Science.gov

Sample records for kyoto3dii fabry-perot mode

  1. High-finesse fiber Fabry-Perot cavities: stabilization and mode matching analysis

    NASA Astrophysics Data System (ADS)

    Gallego, J.; Ghosh, S.; Alavi, S. K.; Alt, W.; Martinez-Dorantes, M.; Meschede, D.; Ratschbacher, L.

    2016-03-01

    Fiber Fabry-Perot cavities, formed by micro-machined mirrors on the end-facets of optical fibers, are used in an increasing number of technical and scientific applications, where they typically require precise stabilization of their optical resonances. Here, we study two different approaches to construct fiber Fabry-Perot resonators and stabilize their length for experiments in cavity quantum electrodynamics with neutral atoms. A piezo-mechanically actuated cavity with feedback based on the Pound-Drever-Hall locking technique is compared to a novel rigid cavity design that makes use of the high passive stability of a monolithic cavity spacer and employs thermal self-locking and external temperature tuning. Furthermore, we present a general analysis of the mode matching problem in fiber Fabry-Perot cavities, which explains the asymmetry in their reflective line shapes and has important implications for the optimal alignment of the fiber resonators. Finally, we discuss the issue of fiber-generated background photons. We expect that our results contribute toward the integration of high-finesse fiber Fabry-Perot cavities into compact and robust quantum-enabled devices in the future.

  2. Meta-Optics with Nanowire Grid Arrays: Hyperbolic Fabry-Perot Modes and Hyperbolic Tamm Plasmons

    NASA Astrophysics Data System (ADS)

    Durach, Maxim; Keene, David; Lepain, Matthew

    2015-03-01

    In this talk we introduce a new class of structures - cavities formed by metal-dielectric metasurfaces. These cavities support a zoo of various resonances, including hyperbolic Tamm plasmons and hyperbolic Fabry-Perot modes, which feature anisotropic clover-leaf dispersion parallel to the metasurface and strong coupling between TM and TE polarizations in the modes. The properties and spectrum of the modes are highly tunable by the dimensional and material parameters of the structure and can be used for directional emission, modification of radiation produced by electric dipole emitters into magnetic dipole radiation as well as 90 degree polarization rotators and polarization rotation mirrors.

  3. Gain-guided index-antiguided fiber with a Fabry-Perot layer for large mode area laser amplifiers.

    PubMed

    Lai, Chih-Hsien; Chen, Hsuan-Yu; Du, Cheng-Han; Chiou, Yih-Peng

    2015-02-23

    We propose a modified gain-guided index-antiguided (GGIAG) fiber structure for large mode area laser amplifiers, in which a thin dielectric layer is placed between the low-index core and the high-index cladding. The introduced dielectric layer functions as a Fabry-Perot etalon. By letting the resonant wavelength of the Fabry-Perot layer coincide with the signal wavelength, the signal is gain-guided in the fiber core. Moreover, the pump is confined in the low-index core owing to the antiresonant reflection originated from the Fabry-Perot layer. Numerical results indicate that the leakage loss of the pump can be minified over two orders of magnitude in the proposed structure, and thus the end-pumping efficiency could be enhanced significantly. PMID:25836427

  4. Coupling of Solute Vibrational Modes with a Fabry-Perot Optical Cavity Mode

    NASA Astrophysics Data System (ADS)

    Dunkelberger, Adam; Compton, Ryan; Fears, Kenan; Spann, Bryan; Long, James; Simpkins, Blake; Owrutsky, Jeffrey

    2015-03-01

    Electronic transitions of systems confined in optical microcavities can strongly couple to cavity modes, giving rise to new, mixed-character modes. Recent studies have demonstrated similar coherent coupling between the vibrational modes of a thin polymer film and a Fabry-Perot optical cavity mode. This coupling manifests experimentally as a splitting of the transmissive cavity mode into two dispersive branches separated by the vacuum Rabi splitting. Here we present recent experimental results for the coupling of solution-phase compounds with an optical cavity. Solutions of W(CO)6, Mo(CO)6, and NCS- contained in cavities show strong coupling between the solute chromophores in the mid-infrared and cavity modes. We show that the methodology established with polymer-filled cavities is generally applicable to liquids but that the fluidity of the sample complicates the cavity construction. Varied cavity thicknesses can give rise to spatial gradients in coupling strength and difficulty in targeting a specific cavity-mode order. We also compare the transmission of the mixed vibrational-cavity modes in cavities constructed from either metallic or dielectric reflectors which impacts the cavity resonance line width. NRC Postdoctoral Fellow.

  5. Analysis of threshold conditions for generation of a closed mode in a Fabry-Perot semiconductor laser

    SciTech Connect

    Slipchenko, S. O. Podoskin, A. A.; Pikhtin, N. A.; Sokolova, Z. N.; Leshko, A. Y.; Tarasov, I. S.

    2011-05-15

    Threshold conditions for generation of a closed mode in the crystal of the Fabry-Perot semiconductor laser with a quantum-well active region are analyzed. It is found that main parameters affecting the closed mode lasing threshold for the chosen laser heterostructure are as follows: the optical loss in the passive region, the optical confinement factor of the closed mode in the gain region, and material gain detuning. The relations defining the threshold conditions for closed mode lasing in terms of optical and geometrical characteristics of the semiconductor laser are derived. It is shown that the threshold conditions can be satisfied at a lower material gain in comparison with the Fabry-Perot cavity mode due to zero output loss for the closed mode.

  6. Doubly-Resonant Fabry-Perot Cavity for Power Enhancement of Burst-Mode Picosecond Ultraviolet Pulses

    SciTech Connect

    Abudureyimu, Reheman; Huang, Chunning; Liu, Yun

    2015-01-01

    We report on a first experimental demonstration of locking a doubly-resonant Fabry-Perot cavity to burst-mode picosecond ultraviolet (UV) pulses by using a temperature controlled dispersion compensation method. This technique will eventually enable the intra cavity power enhancement of burst-mode 402.5MHz/50ps UV laser pulses with a MW level peak power required for the laser assisted H- beam stripping experiment at the Spallation Neutron Source.

  7. Single-mode Fabry-Perot laser with deeply etched slanted double trenches

    NASA Astrophysics Data System (ADS)

    Li, Xun; Zhu, Zhongshu; Xi, Yanping; Han, Lin; Ke, Cheng; Pan, Yue; Huang, Weiping

    2015-08-01

    This work proposed and demonstrated a single-mode Fabry-Perot (FP) laser structure with a pair of deeply etched slanted trenches inside the cavity. We implemented the proposed mode selection scheme in conventional 1310 nm InAlGaAs/InP strained-layer multiple-quantum-well ridge waveguide FP laser diodes and obtained single-mode operation with a side-mode suppression ratio (SMSR) as high as 35 dB . The single-mode yield was approximately 55%, and other device performance measures such as the threshold and the slope efficiency were not greatly affected. Additionally, temperature cycling and aging tests show no exceptional disadvantages when compared with the performance of conventional FP lasers. Fiber-optic transmission tests show that the proposed device can send directly modulated 2.5 Gbps and 6.25 Gbps optical signals for distances of over 50 km in standard single-mode fiber. Thus, as a cost-effective solution, this device is promising as a replacement for conventional distributed feedback laser diodes in specific applications where single-mode operation is indispensable but precise control of the lasing wavelength and/or very high SMSR (e.g., > 40 dB ) are not required.

  8. Multiwavelength pulse generation using a SESAM-based mode-locked fiber laser together with Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    Chen, Changxiu; Wu, Zhichao; Fu, Songnian; Luo, Yiyang; Liu, Bin; Liu, Deming

    2015-09-01

    A simple and compact configuration of multiwavelength pulse generator is proposed and experimentally demonstrated, using a SESAM-based passively mode-locked fiber laser together with fiber Fabry-Perot filter. By optimizing the dispersion of fiber ring cavity, a flat rectangular optical spectrum with 3 dB bandwidth of 8.1 nm is obtained, with power fluctuation of <0.5 dB. Inserting a fiber Fabry-Perot filter at the output of passively mode-locked fiber laser, we can simultaneously obtain 40 channels with 0.2 nm wavelength spacing, under the condition of <3 dB power uniformity. After wavelength-division demultiplexing and optic-to-electronic conversion, the full width at half maximum (FWHM) of single channel pulse is measured to be 30 ps while the repetition rate of pulse train is 20.3 MHz.

  9. Impact of mode partition noise in free-running gain-switched Fabry-Perot laser for 2-dimensional OCDMA.

    PubMed

    Wang, Xu; Chan, Kam

    2004-07-26

    Free-running gain-switched Fabry-Perot laser diode is an appropriate incoherent broadband optical source for incoherent 2-dimensional optical code division multiple access. However, the mode partition noise (MPN) in the laser seriously degrades performance. We derived a bit error rate (BER) expression in the presence of MPN using the power spectra of the laser. The theory agreed with the experimental results. There was a power penalty and BER floor due to the MPN in the laser. Therefore, this scheme should be operated with a sufficiently large number of modes. At least 9 modes should be used for error-free transmission at 1 Gbit/s for the laser we investigated in this work. PMID:19483858

  10. Two-mode multiline laser stabilization using a Fabry-Perot filter under analog and digital computer control

    NASA Astrophysics Data System (ADS)

    de Serio, R.; Ruff, G. A.; Wing, W. H.

    1984-02-01

    A scanning Fabry-Perot interferometer, servolocked to one of the output frequencies of a multiline laser, is used as a tracking filter so that a second servoloop can accurately stabilize that laser line to features of its intensity-versus-frequency profile. More stable locks occur where two longitudinal modes lase simultaneously than where the single-mode line intensity is maximized. Both analog and digital servoloops have been used for stabilizing a continuous-wave CO laser cavity. The microcomputer-aided digital stabilization yields the more reliable frequency locks and needs negligible frequency dithering. It has produced short-term (less than 1 s) laser linewidths less than 100 kHz and long-term (greater than 100 s) instability estimated as 80 kHz at a laser operating frequency of 55 THz in a noisy laboratory environment.

  11. Commissioning MOS and Fabry-Perot modes for the Robert Stobie Spectrograph on the Southern African Large Telescope

    NASA Astrophysics Data System (ADS)

    Koeslag, A. R.; Williams, T. B.; Nordsieck, K. H.; Romero-Colmenero, E.; Vaisanen, P. H.; Maartens, D. S.

    2014-07-01

    The Southern African Large Telescope (SALT) currently has three instruments: the imaging SALTICAM, the new High Resolution Spectrograph (HRS) which is in the process of being commissioned and the Robert Stobie Spectrograph (RSS). RSS has multiple science modes, of which long slit spectroscopy was originally commissioned; We have commissioned two new science modes: Multi Object Spectroscopy (MOS) and Fabry-Perot (FP). Due to the short track times available on SALT it is vital that acquisition is as efficient as possible. This paper will discuss how we implemented these modes in software and some of the challenges we had to overcome. MOS requires a slit-mask to be aligned with a number of stars. This is done in two phases: in MOS calibration the positions of the slits are detected using a through-slit image and RA/DEC database information, and in MOS acquisition the detector sends commands to the telescope control system (TCS) in an iterative and interactive fashion for fine mask/detector alignment to get the desired targets on the slits. There were several challenges involved with this system, and the user interface evolved to make the process as efficient as possible. We also had to overcome problems with the manufacturing process of the slit-masks. FP requires the precise alignment each of the two etalons installed on RSS. The software makes use of calibration tables to get the etalons into roughly aligned starting positions. An exposure is then done using a calibration arc lamp, producing a ring pattern. Measurement of the rings allows the determination of the adjustments needed to properly align the etalons. The software has been developed to optimize this process, along with software tools that allow us to fine tune the calibration tables. The software architecture allows the complexity of automating the FP calibration and procedures to be easily managed.

  12. Adaptive Optics at Optical Wavelengths: Test Observations of Kyoto 3DII Connected to Subaru Telescope AO188

    NASA Astrophysics Data System (ADS)

    Matsubayashi, K.; Sugai, H.; Shimono, A.; Akita, A.; Hattori, T.; Hayano, Y.; Minowa, Y.; Takeyama, N.

    2016-09-01

    Adaptive optics (AO) enables us to observe objects with high spatial resolution, which is important in most astrophysical observations. Most AO systems are operational at near-infrared wavelengths but not in the optical range, because optical observations require a much higher performance to obtain the same Strehl ratio as near-infrared observations. Therefore, to enable AO-assisted observations at optical wavelengths, we connected the Kyoto Tridimensional Spectrograph II (Kyoto 3DII), which can perform integral field spectroscopy, to the second generation AO system of the Subaru Telescope (AO188). We developed a new beam-splitter that reflects light below 594 nm for the wavefront sensors of AO188 and transmits above 644 nm for Kyoto 3DII. We also developed a Kyoto 3DII mount at the Nasmyth focus of the Subaru Telescope. In test observations, the spatial resolution of the combined AO188–Kyoto 3DII was higher than that in natural seeing conditions, even at 6500 Å. The full width at half maximum of an undersampled (1.5 spaxels) bright guide star (7.0 mag in the V-band) was 0.″12.

  13. DWDM channel spacing tunable optical TDM carrier from a mode-locked weak-resonant-cavity Fabry-Perot laser diode based fiber ring.

