Science.gov

Sample records for kurtz powder technique

  1. The development of an alternative thermoplastic powder prepregging technique

    NASA Technical Reports Server (NTRS)

    Ogden, A. L.; Hyer, M. W.; Muellerleile, J. T.; Wilkes, G. L.; Loos, A. C.

    1990-01-01

    Discussed is a novel powder prepregging technique that is based on the deposition of the powder onto fibers that have been moistened using an ultrasonic humidifier. The moisture acts as an initial binding agent for the powder until the powder can be melted onto the fiber in a subsequent heating step. LaRC-TPI powder, produced by Mitsui Toastsu, and Hercules AS-4 fiber served as the process development material system. The influence of powder particle size on this process, and the quality of the resulting composite are discussed.

  2. Densification of powder metallurgy billets by a roll consolidation technique

    NASA Technical Reports Server (NTRS)

    Sellman, W. H.; Weinberger, W. R.

    1973-01-01

    Container design is used to convert partially densified powder metallurgy compacts into fully densified slabs in one processing step. Technique improves product yield, lowers costs and yields great flexibility in process scale-up. Technique is applicable to all types of fabricable metallic materials that are produced from powder metallurgy process.

  3. Physical and chemical characterization techniques for metallic powders

    SciTech Connect

    Slotwinski, J. A.; Stutzman, P. E.; Ferraris, C. F.; Watson, S. S.; Peltz, M. A.; Garboczi, E. J.

    2014-02-18

    Systematic studies have been carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. An extensive array of characterization techniques were applied to these two powders. The physical techniques included laser-diffraction particle-size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to chemistry included X-ray diffraction and energy-dispersive analytical X-ray analysis. The background of these techniques will be summarized and some typical findings comparing different samples of virgin additive manufacturing powders, taken from the same lot, will be given. The techniques were used to confirm that different samples of powder from the same lot were essentially identical, within the uncertainty of the measurements.

  4. Application of physical and chemical characterization techniques to metallic powders

    SciTech Connect

    Slotwinski, J. A.; Watson, S. S.; Stutzman, P. E.; Ferraris, C. F.; Peltz, M. A.; Garboczi, E. J.

    2014-02-18

    Systematic studies have been carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to chemistry, including X-ray diffraction and energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, were also employed. Results of these analyses will be used to shed light on the question: how does virgin powder change after being exposed to and recycled from one or more additive manufacturing build cycles? In addition, these findings can give insight into the actual additive manufacturing process.

  5. Nano powders, components and coatings by plasma technique

    DOEpatents

    McKechnie, Timothy N. (Brownsboro, AL); Antony, Leo V. M. (Huntsville, AL); O'Dell, Scott (Arab, AL); Power, Chris (Guntersville, AL); Tabor, Terry (Huntsville, AL)

    2009-11-10

    Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.

  6. Nano powders, components and coatings by plasma technique

    NASA Technical Reports Server (NTRS)

    McKechnie, Timothy N. (Inventor); Antony, Leo V. M. (Inventor); O'Dell, Scott (Inventor); Power, Chris (Inventor); Tabor, Terry (Inventor)

    2009-01-01

    Ultra fine and nanometer powders and a method of producing same are provided, preferably refractory metal and ceramic nanopowders. When certain precursors are injected into the plasma flame in a reactor chamber, the materials are heated, melted and vaporized and the chemical reaction is induced in the vapor phase. The vapor phase is quenched rapidly to solid phase to yield the ultra pure, ultra fine and nano product. With this technique, powders have been made 20 nanometers in size in a system capable of a bulk production rate of more than 10 lbs/hr. The process is particularly applicable to tungsten, molybdenum, rhenium, tungsten carbide, molybdenum carbide and other related materials.

  7. The development of an alternative thermoplastic powder prepregging technique

    NASA Technical Reports Server (NTRS)

    Ogden, A. L.; Hyer, M. W.; Wilkes, G. L.; Loos, A. C.

    1992-01-01

    An alternative powder prepregging technique is discussed that is based on the deposition of powder onto carbon fibers that have been moistened using an ultrasonic humidifier. The dry fiber tow is initially spread to allow a greater amount of the fiber surface to be exposed to the powder, thus ensuring a significant amount of intimate contact between the fiber and the matrix. Moisture in the form of ultrafine water droplets is then deposited onto the spread fiber tow. The moisture promotes adhesion to the fiber until the powder can be tacked to the fibers by melting. Powdered resin is then sieved onto the fibers and then tacked onto the fibers by quick heating in a convective oven. This study focuses on the production of prepregs and laminates made with LaRC-TPI (thermoplastic polyimide) using this process. Although the process appears to be successful, early evaluation was hampered by poor interfacial adhesion. The adhesion problem, however, seems to be the result of a material system incompatibility, rather than being influenced by the process.

  8. Analysis of nonlinear optical materials properties by simple powder technique

    NASA Astrophysics Data System (ADS)

    Morozov, O. A.; Naumov, A. K.; Lovchev, A. V.; Garipov, M. R.

    2015-03-01

    The article describes a simple technique for comparative analysis of the second harmonic generation properties of new samples and etalon materials by their powders. The effectiveness of the method was tested and and measuring of nonlinear coefficient and damage threshold of the well known materials: KDP, LiIO3, m-nitroaniline was demonstrated. The parameters of the new promising nonlinear material DNPAP were measured.

  9. A Modeling-Based Technique for Nondestructive Evaluation of Metal Powders Undergoing Microwave Sintering

    E-print Network

    Yakovlev, Vadim

    , microwave imaging, neural network applications, nondestructive testing. I. INTRODUCTION Microwave (MWA Modeling-Based Technique for Nondestructive Evaluation of Metal Powders Undergoing Microwave of MW sintering raises demand on the techniques of testing/monitoring the state of powder samples

  10. A Comparison of Cocrystal Structure Solutions from Powder and Single Crystal Techniques

    SciTech Connect

    S Lapidus; P Stephens; K Arora; T Shattock; M Zaworotko

    2011-12-31

    We demonstrate the effectiveness and accuracy of high resolution powder diffraction for determination of cocrystal structures through a double-blind study. Structures of 10 cocrystals of varying complexity were determined independently using single crystal and powder techniques. The two methodologies give identical molecular packing and hydrogen bond topology, and an rms difference in covalent bond lengths of 0.035 {angstrom}. Powder techniques are clearly sufficient to establish a complete characterization of cocrystal geometry.

  11. Techniques for the determination of the static and dynamics internal friction of coefficients of ceramic powder

    SciTech Connect

    Martinez, M.A.; Cortes, R.; Sanchez-Galvez, V.; Navarro, C. . Dept. of Materials Science)

    1993-11-01

    This paper discusses different techniques for the experimental estimation of the static and dynamic internal friction coefficients of fragmented ceramics. These were applied to the powders of two ballistic ceramics, SiC and Al[sub 2]O[sub 3]. The relationship between the fragment size and the internal friction coefficients of the powders was determined. The results obtained with the different techniques are compared.

  12. NIRS and MIRS technique for the determination of protein and fat content in milk powder

    NASA Astrophysics Data System (ADS)

    Wu, Di; Feng, Shuijuan; He, Chao; He, Yong

    2008-03-01

    It is very important to detect the protein and fat content in milk powder fast and non-destructively. Near-infrared (NIR) and mid-infrared(MIR) spectroscopy techniques have been compared and evaluated for the determination of the protein and fat content in milk powder with the use of Least-squares support vector machines (LS-SVM). LS-SVM models have been developed by using both NIR and MIR spectra. Both methods have shown good correlations between infrared transmission values and two nutrition contents. MIRS provided better prediction performance over NIRS. It is concluded that infrared spectroscopy technique can quantify of the protein and fat content in milk powder fast and nondestructively. The process is simple and easy to operate than chemistry methods. The results can be beneficial for designing a simple and non-destructive instrument with MIRS or NIRS spectral sensor for the determination of the protein fat content in milk powder.

  13. Electron crystallography as a complement to X-ray powder diffraction techniques

    E-print Network

    Giger, Christine

    Electron crystallography as a complement to X-ray powder diffraction techniques Lynne B. Mc. Electron microscopy techniques yield informa- tion for crystal structure analysis that is remarkably com, while those obtained from a typical selected area electron diffraction (SAED) or preces- sion electron

  14. Comparison of particle sizing techniques in the case of inhalation dry powders.

    PubMed

    Bosquillon, C; Lombry, C; Preat, V; Vanbever, R

    2001-12-01

    The objectives of this work were (i) to validate electrical zone sensing and laser diffraction for the analysis of primary particle size in the case of inhalation dry powders and (ii) to study the influence of the aggregation state of the powder on the sizing techniques. Free-flowing dry powders were prepared by spray-drying with a combination of albumin, lactose, and dipalmitoylphosphatidylcholine. The replacement of lactose by mannitol, the removal of albumin, and the atomization at high relative humidity all increased powder cohesion. Automated measurements were compared with primary particle sizes collected by light and electron microscopy. The mass mode obtained by electrical zone sensing and the mass median diameter measured by laser diffraction following dispersion with compressed air at a pressure of 3 bar or following suspension in water and ultrasonic dispersion at a power of 60 W for 30 s each provided primary particle sizes close to microscopy measurements. However, these conditions only applied in the case of slightly to moderately aggregated powders. For strongly agglomerated powders, an exact measurement of the size was only collected by laser diffraction in the wet state combined with ultrasonic dispersion. Our study underlies how measurement of primary particle size highly depends on both powder material and proper particle dispersion. PMID:11745762

  15. Development of Nb3Al Powder-in-Tube Conductor Using Nanometer-Scale Nb-Al Powders Produced by an Electro-Exploded Wire Technique

    NASA Astrophysics Data System (ADS)

    Rudziak, M. K.; Motowidlo, L. R.; Wong, T.

    2004-06-01

    Supercon has investigated an innovative process for the fabrication of Nb3Al conductor. Monofilament Nb-Al jelly-roll composite wire was fabricated. This wire was then converted to ultra-fine alloy powder by an electro-exploded wire technique, and the powder was used to make conductor by a powder-in-tube process. The development effort demonstrated that alloy powder particle sizes as small as 0.30 micrometers (median by volume) having a composition very near that of the input wire could be achieved using the electro-explosion process. Monofilament powder-in-tube wire was successfully fabricated without wire breakage. The results of the investigation will be discussed, with emphasis on powder characteristics.

  16. Characterization techniques to validate models of density variations in pressed powder compacts

    SciTech Connect

    Garino, T.; Mahoney, M.; Readey, M.; Ewsuk, K.; Gieske, J.; Stoker, G.; Min, S.

    1995-07-01

    Techniques for characterizing density gradients generated during typical powder compaction processes are reviewed and several are evaluated. The techniques reviewed are ultrasonic velocity measurements, laser ultrasonic velocity measurements, x-ray radiography, autoradiography, computer tomography (CT), magnetic resonance imaging (MRI), and simple image analysis of polished cross-sections. Experimental results are reported for all of these techniques except autoradiography, CT and MRI. The test specimens examined were right circular cylinders of a high length/diameter ratio (to ensure significant density variation) pressed from commercial spray-dried alumina powders. Although the density gradients could be detected with all four techniques, ultrasonic velocity measurements gave the best contour map of gradients and is therefore most suitable for model validation. On the other hand, it was concluded that x-ray radiography is preferable in situations where cost and/or number of samples are more important that high resolution.

  17. Detection and original dose assessment of egg powders subjected to gamma irradiation by using ESR technique

    NASA Astrophysics Data System (ADS)

    Ayd?n, Talat

    2015-09-01

    ESR (electron spin resonance) techniques were applied for detection and original dose estimation to radiation-processed egg powders. The un-irradiated (control) egg powders showed a single resonance line centered at g=2.0086±0.0005, 2.0081±0.0005, 2.0082±0.0005 (native signal) for yolk, white and whole egg, respectively. Irradiation induced at least one additional intense singlet overlapping to the control signal and caused a significant increase in signal intensity without any changes in spectral patterns. Responses of egg powders to different gamma radiation doses in the range 0-10 kGy were examined. The stability of the radiation-induced ESR signal of irradiated egg powders were investigated over a storage period of about 5 months. Additive reirradiation of the egg powders produces a reproducible dose response function, which can be used to assess the initial dose by back-extrapolation. The additive dose method gives an estimation of the original dose within ±12% at the end of the 720 h storage period.

  18. Genealogical constructions of population models Alison M. Etheridge Thomas G. Kurtz

    E-print Network

    Kurtz, Tom

    Genealogical constructions of population models Alison M. Etheridge Thomas G. Kurtz Department, Moran model, lookdown construction, genealogies, voter model, generators, stochastic equations, Lambda number of individuals in the population is used to infer the `genealogical trees' that relate those genes

  19. A sol-powder coating technique for fabrication of yttria stabilised zirconia

    SciTech Connect

    Wattanasiriwech, Darunee . E-mail: darunee@mfu.ac.th; Wattanasiriwech, Suthee; Stevens, Ron

    2006-08-10

    Yttria stabilised zirconia has been prepared using a simple sol-powder coating technique. The polymeric yttria sol, which was prepared using 1,3 propanediol as a network modifier, was homogeneously mixed with nanocrystalline zirconia powder and it showed a dual function: as a binder which promoted densification and a phase modifier which stabilised zirconia in the tetragonal and cubic phases. Thermal analysis and X-ray diffraction revealed that the polymeric yttria sol which decomposed at low temperature into yttrium oxide could change the m {sup {yields}} t phase transformation behaviour of the zirconia, possibly due to the small particle size and very high surface area of both yttria and zirconia particles allowing rapid alloying. The sintered samples exhibited three crystalline phases: monoclinic, tetragonal and cubic, in which cubic and tetragonal are the major phases. The weight fractions of the individual phases present in the selected specimens were determined using quantitative Rietveld analysis.

  20. Ultrasound-assisted powder-coating technique to improve content uniformity of low-dose solid dosage forms.

    PubMed

    Genina, Natalja; Räikkönen, Heikki; Antikainen, Osmo; Heinämäki, Jyrki; Yliruusi, Jouko

    2010-09-01

    An ultrasound-assisted powder-coating technique was used to produce a homogeneous powder formulation of a low-dose active pharmaceutical ingredient (API). The powdered particles of microcrystalline cellulose (MCC; Avicel® PH-200) were coated with a 4% m/V aqueous solution of riboflavin sodium phosphate, producing a uniform drug layer on the particle surfaces. It was possible to regulate the amount of API in the treated powder. The thickness of the API layer on the surface of the MCC particles increased near linearly as the number of coating cycles increased, allowing a precise control of the drug content. The tablets (n = 950) prepared from the coated powder showed significantly improved weight and content uniformity in comparison with the reference tablets compressed from a physical binary powder mixture. This was due to the coated formulation remaining uniform during the entire tabletting process, whereas the physical mixture of the powders was subject to segregation. In conclusion, the ultrasound-assisted technique presented here is an effective tool for homogeneous drug coating of powders of irregular particle shape and broad particle size distribution, improving content uniformity of low-dose API in tablets, and consequently, ensuring the safe delivery of a potent active substance to patients. PMID:20730575

  1. Contact: Marc Kurtz Filename: RC0001 -Ribcage FIPS 140 2 Security Policy_August

    E-print Network

    Parameter DES ­ Data Encryption Standard ESP ­ Encapsulating Security Payload FIPS ­ Federal InformationContact: Marc Kurtz Filename: RC0001 - Ribcage FIPS 140 2 Security Policy_August 12.doc Title: FIPS 140-2 Non Proprietary Security Policy Date Last Modified: 8/13/2004 Document Number: RC0001 Rev #:2

  2. Early Cenozoic decoupling of the global carbon and sulfur cycles A. C. Kurtz,1

    E-print Network

    Paytan, Adina

    Early Cenozoic decoupling of the global carbon and sulfur cycles A. C. Kurtz,1 L. R. Kump,2 M. A pyrite sulfur (Spy) and organic carbon (Corg) burial rates from recently improved Cenozoic stable isotope. However, we find that the major early Cenozoic peak in Corg burial coincides with a minimum in Spy burial

  3. New combustion synthesis technique for the production of (InxGa1-x)2O3 powders: Hydrazine/metal nitrate method

    E-print Network

    McKittrick, Joanna

    New combustion synthesis technique for the production of (InxGa1-x)2O3 powders: Hydrazine/metal-temperature method to produce (InxGa1-x)2O3 (x 0.1, 0.2, and 0.3) powders with high purity, high chemical homogeneity divided powders through an exothermic reaction between the precursors. The process starts with aqueous

  4. Characterisation of titanium-titanium boride composites processed by powder metallurgy techniques

    SciTech Connect

    Selva Kumar, M.; Chandrasekar, P.; Chandramohan, P.; Mohanraj, M.

    2012-11-15

    In this work, a detailed characterisation of titanium-titanium boride composites processed by three powder metallurgy techniques, namely, hot isostatic pressing, spark plasma sintering and vacuum sintering, was conducted. Two composites with different volume percents of titanium boride reinforcement were used for the investigation. One was titanium with 20% titanium boride, and the other was titanium with 40% titanium boride (by volume). Characterisation was performed using X-ray diffraction, electron probe micro analysis - energy dispersive spectroscopy and wavelength dispersive spectroscopy, image analysis and scanning electron microscopy. The characterisation results confirm the completion of the titanium boride reaction. The results reveal the presence of titanium boride reinforcement in different morphologies such as needle-shaped whiskers, short agglomerated whiskers and fine plates. The paper also discusses how mechanical properties such as microhardness, elastic modulus and Poisson's ratio are influenced by the processing techniques as well as the volume fraction of the titanium boride reinforcement. - Highlights: Black-Right-Pointing-Pointer Ti-TiB composites were processed by HIP, SPS and vacuum sintering. Black-Right-Pointing-Pointer The completion of Ti-TiB{sub 2} reaction was confirmed by XRD, SEM and EPMA studies. Black-Right-Pointing-Pointer Hardness and elastic properties of Ti-TiB composites were discussed. Black-Right-Pointing-Pointer Processing techniques were compared with respect to their microstructure.

  5. Recovery of SiC powder from sintered DPF using hydrothermal treatment combined with ball-milling technique

    NASA Astrophysics Data System (ADS)

    Liu, Zhengang; Sasai, Ryo; Itoh, Hideaki

    2011-04-01

    In the present work, hydrothermal treatment combined with ball-milling technique (HTBT) was attempted to recover SiC powder from bulk sintered DPF. Various parameters including the material and size of the milling-ball, the type of the solvent medium, the rotation speed, the ratio of solvent/DPF, the treatment temperature and time were optimized. The pulverization rate, impurity content and the particle size of the recovered SiC powder were investigated to assess the effect of HTBT. Dilute HF solution was selected as the main solvent and SiC milling-ball was the most suitable for pulverization of the sintered DPF. The rotation speed played a significant role for the pulverization rate and more than 90% of bulk sintered DPF was recovered as SiC powder using SiC balls (5 mm in diameter) in the mixed aqueous solutions of HF (0.05 mol/dm3) and H2O2 (0.25 mol/dm3) with rotation speed >= 275 rpm and solvent/DPF = 1.5 at 200°C after 20 h HTBT . Generally the average grain size of the recovered SiC powder was less than 1.5 ?m and decreased with the extended treatment time and the increased rotation speed. The result of purity analysis showed that the recovered SiC powder totally met the demand of the raw SiC powder for DPF production under the optimized conditions.

  6. Application of powder metallurgy techniques to produce improved bearing elements for liquid rocket engines

    NASA Technical Reports Server (NTRS)

    Moracz, D. J.; Shipley, R. J.; Moxson, V. S.; Killman, R. J.; Munson, H. E.

    1992-01-01

    The objective was to apply powder metallurgy techniques for the production of improved bearing elements, specifically balls and races, for advanced cryogenic turbopump bearings. The materials and fabrication techniques evaluated were judged on the basis of their ability to improve fatigue life, wear resistance, and corrosion resistance of Space Shuttle Main Engine (SSME) propellant bearings over the currently used 440C. An extensive list of candidate bearing alloys in five different categories was considered: tool/die steels, through hardened stainless steels, cobalt-base alloys, and gear steels. Testing of alloys for final consideration included hardness, rolling contact fatigue, cross cylinder wear, elevated temperature wear, room and cryogenic fracture toughness, stress corrosion cracking, and five-ball (rolling-sliding element) testing. Results of the program indicated two alloys that showed promise for improved bearing elements. These alloys were MRC-2001 and X-405. 57mm bearings were fabricated from the MRC-2001 alloy for further actual hardware rig testing by NASA-MSFC.

  7. Novel powder metallurgy technique for development of Fe-P-based soft magnetic materials

    NASA Astrophysics Data System (ADS)

    Das, Jiten; Chandra, K.; Misra, P. S.; Sarma, B.

    Novel powder metallurgy technique (hot forging technique) is used for the development of high-density Fe-P-based soft magnetic alloys such as Fe-P binary, Fe-P-Cr ternary and Fe-P-Cr-Si quaternary alloys. In this process, mild steel encapsulated powders were hot forged into slabs, hot rolled and annealed to relieve the residual stresses. These alloys were subjected to in-house characterization, e.g. density and theoretically calculated porosity content at various stages. Microstructural study has been carried out to compare observed porosity with the theoretically calculated porosity. X-ray diffraction studies of these alloys revealed presence of only ferrite as product phase. Various soft magnetic properties such as resistivity, coercivity, maximum flux density (at 350 G magnetic field), retentivity and total magnetic losses were also evaluated and reported. These alloys were made by hot forging using two different kinds of dies, e.g. flat die and channel die. It was observed that the flat-die forged alloys had more porosity than the channel-die forged alloys. Addition of alloying elements such as P, Cr and Si increased the resistivity of Fe. The higher the alloying addition, the higher is the alloy's resistivity. Fe-0.7P-0.7Cr-1Si alloy showed a resistivity as high as 44.1 ?? cm. Coercivity values of the alloys ranged from 1.0 to 2.2 Oe. Addition of Si and P helped in reducing the coercivity values of the alloys. The higher the Si, P content, the lower were the coercivity values observed. Combined addition of P and Si helped in reducing the coercivity values significantly, for example Fe-0.7P-0.7Cr-1Si alloy showed coercivity value approximately 1.0 Oe. It was observed in this investigation that maximum flux densities of the alloys were linearly related with their porosity levels. Total magnetic losses of these alloys varied from 6.0 to 7.8 W/kg. The total magnetic loss of Fe-0.7P-0.7Cr-1Si alloy was the lowest (6.0 W/kg) owing to its highest resistivity combined with its lowest coercivity amongst the alloys developed in the present investigation. Alloys developed in this investigation were capable of hot/cold working to very thin gage of sheet (0.5 mm thickness). These alloys could find their possible application in manufacturing of transformer core.

  8. Nanospray Drying as a Novel Technique for the Manufacturing of Inhalable NSAID Powders

    PubMed Central

    Rita Patrizia, Aquino; Mariateresa, Stigliani; Pasquale, Del Gaudio; Teresa, Mencherini; Francesca, Sansone; Paola, Russo

    2014-01-01

    The aim of this research was to evaluate the potential of the nanospray drier as a novel apparatus for the manufacturing of a dry powder for inhalation containing ketoprofen lysinate, a nonsteroidal anti-inflammatory drug able to control the inflammation in cystic fibrosis patients. We produced several ketoprofen lysinate and leucine powder batches by means of nanospray dryer, studying the influence of process parameters on yield, particle properties (size distribution and morphology), and, mainly, aerodynamic properties of powders. Micronized particles were prepared from different hydroalcoholic solutions (alcohol content from 0 to 30% v/v) using ketoprofen in its lysine salt form and leucine as dispersibility enhancer in different ratios (from 5 to 15% w/w) with a total solid concentration ranging from 1 to 7% w/v. Results indicated that the spray head equipped with a 7?µm nozzle produced powders too big to be inhaled. The reduction of nozzle size from 7 to 4?µm led to smaller particles suitable for inhalation but, at the same time, caused a dramatic increase in process time. The selection of process variables, together with the nozzle pretreatment with a surfactant solution, allowed us to obtain a free flowing powder with satisfying aerosol performance, confirming the usefulness of the nanospray drier in the production of powder for inhalation. PMID:25580462

  9. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique.

    PubMed

    Zhou, Zuoxin; Buchanan, Fraser; Mitchell, Christina; Dunne, Nicholas

    2014-05-01

    In this study, calcium phosphate (CaP) powders were blended with a three-dimensional printing (3DP) calcium sulfate (CaSO4)-based powder and the resulting composite powders were printed with a water-based binder using the 3DP technology. Application of a water-based binder ensured the manufacture of CaP:CaSO4 constructs on a reliable and repeatable basis, without long term damage of the printhead. Printability of CaP:CaSO4 powders was quantitatively assessed by investigating the key 3DP process parameters, i.e. in-process powder bed packing, drop penetration behavior and the quality of printed solid constructs. Effects of particle size, CaP:CaSO4 ratio and CaP powder type on the 3DP process were considered. The drop penetration technique was used to reliably identify powder formulations that could be potentially used for the application of tissue engineered bone scaffolds using the 3DP technique. Significant improvements (p<0.05) in the 3DP process parameters were found for CaP (30-110 ?m):CaSO4 powders compared to CaP (<20 ?m):CaSO4 powders. Higher compressive strength was obtained for the powders with the higher CaP:CaSO4 ratio. Hydroxyapatite (HA):CaSO4 powders showed better results than beta-tricalcium phosphate (?-TCP):CaSO4 powders. Solid and porous constructs were manufactured using the 3DP technique from the optimized CaP:CaSO4 powder formulations. High-quality printed constructs were manufactured, which exhibited appropriate green compressive strength and a high level of printing accuracy. PMID:24656346

  10. Applications of capsule dosing techniques for use in dry powder inhalers.

    PubMed

    Edwards, David

    2010-07-01

    Dry powder inhaler (DPI) devices that utilize two-piece capsules as the dose-holding system can require specialized dosing equipment to fill the capsules. Such products are known as 'premetered' because they contain previously measured doses in a dose carrier (the capsule). The capsule is either inserted into the device during manufacture or by the patient prior to use. The dose is inhaled directly from the device/premetered unit by the patient. Regardless of DPI design, the most crucial attributes are the reproducibility of the discharged dose and the particle size distribution of the drug within that dose. Filling inhalation powders into capsules often requires specialized equipment in order to handle the very low weights that are often contained in each dose. The equipment typically needs to incorporate in-process checks to confirm the filling process has been correctly performed, with the ability to reject any under- or over-filled capsules, in line with established quality criteria. In the majority of cases, such processing equipment is maintained in a temperature and humidity controlled environment to avoid moisture uptake and potential powder aggregation and, in particular, to ensure the powder is free flowing on introduction into the capsule. This ensures that the emitted dose is maximized and controlled according to industry guidelines and that the fine particle fraction provides an optimum clinical benefit. Several methods of dosing precise doses of powder into capsules are available and include dosator technology and tamp processes, as well as equipment that utilize the 'pepper-shaker' or 'pepper-pot' principle for the accurate dispensing of powders. This article reviews the suitability of each method with respect to dosing inhalation powder into capsules for use in DPI devices, and discusses why the pepper-pot principle could offer a number of clear benefits. PMID:22816126

  11. Microstructure and Mechanical Properties of Titanium Components Fabricated by a New Powder Injection Molding Technique

    SciTech Connect

    Nyberg, Eric A.; Miller, Megan R.; Simmons, Kevin L.; Weil, K. Scott

    2005-05-01

    We have developed a powder injection molding (PIM) binder system for titanium that employs naphthalene as the primary constituent to facilitate easy binder removal and mitigate problems with carbon contamination. In the study presented here, we examined densification behavior, microstructure, and mechanical properties in specimens formed by this process. In general, we found that we could achieve tensile strengths comparable to wrought titanium in the PIM-formed specimens, but that maximum elongation was less than expected. Chemical and microstructural analyses suggest that use of higher purity powder and further process optimization will lead to significant improvements in ductility.

  12. Production of ultra clean gas-atomized powder by the plasma heated tundish technique

    SciTech Connect

    Tingskog, T.A.; Andersson, V.

    1996-12-31

    The paper describes the improvements in cleanliness for different types of gas atomized powders produced by holding the melt in a Plasma Heated Tundish (PHT) before atomization. The cleanliness is measured on Hot Isostatically Pressed (HIP) or extruded samples. Significant improvements in slag levels and material properties have been achieved. On extruded powder metallurgy stainless steel and nickel alloy tubes, the rejection rate in ultra-sonic testing was reduced drastically. Tool steels and high speed steels have greatly improved ductility and bend strength.

  13. "Rapid Pattern Based Powder Sintering Technique and Related Shrinkage Control," Jack Zhou and Z. He, Journal of Materials and Design, Vol. 19, pp. 241-248, 1998.

    E-print Network

    Zhou, Jack

    , Journal of Materials and Design, Vol. 19, pp. 241-248, 1998. 1 RAPID PATTERN BASED POWDER SINTERING by a rapid prototyping machine based on a 3-D solid model designed in a CAD system. The pattern is positioned"Rapid Pattern Based Powder Sintering Technique and Related Shrinkage Control," Jack Zhou and Z. He

  14. Red-excitation dispersive Raman spectroscopy is a suitable technique for solid-state analysis of respirable pharmaceutical powders.

    PubMed

    Vehring, Reinhard

    2005-03-01

    Dispersive Raman spectroscopy with excitation by a red diode laser is suitable for quantitative crystallinity measurements in powders for pulmonary drug delivery. In spray-dried mixtures of salmon calcitonin and mannitol, all three crystalline polymorphs of mannitol and amorphous mannitol were unambiguously identified and their mass fractions were measured with a limit of quantification of about 5%. The instrument design offered high sensitivity and adequate background suppression, resulting in a low limit of detection in the range of 0.01% to 1%. This spectroscopy method has significant advantages over established techniques regarding specificity, sensitivity, and sample requirements. PMID:15901308

  15. Chemiluminescence measurements on irradiated garlic powder by the single photon counting technique

    NASA Astrophysics Data System (ADS)

    Narvaiz, P.

    1995-02-01

    The feasibility of identifying irradiated garlic powder measuring chemiluminescence by liquid scintillation spectrometry was studied. Samples packed in 100 ?m thick polyethylene bags were irradiated in a 60Co semi-industrial facility, with doses of 10 and 30 kGy. Control and irradiated samples were stored at 20 ± 4°C and 70 ± 10% RH in darkness for 2 years. Assays were performed to establish the best sample concentration and pH of the buffer solution in which garlic powder was to be suspended for its measurement. The water content of garlic samples was also analyzed throughout storage time, as it related to the stability of the species causing luminescence. Chemiluminescence values diminished in every sample over storage time following an exponential pattern. Irradiated samples showed values significantly higher than those of the control samples, according to the radiation dose, throughout the storage period. This does not necessarily imply that the identification of the irradiated samples would be certain, since values of control samples coming from different origins have been found to fluctuate within a rather wide range. Nonetheless, in principle, the method looks promising for the measurement of chemiluminescence in irradiated samples

  16. Study on the optical band gap and photoluminescence of PbMoO4 nano powder synthesized by an auto igniting combustion technique

    NASA Astrophysics Data System (ADS)

    Vidya, S.; Thomas, J. K.

    2015-02-01

    Nano crystalline PbMoO4 was synthesized through an auto-ignited combustion technique. The X-ray diffraction studies of PbMoO4 nanoparticles reveals that the as-prepared powder itself is single phase and possess tetragonal structure. The average particle size of the as-prepared powder calculated using scherrer formula is 28nm. Fourier transform Infrared spectrum shows that the as prepared powder itself is phase pure with no formation of secondary phase .The optical band gap determined from UV-Visible absorption spectra is 3.20eV.Photoluminescence spectra of the samples shows blue emission.

  17. Preparation of Cu and Fly Ash Composite by Powder Metallurgy Technique

    SciTech Connect

    Chew, P. Y.; Lim, P. S.; Ng, M. C.; Zahi, S.; You, A. H.

    2011-03-30

    Cu and Fly Ash (FA) mixtures with different weight percentages were prepared. Pellets of the mixture powder were produced with the dimension of 17.7 mm in diameter and 10-15 mm in height. These different composites were compacted at a constant pressure of 280 MPa. One of the selected weight percentages was then compacted to form into pellet and sintered at different temperatures which were at 900, 950 and 1000 deg. C respectively for 2 hours. Density of green pellet was measured before sintered in furnace. After sintering, all the pellets with different temperatures were re-weighed and sintered density were calculated. The densification of the green and sintered pellets was required to be measured as one of the parameter in selection of the best material properties. Porosity of the pellet shall not be ignored in order to analyze the close-packed particles stacking in the pellet. SEM micrograph had been captured to observe the presence of pores and agglomeration of particles in the sample produced.

  18. Application of powder metallurgy technique to produce improved bearing elements for cryogenic aerospace engine turbopumps

    NASA Technical Reports Server (NTRS)

    Moxson, V. S.; Moracz, D. J.; Bhat, B. N.; Dolan, F. J.; Thom, R.

    1987-01-01

    Traditionally, vacuum melted 440C stainless steel is used for high performance bearings for aerospace cryogenic systems where corrosion due to condensation is a major concern. For the Space Shuttle Main Engine (SSME), however, 440C performance in the high-pressure turbopumps has been marginal. A basic assumption of this study was that powder metallurgy, rather than cast/wrought, processing would provide the finest, most homogeneous bearing alloy structure. Preliminary testing of P/M alloys (hardness, corrosion resistance, wear resistance, fatigue resistance, and fracture toughness) was used to 'de-select' alloys which did perform as well as baseline 440C. Five out of eleven candidate materials (14-4/6V, X-405, MRC-2001, T-440V, and D-5) based on preliminary screening were selected for the actual rolling-sliding five-ball testing. The results of this test were compared with high-performance vacuum-melted M50 bearing steel. The results of the testing indicated outstanding performance of two P/M alloys, X-405 and MRC-2001, which eventually will be further evaluated by full-scale bearing testing.

  19. Observation of localized heating phenomena during microwave heating of mixed powders using in situ x-ray diffraction technique

    SciTech Connect

    Sabelström, N. Hayashi, M.; Watanabe, T.; Nagata, K.

    2014-10-28

    In materials processing research using microwave heating, there have been several observations of various phenomena occurring known as microwave effects. One significant example of such a phenomenon is increased reaction kinetics. It is believed that there is a possibility that this might be caused by localized heating, were some reactants would attain a higher than apparent temperature. To examine whether such thermal gradients are indeed possible, mixed powders of two microwave non-absorbers, alumina and magnesia, were mixed with graphite, a known absorber, and heated in a microwave furnace. During microwave irradiation, the local temperatures of the respective sample constituents were measured using an in situ x-ray diffraction technique. In the case of the alumina and graphite sample, a temperature difference of around 100?°C could be observed.

  20. Preparation of redispersible liposomal dry powder using an ultrasonic spray freeze-drying technique for transdermal delivery of human epithelial growth factor.

    PubMed

    Yin, Fei; Guo, Shiyan; Gan, Yong; Zhang, Xinxin

    2014-01-01

    In this work, an ultrasonic spray freeze-drying (USFD) technique was used to prepare a stable liposomal dry powder for transdermal delivery of recombinant human epithelial growth factor (rhEGF). Morphology, particle size, entrapment efficiency, in vitro release, and skin permeability were systematically compared between rhEGF liposomal dry powder prepared using USFD and that prepared using a conventional lyophilization process. Porous and spherical particles with high specific area were produced under USFD conditions. USFD effectively avoided formation of ice crystals, disruption of the bilayer structure, and drug leakage during the liposome drying process, and maintained the stability of the rhEGF liposomal formulation during storage. The reconstituted rhEGF liposomes prepared from USFD powder did not show significant changes in morphology, particle size, entrapment efficiency, or in vitro release characteristics compared with those of rhEGF liposomes before drying. Moreover, the rhEGF liposomal powder prepared with USFD exhibited excellent enhanced penetration in ex vivo mouse skin compared with that for powder prepared via conventional lyophilization. The results suggest that ultrasonic USFD is a promising technique for the production of stable protein-loaded liposomal dry powder for application to the skin. PMID:24729702

  1. Preparation of redispersible liposomal dry powder using an ultrasonic spray freeze-drying technique for transdermal delivery of human epithelial growth factor

    PubMed Central

    Yin, Fei; Guo, Shiyan; Gan, Yong; Zhang, Xinxin

    2014-01-01

    In this work, an ultrasonic spray freeze-drying (USFD) technique was used to prepare a stable liposomal dry powder for transdermal delivery of recombinant human epithelial growth factor (rhEGF). Morphology, particle size, entrapment efficiency, in vitro release, and skin permeability were systematically compared between rhEGF liposomal dry powder prepared using USFD and that prepared using a conventional lyophilization process. Porous and spherical particles with high specific area were produced under USFD conditions. USFD effectively avoided formation of ice crystals, disruption of the bilayer structure, and drug leakage during the liposome drying process, and maintained the stability of the rhEGF liposomal formulation during storage. The reconstituted rhEGF liposomes prepared from USFD powder did not show significant changes in morphology, particle size, entrapment efficiency, or in vitro release characteristics compared with those of rhEGF liposomes before drying. Moreover, the rhEGF liposomal powder prepared with USFD exhibited excellent enhanced penetration in ex vivo mouse skin compared with that for powder prepared via conventional lyophilization. The results suggest that ultrasonic USFD is a promising technique for the production of stable protein-loaded liposomal dry powder for application to the skin. PMID:24729702

  2. Improved L-C resonant decay technique for Q measurement of quasilinear power inductors: New results for MPP and ferrite powdered cores

    NASA Technical Reports Server (NTRS)

    Niedra, Janis M.; Gerber, Scott S.

    1995-01-01

    The L-C resonant decay technique for measuring circuit Q or losses is improved by eliminating the switch from the inductor-capacitor loop. A MOSFET switch is used instead to momentarily connect the resonant circuit to an existing voltage source, which itself is gated off during the decay transient. Very reproducible, low duty cycle data could be taken this way over a dynamic voltage range of at least 10:1. Circuit Q is computed from a polynomial fit to the sequence of the decaying voltage maxima. This method was applied to measure the losses at 60 kHz in inductors having loose powder cores of moly permalloy and an Mn-Zn power ferrite. After the copper and capacitor losses are separated out, the resulting specific core loss is shown to be roughly as expected for the MPP powder, but anomalously high for the ferrite powder. Possible causes are mentioned.

  3. Investigation of the Surface Stress in SiC and Diamond Nanocrystals by In-situ High Pressure Powder Diffraction Technique

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Stelmakh, S.; Grzanka, E.; Gierlotka, S.; Zhao, Y.; Palosz, W.

    2003-01-01

    The real atomic structure of nanocrystals determines key properties of the materials. For such materials the serious experimental problem lies in obtaining sufficiently accurate measurements of the structural parameters of the crystals, since very small crystals constitute rather a two-phase than a uniform crystallographic phase system. As a result, elastic properties of nanograins may be expected to reflect a dual nature of their structure, with a corresponding set of different elastic property parameters. We studied those properties by in-situ high-pressure powder diffraction technique. For nanocrystalline, even one-phase materials such measurements are particularly difficult to make since determination of the lattice parameters of very small crystals presents a challenge due to inherent limitations of standard elaboration of powder diffractograms. In this investigation we used our methodology of the structural analysis, the 'apparent lattice parameter' (alp) concept. The methodology allowed us to avoid the traps (if applied to nanocrystals) of standard powder diffraction evaluation techniques. The experiments were performed for nanocrystalline Sic and GaN powders using synchrotron sources. We applied both hydrostatic and isostatic pressures in the range of up to 40 GPa. Elastic properties of the samples were examined based on the measurements of a change of the lattice parameters with pressure. The results show a dual nature of the mechanical properties (compressibilities) of the materials, indicating a complex, core-shell structure of the grains.

  4. Synthesis, growth and characterization of non linear optical Bisthiourea ammonium chloride single crystals by slow evaporation technique

    NASA Astrophysics Data System (ADS)

    Ilango, E.; Rajasekaran, R.; Shankar, K.; Krishnan, S.; Chithambaram, V.

    2014-11-01

    A new semi-organic nonlinear optical crystal of Bisthiourea Ammonium Chloride (BTAC) has been grown by slow evaporation technique. The crystal system and lattice parameters were determined from X-ray diffraction. Fourier Transform Infrared (FTIR) studies confirm the various functional groups present in the grown crystal. The transmittance and absorbance of electromagnetic radiation is studied through UV-Visible spectrum. The thermal behavior of the grown crystals has been investigated by TG/DTA analysis. The dielectric constant and dielectric loss has been studied as a function of frequency for various temperatures and the result were discussed in detail. The SEM analysis was also done and it revealed the surface morphology of BTAC crystal. The second harmonic generation has been confirmed by the Kurtz powder test and it is found to be 1.4 times more than that of KDP crystal.

  5. FINGERPRINT DUSTING POWDER

    E-print Network

    Mucina, Ladislav

    FINGERPRINT DUSTING POWDER IP COMMERCIALISATION Russell Nicholls Deputy Director Make Tomorrow-infrared luminescent fingerprint dusting powder which adheres to latent fingermarks on non-porous surfaces has been with a simple filter. Using this technique to visualise fingerprints provides a high contrast image, even

  6. Synthesis, optical and thermal studies on novel semi organic nonlinear optical Urea Zinc Acetate crystals by solution growth technique for the applications of optoelectronic devices

    NASA Astrophysics Data System (ADS)

    Chithambaram, V.; Krishnan, S.

    2014-02-01

    Urea Zinc Acetate (UZA), a novel semi organic nonlinear optical crystal having dimensions 30×28×10 mm3 has been synthesized using slow evaporation technique. The lattice parameters for the grown crystals were determined using single crystal XRD. The presence of functional groups for the grown crystals was confirmed using Fourier Transform Infrared (FT-IR) spectroscopy. The optical absorption studies show that the material has wide optical transparency in the entire visible region. The thermal stability of the crystal was determined from thermo gravimetric and differential thermal analysis curve. The second harmonic generation was confirmed by Kurtz powder method and it is found to be 3 times than that of KDP crystal.

  7. A combined powder melt and infiltration growth technique for fabricating nano-composited Y-Ba-Cu-O single-grain superconductor

    NASA Astrophysics Data System (ADS)

    Li, Guo-Zheng; Li, Jia-Wei; Yang, Wan-Min

    2015-10-01

    The top-seeded melt growth (MG) and infiltration growth (IG) techniques are the two most popular methods of fabricating single-grain Y-Ba-Cu-O (YBCO) bulk superconductors, which are also considered as two distinctly different processes. In this study, we report a combined powder melt and infiltration growth (PM-IG) technique for fabricating nano-composited YBCO single-grain superconductors using raw metallic oxides. In this new technique, a solid source pellet (SSP) of composition nano-Y2O3 + BaO + CuO + 1 wt.%CeO2 and a liquid source pellet (LSP) of composition nano-Y2O3 + 10BaO + 16CuO are employed, thus during heat treatment process the powder melt in SSP (corresponding to the final YBCO bulk) and liquid infiltration from LSP to SSP coexist. Because the process of precursor powder synthesis is avoided, the fabrication flow is much simplified and the experimental efficiency is increased significantly. Microstructural observation indicates that a large number of Y2BaCuO5 nano-inclusions (around 100 nm) are trapped in the YBa2Cu3O7-? superconducting matrix. Measurements of levitation force and trapped field prove the superior performance of the nano-composited YBCO sample. The calculated zero-field J c at 77 K reaches 6.98 × 104 A cm-2, nearly 23% higher than the sample fabricated by the conventional IG technique. Thus, this study supplies a practical method for fabricating nano-composited YBCO bulk superconductors with high performance.

