during a year with a hurricane. These results highlight the importance of sea level anomalies in facilitating coastal erosion and advocate for their inclusion in beach-erosion models and management plans. Sea level anomalies amplify the erosive effects of accelerated sea level rise and changes in storminess associated with global climate change.

  17. Acardiac anceps: a rare congenital anomaly

    PubMed Central

    Nigam, Aruna; Agarwal, Rohini; Saxena, Pikee; Barla, Jaya

    2014-01-01

    Acardiac twin is a rare congenital anomaly and is exclusively associated with monochorionic twin pregnancies. The abnormalities occur due to abnormal communication between the two fetuses in the form of arterioarterial and venovenous communications, resulting in a grossly abnormal acardiac twin with reduction anomalies mainly of the upper body and gross oedema. Since no two acardiac twins are alike, this case report will add to the acardiac twin anomaly spectrum. PMID:24717594

  18. The Mars Rover Spirit FLASH anomaly

    NASA Technical Reports Server (NTRS)

    Reeves, Glenn E.; Neilson, Tracy C.

    2005-01-01

    The Mars Exploration Rover 'Spirit' suffered a debilitating anomaly that prevented communication with Earth for several anxious days. With the eyes of the world upon us, the anomaly team used each scrap of information, our knowledge of the system, and sheer determination to analyze and fix the problem, then return the vehicle to normal operation. This paper will discuss the Spirit FLASH anomaly, including the drama of the investigation, the root cause and the lessons learned from the experience.

  19. Galilean anomalies and their effect on hydrodynamics

    NASA Astrophysics Data System (ADS)

    Jain, Akash

    2016-03-01

    We study flavor and gravitational anomalies in Galilean theories coupled to torsional Newton-Cartan backgrounds. We establish that the relativistic anomaly inflow mechanism with an appropriately modified anomaly polynomial can be used to generate these anomalies. Similar to the relativistic case, we find that Galilean anomalies also survive only in even dimensions. Further, these anomalies only effect the flavor and rotational symmetries of a Galilean theory; in particular, the Milne boost symmetry remains nonanomalous. We also extend the transgression machinery used in relativistic fluids to Galilean fluids, and use it to determine how these anomalies affect the constitutive relations of a Galilean fluid. Unrelated to the Galilean fluids, we propose an analogue of the off-shell second law of thermodynamics for relativistic fluids, to include torsion and a conserved spin current in the vielbein formalism. Interestingly, we find that even in the absence of spin current and torsion the entropy currents in the two formalisms are different: while the usual entropy current gets a contribution from the gravitational anomaly, the entropy current in the vielbein formalism does not have any anomaly-induced part.

  20. The magnetic anomaly of the Ivreazone

    NASA Technical Reports Server (NTRS)

    Albert, G.

    1979-01-01

    A magnetic field survey was made in the Ivreazone in 1969/70. The results were: significant anomaly of the vertical intensity is found. It follows the basic main part of the Ivrea-Verbano zone and continues to the south. The width of the anomaly is about 10 km, the maximum measures about +800 gamma. The model interpretation shows that possibly the anomaly belongs to an amphibolitic body, which in connection with the Ivrea-body was found by deep seismic sounding. Therefore, the magnetic anomaly provides further evidence for the conception that the Ivrea-body has to be regarded as a chip of earthmantle material pushed upward by tectonic processes.

  1. Initial scalar magnetic anomaly map from Magsat

    NASA Technical Reports Server (NTRS)

    Langel, R. A.; Phillips, J. D.; Horner, R. J.

    1982-01-01

    Magsat data acquired during the November 1979-June 1980 mission was used to derive a scalar magnetic anomaly map covering +50 to -50 deg geographic latitude, and the separation of anomaly fields from core and external fields was accomplished by techniques developed for POGO satellite data. Except in the Atlantic and Pacific at latitudes south of -15 deg, comparison of the Magsat map with its POGO data-derived counterpart shows basic anomaly patterns to be reproducible, and higher resolution due to Magsat's lower measurement altitude. Color-coded scalar anomaly maps are presented for both satellites.

  2. Conscious and unconscious detection of semantic anomalies.

    PubMed

    Hannon, Brenda

    2015-01-01

    When asked What superhero is associated with bats, Robin, the Penguin, Metropolis, Catwoman, the Riddler, the Joker, and Mr. Freeze? people frequently fail to notice the anomalous word Metropolis. The goals of this study were to determine whether detection of semantic anomalies, like Metropolis, is conscious or unconscious and whether this detection is immediate or delayed. To achieve these goals, participants answered anomalous and nonanomalous questions as their reading times for words were recorded. Comparisons between detected versus undetected anomalies revealed slower reading times for detected anomalies-a finding that suggests that people immediately and consciously detected anomalies. Further, comparisons between first and second words following undetected anomalies versus nonanomalous controls revealed some slower reading times for first and second words-a finding that suggests that people may have unconsciously detected anomalies but this detection was delayed. Taken together, these findings support the idea that when we are immediately aware of a semantic anomaly (i.e., immediate conscious detection) our language processes make immediate adjustments in order to reconcile contradictory information of anomalies with surrounding text; however, even when we are not consciously aware of semantic anomalies, our language processes still make these adjustments, although these adjustments are delayed (i.e., delayed unconscious detection). PMID:25624136

  3. Satellite Magnetic Anomalies of Africa and Europe

    NASA Technical Reports Server (NTRS)

    Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator); Olivier, R.

    1984-01-01

    Preliminary MAGSAT scalar magnetic anomaly data of Africa, Europe, and adjacent marine areas were reduced to the pole assuming a constant inducing Earth's magnetic field of 60,000 nT. This process leads to a consistent anomaly data set free from marked variations in directional and intensity effects of the Earth's magnetic field over this extensive region. The resulting data are correlated with long wave length-pass filtered free-air gravity anomalies; regional heat flow, and tectonic data to investigate magatectonic elements and the region's geologic history. Magnetic anomalies are related to both ancient as well as more recent Cenozoic structural features.

  4. Consistent anomalies of the induced W gravities

    NASA Astrophysics Data System (ADS)

    Abud, Mario; Ader, Jean-Pierre; Cappiello, Luigi

    1996-02-01

    The BRST anomaly which may be present in the induced Wn gravity quantized on the light-cone is evaluated in the geometrical framework of Zucchini. The cocycles linked by the cohomology of the BRST operator to the anomaly are straightforwardly calculated thanks to the analogy between this formulation and the Yang-Mills theory. We give also a conformally covariant formulation of these quantities including the anomaly, which is valid on arbitrary Riemann surfaces. The example of the W3 theory is discussed and a comparison with other candidates for the anomaly available in the literature is presented.

  5. Spectral Methods for Magnetic Anomalies

    NASA Astrophysics Data System (ADS)

    Parker, R. L.; Gee, J. S.

    2013-12-01

    Spectral methods, that is, those based in the Fourier transform, have long been employed in the analysis of magnetic anomalies. For example, Schouten and MaCamy's Earth filter is used extensively to map patterns to the pole, and Parker's Fourier transform series facilitates forward modeling and provides an efficient algorithm for inversion of profiles and surveys. From a different, and perhaps less familiar perspective, magnetic anomalies can be represented as the realization of a stationary stochastic process and then statistical theory can be brought to bear. It is vital to incorporate the full 2-D power spectrum, even when discussing profile data. For example, early analysis of long profiles failed to discover the small-wavenumber peak in the power spectrum predicted by one-dimensional theory. The long-wavelength excess is the result of spatial aliasing, when energy leaks into the along-track spectrum from the cross-track components of the 2-D spectrum. Spectral techniques may be used to improve interpolation and downward continuation of survey data. They can also evaluate the reliability of sub-track magnetization models both across and and along strike. Along-strike profiles turn out to be surprisingly good indicators of the magnetization directly under them; there is high coherence between the magnetic anomaly and the magnetization over a wide band. In contrast, coherence is weak at long wavelengths on across-strike lines, which is naturally the favored orientation for most studies. When vector (or multiple level) measurements are available, cross-spectral analysis can reveal the wavenumber interval where the geophysical signal resides, and where noise dominates. One powerful diagnostic is that the phase spectrum between the vertical and along-path components of the field must be constant 90 degrees. To illustrate, it was found that on some very long Project Magnetic lines, only the lowest 10% of the wavenumber band contain useful geophysical signal. In this

  6. FE and MG Isotopic Analyses of Isotopically Unusual Presolar Silicate Grains

    NASA Technical Reports Server (NTRS)

    Nguyen, A. N.; Messenger, S.; Ito, M.; Rahman, Z.

    2011-01-01

    Interstellar and circumstellar silicate grains are thought to be Mg-rich and Fe-poor, based on astronomical observations and equilibrium condensation models of silicate dust formation in stellar outflows. On the other hand, presolar silicates isolated from meteorites have surprisingly high Fe contents and few Mg-rich grains are observed. The high Fe contents in meteoritic presolar silicates may indicate they formed by a non-equilibrium condensation process. Alternatively, the Fe in the stardust grains could have been acquired during parent body alteration. The origin of Fe in presolar silicates may be deduced from its isotopic composition. Thus far, Fe isotopic measurements of presolar silicates are limited to the Fe-54/Fe-56 ratios of 14 grains. Only two slight anomalies (albeit solar within error) were observed. However, these measurements suffered from contamination of Fe from the adjacent meteorite matrix, which diluted any isotopic anomalies. We have isolated four presolar silicates having unusual O isotopic compositions by focused ion beam (FIB) milling and obtained their undiluted Mg and Fe isotopic compositions. These compositions help to identify the grains stellar sources and to determine the source of Fe in the grains.

  7. Order of magnitude enhancement in neutron emission with deuterium-krypton admixture operation in miniature plasma focus device

    SciTech Connect

    Verma, Rishi; Lee, P.; Lee, S.; Springham, S. V.; Tan, T. L.; Rawat, R. S.; Krishnan, M.

    2008-09-08

    The effect of varied concentrations of deuterium-krypton (D{sub 2}-Kr) admixture on the neutron emission of a fast miniature plasma focus device was investigated. It was found that a judicious concentration of Kr in D{sub 2} can significantly enhance the neutron yield. The maximum average neutron yield of (1{+-}0.27)x10{sup 4} n/shot for pure D{sub 2} filling at 3 mbars was enhanced to (3.14{+-}0.4)x10{sup 5} n/shot with D{sub 2}+2% Kr admixture operation, which represents a >30-fold increase. More than an order of magnitude enhancement in the average neutron yield was observed over the broader operating range of 1-4 mbars for D{sub 2}+2% Kr and D{sub 2}+5% Kr admixtures.

  8. Communication: electron transfer mediated decay enabled by spin-orbit interaction in small krypton/xenon clusters.

    PubMed

    Zobel, J Patrick; Kryzhevoi, Nikolai V; Pernpointner, Markus

    2014-04-28

    In this work we study the influence of relativistic effects, in particular spin-orbit coupling, on electronic decay processes in KrXe2 clusters of various geometries. For the first time it is shown that inclusion of spin-orbit coupling has decisive influence on the accessibility of a specific decay pathway in these clusters. The radiationless relaxation process is initiated by a Kr 4s ionization followed by an electron transfer from xenon to krypton and a final second ionization of the system. We demonstrate the existence of competing electronic decay pathways depending in a subtle way on the geometry and level of theory. For our calculations a fully relativistic framework was employed where omission of spin-orbit coupling leads to closing of two decay pathways. These findings stress the relevance of an adequate relativistic description for clusters with heavy elements and their fragmentation dynamics. PMID:24784242

  9. Near-threshold electron-impact doubly differential cross sections for the ionization of argon and krypton

    SciTech Connect

    Yates, Brent R.; Khakoo, Murtadha A.