    PubMed

    Peng, Guo-Hsuan; Chi, Yu-Chieh; Lin, Gong-Ru

    2008-08-18

    A novel optical TDM pulsed carrier with tunable mode spacing matching the ITU-T defined DWDM channels is demonstrated, which is generated from an optically injection-mode-locked weak-resonant-cavity Fabry-Perot laser diode (FPLD) with 10%-end-facet reflectivity. The FPLD exhibits relatively weak cavity modes and a gain spectral linewidth covering >33.5 nm. The least common multiple of the mode spacing determined by both the weak-resonant-cavity FPLD and the fiber-ring cavity can be tunable by adjusting length of the fiber ring cavity or the FPLD temperature to approach the desired 200GHz DWDM channel spacing of 1.6 nm. At a specific fiber-ring cavity length, such a least-common- multiple selection rule results in 12 lasing modes between 1532 and 1545 nm naturally and a mode-locking pulsewidth of 19 ps broadened by group velocity dispersion among different modes. With an additional intracavity bandpass filter, the operating wavelength can further extend from 1520 to 1553.5 nm. After channel filtering, each selected longitudinal mode gives rise to a shortened pulsewidth of 12 ps due to the reduced group velocity dispersion. By linear dispersion compensating with a 55-m long dispersion compensation fiber (DCF), the pulsewidth can be further compressed to 8 ps with its corresponding peak-to-peak chirp reducing from 9.7 to 4.3 GHz. PMID:18711579

  14. All-silica, large mode area, single mode photonic bandgap fibre with Fabry-Perot resonant structures

    NASA Astrophysics Data System (ADS)

    Várallyay, Zoltán; Kovács, Péter

    2016-03-01

    All-silica, photonic crystal fibres consisting of a low index, silica core surrounded by higher index inclusions embedded in a silica matrix to form a photonic bandgap cladding were numerically analysed. The aim of the investigations was to modify the guiding properties of the fibre by introducing resonant structural entities. These structural modifications are realised by altering the refractive index of certain high index inclusions in the photonic crystal cladding resulting in mode coupling between the core mode and the mode propagated in the modified index region. This results in an increased effective core area of the fundamental core mode and consequently decreased nonlinearity as well as modified effective index compared to the effective index of the unmodified structure and resonant dispersion profile that can be used for pulse compression or optical delay purposes.

  15. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues

    NASA Astrophysics Data System (ADS)

    Zhang, Edward; Laufer, Jan; Beard, Paul

    2008-02-01

    A multiwavelength backward-mode planar photoacoustic scanner for 3D imaging of soft tissues to depths of several millimeters with a spatial resolution in the tens to hundreds of micrometers range is described. The system comprises a tunable optical parametric oscillator laser system that provides nanosecond laser pulses between 600 and 1200 nm for generating the photoacoustic signals and an optical ultrasound mapping system based upon a Fabry-Perot polymer film sensor for detecting them. The system enables photoacoustic signals to be mapped in 2D over a 50 mm diameter aperture in steps of 10 μm with an optically defined element size of 64 μm. Two sensors were used, one with a 22 μm thick polymer film spacer and the other with a 38 μm thick spacer providing -3 dB acoustic bandwidths of 39 and 22 MHz, respectively. The measured noise equivalent pressure of the 38 μm sensor was 0.21 kPa over a 20 MHz measurement bandwidth. The instrument line-spread function (LSF) was measured as a function of position and the minimum lateral and vertical LSFs found to be 38 and 15 μm, respectively. To demonstrate the ability of the system to provide high-resolution 3D images, a range of absorbing objects were imaged. Among these was a blood vessel phantom that comprised a network of blood filled tubes of diameters ranging from 62 to 300 μm immersed in an optically scattering liquid. In addition, to demonstrate the applicability of the system to spectroscopic imaging, a phantom comprising tubes filled with dyes of different spectral characteristics was imaged at a range of wavelengths. It is considered that this type of instrument may provide a practicable alternative to piezoelectric-based photoacoustic systems for high-resolution structural and functional imaging of the skin microvasculature and other superficial structures.

  16. Hollow-core fiber Fabry-Perot photothermal gas sensor.

    PubMed

    Yang, Fan; Tan, Yanzhen; Jin, Wei; Lin, Yuechuan; Qi, Yun; Ho, Hoi Lut

    2016-07-01

    A highly sensitive, compact, and low-cost trace gas sensor based on photothermal effect in a hollow-core fiber Fabry-Perot interferometer (FPI) is described. The Fabry-Perot sensor is fabricated by splicing a piece of hollow-core photonic bandgap fiber (HC-PBF) to single-mode fiber pigtails at both ends. The absorption of a pump beam in the hollow core results in phase modulation of probe beam, which is detected by the FPI. Experiments with a 2 cm long HC-PBF with femtosecond laser drilled side-holes demonstrated a response time of less than 19 s and noise equivalent concentration (NEC) of 440 parts-per-billion (ppb) using a 1 s lock-in time constant, and the NEC goes down to 117 ppb (2.7×10-7 in absorbance) by using 77 s averaging time. PMID:27367092

  17. Fabry-Perot observations of comet Austin

    NASA Technical Reports Server (NTRS)

    Schultz, David; Scherb, F.; Roesler, F. L.; Li, G.; Harlander, J.; Roberts, T. P. P.; Vandenberk, D.; Nossal, S.; Coakley, M.; Oliversen, Ronald J.

    1990-01-01

    Preliminary results of a program to observe Comet Austin (1990c1) from 16 April to 4 May and from 11 May to 27 May 1990 using the West Auxiliary of the McMath Solar Telescope on Kitt Peak, Arizona were presetned. The observations were made with a 15 cm duel-etalon Fabry-Perot scanning and imaging spectrometer with two modes of operation: a high resolution mode with a velocity resolution of 1.2 km/s and a medium resolution mode with a velocity resolution 10 km/s. Scanning data was obtained with an RCA C31034A photomultiplier tube and imaging data was obtained with a Photometrics LN2 cooled CCD camera with a 516 by 516 Ford chip. The results include: (1) information on the coma outflow velocity from high resolution spectral profiles of (OI)6300 and NH2 emissions, (2) gaseous water production rates from medium resolution observation of (OI)6300, (3) spectra of H2O(+) emissions in order to study the ionized component of the coma, (4) spatial distribution of H2O(+) emission features from sequences of velocity resolved images (data cubes), and (5) spatial distribution of (OI)6300 and NH2 emissions from medium resolution images. The field of view on the sky was 10.5 arcminutes in diameter. In the imaging mode the CCD was binned 4 by 4 resulting in 7.6 sec power pixel and a subarray readout for a field of view of 10.5 min.

  18. Strained layer Fabry-Perot device

    DOEpatents

    Brennan, Thomas M.; Fritz, Ian J.; Hammons, Burrell E.

    1994-01-01

    An asymmetric Fabry-Perot reflectance modulator (AFPM) consists of an active region between top and bottom mirrors, the bottom mirror being affixed to a substrate by a buffer layer. The active region comprises a strained-layer region having a bandgap and thickness chosen for resonance at the Fabry-Perot frequency. The mirrors are lattice matched to the active region, and the buffer layer is lattice matched to the mirror at the interface. The device operates at wavelengths of commercially available semiconductor lasers.

  19. Alignment locking to suspended Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Slagmolen, Bram J. J.; Barton, Mark; Mow-Lowry, Conor; de Vine, Glenn; Rabeling, David S.; Chow, Jong H.; Romann, Albert; Zhao, Chunnong; Gray, Malcolm B.; McClelland, David E.

    2005-09-01

    In this paper we report on the alignment locking of an in vacuum 77 m long suspended mirror Fabry-Perot cavity. Lock was achieved by mode-matching a 500 mW Nd:YAG NPRO onto a pre-mode cleaner, the output of which was then mode-matched to the suspended cavity. The longitudinal locking was achieved by feeding back to the laser frequency actuator to follow the cavity resonance. Subsequent implementation of a hybrid auto-alignment system enhanced the stability of the circulating power inside the cavity. Preliminary results are presented.

  20. Nanocomposite polyacrylamide based open cavity fiber Fabry-Perot humidity sensor.

    PubMed

    Yao, Jun; Zhu, Tao; Duan, De-Wen; Deng, Ming

    2012-11-01

    A humidity sensor with a low temperature sensitivity is proposed and demonstrated by coating a nanocomposite hygrometer polyacrylamide in an open interferometric cavity of a fiber Fabry-Perot interferometer. In this paper the Fabry-Perot structure is formed by splicing one short section of single mode fiber between two sections of single mode fiber with a larger offset fusing method. Experimental results show that relative humidity (RH) sensitivity of the sensor is ∼0.1 nm/(1% RH) in the range of 38% to 78% RH and ∼5.868 nm/(1%RH) in the range of 88% to 98% RH, respectively. PMID:23128715

  1. Stable fiber-based Fabry-Perot cavity

    SciTech Connect

    Steinmetz, T.; Colombe, Y.; Hunger, D.; Haensch, T. W.; Balocchi, A.; Warburton, R. J.; Reichel, J.

    2006-09-11

    The development of a fiber-based, tunable optical cavity with open access is reported. The cavity is of the Fabry-Perot type and is formed with miniature spherical mirrors positioned on the end of single- or multimode optical fibers by a transfer technique, which involves lifting a high-quality mirror from a smooth convex substrate, either a ball lens or microlens. The cavities typically have a finesse of {approx}1000 and a mode volume of 600 {mu}m{sup 3}. The detection of small ensembles of cold Rb atoms guided through such a cavity on an atom chip is demonstrated.

  2. High-temperature fiber-optic Fabry-Perot interferometric sensors

    SciTech Connect

    Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu

    2015-05-15

    A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.

  3. High-temperature fiber-optic Fabry-Perot interferometric sensors.

    PubMed

    Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu

    2015-05-01

    A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved. PMID:26026548

  4. Silk fibroin diaphragm-based fiber-tip Fabry-Perot pressure sensor.

    PubMed

    Cheng, Linghao; Wang, Cengzhong; Huang, Yunyun; Liang, Hao; Guan, Bai-Ou

    2016-08-22

    A miniature fiber-optic Fabry-Perot is built on the tip of a single mode fiber with a thin silk fibroin film as the diaphragm for pressure measurement. The silk fibroin film is regenerated from aqueous silk fibroin solution obtained by an environmentally benign fabrication process, which exhibits excellent optical and physicochemical properties, such as transparency in visible and near infrared region, membrane-forming ability, good adhesion, and high mechanical strength. The resulted Fabry-Perot pressure sensor is therefore highly biocompatible and shows good airtightness with a response of 12.3 nm/kPa in terms of cavity length change. PMID:27557238

  5. Robust Fabry-Perot interference in dual-gated Bi2Se3 devices

    NASA Astrophysics Data System (ADS)

    Finck, A. D. K.; Kurter, C.; Huemiller, E. D.; Hor, Y. S.; Van Harlingen, D. J.

    2016-05-01

    We study Fabry-Perot interference in hybrid devices, each consisting of a mesoscopic superconducting disk deposited on the surface of a three-dimensional topological insulator. Such structures are hypothesized to contain protected zero modes known as Majorana fermions bound to vortices. The interference manifests as periodic conductance oscillations of magnitude ˜ 0.1 e 2 / h . These oscillations show no strong dependence on bulk carrier density or sample thickness, suggesting that they result from phase coherent transport in surface states. However, the Fabry-Perot interference can be tuned by both top and back gates, implying strong electrostatic coupling between the top and bottom surfaces of topological insulator.

  6. An Archetype Semi-Ring Fabry-Perot (SRFP) Resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin; VanZyl, Jakob

    2009-01-01

    We introduce and demonstrate the generation of a novel resonator, termed Semi-Ring Fabry-Perot (SRFP), that exhibits unique features, such as, its use of one plane mirror, allowing the SRFP to be easily fabricated as a symmetrical device. In addition to its unique features, it exhibits advantages of ring and Fabry-Perot resonators: 1) compared to a ring resonator that only allows a transmitted intensity, the Semi-Ring Fabry-Perot (SRFP) supports standing waves, allowing both a reflected and transmitted intensity; 2) the reflected light spectrum of the SRFP resonator is much narrower than similar Fabry-Perot, implying higher finesse.

  7. Striped Fabry-Perots: Improved efficiency for velocimetry

    SciTech Connect

    McMillan, C.; Steinmetz, L.

    1990-07-01

    Removing a narrow stripe of the reflective coating from the input mirror of a Fabry-Perot interferometer can dramatically increase the amount of light transmitted through the system; we have observed gains in excess of 50 when we compare a conventional Fabry-Perot with the striped Fabry-Perot under similar lighting conditions. The stripe affects the distribution of light in the Fabry-Perot peaks causing them to be lower in the center of the pattern. We examine this distribution, and discuss its application in analyzing velocities. 6 refs., 6 figs., 1 tab.

  8. Three Cavity Tunable MEMS Fabry Perot Interferometer

    PubMed Central

    Parashar, Avinash; Shah, Ankur; Packirisamy, Muthukumaran; Sivakumar, Narayanswamy

    2007-01-01

    In this paper a four-mirror tunable micro electro-mechanical systems (MEMS) Fabry Perot Interferometer (FPI) concept is proposed with the mathematical model. The spectral range of the proposed FPI lies in the infrared spectrum ranging from 2400 to 4018 (nm). FPI can be finely tuned by deflecting the two middle mirrors (or by changing the three cavity lengths). Two different cases were separately considered for the tuning. In case one, tuning was achieved by deflecting mirror 2 only and in case two, both mirrors 2 and 3 were deflected for the tuning of the FPI.

  9. Millimeter-long fiber Fabry-Perot cavities.

    PubMed

    Ott, Konstantin; Garcia, Sebastien; Kohlhaas, Ralf; Schüppert, Klemens; Rosenbusch, Peter; Long, Romain; Reichel, Jakob

    2016-05-01

    We demonstrate fiber Fabry-Perot (FFP) cavities with concave mirrors that can be operated at cavity lengths as large as 1.5 mm without significant deterioration of the finesse. This is achieved by using a laser dot machining technique to shape spherical mirrors with ultralow roughness and employing single-mode fibers with large mode area for good mode matching to the cavity. Additionally, in contrast to previous FFPs, these cavities can be used over an octave-spanning frequency range with adequate coatings. We also show directly that shape deviations caused by the fiber's index profile lead to a finesse decrease as observed in earlier attempts to build long FFP cavities, and show a way to overcome this problem. PMID:27137597

  10. All-optical logic gates and wavelength conversion via the injection locking of a Fabry-Perot semiconductor laser

    NASA Astrophysics Data System (ADS)

    Harvey, E.; Pochet, M.; Schmidt, J.; Locke, T.; Naderi, N.; Usechak, N. G.