  8. The development and evaluation of an alternative powder prepregging technique for use with LaRC-TPI/graphite composites

    NASA Technical Reports Server (NTRS)

    Ogden, Andrea L.; Hyer, Michael W.; Wilkes, Garth L.; Loos, Alfred C.; St.clair, Terry L.

    1991-01-01

    An alternative powder prepregging method for use with LaRC-TPI (a thermoplastic polyimide)/graphite composites is investigated. The alternative method incorporates the idea of moistening the fiber prior to powder coating. Details of the processing parameters are given and discussed. The material was subsequently laminated into small coupons which were evaluated for processing defects using electron microscopy. After the initial evaluation of the material, no major processing defects were encountered but there appeared to be an interfacial adhesion problem. As a result, prepregging efforts were extended to include an additional fiber system, XAS, and a semicrystalline form of the matrix. The semicrystalline form of the matrix was the result of a complex heat treating cycle. Using scanning electron microscopy (SEM), the fiber/matrix adhesion was evaluated in these systems relative to the amorphous/XAS coupons. Based on these results, amorphous and semicrystalline/AS-4 and XAS materials were prepregged and laminated for transverse tensile testing. The results of these tests are presented, and in an effort to obtain more information on the effect of the matrix, remaining semicrystalline transverse tensile coupons were transformed back to the amorphous state and tested. The mechanical properties of the transformed coupons returned to the values observed for the original amorphous coupons, and the interfacial adhesion, as observed by SEM, was better than in any previous sample.

  9. Resin Powder Slurry Process for Composite Fabrication

    NASA Technical Reports Server (NTRS)

    Mike, R. A.

    1986-01-01

    Potentially useful process for fabrication of fiber-reinforced resinmatrix composites is powder slurry technique. Applicability of technique demonstrated using powdered resin made from thermoplastic polyimide LaRC/ TPI (thermoplastic polyimide). Use of process circumvents need for such high-cost organic solvents as N-methylpyrrolidinone and diglyme (diglycol methyl ether). Two basic slurries for LaRC/TPI powder investigated.

  10. Investigation on the growth and characterization of nonlinear optical single crystal 4,4'-dimethoxybenzoin by vertical Bridgman technique

    NASA Astrophysics Data System (ADS)

    Arivazhagan, T.; Rajesh, Narayana Perumal

    2014-12-01

    An organic nonlinear optical (NLO) material 4,4'-dimethoxybenzoin single crystal has been grown by vertical Bridgman technique using single wall ampoule. The grown crystal was confirmed by single crystal and powder X-ray diffraction (XRD) analyses. The functional groups of the grown crystal were identified by Fourier transform infra red analysis. The thermal behavior of the grown crystal were studied by thermo gravimetric (TG) and differential scanning calorimetric (DSC) analysis. The UV-vis-NIR spectrum has been recorded in the range 190-1100 nm and it shows that the cutoff wavelength of grown crystal is around 343 nm. The yellow emission of the grown crystal was identified by photoluminescence (PL) spectral measurements. The NLO property of the grown crystal was confirmed by Kurtz and Perry powder technique and the SHG efficiency of the grown crystal was found to be 2 times greater than KDP. The dielectric measurements were carried out and the results indicate that an increase in dielectric parameters with increase of temperature at all frequencies.

  11. Investigations of Ba{sub x}Sr{sub 1?x}TiO{sub 3} ceramics and powders prepared by direct current arc discharge technique

    SciTech Connect

    Li, Shuangbin; Wang, Xiaohan; Yao, Ying Jia, Yongzhong; Xie, Shaolei; Jing, Yan; Yuzyuk, Yu. I.

    2014-09-01

    Ba{sub x}Sr{sub 1?x}TiO{sub 3} ceramics with x ranging from 0 to 1 were prepared by direct current arc discharge technique and studied by means of x-ray diffraction (XRD) and Raman spectroscopy. The cubic-tetragonal ferroelectric phase transition in Ba{sub x}Sr{sub 1?x}TiO{sub 3} ceramics was found to occur at x???0.75. XRD investigation of as-grown BaTiO{sub 3} ceramics revealed co-existence of tetragonal and hexagonal modifications with a small amount of impurity phase BaTi{sub 4}O{sub 9}. No evidences of hexagonal phase were observed in Raman spectra of as-grown BaTiO{sub 3} ceramics, while Raman peaks related to hexagonal phase were clearly observed in the spectrum of fine-grain powders prepared from the same ceramics. A core-shell model for BaTiO{sub 3} ceramics prepared by direct current arc discharge technique is proposed. Absence of the hexagonal phase in any Ba{sub x}Sr{sub 1?x}TiO{sub 3} solid solution with x?

  12. Investigations of BaxSr1-xTiO3 ceramics and powders prepared by direct current arc discharge technique

    NASA Astrophysics Data System (ADS)

    Li, Shuangbin; Yao, Ying; Yuzyuk, Yu. I.; Jia, Yongzhong; Wang, Xiaohan; Xie, Shaolei; Jing, Yan

    2014-09-01

    BaxSr1-xTiO3 ceramics with x ranging from 0 to 1 were prepared by direct current arc discharge technique and studied by means of x-ray diffraction (XRD) and Raman spectroscopy. The cubic-tetragonal ferroelectric phase transition in BaxSr1-xTiO3 ceramics was found to occur at x ? 0.75. XRD investigation of as-grown BaTiO3 ceramics revealed co-existence of tetragonal and hexagonal modifications with a small amount of impurity phase BaTi4O9. No evidences of hexagonal phase were observed in Raman spectra of as-grown BaTiO3 ceramics, while Raman peaks related to hexagonal phase were clearly observed in the spectrum of fine-grain powders prepared from the same ceramics. A core-shell model for BaTiO3 ceramics prepared by direct current arc discharge technique is proposed. Absence of the hexagonal phase in any BaxSr1-xTiO3 solid solution with x < 1 is discussed in the frame of specific atomic arrangement.

  13. Rapid analysis of adulterations in Chinese lotus root powder (LRP) by near-infrared (NIR) spectroscopy coupled with chemometric class modeling techniques.

    PubMed

    Xu, Lu; Shi, Peng-Tao; Ye, Zi-Hong; Yan, Si-Min; Yu, Xiao-Ping

    2013-12-01

    This paper develops a rapid analysis method for adulteration identification of a popular traditional Chinese food, lotus root powder (LRP), by near-infrared spectroscopy and chemometrics. 85 pure LRP samples were collected from 7 main lotus producing areas of China to include most if not all of the significant variations likely to be encountered in unknown authentic materials. To evaluate the model specificity, 80 adulterated LRP samples prepared by blending pure LRP with different levels of four cheaper and commonly used starches were measured and predicted. For multivariate quality models, two class modeling methods, the traditional soft independent modeling of class analogy (SIMCA) and a recently proposed partial least squares class model (PLSCM) were used. Different data preprocessing techniques, including smoothing, taking derivative and standard normal variate (SNV) transformation were used to improve the classification performance. The results indicate that smoothing, taking second-order derivatives and SNV can improve the class models by enhancing signal-to-noise ratio, reducing baseline and background shifts. The most accurate and stable models were obtained with SNV spectra for both SIMCA (sensitivity 0.909 and specificity 0.938) and PLSCM (sensitivity 0.909 and specificity 0.925). Moreover, both SIMCA and PLSCM could detect LRP samples mixed with 5% (w/w) or more other cheaper starches, including cassava, sweet potato, potato and maize starches. Although it is difficult to perform an exhaustive collection of all pure LRP samples and possible adulterations, NIR spectrometry combined with class modeling techniques provides a reliable and effective method to detect most of the current LRP adulterations in Chinese market. PMID:23870978

  14. Polymer powder prepregging: Scoping study

    NASA Technical Reports Server (NTRS)

    Throne, James L.

    1988-01-01

    Early on, it was found that NEAT LARC-TPI thermoplastic polyimide powder behaved elastoplastically at pressures to 20 ksi and temperatures to 260 degrees celcius (below MP). At high resin assay, resin powder could be continuously cold-flowed around individual carbon fibers in a metal rolling mill. At low resin assay (2:1, C:TPI), fiber breakage was prohibitive. Thus, although processing of TPI below MP would be quite unique, it appears that the polymer must be melted and flowed to produce low resin assay prepreg. Fiber tow was spread to 75 mm using a venturi slot tunnel. This allowed intimate powder/fiber interaction. Two techniques were examined for getting room temperature powder onto the room temperature fiber surface. Electrostatic powder coating allows the charged powder to cling tenaciously to the fiber, even while heated with a hot air gun to above its melt temperature. A variant of the wet slurry coating process was also explored. The carbon fibers are first wetted with water. Then dry powder is sprinkled onto the wet tow and doctor-rolled between the fibers. The wet structure is then taken onto a heated roll, with hot air guns drying and sinter-melting the powder onto the fiber surfaces. In both cases SEM shows individual fibers coated with powder particles that have melted in place and flowed along the fiber surface via surface tension.

  15. Improved Production Of Wrought Articles From Powders

    NASA Technical Reports Server (NTRS)

    Thomas, James R.; Singleton, Ogle R.

    1994-01-01

    Improved technique for consolidation of powders into dense articles developed. Peripheral bands used in consolidation, forging, and rolling operations. Facilitates consolidation of dispersion-hardened aluminous powders and composite mixtures for processing to such useful wrought articles as plates and sheets. Potential use in production of plates and sheets and perhaps other objects from "hard" powders, particularly from powders, objects made from which have propensity to crack when mechanically worked to other forms.

  16. Powder forging

    SciTech Connect

    Kuhn, H.A.; Ferguson, B.L.

    1990-01-01

    Fundamental and applications aspects of powder-forging (PF) technology are examined in an introduction and reference guide for practicing engineers. The treatment is based on a combined metallurgical-mechanical approach, and the potential benefits of FEM process simulations and expert-system design-optimization methods are illustrated. Chapters are devoted to materials considerations for PF, PF mechanics, PF analysis, PF process design, and PF practice. Extensive diagrams, drawings, graphs, photographs, and micrographs are provided. 160 refs.

  17. Powder metallurgy of superalloys

    SciTech Connect

    Gessinger, G.H.

    1984-01-01

    Powder metallurgy superalloys were developed in the mid-1960's when stronger aircraft turbine disk materials were needed. Their characteristics of greatly reduced segregation, better hot-workability, improved mechanical properties, and cost-effective manufacturing processes made P/M superalloys highly desirable in high-temperature applications. This book deals with prealloyed superalloys including rapidly solidified (RSR) alloys and oxide-dispersion strengthened alloys, as well as processing techniques such as sintering, hot isostatic pressing, extrusion, and isothermal forging. The large range of microstructures possible are correlated with mechanical properties at intermediate and elevated temperatures. Methods of powder production and consolidation are detailed, as are thermomechanical processing principles by which different microstructures can be created. Non-destructive testing techniques, and problems and advances relating to mechanical properties and processing are also covered.

  18. Energetic powder

    DOEpatents

    Jorgensen, Betty S. (Jemez Springs, NM); Danen, Wayne C. (Los Alamos, NM)

    2003-12-23

    Fluoroalkylsilane-coated metal particles. The particles have a central metal core, a buffer layer surrounding the core, and a fluoroalkylsilane layer attached to the buffer layer. The particles may be prepared by combining a chemically reactive fluoroalkylsilane compound with an oxide coated metal particle having a hydroxylated surface. The resulting fluoroalkylsilane layer that coats the particles provides them with excellent resistance to aging. The particles can be blended with oxidant particles to form energetic powder that releases chemical energy when the buffer layer is physically disrupted so that the reductant metal core can react with the oxidant.

  19. A co-precipitation technique to prepare BiNbO{sub 4}, MgTiO{sub 3} and Mg{sub 4}Ta{sub 2}O{sub 9} powders

    SciTech Connect

    Gaikwad, A.B.; Navale, S.C.; Samuel, V.; Murugan, A.V.; Ravi, V. . E-mail: ravi@ems.ncl.res.in

    2006-02-02

    A simple co-precipitation technique has been used successfully for the preparation of pure, ultrafine, single phase BiNbO{sub 4} (BN), MgTiO{sub 3} and Mg{sub 4}Ta{sub 2}O{sub 9}. An aqueous sodium hydroxide or ammonium hydroxide and ammonium carbonate solution was used to precipitate these cations as hydroxides and carbonates simultaneously under basic conditions. These precursors on heating at 750 deg. C, produce the respective powders. For comparison, these compounds were also prepared by the traditional solid state method. The phase purity and lattice parameters were studied by powder X-ray diffraction (XRD). Particle size and morphology was studied by transmission electron spectroscopy (TEM)

  20. Powder treatment process

    DOEpatents

    Weyand, John D. (Greensburg, PA)

    1988-01-01

    (1) A process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder.

  1. Powder treatment process

    DOEpatents

    Weyand, J.D.

    1988-02-09

    Disclosed are: (1) a process comprising spray drying a powder-containing slurry, the slurry containing a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, while reducing the tendency for oxidation of the constituent by including as a liquid constituent of the slurry an organic liquid; (2) a process comprising spray drying a powder-containing slurry, the powder having been pretreated to reduce content of a powder constituent susceptible of oxidizing under the temperature conditions of the spray drying, the pretreating comprising heating the powder to react the constituent; and (3) a process comprising reacting ceramic powder, grinding the reacted powder, slurrying the ground powder, spray drying the slurried powder, and blending the dried powder with metal powder. 2 figs.

  2. Autoclave heat treatment for prealloyed powder products

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ashbrook, R. L.

    1973-01-01

    Technique could be applied directly to loose powders as part of hot pressing process of forming them to any required shapes. This would eliminate initial extrusion step commonly applied to prealloyed powders, substantially reduce cost of forming operation, and result in optimum properties.

  3. Preparation of titanium diboride powder

    DOEpatents

    Brynestad, Jorulf (Oak Ridge, TN); Bamberger, Carlos E. (Oak Ridge, TN)

    1985-01-01

    Finely-divided titanium diboride or zirconium diboride powders are formed by reacting gaseous boron trichloride with a material selected from the group consisting of titanium powder, zirconium powder, titanium dichloride powder, titanium trichloride powder, and gaseous titanium trichloride.

  4. Simultaneous determination of bromine and iodine in milk powder for adult and infant nutrition by plasma based techniques after digestion using microwave-induced combustion

    NASA Astrophysics Data System (ADS)

    Picoloto, Rochele S.; Doneda, Morgana; Flores, Eder L. M.; Mesko, Marcia F.; Flores, Erico M. M.; Mello, Paola A.

    2015-05-01

    In this work, bromine and iodine determination in milk powder for adult and infant nutrition was performed by inductively coupled plasma mass spectrometry (ICP-MS) and inductively coupled plasma optical emission spectrometry (ICP-OES) after digestion by microwave-induced combustion (MIC). Contrarily to previous works using MIC, a higher sample mass was digested (700 mg). Water and ammonium hydroxide (10 to 100 mmol L- 1) were investigated as absorbing solutions and accurate results were achieved using a 25 mmol L- 1 NH4OH solution. Moreover, the high stability of analytes after digestion (up to 30 days) using this solution was observed. The accuracy of the proposed MIC method was evaluated using certified and reference materials of milk powder (NIST 1549 and NIST 8435). No statistical difference was observed between results obtained by MIC-ICP-MS and reference values. Results for samples were also compared with those obtained by ICP-OES and no statistical difference was observed. Microwave-assisted alkaline extraction (MW-AE) was also evaluated for milk powder using NH4OH and tetramethylammonium hydroxide solutions. Solutions obtained after digestion by MIC (whole milk powder) presented low carbon content in digests (< 25 mg L- 1) while solutions obtained after alkaline extraction presented up to 10,000 mg L- 1 of C. MIC method was preferable in view of the possibility of obtaining solutions with low carbon content even using a relatively high sample mass (up to 700 mg) avoiding additional dilution prior to ICP-MS analysis, thus allowing better detection limits. Limits of detection obtained by MIC-ICP-MS were 0.007 and 0.003 ?g g- 1 for Br and I, respectively, while for MW-AE were 0.1 and 0.05 ?g g- 1 respectively for Br and I. Among the main advantages of the proposed method are the use of diluted alkaline solutions that is in agreement with green analytical chemistry recommendations, the high stability of analytes in solution and the suitability of digests for analysis by ICP-MS and also ICP-OES, minimizing memory effects and being advantageous for routine analysis.

  5. Making Pure Fine-Grained Inorganic Powder

    NASA Technical Reports Server (NTRS)

    Wood, C.

    1985-01-01

    Sustained arc plasma chemical reactor fabricates very-fine-grained inorganic solids having low thermal conductivity. Powder fabrication method, based on plasma tube technique produces pure solids without contamination commonly produced by grinding.

  6. The Density Structure of Highly Compact H ii Regions Jos'e Franco 1 , Stan Kurtz 1 , Peter Hofner 2 , Leonardo Testi 3 , Guillermo Garc'iaSegura 1 and

    E-print Network

    Testi, Leonardo

    The Density Structure of Highly Compact H ii Regions Jos'e Franco 1 , Stan Kurtz 1 , Peter Hofner 2 5, I­50125 Firenze, Italy #12; -- 2 -- ABSTRACT We report the density structure of the ultracompact H ii (UC Hii) regions G35.20\\Gamma1.74, G9.62+0.19­E, and G75.78+0.34­H 2 O. The density profiles

  7. Production of metal powder

    SciTech Connect

    Worthington, R.B.

    1982-01-20

    Fine mesh metal powder, such as titanium powder, is prepared by reaction of a halide of the metal, in vapor form, with a fine spray of molten sodium at a temperature below the melting point of the metal.

  8. Composite powder particles

    NASA Technical Reports Server (NTRS)

    Parker, Donald S. (Inventor); MacDowell, Louis G. (Inventor)

    2009-01-01

    A liquid coating composition including a coating vehicle and composite powder particles disposed within the coating vehicle. Each composite powder particle may include a magnesium component, a zinc component, and an indium component.

  9. Precision powder feeder

    DOEpatents

    Schlienger, M. Eric (Albuquerque, NM); Schmale, David T. (Albuquerque, NM); Oliver, Michael S. (Sandia Park, NM)

    2001-07-10

    A new class of precision powder feeders is disclosed. These feeders provide a precision flow of a wide range of powdered materials, while remaining robust against jamming or damage. These feeders can be precisely controlled by feedback mechanisms.

  10. Aluminum powder metallurgy processing

    SciTech Connect

    Flumerfelt, J.F.

    1999-02-12

    The objective of this dissertation is to explore the hypothesis that there is a strong linkage between gas atomization processing conditions, as-atomized aluminum powder characteristics, and the consolidation methodology required to make components from aluminum powder. The hypothesis was tested with pure aluminum powders produced by commercial air atomization, commercial inert gas atomization, and gas atomization reaction synthesis (GARS). A comparison of the GARS aluminum powders with the commercial aluminum powders showed the former to exhibit superior powder characteristics. The powders were compared in terms of size and shape, bulk chemistry, surface oxide chemistry and structure, and oxide film thickness. Minimum explosive concentration measurements assessed the dependence of explosibility hazard on surface area, oxide film thickness, and gas atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization processing conditions. The GARS aluminum powders were exposed to different relative humidity levels, demonstrating the effect of atmospheric conditions on post-atomization oxidation of aluminum powder. An Al-Ti-Y GARS alloy exposed in ambient air at different temperatures revealed the effect of reactive alloy elements on post-atomization powder oxidation. The pure aluminum powders were consolidated by two different routes, a conventional consolidation process for fabricating aerospace components with aluminum powder and a proposed alternative. The consolidation procedures were compared by evaluating the consolidated microstructures and the corresponding mechanical properties. A low temperature solid state sintering experiment demonstrated that tap densified GARS aluminum powders can form sintering necks between contacting powder particles, unlike the total resistance to sintering of commercial air atomization aluminum powder.

  11. Phonons from neutron powder diffraction

    SciTech Connect

    Dimitrov, D.A.; Louca, D.; Roeder, H. )

    1999-09-01

    The spherically averaged structure function S([vert bar][bold q][vert bar]) obtained from pulsed neutron powder diffraction contains both elastic and inelastic scattering via an integral over energy. The Fourier transformation of S([vert bar][bold q][vert bar]) to real space, as is done in the pair density function (PDF) analysis, regularizes the data, i.e., it accentuates the diffuse scattering. We present a technique which enables the extraction of off-center ([vert bar][bold q][vert bar][ne]0) phonon information from powder diffraction experiments by comparing the experimental PDF with theoretical calculations based on standard interatomic potentials and the crystal symmetry. This procedure [dynamics from powder diffraction] has been [ital successfully] implemented as demonstrated here for two systems, a simple metal fcc Ni and an ionic crystal CaF[sub 2]. Although computationally intensive, this data analysis allows for a phonon based modeling of the PDF, and additionally provides off-center phonon information from neutron powder diffraction. [copyright] [ital 1999] [ital The American Physical Society

  12. Multiple feed powder splitter

    DOEpatents

    Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

    2001-01-01

    A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

  13. Multiple feed powder splitter

    DOEpatents

    Lewis, Gary K. (Los Alamos, NM); Less, Richard M. (Los Alamos, NM)

    2002-01-01

    A device for providing uniform powder flow to the nozzles when creating solid structures using a solid fabrication system such as the directed light fabrication (DLF) process. In the DLF process, gas entrained powders are passed through the focal point of a moving high-power laser light which fuses the particles in the powder to a surface being built up in layers. The invention is a device providing uniform flow of gas entrained powders to the nozzles of the DLF system. The device comprises a series of modular splitters which are slidably interconnected and contain an integral flow control mechanism. The device can take the gas entrained powder from between one to four hoppers and split the flow into eight tubular lines which feed the powder delivery nozzles of the DLF system.

  14. Air permeability of powder: a potential tool for Dry Powder Inhaler formulation development.

    PubMed

    Le, V N P; Robins, E; Flament, M P

    2010-11-01

    Dry Powder Inhalers have drawn great attention from pharmaceutical scientists in recent years in particular those consisting of low-dose micronized drug particles associated with larger carrier particles and called interactive mixtures. However, there is little understanding of the relation between bulk powder properties such as powder structure and its aerodynamic dispersion performance. The aim of this work was to develop a simple method to measure the air permeability of interactive mixtures used in Dry Powder Inhalers by using Blaine's apparatus--a compendial permeameter and to relate it to the aerodynamic behaviour. The study was done with fluticasone propionate and terbutaline sulphate as drug models that were blended with several lactoses having different particle size distribution thus containing different percentages of fine particle lactose. The quality of the blends was examined by analysing the drug content uniformity. Aerodynamic evaluation of fine particle fraction was obtained using a Twin Stage Impinger. A linear correlation between a bulk property--air permeability of packed powder bed--and the fine particle fraction of drug was observed for the tested drugs. The air permeability reflects the quantity of the free particle fraction in the interparticulate spaces of powder bed that leads to fine particle fraction during fluidization in air flow. A theoretical approach was developed in order to link the air permeability of powder bed and drag force acting on powders during aerosolization process. The permeability technique developed in this study provides a potential tool for screening Dry Powder Inhaler formulations at the development stage. PMID:20854906

  15. Powder-Metallurgy Process And Product

    NASA Technical Reports Server (NTRS)

    Paris, Henry G.

    1988-01-01

    Rapid-solidification processing yields alloys with improved properties. Study undertaken to extend favorable property combinations of I/M 2XXX alloys through recently developed technique of rapid-solidification processing using powder metallurgy(P/M). Rapid-solidification processing involves impingement of molten metal stream onto rapidly-spinning chill block or through gas medium using gas atomization technique.

  16. Cow dung powder poisoning

    PubMed Central

    Sherfudeen, Khaja Mohideen; Kaliannan, Senthil Kumar; Dammalapati, Pavan Kumar

    2015-01-01

    Cow dung, which has germicidal property, was used in ancient days to clean living premises in South India. Nowadays, people are using commercially available synthetic cow dung powder. It is locally known as “saani powder” in Tamil Nadu. It is freely available in homes and is sometimes accidentally consumed by children. It is available in two colors - yellow and green. Cow dung powder poisoning is common in districts of Tamil Nadu such as Coimbatore, Tirupur, and Erode. We report two cases of yellow cow dung powder poisoning from our hospital.

  17. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-05

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of ternary mixtures consisting of: Ni powder, Cu powder, and Al powder, Ni powder, Cr powder, and Al powder; Ni powder, W powder and Al powder; Ni powder, V powder, and Al powder; Ni powder, Mo powder, and Al powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  18. Powdered solution technology: principles and mechanism.

    PubMed

    Spireas, S S; Jarowski, C I; Rohera, B D

    1992-10-01

    The concept of powdered solutions can be used to formulate liquid medications in dry, nonadherent, free-flowing, and readily compressible powders. The technique is based on simple admixture of drug solution or liquid drug with selected carrier and coating materials. Improved drug release profiles are exhibited by such delivery systems even for poorly water-soluble drugs. Previous work using this method has rendered its industrial application impractical because of the unsatisfactory flow properties of the powder admixtures. This article presents a theoretical model based on the principles and mechanism of powdered solutions and introduces a new physical property of powders termed the flowable liquid-retention potential (phi value). Mathematical expressions are derived that can be used to calculate the optimum amount of excipients required to yield powder admixtures with acceptable flowability. The validity and applicability of these expressions have been verified experimentally using clofibrate and prednisolone as test materials. The proposed model is shown to be superior to previously reported studies in optimizing the amount of excipients needed to prepare powdered solutions with acceptable flow properties. PMID:1448438

  19. Making Semicrystalline Polyimide Powders

    NASA Technical Reports Server (NTRS)

    St. Clair, Terry L.; Chang, Alice

    1994-01-01

    Semicrystalline polyimides with controlled molecular weights synthesized in process that yields polyimides in powder form. Powders with desirable melt-flow properties formed in reaction vessels, without grinding. Commercially attractive for fabrication of adhesive bonds, compression molding of shaped parts, and deposition onto reinforcing fibers for subsequent hot pressing into polyimide-matrix/fiber composites.

  20. Compaction of Titanium Powders

    SciTech Connect

    Stephen J. Gerdemann; Paul D. Jablonski

    2010-11-01

    Accurate modeling of powder densification has been an area of active research for more than 60 years. The earliest efforts were focused on linearization of the data because computers were not readily available to assist with curve-fitting methods. In this work, eight different titanium powders (three different sizes of sponge fines <150 ?m, <75 ?m, and < 45 ?m; two different sizes of a hydride-dehydride [HDH] <75 ?m and < 45 ?m; an atomized powder; a commercially pure [CP] Ti powder from International Titanium Powder [ITP]; and a Ti 6 4 alloy powder) were cold pressed in a single-acting die instrumented to collect stress and deformation data during compaction. From these data, the density of each compact was calculated and then plotted as a function of pressure. The results show that densification of all the powders, regardless of particle size, shape, or chemistry, can be modeled accurately as the sum of an initial density plus the sum of a rearrangement term and a work-hardening term. These last two terms are found to be a function of applied pressure and take the form of an exponential rise.

  1. Sintering titanium powders

    SciTech Connect

    Gerdemann, Stephen J.; Alman, David E.

    2005-09-01

    Recently, there has been renewed interest in low-cost titanium. Near-net-shape powder metallurgy offers the potential of manufacturing titanium articles without costly and difficult forming and machining operations; hence, processing methods such as conventional press-and-sinter, powder forging and powder injection molding are of interest. The sintering behavior of a variety of commercial and experimental titanium powders was studied. Commercial powders were acquired that were produced different routes: (i) sponge fines from the primary titanium processing; (ii) via the hydride-dehydride process; and (iii) gas atomization. The influence of vacuum sintering time (0.5 to 32 hrs) and temperature (1200, 1275 or 1350°C) on the microstructure (porosity present) of cold pressed powders was studied. The results are discussed in terms of the difference in powder characteristics, with the aim of identify the characteristics required for full density via press-and-sinter processing. Near-net-shape tensile bars were consolidated via cold pressed and sintered. After sintering, a sub-set of the tensile bars was hot-isostatic pressed (HIPed). The microstructure and properties of the bars were compared in the sintered and HIPed conditions.

  2. Structural characterization of Bi2Te3 and Sb2Te3 as a function of temperature using neutron powder diffraction and extended X-ray absorption fine structure techniques

    NASA Astrophysics Data System (ADS)

    Mansour, A. N.; Wong-Ng, W.; Huang, Q.; Tang, W.; Thompson, A.; Sharp, J.

    2014-08-01

    The structure of Bi2Te3 (Seebeck coefficient Standard Reference Material (SRM™ 3451)) and the related phase Sb2Te3 have been characterized as a function of temperature using the neutron powder diffraction (NPD) and the extended X-ray absorption fine structure (EXAFS) techniques. The neutron structural studies were carried out from 20 K to 300 K for Bi2Te3 and from 10 K to 298 K for Sb2Te3. The EXAFS technique for studying the local structure of the two compounds was conducted from 19 K to 298 K. Bi2Te3 and Sb2Te3 are isostructural, with a space group of R 3 ¯m. The structure consists of repeated quintuple layers of atoms, Te2-M-Te1-M-Te2 (where M = Bi or Sb) stacking along the c-axis of the unit cell. EXAFS was used to examine the bond distances and static and thermal disorders for the first three shells of Bi2Te3 and Sb2Te3 as a function of temperature. The temperature dependencies of thermal disorders were analyzed using the Debye and Einstein models for lattice vibrations. The Debye and Einstein temperatures for the first two shells of Bi2Te3 are similar to those of Sb2Te3 within the uncertainty in the data. However, the Debye and Einstein temperatures for the third shell of Bi-Bi are significantly lower than those of the third shell of Sb-Sb. The Einstein temperature for the third shell is consistent with a soft phonon mode in both Bi2Te3 and Sb2Te3. The lower Einstein temperature of Bi-Bi relative to Sb-Sb is consistent with the lower value of thermal conductivity of Bi2Te3 relative to Sb2Te3.

  3. Talcum Powder and Cancer

    MedlinePLUS

    ... ACS Learn About Cancer » What Causes Cancer? » Other Carcinogens » At Home » Talcum Powder and Cancer Share this ... cancer or helps cancer grow is called a carcinogen .) The American Cancer Society looks to these organizations ...

  4. POWDER COAT APPLICATIONS

    EPA Science Inventory

    The report discusses an investigation of critical factors that affect the use of powder coatings on the environment, cost, quality, and production. The investigation involved a small business representative working with the National Defense Center for Environmental Excellence (ND...

  5. Magnetically responsive enzyme powders

    NASA Astrophysics Data System (ADS)

    Pospiskova, Kristyna; Safarik, Ivo

    2015-04-01

    Powdered enzymes were transformed into their insoluble magnetic derivatives retaining their catalytic activity. Enzyme powders (e.g., trypsin and lipase) were suspended in various liquid media not allowing their solubilization (e.g., saturated ammonium sulfate and highly concentrated polyethylene glycol solutions, ethanol, methanol, 2-propanol) and subsequently cross-linked with glutaraldehyde. Magnetic modification was successfully performed at low temperature in a freezer (-20 °C) using magnetic iron oxides nano- and microparticles prepared by microwave-assisted synthesis from ferrous sulfate. Magnetized cross-linked enzyme powders were stable at least for two months in water suspension without leakage of fixed magnetic particles. Operational stability of magnetically responsive enzymes during eight repeated reaction cycles was generally without loss of enzyme activity. Separation of magnetically modified cross-linked powdered enzymes from reaction mixtures was significantly simplified due to their magnetic properties.

  6. Gelcasting superalloy powders

    SciTech Connect

    Janney, M.A.

    1995-12-31

    Gelcasting is a process for forming inorganic powders into complex shapes. It was originally developed for ceramic powders. A slurry of powder and a monomer solution is poured in to mold and polymerized in-situ to form gelled parts. Typically, only 2-4 wt % Polymer is used. The process has both aqueous and nonaqueous versions. Gelcasting is a generic process and has been used to produce ceramic parts from over a dozen different ceramic compositions ranging from alumina-based refractories to high-performance silicon nitride. Recently, gelcasting has been applied to forming superalloy powders into complex shapes. This application has posed several challenges not previously encountered in ceramics. In particular, problems were caused by the larger particle size and the higher density of the particles. Additional problems were encountered with binder removal. How these problems were overcome will be described.

  7. Recent analytical developments for powder characterization

    NASA Astrophysics Data System (ADS)

    Brackx, E.; Pages, S.; Dugne, O.; Podor, R.

    2015-07-01

    Powders and divided solid materials are widely represented as finished or intermediary products in industries as widely varied as foodstuffs, cosmetics, construction, pharmaceuticals, electronic transmission, and energy. Their optimal use requires a mastery of the transformation process based on knowledge of the different phenomena concerned (sintering, chemical reactivity, purity, etc.). Their modelling and understanding need a prior acquisition of sets of data and characteristics which are more or less challenging to obtain. The goal of this study is to present the use of different physico-chemical characterization techniques adapted to uranium-containing powders analyzed either in a raw state or after a specific preparation (ionic polishing). The new developments touched on concern dimensional characterization techniques for grains and pores by image analysis, chemical surface characterization and powder chemical reactivity characterization. The examples discussed are from fabrication process materials used in the nuclear fuel cycle.

  8. Aluminum powder applications

    SciTech Connect

    Gurganus, T.B.

    1995-08-01

    Aluminum powders have physical and metallurgical characteristics related to their method of manufacture that make them extremely important in a variety of applications. They can propel rockets, improve personal hygiene, increase computer reliability, refine exotic alloys, and reduce weight in the family sedan or the newest Air Force fighter. Powders formed into parts for structural and non-structural applications hold the key to some of the most exciting new developments in the aluminum future.

  9. Curcumin content of turmeric and curry powders.

    PubMed

    Tayyem, Reema F; Heath, Dennis D; Al-Delaimy, Wael K; Rock, Cheryl L

    2006-01-01

    Curcumin, derived from the rhizome curcuma longa, is one of the primary ingredients in turmeric and curry powders that are used as spices in Middle Eastern and Asian countries, especially on the Indian subcontinent. More recently, laboratory studies have demonstrated that dietary curcumin exhibits various biological activities and significantly inhibits colon tumorigenesis and tumor size in animals. Curcumin displays both anti-inflammatory and antioxidant properties, giving it the potential to be considered in the development of cancer preventive strategies and applications in clinical research. Experimental studies have shown the biological activities of the compound, but much more information on pharmacokinetics, bioavailability, and food content are needed. Whether the amount of curcumin in turmeric and curry powders is sufficient to suggest effects on biological activities and cancer risk is unknown. To determine and compare the quantitative amounts of curcumin that are present in several brands of turmeric and curry powders, a high performance liquid chromatography technique was used to analyze 28 spice products described as turmeric or curry powders and two negative controls. Pure turmeric powder had the highest curcumin concentration, averaging 3.14% by weight. The curry powder samples, with one exception, had relatively small amounts of curcumin present, and the variability in content was great. The curcumin content of these seasoning products that are consumed as a component of the diet should be considered in evaluating baseline tissue concentration and response to curcumin supplementation, which is under study in chemoprevention trials. PMID:17044766

  10. Shock-Wave Consolidation of Nanostructured Bismuth Telluride Powders

    NASA Astrophysics Data System (ADS)

    Beck, Jan; Alvarado, Manuel; Nemir, David; Nowell, Mathew; Murr, Lawrence; Prasad, Narasimha

    2012-06-01

    Nanostructured thermoelectric powders can be produced using a variety of techniques. However, it is very challenging to build a bulk material from these nanopowders without losing the nanostructure. In the present work, nanostructured powders of the bismuth telluride alloy system are obtained in kilogram quantities via a gas atomization process. These powders are characterized using a variety of methods including scanning electron microscopy, transition electron microscopy, and x-ray diffraction analysis. Then the powders are consolidated into a dense bulk material using a shock-wave consolidation technique whereby a nanopowder-containing tube is surrounded by explosives and then detonated. The resulting shock wave causes rapid fusing of the powders without the melt and subsequent grain growth of other techniques. We describe the test setup and consolidation results.

  11. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goval, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-06-07

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  12. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2004-09-28

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  13. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2004-09-14

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  14. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-19

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  15. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-08-26

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  16. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-07-29

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  17. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-01-25

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  18. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2005-05-10

    A biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of at least 60 at % Ni powder and at least one of Cr powder, W powder, V powder, Mo powder, Cu powder, Al powder, Ce powder, YSZ powder, Y powder, Mg powder, and RE powder; the article having a fine and homogeneous grain structure; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  19. Strength enhancement process for prealloyed powder superalloys

    NASA Technical Reports Server (NTRS)

    Waters, W. J.; Freche, J. C.

    1977-01-01

    A technique involving superplastic processing and high pressure autoclaving was applied to a nickel base prealloyed powder alloy. Tensile strengths as high as 2865 MN/sq m at 480 C were obtained with as-superplastically deformed material. Appropriate treatments yielding materials with high temperature tensile and stress rupture strengths were also devised.

  20. Structural characterization of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} as a function of temperature using neutron powder diffraction and extended X-ray absorption fine structure techniques

    SciTech Connect

    Mansour, A. N.; Wong-Ng, W.; Huang, Q.; Tang, W.; Thompson, A.; Sharp, J.

    2014-08-28

    The structure of Bi{sub 2}Te{sub 3} (Seebeck coefficient Standard Reference Material (SRM™ 3451)) and the related phase Sb{sub 2}Te{sub 3} have been characterized as a function of temperature using the neutron powder diffraction (NPD) and the extended X-ray absorption fine structure (EXAFS) techniques. The neutron structural studies were carried out from 20?K to 300?K for Bi{sub 2}Te{sub 3} and from 10?K to 298?K for Sb{sub 2}Te{sub 3}. The EXAFS technique for studying the local structure of the two compounds was conducted from 19?K to 298?K. Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} are isostructural, with a space group of R3{sup ¯}m. The structure consists of repeated quintuple layers of atoms, Te2-M-Te1-M-Te2 (where M?=?Bi or Sb) stacking along the c-axis of the unit cell. EXAFS was used to examine the bond distances and static and thermal disorders for the first three shells of Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3} as a function of temperature. The temperature dependencies of thermal disorders were analyzed using the Debye and Einstein models for lattice vibrations. The Debye and Einstein temperatures for the first two shells of Bi{sub 2}Te{sub 3} are similar to those of Sb{sub 2}Te{sub 3} within the uncertainty in the data. However, the Debye and Einstein temperatures for the third shell of Bi-Bi are significantly lower than those of the third shell of Sb-Sb. The Einstein temperature for the third shell is consistent with a soft phonon mode in both Bi{sub 2}Te{sub 3} and Sb{sub 2}Te{sub 3}. The lower Einstein temperature of Bi-Bi relative to Sb-Sb is consistent with the lower value of thermal conductivity of Bi{sub 2}Te{sub 3} relative to Sb{sub 2}Te{sub 3}.

  1. Ultrafine hydrogen storage powders

    DOEpatents

    Anderson, Iver E. (Ames, IA); Ellis, Timothy W. (Doylestown, PA); Pecharsky, Vitalij K. (Ames, IA); Ting, Jason (Ames, IA); Terpstra, Robert (Ames, IA); Bowman, Robert C. (La Mesa, CA); Witham, Charles K. (Pasadena, CA); Fultz, Brent T. (Pasadena, CA); Bugga, Ratnakumar V. (Arcadia, CA)

    2000-06-13

    A method of making hydrogen storage powder resistant to fracture in service involves forming a melt having the appropriate composition for the hydrogen storage material, such, for example, LaNi.sub.5 and other AB.sub.5 type materials and AB.sub.5+x materials, where x is from about -2.5 to about +2.5, including x=0, and the melt is gas atomized under conditions of melt temperature and atomizing gas pressure to form generally spherical powder particles. The hydrogen storage powder exhibits improved chemcial homogeneity as a result of rapid solidfication from the melt and small particle size that is more resistant to microcracking during hydrogen absorption/desorption cycling. A hydrogen storage component, such as an electrode for a battery or electrochemical fuel cell, made from the gas atomized hydrogen storage material is resistant to hydrogen degradation upon hydrogen absorption/desorption that occurs for example, during charging/discharging of a battery. Such hydrogen storage components can be made by consolidating and optionally sintering the gas atomized hydrogen storage powder or alternately by shaping the gas atomized powder and a suitable binder to a desired configuration in a mold or die.

  2. Macromolecular powder diffraction : structure solution via molecular.

    SciTech Connect

    Doebbler, J.; Von Dreele, R.; X-Ray Science Division

    2009-01-01

    Macromolecular powder diffraction is a burgeoning technique for protein structure solution - ideally suited for cases where no suitable single crystals are available. Over the past seven years, pioneering work by Von Dreele et al. [1,2] and Margiolaki et al. [3,4] has demonstrated the viability of this approach for several protein structures. Among these initial powder studies, molecular replacement solutions of insulin and turkey lysozyme into alternate space groups were accomplished. Pressing the technique further, Margiolaki et al. [5] executed the first molecular replacement of an unknown protein structure: the SH3 domain of ponsin, using data from a multianalyzer diffractometer. To demonstrate that cross-species molecular replacement using image plate data is also possible, we present the solution of hen egg white lysozyme using the 60% identical human lysozyme (PDB code: 1LZ1) as the search model. Due to the high incidence of overlaps in powder patterns, especially in more complex structures, we have used extracted intensities from five data sets taken at different salt concentrations in a multi-pattern Pawley refinement. The use of image plates severely increases the overlap problem due to lower detector resolution, but radiation damage effects are minimized with shorter exposure times and the fact that the entire pattern is obtained in a single exposure. This image plate solution establishes the robustness of powder molecular replacement resulting from different data collection techniques.

  3. Investigation of Soap Powders

    E-print Network

    Bragg, G.A.

    1913-01-01

    not containing abrasive material* (a) Powders containing nothing but softeners* (b) Powders containing softeners and soap* By the term softeners is meant such substances as soda ash, borax and sodium phosphate, all of which are fre­ quently used to decrease....32$ 42.15$ 41.53$ 41.53$ calc. 11. ANALYSIS OP POUTOERS. Group I. (a) Containing abrasives or polishers only. Nature's Polisher Manufactured by Purity Cleanser Company, Atchison, Kans. Wt. 1 pound Price 10 cents. Analysis. Moisture 0.97# Sand...