    2011-04-15

    We present normalized doubly differential cross sections (DDCS's) for the near-threshold, electron-impact single ionization of argon and krypton, similar to those taken earlier for Ne and Xe [Yates et al., J. Phys. B 42, 095206 (2009)]. The Ar measurements were taken at incident energies of 17, 18, 20, and 30 eV while the Kr measurements were taken at 15, 16, 17.5, and 20 eV. The DDCS scattering angles range from 15 deg. to 120 deg. The differential data are initially normalized to available experimental cross sections for excitation of the ground np{sup 6} to the np{sup 5}(n+1)s excited states of the noble gas and, after integration, to well-established experimental total ionization cross sections of Rapp and Englander-Golden [J. Chem. Phys. 43, 1464 (1965)].

  10. Communication: Electron transfer mediated decay enabled by spin-orbit interaction in small krypton/xenon clusters

    SciTech Connect

    Zobel, J. Patrick; Kryzhevoi, Nikolai V. Pernpointner, Markus

    2014-04-28

    In this work we study the influence of relativistic effects, in particular spin-orbit coupling, on electronic decay processes in KrXe{sub 2} clusters of various geometries. For the first time it is shown that inclusion of spin-orbit coupling has decisive influence on the accessibility of a specific decay pathway in these clusters. The radiationless relaxation process is initiated by a Kr 4s ionization followed by an electron transfer from xenon to krypton and a final second ionization of the system. We demonstrate the existence of competing electronic decay pathways depending in a subtle way on the geometry and level of theory. For our calculations a fully relativistic framework was employed where omission of spin-orbit coupling leads to closing of two decay pathways. These findings stress the relevance of an adequate relativistic description for clusters with heavy elements and their fragmentation dynamics.

  11. Oculoauriculovertebral spectrum and cerebral anomalies.

    PubMed Central

    Schrander-Stumpel, C T; de Die-Smulders, C E; Hennekam, R C; Fryns, J P; Bouckaert, P X; Brouwer, O F; da Costa, J J; Lommen, E J; Maaswinkel-Mooy, P D

    1992-01-01

    We report on three Dutch children with a clinical diagnosis of oculoauriculovertebral spectrum (OAVS) and hydrocephalus. The clinical features are compared to 15 published cases of OAVS and hydrocephalus. Several other cerebral abnormalities were present in the whole group. About half of the cases had cleft lip/palate, anophthalmia/microphthalmia, or a cardiac defect. Mental retardation was found in five of the surviving 11 patients and early death occurred in one-third. We compared the cases with OAVS and hydrocephalus with published reports of OAVS and other cerebral anomalies and found no significant clinical differences. However, the clinical characteristics were clearly more severely expressed than generally found in patients with OAVS. Children with OAVS and more severe clinical features, especially anophthalmia/microphthalmia and cleft lip/palate, seem to be at an increased risk for cerebral malformations and for mental retardation. Images PMID:1583660

  12. Developing a new, passive diffusion sampling array to detect helium anomalies associated with volcanic unrest

    USGS Publications Warehouse

    Dame, Brittany E; Solomon, D Kip; Evans, William C.; Ingebritsen, Steven E.

    2015-01-01

    Helium (He) concentration and 3 He/ 4 He anomalies in soil gas and spring water are potentially powerful tools for investigating hydrothermal circulation associated with volca- nism and could perhaps serve as part of a hazards warning system. However, in operational practice, He and other gases are often sampled only after volcanic unrest is detected by other means. A new passive diffusion sampler suite, intended to be collected after the onset of unrest, has been developed and tested as a relatively low-cost method of determining He- isotope composition pre- and post-unrest. The samplers, each with a distinct equilibration time, passively record He concen- tration and isotope ratio in springs and soil gas. Once collected and analyzed, the He concentrations in the samplers are used to deconvolve the time history of the He concentration and the 3 He/ 4 He ratio at the collection site. The current suite consisting of three samplers is sufficient to deconvolve both the magnitude and the timing of a step change in in situ con- centration if the suite is collected within 100 h of the change. The effects of temperature and prolonged deployment on the suite ’ s capability of recording He anomalies have also been evaluated. The suite has captured a significant 3 He/ 4 He soil gas anomaly at Horseshoe Lake near Mammoth Lakes, California. The passive diffusion sampler suite appears to be an accurate and affordable alternative for determining He anomalies associated with volcanic unrest.

  13. Progress update on IUPAC Project 2009-046-2-200: Terminology and definition of quantities related to the isotope distribution in elements with more than two stable isotopes

    NASA Astrophysics Data System (ADS)

    Kaiser, Jan; Angert, Alon; Bergquist, Bridget; Brand, Willi; Ono, Shuhei; Röckmann, Thomas; Savarino, Joël

    2014-05-01

    The objective of IUPAC Project 2009-046-2-200 (http://www.iupac.org/web/ins/2009-046-2-200) is to define terminology and to identify the most suitable definitions of quantities that characterise the isotope distribution in elements with more than two stable isotopes, including so-called mass-independent fractionation, non-mass dependent fractionation, isotope anomaly, 17O excess, etc. Most atmospheric oxygen-bearing species show deviations in their triple oxygen isotope ratios from mass-dependent fractionation (MDF) relationships predicted by the theories of Urey, Bigeleisen and Mayer. Similar deviations have also been found in sulphur and other elements with more than two stables isotopes (e.g. Hg, Cd, Zn), often preserved in non-atmospheric reservoirs, including rocks, minerals, soils, ice and waters. Despite the ubiquity of this type of isotope anomaly, there has never been an attempt to clearly define the terminology and physical quantities used to measure these anomalies and the processes that lead to their formation. Terms like mass-independent fractionation, non-mass dependent fractionation, isotope anomaly, isotope excess etc. have been used in the historic and recent literature, but are often not carefully distinguished. The realisation that MDF comprises a range of possible relationships between the isotopes of one element led to further complications because it meant that apparent isotope anomalies could be created by a combination of different MDF processes. At the moment, at least four different definitions to quantify isotope anomalies are being used. Furthermore, coefficients used in these definitions vary, which makes the comparison of data from different sources very difficult, even for experts. A consistent set of recommendations on how to express and quantify the isotope distribution in elements with more than two stable isotopes is highly warranted. From our experience as academic teachers, we are woefully aware how impenetrable the field is for

  14. Indicated preterm birth for fetal anomalies.

    PubMed

    Craigo, Sabrina D

    2011-10-01

    Between 2% and 3% of pregnancies are complicated by fetal anomalies. For most anomalies, there is no advantage to late preterm or early-term delivery. The risks of maternal or fetal complication are specific for each anomaly. Very few anomalies pose potential maternal risk. Some anomalies carry ongoing risks to the fetus, such as an increased risk of fetal death, hemorrhage, or organ damage. In a limited number of select cases, the advantages of late preterm or early-term birth may include avoiding an ongoing risk of fetal death related to the anomaly, allowing delivery in a controlled setting with availability of subspecialists and allowing direct care for the neonate with organ injury. The optimal gestational age for delivery cannot be determined for all pregnancies complicated by fetal anomalies. For most pregnancies complicated by anomalies, there is no change to obstetrical management regarding timing of delivery. For those that may benefit from late preterm or early-term delivery, variability exists such that each management plan should be individualized. PMID:21962626

  15. Anomalies of Nuclear Criticality, Revision 6

    SciTech Connect

    Clayton, E. D.; Prichard, Andrew W.; Durst, Bonita E.; Erickson, David; Puigh, Raymond J.

    2010-02-19

    This report is revision 6 of the Anomalies of Nuclear Criticality. This report is required reading for the training of criticality professionals in many organizations both nationally and internationally. This report describes many different classes of nuclear criticality anomalies that are different than expected.

  16. Barbados Corals as Recorders of Amazon River Salinity Anomalies

    NASA Astrophysics Data System (ADS)

    Greer, L.; Telfeyan, K.; Arienzo, M. M.; Rosenberg, A. D.; Waite, A. J.; Swart, P. K.

    2010-12-01

    Low salinity plumes of Amazon and Orinoco sourced water have previously been detected around the island of Barbados. Barbados corals may therefore have the potential to record salinity anomalies governed by natural, climate-related, and anthropogenic changes in the Amazon and Orinoco Basin watersheds beyond the recent historic record. In order to determine whether Barbados corals record salinity variations associated with local or Amazon/Orinoco sourced signals, multiple specimens of Montastraea sp. and Siderastrea sp. coral skeletons were analyzed for stable C and O isotope and Sr/Ca variations. Corals were collected from the northwest, central-west, and southwest regions of the island to determine degree of salinity signal heterogeneity over a 5-6 year period at approximately monthly resolution. Four separate published paleotemperature equations were used to assess the importance of temperature on stable oxygen isotope composition. In situ temperature measurements obtained from NOAA show an annual sea surface temperature (SST) cycle of approximately 4 degrees Celsius off Barbados. If governed solely by SST, stable isotope data from all 8 corals in this study indicate a significantly greater annual temperature range of approximately 6 degrees Celsius. This suggests that salinity related fluctuations in oxygen isotopic composition of water are an important influence on the geochemistry of Barbados corals. Some regional differences in geochemical composition of corals were apparent. Corals from the southwest of Barbados showed the clearest sub-annual isotope signal, better correlations with mean annual SST measurements, and lowest mean salinity of the regions. Corals from the central-west and northwest showed distinctly higher mean, but more variable, salinity than corals from the south. Stable carbon isotope data from southwest corals also best potentially reflect the Suess Effect. Montastraea sp. corals generally show a higher paleotemperature offset from in situ

  17. Regional magnetic anomaly constraints on continental rifting

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Olivier, R.; Bentley, C. R.

    1985-01-01

    Radially polarized MAGSAT anomalies of North and South America, Europe, Africa, India, Australia and Antarctica demonstrate remarkably detailed correlation of regional magnetic lithospheric sources across rifted margins when plotted on a reconstruction of Pangea. These major magnetic features apparently preserve their integrity until a superimposed metamorphoric event alters the magnitude and pattern of the anomalies. The longevity of continental scale magnetic anomalies contrasts markedly with that of regional gravity anomalies which tend to reflect predominantly isostatic adjustments associated with neo-tectonism. First observed as a result of NASA's magnetic satellite programs, these anomalies provide new and fundamental constraints on the geologic evolution and dynamics of the continents and oceans. Accordingly, satellite magnetic observations provide a further tool for investigating continental drift to compliment other lines of evidence in paleoclimatology, paleontology, paleomagnetism, and studies of the radiometric ages and geometric fit of the continents.

  18. Global magnetic anomaly and aurora of Neptune

    NASA Technical Reports Server (NTRS)

    Cheng, Andrew F.

    1990-01-01

    The large offset and tilt of Neptune's dipole magnetic field combine to create a global magnetic anomaly, analogous to but much more important than earth's South Atlantic Anomaly. Energetic particle precipitation loss within the Neptune anomaly creates 'atmospheric drift shadows' within which particle fluxes are greatly reduced. The energetic particle dropout observed by Voyager near closest approach occurred near the predicted times when Voyager passed within the atmospheric drift shadow. Extremely soft, structured bursts of ions and electrons within the drift shadow may result from plasma wave-induced pitch angle scattering of trapped particles confined near the magnetic equator. The dropout does not necessarily imply that Voyager passed through an earth-like discrete auroral zone, as earlier reported. The ion and electron fluxes observed within the dropout period correspond to particles that must precipitate to Neptune's atmosphere within the anomaly region. This anomaly precipitation can account for a major portion of the ultraviolet emissions previously identified as Neptune aurora.