    2013-03-01

    This work investigates the implementation of all-optical logic gates based on optical injection locking (OIL). All-optical inverting, NOR, and NAND gates are experimentally demonstrated using two distributed feedback (DFB) lasers, a multi-mode Fabry-Perot laser diode, and an optical band-pass filter. The DFB lasers are externally modulated to represent logic inputs into the cavity of the multi-mode Fabry-Perot slave laser. The input DFB (master) lasers' wavelengths are aligned with the longitudinal modes of the Fabry-Perot slave laser and their optical power is used to modulate the injection conditions in the Fabry-Perot slave laser. The optical band-pass filter is used to select a Fabry- Perot mode that is either suppressed or transmitted given the logic state of the injecting master laser signals. When the input signal(s) is (are) in the on state, injection locking, and thus the suppression of the non-injected Fabry-Perot modes, is induced, yielding a dynamic system that can be used to implement photonic logic functions. Additionally, all-optical photonic processing is achieved using the cavity-mode shift produced in the injected slave laser under external optical injection. The inverting logic case can also be used as a wavelength converter — a key component in advanced wavelength-division multiplexing networks. As a result of this experimental investigation, a more comprehensive understanding of the locking parameters involved in injecting multiple lasers into a multi-mode cavity and the logic transition time is achieved. The performance of optical logic computations and wavelength conversion has the potential for ultrafast operation, limited primarily by the photon decay rate in the slave laser.

  11. Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by two methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback. We coupled a nominal 935 run-wavelength Fabry-Perot laser diode to an ultra narrow band (18 pm) FBG. When tuned by varying its temperature, the laser wavelength is pulled toward the centerline of the Bragg grating, and the spectrum of the laser output is seen to fall into three discrete stability regimes as measured by the side-mode suppression ratio.

  12. Fabry-Perot diaphragm fiber-optic sensor.

    PubMed

    Chin, Ken K; Sun, Yan; Feng, Guanhua; Georgiou, George E; Guo, Kangzhu; Niver, Edip; Roman, Harry; Noe, Karen

    2007-11-01

    The general theory of a diaphragm fiber-optic sensor (DFOS) is proposed. We use a critical test to determine if a DFOS is based on Fabry-Perot interference or intensity modulation. By use of the critical test, this is the first design, to the best of our knowledge, of a purely Fabry-Perot DFOS, fabricated with microelectromechanical system technology, and characterized as an audible microphone and ultrasonic hydrophone with orders of improvement in signal-to-noise ratio. PMID:17973004

  13. Integrated Fabry-Perot optical space switches

    NASA Astrophysics Data System (ADS)

    Menard, Michael

    As information technologies are adopted by more people to accomplish a greater variety of tasks, the need for optical telecommunication networks with higher capacity and flexibility grows. In addition to improving throughput by increasing transmission rates and the number of wavelength channels, novel network architectures using optical burst or packet based switching are investigated because they allow a more efficient use of transmission capacity and they enable the reorganisation of wavelength connections according to traffic demands. The implementation of such networks requires fast, broadband, transparent, and scalable optical space switches. Although research on optical space switches has been on going for decades, no solution that meets all of the above requirements has been reported yet. The work presented in this thesis introduces a novel optical space switch configuration based on tunable integrated Fabry-Perot filters working at oblique incidence and investigates their performance. A design method to implement this new switch concept is described and demonstrated with the fabrication and characterisation of optical prototypes. The prototypes are implemented in GaAs/AlGaAs planar waveguides and they are designed to be operated using the electro-optic effect. Deep etching is used to create the switch features and a comprehensive optimization of the waveguide structure is conducted to minimize radiation losses. To maximize the number of wavelength channels that can be controlled with a small refractive index modulation, the switches have a 200 GHz comb frequency response that transmits/reflects one out of every two channels on the ITU 100 GHz grid. Thus, shifting their frequency response by one channel spacing is sufficient to change the state of every channel. Furthermore, four Fabry-Perot cavities are coupled to obtain a flat and wide theoretical passband of more than 50 GHz. A Gaussian beam propagation analysis is performed to determine the minimum beam

  14. Temperature-independent refractometer based on fiber-optic Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Li, Jiacheng; Qiao, Xueguang; Wang, Ruohui; Rong, Qiangzhou; Bao, Weijia; Shao, Zhihua; Yang, Tingting

    2016-04-01

    A miniature fiber-optic refractometer based on Fabry-Perot interferometer (FPI) has been proposed and experimentally demonstrated. The sensing head consists of a short section of photonics crystal fiber (PCF) spliced to a single mode fiber (SMF), in which the end-face of the PCF is etched to remove holey structure with hydrofluoric (HF) acid. A Fabry-Perot interference spectrum is achieved based on the reflections from the fusion splicing interface and the end-face of the core of PCF. The interference fringe is sensitive to the external refractive index (RI) with an intensity-referenced sensitivity of 358.27 dB/RIU ranging from 1.33 to 1.38. The sensor has also been implemented for the concentration measurement of λ-phage DNA solution. In addition, the dip intensity is insensitive to the ambient temperature variation, making it a good candidate for temperature-independent bio-sensing area.

  15. Swift: A Widefield Imaging Fabry Perot for Sofia

    NASA Technical Reports Server (NTRS)

    Stacey, Gordon J.

    1999-01-01

    Contract was to pursue feasibility studies of the SOFIA Widefield Imaging Fabry-Perot (SWIFT). SWIFT was proposed as a two color 18 to 40 microns imaging Fabry-Perot that utilized two Rockwell/Boeing 256 x 256 pixel Si:Sb BIBs as detective devices. The colors were to be split between 26 and 30 microns using a MgO dichroic. The resolution achieving devices were to be a pair of cryogenic fully tunable scanning Fabry-Perot interferometers (FPIs), two in each band. For high resolving powers, a third, fixed FPI is inserted into the beam. The FPI mirrors were to be made of free standing metal mesh. We also proposed to look into a long wavelength (40 to 210 microns) band during the feasibility study period. We produced a proposal to USRA, submitted in July 1997 that substantially refined our ideas. We decided the long wavelength science was compelling, so the baseline wavelength coverage for SWIFT was widened to 17 to 205 microns. Under typical operations, we proposed to simultaneously image in two bands: 22 to 38 microns, and 50 to 205 microns. The bands were to be split by a cold CaF2 dichroic. The short wavelength (SW) band was to employ a 256 x 256 pixel Boeing/Rockwell Si:Sb BIB array, and the long wavelength (LW) band was to employ a Goddard 6 x 32 (upgradable to 32 x 32) element array of monolithic silicon "pop-up" bolometers as detective devices. The two color capability doubled the data taking efficiency, and ensured "perfect" registration between the images obtained in each band. For the SW band, the beam was to be fully sampled (0.7" pixels, 1.4 in. beam) at 17 microns, and over sampled at longer wavelengths. Even so, SWIFT has a very large (3 ft x 3 ft) field of view. To match the SW and LW fields of view (initially in one dimension only, but in 2-dimensions with 32 x 32 upgrade), SWIFT was to under sample at 63 microns (5.6 in pixels, 5.2 in beam) resulting in a 0.56 x 3 in (upgrade to 3 in x 3 in) field of view. Each band has both Lo-Res (R triple bond

  16. Fabry-Perot microcavity for diamond-based photonics

    NASA Astrophysics Data System (ADS)

    Janitz, Erika; Ruf, Maximilian; Dimock, Mark; Bourassa, Alexandre; Sankey, Jack; Childress, Lilian

    2015-10-01

    Open Fabry-Perot microcavities represent a promising route for achieving a quantum electrodynamics (cavity-QED) platform with diamond-based emitters. In particular, they offer the opportunity to introduce high-purity, minimally fabricated material into a tunable, high quality factor optical resonator. Here, we demonstrate a fiber-based microcavity incorporating a thick (>10 μ m ) diamond membrane with a finesse of 17 000, corresponding to a quality factor Q ˜106 . Such minimally fabricated thick samples can contain optically stable emitters similar to those found in bulk diamond. We observe modified microcavity spectra in the presence of the membrane, and we develop analytic and numerical models to describe the effect of the membrane on cavity modes, including loss and coupling to higher-order transverse modes. We estimate that a Purcell enhancement of approximately 20 should be possible for emitters within the diamond in this device, and we provide evidence that better diamond surface treatments and mirror coatings could increase this value to 200 in a realistic system.

  17. Design and Fabrication of a Fabry-Perot Electrooptic Modulator

    NASA Technical Reports Server (NTRS)

    Banks, C.; Yelleswarapu, C.; Sharma, A.; Frazier, D.; Penn, B.; Abdeldayem, H.; Geveden, Rex D. (Technical Monitor)

    2001-01-01

    The research to design a Fabry-Perot electrooptic modulator with an intracavity electrooptically active organic material is based on the initial results of Wang et. al. [1] using poled polymer thin films. The main feature of the proposed device is the observation that in traditional electrooptic modulators like a Pockels cell, it requires few kilovolts of driving voltage to cause a 3 dB modulation even in high figure-of-merit electrooptic. materials like LiNbO3. The driving voltage for the modulator can be reduced to as low as 10 volts by introducing the electrooptic material inside the resonant cavity of a Fabry-Perot modulator. This is because the transmission of the Fabry-Perot cavity varies nonlinearly with the change of refractive index or phase of light due to applied electric field. We describe in this report the progress made so far in the design and fabrication of the proposed device.

  18. Design and Fabrication of a Fabry-Perot Electrooptic Modulator

    NASA Technical Reports Server (NTRS)

    Banks, C.; Yelleswarapu, C.; Sharma, A.; Frazier, D.; Penn, B.; Abdeldayem, H.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The research to design a Fabry-Perot electrooptic modulator with an intracavity electrooptically active organic material is based on the initial results of Wang et. al. using poled polymer thin films. The main feature of the proposed device is the observation that in traditional electrooptic modulators like a Pockels cell, it requires few kilovolts of driving voltage to cause a 3 dB modulation even in high figure-of-merit electrooptic materials like LiNbO3. The driving voltage for the modulator can be reduced to as low as 10 volts by introducing the electrooptic material inside the resonant cavity of a Fabry-Perot modulator. This is because the transmission of the Fabry-Perot cavity varies nonlinearly with the change of refractive index or phase of light due to applied electric field. We describe in this report the progress made so far in the design and fabrication of the proposed device.

  19. The South Pole Imaging Fabry Perot Interferometer (SPIFI)

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Bradford, C. M.; Swain, M. R.; Jackson, J. M.; Bolato, A. D.; Davidson, J. A.; Savage, M.

    1996-01-01

    The design and construction of the South Pole imaging Fabry-Perot interferometer (SPIFI) is reported. The SPIFI is a direct detection imaging spectrometer for use in the far infrared and submillimeter bands accessible to the 1.7 m telescope at the South Pole, and in the submillimeter bands accessible to the 15 m James Clerk Maxwell Telescope (JCMT), HI. It employs a 5 x 5 silicon bolometer array and three cryogenic Fabry Perot interferometers in series in order to achieve velocity resolutions of between 300 km/s and 30 km/s over the entire field of view with a resolution of up to 1 km/s at the center pixel. The scientific justification for the instrument is discussed, considering the spectral lines available to SPIFI. The optical path, the cryogenic Fabry-Perot, the adiabatic demagnetization refrigerator and the detector array are described. The instrument's sensitivity is presented and compared with coherent systems.

  20. Confocal Fabry-Perot interferometer for frequency stabilization of laser

    NASA Astrophysics Data System (ADS)

    Pan, H.-J.; Ruan, P.; Wang, H.-W.; Li, F.

    2011-02-01

    The frequency shift of laser source of Doppler lidar is required in the range of a few megahertzs. To satisfy this demand, a confocal Fabry-Perot (F-P) interferometer was manufactured as the frequency standard for frequency stabilization. After analyzing and contrasting the center frequency shift of confocal Fabry-Perot interferometers that are made of three different types of material with the change of temperature, the zerodur material was selected to fabricate the interferometer, and the cavity mirrors were optically contacted onto the end of spacer. The confocal Fabry-Perot interferometer was situated within a double-walled chamber, and the change of temperature in the chamber was less than 0.01 K. The experimental results indicate that the free spectral range is 500 MHz, the full-width at half maximum is 3.33 MHz, and the finesse is 150.

  1. Atmospheric temperature sensing with a multiorder Fabry-Perot interferometer.

    PubMed

    Wang, J; Drayson, S R; Hayes, P B

    1989-12-01

    A Fabry-Perot interferometer has a periodic response. By matching the free spectral range of a Fabry-Perot interferometer (FPI) with the period of the CO(2) spectrum, considerable advantages of throughput and spectral resolution can be achieved, leading to high spectral resolution and vertical resolution for atmospheric temperature sounders. In this paper, the concept of a high resolution multiorder Fabry-Perot interferometer using portions of the 15-microm and 4.3-microm bands of CO(2)for the purpose of atmospheric temperature sounding is discussed. Suitable sounding spectral positions, FPI free spectral range, and weighting functions are calculated. An effective spectral resolution of 0.02 cm(-1) can be achieved by the proposed sounder with a FPI finess of ~100 which is within the present state-of-the-art technology in the infrared region, leading to considerable improvement in the vertical resolution of the atmospheric temperature sounder. PMID:20555996

  2. Performance of a dual Fabry-Perot cavity refractometer.

    PubMed

    Egan, Patrick F; Stone, Jack A; Hendricks, Jay H; Ricker, Jacob E; Scace, Gregory E; Strouse, Gregory F

    2015-09-01

    We have built and characterized a refractometer that utilizes two Fabry-Perot cavities formed on a dimensionally stable spacer. In the typical mode of operation, one cavity is held at vacuum, and the other cavity is filled with nitrogen gas. The differential change in length between the cavities is measured as the difference in frequency between two helium-neon lasers, one locked to the resonance of each cavity. This differential change in optical length is a measure of the gas refractivity. Using the known values for the molar refractivity and virial coefficients of nitrogen, and accounting for cavity length distortions, the device can be used as a high-resolution, multi-decade pressure sensor. We define a reference value for nitrogen refractivity as n-1=(26485.28±0.3)×10(-8) at p=100.0000  kPa, T=302.9190  K, and λ(vac)=632.9908  nm. We compare pressure determinations via the refractometer and the reference value to a mercury manometer. PMID:26368682

  3. Vibration-induced elastic deformation of Fabry-Perot cavities

    SciTech Connect

    Chen Lisheng; Hall, John L.; Ye Jun; Yang Tao; Zang Erjun; Li Tianchu

    2006-11-15

    We perform a detailed numerical analysis of Fabry-Perot cavities used for state-of-the-art laser stabilization. Elastic deformation of Fabry-Perot cavities with various shapes and mounting methods is quantitatively analyzed using finite-element analysis. We show that with a suitable choice of mounting schemes it is feasible to minimize the susceptibility of the resonator length to vibrational perturbations. This investigation offers detailed information on stable optical cavities that may benefit the development of ultrastable optical local oscillators in optical atomic clocks and precision measurements probing the fundamental laws of physics.