  4. Iowa Powder Atomization Technologies

    SciTech Connect

    2012-01-01

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  5. Iowa Powder Atomization Technologies

    ScienceCinema

    None

    2013-03-01

    The same atomization effect seen in a fuel injector is being applied to titanium metal resulting in fine titanium powders that are less than half the width of a human hair. Titanium melts above 3,000°F and is highly corrosive therefore requiring specialized containers. The liquid titanium is poured through an Ames Laboratory - USDOE patented tube which is intended to increase the energy efficiency of the atomization process, which has the ability to dramatically decrease the cost of fine titanium powders. This novel process could open markets for green manufacturing of titanium components from jet engines to biomedical implants.

  6. Dry powder coating of pharmaceuticals: a review.

    PubMed

    Sauer, Dorothea; Cerea, Matteo; DiNunzio, James; McGinity, James

    2013-12-01

    Over the last half century, film coating technology has evolved significantly in terms of compositions and manufacturing processes, allowing for greater functionality, flexibility and efficiency. Driven by a combination of cost considerations and functionality, a range of dry powder coating technologies have been developed in both academic and industrial settings. These technologies can be generally classified into three major types based on the layer formation process: liquid assisted, thermal adhesion and electrostatic. In addition to specific manufacturing processes that must be implemented to achieve the desired product attributes, many of these techniques also require the use of novel excipients and specific formulations to provide acceptable manufacturability. This review summarizes the current dry powder coating technologies and highlights their industrial applicability with publicly disclosed case studies. Commentary on the future directions of dry powder coating is also provided. PMID:23428881

  7. Dynamic compaction of tungsten carbide powder.

    SciTech Connect

    Gluth, Jeffrey Weston; Hall, Clint Allen; Vogler, Tracy John; Grady, Dennis Edward

    2005-04-01

    The shock compaction behavior of a tungsten carbide powder was investigated using a new experimental design for gas-gun experiments. This design allows the Hugoniot properties to be measured with reasonably good accuracy despite the inherent difficulties involved with distended powders. The experiments also provide the first reshock state for the compacted powder. Experiments were conducted at impact velocities of 245, 500, and 711 m/s. A steady shock wave was observed for some of the sample thicknesses, but the remainder were attenuated due to release from the back of the impactor or the edge of the sample. The shock velocity for the powder was found to be quite low, and the propagating shock waves were seen to be very dispersive. The Hugoniot density for the 711 m/s experiment was close to ambient crystal density for tungsten carbide, indicating nearly complete compaction. When compared with quasi-static compaction results for the same material, the dynamic compaction data is seen to be significantly stiffer for the regime over which they overlap. Based on these initial results, recommendations are made for improving the experimental technique and for future work to improve our understanding of powder compaction.

  8. Polymer powders for selective laser sintering (SLS)

    NASA Astrophysics Data System (ADS)

    Schmid, Manfred; Amado, Antonio; Wegener, Konrad

    2015-05-01

    Selective Laser Sintering (SLS) is close to be accepted as a production technique (Additive Manufacturing). However, one problem limiting employment of SLS for additive manufacturing in a wide-ranging industrial scope is the narrow variety of applicable polymers. The commonly applied SLS powder to date is polyamide 12 (PA 12). PA 12 or ccompounds of PA 12 (dry blends) are approximately 90 % of complete industrial consumption. The remaining small quantity is distributed on polyamide 11 (PA11) and some other `exotic' polymers (TPU, PEBA, P(E)EK). Industry is awaiting commodity polymers like polypropylene (PP) or polyethylene (PE) crucial to open new market segments. But several approaches launching those polymers failed. But what are the reasons for the difficulties in developing new SLS powders? The contribution is to answer this and highlights the combination of intrinsic and extrinsic polymer properties necessary to generate a polymer powder promising for SLS application. Particle shape, powder distribution, thermal, rheological and optical requirements must be considered and only a particularly controlled property combination leads to successful SLS implementation. Thermal behavior, particle shape and -distribution is discussed in detail, although the other properties can't be disregarded for providing new commercially successful SLS powder finally.

  9. Baking powder overdose

    MedlinePLUS

    ... Center at 1-800-222-1222. See also: Baking soda overdose ... Baking powder contains sodium bicarbonate (found in baking soda) and an acid (such as cream of tartar). It may also contain a moisture-reducing product such as corn starch.

  10. Demystifying Mystery Powders.

    ERIC Educational Resources Information Center

    Kotar, Michael

    1989-01-01

    Describes science activities which use simple chemical tests to distinguish between materials and to determine some of their properties. Explains the water, iodine, heat, acid, baking soda, acid/base indicator, glucose, and sugar tests. Includes activities to enhance chemical testing and a list of suggested powders for use. (RT)

  11. Spheroidization of glass powders for glass ionomer cements.

    PubMed

    Gu, Y W; Yap, A U J; Cheang, P; Kumar, R

    2004-08-01

    Commercial angular glass powders were spheroidized using both the flame spraying and inductively coupled radio frequency plasma spraying techniques. Spherical powders with different particle size distributions were obtained after spheroidization. The effects of spherical glass powders on the mechanical properties of glass ionomer cements (GICs) were investigated. Results showed that the particle size distribution of the glass powders had a significant influence on the mechanical properties of GICs. Powders with a bimodal particle size distribution ensured a high packing density of glass ionomer cements, giving relatively high mechanical properties of GICs. GICs prepared by flame-spheroidized powders showed low strength values due to the loss of fine particles during flame spraying, leading to a low packing density and few metal ions reacting with polyacrylic acid to form cross-linking. GICs prepared by the nano-sized powders showed low strength because of the low bulk density of the nano-sized powders and hence low powder/liquid ratio of GICs. PMID:15046893

  12. Microstructural development of rapid solidification in Al-Si powder

    SciTech Connect

    Jin, F.

    1995-11-01

    The microstructure and the gradient of microstructure that forms in rapidly solidificated powder were investigated for different sized particles. High pressure gas atomization solidification process has been used to produce a series of Al-Si alloys powders between 0.2 {mu}m to 150 {mu}m diameter at the eutectic composition (12.6 wt pct Si). This processing technique provides powders of different sizes which solidify under different conditions (i.e. interface velocity and interface undercooling), and thus give different microstructures inside the powders. The large size powder shows dendritic and eutectic microstructures. As the powder size becomes smaller, the predominant morphology changes from eutectic to dendritic to cellular. Microstructures were quantitatively characterized by using optical microscope and SEM techniques. The variation in eutectic spacing within the powders were measured and compared with the theoretical model to obtain interface undercooling, and growth rate during the solidification of a given droplet. Also, nucleation temperature, which controls microstructures in rapidly solidified fine powders, was estimated. A microstructural map which correlates the microstructure with particle size and processing parameters is developed.

  13. Effects of physical properties for starch acetate powders on tableting.

    PubMed

    Korhonen, Ossi; Pohja, Seppo; Peltonen, Soili; Suihko, Eero; Vidgren, Mika; Paronen, Petteri; Ketolainen, Jarkko

    2002-01-01

    The aim of the study was to investigate particle and powder properties of various starch acetate powders, to study the effect of these properties on direct compression characteristics, and to evaluate the modification opportunity of physical properties for starch acetate powders by using various drying methods. At the end of the production phase of starch acetate, the slurry of starch acetate was dried using various techniques. Particle, powder, and tableting properties of end products were investigated. Particle size, circularity, surface texture, water content and specific surface area varied according to the particular drying method of choice. However, all powders were freely flowing. Bulk and tapped densities of powders varied in the range of 0.29 to 0.44 g/cm3 and 0.39 to 0.56 g/cm3, respectively. Compaction characteristics revealed that all powders were easily deformed under compression, having yield pressure values of less than 66 MPa according to Heckel analysis. All powders possessed a significant interparticulate bond-forming capacity during compaction. The tensile strength values of tablets varied between 10 and 18 MPa. In conclusion, physical properties of starch acetate could be affected by various drying techniques. A large specific surface area and water content above 4% were favorable properties by direct compression, especially for small, irregular, and rough particles. PMID:12916928

  14. Study of Velocity and Materials on Tribocharging of Polymer Powders for Powder Coating Applications

    NASA Technical Reports Server (NTRS)

    Biris, Alex S.; Trigwell, Steve; Sims, Robert A.; Mazumder, Malay K.

    2005-01-01

    Electrostatic powder deposition is widely used in a plethora of industrial-applications ranging from the pharmaceutical and food.industries, to farm equipment and automotive applications. The disadvantages of this technique are possible back corona (pin-like formations) onset and the Faraday penetration limitation (when the powder does not penetrate in some recessed areas). A possible solution to overcome these problems is to use tribochargers to electrostatically charge the powder. Tribocharging, or contact charging while two materials are in contact, is related to the work function difference between the contacting materials and generates bipolarly charged particles. The generation of an ion-free powder cloud by tribocharging with high bipolar charge and an overall charge density of almost zero, provides a better coverage of the recessed areas. In this study, acrylic and epoxy powders were fluidized and charged by passing through stainless steel, copper, aluminum, and polycarbonate static mixers, respectively. The particle velocity was varied to determine its effect on the net charge-to-mass ratio (QIM) acquired by the powders. In general, the Q/M increases rapidly when the velocity was increased from 1.5 to 2.5 m/s, remaining almost constant for higher velocities. Charge separation experiments showed bipolar charging for all chargers.

  15. Reducing metal alloy powder costs for use in powder bed fusion additive manufacturing: Improving the economics for production

    NASA Astrophysics Data System (ADS)

    Medina, Fransisco

    Titanium and its associated alloys have been used in industry for over 50 years and have become more popular in the recent decades. Titanium has been most successful in areas where the high strength to weight ratio provides an advantage over aluminum and steels. Other advantages of titanium include biocompatibility and corrosion resistance. Electron Beam Melting (EBM) is an additive manufacturing (AM) technology that has been successfully applied in the manufacturing of titanium components for the aerospace and medical industry with equivalent or better mechanical properties as parts fabricated via more traditional casting and machining methods. As the demand for titanium powder continues to increase, the price also increases. Titanium spheroidized powder from different vendors has a price range from 260/kg-450/kg, other spheroidized alloys such as Niobium can cost as high as $1,200/kg. Alternative titanium powders produced from methods such as the Titanium Hydride-Dehydride (HDH) process and the Armstrong Commercially Pure Titanium (CPTi) process can be fabricated at a fraction of the cost of powders fabricated via gas atomization. The alternative powders can be spheroidized and blended. Current sectors in additive manufacturing such as the medical industry are concerned that there will not be enough spherical powder for production and are seeking other powder options. It is believed the EBM technology can use a blend of spherical and angular powder to build fully dense parts with equal mechanical properties to those produced using traditional powders. Some of the challenges with angular and irregular powders are overcoming the poor flow characteristics and the attainment of the same or better packing densities as spherical powders. The goal of this research is to demonstrate the feasibility of utilizing alternative and lower cost powders in the EBM process. As a result, reducing the cost of the raw material to reduce the overall cost of the product produced with AM. Alternative powders can be made by blending or re-spheroidizing HDH and CPTi powders. Machine modifications were performed to allow the testing and manufacturing with these low cost alternative powders. A comparison was made between alternative powders and gas atomized powders. Powders were compared in terms of morphology and at the microstructural level. Flowability of different powder blends was also measured. Finally, a comparison of parts fabricated from the multiple powder blends and gas atomized powder was made. It has been demonstrated that powder blending can produce fully dense parts in the Arcam system by utilizing the double melt technique or HIPing the built pars. The double melt technique increased the density of the sample part and modified the microstructure into finer martensitic grains. The HIP process can make a part fully dense regardless of what percentage of HDH powder blending is used. The HIP process yielded the same microstructure, regardless of the grain structure it started with. This research allows for the reduction of costs using titanium powders in the EBM system, but can also be implemented with more costly elements and alloys using other metal AM technologies. This includes niobium, tantalum, and nickel-based superalloys for use in various industries.

  16. Screening mail for powders using terahertz technology

    NASA Astrophysics Data System (ADS)

    Kemp, Mike

    2011-11-01

    Following the 2001 Anthrax letter attacks in the USA, there has been a continuing interest in techniques that can detect or identify so-called 'white powder' concealed in envelopes. Electromagnetic waves (wavelengths 100-500 ?m) in the terahertz frequency range penetrate paper and have short enough wavelengths to provide good resolution images; some materials also have spectroscopic signatures in the terahertz region. We report on an experimental study into the use of terahertz imaging and spectroscopy for mail screening. Spectroscopic signatures of target powders were measured and, using a specially designed test rig, a number of imaging methods based on reflection, transmission and scattering were investigated. It was found that, contrary to some previous reports, bacterial spores do not appear to have any strong spectroscopic signatures which would enable them to be identified. Imaging techniques based on reflection imaging and scattering are ineffective in this application, due to the similarities in optical properties between powders of interest and paper. However, transmission imaging using time-of-flight of terahertz pulses was found to be a very simple and sensitive method of detecting small quantities (25 mg) of powder, even in quite thick envelopes. An initial feasibility study indicates that this method could be used as the basis of a practical mail screening system.

  17. Method for synthesizing powder materials

    DOEpatents

    Buss, R.J.; Ho, P.

    1988-01-21

    A method for synthesizing ultrafine powder materials, for example, ceramic and metal powders, comprises admitting gaseous reactants from which the powder material is to be formed into a vacuum reaction chamber maintained at a pressure less than atmospheric and at a temperature less than about 400/degree/K (127/degree/C). The gaseous reactants are directed through a glow discharge provided in the vacuum reaction chamber to form the ultrafine powder material. 1 fig.

  18. Method to blend separator powders

    DOEpatents

    Guidotti, Ronald A. (Albuquerque, NM); Andazola, Arthur H. (Albuquerque, NM); Reinhardt, Frederick W. (Albuquerque, NM)

    2007-12-04

    A method for making a blended powder mixture, whereby two or more powders are mixed in a container with a liquid selected from nitrogen or short-chain alcohols, where at least one of the powders has an angle of repose greater than approximately 50 degrees. The method is useful in preparing blended powders of Li halides and MgO for use in the preparation of thermal battery separators.

  19. Vacuum powder injector and method of impregnating fiber with powder

    NASA Technical Reports Server (NTRS)

    Working, Dennis C. (inventor)

    1993-01-01

    A method and apparatus uniformly impregnate stranded material with dry powder such as low solubility, high melt flow polymer powder to produce, for example, composite prepregs. The stranded material is expanded in an impregnation chamber by an influx of air so that the powder, which may enter through the same inlet as the air, penetrates to the center of the stranded material. The stranded material then is contracted for holding the powder therein. The stranded material and powder may be pulled through the impregnation chamber in the same direction by vacuum. Larger particles of powder which do not fully penetrate the stranded material may be combed into the stranded material and powder which does not impregnate the stranded material may be collected and reused.

  20. Characterization of Metal Powders Used for Additive Manufacturing

    PubMed Central

    Slotwinski, JA; Garboczi, EJ; Stutzman, PE; Ferraris, CF; Watson, SS; Peltz, MA

    2014-01-01

    Additive manufacturing (AM) techniques1 can produce complex, high-value metal parts, with potential applications as critical parts, such as those found in aerospace components. The production of AM parts with consistent and predictable properties requires input materials (e.g., metal powders) with known and repeatable characteristics, which in turn requires standardized measurement methods for powder properties. First, based on our previous work, we assess the applicability of current standardized methods for powder characterization for metal AM powders. Then we present the results of systematic studies carried out on two different powder materials used for additive manufacturing: stainless steel and cobalt-chrome. The characterization of these powders is important in NIST efforts to develop appropriate measurements and standards for additive materials and to document the property of powders used in a NIST-led additive manufacturing material round robin. An extensive array of characterization techniques was applied to these two powders, in both virgin and recycled states. The physical techniques included laser diffraction particle size analysis, X-ray computed tomography for size and shape analysis, and optical and scanning electron microscopy. Techniques sensitive to structure and chemistry, including X-ray diffraction, energy dispersive analytical X-ray analysis using the X-rays generated during scanning electron microscopy, and X-Ray photoelectron spectroscopy were also employed. The results of these analyses show how virgin powder changes after being exposed to and recycled from one or more Direct Metal Laser Sintering (DMLS) additive manufacturing build cycles. In addition, these findings can give insight into the actual additive manufacturing process. PMID:26601040

  1. Processing polymeric powders

    NASA Technical Reports Server (NTRS)

    Throne, James L.

    1989-01-01

    The concept of uniformly and continuously depositing and sinter-fusing nominal 0.1 to 40 microns dimensioned electrostatically charged polymer powder particles onto essentially uniformly spread 5 to 20 micron grounded continuous fiber tow to produce a respoolable thermoplastic composite two-preg was formulated at NASA Langley. The process was reduced to practice under a NASA grant at the University of Akron this spring. The production of tow-preg is called phase 1. The production of ultrafine polymer powders from 5 to 10 percent (wt) polymer solids in solvent is considered. This is phase 0 and is discussed. The production of unitape from multi tow-pregs was also considered. This is phase 2 and is also discussed. And another approach to phase 1, also proposed last summer, was scoped. This is phase 1A and is also discussed.

  2. Advanced powder metallurgy aluminum alloys via rapid solidification technology

    NASA Technical Reports Server (NTRS)

    Ray, R.

    1984-01-01

    Aluminum alloys containing 10 to 11.5 wt. pct. of iron and 1.5 to 3 wt. pct. of chromium using the technique of rapid solidification powder metallurgy were studied. Alloys were prepared as thin ribbons (.002 inch thick) rapidly solidified at uniform rate of 10(6) C/second by the melt spinning process. The melt spun ribbons were pulverized into powders (-60 to 400 mesh) by a rotating hammer mill. The powders were consolidated by hot extrusion at a high reduction ratio of 50:1. The powder extrusion temperature was varied to determine the range of desirable processing conditions necessary to yield useful properties. Powders and consolidated alloys were characterized by SEM and optical metallography. The consolidated alloys were evaluated for (1) thermal stability, (2) tensile properties in the range, room temperature to 450 F, and (3) notch toughness in the range, room temperature to 450 F.

  3. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath (Littleton, CO)

    1998-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  4. Silicon nitride/silicon carbide composite powders

    DOEpatents

    Dunmead, Stephen D. (Midland, MI); Weimer, Alan W. (Midland, MI); Carroll, Daniel F. (Midland, MI); Eisman, Glenn A. (Midland, MI); Cochran, Gene A. (Midland, MI); Susnitzky, David W. (Midland, MI); Beaman, Donald R. (Midland, MI); Nilsen, Kevin J. (Midland, MI)

    1996-06-11

    Prepare silicon nitride-silicon carbide composite powders by carbothermal reduction of crystalline silica powder, carbon powder and, optionally, crystalline silicon nitride powder. The crystalline silicon carbide portion of the composite powders has a mean number diameter less than about 700 nanometers and contains nitrogen. The composite powders may be used to prepare sintered ceramic bodies and self-reinforced silicon nitride ceramic bodies.

  5. Evaluation of powder metallurgy superalloy disk materials

    NASA Technical Reports Server (NTRS)

    Evans, D. J.

    1975-01-01

    A program was conducted to develop nickel-base superalloy disk material using prealloyed powder metallurgy techniques. The program included fabrication of test specimens and subscale turbine disks from four different prealloyed powders (NASA-TRW-VIA, AF2-1DA, Mar-M-432 and MERL 80). Based on evaluation of these specimens and disks, two alloys (AF2-1DA and Mar-M-432) were selected for scale-up evaluation. Using fabricating experience gained in the subscale turbine disk effort, test specimens and full scale turbine disks were formed from the selected alloys. These specimens and disks were then subjected to a rigorous test program to evaluate their physical properties and determine their suitability for use in advanced performance turbine engines. A major objective of the program was to develop processes which would yield alloy properties that would be repeatable in producing jet engine disks from the same powder metallurgy alloys. The feasibility of manufacturing full scale gas turbine engine disks by thermomechanical processing of pre-alloyed metal powders was demonstrated. AF2-1DA was shown to possess tensile and creep-rupture properties in excess of those of Astroloy, one of the highest temperature capability disk alloys now in production. It was determined that metallographic evaluation after post-HIP elevated temperature exposure should be used to verify the effectiveness of consolidation of hot isostatically pressed billets.

  6. Heats of immersion of titania powders in primer solutions

    NASA Technical Reports Server (NTRS)

    Siriwardane, R.; Wightman, J. P.

    1983-01-01

    The oxide layer present on titanium alloys can play an important role in determining the strength and durability of adhesive bonds. Here, three titania powders in different crystalline phases, rutile-R1, anatase-A1, and anatase-A2, are characterized by several techniques. These include microelectrophoresis, X-ray diffractometry, surface area pore volume analysis, X-ray photoelectron spectroscopy, and measurements of the heats of immersion. Of the three powders, R1 has the highest heat of immersion in water, while the interaction between water and A1 powder is low. Experimental data also suggest a specific preferential interaction of polyphenylquinoxaline with anatase.

  7. Plasma technology for the production of metallic and ceramic powder

    SciTech Connect

    Vursel, P.B.

    1995-12-31

    Plasma technology gives an opportunity to obtain powders of different materials in a widest range of sizes with desirable properties. Some techniques of production and some properties of ultrafine, refractory, semiconducting, magnetic powders are described. An influence of plasma parameters (temperature, flow rate, composition, rate of heating) and quenching conditions (quenching agent temperature and composition, cooling rate) on chemical and phase compositions, microstructure, particle`s size and shape is established by experiments. The last parameters determine exploitation properties of powders and items made of them.

  8. LARC powder prepreg system

    NASA Technical Reports Server (NTRS)

    Baucom, Robert M.; Marchello, Joseph M.

    1990-01-01

    Thermoplastic prepregs of LARC-TPI have been produced in a fluidized bed unit on spread continuous fiber tows. The powders are melted on the fibers by radiant heating to adhere the polymer to the fiber. This process produces tow prepreg uniformly without imposing severe stress on the fibers or requiring long high temperature residence times for the polymer. Unit design theory and operating correlations have been developed to provide the basis for scale up to commercial operation. Special features of the operation are the pneumatic tow spreader, fluidized bed and resin feed systems.

  9. Processing of PZT ceramics: aqueous mixing procedures for powder consolidation

    SciTech Connect

    Bunker, B.C.; Lamppa, D.L.; Moore, R.H.

    1986-02-01

    Inhomogeneities in chemical compositions and microstructures can result in lot-to-lot variations in the charge release characteristics of ferroelectric lead-zirconate-titanate ceramics. One source of inhomogeneity is agglomeration and selective sedimentation which occurs during aqueous mixing of the constituent oxides. Procedures using electrostatic and steric stabilization of oxide powders were developed for fabricating homogeneous powder compacts. Use of lead carbonate instead of lead oxide minimizes problems encountered using various slurry stabilization techniques.

  10. Infrared thermography of burn front propagation in heat powders

    SciTech Connect

    Kelly, M.D.; Abney, L.D.

    1984-01-01

    Heat powders are consolidated into dense composites to form concentrated chemical heat sources. During the reaction, a high temperature burn front propagates through the composites. The burn front is preceded by a lower temperature thermal front which generates thermal gradients. Thermography was used to determine thermal gradients preceding the burn front, during the reaction of the consolidated heat powder. The techniques involved along with the resulting thermography will be discussed.

  11. Dry powder aerosol delivery systems: current and future research directions.

    PubMed

    Chan, Hak-Kim

    2006-01-01

    Development of dry powder aerosol delivery system involves powder production, formulation, dispersion, delivery, and deposition of the powder aerosol in the airways. Insufficiency of conventional powder production by crystallization and milling has led to development of alternative techniques. Over the last decade, performance of powder formulations has been improved significantly through the use of engineered drug particles and excipient systems which are (i) of low aerodynamic diameters (being porous or of low particle density), and/or (ii) less cohesive and adhesive (via corrugated surfaces, low bulk density, reduced surface energy and particle interaction, hydrophobic additives, and fine carrier particles). Early insights into particle forces and surface energy that help explain the improvement have been provided by analytical techniques such as the atomic force microscopy (AFM) and inverse gas chromatography (IGC). Relative humidity is critical to the performance of dry powder inhaler (DPI) products via capillary force and electrostatic interaction. Electrostatic charge of different particle size fractions of an aerosol can now be measured using a modified electrical low-pressure impactor (ELPI). Compared with powders, much less work has been done on the inhaler devices at the fundamental level. Most recently, computational fluid dynamics has been applied to understand how the inhaler design (such as mouthpiece, grid structure, air inlet) affects powder dispersion. The USP throat is known to under-represent the oropharyngeal deposition of DPI aerosols. Studies using magnetic resonance imaging (MRI) model casts have been undertaken to explain the inter- and intra- subject variation in oropharyngeal deposition. Most of the lung deposition studies performed on commercial products did not allow a thorough understanding of the determinants affecting in vivo lung deposition. A more systematic approach would be necessary to build a useful database on the dependence of lung deposition on the breathing parameters, inhaler design, and powder formulation properties. PMID:16551211

  12. Powder diffraction with spin polarized neutrons

    NASA Astrophysics Data System (ADS)

    Lelièvre-Berna, E.; Wills, A. S.; Bourgeat-Lami, E.; Dee, A.; Hansen, T.; Henry, P. F.; Poole, A.; Thomas, M.; Tonon, X.; Torregrossa, J.; Andersen, K. H.; Bordenave, F.; Jullien, D.; Mouveau, P.; Guérard, B.; Manzin, G.

    2010-05-01

    The polarized neutron diffraction (PND) and spherical neutron polarimetry (SNP) techniques are very powerful tools and provide arguably the most sensitive methods for determining magnetization distributions at all the positions of the chemical. However, they can only apply to single crystals. Because of the difficulties encountered in growing sufficiently large samples of molecular magnets, and the inability to measure efficiently powder samples and more specifically nanoscale systems, the PND and SNP techniques are inadequate for a number of highly interesting subjects. We present a new technique taking advantage of the recent progress of the polarized 3He neutron spin filters that should overcome these limitations and which we propose to call the 'flipping difference method'. We describe the measurement strategy, the data analysis technique and preliminary analysis of the results of the first measurements.

  13. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 2010-04-01 false Buffered penicillin powder, penicillin powder with buffered aqueous diluent. 520...FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered...

  14. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 2011-04-01 false Buffered penicillin powder, penicillin powder with buffered aqueous diluent. 520...FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered...

  15. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...2012-04-01 2012-04-01 false Buffered penicillin powder, penicillin powder with buffered aqueous diluent. 520...FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered...

  16. Mound powder loader, Mod 1

    SciTech Connect

    Gress, A.V. Jr.

    1985-08-21

    At the investigation of Sandia Albuquerque, a semiautomatic powder loader was designed and fabricated for pyrotechnics devices. The basic functions of the system were to load a precise, measured amount of powder into a charge holder and to compact the mixture to a specified density. This report documents the history, rationale, design, and performance of the Mod 1 loader.

  17. Structural materials by powder HIP for fusion reactors

    NASA Astrophysics Data System (ADS)

    Dellis, C.; Le Marois, G.; van Osch, E. V.

    1998-10-01

    Tokamak blankets have complex shapes and geometries with double curvature and embedded cooling channels. Usual manufacturing techniques such as forging, bending and welding generate very complex fabrication routes. Hot Isostatic Pressing (HIP) is a versatile and flexible fabrication technique that has a broad range of commercial applications. Powder HIP appears to be one of the most suitable techniques for the manufacturing of such complex shape components as fusion reactor modules. During the HIP cycle, consolidation of the powder is made and porosity in the material disappears. This involves a variation of 30% in volume of the component. These deformations are not isotropic due to temperature gradients in the part and the stiffness of the canister. This paper discusses the following points: (i) Availability of manufacturing process by powder HIP of 316LN stainless steel (ITER modules) and F82H martensitic steel (ITER Test Module and DEMO blanket) with properties equivalent to the forged one.(ii) Availability of powerful modelling techniques to simulate the densification of powder during the HIP cycle, and to control the deformation of components during consolidation by improving the canister design.(iii) Material data base needed for simulation of the HIP process, and the optimisation of canister geometry.(iv) Irradiation behaviour on powder HIP materials from preliminary results.

  18. Thermal analysis of pentaerythritol tetranitrate and development of a powder aging model

    SciTech Connect

    Brown, Geoffrey W; Sandstrom, Mary M; Giambra, Anna M; Archuleta, Jose G; Monroe, Deirde C

    2009-01-01

    We have applied a range of different physical and thermal analysis techniques to characterize the thermal evolution of the specific surface area of pentaerythritol tetranitrate (PETN) powders. Using atomic force microscopy we have determined that the mass transfer mechanism leading to powder coarsening is probably sublimation and redeposition of PETN. Using thermogravimetric analysis we have measured vapor pressures of PETN powders whose aging will be simulated in future work. For one specific powder we have constructed an empirical model of the coarsening that is fit to specific surface area measurements at 60 C to 70 C to provide predictive capability of that powder's aging. Modulated differential scanning calorimetry and mass spectroscopy measurements highlight some of the thermal behavior of the powders and suggest that homologue-based eutectics and impurities are localized in the powder particles.

  19. Powder and capsule filling properties of lubricated granulated cellulose powder.

    PubMed

    Podczeck, F; Newton, J M

    2000-11-01

    Granulated powdered cellulose was studied in terms of powder bulk properties and capsule filling performance on a tamp-filling machine with and without the addition of various concentrations of magnesium stearate. Carr's compressibility reached its minimum value at 0.4% magnesium stearate suggesting an improvement of powder flow compared to the unlubricated material. However, shear cell measurements and the use of a powder rheometer indicated that the addition of 0.2% magnesium stearate and more impairs powder flow and does not reduce interparticulate friction. When capsules were filled into hard gelatine capsules at a zero-compression setting, the fill weight and plug density could be predicted from Carr's compressibility index and from the maximum bulk density. The decrease in one and simultaneous increase in the other bulk property with increasing magnesium stearate concentration caused both fill weight and plug density to go through a minimum at a lubricant concentration of 0.4%. When the capsules were filled at maximum compression, however, the addition of lubricant increased the coefficient of fill weight variation significantly, and the plug density remained constant for any added concentration of magnesium stearate. These findings were in agreement with the shear cell and powder rheometer results. However, the optimum lubricant concentration in terms of ease of machine function, which was identified from tamping pressure measurements, was found to be 0.8% magnesium stearate, which was not an optimal concentration for the powder bulk properties. PMID:11072194

  20. Measurements of Powder-Polymer Mixture Properties and Their Use in Powder Injection Molding Simulations for Aluminum Nitride

    NASA Astrophysics Data System (ADS)

    Kate, Kunal H.; Onbattuvelli, Valmikanathan P.; Enneti, Ravi K.; Lee, Shi W.; Park, Seong-Jin; Atre, Sundar V.

    2012-09-01

    Aluminum nitride has been favored for applications in manufacturing substrates for heat sinks due to its elevated temperature operability, high thermal conductivity, and low thermal expansion coefficient. Powder injection molding is a high-volume manufacturing technique that can translate these useful material properties into complex shapes. In order to design and fabricate components from aluminum nitride, it is important to know the injection-molding behavior at different powder-binder compositions. However, the lack of a materials database for design and simulation at different powder-polymer compositions is a significant barrier. In this paper, a database of rheological and thermal properties for aluminum nitride-polymer mixtures at various volume fractions of powder was compiled from experimental measurements. This database was used to carry out mold-filling simulations to understand the effects of powder content on the process parameters and defect evolution during the injection-molding process. The experimental techniques and simulation tools can be used to design new materials, select component geometry attributes, and optimize process parameters while eliminating expensive and time-consuming trial-and-error practices prevalent in the area of powder injection molding.

  1. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, R.

    1998-08-04

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic and/or reduced particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of all metals in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products. 7 figs.

  2. Preparation of superconductor precursor powders

    DOEpatents

    Bhattacharya, Raghunath (Littleton, CO); Blaugher, Richard D. (Evergreen, CO)

    1995-01-01

    A process for the preparation of a precursor metallic powder composition for use in the subsequent formation of a superconductor. The process comprises the steps of providing an electrodeposition bath comprising an electrolyte medium and a cathode substrate electrode, and providing to the bath one or more soluble salts of one or more respective metals, such as nitrate salts of thallium, barium, calcium, and copper, which are capable of exhibiting superconductor properties upon subsequent appropriate treatment. The bath is continually energized to cause the metallic particles formed at the electrode to drop as a powder from the electrode into the bath, and this powder, which is a precursor powder for superconductor production, is recovered from the bath for subsequent treatment. The process permits direct inclusion of thallium in the preparation of the precursor powder, and yields an amorphous product mixed on an atomic scale to thereby impart inherent high reactivity. Superconductors which can be formed from the precursor powder include pellet and powder-in-tube products.

  3. Powder processing of hybrid titanium neural electrodes

    NASA Astrophysics Data System (ADS)

    Lopez, Jose Luis, Jr.

    A preliminary investigation into the powder production of a novel hybrid titanium neural electrode for EEG is presented. The rheological behavior of titanium powder suspensions using sodium alginate as a dispersant are examined for optimal slip casting conditions. Electrodes were slip cast and sintered at 950°C for 1 hr, 1000°C for 1, 3, and 6 hrs, and 1050°C for 1 hr. Residual porosities from sintering are characterized using Archimedes' technique and image analysis. The pore network is gel impregnated by submerging the electrodes in electrically conductive gel and placing them in a chamber under vacuum. Gel evaporation of the impregnated electrodes is examined. Electrodes are characterized in the dry and gelled states using impedance spectrometry and compared to a standard silver- silver chloride electrode. Power spectral densities for the sensors in the dry and gelled state are also compared. Residual porosities for the sintered specimens were between 50.59% and 44.81%. Gel evaporation tests show most of the impregnated gel evaporating within 20 min of exposure to atmospheric conditions with prolonged evaporation times for electrodes with higher impregnated gel mass. Impedance measurements of the produced electrodes indicate the low impedance of the hybrid electrodes are due to the increased contact area of the porous electrode. Power spectral densities of the titanium electrode behave similar to a standard silver-silver chloride electrode. Tests suggest the powder processed hybrid titanium electrode's performance is better than current dry contact electrodes and comparable to standard gelled silver-silver chloride electrodes.

  4. Silica powders for powder evacuated thermal insulating panel and method

    DOEpatents

    Harris, M.T.; Basaran, O.A.; Kollie, T.G.; Weaver, F.J.

    1996-01-02

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm{sup 3} and an external surface area in the range of about 90 to 600 m{sup 2}/g is described. The silica powders are prepared by reacting a tetraalkyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders. 2 figs.

  5. Silica powders for powder evacuated thermal insulating panel and method

    DOEpatents

    Harris, Michael T. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Weaver, Fred J. (Knoxville, TN)

    1996-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  6. Silica powders for powder evacuated thermal insulating panel and method

    DOEpatents

    Harris, Michael T. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Weaver, Fred J. (Knoxville, TN)

    1995-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2/ g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  7. Silica powders for powder evacuated thermal insulating panel and method

    DOEpatents

    Harris, Michael T. (Knoxville, TN); Basaran, Osman A. (Oak Ridge, TN); Kollie, Thomas G. (Oak Ridge, TN); Weaver, Fred J. (Knoxville, TN)

    1994-01-01

    A powder evacuated thermal insulating panel using generally spherical and porous silica particles of a median size less than about 100 nanometers in diameter, a pour packing density of about 0.4 to 0.6 g/cm.sup.3 and an external surface area in the range of about 90 to 600 m.sup.2 /g is described. The silica powders are prepared by reacting a tetraakyl silicate with ammonia and water in an alcohol solvent, distilling the solution after the reaction to remove the ammonia and recover the alcohol. The resulting aqueous slurry was dried, ball-milled, and dried again to provide the silica particles with defined internal and external porosity. The nanometer size and the large external surface area of the silica particles along with the internal and external porosity of the silica particles provide powder evacuated thermal insulating panels with significantly higher R-values than obtainable using previously known silica powders.

  8. Method for molding ceramic powders

    DOEpatents

    Janney, M.A.

    1990-01-16

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, where after the product may be sintered.

  9. Method for molding ceramic powders

    DOEpatents

    Janney, Mark A. (Knoxville, TN)

    1990-01-01

    A method for molding ceramic powders comprises forming a slurry mixture including ceramic powder, a dispersant for the metal-containing powder, and a monomer solution. The monomer solution includes at least one multifunctional monomer, a free-radical initiator, and an organic solvent. The slurry mixture is transferred to a mold, and the mold containing the slurry mixture is heated to polymerize and crosslink the monomer and form a firm polymer-solvent gel matrix. The solid product may be removed from the mold and heated to first remove the solvent and subsequently remove the polymer, whereafter the product may be sintered.

  10. Shock compaction of molybdenum powder

    NASA Technical Reports Server (NTRS)

    Ahrens, T. J.; Kostka, D.; Vreeland, T., Jr.; Schwarz, R. B.; Kasiraj, P.

    1983-01-01

    Shock recovery experiments which were carried out in the 9 to 12 GPa range on 1.4 distension Mo and appear adequate to compact to full density ( 45 (SIGMA)m) powders were examined. The stress levels, however, are below those calculated to be from 100 to approx. 22 GPa which a frictional heating model predicts are required to consolidate approx. 10 to 50 (SIGMA)m particles. The model predicts that powders that have a distension of m=1.6 shock pressures of 14 to 72 GPa are required to consolidate Mo powders in the 50 to 10 (SIGMA)m range.

  11. Electrostatic dry powder prepregging of carbon fiber

    NASA Technical Reports Server (NTRS)

    Throne, James L.; Sohn, Min-Seok

    1990-01-01

    Ultrafine, 5-10 micron polymer-matrix resin powders are directly applied to carbon fiber tows by passing then in an air or nitrogen stream through an electrostatic potential; the particles thus charged will strongly adhere to grounded carbon fibers, and can be subsequently fused to the fiber in a continuously-fed radiant oven. This electrostatic technique derived significant end-use mechanical property advantages from the obviation of solvents, binders, and other adulterants. Additional matrix resins used to produce prepregs to date have been PMR-15, Torlon 40000, and LaRC TPI.

  12. Laser production of articles from powders

    DOEpatents

    Lewis, Gary K. (Los Alamos, NM); Milewski, John O. (Santa Fe, NM); Cremers, David A. (Los Alamos, NM); Nemec, Ronald B. (White Rock, NM); Barbe, Michael R. (White Rock, NM)

    1998-01-01

    Method and apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. Preferably the tool path and other parameters of the deposition process are established using computer-aided design and manufacturing techniques. A controller comprised of a digital computer directs movement of a deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which a deposition head which delivers the laser beam and powder to the deposition zone moves along the tool path.

  13. Laser production of articles from powders

    DOEpatents

    Lewis, G.K.; Milewski, J.O.; Cremers, D.A.; Nemec, R.B.; Barbe, M.R.

    1998-11-17

    Method and apparatus for forming articles from materials in particulate form in which the materials are melted by a laser beam and deposited at points along a tool path to form an article of the desired shape and dimensions. Preferably the tool path and other parameters of the deposition process are established using computer-aided design and manufacturing techniques. A controller comprised of a digital computer directs movement of a deposition zone along the tool path and provides control signals to adjust apparatus functions, such as the speed at which a deposition head which delivers the laser beam and powder to the deposition zone moves along the tool path. 20 figs.

  14. Ceramic powder for sintering materials

    NASA Technical Reports Server (NTRS)

    Akiya, H.; Saito, A.

    1984-01-01

    Surface activity of ceramic powders such as MgO and Al2O3, for use in sintering with sp. emphasis on their particle size, shape, particle size distribution, packing, and coexisting additives and impurities are reviewed.

  15. Neutron detectors comprising boron powder

    DOEpatents

    Wang, Zhehui; Morris, Christopher; Bacon, Jeffrey Darnell; Makela, Mark F; Spaulding, Randy Jay

    2013-05-21

    High-efficiency neutron detector substrate assemblies comprising a first conductive substrate, wherein a first side of the substrate is in direct contact with a first layer of a powder material comprising .sup.10boron, .sup.10boron carbide or combinations thereof, and wherein a conductive material is in proximity to the first layer of powder material; and processes of making said neutron detector substrate assemblies.

  16. Luminescence of powdered uranium glasses

    NASA Technical Reports Server (NTRS)

    Eubanks, A. G.; Mcgarrity, J. M.; Silverman, J.

    1974-01-01

    Measurement of cathodoluminescence and photoluminescence efficiencies in powdered borosilicate glasses having different particle size and different uranium content. Excitation with 100 to 350 keV electrons and with 253.7 nm light was found to produce identical absolute radiant exitance spectra in powdered samples. The most efficient glass was one containing 29.4 wt% B2O3, 58.8 wt% SiO2, 9.8 wt% Na2O and 2.0 wt% UO2.

  17. Method for Production of Powders

    NASA Technical Reports Server (NTRS)

    Stoltzfus, Joel M. (Inventor); Sircar, Subhasish (Inventor)

    1997-01-01

    Apparatus and method are disclosed for producing oxides of metals and of metal alloys. The metal or alloy is placed in an oxygen atmosphere in a combustion chamber and ignited. Products of the combustion include one or more oxides of the metal or alloy in powdered form. In one embodiment of the invention a feeder is provided whereby material to be oxidized by combustion can be achieved into a combustion chamber continuously. A product remover receives the powder product of the combustion.

  18. Permanent magnet microstructures using dry-pressed magnetic powders

    NASA Astrophysics Data System (ADS)

    Oniku, Ololade D.; Bowers, Benjamin J.; Shetye, Sheetal B.; Wang, Naigang; Arnold, David P.

    2013-07-01

    This paper presents microfabrication methods and performance analysis of bonded powder permanent magnets targeting dimensions ranging from 10 µm to greater than 1 mm. For the structural definition and pattern transfer, a doctor blade technique is used to dry press magnetic powders into pre-etched cavities in a silicon substrate. The powders are secured in the cavities by one of the three methods: capping with a polyimide layer, thermal reflow of intermixed wax-binder particles, or conformal coating with a vapor-deposited parylene-C film. A systematic study of micromagnets fabricated using these methods is conducted using three different types of magnetic powders: 50 µm Nd-Fe-B, 5 µm Nd-Fe-B and 1 µm barium ferrite powder. The isotropic magnets are shown to exhibit intrinsic coercivities (Hci) as high as 720 kA m-1, remanences (Br) up to 0.5 T and maximum energy products (BHmax) up to 30 kJ m-3, depending on the magnetic powder used. Process compatibility experiments demonstrate the potential for the magnets to withstand typical microfabrication chemical exposure and thermal cycles, thereby facilitating their integration into more complex process flows. The remanences are also characterized at elevated temperatures to determine thermal sensitivities and maximum operating temperature ranges.