  19. A New, Principled Approach to Anomaly Detection

    SciTech Connect

    Ferragut, Erik M; Laska, Jason A; Bridges, Robert A

    2012-01-01

    Intrusion detection is often described as having two main approaches: signature-based and anomaly-based. We argue that only unsupervised methods are suitable for detecting anomalies. However, there has been a tendency in the literature to conflate the notion of an anomaly with the notion of a malicious event. As a result, the methods used to discover anomalies have typically been ad hoc, making it nearly impossible to systematically compare between models or regulate the number of alerts. We propose a new, principled approach to anomaly detection that addresses the main shortcomings of ad hoc approaches. We provide both theoretical and cyber-specific examples to demonstrate the benefits of our more principled approach.

  20. Correlated Nitrogen and Carbon Anomalies in an Anhydrous Interplanetary Dust Particle - Implications for Extraterrestrial Organic Matter Accreted by the Prebiotic Earth

    SciTech Connect

    Floss, C; Stadermann, F J; Bradley, J P; Dai, Z; Bajt, S; Graham, G

    2003-12-17

    Given the ubiquitous presence of H and N isotopic anomalies in interplanetary dust particles (IDPs) and their probable association with carbonaceous material, the lack of similar isotopic anomalies in C has been a major conundrum. We report here the first observation of correlated N and C isotopic anomalies in organic matter within an anhydrous IDP. The {sup 15}N composition of the anomalous region is the highest seen to date in an IDP and is accompanied by a moderate depletion in {sup 13}C. Our observations establish the presence of hetero-atomic organic compounds of presolar origin among the constant flux of carbonaceous material accreting to the terrestrial planets within IDPs. Theoretical models suggest that low temperature formation of organic compounds in cold interstellar molecular clouds does produce C and N fractionations, but it remains to be seen if these models can reproduce the specific effects we observe here.

  1. Pristine extraterrestrial material with unprecedented nitrogen isotopic variation

    PubMed Central

    Briani, Giacomo; Gounelle, Matthieu; Marrocchi, Yves; Mostefaoui, Smail; Leroux, Hugues; Quirico, Eric; Meibom, Anders

    2009-01-01

    Pristine meteoritic materials carry light element isotopic fractionations that constrain physiochemical conditions during solar system formation. Here we report the discovery of a unique xenolith in the metal-rich chondrite Isheyevo. Its fine-grained, highly pristine mineralogy has similarity with interplanetary dust particles (IDPs), but the volume of the xenolith is more than 30,000 times that of a typical IDP. Furthermore, an extreme continuum of N isotopic variation is present in this xenolith: from very light N isotopic composition (δ15NAIR = −310 ± 20‰), similar to that inferred for the solar nebula, to the heaviest ratios measured in any solar system material (δ15NAIR = 4,900 ± 300‰). At the same time, its hydrogen and carbon isotopic compositions exhibit very little variation. This object poses serious challenges for existing models for the origin of light element isotopic anomalies. PMID:19528640

  2. Pristine extraterrestrial material with unprecedented nitrogen isotopic variation.

    PubMed

    Briani, Giacomo; Gounelle, Matthieu; Marrocchi, Yves; Mostefaoui, Smail; Leroux, Hugues; Quirico, Eric; Meibom, Anders

    2009-06-30

    Pristine meteoritic materials carry light element isotopic fractionations that constrain physiochemical conditions during solar system formation. Here we report the discovery of a unique xenolith in the metal-rich chondrite Isheyevo. Its fine-grained, highly pristine mineralogy has similarity with interplanetary dust particles (IDPs), but the volume of the xenolith is more than 30,000 times that of a typical IDP. Furthermore, an extreme continuum of N isotopic variation is present in this xenolith: from very light N isotopic composition (delta(15)N(AIR) = -310 +/- 20 per thousand), similar to that inferred for the solar nebula, to the heaviest ratios measured in any solar system material (delta(15)N(AIR) = 4,900 +/- 300 per thousand). At the same time, its hydrogen and carbon isotopic compositions exhibit very little variation. This object poses serious challenges for existing models for the origin of light element isotopic anomalies. PMID:19528640

  3. Structure of Hot Flow Anomaly

    NASA Astrophysics Data System (ADS)

    Shestakov, A.; Vaisberg, O. L.

    2012-12-01

    Hot Flow Anomalies (HFAs) were first discovered in 1980s. These are active processes of hot plasma bulks formation that usually occur at planetary bow shocks. Though HFA were studied for long time it is still not clear if they are reforming structures and what defines particular internal structure of HFA. Our study is based on the Interball Tail Probe data. We used 10-sec measurements of complex plasma analyzer SCA-1 and 1-second magnetic field measurements, and ELECTRON spectrometer 2-dimensional measurements with 3,75-sec temporal resolution. Five anomalies that were observed on the basis of well resolved structure for which we obtained displacement velocity along bow shock, flow velocities within HFA, and estimated the size. We checked if main criteria of HFA formation were fulfilled for each case. The following criteria were satisfied: motional electric field direction was directed toward current sheet at least at one side of it, bow shock was quasi-perpendicular at least at one side of HFA, and angle between current sheet normal and solar wind velocity was large. Convection velocities of plasma within HFA were calculated by subtracting average velocity from measured ion convection velocities along spacecraft trajectory through anomaly. These convection velocities viewed in coordinate system of shock normal and calculated IMF current sheet normal clearly show separation of HFA region in 3 parts: leading part, narrow central part, and trailing part. Ion velocity distributions confirm this triple structure of HFA. Thomsen et al. [1986] identified the region within HFA that they called "internal recovery". It looks like central region that we call narrow central part. Vaisberg et al. [1999] discussed separation of HFA into 2 distinct parts that correspond to leading and trailing parts. Judging from plasma convection pattern within HFAs we assumed that "internal recovery" region is the source of energy and momentum around interplanetary current sheet crossing. HFA

  4. Anomaly Detection in Dynamic Networks

    SciTech Connect

    Turcotte, Melissa

    2014-10-14

    Anomaly detection in dynamic communication networks has many important security applications. These networks can be extremely large and so detecting any changes in their structure can be computationally challenging; hence, computationally fast, parallelisable methods for monitoring the network are paramount. For this reason the methods presented here use independent node and edge based models to detect locally anomalous substructures within communication networks. As a first stage, the aim is to detect changes in the data streams arising from node or edge communications. Throughout the thesis simple, conjugate Bayesian models for counting processes are used to model these data streams. A second stage of analysis can then be performed on a much reduced subset of the network comprising nodes and edges which have been identified as potentially anomalous in the first stage. The first method assumes communications in a network arise from an inhomogeneous Poisson process with piecewise constant intensity. Anomaly detection is then treated as a changepoint problem on the intensities. The changepoint model is extended to incorporate seasonal behavior inherent in communication networks. This seasonal behavior is also viewed as a changepoint problem acting on a piecewise constant Poisson process. In a static time frame, inference is made on this extended model via a Gibbs sampling strategy. In a sequential time frame, where the data arrive as a stream, a novel, fast Sequential Monte Carlo (SMC) algorithm is introduced to sample from the sequence of posterior distributions of the change points over time. A second method is considered for monitoring communications in a large scale computer network. The usage patterns in these types of networks are very bursty in nature and don’t fit a Poisson process model. For tractable inference, discrete time models are considered, where the data are aggregated into discrete time periods and probability models are fitted to the

  5. Collie Eye Anomaly in Switzerland.

    PubMed

    Walser-Reinhardt, L; Hässig, M; Spiess, B

    2009-12-01

    In this retrospective study, the results of 3'527 eye examinations in 6 different breeds affected with Collie Eye Anomaly (CEA) over a period of 8 years (1999 - 2007) are described. CEA was divided into three main ophthalmoscopic features, a) choroidal hypoplasia (CRH), b) CRH and coloboma and c) coloboma alone. Of the 101 Smooth Collies 8.9 % showed signs of CRH, whereas 36.9 % of Rough Collies were affected with CRH, 2.8 % with CRH and coloboma and 0.38 % with coloboma alone. Choroidal hypoplasia was present in 13.1 %, CRH and coloboma in 1.8 % and coloboma alone in 0.2 % of the Shetland Sheepdogs. Only one Australian Shepherd dog had CRH, while 0.7 % of the Border Collies were affected with CRH. None of the Nova Scotia Duck Tolling Retrievers were affected with CEA. There were no statistically significant differences in the occurrence of CEA between males and females, nor was there any relation between coat colors. Significant differences could be shown between dogs younger or older than 8 weeks at first examination. CEA was more often diagnosed in dogs younger than 8 weeks within the Rough Collie and Shetland Sheepdog. PMID:19946851

  6. Data Mining for Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Biswas, Gautam; Mack, Daniel; Mylaraswamy, Dinkar; Bharadwaj, Raj

    2013-01-01

    The Vehicle Integrated Prognostics Reasoner (VIPR) program describes methods for enhanced diagnostics as well as a prognostic extension to current state of art Aircraft Diagnostic and Maintenance System (ADMS). VIPR introduced a new anomaly detection function for discovering previously undetected and undocumented situations, where there are clear deviations from nominal behavior. Once a baseline (nominal model of operations) is established, the detection and analysis is split between on-aircraft outlier generation and off-aircraft expert analysis to characterize and classify events that may not have been anticipated by individual system providers. Offline expert analysis is supported by data curation and data mining algorithms that can be applied in the contexts of supervised learning methods and unsupervised learning. In this report, we discuss efficient methods to implement the Kolmogorov complexity measure using compression algorithms, and run a systematic empirical analysis to determine the best compression measure. Our experiments established that the combination of the DZIP compression algorithm and CiDM distance measure provides the best results for capturing relevant properties of time series data encountered in aircraft operations. This combination was used as the basis for developing an unsupervised learning algorithm to define "nominal" flight segments using historical flight segments.

  7. Vitellointestinal Duct Anomalies in Infancy

    PubMed Central

    Kadian, Yogender Singh; Verma, Anjali; Rattan, Kamal Nain; Kajal, Pardeep

    2016-01-01

    Background: Vitellointestinal duct (VID) or omphalomesenteric duct anomalies are secondary to the persistence of the embryonic vitelline duct, which normally obliterates by weeks 5–9 of intrauterine life. Methods: This is a retrospective analysis of a total of 16 patients of symptomatic remnants of vitellointestinal duct from period of Jan 2009 to May 2013. Results: Male to female ratio (M:F) was 4.3:1 and mean age of presentation was 2 months and their mode of presentation was: patent VID in 9 (56.25%) patients, umbilical cyst in 2(12.25%), umbilical granuloma in 2 (12.25%), and Meckel diverticulum as content of hernia sac in obstructed umbilical hernia in 1 (6.25%) patient. Two patients with umbilical fistula had severe electrolyte disturbance and died without surgical intervention. Conclusion: Persistent VID may have varied presentations in infancy. High output umbilical fistula and excessive bowel prolapse demand urgent surgical intervention to avoid morbidity and mortality. PMID:27433448

  8. Hot Flow Anomaly Structure Analysis

    NASA Astrophysics Data System (ADS)

    Shestakov, A.; Vaisberg, O. L.