  4. CIV Polarization Measurements Using a Vacuum Ultraviolet Fabry Perot

    NASA Technical Reports Server (NTRS)

    West, Edward A.

    2009-01-01

    Marshall Space Flight Center's (MSFC) is developing a Vacuum Ultraviolet (VUV) Fabry Perot that will be launched on a sounding rocket for high throughput, high-cadence, extended field of view CIV (155nm) measurements. These measurements will provide (i) Dopplergrams for studies of waves, oscillations, explosive events, and mass motions through the transition region, and, (ii), polarization measurements to study the magnetic field in the transition region. This paper will describe the scientific goals of the instrument, a brief description of the optics and the polarization characteristics of the VUV Fabry Perot.

  5. Characterization of a Fabry - Perot - Based electrooptic Modulator

    NASA Technical Reports Server (NTRS)

    Banks, C.; Yelleswarapu, C.; Sharma, A.; Frazier, D.; Penn, B.; Abdeldayem, H.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    An electrooptic modulator using a thin slice of LiNbO3 within the cavity of a Fabry-Perot interferometer is designed and fabricated. The modulator is operated with 633 nm light from a He-Ne laser. Results related to characterization of this modulator are presented.

  6. Silicon Carbide Mounts for Fabry-Perot Interferometers

    NASA Technical Reports Server (NTRS)

    Lindemann, Scott

    2011-01-01

    Etalon mounts for tunable Fabry- Perot interferometers can now be fabricated from reaction-bonded silicon carbide structural components. These mounts are rigid, lightweight, and thermally stable. The fabrication of these mounts involves the exploitation of post-casting capabilities that (1) enable creation of monolithic structures having reduced (in comparison with prior such structures) degrees of material inhomogeneity and (2) reduce the need for fastening hardware and accommodations. Such silicon carbide mounts could be used to make lightweight Fabry-Perot interferometers or could be modified for use as general lightweight optical mounts. Heretofore, tunable Fabry-Perot interferometer structures, including mounting hardware, have been made from the low-thermal-expansion material Invar (a nickel/iron alloy) in order to obtain the thermal stability required for spectroscopic applications for which such interferometers are typically designed. However, the high mass density of Invar structures is disadvantageous in applications in which there are requirements to minimize mass. Silicon carbide etalon mounts have been incorporated into a tunable Fabry-Perot interferometer of a prior design that originally called for Invar structural components. The strength, thermal stability, and survivability of the interferometer as thus modified are similar to those of the interferometer as originally designed, but the mass of the modified interferometer is significantly less than the mass of the original version.

  7. A Fabry-Perot Solid Etalon for Teaching.

    ERIC Educational Resources Information Center

    Bruce, P. J.; And Others

    1986-01-01

    Describes a solid etalon Fabry-Perot interferometer, discussing free spectral range, instrumental finesse, and temperature effects. Provides schematic of temperature control/display circuit. Explains use of 100 millimeter camera lens and 10 power micrometer eyepiece for resolving rings and measure diameters. (JM)

  8. A Coaxial Cable Fabry-Perot Interferometer for Sensing Applications

    PubMed Central

    Huang, Jie; Wang, Tao; Hua, Lei; Fan, Jun; Xiao, Hai; Luo, Ming

    2013-01-01

    This paper reports a novel coaxial cable Fabry-Perot interferometer for sensing applications. The sensor is fabricated by drilling two holes half-way into a coaxial cable. The device physics was described. The temperature and strain responses of the sensor were tested. The measurement error was calculated and analyzed. PMID:24212121

  9. Development of the Fabry-Perot Spectrometer Application

    NASA Technical Reports Server (NTRS)

    Browne, Kathryn

    2015-01-01

    Methane is a greenhouse gas with global warming effects 20 times more detrimental than carbon dioxide. Currently, only aircraft missions measure methane and do not provide continuous monitoring, This presentation will cover the Fabry-Perot spectrometer which will provide continuous monitoring of methane. It will also cover the development of the software used to extract and process the data the spectrometer collects.

  10. Fabry-Perot resonance enhanced electrically pumped random lasing from ZnO films

    NASA Astrophysics Data System (ADS)

    Ni, P. N.; Shan, C. X.; Wang, S. P.; Lu, Y. J.; Li, B. H.; Shen, D. Z.

    2015-12-01

    Fabry-Perot (F-P) resonance has been introduced into Au/MgO/ZnO structure in order to improve the performance of electrically pumped random lasing in this structure. It is found that the lasing threshold of this structure is significantly reduced by introducing the F-P resonance due to the better optical confinement. Meanwhile, this structure shows improved random lasing output characteristics with less random lasing modes and strong dominant output mode due to the gain competition process. The results demonstrate that introducing F-P resonance into the random media provides an effective strategy towards controllable, high performance electrically pumped random lasers.

  11. Nanofiber Fabry-Perot microresonator for nonlinear optics and cavity quantum electrodynamics.

    PubMed

    Wuttke, C; Becker, M; Brückner, S; Rothhardt, M; Rauschenbeutel, A

    2012-06-01

    We experimentally realize a Fabry-Perot-type optical microresonator near the cesium D2 line wavelength based on a tapered optical fiber, equipped with two fiber Bragg gratings that enclose a subwavelength diameter waist. Owing to the very low taper losses, the finesse of the resonator reaches F=86 while the on-resonance transmission is T=11%. The characteristics of our resonator fulfill the requirements of nonlinear optics and cavity quantum electrodynamics in the strong coupling regime. These characteristics, combined with the demonstrated ease of use and advantageous mode geometry, open a realm of applications. PMID:22660083

  12. Characterization of miniature fiber-optic Fabry-Perot interferometric sensors based on hollow silica tube

    NASA Astrophysics Data System (ADS)

    Jia, Pinggang; Fang, Guocheng; Wang, Daihua

    2016-06-01

    A miniature fiber-optic Fabry-Perot interferometer (MOFPI) fabricated by splicing a hollow silica tube (HST) with inner diameter of 4 µm to the end of a single-mode fiber is investigated and experimentally demonstrated. The theoretical relationship between the free spectrum range and the length of HST is verified by fabricating several MOFPIs with different lengths. We characterize the MOFPIs for temperature, liquid refractive index, and strain. Experimental results show that the sensitivities of the temperature, liquid refractive index, and strain are 16.42 pm/℃,-118.56 dB/RIU, and 1.21 pm/µɛ, respectively.

  13. Spectral engineering by flexible tunings of optical Tamm states and Fabry-Perot cavity resonance.

    PubMed

    Zhang, Xu-Lin; Song, Jun-Feng; Feng, Jing; Sun, Hong-Bo

    2013-11-01

    We present a design for spectral engineering in a metal dual distributed Bragg reflector (DBR)-based structure. Optical Tamm states and Fabry-Perot cavity mode, dual windows for light-matter interaction enhancement, can be excited simultaneously and tuned flexibly, including their respective bandwidth and resonant wavelength, due to the variable reflection phase from the outer DBR's internal surface. The design can find applications in solar cells for light trappings. Via calculations of overall absorptivity, the proposed simpler dual-states-based scheme is demonstrated to be almost as effective as the coherent-light-trapping scheme, owing to the dual-states-induced broader-band absorption enhancement. PMID:24177099

  14. Fabry-Perot cavity based on sapphire-derived fiber for high temperature sensor

    NASA Astrophysics Data System (ADS)

    Chen, Pengfei; Pang, Fufei; Zhao, Ziwen; Hong, Lin; Chen, Na; Chen, Zhenyi; Wang, Tingyun

    2015-09-01

    An optical fiber high temperature sensor is demonstrated by using a special sapphire-derived fiber. An air cavity is easily created through splicing the sapphire-derived fiber with standard single mode fiber (SMF). Utilizing the air cavity as one reflecting face, a Fabry-Perot (F-P) interferometer is fabricated in the special fiber. Attributed to the high ratio alumina component, the F-P interferometer exhibits high sensitivity response to temperature variation within the range up to 1000 °C. The sensitivity is 15.7 pm/°C.

  15. Fiber Fabry-Perot interferometer with controllable temperature sensitivity.

    PubMed

    Zhang, Xinpu; Peng, Wei; Zhang, Yang

    2015-12-01

    We proposed a fiber taper based on the Fabry-Perot (FP) interferometer structure with controllable temperature sensitivity. The FP interferometer is formed by inserting a segment of tapered fiber tip into the capillary and subsequently splicing the other end of the capillary to a single-mode fiber (SMF), the tapered fiber endface, and the spliced face form the FP cavity. Through controlling the inserted tapered fiber length, a series of FP interferometers were made. Because the inserted taper tip has the degree of freedom along the fiber axial, when the FP interferometer is subjected to temperature variation, the thermal expansion of the fiber taper tip will resist the FP cavity length change caused by the evolution of capillary length, and we can control the temperature sensitivity by adjusting the inserted taper length. In this structure, the equivalent thermal expansion coefficient of the FP interferometer can be defined; it was used to evaluate the temperature sensitivity of the FP interferometer, which provides an effective method to eliminate the temperature effect and to enhance other measurement accuracy. We fabricated the FP interferometers and calibrated their temperature characters by measuring the wavelength shift of the resonance dips in the reflection spectrum. In a temperature range of 50°C to 150°C, the corresponding temperature sensitivities can be controlled between 0 and 1.97 pm/°C when the inserted taper is between 75 and 160 μm. Because of its controllable temperature sensitivity, ease of fabrication, and low cost, this FP interferometer can meet different temperature sensitivity requirements in various application areas, especially in the fields which need temperature insensitivity. PMID:26625075

  16. Fiber optic, Fabry-Perot high temperature sensor

    NASA Technical Reports Server (NTRS)

    James, K.; Quick, B.

    1984-01-01

    A digital, fiber optic temperature sensor using a variable Fabry-Perot cavity as the sensor element was analyzed, designed, fabricated, and tested. The fiber transmitted cavity reflection spectra is dispersed then converted from an optical signal to electrical information by a charged coupled device (CCD). A microprocessor-based color demodulation system converts the wavelength information to temperature. This general sensor concept not only utilizes an all-optical means of parameter sensing and transmitting, but also exploits microprocessor technology for automated control, calibration, and enhanced performance. The complete temperature sensor system was evaluated in the laboratory. Results show that the Fabry-Perot temperature sensor has good resolution (0.5% of full seale), high accuracy, and potential high temperature ( 1000 C) applications.

  17. Georgia Institute of Technology Fabry-Perot measurements

    NASA Astrophysics Data System (ADS)

    1991-10-01

    The Fabry-Perot cavity and its implementation to carry out Fourier Transform Spectroscopy (FTS) are detailed. Synthesized sources are used to scan frequency from 26 to 100 GHz for recording of data. Measured data for rexolite 1422 and Corning 7940 is presented. Dielectric constant and loss tangent accuracies are restricted to plus or minus 0.005 and 0.0001 respectively. These error bars are dominated by variations observed in the sample thickness.

  18. Fabry-Perot interferometer utilized for displacement measurement in a large measuring range

    SciTech Connect

    Wang, Yung-Cheng; Shyu, Lih-Horng; Chang, Chung-Ping

    2010-09-15

    The optical configuration of a Fabry-Perot interferometer is uncomplicated. This has already been applied in different measurement systems. For the displacement measurement with the Fabry-Perot interferometer, the result is significantly influenced by the tilt angles of the measurement mirror in the interferometer. Hence, only for the rather small measuring range, the Fabry-Perot interferometer is available. The goal of this investigation is to enhance the measuring range of Fabry-Perot interferometer by compensating the tilt angles. To verify the measuring characteristic of the self-developed Fabry-Perot interferometer, some comparison measurements with a reference standard have been performed. The maximum deviation of comparison experiments is less than 0.3 {mu}m in the traveling range of 30 mm. The experimental results show that the Fabry-Perot interferometer is highly stable, insensitive to environment effects, and can meet the measuring requirement of the submicrometer order.

  19. Micromachined Tunable Fabry-Perot Filters for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Barclay, Richard; Bier, Alexander; Chen, Tina; DiCamillo, Barbara; Deming, Drake; Greenhouse, Matthew; Henry, Ross; Hewagama, Tilak; Jacobson, Mindy; Loughlin, James; Krebs, Carolyn A. (Technical Monitor)

    2002-01-01

    Micromachined Fabry-Perot tunable filters with a large clear aperture (12.5 to 40 mm) are being developed as an optical component for wide-field imaging 1:1 spectroscopy. This program applies silicon micromachining fabrication techniques to miniaturize Fabry-Perot filters for astronomical science instruments. The filter assembly consists of a stationary etalon plate mated to a plate in which the etalon is free to move along the optical axis on silicon springs attached to a stiff silicon support ring. The moving etalon is actuated electrostatically by electrode pairs on the fixed and moving etalons. To reduce mass, both etalons are fabricated by applying optical coatings to a thin freestanding silicon nitride film held flat in drumhead tension rather than to a thick optical substrate. The design, electro-mechanical modeling, fabrication, and initial results will be discussed. The potential application of the miniature Fabry-Perot filters will be briefly discussed with emphasis on the detection of extra-solar planets.