  19. Formulation of a dry powder influenza vaccine for nasal delivery.

    PubMed

    Garmise, Robert J; Mar, Kevin; Crowder, Timothy M; Hwang, C Robin; Ferriter, Matthew; Huang, Juan; Mikszta, John A; Sullivan, Vincent J; Hickey, Anthony J

    2006-01-01

    The purpose of this research was to prepare a dry powder vaccine formulation containing whole inactivated influenza virus (WIIV) and a mucoadhesive compound suitable for nasal delivery. Powders containing WIIV and either lactose or trehalose were produced by lyophilization. A micro-ball mill was used to reduce the lyophilized cake to sizes suitable for nasal delivery. Chitosan flakes were reduced in size using a cryo-milling technique. Milled powders were sieved between 45 and 125 microm aggregate sizes and characterized for particle size and distribution, morphology, and flow properties. Powders were blended in the micro-ball mill without the ball. Lyophilization followed by milling produced irregularly shaped, polydisperse particles with a median primary particle diameter of approximately 21 microm and a yield of approximately 37% of particles in the 45 to 125 microm particle size range. Flow properties of lactose and trehalose powders after lyophilization followed by milling and sieving were similar. Cryo-milling produced a small yield of particles in the desired size range (<10%). Lyophilization followed by milling and sieving produced particles suitable for nasal delivery with different physicochemical properties as a function of processing conditions and components of the formulation. Further optimization of particle size and morphology is required for these powders to be suitable for clinical evaluation. PMID:16584149

  20. Production of Dry Powder Clots Using Piezoelectric Drop Generator

    SciTech Connect

    Lee, Eric R

    2002-09-05

    We have demonstrated that piezoelectrically driven, squeeze mode, tubular reservoir liquid drop generation, originally developed as a ''drop-on-demand'' method for ejection of microdrops of pure liquid or liquid suspensions of powdered bulk materials, can successfully operate with dry powder. Spherical silver powder with maximum particle diameter of 20 {micro}m (-635 mesh) was loaded into and ejected from a 100 {micro}m orifice glass dropper with flat piezoelectric disk driver. Time of flight experiments were performed to optimize the dropper operation parameters and to determine the size and velocity of the ejected particles. It was found that at certain values of the amplitude, duration, and repetition rate of the voltage pulses applied to the dropper piezoelectric disk, one can produce ejection of powder clots of a stable size, comparable with the dropper orifice diameter. In contrast to the dropper operation with a liquid, in the case of silver powder, a clot is not ejected at each high voltage pulse, but quasi-periodically with an interval corresponding to thousands of pulses. The application of the dry powder clot generation technique for injection of atoms into helium buffer gas at cryogenic temperatures is discussed.

  1. Powder collection apparatus/method

    DOEpatents

    Anderson, Iver E. (Ames, IA); Terpstra, Robert L. (Ames, IA); Moore, Jeffery A. (Ames, IA)

    1994-01-11

    Device for separating and collecting ultrafine atomized powder from the gas stream of a gas atomizing apparatus comprises a housing having an interior wall oriented at an angle relative to horizontal so as to form a downwardly converging, conical expansion chamber, an inlet conduit communicated to the expansion chamber proximate an upper region thereof for receiving the gas stream, and an outlet proximate a lower region of the expansion chamber. The inlet conduit is oriented at a compound inclined angle (with respect to horizontal) selected to promote separation and collection of powder from the gas stream in the expansion chamber. The compound angle comprises a first entrance angle that is greater than the angle of repose of the powder on the housing interior wall such that any powder accumulation in the inlet conduit tends to flow down the wall toward the outlet. The second angle is selected generally equal to the angle of the housing interior wall measured from the same horizontal plane so as to direct the gas stream into the expansion chamber generally tangent to the housing interior wall to establish a downward swirling gas stream flow in the expansion chamber. A powder collection container is communicated to the outlet of the expansion chamber to collect the powder for further processing.

  2. Powder collection apparatus/method

    DOEpatents

    Anderson, I.E.; Terpstra, R.L.; Moore, J.A.

    1994-01-11

    Device for separating and collecting ultrafine atomized powder from the gas stream of a gas atomizing apparatus comprises a housing having an interior wall oriented at an angle relative to horizontal so as to form a downwardly converging, conical expansion chamber, an inlet conduit communicated to the expansion chamber proximate an upper region thereof for receiving the gas stream, and an outlet proximate a lower region of the expansion chamber. The inlet conduit is oriented at a compound inclined angle (with respect to horizontal) selected to promote separation and collection of powder from the gas stream in the expansion chamber. The compound angle comprises a first entrance angle that is greater than the angle of repose of the powder on the housing interior wall such that any powder accumulation in the inlet conduit tends to flow down the wall toward the outlet. The second angle is selected generally equal to the angle of the housing interior wall measured from the same horizontal plane so as to direct the gas stream into the expansion chamber generally tangent to the housing interior wall to establish a downward swirling gas stream flow in the expansion chamber. A powder collection container is communicated to the outlet of the expansion chamber to collect the powder for further processing. 4 figures.

  3. Advances in powder metallurgy; Proceedings of the 1989 Powder Metallurgy Conference and Exhibition, San Diego, CA, June 11-14, 1989. Volumes 1, 2, 3

    SciTech Connect

    Gasbarre, T.G.; Jandeska, W.F. Jr.

    1989-01-01

    Recent advances in powder-metallurgy (PM) techniques and the applications of PM materials are discussed in reviews and reports. Sections are devoted to blending technologies, compressibility, compaction processes, enhanced sintering, high-temperature sintering, postsinter heat treatment, powder forging, alloy development, mechanical properties, PM testing and characterization, statistical process control, powder production techniques, and spray forming. Consideration is given to Al and Cu alloys, stainless and tool steels, heavy metals, high-performance materials, superconductors and magnetic materials, metal injection molding, and PM aerospace materials. Extensive diagrams, drawings, graphs, micrographs, and tables of numerical data are provided.

  4. Synthesis of Calcium HydroxyapatiteTricalcium Phosphate (HATCP) Composite Bioceramic Powders and Their Sintering Behavior

    E-print Network

    Tas, A. Cuneyt

    homogeneous, and high- purity ceramic powders by using a novel, one-step chemical precipitation techniqueSynthesis of Calcium Hydroxyapatite­Tricalcium Phosphate (HA­TCP) Composite Bioceramic Powders, Middle East Technical University, Ankara 06531, Turkey Composite (biphasic) mixtures of two of the most

  5. Thermal behavior of supersolidus bronze powder compacts during heating by hollow cathode discharge

    E-print Network

    dos Santos, C.A.

    Science B.V. Keywords: Supersolidus powder; AluminumÁ/bronze; Hollow cathode; Plasma heating 1Thermal behavior of supersolidus bronze powder compacts during heating by hollow cathode discharge were heated either by plasma or by a resistive furnace technique. The plasma heating was performed

  6. Plasma-chemical method for producing metal oxide powders and their application

    NASA Astrophysics Data System (ADS)

    Zhukov, I.; Vorozhtsov, S.; Promakhov, V.; Bondarchuk, I.; Zhukov, A.; Vorozhtsov, A.

    2015-11-01

    Structure and properties of ZrO2 and Al2O3 powders produced using plasma chemical technique were studied in the framework of this research. Obtained Al2O3 powder was used for reinforcement of Al alloy. Improvement of mechanical properties of Al alloy associated with introduction of alumina particles into the melt was demonstrated.

  7. Ceramic oxide powders and the formation thereof

    DOEpatents

    Katz, J.L.; Chenghung Hung.

    1993-12-07

    Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions. 14 figures.

  8. Ceramic oxide powders and the formation thereof

    DOEpatents

    Katz, Joseph L. (Baltimore, MD); Hung, Cheng-Hung (Baltimore, MD)

    1993-01-01

    Ceramic oxide powders and a method for their preparation. Ceramic oxide powders are obtained using a flame process whereby two or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein said precursors are converted into ceramic oxide powders. The morphology, particle size, and crystalline form of the ceramic oxide powders are determined by process conditions.

  9. 30 CFR 57.6901 - Black powder.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...6901 Black powder. (a) Black powder shall be used for...stone. (b) Containers of black powder shall be— (1) Nonsparking...of this section. (c) Black powder shall be transferred...damaged explosives. (f) Holes shall not be reloaded for...

  10. 30 CFR 57.6901 - Black powder.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...6901 Black powder. (a) Black powder shall be used for...stone. (b) Containers of black powder shall be— (1) Nonsparking...of this section. (c) Black powder shall be transferred...damaged explosives. (f) Holes shall not be reloaded for...

  11. 30 CFR 56.6901 - Black powder.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...6901 Black powder. (a) Black powder shall be used for...stone. (b) Containers of black powder shall be— (1) Nonsparking...of this section. (c) Black powder shall be transferred...damaged explosives. (f) Holes shall not be reloaded for...

  12. 30 CFR 57.6901 - Black powder.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...6901 Black powder. (a) Black powder shall be used for...stone. (b) Containers of black powder shall be— (1) Nonsparking...of this section. (c) Black powder shall be transferred...damaged explosives. (f) Holes shall not be reloaded for...

  13. 30 CFR 56.6901 - Black powder.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...6901 Black powder. (a) Black powder shall be used for...stone. (b) Containers of black powder shall be— (1) Nonsparking...of this section. (c) Black powder shall be transferred...damaged explosives. (f) Holes shall not be reloaded for...

  14. 30 CFR 56.6901 - Black powder.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...6901 Black powder. (a) Black powder shall be used for...stone. (b) Containers of black powder shall be— (1) Nonsparking...of this section. (c) Black powder shall be transferred...damaged explosives. (f) Holes shall not be reloaded for...

  15. 30 CFR 56.6901 - Black powder.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Black powder. 56.6901 Section 56.6901 Mineral....6901 Black powder. (a) Black powder shall be used for blasting only when a desired result cannot be...) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally enclosed cargo space while...

  16. 30 CFR 57.6901 - Black powder.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Black powder. 57.6901 Section 57.6901 Mineral...-Surface and Underground § 57.6901 Black powder. (a) Black powder shall be used for blasting only when a... dimension stone. (b) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally...

  17. 30 CFR 57.6901 - Black powder.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Black powder. 57.6901 Section 57.6901 Mineral...-Surface and Underground § 57.6901 Black powder. (a) Black powder shall be used for blasting only when a... dimension stone. (b) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally...

  18. 30 CFR 56.6901 - Black powder.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Black powder. 56.6901 Section 56.6901 Mineral....6901 Black powder. (a) Black powder shall be used for blasting only when a desired result cannot be...) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally enclosed cargo space while...

  19. 30 CFR 56.6901 - Black powder.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Black powder. 56.6901 Section 56.6901 Mineral....6901 Black powder. (a) Black powder shall be used for blasting only when a desired result cannot be...) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally enclosed cargo space while...

  20. 30 CFR 57.6901 - Black powder.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Black powder. 57.6901 Section 57.6901 Mineral...-Surface and Underground § 57.6901 Black powder. (a) Black powder shall be used for blasting only when a... dimension stone. (b) Containers of black powder shall be— (1) Nonsparking; (2) Kept in a totally...

  1. NanoComposite Stainless Steel Powder Technologies

    SciTech Connect

    DeHoff, R.; Glasgow, C.

    2012-07-25

    Oak Ridge National Laboratory has been investigating a new class of Fe-based amorphous material stemming from a DARPA, Defense Advanced Research Projects Agency initiative in structural amorphous metals. Further engineering of the original SAM materials such as chemistry modifications and manufacturing processes, has led to the development of a class of Fe based amorphous materials that upon processing, devitrify into a nearly homogeneous distribution of nano sized complex metal carbides and borides. The powder material is produced through the gas atomization process and subsequently utilized by several methods; laser fusing as a coating to existing components or bulk consolidated into new components through various powder metallurgy techniques (vacuum hot pressing, Dynaforge, and hot isostatic pressing). The unique fine scale distribution of microstructural features yields a material with high hardness and wear resistance compared to material produced through conventional processing techniques such as casting while maintaining adequate fracture toughness. Several compositions have been examined including those specifically designed for high hardness and wear resistance and a composition specifically tailored to devitrify into an austenitic matrix (similar to a stainless steel) which poses improved corrosion behavior.

  2. Developments in Die Pressing Strategies for Low-Cost Titanium Powders

    SciTech Connect

    Hovanski, Yuri; Weil, K. Scott; Lavender, Curt A.

    2009-05-01

    Recent developments in the production of low-cost titanium powders have rejuvenated interest in manufacturing titanium powder metallurgy components by direct press and sinter techniques. However excessive friction typically observed during titanium powder pressing operations leads to numerous problems ranging from non-homogeneous green densities of the compacted powder to excessive part ejection forces and reduced die life due to wear and galling. An instrumented double-acting die press was developed to both investigate the mechanics of titanium powder pressing (particularly for the new low-cost powder morphologies) and to screen potential lubricants that could reduce frictional effects. As will be discussed, the instrument was used to determine friction coefficients and to evaluate a number of candidate lubricants. These results were then used to optimize the lubricant system to reduce die-wall stresses and improve part density uniformity.

  3. Effect of decellularized tissue powders on a rat model of acute myocardial infarction.

    PubMed

    Tabuchi, Masaki; Negishi, Jun; Yamashita, Akitatsu; Higami, Tetsuya; Kishida, Akio; Funamoto, Seiichi

    2015-11-01

    Many research groups are currently investigating new treatment modalities for myocardial infarction. Numerous aspects need to be considered for the clinical application of these therapies, such as low cell integration and engraftment rates of cell injection techniques. Decellularized tissues are considered good materials for promoting regeneration of traumatic tissues. The properties of the decellularized tissues are sustained after processing to powder form. In this study, we examined the use of decellularized tissue powder in a rat model of acute myocardial infarction. The decellularized tissue powders, especially liver powder, promoted cell integration and neovascularization both in vitro and in vivo. Decellularized liver powder induced neovascularization in the infarct area, resulting in the suppression of myocardial necrosis. The results of this study suggest that decellularized liver powder has good potential for application as a blood supply material for the treatment of myocardial infarction. PMID:26249619

  4. NON-MELT PROCESSING OF "LOW-COST", ARMSTRONG TITANIUM AND TITANIUM ALLOY POWDERS

    SciTech Connect

    Peter, William H; Blue, Craig A; Clive, Scorey; Ernst, Bill; McKernan, John; Kiggans, Jim; Rivard, John D; Yu, Dr. Charlie

    2007-01-01

    In the last decade, a considerable effort has been made to develop new methods for producing low cost titanium and titanium powders. The Armstrong process is a new method of producing titanium powder via reducing TiCl4 vapor in molten sodium. The process is scalable, and can be used to produce pre-alloyed powders. Non-melt processing and powder metallurgy approaches are economically viable with the commercially pure powders. In this investigation, several non-melt processing technologies, including vacuum hot pressing, extrusion, roll compaction, and forging techniques, will be evaluated using the Armstrong titanium powders. The metallurgical, chemical, and mechanical properties of the processed titanium samples will be discussed.

  5. Studies of microstructural imperfections of powdered Zirconium-based alloys

    SciTech Connect

    Chowdhury, P.S.; Mukherjee, P.

    2010-11-15

    Different model based approaches of X-ray diffraction line profile analysis have been applied on the heavily deformed zirconium-based alloys in the powdered form to characterize the microstructural parameters like domain size, microstrain and dislocation density. In characterizing the microstructure of the material, these methods are complimentary to each other. Though the parameters obtained by different techniques are differently defined and thus not necessarily comparable, the values of domain size and microstrain obtained from the different techniques show similar trends.

  6. Oxide-dispersion strengthening of porous powder metalurgy parts

    DOEpatents

    Judkins, Roddie R. (Knoxville, TN)

    2002-01-01

    Oxide dispersion strengthening of porous metal articles includes the incorporation of dispersoids of metallic oxides in elemental metal powder particles. Porous metal articles, such as filters, are fabricated using conventional techniques (extrusion, casting, isostatic pressing, etc.) of forming followed by sintering and heat treatments that induce recrystallization and grain growth within powder grains and across the sintered grain contact points. The result is so-called "oxide dispersion strengthening" which imparts, especially, large increases in creep (deformation under constant load) strength to the metal articles.

  7. Ceramics in gas turbine: Powder and process characterization

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1977-01-01

    Some of the intrinsic properties of various forms of Si3N4 and SiC are listed and limitations of such materials' availability are pointed out. The essential features/parameters to characterize a batch of powder are discussed including the standard techniques for such characterization. In process characterization, parameters in sintering, reaction sintering, and hot pressing processes are discussed including the factors responsible for strength limitations in ceramic bodies. Significant improvements in material properties can be achieved by reducing or eliminating the strength limiting factors with consistent powder and process characterization along with process control.

  8. Chemical Synthesis of Pure and Gd-doped CaZrO3 Powders

    E-print Network

    Tas, A. Cuneyt

    in the presence of EDTA by the technique of acid-base titration. Sample characterization was performed by powder. The dramatic response to methane, however, makes CaZrO3 a potential candi- date material for hydrocarbon

  9. Waterproof Anti-Explosive Powders for Coal Mines

    NASA Astrophysics Data System (ADS)

    Buczek, Bronis?aw; Vogt, El?bieta

    2014-03-01

    Limestone powder characterized by hydrophobic properties is used as an anti-explosive agent in coal mining industry. Unfortunately, the standard method of producing such powder by milling limestone with stearic acid is practically unprofitable in many modernized quarries and plants, and sometimes literally impossible due to the introduction of technological changes and implementation of modern mills. Then new methods of hydrophobization of limestone surfaces ought be searched. In the work two methods hydrophobization: from the stearic acid vapour phase and from silicone solutions are proposed. Lime dust from the Czatkowice Quarry of Lime was used as a raw material during investigations. It is a good agent for research because it is possible to compare the properties of samples modified in this work to the properties of anti-explosive lime powder (Polish Standard, 1994) used in mining industry in Poland. The first technique of limestone powder hydrophobization was carried out in an apparatus of own design (Vogt, 2008, 2011), and it consisted in free sedimentation of the powder layer dispersed by stearic acid vapour in powder counter current flow. The second way of modification consisted in mixing in the evaporating dish substrates: limestone powder and dope - silicone solution - Sarsil® H-15 (Vogt & Opali?ski, 2009; Vogt & Ho?ownia, 2010). Evaluation of properties so-obtained waterproof powders was carried out according to the Polish Standard, as well as using original powder determination ways, with the Powder Characteristic Tester (Index tables, Tablets & Capsules, 2005). Moreover water vapour adsorption isotherms were obtained and the thermal decomposition of powder was made. All modified samples acquired the hydrophobic character. Therefore we can state that the both proposed methods of hydrophobization of the limestone powder are useful. The parameters obtained with the use of Powder Characteristics Tester enable us to make a characterization of limestone properties not only as a water resistant material but also from the cohesion point of view. On the base of TG, DTG or DTA and EGA curves for all investigated materials was stated that the character of the thermal decomposition of modified samples is the same as this one for raw powder, what is profitable for application of hydrophobized powders as an anti-explosive agent. W górnictwie w?gla kamiennego u?ywany jest hydrofobowy py? wapienny jako substancja stosowana w systemie zabezpiecze? przeciwwybuchowych (Cybulski, 2004). Niestety, dotychczasowy sposób wy- twarzania takiego produktu polegaj?cy na wspó?mieleniu kamienia wapiennego z kwasem stearynowym staje si? praktycznie niemo?liwy do stosowania w nowoczesnych zak?adach np. kamienio?omy. Sytuacja taka jest wynikiem wprowadzania zmian technologicznych, g?ównie zwi?zanych z wymian? starych konstrukcji m?ynów na nowe urz?dzenia. Tym samym istnieje potrzeba poszukiwania nowych metod hydrofobizacji powierzchni py?ów wapiennych. W pracy omówiono dwie nowe metody hydrofobizacji py?u wapiennego: za pomoc? par kwasu stearynowego oraz roztworu silikonowego - Sarsil® H-15. Podczas bada? u?ywano surowego py?u wapiennego pochodz?cego z Kopalni Kamienia Wapiennego w Czatkowicach. Materia? ten jest dobrym materia?em do bada? gdy? istnieje mo?liwo?? porównywania w?a?ciwo?ci materia?ów hydrofobowych otrzymanych w pracy z w?a?ciwo?ciami handlowego py?u przeciwwybuchowego (Polska Norma, 1994), u?ywanego w polskich kopalniach. Pierwszy sposób hydrofobizacji py?u wapiennego, polegaj?cy na swobodnym opadaniu py?u wapiennego w oparach kwasu stearynowego przep?ywaj?cych w przeciwpr?dzie, przeprowadzono w aparacie w?asnej konstrukcji (Vogt, 2008, 2011). Aparat gwarantuje dobry kontakt modyfikatora z ziarnami py?u. Py? opadaj?c, nie napotyka ?adnych przeszkód ulega? rozproszeniu, a wprowadzony w stanie parowym kwas stearynowy mo?e swobodnie osiada? na jego powierzchni zewn?trznej oraz penetrowa? w g??b porów, blokuj?c je dla wilgoci. Drugi sposób hydrofo

  10. Direct laser powder deposition - 'State of the Art'

    SciTech Connect

    Sears, J.W.

    1999-11-01

    Recent developments on Laser Cladding and Rapid Prototyping have led to Solid Freeform Fabrication (SFF) technologies that produce net shape metal components by laser fusion of metal powder alloys. These processes are known by various names such as Directed Light Fabrication (DLF{trademark}), Laser Engineered Net Shaping (LENS{trademark}), and Direct Metal Deposition (DMD{trademark}) to name a few. These types of processes can be referred to as direct laser powder deposition (DLPD). DLPD involves fusing metal alloy powders in the focal point of a laser (or lasers) that is (are) being controlled by Computer Aided Design-Computer Aided Manufacturing (CAD-CAM) technology. DLPD technology has the capability to produce fully dense components with little need for subsequent processing. Research and development of DLPD is being conducted throughout the world. The list of facilities conducting work in this area continues to grow (over 25 identified in North America alone). Selective Laser Sintering (SLS{trademark}) is another type of SFF technology based on laser fusion of powder. The SLS technology was developed as a rapid prototyping technique, whereas DLPD is an extension of the laser cladding technology. Most of the effort in SLS has been directed towards plastics and ceramics. In SLS, the powder is pre-placed by rolling out a layer for each laser pass. The computer control selects where in the layer the powder will be sintered by the laser. Sequential layers are sintered similarly forming a shape. In DLPD, powder is fed directly into a molten metal pool formed at the focal point of the laser where it is melted. As the laser moves on the material it rapidly resolidifies to form a shape. This talk elaborates on the state of these developments.

  11. Ceramics in gas turbines - Powder and process characterization

    NASA Technical Reports Server (NTRS)

    Dutta, S.

    1977-01-01

    The role of powder and process characterization in producing high quality silicon nitride and silicon carbide components, for gas turbine applications, is described. Some of the intrinsic properties of various forms of Si3N4 and SiC are listed and limitations of such materials' availability have been pointed out. The essential features/parameters to characterize a batch of powder have been discussed including the standard techniques for such characterization. In process characterization, parameters in sintering, reaction sintering, and hot pressing processes are discussed including the factors responsible for strength limitations in ceramic bodies. It is inevitable that significant improvements in material properties can be achieved by reducing or eliminating the strength limiting factors with consistent powder and process characterization along with process control.

  12. Investigations of Light Transfer in Powder Bed

    NASA Astrophysics Data System (ADS)

    Yuri, Chivel

    At selective laser sintering / melting of powder bodies by laser irradiation it is very important to determine the actual energy deposited in a layer of powder and its distribution over the thickness of the powder bed. By varying the thickness of the powder bed the distribution of absorbed energy over the thickness of the powder bed has been determined. The modeling of sintering of the powder bed from two layers of spherical metal particles in pulse mode of operation validate the efficiency of the method of sintering, the essence of which is the directional focusing of laser radiation to the space between the particles of upper layer under appropriate focus spot dimension.

  13. Optimisation of powders for pulmonary delivery using supercritical fluid technology.

    PubMed

    Rehman, Mahboob; Shekunov, Boris Y; York, Peter; Lechuga-Ballesteros, David; Miller, Danforth P; Tan, Trixie; Colthorpe, Paul

    2004-05-01

    Supercritical fluid technology exploited in this work afforded single-step production of respirable particles of terbutaline sulphate (TBS). Different crystal forms of TBS were produced consistently, including two polymorphs, a stoichiometric monohydrate and amorphous material as well as particles with different degrees of crystallinity, size, and morphology. Different solid-state and surface characterisation techniques were applied in conjunction with measurements of powder flow properties using AeroFlow device and aerosol performance by Andersen Cascade Impactor tests. Improved fine particle fraction (FPF) was demonstrated for some powders produced by the SCF process when compared to the micronised material. Such enhanced flow properties and dispersion correlated well with the reduced surface energy parameters demonstrated by these powders. It is shown that semi-crystalline particles exhibited lower specific surface energy leading to a better performance in the powder flow and aerosol tests than crystalline materials. This difference of the surface and bulk crystal structure for selected powder batches is explained by the mechanism of precipitation in SCF which can lead to surface conditioning of particles produced. PMID:15113578

  14. Effect of IN718 Recycled Powder Reuse on Properties of Parts Manufactured by Means of Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Ardila, L. C.; Garciandia, F.; González-Díaz, J. B.; Álvarez, P.; Echeverria, A.; Petite, M. M.; Deffley, R.; Ochoa, J.

    Powder quality control is essential to obtain parts with suitable mechanical properties in Selective Laser Melting manufacturing technique. One of the most important advantages of suchtechnique is that it allows an efficient use of the material, due to the possibility to recycle and reuse un-melted powder. Nevertheless, powder material properties may change due to repeated recycling, affecting this way the mechanicalbehavior of parts. In this paper the effect of powder reuse on its quality and on the mechanical properties of the resulting melted parts is studied via self-developed recycling methodology. The material considered for investigation was IN718, a nickel superalloy widely used in industry. After recycling powder up to 14 times, no significant changes were observed in powder and test parts properties. The results obtained in this work will help to validate powder recycling methodology for its use in current industrial Selective Laser Melting manufacturing.

  15. Advanced composites take a powder

    SciTech Connect

    Holty, D.W. )

    1993-06-01

    To a professional chemist with more than 25 years of industrial experience, the world of advanced composites is a fascinating new venue. Here resins and fibers come together in a completely synergistic partnership, achieving marvels of strength and light weight that make advanced composite materials virtually the only solution for challenging applications. In the late 1980s, Professor John Muzzy of the Georgia Institute of Technology, was intrigued by the physical properties of thermoplastics, and he developed a new way to bring the thermoplastic resins together with high-performance fibers. As part of the work Muzzy did with Lockheed and NASA he demonstrated that electrostatic powder coating was an attractive new method for combining thermoplastic resins with reinforcing fibers. Presentation of this work by Lockheed at a government-industry conference led to a new project for Muzzy, sponsored by NASA Langley. Powder prepregging proved to be the attractive alternative that NASA was looking for. While working on powder prepregging with LaRC-TPI, Muzzy and his colleagues developed methods for exposing all of the fibers to the powder to improve the distribution of the resin on the tow, a continuous bundle of filaments. Optimal resin distribution was achieved by spreading the moving tow. A very flexible towpreg was produced by maintaining the spread tow through the powder coating chamber and into the oven, where the resin particles were fused to the individual filaments. Muzzy's invention has enabled Custom Composite Materials, Inc. to offer resin/fiber combinations based on thermoplastic resins such as nylon and polypropylene. Beyond the expected advantages over epoxy thermoset systems, they are beginning to exploit a fundamental property of thermoplastic resins: viscoelasticity, which can be defined as the resistance to flow as a function of applied stress. Thermoplastics have a much higher viscoelasticity than thermosets.

  16. Polymer quenched prealloyed metal powder

    DOEpatents

    Hajaligol, Mohammad R. (Midlothian, VA); Fleischhauer, Grier (Midlothian, VA); German, Randall M. (State College, PA)

    2001-01-01

    A powder metallurgical process of preparing a sheet from a powder having an intermetallic alloy composition such as an iron, nickel or titanium aluminide. The sheet can be manufactured into electrical resistance heating elements having improved room temperature ductility, electrical resistivity, cyclic fatigue resistance, high temperature oxidation resistance, low and high temperature strength, and/or resistance to high temperature sagging. The iron aluminide has an entirely ferritic microstructure which is free of austenite and can include, in weight %, 4 to 32% Al, and optional additions such as .ltoreq.1% Cr, .gtoreq.0.05% Zr .ltoreq.2% Ti, .ltoreq.2% Mo, .ltoreq.1% Ni, .ltoreq.0.75% C, .ltoreq.0.1% B, .ltoreq.1% submicron oxide particles and/or electrically insulating or electrically conductive covalent ceramic particles, .ltoreq.1% rare earth metal, and/or .ltoreq.3 % Cu. The process includes forming a non-densified metal sheet by consolidating a powder having an intermetallic alloy composition such as by roll compaction, tape casting or plasma spraying, forming a cold rolled sheet by cold rolling the non-densified metal sheet so as to increase the density and reduce the thickness thereof and annealing the cold rolled sheet. The powder can be a water, polymer or gas atomized powder which is subjecting to sieving and/or blending with a binder prior to the consolidation step. After the consolidation step, the sheet can be partially sintered. The cold rolling and/or annealing steps can be repeated to achieve the desired sheet thickness and properties. The annealing can be carried out in a vacuum furnace with a vacuum or inert atmosphere. During final annealing, the cold rolled sheet recrystallizes to an average grain size of about 10 to 30 .mu.m. Final stress relief annealing can be carried out in the B2 phase temperature range.

  17. Intradermal needle-free powdered drug injection

    E-print Network

    Liu, John (John Hsiao-Yung)

    2012-01-01

    This thesis presents a new method for needle-free powdered drug injection. The design, construction, and testing of a bench-top helium-powered device capable of delivering powder to controllable depths within the dermis ...

  18. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity...Copper powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye,...

  19. 21 CFR 73.2646 - Bronze powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2646 Bronze powder. (a) Identity...Bronze powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye,...

  20. 21 CFR 73.2646 - Bronze powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2646 Bronze powder. (a) Identity...Bronze powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye,...

  1. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity...Copper powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye,...

  2. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity...Copper powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye,...

  3. 21 CFR 73.2646 - Bronze powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2646 Bronze powder. (a) Identity...Bronze powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye,...

  4. 21 CFR 73.2646 - Bronze powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2646 Bronze powder. (a) Identity...Bronze powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye,...

  5. Method for synthesizing ultrafine powder materials

    DOEpatents

    Buss, Richard J. (Albuquerque, NM); Ho, Pauline (Albuquerque, NM)

    1988-01-01

    A method for synthesizing ultrafine powder materials, for example, ceramic and metal powders, comprises admitting gaseous reactants from which the powder material is to be formed into a vacuum reaction chamber maintained at a pressure less than atmospheric and at a temperature less than about 400.degree. K. (127.degree.C.). The gaseous reactants are directed through a glow discharge provided in the vacuum reaction chamber to form the ultrafine powder material.

  6. Chemical and Physical Properties of Tantalum Powder

    NASA Astrophysics Data System (ADS)

    Purushotham, Y.; Balaji, T.; Kumar, Arbind; Govindaiah, R.; Sharma, M. K.; Sethi, V. C.; Prakash, T. L.

    The present work is intended to produce capacitor grade Tantalum powder by sodium reduction of potassium tantalum fluoride prepared from an indigenous ore source. The powder has been characterized for its chemical and physical properties, and compared with the commercially available powders. It is found that indigenous powder has higher impurity levels which could, however, be reduced to acceptance limits. The average particle size is within the prescribed limits.

  7. Container Prevents Oxidation Of Metal Powder

    NASA Technical Reports Server (NTRS)

    Woodford, William H.; Power, Christopher A.; Mckechnie, Timothy N.; Burns, David H.

    1992-01-01

    Sealed high-vacuum container holds metal powder required free of contamination by oxygen from point of manufacture to point of use at vacuum-plasma-spraying machine. Container protects powder from air during filling, storage, and loading of spraying machine. Eliminates unnecessary handling and transfer of powder from one container to another. Stainless-steel container sits on powder feeder of vacuum-plasma-spraying machine.

  8. Structural Color Painting by Rubbing Particle Powder

    PubMed Central

    Park, ChooJin; Koh, Kunsuk; Jeong, Unyong

    2015-01-01

    Structural colors originate from purely physical structures. Scientists have been inspired to mimic the structures found in nature, the realization of these structures still presents a great challenge. We have recently introduced unidirectional rubbing of a dry particle powder on a rubbery surface as a quick, highly reproducible means to fabricate a single crystal monolayer assembly of particles over an unlimited area. This study extends the particle-rubbing process to a novel fine-art painting, structural color painting (SCP). SCP is based on structural coloring with varying iridescence according to the crystal orientation, as controlled by the rubbing direction. This painting technique can be applied on curved surfaces, which enriches the objects to be painted and helps the painter mimic the structures found in nature. It also allows for quick fabrication of complicated particle-assembly patterns, which enables replication of paintings. PMID:25661669

  9. 21 CFR 73.1646 - Bronze powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Bronze powder. 73.1646 Section 73.1646 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1646 Bronze powder. (a) Identity. (1) The color additive bronze powder is a very fine metallic...

  10. 21 CFR 73.1646 - Bronze powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Bronze powder. 73.1646 Section 73.1646 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1646 Bronze powder. (a) Identity. (1) The color additive bronze powder is a very fine metallic...

  11. 21 CFR 73.1646 - Bronze powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Bronze powder. 73.1646 Section 73.1646 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1646 Bronze powder. (a) Identity. (1) The color additive bronze powder is a very fine metallic...

  12. 21 CFR 73.1646 - Bronze powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Bronze powder. 73.1646 Section 73.1646 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1646 Bronze powder. (a) Identity. (1) The color additive bronze powder is a very fine metallic...

  13. 21 CFR 169.179 - Vanilla powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... specified name of the food is “Vanilla powder _-fold” or “_-fold vanilla powder”, except that if sugar is... the name is filled in with the whole number (disregarding fractions) expressing the number of units of...-fold, the term “_-fold” is omitted from the name. (2) The label of vanilla powder shall bear the...

  14. 21 CFR 169.179 - Vanilla powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... specified name of the food is “Vanilla powder _-fold” or “_-fold vanilla powder”, except that if sugar is... the name is filled in with the whole number (disregarding fractions) expressing the number of units of...-fold, the term “_-fold” is omitted from the name. (2) The label of vanilla powder shall bear the...

  15. 30 CFR 56.6901 - Black powder.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Black powder. 56.6901 Section 56.6901 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives General Requirements § 56.6901 Black powder. (a) Black powder...

  16. 30 CFR 56.6901 - Black powder.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Black powder. 56.6901 Section 56.6901 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives General Requirements § 56.6901 Black powder. (a) Black powder...

  17. Numerical Simulation of Aerated Powder Consolidation1

    E-print Network

    properties. Over time the excess air diffuses through the powder and eventually escapes through the top discharge from a hopper of a fine powder at a much greater rate than that of the flow of ordinary granularNumerical Simulation of Aerated Powder Consolidation1 Kristy A. Coffey and Pierre A. Gremaud

  18. Numerical Simulation of Aerated Powder Consolidation 1

    E-print Network

    properties. Over time the excess air diffuses through the powder and eventually escapes through the top discharge from a hopper of a fine powder at a much greater rate than that of the flow of ordinary granularNumerical Simulation of Aerated Powder Consolidation 1 Kristy A. Coffey and Pierre A. Gremaud

  19. 30 CFR 56.6901 - Black powder.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1 2010-07-01 2010-07-01 false Black powder. 56.6901 Section 56.6901 Mineral Resources...Explosives General Requirements § 56.6901 Black powder. (a) Black powder shall be used for blasting only when a...

  20. 30 CFR 57.6901 - Black powder.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1 2011-07-01 2011-07-01 false Black powder. 57.6901 Section 57.6901 Mineral Resources...Requirements-Surface and Underground § 57.6901 Black powder. (a) Black powder shall be used for blasting only when a...

  1. 30 CFR 57.6901 - Black powder.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 1 2010-07-01 2010-07-01 false Black powder. 57.6901 Section 57.6901 Mineral Resources...Requirements-Surface and Underground § 57.6901 Black powder. (a) Black powder shall be used for blasting only when a...

  2. 30 CFR 56.6901 - Black powder.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 1 2011-07-01 2011-07-01 false Black powder. 56.6901 Section 56.6901 Mineral Resources...Explosives General Requirements § 56.6901 Black powder. (a) Black powder shall be used for blasting only when a...

  3. 21 CFR 73.1646 - Bronze powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Bronze powder. 73.1646 Section 73.1646 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1646 Bronze powder. (a) Identity. (1) The color additive bronze powder is a very fine metallic...

  4. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Buffered penicillin powder, penicillin powder with... FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered aqueous diluent. (a) Specifications. When reconstituted, each milliliter contains penicillin G procaine...

  5. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Buffered penicillin powder, penicillin powder with... FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered aqueous diluent. (a) Specifications. When reconstituted, each milliliter contains penicillin G procaine...

  6. 21 CFR 520.1696a - Buffered penicillin powder, penicillin powder with buffered aqueous diluent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Buffered penicillin powder, penicillin powder with... FORM NEW ANIMAL DRUGS § 520.1696a Buffered penicillin powder, penicillin powder with buffered aqueous diluent. (a) Specifications. When reconstituted, each milliliter contains penicillin G procaine...

  7. 2013 Hosokawa Powder Technology Foundation KONA Powder and Particle Journal No.30 (2013)

    E-print Network

    Luding, Stefan

    2013-01-01

    powder flow in many other experimental devices. The qualitative phenomenology presented here is expected84 2013 Hosokawa Powder Technology Foundation KONA Powder and Particle Journal No.30 (2013 at the quantitative modeling of more realistic frictional, cohesive powders. Seemingly unrealistic materials are used

  8. Particle adhesion in powder coating

    SciTech Connect

    Mazumder, M.K.; Wankum, D.L.; Knutson, M.; Williams, S.; Banerjee, S.

    1996-12-31

    Electrostatic powder coating is a widely used industrial painting process. It has three major advantages: (1) it provides high quality durable finish, (2) the process is environmentally friendly and does not require the use of organic solvents, and (3) it is economically competitive. The adhesion of electrostatically deposited polymer paint particles on the grounded conducting substrate depends upon many parameters: (a) particle size and shape distributions, (b) electrostatic charge distributions, (c) electrical resistivity, (d) dielectric strength of the particles, (e) thickness of the powder film, (f) presence and severity of the back corona, and (g) the conductivity and surface properties of the substrate. The authors present a model on the forces of deposition and adhesion of corona charged particles on conducting substrates.

  9. Mesoscale Simulations of Powder Compaction

    NASA Astrophysics Data System (ADS)

    Lomov, Ilya.; Fujino, Don; Antoun, Tarabay; Liu, Benjamin

    2009-12-01

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  10. MESOSCALE SIMULATIONS OF POWDER COMPACTION

    SciTech Connect

    Lomov, Ilya; Fujino, Don; Antoun, Tarabay; Liu, Benjamin

    2009-12-28

    Mesoscale 3D simulations of shock compaction of metal and ceramic powders have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating a well-characterized shock compaction experiment of a porous ductile metal. Simulation results using the Steinberg material model and handbook values for solid 2024 aluminum showed good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not as well studied as metals, so a simple material model for solid ceramic (tungsten carbide) has been calibrated to match experimental compaction curves. Direct simulations of gas gun experiments with ceramic powders have been performed and showed good agreement with experimental data. The numerical shock wave profile has same character and thickness as that measured experimentally using VISAR. The numerical results show reshock states above the single-shock Hugoniot line as observed in experiments. We found that for good quantitative agreement with experiments 3D simulations are essential.

  11. Compositionally continuously graded cathode layers of (Ba0.5Sr0.5)(Fe0.91Al0.09)O3-?-Gd0.1Ce0.9O2 by wet powder spraying technique for solid oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Jiang, Taizhi; Wang, Zhenhua; Ren, Baiyu; Qiao, Jinshuo; Sun, Wang; Sun, Kening

    2014-02-01

    Compositionally continuously graded cathode layers (CGCLs) of (Ba0.5Sr0.5)(Fe0.91Al0.09)O3-?-Gd0.1Ce0.9O2 (BSFA-GDC) have been constructed by a handy and effective technique called wet powder spraying (WPS). CGCLs exhibit similar thermal expansion coefficient (TEC) value between adjacent thin layers. The continuously graded structure and the well-distributed components of BSFA-GDC cathode are confirmed by morphological characterization with scanning electron microscopy (SEM), and by compositional analysis with energy dispersion X-ray spectrometer (EDS), respectively. The polarization resistance (Rp) of CGCLs with three different thicknesses is investigated by electrochemical impedance spectra (EIS). The EIS results show that CGCLs with a moderate thickness of 20 ?m achieve the lowest Rp of 0.301 ? cm2 at 800 °C. In addition, anode-supported single cells with the configuration of NiO-YSZ/YSZ/GDC/BSFA-GDC have been fabricated and tested. The cell with the CGCLs thickness of 20 ?m reaches the highest output power density of 848 mW cm-2 at 800 °C.

  12. Preliminary attempt at sintering an ultrafine alumina powder using microwaves. Master's thesis

    SciTech Connect

    Alhambra, E.M.

    1994-09-01

    A commercially available microwave oven was used to sinter ultrafine alumina powders (0.02 - 0.05 micrometers particle size) with and without CaO sintering aid. The oven was modified by inserting a thermocouple probe through the bottom housing, and thoroughly insulating the interior with insulating material. The oven was placed in a glove box and filled with argon to prevent degradation of the thermocouple, and oxidation of the powdered graphite susceptor. Heating rates of 50-75 Deg C/sec with a maximum temperature of 1575 Deg C were obtained. Limited success in sintering of the the powder compacts was achieved in this preliminary effort. The microstructures of the sintered products were examined by scanning electron microscopy. It was concluded that further work is necessary to develop this technique into one which can be used for the routine sintering of fine powdered ceramic material. A review of the literature on microwave sintering of ceramic powders is also reported.

  13. Treatment of refractory powders by a novel, high enthalpy dc plasma

    NASA Astrophysics Data System (ADS)

    Pershin, L.; Mitrasinovic, A.; Mostaghimi, J.

    2013-06-01

    Thermophysical properties of CO2-CH4 mixtures at high temperatures are very attractive for materials processing. In comparison with argon, at the same temperature, such a mixture possesses much higher enthalpy and higher thermal conductivity. At high temperatures, CO2-CH4 mixture has a complex composition with strong presence of CO which, in the case of powder treatment, could reduce oxidation. In this work, a dc plasma torch with graphite cathode was used to study the effect of plasma gas composition on spheroidization of tungsten carbide and alumina powders. Two different gas compositions were used to generate the plasma while the torch current was kept at 300 A. Various techniques were employed to assess the average concentration of carbides and oxides and the final shape of the treated powders. Process parameters such as input power and plasma gas composition allow controlling the degree of powder oxidation and spheroidization of high melting point ceramic powders.