    2010-12-01

    Hot Flow Anomaly observed on Interball-Tail on 03.14.1996 is investigated. The normal to the interplanetary current sheet interacting with bow shock was determined in assumption of tangential discontinuity. Calculated motional electric field was directed towards current sheet. The bow shock before HFA arrival to the spacecraft was quasi-perpendicular, and was quasi-parallel after HFA passage. Respectively, of the shocks, bracketing HFA, were quasi-perpendicular before HFA passage and quasi-parallel after it. With averaged velocity of plasma within the body of HFA and duration of HFA observation we determined its size in normal to the current sheet direction as ~ 2.5 RE. HFA consists of two regions separated by thin layer with different plasma characteristics. Convection of plasma within HFA, as observed along spacecraft trajectory by subtracting averaged velocity from observed velocities, show that plasma in each of two regions is moving from separating layer. It indicates that separating layer is the site of energy deposition from interaction of the solar wind with ions reflected from the shock. This is confirmed by analysis of ion velocity distributions in this layer.

  9. Validating density-functional theory simulations at high energy-density conditions with liquid krypton shock experiments to 850 GPa on Sandia's Z machine

    SciTech Connect

    Mattsson, Thomas R.; Root, Seth; Mattsson, Ann E.; Shulenburger, Luke; Magyar, Rudolph J.; Flicker, Dawn G.

    2014-11-11

    We use Sandia's Z machine and magnetically accelerated flyer plates to shock compress liquid krypton to 850 GPa and compare with results from density-functional theory (DFT) based simulations using the AM05 functional. We also employ quantum Monte Carlo calculations to motivate the choice of AM05. We conclude that the DFT results are sensitive to the quality of the pseudopotential in terms of scattering properties at high energy/temperature. A new Kr projector augmented wave potential was constructed with improved scattering properties which resulted in excellent agreement with the experimental results to 850 GPa and temperatures above 10 eV (110 kK). In conclusion, we present comparisons of our data from the Z experiments and DFT calculations to current equation of state models of krypton to determine the best model for high energy-density applications.

  10. Validating density-functional theory simulations at high energy-density conditions with liquid krypton shock experiments to 850 GPa on Sandia's Z machine

    DOE PAGESBeta

    Mattsson, Thomas R.; Root, Seth; Mattsson, Ann E.; Shulenburger, Luke; Magyar, Rudolph J.; Flicker, Dawn G.

    2014-11-11

    We use Sandia's Z machine and magnetically accelerated flyer plates to shock compress liquid krypton to 850 GPa and compare with results from density-functional theory (DFT) based simulations using the AM05 functional. We also employ quantum Monte Carlo calculations to motivate the choice of AM05. We conclude that the DFT results are sensitive to the quality of the pseudopotential in terms of scattering properties at high energy/temperature. A new Kr projector augmented wave potential was constructed with improved scattering properties which resulted in excellent agreement with the experimental results to 850 GPa and temperatures above 10 eV (110 kK). Inmore » conclusion, we present comparisons of our data from the Z experiments and DFT calculations to current equation of state models of krypton to determine the best model for high energy-density applications.« less

  11. Thermal Infrared Anomalies of Several Strong Earthquakes

    PubMed Central

    Wei, Congxin; Guo, Xiao; Qin, Manzhong

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of “time-frequency relative power spectrum.” (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting. PMID:24222728

  12. Congenital basis of posterior fossa anomalies

    PubMed Central

    Cotes, Claudia; Bonfante, Eliana; Lazor, Jillian; Jadhav, Siddharth; Caldas, Maria; Swischuk, Leonard

    2015-01-01

    The classification of posterior fossa congenital anomalies has been a controversial topic. Advances in genetics and imaging have allowed a better understanding of the embryologic development of these abnormalities. A new classification schema correlates the embryologic, morphologic, and genetic bases of these anomalies in order to better distinguish and describe them. Although they provide a better understanding of the clinical aspects and genetics of these disorders, it is crucial for the radiologist to be able to diagnose the congenital posterior fossa anomalies based on their morphology, since neuroimaging is usually the initial step when these disorders are suspected. We divide the most common posterior fossa congenital anomalies into two groups: 1) hindbrain malformations, including diseases with cerebellar or vermian agenesis, aplasia or hypoplasia and cystic posterior fossa anomalies; and 2) cranial vault malformations. In addition, we will review the embryologic development of the posterior fossa and, from the perspective of embryonic development, will describe the imaging appearance of congenital posterior fossa anomalies. Knowledge of the developmental bases of these malformations facilitates detection of the morphological changes identified on imaging, allowing accurate differentiation and diagnosis of congenital posterior fossa anomalies. PMID:26246090

  13. Thermal infrared anomalies of several strong earthquakes.

    PubMed

    Wei, Congxin; Zhang, Yuansheng; Guo, Xiao; Hui, Shaoxing; Qin, Manzhong; Zhang, Ying

    2013-01-01

    In the history of earthquake thermal infrared research, it is undeniable that before and after strong earthquakes there are significant thermal infrared anomalies which have been interpreted as preseismic precursor in earthquake prediction and forecasting. In this paper, we studied the characteristics of thermal radiation observed before and after the 8 great earthquakes with magnitude up to Ms7.0 by using the satellite infrared remote sensing information. We used new types of data and method to extract the useful anomaly information. Based on the analyses of 8 earthquakes, we got the results as follows. (1) There are significant thermal radiation anomalies before and after earthquakes for all cases. The overall performance of anomalies includes two main stages: expanding first and narrowing later. We easily extracted and identified such seismic anomalies by method of "time-frequency relative power spectrum." (2) There exist evident and different characteristic periods and magnitudes of thermal abnormal radiation for each case. (3) Thermal radiation anomalies are closely related to the geological structure. (4) Thermal radiation has obvious characteristics in abnormal duration, range, and morphology. In summary, we should be sure that earthquake thermal infrared anomalies as useful earthquake precursor can be used in earthquake prediction and forecasting. PMID:24222728

  14. Analysis of Renal Anomalies in VACTERL Association

    PubMed Central

    Cunningham, Bridget K.; Khromykh, Alina; Martinez, Ariel F.; Carney, Tyler; Hadley, Donald W.; Solomon, Benjamin D.

    2014-01-01

    VACTERL association refers to a combination of congenital anomalies that can include: Vertebral anomalies, Anal atresia, Cardiac malformations, Tracheo-Esophageal fistula with esophageal atresia, Renal anomalies (typically structural renal anomalies), and Limb anomalies. We conducted a description of a case series to characterize renal findings in a cohort of patients with VACTERL association. Out of the overall cohort, 48 patients (with at least 3 component features of VACTERL and who had abdominal ultrasound performed) met criteria for analysis. Four other patients were additionally analyzed separately, with the hypothesis that subtle renal system anomalies may occur in patients who would not otherwise meet criteria for VACTERL association. Thirty-three (69%) of the 48 patients had a clinical manifestation affecting the renal system. The most common renal manifestation (RM) was vesicoureteral reflux (VUR) in addition to a structural defect (present in 27%), followed by unilateral renal agenesis (24%), and then dysplastic/multicystic kidneys or duplicated collected system (18% for each). Twenty-two (88%) of the 25 patients with a structural RM had an associated anorectal malformation. Individuals with either isolated lower anatomic anomalies, or both upper and lower anatomic anomalies were not statistically more likely to have a structural renal defect than those with isolated upper anatomic anomalies (p=0.22, p=0.284 respectively). Given the high prevalence of isolated VUR in our cohort, we recommend a screening VCUG or other imaging modality be obtained to evaluate for VUR if initial renal US shows evidence of obstruction or renal scarring, as well as ongoing evaluation of renal health. PMID:25196458

  15. Considerations in the Interpretation of Cosmological Anomalies

    NASA Astrophysics Data System (ADS)

    Peiris, Hiranya V.

    2014-05-01

    Anomalies drive scientific discovery - they are associated with the cutting edge of the research frontier, and thus typically exploit data in the low signal-to-noise regime. In astronomy, the prevalence of systematics - both ``known unknowns'' and ``unknown unknowns'' - combined with increasingly large datasets, the widespread use of ad hoc estimators for anomaly detection, and the ``look-elsewhere'' effect, can lead to spurious false detections. In this informal note, I argue that anomaly detection leading to discoveries of new physics requires a combination of physical understanding, careful experimental design to avoid confirmation bias, and self-consistent statistical methods. These points are illustrated with several concrete examples from cosmology.

  16. Crustal structure interpreted from magnetic anomalies

    NASA Technical Reports Server (NTRS)

    Phillips, Jeffrey D.; Reynolds, Richard L.; Frey, Herbert

    1991-01-01

    This review, discusses publications during the last quadrennium (1987-1990) that used aeromagnetic data, marine magnetic data, satellite magnetic data, and rock magnetic and petrologic data to provide information on the sources of magnetic anomalies. The publications reviewed reflect increased integration of rock magnetic property and petrologic studies with magnetic anomaly interpretation studies, particularly in deep crustal magnetization, exploration for hydrocarbons, and inversion of marine magnetic anomalies. Interpretations of aeromagnetic data featuring image display techniques and using the horizontal gradient method for locating magnetization boundaries became standard.

  17. Magnetic and gravity anomalies in the Americas

    NASA Technical Reports Server (NTRS)

    Braile, L. W.; Hinze, W. J.; Vonfrese, R. R. B. (Principal Investigator)

    1981-01-01

    The cleaning and magnetic tape storage of spherical Earth processing programs are reported. These programs include: NVERTSM which inverts total or vector magnetic anomaly data on a distribution of point dipoles in spherical coordinates; SMFLD which utilizes output from NVERTSM to compute total or vector magnetic anomaly fields for a distribution of point dipoles in spherical coordinates; NVERTG; and GFLD. Abstracts are presented for papers dealing with the mapping and modeling of magnetic and gravity anomalies, and with the verification of crustal components in satellite data.

  18. Non-standard symmetries and quantum anomalies

    SciTech Connect

    Visinescu, Anca; Visinescu, Mihai

    2008-08-31

    Quantum anomalies are investigated on curved spacetimes. The intimate relation between Killing-Yano tensors and non-standard symmetries is pointed out. The gravitational anomalies are absent if the hidden symmetry is associated to a Killing-Yano tensor. The axial anomaly in a background gravitational field is directly related with the index of the Dirac operator. In the Dirac theory on curved spaces, Killing-Yano tensors generate Dirac-type operators involved in interesting algebraic structures. The general results are applied to the 4-dimensional Euclidean Taub-NUT space.

  19. 87Sr/86Sr anomalies in Late Cretaceous-Early Tertiary strata of the Cauvery basin, south India: Constraints on nature and rate of environmental changes across K-T boundary

    NASA Astrophysics Data System (ADS)

    Ramkumar, Mu; Stüben, Doris; Berner, Zsolt; Schneider, Jens

    2010-02-01

    The Ariyalur-Pondicherry sub-basin of the Cauvery basin comprises a near complete stratigraphic record of Upper Cretaceous-Lower Tertiary periods. Earlier studies have documented variations of clay mineral assemblages, change in microtexture of siliciclasts and many geochemical and stable isotopic anomalies far below the Cretaceous-Tertiary boundary (KTB) in these strata. This paper documents the occurrences of two positive 87Sr/86Sr anomalies preceding K-T boundary in this basin and discusses plausible causes. Analysis of trace elemental and stable isotopic profiles, sedimentation history, petrography and mineralogy of the rocks reveal that while both the anomalies may be due to increased detrital influx caused by sea level and climatic changes, the second anomaly might have been influenced by Deccan volcanism which in turn predated KTB. Record of such anomalies preceding K-T boundary supports the view of multi-causal step-wise extinction of biota across KTB.

  20. Method for separating isotopes

    DOEpatents

    Jepson, B.E.

    1975-10-21

    Isotopes are separated by contacting a feed solution containing the isotopes with a cyclic polyether wherein a complex of one isotope is formed with the cyclic polyether, the cyclic polyether complex is extracted from the feed solution, and the isotope is thereafter separated from the cyclic polyether.