  20. Highly sensitive force sensor based on optical microfiber asymmetrical Fabry-Perot interferometer.

    PubMed

    Gong, Yuan; Yu, Cai-Bin; Wang, Ting-Ting; Liu, Xiu-Ping; Wu, Yu; Rao, Yun-Jiang; Zhang, Ming-Lei; Wu, Hui-Juan; Chen, Xiao-Xiao; Peng, Gang-Ding

    2014-02-10

    An asymmetrical Fabry-Perot interferometric (AFPI) force sensor is fabricated based on a narrowband reflection of low-reflectivity fiber Bragg grating (LR-FBG) and a broadband Fresnel reflection of the cleaved fiber end. The AFPI sensor includes a section of microfiber made by tapering and it achieves a force sensitivity of 0.221 pm/μN with a tapered microfiber of 40 mm length and 6.1 μm waist diameter. Compared with similar AFPI structure in 125 μm-diameter single mode fiber, the force sensitivity of the microfiber AFPI structure is greatly enhanced due to its smaller diameter and can be optimized for different force scales by controlling the diameter. The fabrication process of the AFPI sensor is simple and cost-effective. The AFPI sensor has better multiplexing capacity than conventional extrinsic fiber-optic Fabry-Perot sensors, while it also release the requirement on the wavelength matching of the FBG-pair-based FPI. PMID:24663648

  1. Multichannel Fabry-Perot spectrometer for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Boyle, R. J.

    1986-01-01

    A multichannel design which makes use of the radiation normally rejected in a Fabry-Perot spectrometer is described, with application to infrared astronomy. The present optical design minimizes the diameters of the etalon and optics. The use of spherical mirrors ensures that no radiation is lost through the entrance aperture, and the beams can be completely collimated at the etalon. Laboratory studies demonstrate that the ability to employ eight channels increases by a factor of four the flux integrated during a given time period compared with that of a single-channel instrument. The spectrometer is nondispersive, and the source can be imaged at each of several output spectral positions.

  2. Holographic liquid crystal polarization grating with Fabry-Perot structure.

    PubMed

    Sakamoto, Moritsugu; Yamaguchi, Haruki; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2016-03-15

    A holographic liquid crystal polarization grating with a Fabry-Perot structure was developed. Because of its resonant structure, the device offers high levels of control of the diffraction properties of incident-polarized light beams, depending on the resonance conditions. The diffracted light beams are emitted in both the reflection and transmission directions, and the device thus works as a multibranch polarization grating with double optical paths, unlike a conventional polarization grating. These device features were experimentally demonstrated and were also explained theoretically. PMID:26977643

  3. Novel optical characteristics of a Fabry-Perot resonator with embedded PT-symmetrical grating.

    PubMed

    Kulishov, Mykola; Kress, Bernard; Jones, H F

    2014-09-22

    We explore the optical properties of a Fabry-Perot resonator with an embedded Parity-Time (PT) symmetrical grating. This PT-symmetrical grating is non diffractive (transparent) when illuminated from one side and diffracting (Bragg reflection) when illuminated from the other side, thus providing a unidirectional reflective functionality. The incorporated PT-symmetrical grating forms a resonator with two embedded cavities. We analyze the transmission and reflection properties of these new structures through a transfer matrix approach. Depending on the resonator geometry these cavities can interact with different degrees of coherency: fully constructive interaction, partially constructive interaction, partially destructive interaction, and finally their interaction can be completely destructive. A number of very unusual (exotic) nonsymmetrical absorption and amplification behaviors are observed. The proposed structure also exhibits unusual lasing performance. Due to the PT-symmetrical grating, there is no chance of mode hopping; it can lase with only a single longitudinal mode for any distance between the distributed reflectors. PMID:25321786

  4. The IRAF Fabry-Perot analysis package: Ring fitting

    NASA Technical Reports Server (NTRS)

    Shopbell, P. L.; Bland-Hawthorn, J.; Cecil, G.

    1992-01-01

    As introduced at ADASSI, a Fabry-Perot analysis package for IRAF is currently under development as a joint effort of ourselves and Frank Valdes of the IRAF group. Although additional portions of the package were also implemented, we report primarily on the development of a robust ring fitting task, useful for fitting the calibration rings obtained in Fabry-Perot observations. The general equation of an ellipse is fit to the shape of the rings, providing information on ring center, ellipticity, and position angle. Such parameters provide valuable information on the wavelength response of the etalon and the geometric stability of the system. Appropriate statistical weighting is applied to the pixels to account for increasing numbers with radius, the Lorentzian cross-section, and uneven illumination. The major problems of incomplete, non-uniform, and multiple rings are addressed with the final task capable of fitting rings regardless of center, cross-section, or completion. The task requires only minimal user intervention, allowing large numbers of rings to be fit in an extremely automated manner.

  5. Hydrocarbon gas detection with microelectromechanical Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Mannila, Rami; Tuohiniemi, Mikko; Mäkynen, Jussi; Näkki, Ismo; Antila, Jarkko

    2013-05-01

    VTT Technical Research Centre of Finland has developed microelectromechanical (MEMS) Fabry-Perot interferometer (FPI) for hydrocarbon measurements. Fabry-Perot interferometer is a structure where is two highly reflective surfaces separated by a tunable air gap. The MEMS FPI is a monolithic device, i.e. it is made entirely on one substrate in a batch process, without assembling separate pieces together. The gap is adjusted by moving the upper mirror with electrostatic force, so there are no actual moving parts. The manufactured MEMS FPIs have been characterized. The tuning wavelength range of the MEMS FPI is 2.8-3.5 μm and its spectral resolution is 50-60 nm. VTT has designed and manufactured a handheld size demonstrator device based on the technology presented in this abstract. This device demonstrates gas detecting by measuring cigarette lighter gas and various plastic materials transmission spectra. The demonstrator contains light source, gas cell, MEMS FPI, detector and control electronics. It is connected to a laptop by USB connection, additional power supply or connection is not needed.

  6. Pressure sensing of Fabry-Perot interferometer with a microchannel demodulated by a FBG

    NASA Astrophysics Data System (ADS)

    Yu, Yongqin; Chen, Xue; Huang, Quandong; Du, Chenlin; Ruan, Shuangchen

    2015-07-01

    A novel and compact fiber-probe pressure sensor was demonstrated based on micro Fabry-Perot interferometer (FPI). The device was fabricated by splicing both ends of a short section simplified hollow-core photonic crystal fiber (SHCPCF) with single mode fibers (SMFs), and then a micro channel was drilled by femtosecond laser micromachining in the SHC-PCF to significantly enhance the pressure sensitivity. The pressure sensing characteristics based on micro-FPI have been investigated by measuring the signals through the demodulation of phase since the external signal imposing on the interferometer will induce the phase change of interference signal. Then a FBG was cascaded to demodulate the signal. A micro FPI demonstrates a maximum pressure sensitivity of 32 dB/MPa, while a low temperature cross-sensitivity of 0.27 KPa/°C. Hence it may have potential for pressure applications in harsh environment.

  7. Fabry-Perot interferometer embedded in a glass chip fabricated by femtosecond laser.

    PubMed

    Lin, Cheng-Hsiang; Jiang, Lan; Xiao, Hai; Chai, Yen-Hsin; Chen, Shean-Jen; Tsai, Hai-Lung

    2009-08-15

    We report a simple Fabry-Perot interferometer (FPI) embedded in a glass chip, which is capable of precisely measuring the refractive indices of liquid samples. The microdevice is the integration of a single-mode optical fiber and a microchannel in the photosensitive glass fabricated by femtosecond laser followed by thermal treatment, wet etching, and annealing. The function of the FPI is demonstrated by measuring the refractive indices of water and methanol. The interference visibility is more than 4.0 dB, which is sufficient for most sensing applications. This refractive index sensor with rigid structure could be further integrated to become a more complex 3D lab-on-a-chip for reliable biomedical applications. PMID:19684798

  8. A simple Fabry-Perot pressure sensor fabricated on fiber optic tip

    NASA Astrophysics Data System (ADS)

    Di Palma, Pasquale; Natale, Daniele; Campopiano, Stefania; Iadicicco, Agostino

    2016-05-01

    In this work, we demonstrate an extrinsic pressure sensor realized on single mode fiber tip by means of simple fabrication steps and with low-cost instrumentations. The sensing element consists in a Fabry-Perot cavity: one reflecting surface is the end of the optical fiber, precisely cut, and the other one is a metallic diaphragm. Under the action of the external pressure, the metallic diaphragm bends changing the optical cavity length and, consequently, the characteristics of the reflected signal. The holder structure, which allows the alignment of the fiber tip and reflecting diaphragm, consists in a commercial zirconia ferule with external diameter of Dex = 2.5 mm. Despite its simplicity and cost-effectiveness, the achieved results show performance comparable to more complex and expensive configurations. By using an aluminum plate as reflecting diaphragm. sensitivity ranging in the 70-130pm/mmHg is experimentally.

  9. An optimized strain demodulation method for PZT driven fiber Fabry-Perot tunable filter

    NASA Astrophysics Data System (ADS)

    Sheng, Wenjuan; Peng, G. D.; Liu, Yang; Yang, Ning

    2015-08-01

    An optimized strain-demodulation-method based on piezo-electrical transducer (PZT) driven fiber Fabry-Perot (FFP) filter is proposed and experimentally demonstrated. Using a parallel processing mode to drive the PZT continuously, the hysteresis effect is eliminated, and the system demodulation rate is increased. Furthermore, an AC-DC compensation method is developed to address the intrinsic nonlinear relationship between the displacement and voltage of PZT. The experimental results show that the actual demodulation rate is improved from 15 Hz to 30 Hz, the random error of the strain measurement is decreased by 95%, and the deviation between the test values after compensation and the theoretical values is less than 1 pm/με.

  10. Diaphragm-free fiber-optic Fabry-Perot interferometer based on tapered hollow silica tube

    NASA Astrophysics Data System (ADS)

    Fang, Guocheng; Jia, Pinggang; Liang, Ting; Tan, Qiulin; Hong, Yingping; Liu, Wenyi; Xiong, Jijun

    2016-07-01

    A miniature fiber-optic Fabry-Perot interferometer fabricated by splicing a diaphragm-free hollow silica tube to a single-mode fiber and fusing the inner core to a taper is presented. The tapered zone forces lights to propagate from the fiber core into the silica tube, and the lights is reflected from the end faces of the optical fiber and the hollow silica tube. The contrast ratio of the interference fringe is determined by the minimum inner diameter of hollow silica tube. The responses of the proposed interferometer to high-temperature, gas refractive index, liquid refractive index and pressure were measured and were found to be linear with sensitivities of 16.26 pm/°C, 610.47 nm/RIU, -122.36 dB/RIU and 1.56 pm/kPa, respectively.

  11. Fiber Bragg grating Fabry-Perot cavity sensor based on pulse laser demodulation technique

    NASA Astrophysics Data System (ADS)

    Gao, Fangfang; Chen, Jianfeng; Liu, Yunqi; Wang, Tingyun

    2011-12-01

    We demonstrate a fiber laser sensing technique based on fiber Bragg grating Fabry-Perot (FBG-FP) cavity interrogated by pulsed laser, where short pulses generated from active mode-locked erbium-doped fiber ring laser and current modulated DFB laser are adopted. The modulated laser pulses launched into the FBG-FP cavity produce a group of reflected pulses. The optical loss in the cavity can be determined from the power ratio of the first two pulses reflected from the cavity. This technique does not require high reflectivity FBGs and is immune to the power fluctuation of the light source. Two short pulse laser sources were compared experimentally with each other on pulse width, pulse stability, pulse chirp and sensing efficiency.

  12. Broadband High-Resolution Spectroscopy with Fabry-Perot Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Wang, Yin; Wysocki, Gerard

    2014-06-01

    Simultaneous spectroscopic detection of large molecules with broad ro-vibrational spectra, and small molecules with well-resolved narrow spectral lines requires both broadband optical frequency coverage (>50 wn) and high resolution (<0.01 wn) to perform accurate spectral measurements. With the advent of room temperature, high power, continuous wave quantum cascade lasers (QCLs), high resolution mid-IR spectrometers for field applications became feasible. So far to address the broadband spectral coverage, external cavity (EC) QCLs with >100 wn tuning ranges have been spectroscopic sources of choice in the mid-IR; however EC-QCLs are rather complex opto-mechanical systems, which are vibration-sensitive, and construction of robust transportable systems is difficult. In this work we present a new method of performing broadband mid-IR spectroscopy using two free-running Fabry-Perot (FP) QCLs to perform multi-heterodyne down-conversion of optical signals to RF domain. The sample transmission spectrum probed by one multi-mode FP-QCL is down-converted to the RF domain through an optical multi-heterodyne process using a second FP-QCL as the local oscillator. Both a broadband multi-mode spectral measurement as well as high-resolution ( 15 MHz or 0.0005 wn) absorption spectroscopy of NH3 and N2O are demonstrated and show potential for all-solid-state FP-laser-based spectrometers for chemical sensing. Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, "High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers," Appl Phys Lett 104, 0311141-0311145 (2014)

  13. Continuous-Wave Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking Using Feedback from a Fiber Bragg Grating

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1998-01-01

    Single-frequency operation of uncoated Fabry-Perot laser diodes is demonstrated by phase- locking the laser oscillations through self-injection seeding with feedback from a fiber Bragg grating. By precisely tuning the laser temperature so that an axial-mode coincides with the short-wavelength band edge of the grating, the phase of the feedback is made conjugate to that of the axial mode, locking the phase of the laser oscillations to that mode.

  14. The VELOPT code for estimating performance of a Fabry-Perot velocimeter

    SciTech Connect

    Goosman, D.R.

    1992-04-09

    The VELOPT code calculates an estimate of the performance of a Fabry- Perot (FP) velocimeter. The code is a macro-driven, Symphony spreadsheet written for an IBM PC. VELOPT is designed to be used in conjunction with the POWER codes, which estimate the amount of light entering a collection fiber and the ratio of collected light to light leaving the laser fiber. In this model a velocimeter system, single- frequency laser output illuminates a moving test surface through a lens. Reflected light from the test surface is concentrated by a lens into an optical collection fiber. The collected light is presented to a mode scrambler, a cylinder lens, a filter, and then to a striped Fabry-Perot interferometer (FPI). Light leaving the FPI is imaged via spherical lenses and one mirror onto the slit of an electronic streak camera. The image is intensified within the camera, and then is recorded on film. VELOPT takes 47 user inputs that describe the FP velocimeter system. The primary outputs from the code include the following estimates for each of the first four fringes: Energy per unit area reaching the film; optical density expected on both Polaroid 667 and TMAX3200 films; velocity and time resolution; and statistical smoothness of the streak records. Twenty-six other secondary output quantities for each fringe are also calculated. The finesse limitation due to the finite size of the mirrors is calculated in detail by the routine WALKOFF, which is internal to VELOPT. An estimate of the reduction in effective fill time of the FPI due to the finite spatial resolution of the streak camera is also calculated by VELPOPT.