  14. Anti-Corrosive Powder Particles

    NASA Technical Reports Server (NTRS)

    Parker, Donald; MacDowell, Louis, III

    2005-01-01

    The National Aeronautics and Space Administration (NASA) seeks partners for a new approach in protecting embedded steel surfaces from corrosion. Corrosion of reinforced steel in concrete structures is a significant problem for NASA structures at Kennedy Space Center (KSC) because of the close proximity of the structures to salt spray from the nearby Atlantic Ocean. In an effort to minimize the damage to such structures, coatings were developed that could be applied as liquids to the external surfaces of a substrate in which the metal structures were embedded. The Metallic Pigment Powder Particle technology was developed by NASA at KSC. This technology combines the metallic materials into a uniform particle. The resultant powder can be sprayed simultaneously with a liquid binder onto the surface of concrete structures with a uniform distribution of the metallic pigment for optimum cathodic protection of the underlying steel in the concrete. Metallic Pigment Powder Particle technology improves upon the performance of an earlier NASA technology Liquid Galvanic Coating (U.S. Patent No. 6,627,065).

  15. Mesoscale simulations of powder compaction

    NASA Astrophysics Data System (ADS)

    Lomov, Ilya; Antoun, Tarabay; Liu, Benjamin

    2009-06-01

    Mesoscale 3D simulations of metal and ceramic powder compaction in shock waves have been performed with an Eulerian hydrocode GEODYN. The approach was validated by simulating shock compaction of porous well-characterized ductile metal using Steinberg material model. Results of the simulations with handbook values for parameters of solid 2024 aluminum have good agreement with experimental compaction curves and wave profiles. Brittle ceramic materials are not so well studied as metals, so material model for ceramic (tungsten carbide) has been fitted to shock compression experiments of non-porous samples and further calibrated to experimental match compaction curves. Direct simulations of gas gun experiments with ceramic powder have been performed and showed good agreement with experimental data. Numerical shock wave profile has same character and thickness as measured with VISAR. Numerical results show evidence of hard-to-explain reshock states above the single-shock Hugoniot line, which have also been observed in the experiments. We found that to receive good quantitative agreement with experiment it is essential to perform 3D simulations, since 2D results tend to underpredict stress levels for high-porosity powders regardless of material properties. We developed a process to extract macroscale information for the simulation which can be directly used in calibration of continuum model for heterogeneous media.

  16. Modelling and simulation of powder-snow avalanches

    NASA Astrophysics Data System (ADS)

    Étienne, Jocelyn; Rastello, Marie; Hopfinger, Emil J.

    2006-08-01

    Finite volume release gravity currents of large density contrast on steep slopes, representing powder-snow avalanches, are simulated numerically using a dynamic mesh adaptation technique. This technique allows to treat large Reynolds numbers and large density contrast flows, but it is (presently) restricted to two dimensions. Comparison of numerical results with experiments in the Boussinesq limit shows that 2D simulations capture the essential flow dynamics. The physics of powder-snow avalanches is analysed on hand of the similarity model developed by Rastello and Hopfinger (2004) and briefly reproduced here. The numerical simulations provide the closure parameters required in this model and give access to the flow structure. The non-Boussinesq effect is to decrease substantially the spatial growth in height and to increase the aspect ratio, hence the overall flow structure. To cite this article: J. Étienne et al., C. R. Mecanique 334 (2006).

  17. Compactible powders of omega-3 and ?-cyclodextrin.

    PubMed

    Vestland, Tina Lien; Jacobsen, Øyvind; Sande, Sverre Arne; Myrset, Astrid Hilde; Klaveness, Jo

    2015-10-15

    Omega-3 fatty acids are used in both nutraceuticals and pharmaceuticals in the form of triglycerides and ethyl esters. Administration forms available for omega-3 include bulk oil, soft gel capsules, emulsions and some powder compositions. Cyclodextrins are substances well known for their ability to encapsulate lipophilic molecules. In the present work, powders loaded with omega-3 oil, ranging from 10 to 40% (w/w), have been prepared by vacuum drying, freeze drying or spray granulation of aqueous mixtures of omega-3 oil and ?-cyclodextrin. The powders were found to be partially crystalline by powder X-ray diffraction and to contain crystalline phases not present in pure ?-cyclodextrin, indicating true complexation. The compactibility of the powders has been explored, revealing that a dry and compactible powder can be prepared from various omega-3 oils and ?-cyclodextrin. Spray granulation was found to be the superior drying method for the preparation of compactible powders. PMID:25952853

  18. Compaction and Sintering of Mo Powders

    SciTech Connect

    Nunn, Stephen D; Kiggans, Jim; Bryan, Chris

    2013-01-01

    To support the development of Mo-99 production by NorthStar Medical Technologies, LLC, Mo metal powders were evaluated for compaction and sintering characteristics as they relate to Mo-100 accelerator target disk fabrication. Powders having a natural isotope distribution and enriched Mo-100 powder were examined. Various powder characteristics are shown to have an effect on both the compaction and sintering behavior. Natural Mo powders could be cold pressed directly to >90% density. All of the powders, including the Mo-100 samples, could be sintered after cold pressing to >90% density. As an example, a compacted Mo-100 disk reached 89.7% density (9.52 g/cm3) after sintering at 1000 C for 1 hr. in flowing Ar/4%H2. Higher sintering temperatures were required for other powder samples. The relationships between processing conditions and the resulting densities of consolidated Mo disks will be presented.

  19. Mechanical properties and shear failure surfaces of two alumina powders in triaxial compression

    SciTech Connect

    ZEUCH,DAVID H.; GRAZIER,J. MARK; ARGUELLO JR.,JOSE G.; EWSUK,KEVIN G.

    2000-04-24

    In the manufacture of ceramic components, near-net-shape parts are commonly formed by uniaxially pressing granulated powders in rigid dies. Density gradients that are introduced into a powder compact during press-forming often increase the cost of manufacturing, and can degrade the performance and reliability of the finished part. Finite element method (FEM) modeling can be used to predict powder compaction response, and can provide insight into the causes of density gradients in green powder compacts; however, accurate numerical simulations require accurate material properties and realistic constitutive laws. To support an effort to implement an advanced cap plasticity model within the finite element framework to realistically simulate powder compaction, the authors have undertaken a project to directly measure as many of the requisite powder properties for modeling as possible. A soil mechanics approach has been refined and used to measure the pressure dependent properties of ceramic powders up to 68.9 MPa (10,000 psi). Due to the large strains associated with compacting low bulk density ceramic powders, a two-stage process was developed to accurately determine the pressure-density relationship of a ceramic powder in hydrostatic compression, and the properties of that same powder compact under deviatoric loading at the same specific pressures. Using this approach, the seven parameters that are required for application of a modified Drucker-Prager cap plasticity model were determined directly. The details of the experimental techniques used to obtain the modeling parameters and the results for two different granulated alumina powders are presented.

  20. Characterization of polymer materials and powders for selective laser melting

    NASA Astrophysics Data System (ADS)

    Wudy, K.; Drummer, D.; Drexler, M.

    2014-05-01

    Concerning individualization, the requirements to products have increased. The trend towards individualized serial products faces manufacturing techniques with demands of increasing flexibility. Additive manufacturing techniques generate components directly out of a CAD data set while requiring no specific tool or form. Due to this additive manufacturing processes comply, in opposite to conventional techniques, with these increased demands on processing technology. With a variety of available additive manufacturing techniques, some of them have a high potential to generate series products with reproducible properties. Selective laser melting (SLM) of powder materials shows the highest potential for this application. If components made by SLM are desired to be applied in technical series products, their achievable properties play a major part. These properties are mainly determined by the processed materials. The range of present commercially available materials for SLM of polymer powders is limited. This paper shows interrelations of various material properties to create a basic understanding of sintering processes and additional qualifying new materials. Main properties of polymer materials, with regard to their consolidation are viscosity and surface energy. On the one hand the difference of the surface energy between powder and melt influences, the wetting behavior, and thus the penetration depth. On the other hand, a high surface tension is fundamental for good coalescence of bordering particles. To fulfill these requirements limits of the surface tension will be determined on the basis of a reference material. For these reason methods for determining surface tension of solids, powders and melts are analyzed, to carry out a possible process-related material characterization. Not only an insight into observed SLM phenomena is provided but also hints concerning suitable material selection.

  1. Evaluation of Factors Affecting Powdered Drug Reconstitution in Microgravity

    NASA Technical Reports Server (NTRS)

    Schaffner, Grant; Johnston, Smith; Marshburn, Tom

    1999-01-01

    Owing to the high cost of transporting mass into space, and the small volume available for equipment in the Space Shuttle Orbiter and the International Space Station, refrigeration space is extremely limited. For this reason, there exists strong motivation for transporting certain drugs in powdered form so that they do not require refrigeration. When needed, the powdered drug will be mixed with saline to obtain a liquid form that may be injected intravenously. While this is a relatively simple task in a 1-G environment, there are some difficulties that may be encountered in 0-G. In non-accelerated spaceflight, gravitational and inertial forces are eliminated allowing other smaller forces, such as capillary forces and surface tension, to dominate the behavior of fluids. For instance, water slowly ejected from a straw will tend to form a sphere, while fluid in a container will tend to wet the inside surface forming a highly rounded meniscus. Initial attempts at mixing powdered drugs with saline in microgravity have shown a tendency toward forming foamy emulsions instead of the desired homogeneous solution. The predominance of adhesive forces between the drug particles and the interface tensions at the gas/liquid and solid/liquid interfaces drastically reduce the rate of deaggregation of the drug powder and also reduce the rate of absorption of saline by the powder mass. In addition, the capillary forces cause the saline to wet the inside of the container, thus trapping air bubbles within the liquid. The rate of dissolution of a powder drug is directly proportional to the amount of surface area of the solid that is exposed to liquid solvent. The surface area of drug that is in contact with the liquid is greatly reduced in microgravity and, as a result, the dissolution rate is reduced as well. The KC-135 research described here was aimed at evaluating the extent to which it is possible to perform drug reconstitution in the weightlessness of parabolic flight using standard pharmacological supplies. The experiment included a parametric assessment of possible factors affecting the reconstitution process. The specific questions that we wished to answer were: (1) Is it possible to reconstitute powdered drugs in weightlessness using standard pharmacological equipment? (2) What are the differences between drug reconstitution in a 1-G and a 0-G environment? (3) What techniques of mixing the drug powder and diluent are more successful? (4) What physical and chemical factors play a role in determining the success of mixing and dissolution? (5) Is it necessary to employ crewmember and equipment restraints during the reconstitution process?

  2. Dry powder segregation and flowability: Experimental and numerical studies

    NASA Astrophysics Data System (ADS)

    Ely, David R.

    Dry powder blending is a very important industrial and physical process used in the production of numerous pharmaceutical dosage forms such as tablets, capsules, and dry powder aerosols. Key aspects of this unit operation are process monitoring and control. Process control is particularly difficult due to the complexity of particle-particle interactions, which arise from the adhesion/cohesion characteristics of interfaces and morphological characteristics such as particle size, shape, and dispersity. The effects of such characteristics need to be understood in detail in order to correlate individual particle properties to bulk powder properties. The present dissertation numerically and experimentally quantifies the mixing process to rationalize particle-particle interactions. In particular, near infrared spectroscopy (NIRS) was used to non-invasively characterize in real-time the blending processes and thus investigate the dynamics of blending under different operating conditions. A novel image analysis technique was developed to quantify the scale of segregation from images obtained non-destructively via near infrared chemical imaging (NIR-CI). Although NIR-CI data acquisition times are too long for real-time data collection, NIR-CI has an advantage, in that it provides the spatial distribution of the drug. Therefore, NIRS and NIR-CI are complementary techniques for investigating the complex process of blending dry powders and assessing end-product quality. Additionally, the discrete element method was used to investigate the effect of powder cohesion on the packing fraction. Simulations indicated an exponential relationship between the random loose packing fraction and cohesive forces. Specifically, the packing fraction decreased asymptotically with increased ratio of cohesive force to particle weight. Thus, increasing this force ratio above a critical value has negligible impact on the packing fraction. Such result directly impacts the Hausner ratio flowability measurement, which is directly related to the packing fraction. Two commonly used tests were compared to assess their utility: the rotational split-cell shear cell test and the Hausner ratio. The Hausner ratio proved to be better suited for characterizing the flowability of unconsolidated powders than the splitring shear cell. Results demonstrate that the optimal flowability test depends on the powder properties and the environment under which flow will be induced.

  3. Dry powders for oral inhalation free of lactose carrier particles.

    PubMed

    Healy, Anne Marie; Amaro, Maria Inês; Paluch, Krzysztof J; Tajber, Lidia

    2014-08-01

    Dry powder inhaler (DPI) products have traditionally comprised a simple formulation of micronised drug mixed with a carrier excipient, typically lactose monohydrate. The presence of the carrier is aimed at overcoming issues of poor flowability and dispersibility, associated with the cohesive nature of small, micronised active pharmaceutical ingredient (API) particles. Both the powder blend and the DPI device must be carefully designed so as to ensure detachment of the micronised drug from the carrier excipient on inhalation. Over the last two decades there has been a significant body of research undertaken on the design of carrier-free formulations for DPI products. Many of these formulations are based on sophisticated particle engineering techniques; a common aim in formulation design of carrier-free products being to reduce the intrinsic cohesion of the particles, while maximising dispersion and delivery from the inhaler. In tandem with the development of alternative formulations has been the development of devices designed to ensure the efficient delivery and dispersion of carrier-free powder on inhalation. In this review we examine approaches to both the powder formulation and inhaler design for carrier-free DPI products. PMID:24735676

  4. New technology for separating resin powder and fiberglass powder from fiberglass-resin powder of waste printed circuit boards.

    PubMed

    Li, Jia; Gao, Bei; Xu, Zhenming

    2014-05-01

    New recycling technologies have been developed lately to enhance the value of the fiberglass powder-resin powder fraction (FRP) from waste printed circuit boards. The definite aim of the present paper is to present some novel methods that use the image forces for the separation of the resin powder and fiberglass powder generated from FRP during the corona electrostatic separating process. The particle shape charactization and particle trajectory simulation were performed on samples of mixed non-metallic particles. The simulation results pointed out that particles of resin powder and particles of fiberglass powder had different detach trajectories at the conditions of the same size and certain device parameters. An experiment carried out using a corona electrostatic separator validated the possibility of sorting these particles based on the differences in their shape characteristics. The differences in the physical properties of the different types of particles provided the technical basis for the development of electrostatic separation technologies for the recycling industry. PMID:24678800

  5. Roller compaction of moist pharmaceutical powders.

    PubMed

    Wu, C-Y; Hung, W-L; Miguélez-Morán, A M; Gururajan, B; Seville, J P K

    2010-05-31

    The compression behaviour of powders during roller compaction is dominated by a number of factors, such as process conditions (roll speed, roll gap, feeding mechanisms and feeding speed) and powder properties (particle size, shape, moisture content). The moisture content affects the powder properties, such as the flowability and cohesion, but it is not clear how the moisture content will influence the powder compression behaviour during roller compaction. In this study, the effect of moisture contents on roller compaction behaviour of microcrystalline cellulose (MCC, Avicel PH102) was investigated experimentally. MCC samples of different moisture contents were prepared by mixing as-received MCC powder with different amount of water that was sprayed onto the powder bed being agitated in a rotary mixer. The flowability of these samples were evaluated in terms of the poured angle of repose and flow functions. The moist powders were then compacted using the instrumented roller compactor developed at the University of Birmingham. The flow and compression behaviour during roller compaction and the properties of produced ribbons were examined. It has been found that, as the moisture content increases, the flowability of moist MCC powders decreases and the powder becomes more cohesive. As a consequence of non-uniform flow of powder into the compaction zone induced by the friction between powder and side cheek plates, all produced ribbons have a higher density in the middle and lower densities at the edges. For the ribbons made of powders with high moisture contents, different hydration states across the ribbon width were also identified from SEM images. Moreover, it was interesting to find that these ribbons were split into two halves. This is attributed to the reduction in the mechanical strength of moist powder compacts with high moisture contents produced at high compression pressures. PMID:20176096

  6. Purification of silicon powder by the formation of thin porous layer followed byphoto-thermal annealing

    PubMed Central

    2012-01-01

    Porous silicon has been prepared using a vapor-etching based technique on a commercial silicon powder. Strong visible emission was observed in all samples. Obtained silicon powder with a thin porous layer at the surface was subjected to a photo-thermal annealing at different temperatures under oxygen atmosphere followed by a chemical treatment. Inductively coupled plasma atomic emission spectrometry results indicate that silicon purity is improved from 99.1% to 99.994% after annealing at 900°C. PMID:22873706

  7. Grinding Si3N4 Powder In Si3N4 Equipment

    NASA Technical Reports Server (NTRS)

    Herbell, Thomas P.; Freedman, Marc R.; Kiser, James D.

    1989-01-01

    Three methods of grinding compared. Report based on study of grinding silicon nitride powder in preparation for sintering into solid ceramic material. Attrition, vibratory, and ball mills lined with reaction-bonded silicon nitride tested. Rates of reduction of particle sizes and changes in chemical compositions of powders measured so grinding efficiences and increases in impurity contents from wear of mills and media evaluated for each technique.

  8. Numerical Simulation and Experimental Study of Powder Flow Distribution in High Power Direct Diode Laser Cladding Process

    NASA Astrophysics Data System (ADS)

    Liu, S.; Zhang, Y.; Kovacevic, R.

    2015-12-01

    High power direct diode laser (HPDDL) offers a rectangular laser beam with top-flat intensity distribution making it an ideal tool for wide-clad deposition. In the HPDDL-based cladding process, the powder is commonly fed laterally through a wide nozzle into the molten pool by means of a carrier gas. In order to successfully utilize this cladding technique, the powder feeding behavior needs to be carefully controlled. In this study, based on an investigation of commercial powder feeding nozzles, a 3D computational fluid dynamics (CFD) based gas-powder flow model was developed. The effects of the nozzle exit geometry, powder properties (particle size, density and shape), and powder feeding parameters (powder feeding rate and carrier-gas flow rate) on the characteristics of the powder flow were studied. A high-speed CCD camera was used to capture the powder flow characteristics such as the particle velocity and particle distribution. Deposition experiments are also performed to verify the predicted powder catchment efficiency and to check the clad geometry.

  9. Process for the synthesis of iron powder

    DOEpatents

    Welbon, William W. (Belleair, FL)

    1983-01-01

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

  10. Process for the synthesis of iron powder

    DOEpatents

    Not Available

    1982-03-06

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder.

  11. Process for the synthesis of iron powder

    DOEpatents

    Welbon, W.W.

    1983-11-08

    A process for preparing iron powder suitable for use in preparing the iron-potassium perchlorate heat-powder fuel mixture used in thermal batteries, comprises preparing a homogeneous, dense iron oxide hydroxide precipitate by homogeneous precipitation from an aqueous mixture of a ferric salt, formic or sulfuric acid, ammonium hydroxide and urea as precipitating agent; and then reducing the dense iron oxide hydroxide by treatment with hydrogen to prepare the iron powder. 2 figs.

  12. Diamond powders as neutron filters

    NASA Astrophysics Data System (ADS)

    Nagler, S. E.; Robertson, J. L.; Crow, M. L.; Chia, H.

    2006-11-01

    Low-energy band-pass filters are essential components for many neutron-scattering measurements, particularly cold-neutron inelastic scattering. There has been widespread use of polycrystalline Be filters for typical cutoff energies near 5 meV. The need to cool the filters to minimize thermal diffuse scattering is inconvenient for many experiments and for this reason we have investigated alternatives. Polycrystalline diamond appears to be an excellent candidate, with the large Debye temperature reducing the need for cooling, an abundant supply of inexpensive material, and a large scattering length density. Using the ORELA pulsed neutron source and the HFIR at ORNL, we have characterized the energy dependence of the room temperature neutron transmission for several commercially available powders of both natural and artificial diamond with homogeneous particle sizes ranging from single digits to hundreds of microns. Sharp cutoffs are observed near neutron energies of 5 meV. The low-energy transmission is reduced by small-angle scattering from voids, and we have begun to investigate methods of overcoming this limitation. Nevertheless, for some applications room temperature diamond powders are viable neutron filters.

  13. Metal powder reactions in ball milling

    NASA Technical Reports Server (NTRS)

    Arias, A.

    1976-01-01

    On milling chromium powder in three metal chlorides and either chromium or nickel powders in ten organic liquids representative of nine different functional groups, the powders always reacted with the liquids and became contaminated with elements from them. The milled powders had specific surface areas ranging from 0.14 to 37 sq m/g, and the total contamination with elements from the milling liquid ranged from 0.01 to 56 wt%. In most milling runs, compounds resulting from substitution, addition, or elimination reactions formed in or from the milling liquid, and in most runs with organic liquids H2, CH4, and CO2 were generated.

  14. Dendritic microstructure in argon atomized superalloy powders

    NASA Technical Reports Server (NTRS)

    Tewari, S. N.; Kumar, Mahundra

    1986-01-01

    The dendritic microstructure of atomized nickel base superalloy powders (Ni-20 pct Cr, NIMONIC-80A, ASTROALOY, and ZHS6-K) was studied. Prealloyed vacuum induction melted ingots were argon-atomized, the powders were cooled to room temperature, and various powder-size fractions were examined by optical metallography. Linear correlations were obtained for the powder size dependence of the secondary dendrite arm spacing, following the expected d-alpha (R) to the m power dependence on the particle size for all four superalloy compositions. However, the Ni-20 pct Cr alloy, which had much coarser arm spacing as compared to the other three alloys, had a much larger value of m.

  15. Frequency domain photon migration measurements: a method to size powders and detect active pharmaceutical ingredients in blending operations 

    E-print Network

    Torrance, Sharnay Etasha

    2004-01-01

    of powder-based therapeutic products has come under scrutiny causing manufacturers to strive toward alternative solutions to their traditional validation methods. This thesis presents an optical technique, frequency domain photon migration (FDPM), as a...

  16. Density-permittivity relationships for powdered and granular materials

    SciTech Connect

    Nelson, S.O.

    2005-10-01

    Relationships between the permittivities of powdered or granular solid materials and their bulk densities (density of the air-particle mixture) are discussed. Linear relationships between functions of the permittivity and bulk density are identified that are useful in determining permittivity of solids from measurements of the permittivity of pulverized samples. The usefulness of several dielectric mixture equations for calculating solid material permittivity from measured permittivity of pulverized samples is also discussed. Results of testing linear extrapolation techniques and dielectric mixture equations on pulverized coal, limestone, plastics, and granular wheat and flour are presented. Recommendations are provided for reliable estimation of solid material permittivities or changes in permittivities of powdered and granular materials as a result of changes in their bulk densities.

  17. Modelling the mechanical behaviour of pharmaceutical powders during compaction

    E-print Network

    Elliott, James

    . Introduction Powder compaction is a process widely used in many industries. For instance, in the powder metallurgy and ceramic industries, powders are generally compacted into a green body before being sintered are made of dry powder through a powder compaction process. In the pharmaceutical industry, billions

  18. Slip casting and nitridation of silicon powder

    NASA Technical Reports Server (NTRS)

    Seiko, Y.

    1985-01-01

    Powdered Silicon was slip-cast with a CaSO4 x 0.5H2O mold and nitrided in a N atm. containing 0 or 5 vol. % H at 1000 to 1420 deg. To remove the castings, the modeling faces were coated successively with an aq. salt soap and powdered cellulose containing Na alginate, and thus prevented the sticking problem.

  19. 21 CFR 529.2464 - Ticarcillin powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Ticarcillin powder. 529.2464 Section 529.2464 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.2464 Ticarcillin powder. (a) Specifications. Each vial...

  20. 30 CFR 56.6133 - Powder chests.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Storage § 56.6133 Powder... CFR part 51. Copies are available at MSHA, 1100 Wilson Blvd., Room 2436, Arlington, Virginia 22209... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Powder chests. 56.6133 Section 56.6133...

  1. 30 CFR 56.6133 - Powder chests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Storage § 56.6133 Powder... CFR part 51. Copies are available at MSHA, 1100 Wilson Blvd., Room 2436, Arlington, Virginia 22209... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Powder chests. 56.6133 Section 56.6133...

  2. 30 CFR 56.6133 - Powder chests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Storage § 56.6133 Powder... CFR part 51. Copies are available at MSHA, 1100 Wilson Blvd., Room 2436, Arlington, Virginia 22209... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Powder chests. 56.6133 Section 56.6133...

  3. 30 CFR 56.6133 - Powder chests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... HEALTH SAFETY AND HEALTH STANDARDS-SURFACE METAL AND NONMETAL MINES Explosives Storage § 56.6133 Powder... CFR part 51. Copies are available at MSHA, 1100 Wilson Blvd., Room 2436, Arlington, Virginia 22209... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Powder chests. 56.6133 Section 56.6133...

  4. 21 CFR 73.2646 - Bronze powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2646 Bronze powder. (a) Identity and specifications. The....1646 (a)(1) and (b). (b) Uses and restrictions. Bronze powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye, in amounts consistent with...

  5. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity and specifications. The....1647 (a)(1) and (b). (b) Uses and restrictions. Copper powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye, in amounts consistent with...

  6. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity and specifications. The....1647 (a)(1) and (b). (b) Uses and restrictions. Copper powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye, in amounts consistent with...

  7. 21 CFR 73.2646 - Bronze powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2646 Bronze powder. (a) Identity and specifications. The....1646 (a)(1) and (b). (b) Uses and restrictions. Bronze powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye, in amounts consistent with...

  8. 21 CFR 73.2646 - Bronze powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2646 Bronze powder. (a) Identity and specifications. The....1646 (a)(1) and (b). (b) Uses and restrictions. Bronze powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye, in amounts consistent with...

  9. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity and specifications. The....1647 (a)(1) and (b). (b) Uses and restrictions. Copper powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye, in amounts consistent with...

  10. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity and specifications. The....1647 (a)(1) and (b). (b) Uses and restrictions. Copper powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye, in amounts consistent with...

  11. 21 CFR 73.2646 - Bronze powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2646 Bronze powder. (a) Identity and specifications. The....1646 (a)(1) and (b). (b) Uses and restrictions. Bronze powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye, in amounts consistent with...

  12. 21 CFR 73.2646 - Bronze powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2646 Bronze powder. (a) Identity and specifications. The....1646 (a)(1) and (b). (b) Uses and restrictions. Bronze powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye, in amounts consistent with...

  13. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2647 Copper powder. (a) Identity and specifications. The....1647 (a)(1) and (b). (b) Uses and restrictions. Copper powder may be safely used in coloring cosmetics generally, including cosmetics intended for use in the area of the eye, in amounts consistent with...

  14. Wet powder seal for gas containment

    DOEpatents

    Stang, Louis G. (Sayville, NY)

    1982-01-01

    A gas seal is formed by a compact layer of an insoluble powder and liquid filling the fine interstices of that layer. The smaller the particle size of the selected powder, such as sand or talc, the finer will be the interstices or capillary spaces in the layer and the greater will be the resulting sealing capacity, i.e., the gas pressure differential which the wet powder layer can withstand. Such wet powder seal is useful in constructing underground gas reservoirs or storage cavities for nuclear wastes as well as stopping leaks in gas mains buried under ground or situated under water. The sealing capacity of the wet powder seal can be augmented by the hydrostatic head of a liquid body established over the seal.

  15. Substantiating powder metal life methodologies for engines

    NASA Astrophysics Data System (ADS)

    Domas, P. A.

    1993-04-01

    The application of powder metal (PM) superalloys in aircraft turbine engine rotating components is prompted by performance driven high strength and creep resistance requirements. Fine grain, precipitation strengthened nickel-base alloys such as IN100, Rene'95, and Rene'88DT meet these requirements up to operating temperatures in the 1200-1300F (649-704C) range. In addition to burst and deformation limits, design constraints include durability (fatigue) and damage tolerance (crack growth resistance) capability to insure reliability and safety. Fatigue life for these alloys can be influenced by inhomogeneities (inclusions) intrinsic to the microstructure as the result of processing, and by perturbations of the surface integrity during component manufacture and subsequent usage. Understanding of PM fatigue behavior and substantiation of life assessment methodology must appropriately recognize these potential influences. New testing, modeling, and analysis schemes are necessitated in engineering development programs addressing generation and validation of life prediction techniques for these materials. This paper outlines one approach to substantiating PM fatigue life prediction that attempts to recognize homogeneous fatigue initiation by incorporating probabilistic models and development testing methods that address material volume and component feature effects. Complications and limitations being addressed in ongoing work are discussed.

  16. Investigation of NIR hyperspectral imaging for discriminating melamine in milk powder

    NASA Astrophysics Data System (ADS)

    Fu, Xiaping; Kim, Moon S.; Chao, Kuanglin; Qin, Jianwei; Lim, Jongguk; Lee, Hoyoung; Ying, Yibin

    2013-05-01

    Melamine (2,4,6-triamino-1,3,5-triazine) contamination of food has become an urgent and broadly recognized issue for which rapid and accurate identification methods are needed by the food industry. In this study, the feasibility and effectiveness of near-infrared (NIR) hyperspectral imaging was investigated for detecting melamine in milk powder. Hyperspectral NIR images (144 bands spanning from 990 to 1700 nm) were acquired for Petri dishes containing samples of milk powder mixed with melamine at various concentrations (0.02% to 1%). Spectral bands that showed the most significant differences between pure milk and pure melamine were selected, and two-band difference analysis was applied to the spectrum of each pixel in the sample images to identify melamine particles in milk powders. The resultant images effectively allowed visualization of melamine particle distributions in the samples. The study demonstrated that NIR hyperspectral imaging techniques can qualitatively and quantitatively identify melamine adulteration in milk powders.

  17. Luminescent properties of Al2O3:Tb3+ powders embedded in polyethylene terephthalate films

    NASA Astrophysics Data System (ADS)

    Mariscal B., L.; Carmona-Téllez, S.; Alarcón-Flores, G.; Murrieta S., H.; Hernández, J. M.; Camarillo, E.; Falcony, C.

    2015-08-01

    The luminescent properties of Al2O3:Tb3+ powders embedded in polyethylene terephthalate (PET) films have been studied. Luminescent Al2O3:Tb3+ polycrystalline powders were synthesized by a simple evaporation method. The powder embedded films were obtained by the spray pyrolysis technique. The photoluminescence and cathodoluminescence emission spectra from these samples show, in both cases, luminescence peaks associated with transitions within the electronic energy levels of Tb3+ ions. The dominant peak is at 544 nm corresponding to the 5D4 to 7F5 transition. In the case of the powder embedded films, the CIE coordinates depend on the excitation wavelength because there is a blue emission contribution from the PET host. UV-Vis% transmission measurements on these films show that they are transparent (?80% and 95% T).

  18. Combustion synthesis process for the rapid preparation of high-purity SrO powders

    NASA Astrophysics Data System (ADS)

    Granados-Correa, Francisco; Bonifacio-Martínez, Juan

    2014-12-01

    A rapid, safe and simple technique for the production of high purity strontium oxide powders via a chemical combustion process is reported. The combustion reactions were performed to optimize the fuel to oxidizer ratios in the reaction mixtures required to obtain pure SrO powders by varying the molar ratio of chemical precursors and the temperature. The synthesized powders were characterized by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectrometry, infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, and N2-physisorption measurements. The results indicate that crystalline SrO was obtained using a 1:1 strontium nitrate: urea molar ratio at 1000 °C after 5 minutes. In addition, high-purity, homogeneous and crystalline SrO powders were easily produced in a short time via a chemical combustion process.

  19. Preparation of Nd-Fe-B sintered magnets from HDDR-processed powder

    NASA Astrophysics Data System (ADS)

    Takagi, Kenta; Akada, Misaho; Soda, Rikio; Ozaki, Kimihiro

    2015-11-01

    The electric-current sintering technique was used to fully densify hydrogenation-disproportionation-desorption-recombination (HDDR)-processed Nd-Fe-B powder at temperatures below the grain growth temperature in order to produce high-coercive bulk magnets. However, the sintered magnets exhibited anomalous coercivity reduction that depended on sintered density. Reheating examination of the sintered magnets revealed that the reduced coercivity was increased in proportion to the heating temperature, resulting in complete recovery of coercivity. As a result, the combination of electric-current sintering and post-annealing produced sintered magnets with a coercivity of 15 kOe. Scanning and transmission electron microscopy revealed no evidence that associated the anomalous coercivity reduction and recovery with grain boundary morphology. On the other hand, various HDDR powders with different particle sizes were sintered, and finer powders yielded lower coercivity after sintering, implying that the anomalous coercivity reduction was associated with particle surface oxides of the raw powder.

  20. An analysis of un-dissolved powders of instant powdered soup by using ultrasonographic image

    NASA Astrophysics Data System (ADS)

    Kawaai, Yukinori; Kato, Kunihito; Yamamoto, Kazuhiko; Kasamatsu, Chinatsu

    2008-11-01

    Nowadays, there are many instant powdered soups around us. When we make instant powdered soup, sometimes we cannot dissolve powders perfectly. Food manufacturers want to improve this problem in order to make better products. Therefore, they have to measure the state and volume of un-dissolved powders. Earlier methods for analyzing removed the un-dissolved powders from the container, the state of the un-dissolved power was changed. Our research using ultrasonographic image can measure the state of un-dissolved powders with no change by taking cross sections of the soup. We then make 3D soup model from these cross sections of soup. Therefore we can observe the inside of soup that we do not have ever seen. We construct accurate 3D model. We can visualize the state and volume of un-dissolved powders with analyzing the 3D soup models.

  1. Compact Process for the Preparation of Microfine Spherical High-Niobium-Containing TiAl Alloy Powders

    NASA Astrophysics Data System (ADS)

    Tong, J. B.; Lu, X.; Liu, C. C.; Wang, L. N.; Qu, X. H.

    2015-03-01

    High-Nb-containing TiAl alloys are a new generation of materials for high-temperature structural applications because of their superior high-temperature mechanical properties. The alloy powders can be widely used for additive manufacturing, thermal spraying, and powder metallurgy. Because of the difficulty of making microfine spherical alloy powders in quantity by conventional techniques, a compact method was proposed, which consisted of two-step ball milling of elemental powders and subsequent radio frequency (RF) argon plasma spheroidization. In comparison with conventional mechanical alloying techniques, the two-step milling process can be used to prepare alloy powders with uniform scale in a short milling time with no addition of process control agent. This makes the process effective and less contaminating. After RF argon plasma spheroidization, the powders produced exhibit good sphericity, and the number-average diameter is about 8.2 ?m with a symmetric unimodal particle size distribution. The powders perform high composition homogeneity and contain predominately supersaturated ? 2-Ti3Al phase. The oxygen and carbon contents of the spheroidized powder are 0.47% and 0.050%, respectively.

  2. 21 CFR 520.1696b - Penicillin G powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 2013-04-01 false Penicillin G powder. 520.1696b Section...NEW ANIMAL DRUGS § 520.1696b Penicillin G powder. (a) Specifications. Each gram of powder contains penicillin G potassium equivalent to...

  3. 21 CFR 520.1696b - Penicillin G powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 2014-04-01 false Penicillin G powder. 520.1696b Section...NEW ANIMAL DRUGS § 520.1696b Penicillin G powder. (a) Specifications. Each gram of powder contains penicillin G potassium equivalent to...

  4. 21 CFR 872.6660 - Porcelain powder for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 false Porcelain powder for clinical use. 872.6660 Section 872.6660... § 872.6660 Porcelain powder for clinical use. (a) Identification. Porcelain powder for clinical use is a device consisting...

  5. Fe-Nd-B magnets via the hot extrusion of amorphous powders

    SciTech Connect

    Yang, C.J.; Ray, R. )

    1989-09-01

    This article describes a rapid solidification melt spinning technique has been developed to produce amorphous powders of Fe-Nd-B alloys modified with hafnium diboride. The amorphous powders are consolidated by the hot extrusion technique into bulk magnets of various cross sections. Consolidated magnets show ultrafine grain structure stabilized by ultrafine submicron hafnium diboride particles. The extruded magnets develop strong texture-induced magnetic anisotropy which leads to attractive energy product values of up to 16 MGOe. Significant improvement in coercivity is also achieved due to ultrafine grain structure of the extruded magnets.

  6. T-1018 UCLA Spacordion Tungsten Powder Calorimeter

    SciTech Connect

    Trentalange, Stephen; Tsai, Oleg; Igo, George; Huang, Huan; Pan, Yu Xi; Dunkelberger, Jay; Xu, Wen Qin; Soha, Aria; Heppelmann, Steven; Gagliardi, Carl; /Texas A-M

    2011-11-16

    The present experiments at the BNL-RHIC facility are evolving towards physics goals which require the detection of medium energy electromagnetic particles (photons, electrons, neutral pions, eta mesons, etc.), especially at forward angles. New detectors will place increasing demands on energy resolution, hadron rejection and two-photon resolution and will require large area, high performance electromagnetic calorimeters in a variety of geometries. In the immediate future, either RHIC or JLAB will propose a facility upgrade (Electron-Ion Collider, or EIC) with physics goals such as electron-heavy ion collisions (or p-A collisions) with a wide range of calorimeter requirements. An R and D program based at Brookhaven National Laboratory has awarded the group funding of approximately $110,000 to develop new types of calorimeters for EIC experiments. The UCLA group is developing a method to manufacture very flexible and cost-effective, yet high quality calorimeters based on scintillating fibers and tungsten powder. The design and features of the calorimeter can be briefly stated as follows: an arbitrarily large number of small diameter fibers (< 0.5 mm) are assembled as a matrix and held rigidly in place by a set of precision screens inside an empty container. The container is then back-filled with tungsten powder, compacted on a vibrating table and infused with epoxy under vacuum. The container is then removed. The resulting sub-modules are extremely uniform and achieve roughly the density of pure Lead. The sub-modules are stacked together to achieve a final detector of the desired shape. There is no dead space between sub-modules and the fibers can be in an accordion geometry bent to prevent 'channeling' of the particles due to accidental alignment of their track with the module axis. This technology has the advantage of being modular and inexpensive to the point where the construction work may be divided among groups the size of typical university physics departments. This test run if a proof-of-principle and allows the experiment to improve the design and performance of the final detectors. The experimenters have constructed prototypes of three different designs in order to investigate the characteristics of practical devices such as uniformity, linearity, longitudinal and transverse shower shapes. The first design is an array of 4 x 4 modules intended as a prototype for a practical device to be installed within two years in the STAR experimental hall. The modules are a combination of a spaghetti calorimeter and an accordion (hence 'spacordion'). Each sub-module is 1.44 cm x 1.44 cm x 15 cm and constructed individually. The second design is a prototype of 4 sub-modules constructed in one step, using a different construction technique. The third design is a set of single sub-modules each intended to test variations of the tungsten powder/embedded fiber concept by enhancing the light output/density using liquid scintillator or heavy liquids.

  7. Dynamic fragmentation of powders in spherical geometry

    NASA Astrophysics Data System (ADS)

    Milne, A. M.; Floyd, E.; Longbottom, A. W.; Taylor, P.

    2014-09-01

    Experimental evidence from a wide range of sources shows that the expanding cloud of explosively disseminated material comprises of "particles" or fragments which have different dimensions from those associated with the original material. Photographic evidence shows jets or fingers behind these expanding fragments. Powders and liquids have often been used to surround explosives to act as blast mitigants; this is the main driver for our research. Other examples of areas where these features are observed include fuel air explosives and enhanced blast explosives as well as quasi-static pressure mitigation systems. In this paper, we consider the processes occurring when an explosive interacts with a surrounding layer of powder in spherical geometry. Results from explosive experiments designed to investigate the effects of powder grain size and powder fill-to-burster charge mass ratio (/) are presented and compared with results from numerical modelling to explore what determines the primary fragment size distribution resulting from explosive dissemination of a layer of material and when this process begins. The evidence clearly shows that the process starts during the first wave transit period of the powder material and, despite the surrounding material initially being a loose powder, shows the characteristics of a brittle fracture mechanism. Later time video evidence shows the same number of jets or fingers as are identified by X-rays of the early, primary fragmentation process. The number of fragments is only a very weak function of the initial grain size of the powder.

  8. Linking flowability and granulometry of lactose powders.

    PubMed

    Boschini, F; Delaval, V; Traina, K; Vandewalle, N; Lumay, G

    2015-10-15

    The flowing properties of 10 lactose powders commonly used in pharmaceutical industries have been analyzed with three recently improved measurement methods. The first method is based on the heap shape measurement. This straightforward measurement method provides two physical parameters (angle of repose ?r and static cohesive index ?r) allowing to make a first screening of the powder properties. The second method allows to estimate the rheological properties of a powder by analyzing the powder flow in a rotating drum. This more advanced method gives a large set of physical parameters (flowing angle ?f, dynamic cohesive index ?f, angle of first avalanche ?a and powder aeration %ae) leading to deeper interpretations. The third method is an improvement of the classical bulk and tapped density measurements. In addition to the improvement of the measurement precision, the densification dynamics of the powder bulk submitted to taps is analyzed. The link between the macroscopic physical parameters obtained with these methods and the powder granulometry is analyzed. Moreover, the correlations between the different flowability indexes are discussed. Finally, the link between grain shape and flowability is discussed qualitatively. PMID:26283279

  9. Influence of carrier on the performance of dry powder inhalers.

    PubMed

    Saint-Lorant, G; Leterme, P; Gayot, A; Flament, M P

    2007-04-01

    The aim of this work is to study carriers which can become alternatives to monohydrate lactose in dry powder inhalers and to consider particle parameters that influence adhesion between drug and carrier in dry powder inhalers. Different forms of mannitol, lactose and maltitol were mixed with either terbutaline sulphate or formoterol fumarate. The blends were submitted to different adhesion tests where drug detachment from the carrier was obtained either through mechanical vibration or by aspiration. Parameters like particle shape, roughness, amorphous content and cristalline form may affect interactions between drug and carrier. In our case, crystallized forms of the carrier offered lower adhesion but better release of the active ingredient than spray-dried forms. The crystallized mannitol produced maximal fine particle dose. The blends of the mannitols and the two active ingredients gave different results. The two techniques used to assess the adhesion of drugs to carrier particles provide complementary information about drug/carrier interactions and detachment. The mechanical sieving allows to assess blend stability and the air-jet sieving makes it possible to determine how easily the drug separates from carrier. For the drugs tested, the results of fine particle doses are in agreement with the Alpine air-jet sieve results. The tests used are helpful for the choice of a new carrier in the field of the development of new carriers for dry powder inhalers. PMID:17113733

  10. Analysis Strategy of Powder Diffraction Data with 2-D Detector

    SciTech Connect

    Kumar, Abhik; /SLAC, SSRL

    2006-01-25

    To gain a clearer understanding of orientation and grain deformation of crystalline materials, x-ray powder diffraction has played an integral role in extracting three-dimensional structural information from one-dimensional diffraction patterns. Powder diffraction models identical geometry to the intersection of a normal right cone with a plane. The purpose of this paper is to develop a general expression defining the conic sections based on the geometry of a powder diffraction experiment. Applying the derived formulation of a diffraction arc to experimental data will give insight to the molecular and structural properties of the sample in question. Instead of using complex three-dimensional Euclidian geometry, we define the problem solving technique with a simpler two-dimensional transformation approach to arrive at the final equation describing the conic sections. Using the diffraction geometry parameters, we can use this equation to calibrate the diffractometer from the diffraction pattern of a known reference material, or to determine the crystalline lattice structure of the compound.