  1. Stable isotope studies

    SciTech Connect

    Ishida, T.

    1992-01-01

    The research has been in four general areas: (1) correlation of isotope effects with molecular forces and molecular structures, (2) correlation of zero-point energy and its isotope effects with molecular structure and molecular forces, (3) vapor pressure isotope effects, and (4) fractionation of stable isotopes. 73 refs, 38 figs, 29 tabs.

  2. Understanding Magnetic Anomalies and Their Significance.

    ERIC Educational Resources Information Center

    Shea, James H.

    1988-01-01

    Describes a laboratory exercise testing the Vine-Matthews-Morley hypothesis of plate tectonics. Includes 14 questions with explanations using graphs and charts. Provides a historical account of the current plate tectonic and magnetic anomaly theory. (MVL)

  3. Magnetosheath Flow Anomalies in 3-D

    NASA Technical Reports Server (NTRS)

    Vaisberg, O. L.; Burch, J. L.; Smirnov, V. N.; Avanov, L. A.; Moore, T. E.; Waite, J. H., Jr.; Skalsky, A. A.; Borodkova, N. L.; Coffey, V. N.; Gallagher, D. L.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Measurements of the plasma and magnetic field with high temporal resolution on the Interball Tail probe reveal many flow anomalies in the magnetosheath. They are usually seen as flow direction and number density variations, accompanied by magnetic field discontinuities. Large flow anomalies with number density variations of factor of 2 or more and velocity variations of 100 km/s or more are seen with periodicity of about I per hour. The cases of flow anomalies following in succession are also observed, and suggest their decay while propagating through the magnetosheath. Some magnetospheric disturbances observed in the outer magnetosphere after the satellite has crossed the magnetopause on the inbound orbit suggest their association with magnetosheath flow anomalies observed in the magnetosheath prior to magnetopause crossing.

  4. Tunguska Genetic Anomaly and Electrophonic Meteors

    NASA Astrophysics Data System (ADS)

    Silagadze, Z. K.

    2005-03-01

    One of great mysteries of the Tunguska event is its genetic impact. Some genetic anomalies were reported in the plants, insects and people of the Tunguska region. Remarkably, the increased rate of biological mutations was found not only within the epicenter area, but also along the trajectory of the Tunguska Space Body (TSB). At that no traces of radioactivity were found, which could be reliably associated with the Tunguska event. The main hypotheses about the nature of the TSB, a stony asteroid, a comet nucleus or a carbonaceous chondrite, readily explain the absence of radioactivity but give no clues how to deal with the genetic anomaly. A choice between these hypotheses, as far as the genetic anomaly is concerned, is like to the choice between ``blue devil, green devil and speckled devil'', to quote late Academician N.V. Vasilyev. However, if another mysterious phenomenon, electrophonic meteors, is evoked, the origin of the Tunguska genetic anomaly becomes less obscure.

  5. Lunar magnetic anomalies and surface optical properties

    NASA Astrophysics Data System (ADS)

    Hood, L. L.; Schubert, G.

    1980-04-01

    Consideration is given to the influence of lunar magnetic anomalies on the darkening of the lunar surface by solar wind ion bombardment. It is shown that lunar magnetic anomalies with dipole moments much greater than 5 x 10 to the 13th gauss cu cm will strongly deflect the typical solar wind, producing local plasma voids at the lunar surface. Direct measurements of lunar magnetic fields have shown most lunar magnetic fields to have moments below this level, with the exception of anomalies detected in the areas of the Reiner Gamma albedo feature, the Van de Graaff-Aitken region and Mare Marginis. Such magnetic anomalies are shown to be capable of accounting for the higher albedo and swirl-like morphology f these features by the deflection and focusing incident solar wind ions, which tend to darken the surface upon impact.

  6. Flyby Anomaly Test Integrating Multiple Approaches (FATIMA)

    NASA Technical Reports Server (NTRS)

    Levit, Creon; Jaroux, Belgacem Amar

    2014-01-01

    FATIMA is a mission concept for a small satellite to investigate the flyby anomaly - a possible velocity increase that has been observed in some earlier satellites when they have performed gravitational swingy maneuvers of the earth.

  7. Reduction of satellite magnetic anomaly data

    NASA Technical Reports Server (NTRS)

    Slud, E. V.; Smith, P. J.; Langel, R. A.

    1984-01-01

    Analysis of global magnetic anomaly maps derived from satellite data is facilitated by inversion to the equivalent magnetization in a constant thickness magnetic crust or, equivalently, by reduction to the pole. Previous inversions have proven unstable near the geomagnetic equator. The instability results from magnetic moment distributions which are admissible in the inversion solution but which make only small contribution to the computed values of anomaly field. Their admissibility in the solution could result from noisy or incomplete data or from small poorly resolved anomalies. The resulting magnetic moments are unrealistically large and oscillatory. Application of the method of principal components (e.g. eigenvalue decomposition and selective elimination of less significant eigenvectors) is proposed as a way of overcoming the instability and the method is demonstrated by applying it to the region around the Bangui anomaly in Central Africa.

  8. US Aeromagnetic and Satellite Magnetic Anomaly Comparisons

    NASA Technical Reports Server (NTRS)

    Vonfrese, R. R. B.; Hinze, W. J.; Braile, L. W. (Principal Investigator); Sexton, J. L.

    1984-01-01

    Scalar aeromagnetic data obtained by the U.S. Naval Oceanographic Office (NOO) Vector Magnetic Survey of the conterminous U.S. were screened for periods of intense diurnal magnetic activity and reduced to anomaly form, filtered, and continued upward. A number of correlations between the NOO, POGO and preliminary MAGSAT data are evident at satellite elevations, including a prominent transcontinental magnetic high which extends from the Anadarko Basin to the Cincinnati Arch. The transcontinental magnetic high is breached by negative anomalies located over the Rio Grande Rift and Mississippi River Aulacogen. Differentially reduced-to-pole NOO and POGO magnetic anomaly data show that the transcontinental magnetic high corresponds to a well-defined regional trend of negative free-air gravity and enhanced crustal thickness anomalies.

  9. Geologic analysis of averaged magnetic satellite anomalies

    NASA Technical Reports Server (NTRS)

    Goyal, H. K.; Vonfrese, R. R. B.; Ridgway, J. R.; Hinze, W. J.

    1985-01-01

    To investigate relative advantages and limitations for quantitative geologic analysis of magnetic satellite scalar anomalies derived from arithmetic averaging of orbital profiles within equal-angle or equal-area parallelograms, the anomaly averaging process was simulated by orbital profiles computed from spherical-earth crustal magnetic anomaly modeling experiments using Gauss-Legendre quadrature integration. The results indicate that averaging can provide reasonable values at satellite elevations, where contributing error factors within a given parallelogram include the elevation distribution of the data, and orbital noise and geomagnetic field attributes. Various inversion schemes including the use of equivalent point dipoles are also investigated as an alternative to arithmetic averaging. Although inversion can provide improved spherical grid anomaly estimates, these procedures are problematic in practice where computer scaling difficulties frequently arise due to a combination of factors including large source-to-observation distances ( 400 km), high geographic latitudes, and low geomagnetic field inclinations.

  10. Method of Mapping Anomalies in Homogenous Material

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E. (Inventor); Taylor, Bryant D. (Inventor)

    2016-01-01

    An electrical conductor and antenna are positioned in a fixed relationship to one another. Relative lateral movement is generated between the electrical conductor and a homogenous material while maintaining the electrical conductor at a fixed distance from the homogenous material. The antenna supplies a time-varying magnetic field that causes the electrical conductor to resonate and generate harmonic electric and magnetic field responses. Disruptions in at least one of the electric and magnetic field responses during this lateral movement are indicative of a lateral location of a subsurface anomaly. Next, relative out-of-plane movement is generated between the electrical conductor and the homogenous material in the vicinity of the anomaly's lateral location. Disruptions in at least one of the electric and magnetic field responses during this out-of-plane movement are indicative of a depth location of the subsurface anomaly. A recording of the disruptions provides a mapping of the anomaly.

  11. Renal Anomalies Associated with Ectopic Neurohypophysis

    PubMed Central

    Özen, Samim; Şişmek, Damla Gökşen; Önder, Asan; Darcan, Şükran

    2011-01-01

    Objective: Although the etiology of ectopic neurohypophysis that leads to pituitary hormone deficiencies is not yet clearly understood, birth trauma or genetic factors have been considered responsible. Concurrent cranial and extracranial congenital anomalies have been reported in such cases. The aim of the present study was to investigate the frequency of renal anomalies in nonsyndromic cases with ectopic neurohypophysis. Methods: We retrospectively evaluated the medical records of 20 patients with ectopic neurohypophysis who were followed up between January 1990 and December 2007 in a tertiary University Hospital. Results: Renal anomalies were identified in three (15%) cases including unilateral renal agenesis in one case, renal hypoplasia in one case, and double collecting system and unilateral renal agenesis in one case. Conclusions: In the present study, the increased frequency of renal anomalies in cases of ectopic neurohypophysis was highlighted, and it was emphasized that there might be common genetic factors that lead to such associations. Conflict of interest:None declared. PMID:21750632

  12. Design and Implementation of an Anomaly Detector

    SciTech Connect

    Bagherjeiran, A; Cantu-Paz, E; Kamath, C

    2005-07-11

    This paper describes the design and implementation of a general-purpose anomaly detector for streaming data. Based on a survey of similar work from the literature, a basic anomaly detector builds a model on normal data, compares this model to incoming data, and uses a threshold to determine when the incoming data represent an anomaly. Models compactly represent the data but still allow for effective comparison. Comparison methods determine the distance between two models of data or the distance between a model and a point. Threshold selection is a largely neglected problem in the literature, but the current implementation includes two methods to estimate thresholds from normal data. With these components, a user can construct a variety of anomaly detection schemes. The implementation contains several methods from the literature. Three separate experiments tested the performance of the components on two well-known and one completely artificial dataset. The results indicate that the implementation works and can reproduce results from previous experiments.

  13. Chemical Compositions and Anomalies in Stellar Coronae

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy; Oliversen, Ronald J. (Technical Monitor)

    2005-01-01

    In summary, as the papers cited here and in earlier reports demonstrate, this award has enabled us to obtain a fairly good picture of the abundance anomalies in stellar coronae. The "inverse FIP" effect in very active stars has now been fleshed out as a more complex anomaly depending on FIP, whereas before it appeared only in terms of a general metal paucity, the recent solar abundance assessment of Asplund et a1 will, if correct, challenge some of the older interpretations of coronal abundance anomalies since they imply quite different relative abundances of CNO compared with Fe, Mg and Si. Further investigations have been in into the possibility of modeling some of the recent coronal abundance anomaly results in terms of Alfven wave-driven separation of neutrals and ions in the upper chromosphere. This work still remains in the seed stage, and future funding from a different program will be requested to pursue it further.