  15. The VELOPT code for estimating performance of a Fabry-Perot velocimeter

    NASA Astrophysics Data System (ADS)

    Goosman, D. R.

    1992-04-01

    The VELOPT code calculates an estimate of the performance of a Fabry-Perot (FP) velocimeter. The code is a macro-driven, Symphony spreadsheet written for an IBM PC. VELOPT is designed to be used in conjunction with the POWER codes, which estimate the amount of light entering a collection fiber and the ratio of collected light to light leaving the laser fiber. In this model a velocimeter system, single-frequency laser output illuminates a moving test surface through a lens. Reflected light from the test surface is concentrated by a lens into an optical collection fiber. The collected light is presented to a mode scrambler, a cylinder lens, a filter, and then to a striped Fabry-Perot interferometer (FPI). Light leaving the FPI is imaged via spherical lenses and one mirror onto the slit of an electronic streak camera. The image is intensified within the camera, and then is recorded on film. VELOPT takes 47 user inputs that describe the FP velocimeter system. The primary outputs from the code include the following estimates for each of the first four fringes: Energy per unit area reaching the film; optical density expected on both Polaroid 667 and TMAX3200 films; velocity and time resolution; and statistical smoothness of the streak records. Twenty-six other secondary output quantities for each fringe are also calculated. The finesse limitation due to the finite size of the mirrors is calculated in detail by the routine WALKOFF, which is internal to VELOPT. An estimate of the reduction in effective fill time of the FPI due to the finite spatial resolution of the streak camera is also calculated by VELPOPT.

  16. Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications.

    PubMed

    André, Ricardo M; Pevec, Simon; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Marques, Manuel B; Donlagic, Denis; Bartelt, Hartmut; Frazão, Orlando

    2014-06-01

    Focused ion beam technology is combined with chemical etching of specifically designed fibers to create Fabry-Perot interferometers. Hydrofluoric acid is used to etch special fibers and create microwires with diameters of 15 μm. These microwires are then milled with a focused ion beam to create two different structures: an indented Fabry-Perot structure and a cantilever Fabry-Perot structure that are characterized in terms of temperature. The cantilever structure is also sensitive to vibrations and is capable of measuring frequencies in the range 1 Hz - 40 kHz. PMID:24921506

  17. A novel Michelson Fabry-Perot hybrid interference sensor based on the micro-structured fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Yaxun; Zhang, Yu; Wang, Zhenzhen; Liu, Zhihai; Wei, Yong; Zhao, Enming; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Yuan, Libo

    2016-09-01

    We propose and demonstrate a novel Michelson Fabry-Perot hybrid fiber interference sensor. By integrating a Michelson interferometer in a two-core fiber and a Fabry-Perot interferometer in a micro silica-capillary, we produce the Michelson Fabry-Perot hybrid interference sensor. Owing to the structure characteristic of the micro-structured fiber, this hybrid fiber interference sensor can achieve the measurement of the axial strain and radial bending simultaneously. The measurement sensitivity of the axial train is 0.015 nm/με and the measurement sensitivity of the radial bending is 1.393 nm/m-1.

  18. HTS Fabry-Perot resonators for the far infrared

    SciTech Connect

    Keller, P.; Prenninger, M.; Pechen, E.V.; Renk, K.F.

    1996-12-31

    The authors report on far infrared (FIR) Fabry-Perot resonators (FPR) with high temperature superconductor (HTS) thin films as mirrors. For the fabrication of FPR they use two parallel MgO plates covered with YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} thin films on adjacent sides. They have measured the far-infrared transmissivity at 10 K with a Fourier transform infrared spectrometer. Very sharp resonances can be observed for frequencies below 6 THz where the MgO is transparent. The finesse (width of the first order resonance) is comparable to the FPR with metallic meshes as reflectors that are applied in the FIR spectroscopy and astronomy. They have also shown that thin films of gold are not an adequate substitute to HTS thin films and not suitable for the fabrication of high-quality FPR due to the ohmic losses.

  19. Superconducting electromagnetic actuators for astronomical Fabry-Perot interferometers

    NASA Technical Reports Server (NTRS)

    Nishimura, T.; Low, F. J.; Shivanandan, K.

    1985-01-01

    Two types of superconducting electromagnetic actuators linear and angular - for precise control of Fabry-Perot spectrometer etalons at liquid helium temperature were manufactured and tested successfully. The linear displacement unit (45 Newtons/Amp) has maximum travel of + or - 44 microns with off-axis deviation of less than 1.5 arcseconds for 15 microns path. The angular unit has maximum tilt of + or - 8 arcminutes and can maintain parallelism of two etalons to better than 0.3 arcsecond of angle by compensating the differential contraction upon cooling and off-axis deviation of the linear displacement unit. These actuators are proving especially useful in low temperature infrared instrumentation where other choices, such as piezoelectric crystals, fail and where essentially zero power dissipation permits low infrared backgrounds to be maintained along with long cryogenic lifetimes.

  20. Intrinsic Fabry-Perot optical fiber sensors and their multiplexing

    DOEpatents

    Wang, Anbo

    2007-12-11

    An intrinsic Fabry-Perot optical sensor includes a thin film sandwiched between two fiber ends. When light is launched into the fiber, two reflections are generated at the two fiber/thin film interfaces due to a difference in refractive indices between the fibers and the film, giving rise to the sensor output. In another embodiment, a portion of the cladding of a fiber is removed, creating two parallel surfaces. Part of the evanescent fields of light propagating in the fiber is reflected at each of the surfaces, giving rise to the sensor output. In a third embodiment, the refractive index of a small portion of a fiber is changed through exposure to a laser beam or other radiation. Interference between reflections at the ends of the small portion give rise to the sensor output. Multiple sensors along a single fiber are multiplexed using an optical time domain reflectometry method.

  1. Fourier transform spectrometer based on Fabry-Perot interferometer.

    PubMed

    Al-Saeed, Tarek A; Khalil, Diaa A

    2016-07-10

    We analyze the Fourier transform spectrometer based on a symmetric/asymmetric Fabry-Perot interferometer. In this spectrometer, the interferogram is obtained by recording the intensity as a function of the interferometer length. Then, we recover the spectrum by applying the discrete Fourier transform (DFT) directly on the interferogram. This technique results in spectral harmonic overlap and fictitious wavenumber components outside the original spectral range. For this purpose, in this work, we propose a second method to recover the spectrum. This method is based on expanding the DFT of the interferogram and the spectrum by a Haar or box function. By this second method, we recovered the spectrum and got rid of the fictitious spectral components and spectral harmonic overlap. PMID:27409306

  2. Photoacoustic imaging using an 8-beam Fabry-Perot scanner

    NASA Astrophysics Data System (ADS)

    Huynh, Nam; Ogunlade, Olumide; Zhang, Edward; Cox, Ben; Beard, Paul

    2016-03-01

    The planar Fabry Perot (FP) photoacoustic scanner has been shown to provide exquisite high resolution 3D images of soft tissue structures in vivo to depths up to approximately 10mm. However a significant limitation of current embodiments of the concept is low image acquisition speed. To increase acquisition speed, a novel multi-beam scanner architecture has been developed. This enables a line of equally spaced 8 interrogation beams to be scanned simultaneously across the FP sensor and the photoacoustic signals detected in parallel. In addition, an excitation laser operating at 200Hz was used. The combination of parallelising the detection and the high pulse repetition frequency (PRF) of the excitation laser has enabled dramatic reductions in image acquisition time to be achieved. A 3D image can now be acquired in 10 seconds and 2D images at video rates are now possible.

  3. Micromachined fiber optic Fabry-Perot underwater acoustic probe

    NASA Astrophysics Data System (ADS)

    Wang, Fuyin; Shao, Zhengzheng; Hu, Zhengliang; Luo, Hong; Xie, Jiehui; Hu, Yongming

    2014-08-01

    One of the most important branches in the development trend of the traditional fiber optic physical sensor is the miniaturization of sensor structure. Miniature fiber optic sensor can realize point measurement, and then to develop sensor networks to achieve quasi-distributed or distributed sensing as well as line measurement to area monitoring, which will greatly extend the application area of fiber optic sensors. The development of MEMS technology brings a light path to address the problems brought by the procedure of sensor miniaturization. Sensors manufactured by MEMS technology possess the advantages of small volume, light weight, easy fabricated and low cost. In this paper, a fiber optic extrinsic Fabry-Perot interferometric underwater acoustic probe utilizing micromachined diaphragm collaborated with fiber optic technology and MEMS technology has been designed and implemented to actualize underwater acoustic sensing. Diaphragm with central embossment, where the embossment is used to anti-hydrostatic pressure which would largely deflect the diaphragm that induce interferometric fringe fading, has been made by double-sided etching of silicon on insulator. By bonding the acoustic-sensitive diaphragm as well as a cleaved fiber end in ferrule with an outer sleeve, an extrinsic Fabry-Perot interferometer has been constructed. The sensor has been interrogated by quadrature-point control method and tested in field-stable acoustic standing wave tube. Results have been shown that the recovered signal detected by the sensor coincided well with the corresponding transmitted signal and the sensitivity response was flat in frequency range from 10 Hz to 2kHz with the value about -154.6 dB re. 1/μPa. It has been manifest that the designed sensor could be used as an underwater acoustic probe.

  4. Nanoporous Zeolite Thin Film-Based Fiber Intrinsic Fabry-Perot Interferometric Sensor for Detection of Dissolved Organics in Water

    PubMed Central

    Liu, Ning; Hui, Juan; Sun, Cunqiang; Dong, Junhang; Zhang, Luzheng; Xiao, Hai

    2006-01-01

    A fiber optic intrinsic Fabry-Perot interferometric (IFPI) chemical sensor was developed by fine-polishing a thin layer of polycrystalline nanoporous MFI zeolite synthesized on the cleaved endface of a single mode fiber. The sensor operated by monitoring the optical thickness changes of the zeolite thin film caused by the adsorption of organic molecules into the zeolite channels. The optical thickness of the zeolite thin film was measured by white light interferometry. Using methanol, 2-propanol, and toluene as the model chemicals, it was demonstrated that the zeolite IPFI sensor could detect dissolved organics in water with high sensitivity.

  5. A switchable dual-wavelength fiber laser based on asymmetric fiber Bragg grating Fabry-Perot cavity with a SESAM

    NASA Astrophysics Data System (ADS)

    Huang, Kaiqiang; Li, Qi; Chen, Haiyan

    2016-04-01

    A switchable dual-wavelength fiber laser with an asymmetric fiber Bragg grating (FBG)-Fabry-Perot (FP) cavity based a semiconductor saturable absorber mirror (SESAM) is proposed and experimentally demonstrated. The proof of concept device consists of a FGB laser with an asymmetric FBG-FP cavity, a SESAM as mode loss modulator, and a intracavity FBG as wavelength selector by changing its operation temperature. The results demonstrate the new concept of dual-wavelength fiber laser based SESAM with asymmetric FBG-FP cavity and the technical feasibility.

  6. Demonstrations Using a Fabry-Perot. I. Multiple-Slit Interference

    ERIC Educational Resources Information Center

    Roychoudhuri, Chandrasekhar

    1975-01-01

    Describes a demonstration technique for showing multiple-slit interference patterns with the use of a Fabry-Perot etalon and a laser beam. A simple derivation of the analytical expression for such fringes is presented. (Author/CP)

  7. Compact imaging spectrometer combining Fourier transform spectroscopy with a Fabry-Perot interferometer.

    PubMed

    Pisani, Marco; Zucco, Massimo

    2009-05-11

    An imaging spectrometer based on a Fabry-Perot interferometer is presented. The Fabry-Perot interferometer scans the mirror distance up to contact and the intensity modulated light signal is transformed using a Fourier Transform based algorithm, as the Michelson based Fourier Transform Spectrometers does. The resulting instrument has the advantage of a compact, high numerical aperture, high luminosity hyperspectral imaging device. Theory of operation is described along with one experimental realization and preliminary results. PMID:19434165

  8. High-precision velocimetry: optimization of a fabry-perot interferometer.

    PubMed

    Courteville, A; Salvadé, Y; Dändliker, R

    2000-04-01

    We present the optimization of a Fabry-Perot velocimeter designed to measure speed at a few millimeters per second with a relative uncertainty of 10(-8). We focus on the accuracy and the optimization of the Fabry-Perot, with a review of the uncertainties related to the geometry, the beam shape, and the Doppler frequency measurement. These errors are quantified to ensure that the required accuracy is reached. We then describe the practical implementation and show the results. PMID:18345045

  9. Method and apparatus for a Fabry-Perot multiple beam fringe sensor

    NASA Technical Reports Server (NTRS)

    James, Kenneth A. (Inventor); Quick, William H. (Inventor); Strahan, Virgil H. (Inventor)

    1986-01-01

    A method and, in one embodiment of the invention, the resulting apparatus for implementing a unique multiple beam fringe sensor that is adapted to be interfaced with a low cost, compact fiber optic transmission system in order to provide an accurate digital representation of a physical parameter (e.g. temperature) of a remote sample. The sensor is fabricated so as to include a Fabry-Perot gap formed between the ends of two mated optical fibers. By examining the optical characteristics of light that is transmitted through the Fabry-Perot sensor gap, an indication of gap width can be ascertained. Accordingly, a change in Fabry-Perot sensor gap width is related to a change in the particular physical parameter to be measured. In another embodiment of the invention, a second unique multiple beam fringe sensor having a Fabry-Perot gap is disclosed that is also adapted to provide an accurate digital representation of a physical parameter (e.g. temperature) of a remote sample. The sensor may be fabricated in two segments. A fiber containing segment includes each of a driving optical fiber for supplying incident light signals to the Fabry-Perot gap and a sensing optical fiber for receiving output light signals that have been transmitted twice through the Fabry-Perot gap, the optical characteristics of which output signals provide an indication of the parameter to be sensed. A transducer segment includes the Fabry-Perot gap formed therein and means responsive to the physical parameter for changing the width of the Fabry-Perot gap and, accordingly, the optical characteristics of the light signals passing therethrough.