  11. Pulsed high energy synthesis of fine metal powders

    NASA Technical Reports Server (NTRS)

    Witherspoon, F. Douglas (Inventor); Massey, Dennis W. (Inventor)

    1999-01-01

    Repetitively pulsed plasma jets generated by a capillary arc discharge at high stagnation pressure (>15,000 psi) and high temperature (>10,000 K) are utilized to produce 0.1-10 .mu.m sized metal powders and decrease cost of production. The plasma jets impact and atomize melt materials to form the fine powders. The melt can originate from a conventional melt stream or from a pulsed arc between two electrodes. Gas streams used in conventional gas atomization are replaced with much higher momentum flux plasma jets. Delivering strong incident shocks aids in primary disintegration of the molten material. A series of short duration, high pressure plasma pulses fragment the molten material. The pulses introduce sharp velocity gradients in the molten material which disintegrates into fine particles. The plasma pulses have peak pressures of approximately one kilobar. The high pressures improve the efficiency of disintegration. High gas flow velocities and pressures are achieved without reduction in gas density. Repetitively pulsed plasma jets will produce powders with lower mean size and narrower size distribution than conventional atomization techniques.

  12. Processing of laser formed SiC powder

    NASA Technical Reports Server (NTRS)

    Haggerty, J. S.; Bowen, H. K.

    1987-01-01

    Processing research was undertaken to demonstrate that superior SiC characteristics could be achieved through the use of ideal constituent powders and careful post-synthesis processing steps. Initial research developed the means to produce approximately 1000 A uniform diameter, nonagglomerated, spherical, high purity SiC powders. Accomplishing this goal required major revision of the particle formation and growth model from one based on classical nucleation and growth to one based on collision and coalescence of Si particles followed by their carburization. Dispersions based on pure organic solvents as well as steric stabilization were investigated. Test parts were made by the colloidal pressing technique; both liquid filtration and consolidation (rearrangement) stages were modeled. Green densities corresponding to a random close packed structure were achieved. After drying, parts were densified at temperatures ranging from 1800 to 2100 C. This research program accomplished all of its major objectives. Superior microstructures and properties were attained by using powders having ideal characteristics and special post-synthesis processing procedures.

  13. Dustiness of Fine and Nanoscale Powders

    PubMed Central

    Evans, Douglas E.; Baron, Paul A.

    2013-01-01

    Dustiness may be defined as the propensity of a powder to form airborne dust by a prescribed mechanical stimulus; dustiness testing is typically intended to replicate mechanisms of dust generation encountered in workplaces. A novel dustiness testing device, developed for pharmaceutical application, was evaluated in the dustiness investigation of 27 fine and nanoscale powders. The device efficiently dispersed small (mg) quantities of a wide variety of fine and nanoscale powders, into a small sampling chamber. Measurements consisted of gravimetrically determined total and respirable dustiness. The following materials were studied: single and multiwalled carbon nanotubes, carbon nanofibers, and carbon blacks; fumed oxides of titanium, aluminum, silicon, and cerium; metallic nanoparticles (nickel, cobalt, manganese, and silver) silicon carbide, Arizona road dust; nanoclays; and lithium titanate. Both the total and respirable dustiness spanned two orders of magnitude (0.3–37.9% and 0.1–31.8% of the predispersed test powders, respectively). For many powders, a significant respirable dustiness was observed. For most powders studied, the respirable dustiness accounted for approximately one-third of the total dustiness. It is believed that this relationship holds for many fine and nanoscale test powders (i.e. those primarily selected for this study), but may not hold for coarse powders. Neither total nor respirable dustiness was found to be correlated with BET surface area, therefore dustiness is not determined by primary particle size. For a subset of test powders, aerodynamic particle size distributions by number were measured (with an electrical low-pressure impactor and an aerodynamic particle sizer). Particle size modes ranged from approximately 300nm to several micrometers, but no modes below 100nm, were observed. It is therefore unlikely that these materials would exhibit a substantial sub-100nm particle contribution in a workplace. PMID:23065675

  14. Compatibility of header materials with pyrotechnic powder

    SciTech Connect

    Weirick, L.J.

    1982-12-01

    The intent of this research program is to qualify several stainless steels, nickel-base alloys and a titanium alloy as candidates for explosive component applications. This report focuses on the compatibility of these materials with pyrotechnic powder. The powder is a combined titanium subhydride-potassium perchlorate mixture, used both wet and dry. Hollow tensile bars were utilized to discern interactions between the metal and powder which underwent accelerated aging. Metallography was employed along with the mechanical property results to characterize the extent of interaction. No degradation in mechanical properties was noted. 6 figures, 6 tables.

  15. Powder metallurgy design manual, 2nd edition

    SciTech Connect

    1995-12-31

    This book is the most concise and comprehensive book of its kind on powder metallurgy (P/M) technology for both component design and application. Completely updated from the previous edition, this valuable reference gives an entirely new coverage on metal injection molding (MIM) and powder forging (P/F) with applicable case histories. There is revised information on P/M compared with other technologies, prototyping, and properties and characteristics of alloys, powders and P/M materials. In addition there`s expanded data on sintering including liquid phase processing and hardening.

  16. Complex microwave conductivity of Na-DNA powders

    E-print Network

    H. Kitano; K. Ota; A. Maeda

    2006-08-01

    We report the complex microwave conductivity, $\\sigma=\\sigma_1-i\\sigma_2$, of Na-DNA powders, which was measured from 80 K to 300 K by using a microwave cavity perturbation technique. We found that the magnitude of $\\sigma_1$ near room temperature was much larger than the contribution of the surrounding water molecules, and that the decrease of $\\sigma_1$ with decreasing temperature was sufficiently stronger than that of the conduction of counterions. These results clearly suggest that the electrical conduction of Na-DNA is intrinsically semiconductive.

  17. Nano spray-dried pyrazinamide-l-leucine dry powders, physical properties and feasibility used as dry powder aerosols.

    PubMed

    Kaewjan, Kanogwan; Srichana, Teerapol

    2014-10-21

    Abstract Objective: The aim of this study was to investigate the effect of adding l-leucine and using an ethanolic solvent on the physicochemical properties and aerodynamic behavior of nano spray-dried pyrazinamide (PZA)-l-leucine powders. Materials and methods: A nano spray dryer was employed to prepare PZA-l-leucine powders. The physicochemical properties were evaluated using a scanning electron microscope (SEM), differential scanning calorimetry and X-ray diffraction. The Andersen cascade impactor was used to evaluate the in vitro aerosolization performance of the sprayed powders. Results and discussion: The incorporation of l-leucine at 10% improved the percentage fine particle fraction (%FPF) in all ethanolic solvent formulations by up to nearly twofold (20.0-23.4%) compared to the normal spray-dried PZA of (8.8-13.0%). Changes in the particle density and morphology were also observed. The dense solid particles of PZA were completely converted to bulk hollow particles with a thin shell by increasing the l-leucine content up to 50%. Higher ethanol concentration resulted in larger dimensions of the hollow particle but did not directly affect the aerosolization performance. The co-spray dried PZA with 20% l-leucine in a 10% ethanol feed solvent gave the best aerosolization performance (FPF?=?33.0%). Conclusions: The co-spray dried PZA with a suitable l-leucine content using a nano spray drying technique could be applied to formulate the PZA DPI. PMID:25331092

  18. Consolidation, magnetic and mechanical properties of gas atomized and HDDR Nd{sub 2}Fe{sub 14}B powders

    SciTech Connect

    Horton, J.A.; Heatherly, L.; Branagan, D.J.; Sellers, C.H.; Ragg, O.; Harris, I.R.

    1997-09-01

    Nd{sub 2}Fe{sub 14}B powders produced by gas atomization (GA) were consolidated and the fracture toughness and magnetic properties were measured and compared to material produced by hydrogenation, disproportionation, desorption, and recombination (HDDR) and to Magnequench MQII magnets. Hot pressing of the gas atomized powder without TiC additions required temperatures and times similar to that required by Magnequench melt spun powder. Titanium plus carbon additions, which result in enhanced quenchability during production of the GA powder, required higher temperatures than alloys without TiC for successful hot pressing and full densification. However, grain sizes remained under 50 nm in the consolidated magnet. Toughnesses for both HDDR and GA material with the larger powder sizes were slightly higher than those of comparable MQII specimens. The TiC modified GA material may result in tougher magnets that are easier to process at higher temperatures by techniques such as extrusion.

  19. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    DOEpatents

    Moorhead, Arthur J. (Knoxville, TN); Kim, Hyoun-Ee (Seoul, KR)

    1999-01-01

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are discosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder.

  20. Laminated composite of magnetic alloy powder and ceramic powder and process for making same

    DOEpatents

    Moorhead, A.J.; Kim, H.

    1999-08-10

    A laminated composite structure of alternating metal powder layers, and layers formed of an inorganic bonding media powder, and a method for manufacturing same are disclosed. The method includes the steps of assembling in a cavity alternating layers of a metal powder and an inorganic bonding media of a ceramic, glass, and glass-ceramic. Heat, with or without pressure, is applied to the alternating layers until the particles of the metal powder are sintered together and bonded into the laminated composite structure by the layers of sintered inorganic bonding media to form a strong composite structure. The method finds particular application in the manufacture of high performance magnets wherein the metal powder is a magnetic alloy powder. 9 figs.

  1. Effects of milk powders in milk chocolate.

    PubMed

    Liang, B; Hartel, R W

    2004-01-01

    The physical characteristics of milk powders used in chocolate can have significant impact on the processing conditions needed to make that chocolate and the physical and organoleptic properties of the finished product. Four milk powders with different particle characteristics (size, shape, density) and "free" milk fat levels (easily extracted with organic solvent) were evaluated for their effect on the processing conditions and characteristics of chocolates in which they were used. Many aspects of chocolate manufacture and storage (tempering conditions, melt rheology, hardness, bloom stability) were dependent on the level of free milk fat in the milk powder. However, particle characteristics of the milk powder also influenced the physical and sensory properties of the final products. PMID:14765806

  2. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION...specifications. The color additive copper powder shall conform...amounts consistent with good manufacturing practice. (c) Labeling. The color additive and any mixture...

  3. 21 CFR 73.2645 - Aluminum powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION...specifications. The color additive aluminum powder shall...amounts consistent with good manufacturing practice. (c) Labeling. The color additive and any mixture...

  4. 21 CFR 73.2646 - Bronze powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION...specifications. The color additive bronze powder shall conform...amounts consistent with good manufacturing practice. (c) Labeling. The color additive and any mixture...

  5. 21 CFR 73.2645 - Aluminum powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION...specifications. The color additive aluminum powder shall...amounts consistent with good manufacturing practice. (c) Labeling. The color additive and any mixture...

  6. 21 CFR 73.2647 - Copper powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...GENERAL LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION...specifications. The color additive copper powder shall conform...amounts consistent with good manufacturing practice. (c) Labeling. The color additive and any mixture...

  7. 7 CFR 160.93 - Powdered rosin.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REGULATIONS AND STANDARDS FOR NAVAL STORES Labeling, Advertising and Packing § 160.93 Powdered rosin. The classification...of preventing coalescence there may be incorporated in such article a limited and necessary quantity of inert, nonresinous...

  8. 7 CFR 160.93 - Powdered rosin.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS AND STANDARDS FOR NAVAL STORES Labeling, Advertising and Packing § 160.93 Powdered rosin. The classification...of preventing coalescence there may be incorporated in such article a limited and necessary quantity of inert, nonresinous...

  9. 7 CFR 160.93 - Powdered rosin.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS AND STANDARDS FOR NAVAL STORES Labeling, Advertising and Packing § 160.93 Powdered rosin. The classification...of preventing coalescence there may be incorporated in such article a limited and necessary quantity of inert, nonresinous...

  10. 7 CFR 160.93 - Powdered rosin.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATIONS AND STANDARDS FOR NAVAL STORES Labeling, Advertising and Packing § 160.93 Powdered rosin. The classification...of preventing coalescence there may be incorporated in such article a limited and necessary quantity of inert, nonresinous...

  11. 7 CFR 160.93 - Powdered rosin.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... REGULATIONS AND STANDARDS FOR NAVAL STORES Labeling, Advertising and Packing § 160.93 Powdered rosin. The classification...of preventing coalescence there may be incorporated in such article a limited and necessary quantity of inert, nonresinous...

  12. Screening and classification of ceramic powders

    NASA Technical Reports Server (NTRS)

    Miwa, S.

    1983-01-01

    A summary is given of the classification technology of ceramic powders. Advantages and disadvantages of the wet and dry screening and classification methods are discussed. Improvements of wind force screening devices are described.

  13. Metal powder production by gas atomization

    NASA Technical Reports Server (NTRS)

    Ting, E. Y.; Grant, N. J.

    1986-01-01

    The confined liquid, gas-atomization process was investigated. Results from a two-dimensional water model showed the importance of atomization pressure, as well as delivery tube and atomizer design. The atomization process at the tip of the delivery tube was photographed. Results from the atomization of a modified 7075 aluminum alloy yielded up to 60 wt pct. powders that were finer than 45 microns in diameter. Two different atomizer designs were evaluated. The amount of fine powders produced was correlated to a calculated gas-power term. An optimal gas-power value existed for maximized fine powder production. Atomization at gas-power greater than or less than this optimal value produced coarser powders.

  14. 21 CFR 73.2645 - Aluminum powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity and specifications... externally applied cosmetics, including cosmetics intended for use in the area of the eye, in...

  15. 21 CFR 73.2645 - Aluminum powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity and specifications... externally applied cosmetics, including cosmetics intended for use in the area of the eye, in...

  16. 21 CFR 73.2645 - Aluminum powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity and specifications... externally applied cosmetics, including cosmetics intended for use in the area of the eye, in...

  17. 21 CFR 73.2645 - Aluminum powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity and specifications... externally applied cosmetics, including cosmetics intended for use in the area of the eye, in...

  18. 21 CFR 73.2645 - Aluminum powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity and specifications... externally applied cosmetics, including cosmetics intended for use in the area of the eye, in...

  19. 21 CFR 73.2645 - Aluminum powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity...may be safely used in coloring externally applied cosmetics, including cosmetics intended for use in the area of the eye, in...

  20. 21 CFR 73.2645 - Aluminum powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity...may be safely used in coloring externally applied cosmetics, including cosmetics intended for use in the area of the eye, in...

  1. 21 CFR 73.2645 - Aluminum powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Cosmetics § 73.2645 Aluminum powder. (a) Identity...may be safely used in coloring externally applied cosmetics, including cosmetics intended for use in the area of the eye, in...

  2. Development of powder-forged connecting rods

    SciTech Connect

    Imahashi, K.; Tsumuki, C.; Nagare, I.

    1984-01-01

    In comparison with conventional hot forging process, powder forging process has much advantage such as good dimensional accuracy, minimum scattering of weight, etc. In spite of much advantage, the powder forged parts have not been mass-produced except for relatively simple shape parts because of technical and economic problems such as low productivity. Solving these problems, powder forging process was applied to connecting rods which required fatigue strength and minimum scattering of weight, and which were complex in shape. As a result, for the first time in the world, mass-production of powder forged connecting rods was carried out, and its properties are as follows: (1) Sufficient fatigue strength; (2) Minimum scattering of weight; and (3) Good dimensional accuracy.

  3. Continuous blending of dry pharmaceutical powders

    E-print Network

    Pernenkil, Lakshman

    2008-01-01

    Conventional batch blending of pharmaceutical powders coupled with long quality analysis times increases the production cycle time leading to strained cash flows. Also, scale-up issues faced in process development causes ...

  4. Investigation of pressing and sintering processes of CP-Ti powder made by Armstrong Process

    SciTech Connect

    Chen, Wei; Yamamoto, Yukinori; Peter, William H

    2010-01-01

    This work used in-situ and ex-situ techniques to investigate the pressing and sintering processes of commercially pure (CP) Titanium (Ti) powder made by the Armstrong process. The objective is to simulate the actual manufacturing process of near net shape Ti components. Ti powders were uniaxially pre-pressed at designated pressures up to 100 ksi to form disk samples with different theoretical densities. Compression tests were performed in an SEM at different temperatures to obtain the mechanical properties and deformation behavior of these samples. Ex-situ technique was used to track the powder deformation process of disk samples from low pressure to high pressure. In-situ sintering was also performed in an SEM to record the morphology change of the porosities on the sample surface during the sintering process. The results will provide valuable information for optimizing the manufacturing process of high-density near net shape Ti components.

  5. Characteristics of nano-sized (Pb, La)TiO3 powder synthesized at room temperature.

    PubMed

    Rha, Sa-Kyun; Lim, Borami; Choa, Yong-Ho; Jeon, Min-Seok; Song, Jun-Kwang; Lee, Youn-Seoung

    2012-02-01

    We synthesized nano-sized (Pb, La)TiO3 powder using a high energy mechano-chemical technique at room temperature. By the results, nano-sized (Pb, La)TiO3 powder with perovskite structure was successfully synthesized from an oxide mixture using a high energy mechano-chemical technique without any post-annealing. The mechanically-synthesized (Pb, La)TiO3 powder consisted of nanometer sized particles and had very high homogeneity. According to increase of milling time, source phases such as Pb oxides and TiO2 disappeared and the perovskite PLT phase was formed by chemical reaction and the release of OH group. PMID:22629919

  6. Relative flow rates of explosive powders

    SciTech Connect

    Willson, V.P.

    1988-05-31

    A study was performed to determine the relative flow rates of various explosive powders and evaluate their adaptability for use in automated dispensing systems. Results showed that PBX 9407, LX-15, RX-26-BH, and HNAB are potential candidates for use in these systems. It was also shown that powders with graphite and stearate additives generated the least amount of static and were the easiest to handle.

  7. Characterization of proteins by powder diffraction.

    SciTech Connect

    Von Dreele, R.; X-Ray Science Division

    2009-01-01

    A simulation of a protein powder diffraction pattern was stunning in the apparent amount of information that was seen. A subsequent experiment on metmyoglobin gave a powder diffraction pattern that showed very little sample broadening; the peak widths were essentially limited by the instrument resolution. The challenge is to make use of this in protein structure analysis. This talk will recall some of those early experiments and data analyses as well as an overview of current progress and future possibilities.

  8. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit (Knoxville, TN); Williams, Robert K. (Knoxville, TN)

    2001-01-01

    A biaxially textured alloy article comprises Ni powder and at least one powder selected from the group consisting of Cr, W, V, Mo, Cu, Al, Ce, YSZ, Y, Rare Earths, (RE), MgO, CeO.sub.2, and Y.sub.2 O.sub.3 ; compacted and heat treated, then rapidly recrystallized to produce a biaxial texture on the article. In some embodiments the alloy article further comprises electromagnetic or electro-optical devices and possesses superconducting properties.

  9. Method and Apparatus for Production of Powders

    NASA Technical Reports Server (NTRS)

    Storltzfus, Joel M. (Inventor); Sircar, Subhasish (Inventor)

    1998-01-01

    Apparatus and method are disclosed for producing oxides of metals and of metal alloys. The metal or alloy is placed in an oxygen atmosphere in a combustion chamber and ignited. Products of the combustion include one or more oxides of the metal or alloy in powdered form. In one embodiment of the invention a feeder is provided whereby material to be oxidized by combustion can be advanced into a combustion chamber continuously. A product remover receives the powder product of the combustion.

  10. Method and apparatus for production of powders

    NASA Technical Reports Server (NTRS)

    Stolzfus, Joel M. (inventor.); Sircar, Subhasish (inventor.)

    1995-01-01

    Apparatus and method are disclosed for producing oxides of metals and of metal alloys. The metal or alloy is placed in an oxygen atmosphere in a combustion chamber and ignited. Products of the combustion include one or more oxides of the metal or alloy in powdered form. In one embodiment of the invention a feeder is provided whereby material to be oxidized by combustion can be advanced into a combustion chamber continuously. A product remover receives the powder product of the combustion.

  11. Formation of fine particle sinterable ceramic powders

    SciTech Connect

    Micheli, A.L.

    1986-12-09

    A method is described of preparing a sinterable metal oxide ceramic precursor powder, comprising: mixing an aqueous solution of polyvalent metal cations of one or more metals taken from the group consisting of yttrium and zirconium with an aqueous solution of ammonium polyacrylate to form a metal polyacrylate precipitate, separating the precipitate from the aqueous mother liquid, burning out the organic portion of the precipitate, and calcining the ash to form a sinterable ceramic percursor powder.

  12. Synthesis and processing of monosized oxide powders

    DOEpatents

    Barringer, Eric A. (Waltham, MA); Fegley, Jr., M. Bruce (Waban, MA); Bowen, H. Kent (Belmont, MA)

    1985-01-01

    Uniform-size, high-purity, spherical oxide powders are formed by hydrolysis of alkoxide precursors in dilute alcoholic solutions. Under controlled conditions (concentrations of 0.03 to 0.2 M alkoxide and 0.2 to 1.5 M water, for example) oxide particles on the order of about 0.05 to 0.7 micron can be produced. Methods of doping such powders and forming sinterable compacts are also disclosed.

  13. Synthesis and processing of monosized oxide powders

    DOEpatents

    Barringer, E.A.; Fegley, M.B. Jr.; Bowen, H.K.

    1985-09-24

    Uniform-size, high-purity, spherical oxide powders are formed by hydrolysis of alkoxide precursors in dilute alcoholic solutions. Under controlled conditions (concentrations of 0.03 to 0.2 M alkoxide and 0.2 to 1.5 M water, for example) oxide particles on the order of about 0.05 to 0.7 microns can be produced. Methods of doping such powders and forming sinterable compacts are also disclosed. 6 figs.

  14. Advanced powder metallurgy aluminum alloys and composites

    NASA Technical Reports Server (NTRS)

    Lisagor, W. B.; Stein, B. A.

    1982-01-01

    The differences between powder and ingot metallurgy processing of aluminum alloys are outlined. The potential payoff in the use of advanced powder metallurgy (PM) aluminum alloys in future transport aircraft is indicated. The national program to bring this technology to commercial fruition and the NASA Langley Research Center role in this program are briefly outlined. Some initial results of research in 2000-series PM alloys and composites that highlight the property improvements possible are given.

  15. The filling of powdered herbs into two-piece hard capsules using hydrogenated cotton seed oil as lubricant.

    PubMed

    Aling, Joanna; Podczeck, Fridrun

    2012-11-20

    The aim of this work was to investigate the plug formation and filling properties of powdered herbal leaves using hydrogenated cotton seed oil as an alternative lubricant. In a first step, unlubricated and lubricated herbal powders were studied on a small scale using a plug simulator, and low-force compression physics and parameterization techniques were used to narrow down the range in which the optimum amount of lubricant required would be found. In a second step these results were complemented with investigations into the flow properties of the powders based on packing (tapping) experiments to establish the final optimum lubricant concentration. Finally, capsule filling of the optimum formulations was undertaken using an instrumented tamp filling machine. This work has shown that hydrogenated cotton seed oil can be used advantageously for the lubrication of herbal leaf powders. Stickiness as observed with magnesium stearate did not occur, and the optimum lubricant concentration was found to be less than that required for magnesium stearate. In this work, lubricant concentrations of 1% or less hydrogenated cotton seed oil were required to fill herbal powders into capsules on the instrumented tamp-filling machine. It was found that in principle all powders could be filled successfully, but that for some powders the use of higher compression settings was disadvantageous. Relationships between the particle size distributions of the powders, their flow and consolidation as well as their filling properties could be identified by multivariate statistical analysis. The work has demonstrated that a combination of the identification of plug formation and powder flow properties is helpful in establishing the optimum lubricant concentration required using a small quantity of powder and a powder plug simulator. On an automated tamp-filling machine, these optimum formulations produced satisfactory capsules in terms of coefficient of fill weight variability and capsule weight. PMID:22960627

  16. Vibrational spectra, powder X-ray diffractions and physical properties of cyanide complexes with 1-ethylimidazole

    NASA Astrophysics Data System (ADS)

    Kürkçüo?lu, Güne? Süheyla; Kiraz, Fulya Çetinkaya; Say?n, Elvan

    2015-10-01

    The heteronuclear tetracyanonickelate(II) complexes of the type [M(etim)Ni(CN)4]n (hereafter, abbreviated as M-Ni-etim, M = Mn(II), Fe(II) or Co(II); etim = 1-ethylimidazole, C5H8N2) were prepared in powder form and characterized by FT-IR and Raman spectroscopy, powder X-ray diffraction (PXRD), thermal (TG; DTG and DTA), and elemental analysis techniques. The structures of these complexes were elucidated using vibrational spectra and powder X-ray diffraction patterns with the peak assignment to provide a better understanding of the structures. It is shown that the spectra are consistent with a proposed crystal structure for these compounds derived from powder X-ray diffraction measurements. Vibrational spectra of the complexes were presented and discussed with respect to the internal modes of both the etim and the cyanide ligands. The C, H and N analyses were carried out for all the complexes. Thermal behaviors of these complexes were followed using TG, DTG and DTA curves in the temperature range 30-700 °C in the static air atmosphere. The FT-IR, Raman spectra, thermal and powder X-ray analyses revealed no significant differences between the single crystal and powder forms. Additionally, electrical and magnetic properties of the complexes were investigated. The FT-IR and Raman spectroscopy, PXRD, thermal and elemental analyses results propose that these complexes are similar in structure to the Hofmann-type complexes.

  17. Vibrational spectra, powder X-ray diffractions and physical properties of cyanide complexes with 1-ethylimidazole.

    PubMed

    Kürkçüo?lu, Güne? Süheyla; Kiraz, Fulya Çetinkaya; Say?n, Elvan

    2015-10-01

    The heteronuclear tetracyanonickelate(II) complexes of the type [M(etim)Ni(CN)4]n (hereafter, abbreviated as M-Ni-etim, M=Mn(II), Fe(II) or Co(II); etim=1-ethylimidazole, C5H8N2) were prepared in powder form and characterized by FT-IR and Raman spectroscopy, powder X-ray diffraction (PXRD), thermal (TG; DTG and DTA), and elemental analysis techniques. The structures of these complexes were elucidated using vibrational spectra and powder X-ray diffraction patterns with the peak assignment to provide a better understanding of the structures. It is shown that the spectra are consistent with a proposed crystal structure for these compounds derived from powder X-ray diffraction measurements. Vibrational spectra of the complexes were presented and discussed with respect to the internal modes of both the etim and the cyanide ligands. The C, H and N analyses were carried out for all the complexes. Thermal behaviors of these complexes were followed using TG, DTG and DTA curves in the temperature range 30-700 °C in the static air atmosphere. The FT-IR, Raman spectra, thermal and powder X-ray analyses revealed no significant differences between the single crystal and powder forms. Additionally, electrical and magnetic properties of the complexes were investigated. The FT-IR and Raman spectroscopy, PXRD, thermal and elemental analyses results propose that these complexes are similar in structure to the Hofmann-type complexes. PMID:25919408

  18. Fuel powder production from ductile uranium alloys.

    SciTech Connect

    Clark, C. R.

    1998-10-23

    Metallic uranium alloys are candidate materials for use as the fuel phase in very-high-density LEU dispersion fuels. These ductile alloys cannot be converted to powder form by the processes routinely used for oxides or intermetallics. Three methods of powder production from uranium alloys have been investigated within the US-RERTR program. These processes are grinding, cryogenic milling, and hydride-dehydride. In addition, a gas atomization process was investigated using gold as a surrogate for uranium. Grinding was found to be inefficient and introduced impurities into the fuel. Cryogenic milling of machine chips in a steel vial was found to have similar shortcomings. The hydride-dehydride process has historically been used to produce very fine powder that may not be suitable for fuel fabrication. Uranium is made to form its hydride by heating in a hydrogen atmosphere. Subsequent heating under vacuum drives off hydrogen gas and returns the hydride to a metallic state. The volume change on hydride formation results in a fine powder upon dehydriding. The effects of alloying elements, partial hydriding, and subsequent milling treatments on particle size distribution are being explored. Inert gas atomization is used on an industrial scale to produce metal powder. Current designs are not suitable for use with uranium. A system was specifically designed for uranium atomization. A prototype was built and tested using gold as a surrogate for uranium. The system operates efficiently and can produce powder in a variety of size ranges by changing the atomization nozzle.

  19. Ti Multicomponent Alloy Bulks by Powder Metallurgy

    NASA Astrophysics Data System (ADS)

    Zhang, Kuibao; Wen, Guanjun; Dai, Hongchuan; Teng, Yuancheng; Li, Yuxiang

    2014-10-01

    In this study, CrCuFeMnMo0.5Ti multicomponent alloy bulks were prepared by powder metallurgy of mechanical alloying and sintering. A simple body-centered cubic (bcc) solid solution was prepared after 40 h ball milling of the raw CrCuFeMnMo0.5Ti metallic powder. Particles of the alloyed powder are in microsized structures, which are actually a soft agglomeration of lamellar grains with thicknesses less than 1 ?m. Meanwhile, the lamellar granules are consisted of nanosized grains under rigid cold welding. The 80-h ball-milled powder was consolidated by cold pressing and subsequent sintering at 800°C. The observed main phase in the consolidated sample after milling for 80 h is still a bcc solid solution. The solidified sample of 80-h ball-milled powder exhibits a Vickers hardness of 468 HV, which is much higher than 171 HV of the counterpart prepared from the raw metallic powder.

  20. Tantalum powder consolidation, modeling and properties

    SciTech Connect

    Bingert, S.R.; Vargas, V.D.; Sheinberg, H.C.

    1996-10-01

    A systematic approach was taken to investigate the consolidation of tantalum powders. The effects of sinter time, temperature and ramp rate; hot isostatic pressing (HIP) temperature and time; and powder oxygen content on consolidation density, kinetics, microstructure, crystallographic texture, and mechanical properties have been evaluated. In general, higher temperatures and longer hold times resulted in higher density compacts with larger grain sizes for both sintering and HIP`ing. HIP`ed compacts were consistently higher in density than sintered products. The higher oxygen content powders resulted in finer grained, higher density HIP`ed products than the low oxygen powders. Texture analysis showed that the isostatically processed powder products demonstrated a near random texture. This resulted in isotropic properties in the final product. Mechanical testing results showed that the HIP`ed powder products had consistently higher flow stresses than conventionally produced plates, and the sintered compacts were comparable to the plate material. A micromechanics model (Ashby HIP model) has been employed to predict the mechanisms active in the consolidation processes of cold isostatic pressing (CIP), HIP and sintering. This model also predicts the density of the end product and whether grain growth should be expected under the applied processing conditions.

  1. Preparation and biocompatibility evaluation of bioactive glass-forsterite nanocomposite powder for oral bone defects treatment applications.

    PubMed

    Saqaei, Mahboobe; Fathi, Mohammadhossein; Edris, Hossein; Mortazavi, Vajihesadat

    2015-11-01

    Bone defects which emerge around dental implants are often seen when implants are placed in areas with insufficient alveolar bone, in extraction sockets, or around failing implants. Bone regeneration in above-mentioned defects using of bone grafts or bone substitutes may cure the long-term prognoses of dental implants. Biocompatibility, bioactivity and osteogenic properties are key factors affecting the applications of a bone substitute. This study was aimed at preparation, characterization, biocompatibility and bioactivity evaluation of the bioactive glass-forsterite nanocomposite powder as a desired candidate for oral bone defect treatments. Nanocomposite powders containing 58S bioactive glass and different amounts of forsterite nanopowder were synthesized in situ by sol-gel technique. Characterization of the prepared nanocomposite powders and their cytotoxicity assessment was performed via MTT test. Bioactivity assessment was done by immersing the prepared powder in the simulated body fluid (SBF). Results showed that nanocomposite powders containing forsterite with crystallite size of 20-50nm were successfully fabricated by calcination at 600°C. The prepared bioactive glass-forsterite nanocomposite powders revealed high in vitro biocompatibility; besides, the nanocomposite containing 20wt.% forsterite showed a substantial increase in the cell viability compared with control groups. During immersion in SBF, the formation of apatite layer confirmed the bioactivity of bioactive glass-forsterite nanocomposite powders. According to the results, the fabricated nanocomposite powders can be introduced as a promising candidate for oral bone imperfection treatments and hard tissue mend. PMID:26249608

  2. Chemical vapor deposited diamond-on-diamond powder composites (LDRD final report)

    SciTech Connect

    Panitz, J.K.; Hsu, W.L.; Tallant, D.R.; McMaster, M.; Fox, C.; Staley, D.

    1995-12-01

    Densifying non-mined diamond powder precursors with diamond produced by chemical vapor infiltration (CVI) is an attractive approach for forming thick diamond deposits that avoids many potential manufacturability problems associated with predominantly chemical vapor deposition (CVD) processes. The authors developed techniques for forming diamond powder precursors and densified these precursors in a hot filament-assisted reactor and a microwave plasma-assisted reactor. Densification conditions were varied following a fractional factorial statistical design. A number of conclusions can be drawn as a result of this study. High density diamond powder green bodies that contain a mixture of particle sizes solidify more readily than more porous diamond powder green bodies with narrow distributions of particle sizes. No composite was completely densified although all of the deposits were densified to some degree. The hot filament-assisted reactor deposited more material below the exterior surface, in the interior of the powder deposits; in contrast, the microwave-assisted reactor tended to deposit a CVD diamond skin over the top of the powder precursors which inhibited vapor phase diamond growth in the interior of the powder deposits. There were subtle variations in diamond quality as a function of the CVI process parameters. Diamond and glassy carbon tended to form at the exterior surface of the composites directly exposed to either the hot filament or the microwave plasma. However, in the interior, e.g. the powder/substrate interface, diamond plus diamond-like-carbon formed. All of the diamond composites produced were grey and relatively opaque because they contained flawed diamond, diamond-like-carbon and glassy carbon. A large amount of flawed and non-diamond material could be removed by post-CVI oxygen heat treatments. Heat treatments in oxygen changed the color of the composites to white.

  3. Modelling of the aging behavior of polyamide 12 powder during laser melting process

    NASA Astrophysics Data System (ADS)

    Drummer, Dietmar; Wudy, Katrin; Drexler, Maximilian

    2015-05-01

    Concerning individualization, the requirements to products have increased. Additive manufacturing technologies, such as selective laser melting allow manufacturing of complex parts without tools and forms. Due to this additive manufacturing processes comply, in opposite to conventional techniques, with these increased demands on processing technology. Due to the high temperature during processing, a degradation of the used plastic powder occurs. The non-molten material in the building chamber, the so-called partcake, can be removed after building from the finished component and reused for another process. To realize reproducible part properties refreshing of partcake powder with 30 up to 50 % virgin powder is necessary. However, these refreshing strategies lead to varying component properties due to an undefined aging state. Previous investigations on oven aged powder for selective laser melting showed for short periods of storage near the melting point thermally induced post condensation is the predominate aging effect. Due to post condensation the molecular weight and thus the viscosity increases. This paper focuses on the modeling of the post condensation process to define the aging state of polyamide 12 powder in laser melting process. Therefore the rheological behavior of PA 12 powder in dependency of time and temperature is investigated. Isothermal viscosity measurements are conducted in order to describe the post condensation reaction with a model. With knowledge of the kinetics of the post condensation reaction the state of aging can be predicted in a second step. Thus expected useful life of the powder can be calculated in dependency of the building chamber temperature. These results are then compared with viscosity values of defined aged PA 12 powder to validate the determined model.

  4. Non-destructive and rapid prediction of moisture content in red pepper (Capsicum annuum L.) powder using near-infrared spectroscopy and a partial least squares regression model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: The aim of this study was to develop a technique for the non-destructive and rapid prediction of the moisture content in red pepper powder using near-infrared (NIR) spectroscopy and a partial least squares regression (PLSR) model. Methods: Three red pepper powder products were separated in...

  5. Hemostatic powder spray: a new method for managing gastrointestinal bleeding

    PubMed Central

    Papafragkakis, Haris; Ofori, Emmanuel; Ona, Mel A.; Krishnaiah, Mahesh; Duddempudi, Sushil; Anand, Sury

    2015-01-01

    Gastrointestinal bleeding is a leading cause of morbidity and mortality in the United States. The management of gastrointestinal bleeding is often challenging, depending on its location and severity. To date, widely accepted hemostatic treatment options include injection of epinephrine and tissue adhesives such as cyanoacrylate, ablative therapy with contact modalities such as thermal coagulation with heater probe and bipolar hemostatic forceps, noncontact modalities such as photodynamic therapy and argon plasma coagulation, and mechanical hemostasis with band ligation, endoscopic hemoclips, and over-the-scope clips. These approaches, albeit effective in achieving hemostasis, are associated with a 5–10% rebleeding risk. New simple, effective, universal, and safe methods are needed to address some of the challenges posed by the current endoscopic hemostatic techniques. The use of a novel hemostatic powder spray appears to be effective and safe in controlling upper and lower gastrointestinal bleeding. Although initial reports of hemostatic powder spray as an innovative approach to manage gastrointestinal bleeding are promising, further studies are needed to support and confirm its efficacy and safety. The aim of this study was to evaluate the technical feasibility, clinical efficacy, and safety of hemostatic powder spray (Hemospray, Cook Medical, Winston-Salem, North Carolina, USA) as a new method for managing gastrointestinal bleeding. In this review article, we performed an extensive literature search summarizing case reports and case series of Hemospray for the management of gastrointestinal bleeding. Indications, features, technique, deployment, success rate, complications, and limitations are discussed. The combined technical and clinical success rate of Hemospray was 88.5% (207/234) among the human subjects and 81.8% (9/11) among the porcine models studied. Rebleeding occurred within 72 hours post-treatment in 38 patients (38/234; 16.2%) and in three porcine models (3/11; 27.3%). No procedure-related adverse events were associated with the use of Hemospray. Hemospray appears to be a safe and effective approach in the management of gastrointestinal bleeding. PMID:26082803

  6. 49 CFR 173.170 - Black powder for small arms.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Black powder for small arms. 173.170 Section 173... Class 7 § 173.170 Black powder for small arms. Black powder for small arms that has been classed in....58; (b) The total quantity of black powder in one motor vehicle, rail car, or freight container...

  7. 49 CFR 173.170 - Black powder for small arms.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Black powder for small arms. 173.170 Section 173... Class 7 § 173.170 Black powder for small arms. Black powder for small arms that has been classed in....58; (b) The total quantity of black powder in one motor vehicle, rail car, or freight container...

  8. 49 CFR 173.170 - Black powder for small arms.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Black powder for small arms. 173.170 Section 173... Class 7 § 173.170 Black powder for small arms. Black powder for small arms that has been classed in....58; (b) The total quantity of black powder in one motor vehicle, rail car, or freight container...

  9. January 2013 BEE CULTURE 23 Revisiting Powdered Sugar For

    E-print Network

    Delaplane, Keith S.

    January 2013 BEE CULTURE 23 Revisiting Powdered Sugar For Varroa Control On Honey Bees (Apis dust bees with powder sugar as a means of removing mites. Dusting with powder sugar was also gaining conducted a study which examined the efficacy of powder sugar and found it did not help in controlling

  10. 49 CFR 173.170 - Black powder for small arms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Black powder for small arms. 173.170 Section 173... Class 7 § 173.170 Black powder for small arms. Black powder for small arms that has been classed in....58; (b) The total quantity of black powder in one motor vehicle, rail car, or freight container...

  11. 49 CFR 173.170 - Black powder for small arms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Black powder for small arms. 173.170 Section 173... Class 7 § 173.170 Black powder for small arms. Black powder for small arms that has been classed in....58; (b) The total quantity of black powder in one motor vehicle, rail car, or freight container...

  12. Synthesis and characterization of nano crystalline BaFe{sub 12}O{sub 19} powders by low temperature combustion

    SciTech Connect

    Huang Jianguo; Zhuang Hanrui; Li Wenlan

    2003-01-01

    Nano crystalline BaFe{sub 12}O{sub 19} powders have been prepared at a relatively low calcination temperature by a gel combustion technique using citric acid as a fuel/reductant and nitrates as oxidants. The effects of processing parameters, such as Ba/Fe ratio, citric acid/nitrates ratio, reaction temperature on the powder characteristics and magnetic properties of the resultant barium ferrites were investigated. By controlling the molar ratio of citric acid to metal nitrates, nano crystalline BaFe{sub 12}O{sub 19} powders with different particle sizes have been obtained. Phase attributes, microstructures and magnetic properties of the powders were characterized using X-ray diffraction analysis, X-ray line-broadening technique, Fourier transform infrared spectroscopy measurements, transmission electron microscopy and vibrating sample magnetometer. The maximum saturation magnetization value and intrinsic coercivity value for the obtained barium hexaferrites are 59.36 emu/g and 5540 Oe.

  13. A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing

    NASA Astrophysics Data System (ADS)

    Farid Seyed Shirazi, Seyed; Gharehkhani, Samira; Mehrali, Mehdi; Yarmand, Hooman; Metselaar, Hendrik Simon Cornelis; Adib Kadri, Nahrizul; Azuan Abu Osman, Noor

    2015-06-01

    Since most starting materials for tissue engineering are in powder form, using powder-based additive manufacturing methods is attractive and practical. The principal point of employing additive manufacturing (AM) systems is to fabricate parts with arbitrary geometrical complexity with relatively minimal tooling cost and time. Selective laser sintering (SLS) and inkjet 3D printing (3DP) are two powerful and versatile AM techniques which are applicable to powder-based material systems. Hence, the latest state of knowledge available on the use of AM powder-based techniques in tissue engineering and their effect on mechanical and biological properties of fabricated tissues and scaffolds must be updated. Determining the effective setup of parameters, developing improved biocompatible/bioactive materials, and improving the mechanical/biological properties of laser sintered and 3D printed tissues are the three main concerns which have been investigated in this article.

  14. Determination of flow properties of pharmaceutical powders by near infrared spectroscopy.

    PubMed

    Sarraguça, Mafalda C; Cruz, Ana V; Soares, Sandra O; Amaral, Helena R; Costa, Paulo C; Lopes, João A

    2010-08-01

    The physical properties of pharmaceutical powders are of upmost importance in the pharmaceutical industry. The knowledge of their flow properties is of critical significance in operations such as blending, tablet compression, capsule filling, transportation, and in scale-up operations. Powders flow properties are measured using a number of parameters such as, angle of repose, compressibility index (Carr's index) and Hausner ratio. To estimate these properties, specific and expensive equipment with time-consuming analysis is required. Near infrared spectroscopy is a fast and low-cost analytical technique thoroughly used in the pharmaceutical industry in the quantification and qualification of products. To establish the potential of this technique to determine the parameters associated with the flow properties of pharmaceutical powders, blended powders based on paracetamol as the active pharmaceutical ingredient were constructed in pilot scale. Spectra were recorded on a Fourier-transform near infrared spectrometer in reflectance mode. The parameters studied were the angle of repose, aerated and tapped bulk density. The correlation between the reference method values and the near infrared spectrum was performed by partial least squares and optimized in terms of latent variables using cross-validation. The near infrared based properties predictions were compared with the reference methods results. Prediction errors, which varied between 2.35% for the angle of repose, 2.51% for the tapped density and 3.18% for the aerated density, show the potential of NIR spectroscopy in the determination of physical properties affecting the flowability of pharmaceutical powders. PMID:20167448

  15. Production and modification of hollow powders in plasma under controlled pressure

    NASA Astrophysics Data System (ADS)

    Gulyaev, Igor P.