  14. Classifying gauge anomalies through symmetry-protected trivial orders and classifying gravitational anomalies through topological orders

    NASA Astrophysics Data System (ADS)

    Wen, Xiao-Gang

    2013-08-01

    In this paper, we systematically study gauge anomalies in bosonic and fermionic weak-coupling gauge theories with gauge group G (which can be continuous or discrete) in d space-time dimensions. We show a very close relation between gauge anomalies for gauge group G and symmetry-protected trivial (SPT) orders (also known as symmetry-protected topological (SPT) orders) with symmetry group G in one-higher dimension. The SPT phases are classified by group cohomology class Hd+1(G,R/Z). Through a more careful consideration, we argue that the gauge anomalies are described by the elements in Free[Hd+1(G,R/Z)]⊕Hπ˙d+1(BG,R/Z). The well known Adler-Bell-Jackiw anomalies are classified by the free part of Hd+1(G,R/Z) (denoted as Free[Hd+1(G,R/Z)]). We refer to other kinds of gauge anomalies beyond Adler-Bell-Jackiw anomalies as non-ABJ gauge anomalies, which include Witten SU(2) global gauge anomalies. We introduce a notion of π-cohomology group, Hπ˙d+1(BG,R/Z), for the classifying space BG, which is an Abelian group and include Tor[Hd+1(G,R/Z)] and topological cohomology group Hd+1(BG,R/Z) as subgroups. We argue that Hπ˙d+1(BG,R/Z) classifies the bosonic non-ABJ gauge anomalies and partially classifies fermionic non-ABJ anomalies. Using the same approach that shows gauge anomalies to be connected to SPT phases, we can also show that gravitational anomalies are connected to topological orders (i.e., patterns of long-range entanglement) in one-higher dimension.

  15. Congenital Anomalies in Infant with Congenital Hypothyroidism

    PubMed Central

    Razavi, Zahra; Yavarikia, Alireza; Torabian, Saadat

    2012-01-01

    Objective Congenital hypothyroidism is characterized by inadequate thyroid hormone production in newborn infants. Many infants with CH have co-occurring congenital malformations. This is an investigation on the frequency and types of congenital anomalies in infants with congenital hypothyroidism born from May 2006-2010 in Hamadan, west province of Iran. Methods The Iranian neonatal screening program for congenital hypothyroidism was initiated in May 2005. This prospective descriptive study was conducted in infants diagnosed with congenital hypothyroidism being followed up in Pediatric Endocrinology Clinic of Besat Hospital, a tertiary care centre in Hamadan. Cases included all infants with congenital hypothyroidism diagnosed through newborn screening program or detected clinically. Anomalies were identified by clinical examination, echocardiography, and X-ray of the hip during the infant’s first year of life. Results A total of 150 infants with biochemically confirmed primary congenital hypothyroidism (72 females and 78 males) were recruited during the period between May 2006-2010. Overall, 30 (20%) infants had associated congenital anomalies. The most common type of anomaly was Down syndrome. Seven infants (3.1%) had congenital cardiac anomalies such as: ASD (n=3), VSD (n=2), PS (n =1), PDA (n=1). Three children (2.6%) had developmental dysplasia of the hip (n=3). Conclusion The overall frequency of Down syndrome, cardiac malformation and other birth defect was high in infants with CH. This reinforces the need to examine all infants with congenital hypothyroidism for the presence of associated congenital anomalies. PMID:23074545

  16. IDENTIFYING ANOMALIES IN GRAVITATIONAL LENS TIME DELAYS

    SciTech Connect

    Congdon, Arthur B.; Keeton, Charles R.; Nordgren, C. Erik E-mail: keeton@physics.rutgers.ed

    2010-02-01

    We examine the ability of gravitational lens time delays to reveal complex structure in lens potentials. In a previous paper, we predicted how the time delay between the bright pair of images in a 'fold' lens scales with the image separation, for smooth lens potentials. Here we show that the proportionality constant increases with the quadrupole moment of the lens potential, and depends only weakly on the position of the source along the caustic. We use Monte Carlo simulations to determine the range of time delays that can be produced by realistic smooth lens models consisting of isothermal ellipsoid galaxies with tidal shear. We can then identify outliers as 'time delay anomalies'. We find evidence for anomalies in close image pairs in the cusp lenses RX J1131 - 1231 and B1422+231. The anomalies in RX J1131 - 1231 provide strong evidence for substructure in the lens potential, while at this point the apparent anomalies in B1422+231 mainly indicate that the time delay measurements need to be improved. We also find evidence for time delay anomalies in larger-separation image pairs in the fold lenses, B1608+656 and WFI 2033 - 4723, and the cusp lens RX J0911+0551. We suggest that these anomalies are caused by some combination of substructure and a complex lens environment. Finally, to assist future monitoring campaigns we use our smooth models with shear to predict the time delays for all known four-image lenses.

  17. Light element isotopic compositions of cometary matter returned by the STARDUST mission

    SciTech Connect

    McKeegan, K D; Aleon, J; Bradley, J; Brownlee, D; Busemann, H; Butterworth, A; Chaussidon, M; Fallon, S; Floss, C; Gilmour, J; Gounelle, M; Graham, G; Guan, Y; Heck, P R; Hoppe, P; Hutcheon, I D; Huth, J; Ishii, H; Ito, M; Jacobsen, S B; Kearsley, A; Leshin, L A; Liu, M; Lyon, I; Marhas, K; Marty, B; Matrajt, G; Meibom, A; Messenger, S; Mostefaoui, S; Nakamura-Messenger, K; Nittler, L; Palma, R; Pepin, R O; Papanastassiou, D A; Robert, F; Schlutter, D; Snead, C J; Stadermann, F J; Stroud, R; Tsou, P; Westphal, A; Young, E D; Ziegler, K; Zimmermann, L; Zinner, E

    2006-10-10

    Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild2 particle fragments, however extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Non-terrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is {sup 16}O-enriched like refractory inclusions in meteorites, suggesting formation in the hot inner solar nebula and large-scale radial transport prior to comet accretion in the outer solar system.

  18. Isotope separation by photochromatography

    DOEpatents

    Suslick, Kenneth S.

    1977-01-01

    An isotope separation method which comprises physically adsorbing an isotopically mixed molecular species on an adsorptive surface and irradiating the adsorbed molecules with radiation of a predetermined wavelength which will selectively excite a desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thereby separate them from the unexcited undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes.

  19. Isotope separation by photochromatography

    DOEpatents

    Suslick, K.S.

    1975-10-03

    A photochromatographic method for isotope separation is described. An isotopically mixed molecular species is adsorbed on an adsorptive surface, and the adsorbed molecules are irradiated with radiation of a predetermined wavelength which will selectively excite desired isotopic species. Sufficient energy is transferred to the excited molecules to desorb them from the surface and thus separate them from the undesired isotopic species. The method is particularly applicable to the separation of hydrogen isotopes. (BLM)

  20. MAGSAT correlations with geoid anomalies. [magnetic anomalies in the western Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Bowin, C. O. (Principal Investigator)

    1984-01-01

    A digital data library of MAGSAT data is described and its applications and capabilities are reviewed. Polynomial trends were removed from each half-orbit in order to estimate and remove ring current effects from the data. The MAGSAT data in the Gulf of Mexico region was analyzed to define better the possible relation of the negative MAGSAT anomaly there to the negative residual geoid anomaly in the western Gulf of Mexico. Since the shape and location of the negative magnetic anomaly are variable depending upon the particular polynomial surface and curve orders used, no definitive conclusion as to the degree of correspondance between the residual geoid and MAGSAT lithosphere anomalies is offered.

  1. Clustering and Recurring Anomaly Identification: Recurring Anomaly Detection System (ReADS)

    NASA Technical Reports Server (NTRS)

    McIntosh, Dawn

    2006-01-01

    This viewgraph presentation reviews the Recurring Anomaly Detection System (ReADS). The Recurring Anomaly Detection System is a tool to analyze text reports, such as aviation reports and maintenance records: (1) Text clustering algorithms group large quantities of reports and documents; Reduces human error and fatigue (2) Identifies interconnected reports; Automates the discovery of possible recurring anomalies; (3) Provides a visualization of the clusters and recurring anomalies We have illustrated our techniques on data from Shuttle and ISS discrepancy reports, as well as ASRS data. ReADS has been integrated with a secure online search

  2. Thulium anomalies and rare earth element patterns in meteorites and Earth: Nebular fractionation and the nugget effect

    NASA Astrophysics Data System (ADS)

    Dauphas, Nicolas; Pourmand, Ali

    2015-08-01

    This study reports the bulk rare earth element (REEs, La-Lu) compositions of 41 chondrites, including 32 falls and 9 finds from carbonaceous (CI, CM, CO and CV), enstatite (EH and EL) and ordinary (H, L and LL) groups, as well as 2 enstatite achondrites (aubrite). The measurements were done in dynamic mode using multi-collector inductively coupled plasma mass spectrometers (MC-ICPMS), allowing precise quantification of mono-isotopic REEs (Pr, Tb, Ho and Tm). The CI-chondrite-normalized REE patterns (LaN/LuN; a proxy for fractionation of light vs. heavy REEs) and Eu anomalies in ordinary and enstatite chondrites show more scatter in more metamorphosed (petrologic types 4-6) than in unequilibrated (types 1-3) chondrites. This is due to parent-body redistribution of the REEs in various carrier phases during metamorphism. A model is presented that predicts the dispersion of elemental and isotopic ratios due to the nugget effect when the analyzed sample mass is limited and elements are concentrated in minor grains. The dispersion in REE patterns of equilibrated ordinary chondrites is reproduced well by this model, considering that REEs are concentrated in 200 μm-size phosphates, which have high LaN/LuN ratios and negative Eu anomalies. Terrestrial rocks and samples from ordinary and enstatite chondrites display negative Tm anomalies of ∼-4.5% relative to CI chondrites. In contrast, CM, CO and CV (except Allende) show no significant Tm anomalies. Allende CV chondrite shows large excess Tm (∼+10%). These anomalies are similar to those found in group II refractory inclusions in meteorites but of much smaller magnitude. The presence of Tm anomalies in meteorites and terrestrial rocks suggests that either (i) the material in the inner part of the solar system was formed from a gas reservoir that had been depleted in refractory dust and carried positive Tm anomalies or (ii) CI chondrites are enriched in refractory dust and are not representative of solar composition for

  3. Uranium-234 anomalies in corals older than 150,000 years

    SciTech Connect

    Bard, E. Columbia Univ., Palisades, NY ); Fairbanks, R.G.; Zindler, A. ); Hamelin, B. Univ. Aix-Marseille III ); Hoang, C.T. )

    1991-08-01

    The authors present new precise U-Th ages of well-preserved coral specimens collected from the island of Barbados, West Indies, and the atoll of Mururoa, French Polynesia. Their new data confirm the ages attributed to oxygen isotope stage 7 in the framework of the Milankovitch theory. By using thermal ionization mass spectrometry (TIMS), it is also possible to quantify precisely the [sup 234]U/[sup 238]U ratios in corals. Samples older than 150 kyr B.P. are shown to be characterized by significant excesses of [sup 234]U relative to the uranium isotopic composition expected if the corals grew in present-day sea water. Assuming that the [sup 230]Th-ingrowth ages are accurate, these anomalies translate into high initial [sup 234]U/[sup 238]U ratios: about 1.2 at 200 kyr and up to 1.5 at about 450 kyr B.P. They propose that the anomalies result from both diagenetic addition and replacement of U and possibly from global changes in the [sup 234]U/[sup 238]U composition of the sea water through time. The [sup 234]U anomalies cast doubt on the accuracy of the classical [sup 230]Th-ingrowth dating method in old corals, and in particular for the use of measured [sup 234]U/[sup 238]U ratios alone to date corals older than 150 kyr.

  4. Non-mass-dependent (17) O anomalies generated by a superimposed thermal gradient on a rarefied O(2) gas in a closed system.