  10. Tunable Fabry-Perot filter and grating hybrid modulator to improve dispersive spectrometer resolution

    NASA Astrophysics Data System (ADS)

    Fang, Liang; Li, Guojun; Yang, Huan; Zhou, Chongxi

    2016-05-01

    We describe a tunable Fabry-Perot filter and grating hybrid modulator to achieve a higher spectral resolution compared with that produced by a single grating with the same period. In the hybrid modulator, a tunable Fabry-Perot filter is designed with a long cavity to accommodate a multi-order narrowband pre-filter. A grating is then utilized to separate these multi-orders spatially. Scanning the air gap of the tunable Fabry-Perot filter within 1/2 wavelength, the entire spectrogram can be achieved by compositing each group of transmitted multi-orders. Light passes first through the Fabry-Perot cavity and then into the grating. Thus, all of the light is incident on the Fabry-Perot cavity at a given angle, which can reduce the requirement for incident beam alignment and simplify the operation of the hybrid modulator. The structural matching conditions of the tunable Fabry-Perot filter and grating were presented based on the operating law of the hybrid modulator. In terms of the Rayleigh criterion, the practical spectral resolution of the hybrid modulator can be increased by at least twice that of the single grating. Experiments with a neon lamp revealed that the spectral resolution of the hybrid modulator was nearly double that of a single grating.

  11. Influence of intensity loss in the cavity of a folded Fabry-Perot interferometer on interferometric signals

    SciTech Connect

    Shyu, Lih-Horng; Chang, Chung-Ping; Wang, Yung-Cheng

    2011-06-15

    Fabry-Perot interferometer is often used for the micro-displacement, because of its common optical path structure being insensitive to the environmental disturbances. Recently, the folded Fabry-Perot interferometer has been investigated for displacement measurements in large ranges. The advantages of a folded Fabry-Perot interferometer are insensitive to the tilt angle and higher optical resolution. But the design of the optical cavity has become more and more complicated. For this reason, the intensity loss in the cavity will be an important parameter for the distribution of the interferometric intensity. To obtain a more accurate result of such interferometer utilized for displacement measurements, the intensity loss of the cavity in the fabricated folded Fabry-Perot interferometer and the modified equation of the folded Fabry-Perot interferometer will be described. According to the theoretical and experimental results, the presented model is available for the analysis of displacement measurements by a folded Fabry-Perot interferometer.

  12. Evaluation of a Magneto-optical Filter and a Fabry-perot Interferometer for the Measurement of Solar Velocity Fields from Space

    NASA Technical Reports Server (NTRS)

    Rhodes, E. J., Jr.; Cacciani, A.; Blamont, J.; Tomczyk, S.; Ulrich, R. K.; Howard, R. F.

    1984-01-01

    A program was developed to evaluate the performance of three different devices as possible space-borne solar velocity field imagers. Two of these three devices, a magneto-optical filter and a molecular adherence Fabry-Perot interferometer were installed in a newly-constructed observing system located at the 60-foot tower telescope at the Mt. Wilson Observatory. Time series of solar filtergrams and Dopplergrams lasting up to 10 hours per day were obtained with the filter while shorter runs were obtained with the Fabry-Perot. Two-dimensional k (sub h)-omega power spectra which show clearly the well-known p-mode ridges were computed from the time series obtained with the magneto-optical filter. These power spectra were compared with similar power spectra obtained recently with the 13.7-m McMath spectrograph at Kitt Peak.

  13. GIFS Imaging Fabry--Perot Spectrometer: Measurement Technique and Intercomparison

    NASA Astrophysics Data System (ADS)

    Demajistre, R.; Yee, J.; Swartz, W. H.; Kelly, M. A.; Pitts, M. C.; Hostetler, C. A.

    2008-05-01

    A Geostationary Imaging Fabry--Perot Spectrometer (GIFS) prototype instrument has been developed and tested during a recent NASA P3B aircraft field campaign based at NASA/Wallops (Jan--Feb 2008). GIFS is a very high- resolution imaging spectrometer that resolves individual molecular oxygen lines for the inference of cloud height and other properties. Cloud properties are inferred by accurate measurement of the line shape of the backscattered light incident on the instrument. In particular, the line shape contains a record of the pressure broadening that occurs along the multiply scattered path of the light reaching the instrument. We present our initial analysis of the data collected during this campaign. We have identified several representative cases of cloud scenes in the dataset to validate the measurement concept. These cases include cloud-free measurements made over open ocean and thick unbroken cloud decks in areas where coincident high-precision cloud measurements are available from the NASA/Langley LIDAR onboard the Langley B200 research aircraft and CALIPSO. The data for these cases are analyzed in the context of standard radiation field modeling and instrument optical performance taken both during the flight and on the ground.

  14. Fabry-Perot Interferometer for Column CO2: Airborne

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Heaps, W. S.; Mao, J.; Andrews, A. E.; Burris, J. F.; Miodek, M.; Georgieva, E.

    2002-01-01

    Global atmospheric CO2 measurements are essential to resolving significant discrepancies in our understanding of the global carbon budget and, hence, humankind's role in global climate change. The science measurement requirements for CO2 are, however, extremely demanding (precision approximately 0.3%). We are developing a novel application of a Fabry-Perot interferometer to detect spectral absorption of reflected sunlight by CO2 and O2 in the atmosphere that should be able to achieve sufficient sensitivity and signal-to-noise to measure column CO2 at the target specification. We are currently constructing a prototype instrument for deployment on aircraft. The aircraft version will measure total column CO2 and CO2 below the aircraft as well as O2, which allows normalization of CO2 column amounts for varying surface height and pressure. This instrument will be a valuable asset in carbon budget field studies as well as a useful tool for evaluating existing and future space-based CO2 measurements. We will present the instrument concept, sensitivity calculations, and the results of testing a bench system in the laboratory and outdoors on the ground. We will also discuss our plan for deployment on the aircraft and potential flight applications to the CO2 budget problem.

  15. Optical fiber Fabry-Perot interferometer for microorganism growth detection

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohui; Jiang, Mingshun; Sui, Qingmei; Luo, Shuyang; Geng, Xiangyi

    2016-07-01

    An optical fiber Fabry-Perot interferometer (FPI) based on hollow-core photonic crystal fiber (HCPCF) for microorganism growth detection is proposed and demonstrated. The FPI is formed by splicing both ends of a short section of HCPCF to SMFs and cleaving the SMF pigtail to a proper length. By measuring the fringe contrast of interference pattern, the refractive index (RI) changes of analyte during microorganism growth can be obtained. RI response of the sensor was investigated theoretically and experimentally. It shows linear response with sensitivity of -136 dB/RIU and good repeatability. Temperature response was also tested and the result confirms the low temperature cross-sensitivity of the sensor. Detection of yeast growth in liquid medium by the FPI sensor was conducted and the result shows the characteristic of typical yeast growth curve. With its advantages of high RI sensitivity, low temperature cross-sensitivity, capability for real-time measurement and so on, this FPI sensor has great potential in biosensing.

  16. Fabry-Perot Interferometer for Column CO2

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Kawa, S. Randolph; Krebs, Carolyn A. (Technical Monitor)

    2002-01-01

    Global atmospheric CO2 measurements are essential to resolving significant discrepancies in our understanding of the global carbon budget and, hence, humankind's role in global climate change. The science measurement requirements for CO2 are extremely demanding (precision is less than .3%). No atmospheric chemical species has ever been measured from space with this precision. We are developing a novel application of a Fabry-Perot interferometer to detect spectral absorption of reflected sunlight by CO2 and O2 in the atmosphere. Preliminary design studies indicate that the method will be able to achieve the sensitivity and signal-to-noise detection required to measure column CO2 at the target specification. The objective of this program is to construct a prototype instrument for deployment on an aircraft to test the instrument performance and our ability to retrieve the data in the real atmosphere. To date we have assembled a laboratory bench system to begin testing the optical and electronic components. We are also undertaking some measurements of signal and noise levels for actual sunlight reflecting from the ground in order to evaluate the potential of some components to meet the exacting requirements of this measurement.

  17. Fabry-Perot Interferometer for Column CO2

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Kawa, Randolph; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Global atmospheric CO2 measurements are essential to resolving significant discrepancies in our understanding of the global carbon budget and, hence, humankind's role in global climate change. The science measurement requirements for CO2 are extremely demanding (precision approx. 0.3%). No atmospheric chemical species has ever been measured from space with this precision. We are developing a novel application of a Fabry-Perot interferometer to detect spectral absorption of reflected sunlight by CO2 and O2 in the atmosphere. Preliminary design studies indicate that the method will be able to achieve the sensitivity and signal-to-noise detection required to measure column CO2 at the target specification. The objective of this program is to construct a prototype instrument for deployment on an aircraft to test the instrument performance and our ability to retrieve the data in the real atmosphere. To date we have assembled a laboratory bench system to begin testing the optical and electronic components. We are also measuring signal and noise levels in actual sunlight to evaluate component performance.

  18. Design of broadband dielectric coatings for near-infrared Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Jinfeng; Mao, Weijun; Cui, Xiangqun

    2007-12-01

    Fabry-Perot interferometer has an important effect on near-infrared high spectral resolution spectrograph. In 1896, Ch. Fabry and Alfred Perot designed and used the Fabry-Perot interferometer for the first time. Since then the instruments using Fabry-Perot interference phenomena have been applied broadly to multi-field, such as astronomy, laser, and fiber-optic transmission. Fabry-Perot interferometer has many advantages such as narrow passband, high spectral resolution, high throughput, easy wave-length adjustment, simple structure and large aperture. Comparing with traditional visible light, the solar observation in near-infrared has many advantages: for example, weaker magnetic field strength can be more precisely measured with near-infrared spectrum .So developing the key technology of near-infrared high spectral resolution spectrograph--Fabry-Perot interferometer has become urgent. For developing near-infrared Fabry-Perot interferometer, there are four difficulties: producing high quality optical plane: peak-to-valley surface flatness better than λ/100 coating Fabry-Perot interferometer plates with broadband multilayer dielectric films(including spectrum performance, thickness uniformity and stress effects); controlling the distance of interference cavity; keeping constant temperature. In this paper, the process of designing broadband dielectric reflective and antireflective coatings applied in near-infrared Fabry-Perot is described and some problems of designing Fabry-Perot interferometer are discussed: the design of broadband dielectric mirror is described with reflectivity of 93.9+/-1.0% over spectral ranges from 1.0μm to 1.7μm by reflective phase shifts in the design of mirror coating, computing the required film thickness uniformity atλ/100 of peak-to-valley surface flatness; degradation of surface figure is perhaps more thanλ/100 even if the soft coating materials-zinc sulfide and cryolite are used, and in order to reduce the degradation of surface

  19. A novel single frequency stabilized Fabry-Perot laser diode at 1590 nm for gas sensing

    NASA Astrophysics Data System (ADS)

    Weldon, Vincent; Boylan, Karl; Corbett, Brian; McDonald, David; O'Gorman, James

    2002-09-01

    A novel single frequency stabilized Fabry-Perot (SFP) laser diode with an emission wavelength of λ=1590 nm for H 2S gas sensing is reported. Sculpting of the multi-mode spectral distribution of a FP laser to achieve single frequency emission is carried out using post growth photolitographic processing of the device. The resulting longitudinal-mode controlled FP laser has a stabilized single frequency emission with a side mode suppression ratio (SMSR) of 40 dB. The application of this device to spectroscopic based H 2S sensing is demonstrated by targeting absorption lines in the wavelength range 1588≤ λ≤1591 nm. Using wavelength modulation spectroscopy (WMS), a low detection limit of 120 ppm.m.Hz -1/2 was estimated while targeting the absorption line at 1590.08 nm. These initial results demonstrate the potential of the stabilized FP laser diode at this wavelength as a tunable, single frequency source for spectroscopic based gas sensing.

  20. Resolution improvement of grating spectrometer by using a tunable Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    Fang, Liang; Shi, Zhendong; Qiu, Chuankai; Zhou, Chongxi

    2015-10-01

    Aiming at the problem of the resolution reduction in a miniaturized grating spectrometer, we presented a method to improve its spectral resolution by inserting a tunable Fabry-Perot filter into its optical path before the grating. The Fabry-Perot filter was designed to filter out a partial spectrogram and separate the original undistinguishable spectral lines so as to make their actual wavelengths can be detected. The different cavity length of the Fabry-Perot filter is corresponding to the different separated partial spectrogram. Combining all the separated partial spectrograms, an entire spectrogram with improved resolution can be achieved. Experimentally, the spectral resolution of a grating dispersive system was improved from 2 nm to 1.2nm in a broad spectral range by insetting a homemade tunable Fabry-Perot filter, which demonstrated the feasibility of this scheme. The tunable Fabry-Perot filter is fit for miniaturization by using MEMS technology and is able to work as an independent module. The method proposed provides a potential way to improve the spectral resolution without reducing the spectral range of the existing miniaturized grating spectrometers.

  1. Study on the structure of bridge surface of the micro Fabry-Perot cavity tunable filter

    NASA Astrophysics Data System (ADS)

    Meng, Qinghua; Luo, Huan; Bao, Shiwei; Zhou, Yifan; Chen, Sihai

    2011-02-01

    Micro Fabry-Perot cavity tunable filters are widely applied in the area of Pushbroom Hyperspectral imaging, DWDM optical communication system and self-adaptive optics. With small volume, lower consumption and cost, the Micro Fabry-Perot cavity tunable filter can realize superior response speed, large spectral range, high definition and high reliability. By deposition metal membrane on silicon chip by MEMS technology, the micro Fabry-Perot cavity has been achieved, which is actuated by electrostatic force and can realize the function of an optical filter. In this paper, the micro-bridge structure of the micro Fabry-Perot cavity tunable filter has been studied. Finite element analysis software COMSOL Multiphysics has been adopted to design the structure of the micro-bridge of the micro filter. In order to simulate the working mechanism of the micro Fabry-Perot cavity and study the electrical and mechanical characteristics of the micro tunable filter,the static and dynamic characteriastics are analyzed, such as stress, displacement, transient response, etc. The corresponding parameters of the structure are considered as well by optimizition the filter's sustain structure.