    2013-06-01

    Conducting plasma processes under high or low pressure is an efficient way to affect the heat, mass and momentum exchange in a two-phase flow and this technique is widely used in such well-developed technologies as low-pressure plasma spraying (LPPS) and high pressure plasma-chemical processes. In addition operating pressure is a key parameter in novel plasma process for modification of hollow powders properties. Plasma processing of porous ceramic powders is an effective method of producing hollow spheres (HOSP) with predefined properties. Regardless the method hollow powders were produced their geometric and structural properties can be adjusted by re-melting in plasma of certain pressure: low pressure processing will expand hollow spheres and high pressure - contract it. Regulating the outer diameter of hollow sphere allows adjusting its shell thickness, apparent density, gas pressure in the cavity etc. Preliminary experiments with zirconia hollow powders demonstrated good agreement with theoretical estimations of HOSP properties. The same technique can be used for adjusting properties of ceramic hollow powders produced by different methods, including cost effective fly-ash particles (cenospheres).

  16. Development of a pungency measuring system for red-pepper powder

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Capsaicinoids are the main components that determine the spiciness level of red-pepper powders. Current pungency measurement is mostly dependent on HPLC measurement technique, which is a sample-destructive, labor-intensive, time-consuming, and expensive method. In this research, a nondestructive on-...

  17. High-temperature powder x-ray diffraction of yttria to melting point

    E-print Network

    Chen, Haydn H.

    High-temperature powder x-ray diffraction of yttria to melting point V. Swamya) Max from room temperature to melting point with the thin wire resistance heating technique. A solid-temperature data of yttria arises from the potential use of its melting point as a secondary temperature standard,3

  18. Application of powder metallurgy to an advanced-temperature nickel-base alloy, NASA-TRW 6-A

    NASA Technical Reports Server (NTRS)

    Freche, J. C.; Ashbrook, R. L.; Waters, W. J.

    1971-01-01

    Bar stock of the NASA-TRW 6-A alloy was made by prealloyed powder techniques and its properties evaluated over a range of temperatures. Room temperature ultimate tensile strength was 1894 MN/sq m (274 500 psi). The as-extruded powder product showed substantial improvements in strength over the cast alloy up to 649 C (1200 F) and superplasticity at 1093 C (2000 F). Both conventional and autoclave heat treatments were applied to the extruded powder product. The conventional heat treatment was effective in increasing rupture life at 649 and 704 C (1200 and 1300 F); the autoclave heat treatment, at 760 and 816 C (1400 and 1500 F).

  19. GRADIENT INDEX SPHERES BY THE SEQUENTIAL ACCRETION OF GLASS POWDERS

    SciTech Connect

    MARIANO VELEZ

    2008-06-15

    The Department of Energy is seeking a method for fabricating mm-scale spheres having a refractive index that varies smoothly and continuously from the center to its surface [1]. The fabrication procedure must allow the creation of a range of index profiles. The spheres are to be optically transparent and have a refractive index differential greater than 0.2. The sphere materials can be either organic or inorganic and the fabrication technique must be capable of scaling to low cost production. Mo-Sci Corporation proposed to develop optical quality gradient refractive index (GRIN) glass spheres of millimeter scale (1 to 2 mm diameter) by the sequential accretion and consolidation of glass powders. Other techniques were also tested to make GRIN spheres as the powder-accretion method produced non-concentric layers and poor optical quality glass spheres. Potential ways to make the GRIN spheres were (1) by "coating" glass spheres (1 to 2 mm diameter) with molten glass in a two step process; and (2) by coating glass spheres with polymer layers.

  20. Single-step laser deposition of functionally graded coating by dual ‘wire powder’ or ‘powder powder’ feeding—A comparative study

    NASA Astrophysics Data System (ADS)

    Syed, Waheed Ul Haq; Pinkerton, Andrew J.; Liu, Zhu; Li, Lin

    2007-07-01

    The creation of iron-copper (Fe-Cu) alloys has practical application in improving the surface heat conduction and corrosion resistance of, for example, conformal cooling channels in steel moulds, but is difficult to achieve because the elements have got low inter-solubility and are prone to solidification cracking. Previous work by these authors has reported a method to produce a graded iron-nickel-copper coating in a single-step by direct diode laser deposition (DLD) of nickel wire and copper powder as a combined feedstock. This work investigates whether dual powder feeds can be used in that process to afford greater geometric flexibility and compares attributes of the 'nickel wire and copper powder' and 'nickel powder and copper powder' processes for deposition on a H13 tool steel substrate. In wire-powder deposition, a higher temperature developed in the melt pool causing a clad with a smooth gradient structure. The nickel powder in powder-powder deposition did not impart much heat into the melt pool so the melt pool solidified with sharp composition boundaries due to single metal melting in some parts. In wire-powder experiments, a graded structure was obtained by varying the flow rates of wire and powder. However, a graded structure was not realised in powder-powder experiments by varying either the feed or the directions. Reasons for the differences and flow patterns in the melt pools and their effect on final part properties of parts produced are discussed.

  1. Slip casting nano-particle powders for making transparent ceramics

    DOEpatents

    Kuntz, Joshua D. (Livermore, CA); Soules, Thomas F. (Livermore, CA); Landingham, Richard Lee (Livermore, CA); Hollingsworth, Joel P. (Oakland, CA)

    2011-04-12

    A method of making a transparent ceramic including the steps of providing nano-ceramic powders in a processed or unprocessed form, mixing the powders with de-ionized water, the step of mixing the powders with de-ionized water producing a slurry, sonifing the slurry to completely wet the powder and suspend the powder in the de-ionized water, separating very fine particles from the slurry, molding the slurry, and curing the slurry to produce the transparent ceramic.

  2. Numerical simulation of powder transport behavior in laser cladding with coaxial powder feeding

    NASA Astrophysics Data System (ADS)

    Liu, Hao; He, XiuLi; Yu, Gang; Wang, ZhongBin; Li, ShaoXia; Zheng, CaiYun; Ning, WeiJian

    2015-10-01

    Laser cladding with coaxial powder feeding is one of the new processes applied to produce well bonding coating on the component to improve performance of its surface. In the process, the clad material is transported by the carrying gas through the coaxial nozzle, generating gas-powder flow. The powder feeding process in the coaxial laser cladding has important influence on the clad qualities. A 3D numerical model was developed to study the powder stream structure of a coaxial feeding nozzle. The predicted powder stream structure was well agreed with the experimental one. The validated model was used to explore the collision behavior of particles in the coaxial nozzle, as well as powder concentration distribution. It was found that the particle diameter and restitution coefficient greatly affect the velocity vector at outlet of nozzle due to the collisions, as well as the powder stream convergence characteristics below the nozzle. The results indicated a practical approach to optimize the powder stream for the coaxial laser cladding.

  3. NiAl powder alloys: II. Compacting of NiAl powders produced by various methods

    NASA Astrophysics Data System (ADS)

    Skachkov, O. A.; Povarova, K. B.; Drozdov, A. A.; Morozov, A. E.

    2012-05-01

    The technological properties of granulated NiAl powders produced by gas spraying of melts and NiAl powders produced by calcium hydride reduction (CHR) of mixtures of nickel and aluminum oxides are compared. The possibilities of production of compact workpieces from these powders using hydrostatic pressing, hot pressing, hot isostatic pressing, and hot extrusion are estimated. To improve compressibility, preliminary milling and/or mechanical activation of the powders are proposed. The strength properties of NiAl rods with a diameter of 20 mm extruded from a temperature of 1100°C and made from the granulated powders are slightly higher than those made from the CHR powders. At temperatures higher than 800°C the properties becomes similar. Transition point t d.b from the ductile to brittle state of samples made from powders sprayed in nitrogen and argon is 100-150°C higher than those made from the CHR powders. The difference in the mechanical properties is caused by the structural and chemical microheterogeneity of granules (microingots), which is inherited in the rods after hot deformation and annealing at 1200-1400°C and is (0.67-0.88) T m NiAl ( T m is the melting point, K).

  4. Die-target for dynamic powder consolidation

    DOEpatents

    Flinn, John E. (Idaho Falls, ID); Korth, Gary E. (Blackfoot, ID)

    1986-01-01

    A die/target is disclosed for consolidation of a powder, especially an atomized rapidly solidified metal powder, to produce monoliths by the dynamic action of a shock wave, especially a shock wave produced by the detonation of an explosive charge. The die/target comprises a rectangular metal block having a square primary surface with four rectangular mold cavities formed therein to receive the powder. The cavities are located away from the geometrical center of the primary surface and are distributed around such center while also being located away from the geometrical diagonals of the primary surface to reduce the action of reflected waves so as to avoid tensile cracking of the monoliths. The primary surface is covered by a powder retention plate which is engaged by a flyer plate to transmit the shock wave to the primary surface and the powder. Spawl plates are adhesively mounted on other surfaces of the block to act as momentum traps so as to reduce reflected waves in the block.

  5. Die-target for dynamic powder consolidation

    DOEpatents

    Flinn, J.E.; Korth, G.E.

    1985-06-27

    A die/target is disclosed for consolidation of a powder, especially an atomized rapidly solidified metal powder, to produce monoliths by the dynamic action of a shock wave, especially a shock wave produced by the detonation of an explosive charge. The die/target comprises a rectangular metal block having a square primary surface with four rectangular mold cavities formed therein to receive the powder. The cavities are located away from the geometrical center of the primary surface and are distributed around such center while also being located away from the geometrical diagonals of the primary surface to reduce the action of reflected waves so as to avoid tensile cracking of the monoliths. The primary surface is covered by a powder retention plate which is engaged by a flyer plate to transmit the shock wave to the primary surface and the powder. Spawl plates are adhesively mounted on other surfaces of the block to act as momentum traps so as to reduce reflected waves in the block. 4 figs.

  6. MnO spin-wave dispersion curves from neutron powder diffraction

    SciTech Connect

    Goodwin, Andrew L.; Dove, Martin T.; Tucker, Matthew G.; Keen, David A.

    2007-02-15

    We describe a model-independent approach for the extraction of spin-wave dispersion curves from powder neutron total scattering data. Our approach is based on a statistical analysis of real-space spin configurations to calculate spin-dynamical quantities. The RMCPROFILE implementation of the reverse Monte Carlo refinement process is used to generate a large ensemble of supercell spin configurations from MnO powder diffraction data collected at 100 K. Our analysis of these configurations gives spin-wave dispersion curves for MnO that agree well with those determined independently using neutron triple-axis spectroscopic techniques.

  7. Non-aqueous spray drying as a route to ultrafine ceramic powders

    SciTech Connect

    Armor, J.N. ); Fanelli, A.J.; Marsh, G.M. ); Zambri, P.M. )

    1988-09-01

    Spray drying imparts unique powder handling features to a wide variety of dried products and is usually carried out in a heated air stream while feeding an aqueous suspension of some solid material. The present work, however, describes non-aqueous spray drying as a means of preparing fine powders of metal oxides. In this case an alcohol solvent was used in place of water and the slurry sprayed under an inert atmosphere. Using the non-aqueous technique, the product consists of distinct but loosely aggregated primary particles. Such materials have potential for use as catalysts or catalyst supports.

  8. Aluminium Foams Fabricated by the PM Route using Nickel-coated Titanium Hydride Powders of Controlled Particle Size

    NASA Astrophysics Data System (ADS)

    Proa-Flores, Paula Mercedes

    To establish the effect of reducing the temperature mismatch between the TiH2 decomposition temperature and the aluminium melting point on the foams morphological features and their mechanical compression behavior, a nickel coating on TiH2 powders was used as a hydrogen diffusion barrier and the size of TiH2 powders was controlled to modify the hydrogen evolution temperature. The nickel diffusion barrier was produced by an electroless deposition technique and the hydrogen evolution behavior of coated powders was investigated by thermogravimetrical analysis. The effect of particle size was determined with powders of five particle size fractions along with powders of different particle size obtained from a supplier. Foamable precursors were obtained by hot pressing a mix of aluminium powders with 1 wt.% of TiH2 powders and foams were fabricated at 750 and 800 °C. The foams mechanical strength was investigated by uni-axial compression on foam cylinders with and without outer skin. Coating produced a continuous and homogeneous deposit of 96.5 wt.% nickel and reduced the initial temperature mismatch by approximately 70°C. Additionally, the coating adhesion proved to be good enough to withstand the mixing and compaction processes. Nickel-coated TiH2 powders generated foams with a more homogeneous and reproducible pore structure than foams produced with powders in the as-received and passivated condition. On the other hand, the hydrogen evolution onset of TiH2 shifted towards higher temperatures as the particle size increased. The particle size influenced the foam expansion and the porosity features. Powders of larger particle size produced foams with a more uniform pore distribution and size. Finally, compression tests on skinless foams containing nickel displayed quasi-horizontal energy regimes with longer stroke lengths than the rest, however the final energy absorption efficiencies (above 7.2 kJ·kg-1) were not remarkably increased.

  9. Thermal, mechanical, electrical, linear and nonlinear optical properties of L-arginine dihydrofluoride single crystal

    NASA Astrophysics Data System (ADS)

    Sankar, D.; Menon, Vinay Raj; Sagayaraj, P.; Madhavan, J.

    2010-01-01

    L-arginine dihydrofluoride of dimensions upto 15×10×9 mm 3 was successfully grown by slow evaporation technique from aqueous solution. The crystal was characterized by X-ray diffractometry, Elemental analysis, FT-IR, UV-Vis-NIR spectroscopy, thermal and microhardness studies. The dielectric constant and dielectric loss of the crystal were studied as function of frequency. Photoconductivity studies were also carried out on the sample. Kurtz powder SHG measurement confirms the NLO property of the grown crystals.

  10. Reactive plasma atomization of aluminum nitride powder

    SciTech Connect

    Prichard, P.; Besser, M.; Sordelet, D.; Anderson, I.

    1997-02-01

    Experiments were performed to synthesize AlN powders by reacting Al with N using a conventional dc arc plasma as heat source. Feeding Al powder into Ar/N plasma open to atmosphere produced mainly Al oxide. Experiments using a chamber backfilled with nitrogen suppressed the Al oxide, but little AlN was formed. A furnace and crucible assembly was designed to feed molten Al directly into a DeLaval nozzle attached to the face of the dc arc plasma gun. Resulting submicron powders show a significant increase in AlN formation. This was dependent on chamber pressure, plasma velocity, and molten liquid feed rate. Experimental parameters, equipment design, effects of atomization/vaporization/condensation are discussed.

  11. Biaxially textured articles formed by powder metallurgy

    DOEpatents

    Goyal, Amit; Williams, Robert K.; Kroeger, Donald M.

    2003-10-21

    A strengthened, biaxially textured alloy article having a magnetism less than pure Ni includes a rolled and annealed, compacted and sintered powder-metallurgy preform article, the preform article having been formed from a powder mixture selected from the group of mixtures consisting of: Ni, Ag, Ag--Cu, Ag--Pd, Ni--Cu, Ni--V, Ni--Mo, Ni--Al, Ni--Cr--Al, Ni--W--Al, Ni--V--Al, Ni--Mo--Al, Ni--Cu--Al; and at least one fine metal oxide powder; the article having a grain size which is fine and homogeneous; and having a dominant cube oriented {100}<100> orientation texture; and further having a Curie temperature less than that of pure Ni.

  12. Metrology Needs for Metal Additive Manufacturing Powders

    NASA Astrophysics Data System (ADS)

    Slotwinski, John A.; Garboczi, Edward J.

    2015-03-01

    Additive manufacturing (AM) processes can produce highly complex and customized parts without the need for dedicated tooling and can produce parts directly from the part design information. These types of processes are poised to revolutionize the manufacturing industry, yet several challenges are currently preventing more widespread adoption of AM technologies. Among these challenges are metrology issues associated with the measurement and characterization of the metal powders used for AM systems. This article will describe the technical challenges and needs for characterizing metal AM powders, recent research efforts to address those needs, and current work to standardize characterization methods in ASTM and ISO, such as the recently released ASTM F3049, Standard Guide for Characterizing Properties of Metal Powders Used for Additive Manufacturing Processes.

  13. Atomization methods for forming magnet powders

    DOEpatents

    Sellers, Charles H. (Idaho Falls, ID); Branagan, Daniel J. (Idaho Falls, ID); Hyde, Timothy A. (Idaho Falls, ID)

    2000-01-01

    The invention encompasses methods of utilizing atomization, methods for forming magnet powders, methods for forming magnets, and methods for forming bonded magnets. The invention further encompasses methods for simulating atomization conditions. In one aspect, the invention includes an atomization method for forming a magnet powder comprising: a) forming a melt comprising R.sub.2.1 Q.sub.13.9 B.sub.1, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; b) atomizing the melt to form generally spherical alloy powder granules having an internal structure comprising at least one of a substantially amorphous phase or a substantially nanocrystalline phase; and c) heat treating the alloy powder to increase an energy product of the alloy powder; after the heat treatment, the alloy powder comprising an energy product of at least 10 MGOe. In another aspect, the invention includes a magnet comprising R, Q, B, Z and X, wherein R is a rare earth element; X is an element selected from the group consisting of carbon, nitrogen, oxygen and mixtures thereof; Q is an element selected from the group consisting of Fe, Co and mixtures thereof; and Z is an element selected from the group consisting of Ti, Zr, Hf and mixtures thereof; the magnet comprising an internal structure comprising R.sub.2.1 Q.sub.13.9 B.sub.1.

  14. Synthesis of ultrafine powders by microwave heating

    DOEpatents

    Meek, Thomas T. (Knoxville, TN); Sheinberg, Haskell (Los Alamos, NM); Blake, Rodger D. (Santa Fe, NM)

    1988-01-01

    A method of synthesizing ultrafine powders using microwaves is described. A water soluble material is dissolved in water and the resulting aqueous solution is exposed to microwaves until the water has been removed. The resulting material is an ultrafine powder. This method can be used to make Al.sub.2 O.sub.3, NiO+Al.sub.2 O.sub.3 and NiO as well as a number of other materials including GaBa.sub.2 Cu.sub.3 O.sub.x.

  15. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1995-12-26

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figs.

  16. Desensitizing nano powders to electrostatic discharge ignition

    SciTech Connect

    Steelman, Ryan; Clark, Billy; Pantoya, Michelle L.; Heaps, Ronald J.; Daniels, Michael A.

    2015-08-01

    Electrostatic discharge (ESD) is a main cause for ignition in powder media ranging from grain silos to fireworks. Nanoscale particles are orders of magnitude more ESD ignition sensitive than their micron scale counterparts. This study shows that at least 13 vol. % carbon nanotubes (CNT) added to nano-aluminum and nano-copper oxide particles (nAl + CuO) eliminates ESD ignition sensitivity. The CNT act as a conduit for electric energy and directs electric charge through the powder to desensitize the reactive mixture to ignition. For nanoparticles, the required CNT concentration for desensitizing ESD ignition acts as a diluent to quench energy propagation.

  17. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O. (Dayton, OH)

    1994-01-01

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

  18. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O. (Dayton, OH)

    1995-01-01

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft.

  19. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1994-12-06

    A free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and particularly in applications for heat protection for heat sensitive items, such as aircraft flight recorders, and for preventing brake fade in automobiles, buses, trucks and aircraft. 3 figures.

  20. Synthesis of ultrafine powders by microwave heating

    DOEpatents

    Meek, T.T.; Sheinberg, H.; Blake, R.D.

    1987-04-24

    A method of synthesizing ultrafine powders using microwaves is described. A water soluble material is dissolved in water and the resulting aqueous solution is exposed to microwaves until the water has dissolved. The resulting material is an ultrafine powder. This method can be used to make Al/sub 2/O/sub 3/, NiO /plus/ Al/sub 2/O/sub 3/ and NiO as well as a number of other materials including GaBa/sub 2/Cu/sub 3/O/sub x/. 1 tab.

  1. Enery Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications

    SciTech Connect

    Thomas Zwitter; Phillip Nash; Xiaoyan Xu; Chadwick Johnson

    2011-03-31

    This is the final technical report for the Department of Energy NETL project NT01931 Energy Efficient Press and Sinter of Titanium Powder for Low-Cost Components in Vehicle Applications. Titanium has been identified as one of the key materials with the required strength that can reduce the weight of automotive components and thereby reduce fuel consumption. Working with newly developed sources of titanium powder, Webster-Hoff will develop the processing technology to manufacture low cost vehicle components using the single press/single sinter techniques developed for iron based powder metallurgy today. Working with an automotive or truck manufacturer, Webster-Hoff will demonstrate the feasibility of manufacturing a press and sinter titanium component for a vehicle application. The project objective is two-fold, to develop the technology for manufacturing press and sinter titanium components, and to demonstrate the feasibility of producing a titanium component for a vehicle application. The lowest cost method for converting metal powder into a net shape part is the Powder Metallurgy Press and Sinter Process. The method involves compaction of the metal powder in a tool (usually a die and punches, upper and lower) at a high pressure (up to 60 TSI or 827 MPa) to form a green compact with the net shape of the final component. The powder in the green compact is held together by the compression bonds between the powder particles. The sinter process then converts the green compact to a metallurgically bonded net shape part through the process of solid state diffusion. The goal of this project is to expand the understanding and application of press and sinter technology to Titanium Powder applications, developing techniques to manufacture net shape Titanium components via the press and sinter process. In addition, working with a vehicle manufacturer, demonstrate the feasibility of producing a titanium component for a vehicle. This is not a research program, but rather a project to develop a process for press and sinter of net shape Titanium components. All of these project objectives have been successfully completed.

  2. Structural studies of magnesium nitride fluorides by powder neutron diffraction

    SciTech Connect

    Brogan, Michael A.; Hughes, Robert W.; Smith, Ronald I.; Gregory, Duncan H.

    2012-01-15

    Samples of ternary nitride fluorides, Mg{sub 3}NF{sub 3} and Mg{sub 2}NF have been prepared by solid state reaction of Mg{sub 3}N{sub 2} and MgF{sub 2} at 1323-1423 K and investigated by powder X-ray and powder neutron diffraction techniques. Mg{sub 3}NF{sub 3} is cubic (space group: Pm3m) and has a structure related to rock-salt MgO, but with one cation site vacant. Mg{sub 2}NF is tetragonal (space group: I4{sub 1}/amd) and has an anti-LiFeO{sub 2} related structure. Both compounds are essentially ionic and form structures in which nitride and fluoride anions are crystallographically ordered. The nitride fluorides show temperature independent paramagnetic behaviour between 5 and 300 K. - Graphical abstract: Definitive structures of the ternary magnesium nitride fluorides Mg{sub 3}NF{sub 3} and the lower temperature polymorph of Mg{sub 2}NF have been determined from powder neutron diffraction data. The nitride halides are essentially ionic and exhibit weak temperature independent paramagnetic behaviour. Highlights: Black-Right-Pointing-Pointer Definitive structures of Mg{sub 3}NF{sub 3} and Mg{sub 2}NF were determined by neutron diffraction. Black-Right-Pointing-Pointer Nitride and fluoride anions are crystallographically ordered in both structures. Black-Right-Pointing-Pointer Both compounds exhibit weak, temperature independent paramagnetic behaviour. Black-Right-Pointing-Pointer The compounds are essentially ionic with ionicity increasing with F{sup -} content.

  3. Hot Superplastic Powder Forging for Transparent nanocrystalline Ceramics

    SciTech Connect

    Cannon, W. Roger

    2006-05-22

    The program explored a completely new, economical method of manufacturing nanocrystalline ceramics, Hot Superplastic Powder Forging (HSPF). The goal of the work was the development of nanocrystalline/low porosity optically transparent zirconia/alumina. The high optical transparency should result from lack of grain boundary scattering since grains will be smaller than one tenth the wavelength of light and from elimination of porosity. An important technological potential for this process is manufacturing of envelopes for high-pressure sodium vapor lamps. The technique for fabricating monolithic nanocrystalline material does not begin with powder whose particle diameter is <100 nm as is commonly done. Instead it begins with powder whose particle diameter is on the order of 10-100 microns but contains nanocrystalline crystallites <<100 nm. Spherical particles are quenched from a melt and heat treated to achieve the desired microstructure. Under a moderate pressure within a die or a mold at temperatures of 1100C to 1300C densification is by plastic flow of superplastic particles. A nanocrystalline microstructure results, though some features are greater than 100nm. It was found, for instance, that in the fully dense Al2O3-ZrO2 eutectic specimens that a bicontinuous microstructure exists containing <100 nm ZrO2 particles in a matrix of Al2O3 grains extending over 1-2 microns. Crystallization, growth, phase development and creep during hot pressing and forging were studied for several compositions and so provided some details on development of polycrystalline microstructure from heating quenched ceramics.

  4. [FTIR and classification study on the powdered milk with different assist material].

    PubMed

    Zhou, Jing; Sun, Su-Qin; Li, Yong-Jun; Zhou, Qun

    2009-01-01

    The near infrared spectrum atlases of milk powders mingled with different adjuvant are the object for cluster analysis. Drawing assistance from the disparity in infrared fingerprint atlas that change according to the contents of chemical constituent, and making mingled component models, the milk powders mingled with different adjuvant were taken for a rapid sorting test using SIMCA clustering analytical method. In the experiment, two hundred fifty sorts of milk powders in the markets from different manufacturers were scanned by near infrared ray, and were tested with reproducibility determination. It was found difficult to extract fingerprint characters just from the external appearance of the near infrared spectrum atlases from milk powders mingled with different adjuvant, and it is needed to adopt pattern recognition technique to determine intelligently. One hundred sixty atlases were drawn out randomly for cluster analysis, and unknown samples were pretested. Results showed that the milk powders mingled with different adjuvant can be identified by near infrared spectrum analysis associated with cluster analysis methods, notwithstanding the similar near infrared spectrum atlases of different sample were difficult to identify directly. No overlapping phenomenon was found among milk powders mingled with different adjuvant, and they did not interfere with each other. The results from clustering spectra between samples were satisfactory, and the correct ratios of blind detections were over 90%. In addition, the correct ratios of this method may be elevated remarkably with sufficient number of samples, increasing training set sample quantity and sampling representation, and strengthening the standard degree of manipulation. It is concluded that the designed model to determine milk powders mingled with different adjuvant is rational, and the determination capability is fine. PMID:19385217

  5. Nano-sized nickel oxide powder synthesized by organic-inorganic solution route.

    PubMed

    Lee, Sang-Jin; Han, Young-Min; Jung, Choong-Hwan; Kwak, Ji-Yeon

    2013-02-01

    Nano-sized nickel oxide powders were synthesized by an organic-inorganic solution route employing polyvinyl alcohol (PVA) as an organic carrier. In this study, it was possible to control the physical properties of the nickel oxide powders by change of the PVA content. The experimental factors, such as the PVA content, heating temperature and time, were studied for the synthesis of nano crystalline powders. Nickel nitrate, (Ni(NO3)2, reagent grade) was used as a source of nickel cation. Once the cation source was completely dissolved in de-ionized (DI) water, 5 wt% PVA solution was added to the sol solution. The resulting gel-type precursors were completely dried and then calcined or crystallized at various temperatures in an air atmosphere in a box furnace. In the high PVA content of 2:1 mixing ratio, nano crystallite nickel oxide powders of below 5 nm in size with a high specific surface area of 151.19 m2/g were obtained at low temperature of 400 degrees C for 1 h. The PVA polymer contributed to homogeneous nickel cations in atomic scale through the fabrication process of the sol precursor. In this paper, the PVA solution technique for the fabrication of nano-sized nickel oxide powders is introduced. The effects of PVA content and heating time on the powder crystallization, morphology and specific surface area are also studied. The characterization of the synthesized powders is examined by using XRD, DTA/TG, TEM and nitrogen gas adsorption. PMID:23646674

  6. Pharmaceutical powders analysis using FT-Raman spectrometry: simultaneous determination of sulfathiazole and sulfanilamide.

    PubMed

    López-Sánchez, Macarena; Ruedas-Rama, María José; Ruiz-Medina, Antonio; Molina-Díaz, Antonio; Ayora-Cañada, María José

    2008-02-15

    A procedure for rapid quantitative analysis of pharmaceutical powders is described. Powdered samples were measured in a rotating cell in order to avoid sub-sampling problems by increasing the irradiated area. Quantitative determination of sulfathiazole and sulfanilamide, using a simple univariate calibration model is proposed. Even though both antibacterials are of the same chemical family (sulfonamides), the richness of structural information contained in the Raman spectra allowed their determination using the area of two selected bands (1255 and 1629 cm(-1) for sulfathiazole and sulfanilamide, respectively). Relative standard deviation (R.S.D.) values (n=10) of 3.35% and 3.46% for sulfathiazole and sulfanilamide, respectively, demonstrate the good reproducibility of the measurement technique with the rotating cell. The method was successfully applied to the analysis of synthetic mixtures and commercial pharmaceutical powders. The procedure is suitable to be applied to pharmacopoeial uniformity of content testing of batches. PMID:18371824

  7. Physico-chemistry and cytotoxicity of ceramics: part I: characterization of ceramic powders.

    PubMed

    Dion, I; Rouais, F; Baquey, C; Lahaye, M; Salmon, R; Trut, L; Cazorla, J P; Huong, P V; Monties, J R; Havlik, P

    1997-05-01

    The morphology of Al2O3, ZrO2/Y2O3, AIN, B4C, BN, SiC, Si3N4, TiB2, TiC, TiN ceramic, graphite and diamond powders has been studied by scanning electron microscopy (SEM) and the specific area of each powder was determined with the BET method. X-ray diffraction (XRD) investigations have been carried out in order to evaluate the crystallinity and determine the constitutive phases. The chemical composition was assessed by classical chemical analyses and by X-ray microprobe; some powders were studied by the laser micro-Raman technique. Correlations have been established between all these results. PMID:15348756

  8. Growth and characterization of NLO based L-arginine maleate dihydrate single crystal

    NASA Astrophysics Data System (ADS)

    Baraniraj, T.; Philominathan, P.

    2010-01-01

    Single crystals of L-arginine maleate dihydrate (LAMD) were successfully grown from aqueous solution by solvent evaporation technique. As-grown crystals were analyzed by different instrumentation techniques such as X-ray powder diffraction (XRD), Fourier transform infrared (FTIR) spectra and UV-vis near infrared (NIR) transmittance spectra. Thermal behavior has been studied with TGA/DTA analyses. The optical second harmonic generation (SHG) conversion efficiency of LAMD was determined using Kurtz powder technique and found to be 1.5 times that of KDP.

  9. Spray-dried powders enhance vaginal siRNA delivery by potentially modulating the mucus molecular sieve structure

    PubMed Central

    Wu, Na; Zhang, Xinxin; Li, Feifei; Zhang, Tao; Gan, Yong; Li, Juan

    2015-01-01

    Vaginal small interfering RNA (siRNA) delivery provides a promising strategy for the prevention and treatment of vaginal diseases. However, the densely cross-linked mucus layer on the vaginal wall severely restricts nanoparticle-mediated siRNA delivery to the vaginal epithelium. In order to overcome this barrier and enhance vaginal mucus penetration, we prepared spray-dried powders containing siRNA-loaded nanoparticles. Powders with Pluronic F127 (F127), hydroxypropyl methyl cellulose (HPMC), and mannitol as carriers were obtained using an ultrasound-assisted spray-drying technique. Highly dispersed dry powders with diameters of 5–15 ?m were produced. These powders showed effective siRNA protection and sustained release. The mucus-penetrating properties of the powders differed depending on their compositions. They exhibited different potential of opening mesh size of molecular sieve in simulated vaginal mucus system. A powder formulation with 0.6% F127 and 0.1% HPMC produced the maximum increase in the pore size of the model gel used to simulate vaginal mucus by rapidly extracting water from the gel and interacting with the gel; the resulting modulation of the molecular sieve effect achieved a 17.8-fold improvement of siRNA delivery in vaginal tract and effective siRNA delivery to the epithelium. This study suggests that powder formulations with optimized compositions have the potential to alter the steric barrier posed by mucus and hold promise for effective vaginal siRNA delivery. PMID:26347257

  10. NiTi Powder Sintering from TiH2 Powder: An In Situ Investigation

    NASA Astrophysics Data System (ADS)

    Chen, Gang; Cao, Peng

    2013-12-01

    For the first time, an in situ observation of NiTi powder sintering from TiH2 powder is presented, using an environmental scanning electron microscope. It is found that hydrogen release during dehydrogenation significantly affects the sintering behavior and resultant microstructure. In comparison to the blended Ni/Ti powders, dehydrogenation occurring in the Ni/TiH2 blend leads to higher porosity, less densification, and a lower degree of chemical homogenization after being sintered at 1173 K (900 °C) for 1 hour.

  11. Assessment of blending ratio of powdered medicine mixtures by image analysis.

    PubMed

    Miyazaki, Yasunori; Miyawaki, Kaoru; Uchino, Tomonobu; Kagawa, Yoshiyuki

    2014-01-01

    In the dispensing process, powdered medicines are often blended with diluents or different kinds of powder. With blending, the mass percent of the medicine in the mixture is unknown until the active pharmaceutical ingredient is determined with techniques such as spectroscopy and chromatography. However, pharmacists need to confirm the exact blending ratio of the dispensing mixture in pharmacies. We aimed to develop a precise and concise method to measure the mass percent of powdered medicine mixtures without an expensive analytical apparatus. Digital photographs of three kinds of mixture of lactose powder, as diluents, with Adona®, Anginal®, or Asverin® powder were taken with a microscope at a 30× magnification. Thereafter, the mass percent was calculated from digital images of the mixture using calibrated color information in the YCbCr color space. A linear regression, between the mass percent and color difference signal, Cb, value was obtained from 10 to 90% of the medicines (r(2)=0.9806-9993) in all systems. The intra-day accuracy and precision were 0.67-12% (relative error) and <5% (relative standard deviation), respectively. Moreover, the mass percent measured using image analysis was consistent with the concentration of the active pharmaceutical ingredient determined spectrophotometrically. This effective image analysis method enables pharmacists to nondestructively ensure the exact mass percent of the medicine in the dispensing mixture in pharmacies. PMID:24695341

  12. Mechanism to Diminish the Supercooling of the Tin Freezing Point by using Graphite Powder

    NASA Astrophysics Data System (ADS)

    Zhang, Jin Tao; Wang, Y. N.

    2008-06-01

    The formation of crystallization centers from extremely pure molten tin is normally associated with deep supercooling. This deep supercooling is inconvenient for the operation of tin freezing-point cells, especially for sealed tin fixed-point cells without a holder to facilitate removal from the furnace. Researchers of the National Institute of Metrology (NIM) intended and succeeded in reducing this deep supercooling by adding fine and pure graphite powders to tin fixed-point cells without influencing the fixed-point temperature, but the mechanism is yet to be properly clarified. The principle of heterogeneous nucleation indicates that a decrease of the contact angle of the crystalline nucleus on the substrate surface results in a significant reduction of supercooling required for initiation of nucleation. The heterogeneous theory is utilized by the authors of this paper to give a reasonable description of the mechanism of supercooling reduction by addition of graphite powder. It is demonstrated that the freezing plateau can be realized by the natural cooling of the tin cell within the furnace without using the ‘outside nucleation’ technique. The maximum temperature of the freezing curves of the tin cell with graphite powder agrees well with the reference tin cell without the graphite powder, and the cells with graphite powder show good consistency.

  13. TiNi synthesis from elemental powder components

    NASA Astrophysics Data System (ADS)

    Hey, Janet C.; Jardine, A. Peter

    1994-05-01

    Commercially, the shape memory alloy TiNi is produced by either vacuum induction melting or by vacuum arc remelting of the pure metal ingots. Powder metallurgy techniques provide an alternative fabrication route but problems arise achieving chemical homogeneity. In this study TiNi compacts were cold pressed from the blended elemental powders and sintered in vacuum for varying times at temperatures from 800 degree(s)C to 1000 degree(s)C. Two heating rates were used, 5 K/min and 10 K/min. A TiNi microstructure could be produced after annealing at 1000 degree(s)C for 6 hrs, although some TiNi3 was still observed. This is likely to be difficult to completely remove as TiNi3 is thermodynamically more stable than TiNi. Thus, homogenization is unlikely to be completed by solid-state diffusion processes. The martensitic B19' structure was observed to be highly oriented after processing.

  14. Balanced mechanical resonator for powder handling device

    NASA Technical Reports Server (NTRS)

    Sarrazin, Philippe C. (Inventor); Brunner, Will M. (Inventor)

    2012-01-01

    A system incorporating a balanced mechanical resonator and a method for vibration of a sample composed of granular material to generate motion of a powder sample inside the sample holder for obtaining improved analysis statistics, without imparting vibration to the sample holder support.

  15. Powdered hide model for vegetable tanning

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Powdered hide samples for this initial study of vegetable tanning were prepared from hides that were dehaired by a typical sulfide or oxidative process, and carried through the delime/bate step of a tanning process. In this study, we report on interactions of the vegetable tannin, quebracho with th...

  16. Fluidised Powder Targets The Flying Couscous Concept

    E-print Network

    McDonald, Kirk

    , Tristan Davenne and Chris Denham @ Rutherford Appleton Laboratory Presented by Ottone Caretta 4th High. Suction / Lift 2. Load Hopper 3. Pressurise Hopper 4. Ejection / observation 1 2 3 4 1. Suction / Lift 2. Load Hopper 3. Pressurise Hopper 4. Powder Ejection and Observation 6 #12;Ottone Caretta, Malmo, May

  17. Characterization of nal powders for rocket propulsion

    NASA Astrophysics Data System (ADS)

    Merotto, L.; Galfetti, L.; Colombo, G.; DeLuca, L. T.

    2011-10-01

    Nanosized metal powders are known to significantly improve both solid and hybrid rocket performance, but have some drawbacks in terms of cost, safety, and possible influence on propellant mechanical properties. Performance enhancement through nanosized metal or metal hydride addition to solid fuels is currently under investigation also for hybrid propulsion. Therefore, a preburning characterization of the powders used in solid propellant or fuel manufacturing is useful to assess their effects on the ballistic properties and engine performance. An investigation concerning the comparative characterization of several aluminum powders having different particle size, age, and coating is presented. Surface area, morphology, chemical species concentration and characteristics, surface passivation layers, surface and subsurface chemical composition, ignition temperature and ignition delay are investigated. The aim of this characterization is to experimentally assess the effect of the nAl powder properties on ballistic characteristics of solid fuels and solidrocket composite-propellant performance, showing an increase in terms of Is caused by the decrease of two-phase losses in solid and a possible significant rf increase in hybrid rockets.

  18. 30 CFR 57.6901 - Black powder.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Black powder. 57.6901 Section 57.6901 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives General Requirements-Surface and Underground § 57.6901...

  19. 30 CFR 57.6901 - Black powder.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Black powder. 57.6901 Section 57.6901 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY AND HEALTH SAFETY AND HEALTH STANDARDS-UNDERGROUND METAL AND NONMETAL MINES Explosives General Requirements-Surface and Underground § 57.6901...

  20. Shaping Fibre Preforms From Prefabricated Powders

    NASA Astrophysics Data System (ADS)

    Dorn, R.; Baumgartner, A.; Gutu-Nelle, A.; Koppenborg, J.; Rehm, W.; Schneider, S.; Schneider, S.

    1987-01-01

    A process has been developed, for the mechanical shaping of silica fibre preforms. Porous preforms are shaped from prefabricated powders and transfered, to glass rods by thermal treatment. Drawn fibers now have attenuations of 1 dB/km and an OH absorption. of 0.5 dB/km at 138o nm. Both single and multimode fibres have been produced.

  1. Triboelectrification of pharmaceutical powders by particle impact.

    PubMed

    Watanabe, Hideo; Ghadiri, Mojtaba; Matsuyama, Tatsushi; Ding, Yu Long; Pitt, Kendal G; Maruyama, Hiroyuki; Matsusaka, Shuji; Masuda, Hiroaki

    2007-04-01

    Pharmaceutical powders are very prone to electrostatic charging by colliding and sliding contacts with walls and other particles. In pharmaceutical formulation processes, particle charging is often a nuisance and can cause problems in the manufacture of products, such as affecting powder flow, and reducing fill and dose uniformity. For a fundamental understanding of the powder triboelectrification, it is essential to study charge transfer due to a single contact of a particle with a target plane under well-defined physical, mechanical and electrical conditions. In this study, charge transfer due to a single impact of a particle against a stainless steel target was measured for alpha-lactose monohydrate, aspirin, sugar granules and ethylcellulose. The amount of transferred charge is expressed as a function of impact velocity and impact angle as well as the initial charge. The maximum contact area during impact between a particle and a target plane is estimated by an elastic-plastic deformation model. It is found that the transferred charge is a linear function of the contact area. For a given material, there is an initial particle charge for which no charge transfer occurs due to impact. This is found to be independent of impact velocity and angle, and is hence viewed as a characteristic property, which is related to the contact potential difference and tribo-electric series of the sample powders. PMID:17141989

  2. Behavior of cohesive powder in rotating drums

    NASA Astrophysics Data System (ADS)

    Wojtkowski, M.; Imole, O. I.; Ramaioli, M.; Chávez Montes, E.; Luding, S.

    2013-06-01

    We present experimental findings on the flowability and avalanching behavior of cohesive powders in a rotating drum. The main goal - beyond the scope of the current study - is to develop a method to understand and predict phenomena that precede the occurrences of events like avalanches and then to simulate this with the Discrete Element Method. In the present study, we focus on the characterization, classification, and description of the various events possible in cohesive powders - other than in non-cohesive particle systems - during rotation in a drum. Events are categorized based on their nature and we speculate on their relation to the micro-structure and properties of the powder. As main result, we show that repeatable and consistent results can be obtained in the characterization of cohesive powders when angle-based (e.g. local surface and global center-of-mass) parameters are used. Different events can be distinguished, especially for strong cohesion, bulk shear sliding is often replaced by other events like slumping.

  3. Plated Metal Powders for Electrode Pastes

    NASA Technical Reports Server (NTRS)

    Bickler, D. B.

    1984-01-01

    Metal grains to be sintered precoated with frit metal. Coated metal powders used to make ink-like electrode pastes for printing and sintering electrode-fabrication process. Grains of base metal coated with lowmelting-point--, lead or tin-- by electroless deposition.

  4. 30 CFR 57.6133 - Powder chests.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available at MSHA, 1100 Wilson Blvd... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Powder chests. 57.6133 Section 57.6133 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY...

  5. 30 CFR 57.6133 - Powder chests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available at MSHA, 1100 Wilson Blvd... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Powder chests. 57.6133 Section 57.6133 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY...

  6. 30 CFR 57.6133 - Powder chests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available at MSHA, 1100 Wilson Blvd... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Powder chests. 57.6133 Section 57.6133 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY...