    PubMed

    Sun, Tao; Bao, Huiming

    2011-01-15

    Cryogenic or heating methods have been widely used in experiments involving gas purification or isolation and in studying phase changes among solids, liquids, or gases for more than a century. Thermal gradients are often present in these routine processes. While stable isotopes of an element are known to fractionate under a thermal gradient, the largely diffusion-driven fractionation is assumed to be entirely mass-dependent. We report here, however, that distinct non-mass-dependent oxygen isotope fractionation can be generated when subjecting rarefied O(2) gas in a closed system to a simple thermal gradient. The Δ(17) O value, a measure of the (17) O anomaly, can be up to -0.51‰ (standard deviation (s.d.) 1σ = 0.03) in one of the temperature compartments. The magnitude of the (17) O anomalies decreased with increasing initial gas pressures. The authenticity of this phenomenon is substantiated by a series of blank tests and isotope mass-balance calculations. The observed anomalies are not the result of H(2) O contamination in samples or in isotope ratio mass spectrometry. Our finding calls attention to the importance of thermal gradient-induced isotope fractionation and to its implications in laboratory procedures, stable isotope geochemistry, and the physical chemistry of rarefied gases. PMID:21154650

  5. Measurement of the hot spot electron temperature in NIF ICF implosions using Krypton x-ray emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Ma, T.; Chen, H.; Patel, P. K.; Schneider, M.; Barrios, M.; Berzak Hopkins, L.; Casey, D.; Chung, H.-K.; Hammel, B.; Jarrott, C.; Nora, R.; Pak, A.; Scott, H.; Spears, B.; Weber, C.

    2015-11-01

    The inference of ion temperature from neutron spectral measurements in indirect-drive ICF implosions is known to be sensitive to non-thermal velocity distributions in the fuel. The electron temperature (Te) inferred from dopant line ratios should not be sensitive to these bulk motions and hence may be a better measure of the thermal temperature of the hot spot. Here we describe a series of experiments to be conducted on the NIF where a small concentration of a mid-Z dopant (Krypton) is added to the fuel gas. The x-ray spectra is measured and the electron temperature is inferred from Kr line ratios. We also quantify the level of radiative cooling in the hot spot due to this mid-Z dopant. These experiments represent the first direct measurement of hot spot Te using spectroscopy, and we will describe the considerations for applying x-ray spectroscopy in such dense and non-uniform hot spots. This work performed under the auspices of U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  6. 54-Cr Anomalies in the Orgueil Carbonaceous Chondrite

    NASA Astrophysics Data System (ADS)

    Podosek, F. A.; Ott, U.; Brannon, J. C.; Bernatowicz, T. J.; Neal, C. R.

    1995-09-01

    Cr in CI meteorites displays isotopic anomalies in a unique pattern [1-3]. Etching of bulk Orgueil in relatively mild reactants (CH3COOH and dilute HNO3) dissolves most (>80%) of the Cr along with most of other major cations (Mg, Ca, Fe, Ni, Al). The Cr thus dissolved is deficient in 54Cr by about 6 epsilon-units (using 50Cr/52Cr normalization). Much of the remaining Cr is released in further etching in HCl; this Cr has stronger excesses of 54Cr, up to around 100epsilon. Dissolution of the residues in more aggressive reactants yields Cr with smaller excesses of 54Cr. There are no known correlating anomalies in other elements or even in 53Cr. Although no Cr carrier in Orgueil has isotopically normal Cr, mass balance calculations indicate approximately normal Cr in the whole rock. We have previously suggested that these results could be most simply explained by postulating one carrier phase, relatively rich in Cr and bearing strong excess 54Cr, presumably from neutron-rich nuclear statistical equilibrium nucleosynthesis. This phase would have to be soluble in HCl but resistant to parent body aqueous alteration. In this interpretation the 54Cr-deficiency in most of the Cr is understandable in terms of mixing of all the nucleosnthetic sources contributing to solar normal except for that in the postulated carrier phase. Qualitatively similar but more subdued isotopic effects occur in CM meteorites and are very subdued or absent in CV and CO meteorites[1]. If the parent bodies for these classes originally contained the same postulated phase in comparable abundance, the implication is that the 54Cr-enriched carrier phase is also not resistant to the thermal processing experienced by these classes. Interstellar grains bearing Cr from specific nucleosynthetic events would be expected to be much more anomalous than any samples yet observed; we thus lack evidence to determine whether the carrier is itself a type of interstellar grain (in which case all observations to date

  7. 7P1/2 hyperfine splitting in 206 , 207 , 209 , 213Fr and the hyperfine anomaly

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Orozco, L. A.; Collister, R.; Gwinner, G.; Tandecki, M.; Behr, J. A.; Pearson, M. R.; Gomez, E.; Aubin, S.

    2013-05-01

    We perform precision measurements on francium, the heaviest alkali with no stable isotopes, at the recently commissioned Francium Trapping Facility at TRIUMF. A combination of RF and optical spectroscopy allows better than 10 ppm (statistical) measurements of the 7P1 / 2 state hyperfine splitting for the isotopes 206 , 207 , 209 , 213Fr, in preparation for weak interaction studies. Together with previous measurements of the ground state hyperfine structure, it is possible to extract the hyperfine anomaly. This is a correction to the point interaction of the nuclear magnetic moment and the electron wavefunction, known as the Bohr Weisskopf effect. Our measurements extend previous measurements to the neutron closed shell isotope (213) as well as further in the neutron deficient isotopes (206, 207). Work supported by NSERC and NRC from Canada, NSF and DOE from USA, CONYACT from Mexico.

  8. Nickel and chromium isotopes in Allende inclusions

    NASA Technical Reports Server (NTRS)

    Birck, J. L.; Lugmair, G. W.

    1988-01-01

    High-precision nickel and chromium isotopic measurements were carried out on nine Allende inclusions. It is found that Ni-62, Ni-64, excesses are present in at least three of the samples. The results suggest that the most likely mechanism for the anomalies is a neutron-rich statistical equilibrium process. An indication of elevated Ni-60 is found in almost every inclusion measured. This effect is thought to be related to the decay of now extinct Fe-60. An upper limit of 1.6 X 10 to the -6th is calculated for the Fe-60/Fe-56 ratio at the time these Allende inclusions crystallized.

  9. Mass-independent isotope fractionation of Mo, Ru, Cd, and Te

    NASA Astrophysics Data System (ADS)

    Fujii, T.; Moynier, F.; Albarède, F.

    2006-12-01

    The variation of the mean charge distribution in the nucleus with the neutron number of different isotopes induces a tenuous shift of the nuclear field. The mass fractionation induced during phase changes is irregular, notably with 'staggering' between odd and even masses, and becomes increasingly non-linear for neutron-rich isotopes. A strong correlation is observed between the deviation of the isotopic effects from the linear dependence with mass and the corresponding nuclear charge radii. We first demonstrated on a number of elements the existence of such mass-independent isotope fractionation in laboratory experiments of solvent extraction with a macrocyclic compound. The isotope ratios were analyzed by multiple-collector inductively coupled plasma mass spectrometry with a typical precision of <100 ppm. The isotopes of odd and even atomic masses are enriched in the solvent to an extent that closely follows the variation of their nuclear charge radii. The present results fit Bigeleisen's (1996) model, which is the standard mass-dependent theory modified to include a correction term named the nuclear field shift effect. For heavy elements like uranium, the mass-independent effect is important enough to dominate the mass-dependent effect. We subsequently set out to compare the predictions of Bigeleisen's theory with the isotopic anomalies found in meteorites. Some of these anomalies are clearly inconsistent with nucleosynthetic effects (either s- or r-processes). Isotopic variations of Mo and Ru in meteorites, especially in Allende (CV3), show a clear indication of nucleosynthetic components. However, the mass-independent anomaly of Ru observed in Murchison (CM2) is a remarkable exception which cannot be explained by the nucleosynthetic model, but fits the nuclear field shift theory extremely well. The abundances of the even atomic mass Te isotopes in the leachates of carbonaceous chondrites, Allende, Murchison, and Orgueil, fit a mass-dependent law well, but the

  10. Whole exome sequence analysis of Peters anomaly.

    PubMed

    Weh, Eric; Reis, Linda M; Happ, Hannah C; Levin, Alex V; Wheeler, Patricia G; David, Karen L; Carney, Erin; Angle, Brad; Hauser, Natalie; Semina, Elena V

    2014-12-01

    Peters anomaly is a rare form of anterior segment ocular dysgenesis, which can also be associated with additional systemic defects. At this time, the majority of cases of Peters anomaly lack a genetic diagnosis. We performed whole exome sequencing of 27 patients with syndromic or isolated Peters anomaly to search for pathogenic mutations in currently known ocular genes. Among the eight previously recognized Peters anomaly genes, we identified a de novo missense mutation in PAX6, c.155G>A, p.(Cys52Tyr), in one patient. Analysis of 691 additional genes currently associated with a different ocular phenotype identified a heterozygous splicing mutation c.1025+2T>A in TFAP2A, a de novo heterozygous nonsense mutation c.715C>T, p.(Gln239*) in HCCS, a hemizygous mutation c.385G>A, p.(Glu129Lys) in NDP, a hemizygous mutation c.3446C>T, p.(Pro1149Leu) in FLNA, and compound heterozygous mutations c.1422T>A, p.(Tyr474*) and c.2544G>A, p.(Met848Ile) in SLC4A11; all mutations, except for the FLNA and SLC4A11 c.2544G>A alleles, are novel. This is the first study to use whole exome sequencing to discern the genetic etiology of a large cohort of patients with syndromic or isolated Peters anomaly. We report five new genes associated with this condition and suggest screening of TFAP2A and FLNA in patients with Peters anomaly and relevant syndromic features and HCCS, NDP and SLC4A11 in patients with isolated Peters anomaly. PMID:25182519

  11. Whole exome sequence analysis of Peters anomaly

    PubMed Central

    Weh, Eric; Reis, Linda M.; Happ, Hannah C.; Levin, Alex V.; Wheeler, Patricia G.; David, Karen L.; Carney, Erin; Angle, Brad; Hauser, Natalie

    2015-01-01

    Peters anomaly is a rare form of anterior segment ocular dysgenesis, which can also be associated with additional systemic defects. At this time, the majority of cases of Peters anomaly lack a genetic diagnosis. We performed whole exome sequencing of 27 patients with syndromic or isolated Peters anomaly to search for pathogenic mutations in currently known ocular genes. Among the eight previously recognized Peters anomaly genes, we identified a de novo missense mutation in PAX6, c.155G>A, p.(Cys52Tyr), in one patient. Analysis of 691 additional genes currently associated with a different ocular phenotype identified a heterozygous splicing mutation c.1025+2T>A in TFAP2A, a de novo heterozygous nonsense mutation c.715C>T, p.(Gln239*) in HCCS, a hemizygous mutation c.385G>A, p.(Glu129Lys) in NDP, a hemizygous mutation c.3446C>T, p.(Pro1149Leu) in FLNA, and compound heterozygous mutations c.1422T>A, p.(Tyr474*) and c.2544G>A, p.(Met848Ile) in SLC4A11; all mutations, except for the FLNA and SLC4A11 c.2544G>A alleles, are novel. This is the frst study to use whole exome sequencing to discern the genetic etiology of a large cohort of patients with syndromic or isolated Peters anomaly. We report five new genes associated with this condition and suggest screening of TFAP2A and FLNA in patients with Peters anomaly and relevant syndromic features and HCCS, NDP and SLC4A11 in patients with isolated Peters anomaly. PMID:25182519

  12. Persistent anomalies of the extratropical Northern Hemisphere wintertime circulation - Structure

    NASA Technical Reports Server (NTRS)

    Dole, R. M.

    1986-01-01

    A study identifying horizontal and vertical structures of low patterns occurring with persistent 500 mb height anomalies in the central North Pacific, eastern North Atlantic, and northern Soviet Union regions is presented. The flow patterns of positive and negative anomalies are compared. The relationship between persistent anomalies and small recurrent anomaly patterns is examined. The temporal fluctuations of the persistent patterns are analyzed.

  13. Isotopic compositions of cometary matter returned by Stardust.

    PubMed

    McKeegan, Kevin D; Aléon, Jerome; Bradley, John; Brownlee, Donald; Busemann, Henner; Butterworth, Anna; Chaussidon, Marc; Fallon, Stewart; Floss, Christine; Gilmour, Jamie; Gounelle, Matthieu; Graham, Giles; Guan, Yunbin; Heck, Philipp R; Hoppe, Peter; Hutcheon, Ian D; Huth, Joachim; Ishii, Hope; Ito, Motoo; Jacobsen, Stein B; Kearsley, Anton; Leshin, Laurie A; Liu, Ming-Chang; Lyon, Ian; Marhas, Kuljeet; Marty, Bernard; Matrajt, Graciela; Meibom, Anders; Messenger, Scott; Mostefaoui, Smail; Mukhopadhyay, Sujoy; Nakamura-Messenger, Keiko; Nittler, Larry; Palma, Russ; Pepin, Robert O; Papanastassiou, Dimitri A; Robert, François; Schlutter, Dennis; Snead, Christopher J; Stadermann, Frank J; Stroud, Rhonda; Tsou, Peter; Westphal, Andrew; Young, Edward D; Ziegler, Karen; Zimmermann, Laurent; Zinner, Ernst

    2006-12-15

    Hydrogen, carbon, nitrogen, and oxygen isotopic compositions are heterogeneous among comet 81P/Wild 2 particle fragments; however, extreme isotopic anomalies are rare, indicating that the comet is not a pristine aggregate of presolar materials. Nonterrestrial nitrogen and neon isotope ratios suggest that indigenous organic matter and highly volatile materials were successfully collected. Except for a single (17)O-enriched circumstellar stardust grain, silicate and oxide minerals have oxygen isotopic compositions consistent with solar system origin. One refractory grain is (16)O-enriched, like refractory inclusions in meteorites, suggesting that Wild 2 contains material formed at high temperature in the inner solar system and transported to the Kuiper belt before comet accretion. PMID:17170292

  14. Potential of metal-organic frameworks for separation of xenon and krypton.

    PubMed

    Banerjee, Debasis; Cairns, Amy J; Liu, Jian; Motkuri, Radha K; Nune, Satish K; Fernandez, Carlos A; Krishna, Rajamani; Strachan, Denis M; Thallapally, Praveen K

    2015-02-17

    CONSPECTUS: The total world energy demand is predicted to rise significantly over the next few decades, primarily driven by the continuous growth of the developing world. With rapid depletion of nonrenewable traditional fossil fuels, which currently account for almost 86% of the worldwide energy output, the search for viable alternative energy resources is becoming more important from a national security and economic development standpoint. Nuclear energy, an emission-free, high-energy-density source produced by means of controlled nuclear fission, is often considered as a clean, affordable alternative to fossil fuel. However, the successful installation of an efficient and economically viable industrial-scale process to properly sequester and mitigate the nuclear-fission-related, highly radioactive waste (e.g., used nuclear fuel (UNF)) is a prerequisite for any further development of nuclear energy in the near future. Reprocessing of UNF is often considered to be a logical way to minimize the volume of high-level radioactive waste, though the generation of volatile radionuclides during reprocessing raises a significant engineering challenge for its successful implementation. The volatile radionuclides include but are not limited to noble gases (predominately isotopes of Xe and Kr) and must be captured during the process to avoid being released into the environment. Currently, energy-intensive cryogenic distillation is the primary means to capture and separate radioactive noble gas isotopes during UNF reprocessing. A similar cryogenic process is implemented during commercial production of noble gases though removal from air. In light of their high commercial values, particularly in lighting and medical industries, and associated high production costs, alternate approaches for Xe/Kr capture and storage are of contemporary research interest. The proposed pathways for Xe/Kr removal and capture can essentially be divided in two categories: selective absorption by

  15. Manganese-chromium isotope systematics and the development of the early solar system

    NASA Astrophysics Data System (ADS)

    Birck, J.-L.; Allegre, C. J.

    1988-02-01

    High-precision measurements of the chromium isotope compositions of samples from meteorites reveal anomalies in the Cr-53/Cr-52 ratio which are believed to arise from in situ decay of the extinct short-lived nuclide Mn-53. The decay of Mn-53 to Cr-53 in the early solar system provides an additional chronometer with which to constrain the formation times of the small planetary bodies from which the meteorites originated. A comparison of chromium and titanium isotope anomalies shows them to be imperfectly correlated, bearing witness to the complexity of early solar system processes.

  16. Condensation of solids in space. Isotope fractionation in the model system C-O

    NASA Technical Reports Server (NTRS)

    Arrhenius, G.

    1983-01-01

    The reported chemical fractionation of a single isotope O-16 under simulated space conditions provides the first experimental proof for the hypothesis that the oxygen isotopic anomaly (and other similar anomalies) seen in meteorites is a product of chemical fractionation in interstellar or circumstellar space. Work proposed on this subject was discontinued because a peer review determined that such effects could not possibly exist and that continued support of this project would be a wasted effort. A bibliography is included of articles generated during research in this area.

  17. Krypton-81 in groundwater of the Culebra Dolomite near the Waste Isolation Pilot Plant, New Mexico.

    PubMed

    Sturchio, Neil C; Kuhlman, Kristopher L; Yokochi, Reika; Probst, Peter C; Jiang, Wei; Lu, Zheng-Tian; Mueller, Peter; Yang, Guo-Min

    2014-05-01

    The Waste Isolation Pilot Plant (WIPP) in New Mexico is the first geologic repository for disposal of transuranic nuclear waste from defense-related programs of the US Department of Energy. It is constructed within halite beds of the Permian-age Salado Formation. The Culebra Dolomite, confined within Rustler Formation evaporites overlying the Salado Formation, is a potential pathway for radionuclide transport from the repository to the accessible environment in the human-disturbed repository scenario. Although extensive subsurface characterization and numerical flow modeling of groundwater has been done in the vicinity of the WIPP, few studies have used natural isotopic tracers to validate the flow models and to better understand solute transport at this site. The advent of Atom-Trap Trace Analysis (ATTA) has enabled routine measurement of cosmogenic (81)Kr (half-life 229,000 yr), a near-ideal tracer for long-term groundwater transport. We measured (81)Kr in saline groundwater sampled from two Culebra Dolomite monitoring wells near the WIPP site, and compared (81)Kr model ages with reverse particle-tracking results of well-calibrated flow models. The (81)Kr model ages are ~130,000 and ~330,000 yr for high-transmissivity and low-transmissivity portions of the formation, respectively. Compared with flow model results which indicate a relatively young mean hydraulic age (~32,000 yr), the (81)Kr model ages imply substantial physical attenuation of conservative solutes in the Culebra Dolomite and provide limits on the effective diffusivity of contaminants into the confining aquitards. PMID:24594409

  18. Validation of normal and pathologic right ventricular function using ultra-short-lived Krypton-81m

    SciTech Connect

    Nienaber, C.; Spielmann, R.; Wasmus, B.; Mathey, D.; Montz, R.; Bleifield, W.

    1984-01-01

    Measurement of right ventricular ejection fraction (RVEF) using conventional count-based, non-geometry dependent first-pass radionuclide techniques and technetium labelled compounds (T/2 = 6 hours) implies unnecessary whole body radiation and repeated injections of isotope for sequential RVEF estimate. Kr-81m (T/2 = 13 secs) continuously eluted in 5% glucose from a bed-side rubidium-81 generator is intravenously infused providing high count density and high photon flux for rapid imaging of the right-side chambers in ECG-gated equilibrium acquisition mode. A variable right anterior oblique projection is adjusted for optimal right atrio-ventricular separation. Left-sided heart and lung background is minimized by rapid decay and efficient exhalation of Kr-81m, requiring no algorithm for background correction. RV septal and free wall contours are aligned by a semiautomatic edge detection program; tricuspid and pulmonary valve planes are defined from phase images using variable ROIs to compensate for systolic valve plane motion. To cover a wide range of RVEF (13%-63%) both methods were compared in 10 normals, 11 patients (pts) with pulmonary hypertension (PH), 4 pts with RV outflow tract obstruction (RVOT-OB) and 4 pts with RV infarction (RV-MI) at rest (R) and during dynamic exercise (E). The paper concludes that equilibrium RV imaging using Kr-81m is an accurate and reproducible method with potential for serial assessment of RVEF in a variety of RV abnormalities both at R and during E. Advantages of this method include: extremely low radiation to patients, high photon flux for rapid imaging and clear atrio-ventricular separation without background.

  19. Krypton-81 in groundwater of the Culebra Dolomite near the Waste Isolation Pilot Plant, New Mexico

    NASA Astrophysics Data System (ADS)

    Sturchio, Neil C.; Kuhlman, Kristopher L.; Yokochi, Reika; Probst, Peter C.; Jiang, Wei; Lu, Zheng-Tian; Mueller, Peter; Yang, Guo-Min

    2014-05-01

    The Waste Isolation Pilot Plant (WIPP) in New Mexico is the first geologic repository for disposal of transuranic nuclear waste from defense-related programs of the US Department of Energy. It is constructed within halite beds of the Permian-age Salado Formation. The Culebra Dolomite, confined within Rustler Formation evaporites overlying the Salado Formation, is a potential pathway for radionuclide transport from the repository to the accessible environment in the human-disturbed repository scenario. Although extensive subsurface characterization and numerical flow modeling of groundwater has been done in the vicinity of the WIPP, few studies have used natural isotopic tracers to validate the flow models and to better understand solute transport at this site. The advent of Atom-Trap Trace Analysis (ATTA) has enabled routine measurement of cosmogenic 81Kr (half-life 229,000 yr), a near-ideal tracer for long-term groundwater transport. We measured 81Kr in saline groundwater sampled from two Culebra Dolomite monitoring wells near the WIPP site, and compared 81Kr model ages with reverse particle-tracking results of well-calibrated flow models. The 81Kr model ages are ~ 130,000 and ~ 330,000 yr for high-transmissivity and low-transmissivity portions of the formation, respectively. Compared with flow model results which indicate a relatively young mean hydraulic age (~ 32,000 yr), the 81Kr model ages imply substantial physical attenuation of conservative solutes in the Culebra Dolomite and provide limits on the effective diffusivity of contaminants into the confining aquitards.

  20. Oxygen anomaly in near surface carbon dioxide reveals deep stratospheric intrusion

    PubMed Central

    Liang, Mao-Chang; Mahata, Sasadhar

    2015-01-01

    Stratosphere-troposphere exchange could be enhanced by tropopause folding, linked to variability in the subtropical jet stream. Relevant to tropospheric biogeochemistry is irreversible transport from the stratosphere, associated with deep intrusions. Here, oxygen anomalies in near surface air CO2 are used to study the irreversible transport from the stratosphere, where the triple oxygen isotopes of CO2 are distinct from those originating from the Earth’s surface. We show that the oxygen anomaly in CO2 is observable at sea level and the magnitude of the signal increases during the course of our sampling period (September 2013-February 2014), concordant with the strengthening of the subtropical jet system and the East Asia winter monsoon. The trend of the anomaly is found to be 0.1‰/month (R2 = 0.6) during the jet development period in October. Implications for utilizing the oxygen anomaly in CO2 for CO2 biogeochemical cycle study and stratospheric intrusion flux at the surface are discussed. PMID:26081178