  7. 30 CFR 57.6133 - Powder chests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies are available at MSHA, 1100 Wilson Blvd... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Powder chests. 57.6133 Section 57.6133 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND NONMETAL MINE SAFETY...

  8. MODELING MERCURY CONTROL WITH POWDERED ACTIVATED CARBON

    EPA Science Inventory

    The paper presents a mathematical model of total mercury removed from the flue gas at coal-fired plants equipped with powdered activated carbon (PAC) injection for Mercury control. The developed algorithms account for mercury removal by both existing equipment and an added PAC in...

  9. USING POWDERED ACTIVATED CARBON: A CRITICAL REVIEW

    EPA Science Inventory

    Because the performance of powdered activated carbon (PAC) for uses other than taste and odor control is poorly documented, the purpose of this article is to critically review uses that have been reported (i.e., pesticides and herbicides, synthetic organic chemicals, and trihalom...

  10. 21 CFR 73.1647 - Copper powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... good manufacturing practice. (d) Labeling. The color additive and any mixture prepared therefrom... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive... contains small amounts of stearic or oleic acid as lubricants. (2) Color additive mixtures for drug...

  11. 21 CFR 73.1647 - Copper powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... good manufacturing practice. (d) Labeling. The color additive and any mixture prepared therefrom... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive... contains small amounts of stearic or oleic acid as lubricants. (2) Color additive mixtures for drug...

  12. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... good manufacturing practice. (d) Labeling. The color additive and any mixture prepared therefrom... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive... is free from admixture with other substances. (2) Color additive mixtures for external drug use...

  13. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... good manufacturing practice. (d) Labeling. The color additive and any mixture prepared therefrom... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive... is free from admixture with other substances. (2) Color additive mixtures for external drug use...

  14. 21 CFR 73.1647 - Copper powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... good manufacturing practice. (d) Labeling. The color additive and any mixture prepared therefrom... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive... contains small amounts of stearic or oleic acid as lubricants. (2) Color additive mixtures for drug...

  15. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... good manufacturing practice. (d) Labeling. The color additive and any mixture prepared therefrom... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive... is free from admixture with other substances. (2) Color additive mixtures for external drug use...

  16. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... good manufacturing practice. (d) Labeling. The color additive and any mixture prepared therefrom... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive... is free from admixture with other substances. (2) Color additive mixtures for external drug use...

  17. 21 CFR 73.1647 - Copper powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... good manufacturing practice. (d) Labeling. The color additive and any mixture prepared therefrom... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive... contains small amounts of stearic or oleic acid as lubricants. (2) Color additive mixtures for drug...

  18. 21 CFR 73.1645 - Aluminum powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... good manufacturing practice. (d) Labeling. The color additive and any mixture prepared therefrom... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1645 Aluminum powder. (a) Identity. (1) The color additive... is free from admixture with other substances. (2) Color additive mixtures for external drug use...

  19. 21 CFR 73.1647 - Copper powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... good manufacturing practice. (d) Labeling. The color additive and any mixture prepared therefrom... ADDITIVES EXEMPT FROM CERTIFICATION Drugs § 73.1647 Copper powder. (a) Identity. (1) The color additive... contains small amounts of stearic or oleic acid as lubricants. (2) Color additive mixtures for drug...

  20. 21 CFR 529.2464 - Ticarcillin powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ticarcillin powder. 529.2464 Section 529.2464 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS CERTAIN OTHER DOSAGE FORM NEW ANIMAL DRUGS § 529.2464...

  1. Low density fragile states in cohesive powders

    NASA Astrophysics Data System (ADS)

    Umbanhowar, Paul B.; Goldman, Daniel I.

    2006-08-01

    We discuss the difference between cohesive and non-cohesive granular media in the context of dry quicksand, recently proposed as a new fragile state of sand. We demonstrate that weak low density configurations with properties like dry quicksand are readily formed in many common household powders. In contrast, such states cannot be formed in non-cohesive granular media such as ordinary sand.

  2. Low density fragile states in cohesive powders

    E-print Network

    Paul B. Umbanhowar; Daniel I. Goldman

    2005-12-24

    We discuss the difference between cohesive and non-cohesive granular media in the context of a recent report of "dry quicksand." Weak low density states with properties like dry quicksand are readily formed in common household powders. In contrast, such states cannot be formed in cohesionless granular media such as ordinary sand.

  3. Laboratory Powder Metallurgy Makes Tough Aluminum Sheet

    NASA Technical Reports Server (NTRS)

    Royster, D. M.; Thomas, J. R.; Singleton, O. R.

    1993-01-01

    Aluminum alloy sheet exhibits high tensile and Kahn tear strengths. Rapid solidification of aluminum alloys in powder form and subsequent consolidation and fabrication processes used to tailor parts made of these alloys to satisfy such specific aerospace design requirements as high strength and toughness.

  4. Improved Small-Particle Powders for Plasma Spraying

    NASA Technical Reports Server (NTRS)

    Nguyen, QuynhGiao, N.; Miller, Robert A.; Leissler, George W.

    2005-01-01

    Improved small-particle powders and powder-processing conditions have been developed for use in plasma spray deposition of thermal-barrier and environmental barrier coatings. Heretofore, plasma-sprayed coatings have typically ranged in thickness from 125 to 1,800 micrometers. As explained below, the improved powders make it possible to ensure complete coverage of substrates at unprecedently small thicknesses of the order of 25 micrometers. Plasma spraying involves feeding a powder into a hot, high-velocity plasma jet. The individual powder particles melt in the plasma jet as they are propelled towards a substrate, upon which they splat to build up a coating. In some cases, multiple coating layers are required. The size range of the powder particles necessarily dictates the minimum thickness of a coating layer needed to obtain uniform or complete coverage. Heretofore, powder particle sizes have typically ranged from 40 to 70 micrometers; as a result, the minimum thickness of a coating layer for complete coverage has been about 75 micrometers. In some applications, thinner coatings or thinner coating layers are desirable. In principle, one can reduce the minimum complete-coverage thickness of a layer by using smaller powder particles. However, until now, when powder particle sizes have been reduced, the powders have exhibited a tendency to cake, clogging powder feeder mechanisms and feed lines. Hence, the main problem is one of synthesizing smaller-particle powders having desirable flow properties. The problem is solved by use of a process that begins with a spray-drying subprocess to produce spherical powder particles having diameters of less than 30 micrometers. (Spherical-particle powders have the best flow properties.) The powder is then passed several times through a commercial sifter with a mesh to separate particles having diameters less than 15 micrometers. The resulting fine, flowable powder is passed through a commercial fluidized bed powder feeder into a plasma spray jet.

  5. Rapid Quantitative Analyses of Elements on Herb Medicine and Food Powder Using TEA CO2 Laser-Induced Plasma

    NASA Astrophysics Data System (ADS)

    Khumaeni, Ali; Ramli, Muliadi; Idris, Nasrullah; Lee, Yong Inn; Kurniawan, Koo Hendrik; Lie, Tjung Jie; Deguchi, Yoji; Niki, Hideaki; Kagawa, Kiichiro

    2009-03-01

    A novel technique for rapid quantitative analyses of elements on herb medicine and food powder has successfully been developed. In this technique, the powder samples were plugged in a small hole (2 mm in diameter and 3 mm in depth) and covered by a metal mesh. The Transversely Excited Atmospheric (TEA) CO2 laser (1500 mJ, 200 ns) was focused on the powder sample surfaces passing through the metal mesh at atmospheric pressure of nitrogen surrounding gas. It is hypothesized that the small hole functions to confine the powder particles and suppresses the blowing-off, while the metal mesh works as the source of electrons to initiate the strong gas breakdown plasma. The confined powder particles are subsequently ablated by the laser irradiation and the ablated particles move into the strong gas breakdown plasma region to be atomized and excited. Using this method, a quantitative analysis of the milk powder sample containing different concentrations of Ca was successfully demonstrated, resulting in a good linear calibration curve with high precision.

  6. The Development of a Two-Powder Process for Bi-2212 Precursor Powders

    NASA Astrophysics Data System (ADS)

    Sooby, Elizabeth; Holesinger, Terry

    2010-10-01

    Bi2Sr2Ca1Cu2Oy (Bi-2212) is a prime candidate for high-field (>20 T) superconducting magnet applications, as it can be formed into a round wire conductor, a unique characteristic among all the high-temperature supercondutors (HTS) discovered to date. Round wires are manufactured by conventional oxide powder-in-tube processes (OPIT). A critical part of this process is the quality of the starting oxide powder precursor, affecting the drawing processes to form wire, the development of the superconducting phase in-situ during heat treatments and the connectivity along the wire length. To better manipulate the partial-melt behavior while better controlling the formation of 2212 by reducing the number of phases present, as 2-powder process was developed. A set of anneals has been completed on the resulting precursor powder. Initial characterization indicates the process can produce Bi-2212, though further development is necessary.

  7. The effect of polymorphism on powder compaction and dissolution properties of chemically equivalent oxytetracycline hydrochloride powders.

    PubMed

    Liebenberg, W; de Villiers, M M; Wurster, D E; Swanepoel, E; Dekker, T G; Lötter, A P

    1999-09-01

    In South Africa, oxytetracycline is identified as an essential drug; many generic products are on the market, and many more are being developed. In this study, six oxytetracycline hydrochloride powders were obtained randomly from manufacturers, and suppliers were compared. It was found that compliance to a pharmacopoeial monograph was insufficient to ensure the optimum dissolution performance of a simple tablet formulation. Comparative physicochemical raw material analysis showed no major differences with regard to differential scanning calorimetry (DSC), infrared (IR) spectroscopy, powder dissolution, and particle size. However, the samples could be divided into two distinct types with respect to X-ray powder diffraction (XRD) and thus polymorphism. The two polymorphic forms had different dissolution properties in water or 0.1 N hydrochloride acid. This difference became substantial when the dissolution from tablets was compared. The powders containing form A were less soluble than that containing form B. PMID:10518242

  8. Low density fragile states in cohesive powders Paul B. Umbanhowara

    E-print Network

    Goldman, Daniel I.

    - sand, capable of swallowing desert travelers captured the public's imagination and was widely discussed of the powder 39% fell to the bottom of the container, and a well-defined jet emerged. In a 30-cm-deep powder

  9. 21 CFR 73.40 - Dehydrated beets (beet powder).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...powder). (a) Identity. (1) The color additive dehydrated beets is a dark red powder prepared by dehydrating sound, mature, good quality, edible beets. (2) Color additive mixtures made with dehydrated beets may contain as diluents only...

  10. Consolidation of aluminum 6061 powder by equal channel angular extrusion 

    E-print Network

    Pearson, John Montgomery

    1997-01-01

    material in an effort to determine some optimal conditions for this process and its applications to powder metallurgy. Copper billets were filled with powder that was either uncompacted, precompacted 75-80% of theoretical density in the billet...

  11. Characterization and Control of Powder Properties for Additive Manufacturing

    NASA Astrophysics Data System (ADS)

    Strondl, A.; Lyckfeldt, O.; Brodin, H.; Ackelid, U.

    2015-03-01

    Powder characterization and handling in powder metallurgy are important issues and the required powder properties will vary between different component manufacturing processes. By understanding and controlling these, the final material properties for different applications can be improved and become more reliable. In this study, the metal powders used in additive manufacturing (AM) in terms of electron beam melting and selective laser melting have been investigated regarding particle size and shape using dynamic image analysis. In parallel, powder flow characteristics have been evaluated with a powder rheometer. Correlations within the results have been found between particle shape and powder flow characteristics that could explain certain effects of the powder processing in the AM processes. The impact, however, in the processing performance as well as in ultimate material properties was found to be limited.

  12. 21 CFR 522.468 - Colistimethate sodium powder for injection.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...2011-04-01 false Colistimethate sodium powder for injection. 522.468 Section...ANIMAL DRUGS § 522.468 Colistimethate sodium powder for injection. (a) Specifications . Each vial contains colistimethate sodium equivalent to 10 grams colistin...

  13. 21 CFR 522.468 - Colistimethate sodium powder for injection.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...2010-04-01 false Colistimethate sodium powder for injection. 522.468 Section...ANIMAL DRUGS § 522.468 Colistimethate sodium powder for injection. (a) Specifications . Each vial contains colistimethate sodium equivalent to 10 grams colistin...

  14. 21 CFR 522.468 - Colistimethate sodium powder for injection.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...2013-04-01 false Colistimethate sodium powder for injection. 522.468 Section...ANIMAL DRUGS § 522.468 Colistimethate sodium powder for injection. (a) Specifications . Each vial contains colistimethate sodium equivalent to 10 grams colistin...

  15. 21 CFR 522.468 - Colistimethate sodium powder for injection.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...2014-04-01 false Colistimethate sodium powder for injection. 522.468 Section...ANIMAL DRUGS § 522.468 Colistimethate sodium powder for injection. (a) Specifications. Each vial contains colistimethate sodium equivalent to 10 grams colistin...

  16. 21 CFR 520.2380f - Thiabendazole, piperazine phosphate powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... false Thiabendazole, piperazine phosphate powder. 520.2380f Section 520...2380f Thiabendazole, piperazine phosphate powder. (a) Specifications...33 grams of piperazine (as piperazine phosphate). (b) Sponsor. See No....

  17. 21 CFR 520.2380f - Thiabendazole, piperazine phosphate powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... false Thiabendazole, piperazine phosphate powder. 520.2380f Section 520...2380f Thiabendazole, piperazine phosphate powder. (a) Specifications...33 grams of piperazine (as piperazine phosphate). (b) Sponsor. See No....

  18. 21 CFR 520.2380f - Thiabendazole, piperazine phosphate powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... false Thiabendazole, piperazine phosphate powder. 520.2380f Section 520...2380f Thiabendazole, piperazine phosphate powder. (a) Specifications...33 grams of piperazine (as piperazine phosphate). (b) Sponsor. See No....

  19. 21 CFR 520.2380f - Thiabendazole, piperazine phosphate powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... false Thiabendazole, piperazine phosphate powder. 520.2380f Section 520...2380f Thiabendazole, piperazine phosphate powder. (a) Specifications...33 grams of piperazine (as piperazine phosphate). (b) Sponsor. See No....

  20. 21 CFR 520.2380f - Thiabendazole, piperazine phosphate powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... false Thiabendazole, piperazine phosphate powder. 520.2380f Section 520...2380f Thiabendazole, piperazine phosphate powder. (a) Specifications...33 grams of piperazine (as piperazine phosphate). (b) Sponsor. See No....

  1. Method for controlling density and permeability of sintered powdered metals

    NASA Technical Reports Server (NTRS)

    Todd, H. H.

    1968-01-01

    Improved, relatively low-cost method has been developed to produce porous metals with predetermined pore size, pore spacing, and density, utilizing powder-metal processes. The method uses angular not spherical tungsten powder.

  2. Photocatalysis of phenol and salicyclic acid by nanostructured titania powders

    SciTech Connect

    Fotou, G.P.; Pratsinis, S.E.

    1995-12-31

    The photocatalytic destruction of phenol and salicylic acid was studied in aqueous suspensions of titania powders made in flame reactors. These powders were made in six hydrocarbon diffusion flames by hydrolysis and oxidation of TiCl{sub 4} that resulted in powders of high specific surface area and high anatase content. The photoactivity of the flame-made titania powders was compared with that of commercially available powders. Doping the titania with SiO{sub 2} was detrimental to the photoactivity of the powders in aerated solutions in contrast to non-aerated solutions. Titania powders in the range of 20-40 nm containing small amounts of rutile were more active than pure anatase powders. The phenol degradation reaction followed a first-order law while the Langmuir-Hinshelwood model was found to most accurately represent the photodegradation of salicylic acid.

  3. 21 CFR 520.88d - Amoxicillin trihydrate soluble powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... false Amoxicillin trihydrate soluble powder. 520.88d Section 520.88d Food...88d Amoxicillin trihydrate soluble powder. (a) Specifications. Each gram... Administer by drench or by mixing in milk. Treatment should be...

  4. 21 CFR 520.88d - Amoxicillin trihydrate soluble powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... false Amoxicillin trihydrate soluble powder. 520.88d Section 520.88d Food...88d Amoxicillin trihydrate soluble powder. (a) Specifications. Each gram... Administer by drench or by mixing in milk. Treatment should be...

  5. 21 CFR 520.88d - Amoxicillin trihydrate soluble powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... false Amoxicillin trihydrate soluble powder. 520.88d Section 520.88d Food...88d Amoxicillin trihydrate soluble powder. (a) Specifications. Each gram... Administer by drench or by mixing in milk. Treatment should be...

  6. 21 CFR 520.88d - Amoxicillin trihydrate soluble powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... false Amoxicillin trihydrate soluble powder. 520.88d Section 520.88d Food...88d Amoxicillin trihydrate soluble powder. (a) Specifications. Each gram... Administer by drench or by mixing in milk. Treatment should be...

  7. Powder Processing of High Temperature Cermets and Carbides at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Salvail, Pat; Panda, Binayak; Hickman, Robert R.

    2007-01-01

    The Materials and Processing Laboratory at NASA Marshall Space Flight Center is developing Powder Metallurgy (PM) processing techniques for high temperature cermet and carbide material consolidation. These new group of materials would be utilized in the nuclear core for Nuclear Thermal Rockets (NTR). Cermet materials offer several advantages for NTR such as retention of fission products and fuels, better thermal shock resistance, hydrogen compatibility, high thermal conductivity, and high strength. Carbide materials offer the highest operating temperatures but are sensitive to thermal stresses and are difficult to process. To support the effort, a new facility has been setup to process refractory metal, ceramic, carbides and depleted uranium-based powders. The facility inciudes inert atmosphere glove boxes for the handling of reactive powders, a high temperature furnace, and powder processing equipment used for blending, milling, and sieving. The effort is focused on basic research to identify the most promising compositions and processing techniques. Several PM processing methods including Cold and Hot Isostatic Pressing are being evaluated to fabricate samples for characterization and hot hydrogen testing.

  8. Powder metallurgy: Solid and liquid phase sintering of copper

    NASA Technical Reports Server (NTRS)

    Sheldon, Rex; Weiser, Martin W.

    1993-01-01

    Basic powder metallurgy (P/M) principles and techniques are presented in this laboratory experiment. A copper based system is used since it is relatively easy to work with and is commercially important. In addition to standard solid state sintering, small quantities of low melting metals such as tin, zinc, lead, and aluminum can be added to demonstrate liquid phase sintering and alloy formation. The Taguchi Method of experimental design was used to study the effect of particle size, pressing force, sintering temperature, and sintering time. These parameters can be easily changed to incorporate liquid phase sintering effects and some guidelines for such substitutions are presented. The experiment is typically carried out over a period of three weeks.

  9. 21 CFR 520.44 - Acetazolamide sodium soluble powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 6 2012-04-01 2012-04-01 false Acetazolamide sodium soluble powder. 520.44... Acetazolamide sodium soluble powder. (a) Specifications. The drug is in a powder form containing acetazolamide sodium, USP equivalent to 25 percent acetazolamide activity. (b) Sponsor. See No. 053501 in §...

  10. 21 CFR 520.44 - Acetazolamide sodium soluble powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Acetazolamide sodium soluble powder. 520.44... Acetazolamide sodium soluble powder. (a) Specifications. The drug is in a powder form containing acetazolamide sodium, USP equivalent to 25 percent acetazolamide activity. (b) Sponsor. See No. 053501 in §...

  11. 21 CFR 176.350 - Tamarind seed kernel powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 3 2013-04-01 2013-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in...

  12. 21 CFR 176.350 - Tamarind seed kernel powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in...

  13. 21 CFR 176.350 - Tamarind seed kernel powder.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 3 2012-04-01 2012-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in...

  14. 21 CFR 176.350 - Tamarind seed kernel powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Substances for Use Only as Components of Paper and Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a component of articles intended for use in...

  15. 21 CFR 176.350 - Tamarind seed kernel powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 3 2014-04-01 2014-04-01 false Tamarind seed kernel powder. 176.350 Section 176... Paperboard § 176.350 Tamarind seed kernel powder. Tamarind seed kernel powder may be safely used as a..., packaging, transporting, or holding food, subject to the provisions of this section. (a) Tamarind...

  16. 21 CFR 872.6660 - Porcelain powder for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Porcelain powder for clinical use. 872.6660... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6660 Porcelain powder for clinical use. (a) Identification. Porcelain powder for clinical use is a device consisting of a mixture of...

  17. 21 CFR 872.6660 - Porcelain powder for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Porcelain powder for clinical use. 872.6660... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6660 Porcelain powder for clinical use. (a) Identification. Porcelain powder for clinical use is a device consisting of a mixture of...

  18. 21 CFR 872.6660 - Porcelain powder for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Porcelain powder for clinical use. 872.6660... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6660 Porcelain powder for clinical use. (a) Identification. Porcelain powder for clinical use is a device consisting of a mixture of...

  19. 21 CFR 872.6660 - Porcelain powder for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Porcelain powder for clinical use. 872.6660... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6660 Porcelain powder for clinical use. (a) Identification. Porcelain powder for clinical use is a device consisting of a mixture of...

  20. THERMAL CONDUCTIVITY OF POWDER INSULATIONS FOR CRYOGENIC STORAGE

    E-print Network

    Chang, Ho-Myung

    THERMAL CONDUCTIVITY OF POWDER INSULATIONS FOR CRYOGENIC STORAGE VESSELS Y. S. Choi1 '3 , M. N is measured in steady state, from which the thermal conductivity of powder insulation is calculated and compared with published results. KEYWORDS: Thermal conductivity, Powder insulations, Cryostats PACS:44

  1. Improved retort for cleaning metal powders with hydrogen

    NASA Technical Reports Server (NTRS)

    Arias, A.

    1969-01-01

    Improved cleaning retort produces uniform temperature distribution in the heated zone and minimizes hydrogen channeling through the powder bed. Retort can be used for nonmetallic powders, sintering in a reducing atmosphere, and for cleaning powders in reduction atmospheres other than hydrogen.

  2. 21 CFR 520.540a - Dexamethasone powder.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Dexamethasone powder. 520.540a Section 520.540a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.540a Dexamethasone powder. (a) Specifications. Dexamethasone powder...

  3. 21 CFR 520.540a - Dexamethasone powder.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Dexamethasone powder. 520.540a Section 520.540a Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.540a Dexamethasone powder. (a) Specifications. Dexamethasone powder...

  4. 21 CFR 872.6660 - Porcelain powder for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Porcelain powder for clinical use. 872.6660... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6660 Porcelain powder for clinical use. (a) Identification. Porcelain powder for clinical use is a device consisting of a mixture of...

  5. 21 CFR 520.1696b - Penicillin G powder.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 6 2014-04-01 2014-04-01 false Penicillin G powder. 520.1696b Section 520.1696b... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1696b Penicillin G powder. (a) Specifications. Each gram of powder contains penicillin G potassium equivalent to 1.54 million units...

  6. 21 CFR 520.1696b - Penicillin G powder.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 6 2013-04-01 2013-04-01 false Penicillin G powder. 520.1696b Section 520.1696b... DRUGS, FEEDS, AND RELATED PRODUCTS ORAL DOSAGE FORM NEW ANIMAL DRUGS § 520.1696b Penicillin G powder. (a) Specifications. Each gram of powder contains penicillin G potassium equivalent to 1.54 million units...

  7. Thermite powder ignition by localized microwaves Yehuda Meir, Eli Jerby

    E-print Network

    Jerby, Eli

    . Introduction Exothermic thermite reactions occur between metal-oxides and metals in powder mixtures-field) coupling of micro- waves to powders made of non-magnetic metals was discovered as an effective heatingThermite powder ignition by localized microwaves Yehuda Meir, Eli Jerby Faculty of Engineering

  8. 21 CFR 73.40 - Dehydrated beets (beet powder).

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 1 2012-04-01 2012-04-01 false Dehydrated beets (beet powder). 73.40 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.40 Dehydrated beets (beet powder). (a) Identity. (1) The color additive dehydrated beets is a dark red powder prepared by dehydrating...

  9. 21 CFR 73.40 - Dehydrated beets (beet powder).

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 1 2013-04-01 2013-04-01 false Dehydrated beets (beet powder). 73.40 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.40 Dehydrated beets (beet powder). (a) Identity. (1) The color additive dehydrated beets is a dark red powder prepared by dehydrating...

  10. 21 CFR 73.40 - Dehydrated beets (beet powder).

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Dehydrated beets (beet powder). 73.40 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.40 Dehydrated beets (beet powder). (a) Identity. (1) The color additive dehydrated beets is a dark red powder prepared by dehydrating...

  11. 21 CFR 73.40 - Dehydrated beets (beet powder).

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 1 2014-04-01 2014-04-01 false Dehydrated beets (beet powder). 73.40 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.40 Dehydrated beets (beet powder). (a) Identity. (1) The color additive dehydrated beets is a dark red powder prepared by dehydrating...

  12. 21 CFR 73.40 - Dehydrated beets (beet powder).

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 1 2011-04-01 2011-04-01 false Dehydrated beets (beet powder). 73.40 Section 73... LISTING OF COLOR ADDITIVES EXEMPT FROM CERTIFICATION Foods § 73.40 Dehydrated beets (beet powder). (a) Identity. (1) The color additive dehydrated beets is a dark red powder prepared by dehydrating...

  13. 49 CFR 173.170 - Black powder for small arms.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 2011-10-01 2011-10-01 false Black powder for small arms. 173.170 Section 173...Other Than Class 1 and Class 7 § 173.170 Black powder for small arms. Black powder for small arms that has been classed...

  14. 49 CFR 173.170 - Black powder for small arms.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 2010-10-01 2010-10-01 false Black powder for small arms. 173.170 Section 173...Other Than Class 1 and Class 7 § 173.170 Black powder for small arms. Black powder for small arms that has been classed...

  15. Interaction in polysilazane/SiC powder systems

    SciTech Connect

    Boiteux, Y.P.

    1992-07-01

    Consolidation of ceramic precursor ceramic powder systems upon heating is investigated. A polysilazane (silicon nitride precursor) is chosen as ceramic precursor with a filler of a sub-micron SiC powder. A scheme to optimize the volume fraction of precursor is developed in order to maximize the density of the compacted samples in the green state. Different techniques are presented to improve the homogeneity of precursor distribution in the mixture. A microencapsulation technique is developed that leads to a uniform coating of precursor on individual SiC particles. Upon pyrolysis of systems with 20 wt% polysilazane, little shrinkage occurs. The SiC particles do not coarsen during the heat treatment. The precursor, upon pyrolysis, transforms into an amorphous ceramic phase that acts as a cement between SiC particles. This cement phase can remain amorphous up to 1500{degrees}C; and is best described as a siliconoxycarbide with or without traces of nitrogen. Elimination of nitrogen in the amorphous phase indicates that the filler material (SiC) has a strong influence on the pyrolysis behavior of the chosen polysilazane. The amorphous ceramic phase may crystallize between 1400 and 1500{degrees}C, and depending on the nature of the gas environment, the crystalline phases are SiC, Si or Si{sub 3}N{sub 4}. Mechanisms explaining the strength increase upon heat treatment are proposed. Redistribution of the precursor occurs by capillary forces or vapor phase diffusion and recondensation of volatile monomers. The confined pyrolysis of the precursor results in an increase of residual ceramic matter being decomposed inside the sample. Interfacial reaction between the native silica-rich surface layer on SiC particles and the precursor derived phase explains the high strength of the materials.

  16. Fabrication of Biochips with Micro Fluidic Channels by Micro End-milling and Powder Blasting

    PubMed Central

    Yun, Dae Jin; Seo, Tae Il; Park, Dong Sam

    2008-01-01

    For microfabrications of biochips with micro fluidic channels, a large number of microfabrication techniques based on silicon or glass-based Micro-Electro-Mechanical System (MEMS) technologies were proposed in the last decade. In recent years, for low cost and mass production, polymer-based microfabrication techniques by microinjection molding and micro hot embossing have been proposed. These techniques, which require a proper photoresist, mask, UV light exposure, developing, and electroplating as a pre-process, are considered to have some problems. In this study, we propose a new microfabrication technology which consists of micro end-milling and powder blasting. This technique could be directly applied to fabricate the metal mold without any preprocesses. The metal mold with micro-channels is machined by micro end-milling, and then, burrs generated in the end-milling process are removed by powder blasting. From the experimental results, micro end-milling combined with powder blasting could be applied effectively for fabrication of the injection mold of biochips with micro fluidic channels.

  17. Fabrication of MEMS Devices by Powder-Filling into DXRL-Formed Molds

    SciTech Connect

    Christenson, T.; Garino, T.J.; Venturini, E.

    1999-01-07

    We have developed a variety of processes for fabricating components for micro devices based on deep x-ray lithography (DXRL). Although the techniques are applicable to many materials, we have demonstrated them using hard (Nd{sub 2}Fe{sub 14}B) and soft (Ni-Zn ferrite) magnetic materials because of the importance of these materials in magnetic micro-actuators and other devices and because of the difficulty fabricating them by other means. The simplest technique involves pressing a mixture of magnetic powder and a binder into a DXRL-formed mold. In the second technique, powder is pressed into the mold and then sintered to densify. The other two processes involve pressing at high temperature either powder or a dense bulk material into a ceramic mold that was previously made using a DXRL mold. These techniques allow arbitrary 2-dimensional shapes to be made 10 to 1000 micrometers thick with in-plane dimensions as small as 50 micrometers and dimensional tolerances in the micron range. Bonded isotropic Nd{sub 2}Fe{sub 14}B micromagnets made by these processes had an energy product of 7 MGOe.

  18. Ignition of THKP and TKP pyrotechnic powders :

    SciTech Connect

    Maharrey, Sean P.; Erikson, William W; Highley, Aaron M.; Wiese-Smith, Deneille; Kay, Jeffrey J

    2014-03-01

    We have conducted Simultaneous Thermogravimetric Modulated Beam Mass Spectrometry (STMBMS) experiments on igniter/actuator pyrotechnic powders to characterize the reactive processes controlling the ignition and combustion behavior of these materials. The experiments showed a complex, interactive reaction manifold involving over ten reaction pathways. A reduced dimensionality reaction manifold was developed from the detailed 10-step manifold and is being incorporated into existing predictive modeling codes to simulate the performance of pyrotechnic powders for NW component development. The results from development of the detailed reaction manifold and reduced manifold are presented. The reduced reaction manifold has been successfully used by SNL/NM modelers to predict thermal ignition events in small-scale testing, validating our approach and improving the capability of predictive models.

  19. Weavability of dry polymer powder towpreg

    NASA Technical Reports Server (NTRS)

    Hugh, Maylene K.; Marchello, Joseph M.; Maiden, Janice R.; Johnston, Norman J.

    1993-01-01

    Carbon fiber yarns (3k, 6k, 12k) were impregnated with LARC (tm) thermoplastic polyimide dry powder. Parameters for weaving these yarns were established. Eight-harness satin fabrics were successfully woven from each of the three classes of yarns and consolidated into test specimens to determine mechanical properties. It was observed that for optimum results warp yarns should have flexural rigidities between 10,000 and 100,000 mg-cm. Tow handling minimization, low tensioning, and tow bundle twisting were used to reduce fiber breakage, the separation of filaments, and tow-to-tow abrasion. No apparent effect of tow size or twist was observed on either tension or compression modulus. However, fiber damage and processing costs favor the use of 12k yarn bundles versus 3k or 6k yarn bundles in the weaving of powder-coated towpreg.

  20. EPR Investigation of Irradiated Curry Powder

    NASA Astrophysics Data System (ADS)

    Duliu, O. G.; Ali, S. I.; Georgescu, R.

    2007-04-01

    Gamma-ray irradiated curry powder, a well priced oriental spice was investigated in order to establish the ability of EPR to detect the presence and time stability of free irradiation free-radicals. Accordingly, curry powder aliquots were irradiated with gradually increasing absorbed doses up to 11.3 kGy. The EPR spectra of all irradiated samples show the presence of al last two different species of free radicals, whose concentration increased monotonously with the absorbed doses. A 100° C isothermal annealing of irradiated samples has shown a differential reduction of amplitude of various components of the initial spectra, but even after 3.6 h of thermal treatment, the remaining amplitude represents no less then 30% of the initial ones. The same peculiarities have been noticed after more than one year storage at room temperature, all of them being very useful in establishing the existence of any previous irradiation treatment.

  1. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1993-05-18

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7[times]10[sup [minus]3] to about 7[times]10[sup [minus]2] microns and the p.c.m. must be added to the silica in an amount of 80 wt. % or less p.c.m. per combined weight of silica and p.c.m. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a p.c.m. material. The silica-p.c.m. mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  2. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O. (Dayton, OH)

    1992-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  3. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O. (Dayton, OH)

    1993-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garmets, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  4. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O. (Dayton, OH)

    1993-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7.times.10.sup.-3 to about 7.times.10.sup.-2 microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  5. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, Ival O. (Dayton, OH)

    1994-01-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub.

  6. Fabricating solid carbon porous electrodes from powders

    DOEpatents

    Kaschmitter, J.L.; Tran, T.D.; Feikert, J.H.; Mayer, S.T.

    1997-06-10

    Fabrication is described for conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive deionization, and waste treatment. Electrodes fabricated from low surface area (<50 m{sup 2}/gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon composites with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to high surface area carbons, fuel cell electrodes can be produced. 1 fig.

  7. Fabricating solid carbon porous electrodes from powders

    DOEpatents

    Kaschmitter, James L. (Pleasanton, CA); Tran, Tri D. (Livermore, CA); Feikert, John H. (Livermore, CA); Mayer, Steven T. (San Leandro, CA)

    1997-01-01

    Fabrication of conductive solid porous carbon electrodes for use in batteries, double layer capacitors, fuel cells, capacitive dionization, and waste treatment. Electrodes fabricated from low surface area (<50 m.sup.2 /gm) graphite and cokes exhibit excellent reversible lithium intercalation characteristics, making them ideal for use as anodes in high voltage lithium insertion (lithium-ion) batteries. Electrodes having a higher surface area, fabricated from powdered carbon blacks, such as carbon aerogel powder, carbon aerogel microspheres, activated carbons, etc. yield high conductivity carbon compositives with excellent double layer capacity, and can be used in double layer capacitors, or for capacitive deionization and/or waste treatment of liquid streams. By adding metallic catalysts to be high surface area carbons, fuel cell electrodes can be produced.

  8. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1994-02-01

    Free flowing, conformable powder-like mix of silica particles and a phase change material (PCM) is provided. The silica particles have a critical size of about 0.005 to about 0.025 microns and the PCM must be added to the silica in an amount of 75% or less PCM per combined weight of silica and PCM. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a PCM material. The silica-PCM mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 2 figures.

  9. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1993-10-19

    Free flowing, conformable powder-like mix of silica particles and a phase change material (pcm) is disclosed. The silica particles have a critical size of about 7[times]10[sup [minus]3] to about 7[times]10[sup [minus]2] microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 10 figures.

  10. Powder agglomeration in a microgravity environment

    NASA Technical Reports Server (NTRS)

    Cawley, James D.

    1994-01-01

    This is the final report for NASA Grant NAG3-755 entitled 'Powder Agglomeration in a Microgravity Environment.' The research program included both two types of numerical models and two types of experiments. The numerical modeling included the use of Monte Carlo type simulations of agglomerate growth including hydrodynamic screening and molecular dynamics type simulations of the rearrangement of particles within an agglomerate under a gravitational field. Experiments included direct observation of the agglomeration of submicron alumina and indirect observation, using small angle light scattering, of the agglomeration of colloidal silica and aluminum monohydroxide. In the former class of experiments, the powders were constrained to move on a two-dimensional surface oriented to minimize the effect of gravity. In the latter, some experiments involved mixture of suspensions containing particles of opposite charge which resulted in agglomeration on a very short time scale relative to settling under gravity.

  11. Dry powder mixes comprising phase change materials

    DOEpatents

    Salyer, I.O.

    1992-04-21

    A free flowing, conformable powder-like mix of silica particles and a phase change material (p.c.m.) is disclosed. The silica particles have a critical size of about 7 [times] 10[sup [minus]3] to about 7 [times] 10[sup [minus]2] microns and the pcm must be added to the silica in an amount of 80 wt. % or less pcm per combined weight of silica and pcm. The powder-like mix can be used in tableware items, medical wraps, tree wraps, garments, quilts and blankets, and in cementitious compositions of the type in which it is beneficial to use a pcm material. The silica-pcm mix can also be admixed with soil to provide a soil warming effect and placed about a tree, flower, or shrub. 9 figs.

  12. EPR Investigation of Irradiated Curry Powder

    SciTech Connect

    Duliu, O. G.; Ali, S. I.; Georgescu, R.

    2007-04-23

    Gamma-ray irradiated curry powder, a well priced oriental spice was investigated in order to establish the ability of EPR to detect the presence and time stability of free irradiation free-radicals. Accordingly, curry powder aliquots were irradiated with gradually increasing absorbed doses up to 11.3 kGy. The EPR spectra of all irradiated samples show the presence of al last two different species of free radicals, whose concentration increased monotonously with the absorbed doses. A 100 deg. C isothermal annealing of irradiated samples has shown a differential reduction of amplitude of various components of the initial spectra, but even after 3.6 h of thermal treatment, the remaining amplitude represents no less then 30% of the initial ones. The same peculiarities have been noticed after more than one year storage at room temperature, all of them being very useful in establishing the existence of any previous irradiation treatment.

  13. Incipient flow properties of two-component fine powder mixtures: Changing the flowability of smaller particles

    NASA Astrophysics Data System (ADS)

    Kojima, Takehiro; Elliott, James A.

    2013-06-01

    Understanding the flow properties of two-component fine powder systems with micrometre-sized constituents is important for the quality control of electrophotographic printing applications such as photocopiers. In previous work, we studied the incipient flow properties of model powder mixtures of large (d50 ˜ 70 ?m) and small (d50 ˜ 6-8 ?m) particles under a consolidation stress of 2 kPa, and reported that they were strongly related to the properties of the small particles where the volume ratio of small powder (xs) exceeds ˜0.1 [1]. In this follow-up study, we examine the effect of changing the flowability of the smaller components on the structure and flow properties of the binary mixtures. For the smaller particles, we used poly(styrene-co-divinylbenzene) (PS-DVB) microspheres (d50 = 7.84 ?m). The particle surfaces were modified by adding silica nanoparticles in order to prepare PS-DVB powders with a range of flowabilities. These were then mixed with glass ballotini (d50 = 71.9 ?m), and the flow properties of these mixtures were evaluated using the shear testing technique. The cohesion of the mixtures showed essentially the same trend as reported in [1] in terms of their dependence on xs and was related to the number of contacts between the PS-DVB particles. Also, it was strongly dependent on the cohesion of the PS-DVB powders despite a very small xs (xs < 0.01). As for the internal angle of friction, although its value for each PS-DVB powder was similar, it also showed a correlation with the number of contacts between PS-DVB particles.

  14. Powder Handling Device for Analytical Instruments

    NASA Technical Reports Server (NTRS)

    Sarrazin, Philippe C. (Inventor); Blake, David F. (Inventor)

    2006-01-01

    Method and system for causing a powder sample in a sample holder to undergo at least one of three motions (vibration, rotation and translation) at a selected motion frequency in order to present several views of an individual grain of the sample. One or more measurements of diffraction, fluorescence, spectroscopic interaction, transmission, absorption and/or reflection can be made on the sample, using light in a selected wavelength region.

  15. Hexachlorophane powder and neonatal staphylococcal infection.

    PubMed

    Allen, K D; Ridgway, E J; Parsons, L A

    1994-05-01

    An outbreak of Staphylococcus aureus infections occurred following discontinuation of antiseptic cord care on a neonatal unit. Multiple phage types were involved. The most common site of infection was the umbilicus. In addition, there were two clusters of methicillin-resistant S. aureus (MRSA) infection and one due to Streptococcus pyogenes. The outbreak was rapidly controlled by the reintroduction of hexachlorophane powder for cord care. PMID:7916360

  16. The reflection of very cold neutrons from diamond powder nanoparticles

    E-print Network

    V. V. Nesvizhevsky; E. V. Lychagin; A. Yu. Muzychka; A. V. Strelkov; G. Pignol; K. V. Protasov

    2008-05-17

    We study possibility of efficient reflection of very cold neutrons (VCN) from powders of nanoparticles. In particular, we measured the scattering of VCN at a powder of diamond nanoparticles as a function of powder sample thickness, neutron velocity and scattering angle. We observed extremely intense scattering of VCN even off thin powder samples. This agrees qualitatively with the model of independent nanoparticles at rest. We show that this intense scattering would allow us to use nanoparticle powders very efficiently as the very first reflectors for neutrons with energies within a complete VCN range up to $10^{-4}$ eV.

  17. Sintering of sponge and hydride-dehydride titanium powders

    SciTech Connect

    Alman, David E.; Gerdemann, Stephen J.

    2004-04-01

    The sintering behavior of compacts produced from sponge and hydride-dehydride (HDH) Ti powders was examined. Compacts were vacuum sintered at 1200 or 1300 deg C for 30, 60, 120, 240, 480 or 960 minutes. The porosity decreased with sintering time and/or temperature in compacts produced from the HDH powders. Compacts produced from these powders could be sintered to essentially full density. However, the sintering condition did not influence the amount of porosity present in compacts produced from the sponge powders. These samples could only be sintered to a density of 97% theoretical. The sintering behavior was attributed to the chemical impurities in the powders.

  18. Counterflow diffusion flame synthesis of ceramic oxide powders

    DOEpatents

    Katz, Joseph L. (Baltimore, MD); Miquel, Philippe F. (Towson, MD)

    1997-01-01

    Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity.

  19. Colloidal characterization of ultrafine silicon carbide and silicon nitride powders

    NASA Technical Reports Server (NTRS)

    Whitman, Pamela K.; Feke, Donald L.

    1986-01-01

    The effects of various powder treatment strategies on the colloid chemistry of aqueous dispersions of silicon carbide and silicon nitride are examined using a surface titration methodology. Pretreatments are used to differentiate between the true surface chemistry of the powders and artifacts resulting from exposure history. Silicon nitride powders require more extensive pretreatment to reveal consistent surface chemistry than do silicon carbide powders. As measured by titration, the degree of proton adsorption from the suspending fluid by pretreated silicon nitride and silicon carbide powders can both be made similar to that of silica.

  20. Counterflow diffusion flame synthesis of ceramic oxide powders

    DOEpatents

    Katz, J.L.; Miquel, P.F.

    1997-07-22

    Ceramic oxide powders and methods for their preparation are revealed. Ceramic oxide powders are obtained using a flame process whereby one or more precursors of ceramic oxides are introduced into a counterflow diffusion flame burner wherein the precursors are converted into ceramic oxide powders. The nature of the ceramic oxide powder produced is determined by process conditions. The morphology, particle size, and crystalline form of the ceramic oxide powders may be varied by the temperature of the flame, the precursor concentration ratio, the gas stream and the gas velocity. 24 figs.