  2. Phase modulating two Fabry-Perot interferometry and its application to nanometrology

    NASA Astrophysics Data System (ADS)

    Gou, Bin; Zhu, Lei; Miao, Jian; Huang, Yu; Wei, Tao; Zhu, Ruogu

    2010-10-01

    We discuss how to expend the SPM of double beam interferometer to multi-beam interferometer or Fabry-Perot interferometer and deduce the corresponding theoretical results in this paper. Besides the introduction section 1 the principle of Fabry-Perot interferometer and how to simplify the representation of its intensity are described in section 2. Two typical conditions such as (1) nearby the maximum and fineness coefficient F, the light phase θ satisfied the condition F sin2θ < 1 or (2) offset the maximum and F θ satisfied the condition F sin2θ > 1 considered. Phase modulating Fabry-Perot interferometry and theoretical results for 1, ramp, 2, saw teeth, 3, sinusoidal voltage modulating or SPM Fabry-Perot interferometer are deduced in section 3. It should be noted that the construction of double Fabry-Perot interferometer for nanometrology and the experimental results are stated in section 4. Our measurement resolution could be arrived in <0.3nm using the method of time space difference.

  3. Gamma radiation resistant Fabry-Perot fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Liu, Hanying; Miller, Don W.; Talnagi, Joseph

    2002-08-01

    The Nuclear Regulatory Commission (NRC) in 1998 completed a study of emerging technologies that could be applicable to measurement systems in nuclear power plants [H. M. Hashemian [et al.], "Advanced Instrumentation and Maintenance Technologies for Nuclear Power Plants," NUREG/CR-5501 (1998)]. This study concluded that advanced fiber optic sensing technology is an emerging technology that should be investigated. It also indicated that there had been very little research related to performance evaluation of fiber optic sensors in nuclear plant harsh environments, although substantial research has been performed on nuclear radiation effects on optical fibers in the last two decades. A type of Fabry-Perot fiber optic temperature sensor, which is manufactured by Fiso Technologies in Canada, is qualified to be a candidate for potential applications in nuclear radiation environment due to its unique signal processing technique and its resistance to power loss. The gamma irradiation effects on this type of sensors are investigated in this article. Two sensors were irradiated in a gamma irradiation field and one of them was irradiated up to a total gamma dose of 133 Mrad. The sensor on-line performance was monitored during each gamma irradiation test. Furthermore, the sensor static and dynamic performance before and after each irradiation test were evaluated according to the Standard ISA-dS67.06.01 ("Performance Monitoring for Nuclear Safety-Related Instrument Channels in Nuclear Power Plants", Standard ISA-dS67.06.01, Draft 7, Instrument Society of America, 1999). Although several abnormal phenomena were observed, analysis shows that gamma irradiation is not accredited to the abnormal behavior, which implies that this type of sensor is suitable to a gamma irradiation environment with a high gamma dose.

  4. Wavelength calibration with Fabry Perot Interferometers - yes we can!

    NASA Astrophysics Data System (ADS)

    Franziskus Bauer, Florian; Zechmeister, Mathias; Reiners, Ansgar

    2015-08-01

    Hollow-cathode lamps (HCLs) are used as default wavelength standard for spectroscopic measurements but have a number of well-known shortcomings. Advancing to cm/s precision in radial velocity experiments requires more stable calibration sources with more uniform line distributions. Fabry Perot Interferometers (FPI) are a practical alternative with a well-suited line distribution at relatively low cost. We present a simple method to characterize FPIs using standard HCLs and including the FPI spectrum in the wavelength calibration process. We propose to use the HCL wavelength solution to define a rough wavelength scale that is used to approximate the FPI peak positions. We assume that the FPI mirror distance is a smooth function of wavelength and utilize the large number of FPI peaks (typically 10^4) to consistently model all FPI peak wavelengths. With this approach, we anchor the dense FPI lines with the absolute HCL-scale combining their precision and accuracy. We test our method with the HARPS spectrograph and compare our wavelength calibration to one derived from a laser frequency comb (LFC) spectrum. Our combined HCL/FPI wavelength calibration removes the known, large-amplitude distortions of 50 m/s that occur in the HCL solution. Direct comparison with the LFC solution bears only small differences between the LFC and the HCL/FPI solutions and demonstrates that the HCL/FPI solution can overcome the most important shortcomings in HCL wavelength solutions. An FPI can provide an economical alternative to LFCs in particular for smaller projects.

  5. Spectral imaging characterization of MOEM tunable Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam

    2012-03-01

    A miniature MOEM tunable Fabry-Perot (FP) filter development program to fabricate filters operating over spectral regions from the visible to the longwave infrared has recently succeeded in fabricating filters operating over visible/near infrared wavelength region from 400 to 800 nm. The main objective of this program is to design miniature hyperspectral imagers by placing such a miniature tunable FP filter in front of a commercial focal plane array with a suitable optical train. This novel MOEM filter design is based on using two semitransparent 30-nm thick silver-film mirrors-one fixed and one moving with application of an electrostatic force. The silver films were grown on low-cost thin commercial quartz wafers with low total thickness variation. The moving mirror is held in place by three leaf spring arm structures which were fabricated by wet etching of the quartz substrate. The size of the MOEM device is 18×24 mm2. The tunable FP filter has a 6-mm optical aperture. The fixed part has three electrodes to apply voltages and the moving mirror is used as a ground electrode. Au bumps were deposited in both parts in order to control the initial air gap distance and an Au-Au bonding was used to bond the two parts together. The electrostatic actuation changes the spacing between the two mirrors which changes the transmitted wavelength. The spectral imaging performance of MOEM filter was characterized using a tunable source and a CCD camera with suitable optics. This paper describes the MOEM filter, its characteristics and present spectral imaging characterization experiment and results.

  6. Multiplexed extrinsic Fabry-Perot interferometers and applications

    NASA Astrophysics Data System (ADS)

    Murphy, Kent A.; Bhatia, Vikram; Claus, Richard O.; Duncan, Paul G.; Jones, Mark E.; Grace, Jennifer L.; Greene, Jonathan A.; Tran, Tuan A.

    1995-09-01

    Extrinsic Fabry-Perot interferometric (EFPI) sensors have previously been demonstrated for relative strain and temperature measurements for smart structure applications. Inherent difficulties in the signal processing of these devices has created the need for absolute measurement capabilities. In this paper, we present an absolute measurement technique based upon white-light interferometric path matching. The system matches a reference gap to the sensing gap of an EFPI. When the difference of these two lengths is within the coherence length of the source, an intensity envelope is created in the system output. Determination of the corresponding path mismatch indicates the size of the sensor gap and hence strain can be determined. This measurement technique is capable of multiplexing an array of EFPI sensors and data will be presented demonstrating four multiplexed devices. Theoretical considerations for system optimization are also presented. As the only fiber-optic sensors subcontractor to Northrop Corporation on the Navy/Air Force-sponsored Smart Metallic Structures (SMS) program, Fiber & Sensor Technologies (F&S) is developing the optical fiber fatigue gage instrumentation for a multiplexed, in situ structural health monitoring system for aging aircraft. In March, 1995, F&S successfully demonstrated the system on a full-size F/A-18 wing-box spar fully instrumented with 12 of F&S' patented EFPI optical fiber strain gages. F&S is now in process of up-scaling the signal processing system in addition to the optics and intends to demonstrate a second generation multipoint sensor system capable of simultaneously monitoring strains at up to 60 different sites throughout the aircraft later in 1995 or early 1996.

  7. In vivo optical resolution photoacoustic microscopy using glancing angle-deposited nanostructured Fabry-Perot etalons.

    PubMed

    Hajireza, Parsin; Sorge, Jason; Brett, Michael; Zemp, Roger

    2015-04-01

    In this Letter, reflection-mode optical resolution photoacoustic microscopy (OR-PAM) using glancing angle-deposited (GLAD) nanostructured Fabry-Perot interferometers (FPI) for in vivo applications is reported. GLAD is a single-step physical vapor deposition (PVD) technique used to fabricate porous nanostructured thin films. Using titanium dioxide, a transparent semiconductor with a high refractive index (n=2.4), the GLAD technique can be employed to fabricate samples with tailored nano-porosity, refractive index periodicities, and high Q-factor reflectance spectra. The OR-PAM in vivo images of chorioallantoic membrane (CAM) of 5-day chicken embryo model are demonstrated. The phantom study shows lateral resolution and signal-to-noise ratio better than 7 μm and 35 dB, respectively. The sensitive GLAD FPI allows photoacoustic imaging down to a few-nJ pulse energy. To the best of our knowledge, this is the first time that a FPI-based reflection mode optical resolution photoacoustic imaging technique is demonstrated for in vivo applications. PMID:25831330

  8. Asymmetric tunable Fabry-Perot cavity using switchable polymer stabilized cholesteric liquid crystal optical Bragg mirror

    NASA Astrophysics Data System (ADS)

    Sathaye, Kedar S.; Dupont, Laurent; de Bougrenet de la Tocnaye, Jean-Louis

    2012-03-01

    Optical properties of an asymmetric Fabry-Perot (FP) cavity interferometer made up of a conventional metallic mirror and a polymer stabilized cholesteric liquid crystal (PSCLC) Bragg mirror have been investigated. The first FP cavity design comprises a gold mirror, an isotropic layer made up of the polymer glue, a quarter wave plate to convert the input linearly polarized modes into the circularly polarized modes inside the cavity, and the PSCLC Bragg mirror, all sandwiched between two indium tin oxide glass plates. The second FP cavity has a layer of conducting polymer deposited on the quarter-wave plate to apply the electric field only to the cholesteric stack. To have reflectivity above 95% in visible range we implement 30 layers of cholesteric liquid crystal in a planar Grandjean texture. The device compactness and the mirror parallelism due to the monolithic fabrication of FP are advantageous from the technical point of view. We test the FP tunability by shifting the resonance wavelength through an entire period; by applying electric field and/or by varying the temperature.

  9. Application of High-Temperature Extrinsic Fabry-Perot Interferometer Strain Sensor

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony

    2008-01-01

    In this presentation to the NASA Aeronautics Sensor Working Group the application of a strain sensor is outlined. The high-temperature extrinsic Fabry-Perot interferometer (EFPI) strain sensor was developed due to a need for robust strain sensors that operate accurately and reliably beyond 1800 F. Specifically, the new strain sensor would provide data for validating finite element models and thermal-structural analyses. Sensor attachment techniques were also developed to improve methods of handling and protecting the fragile sensors during the harsh installation process. It was determined that thermal sprayed attachments are preferable even though cements are simpler to apply as cements are more prone to bond failure and are often corrosive. Previous thermal/mechanical cantilever beam testing of EFPI yielded very little change to 1200 F, with excellent correlation with SG to 550 F. Current combined thermal/mechanical loading for sensitivity testing is accomplished by a furnace/cantilever beam loading system. Dilatometer testing has can also be used in sensor characterization to evaluate bond integrity, evaluate sensitivity and accuracy and to evaluate sensor-to-sensor scatter, repeatability, hysteresis and drift. Future fiber optic testing will examine single-mode silica EFPIs in a combined thermal/mechanical load fixture on C-C and C-SiC substrates, develop a multi-mode Sapphire strain-sensor, test and evaluate high-temperature fiber Bragg Gratings for use as strain and temperature sensors and attach and evaluate a high-temperature heat flux gauge.

  10. Plasmon coupled Fabry-Perot lasing enhancement in graphene/ZnO hybrid microcavity.

    PubMed

    Li, Jitao; Jiang, Mingming; Xu, Chunxiang; Wang, Yueyue; Lin, Yi; Lu, Junfeng; Shi, Zengliang

    2015-01-01

    The response of graphene surface plasmon (SP) in the ultraviolet (UV) region and the realization of short-wavelength semiconductor lasers not only are two hot research areas of great academic and practical significance, but also are two important issues lacked of good understanding. In this work, a hybrid Fabry-Perot (F-P) microcavity, comprising of monolayer graphene covered ZnO microbelt, was constructed to investigate the fundamental physics of graphene SP and the functional extension of ZnO UV lasing. Through the coupling between graphene SP modes and conventional optical microcavity modes of ZnO, improved F-P lasing performance was realized, including the lowered lasing threshold, the improved lasing quality and the remarkably enhanced lasing intensity. The underlying mechanism of the improved lasing performance was proposed based on theoretical simulation and experimental characterization. The results are helpful to design new types of optic and photoelectronic devices based on SP coupling in graphene/semiconductor hybrid structures. PMID:25786359

  11. Use of PZT's for adaptive control of Fabry-Perot etalon plate figure

    NASA Technical Reports Server (NTRS)

    Skinner, WIlbert; Niciejewski, R.

    2005-01-01

    A Fabry Perot etalon, consisting of two spaced and reflective glass flats, provides the mechanism by which high resolution spectroscopy may be performed over narrow spectral regions. Space based applications include direct measurements of Doppler shifts of airglow absorption and emission features and the Doppler broadening of spectral lines. The technique requires a high degree of parallelism between the two flats to be maintained through harsh launch conditions. Monitoring and adjusting the plate figure by illuminating the Fabry Perot interferometer with a suitable monochromatic source may be performed on orbit to actively control of the parallelism of the flats. This report describes the use of such a technique in a laboratory environment applied to a piezo-electric stack attached to the center of a Fabry Perot etalon.

  12. Rayleigh Scattering Measurements Using a Tunable Liquid Crystal Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Mielke-Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.

    2010-01-01

    Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous density, velocity, and temperature measurements. The Fabry-Perot interferometer or etalon is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating these flow properties. This paper investigates the use of a tunable liquid crystal (LC) Fabry-Perot etalon in Rayleigh scattering experiments at NASA Glenn Research Center. The LC etalon provides a robust interferometry system that can be tuned rapidly by adjusting the voltage applied to the liquid crystal interface. Tuning the interferometer is often necessary to control the physical locations of the concentric interference fringes when Rayleigh light is imaged through the LC etalon. The LC etalon diagnostic system was tested in a 1-cm diameter nozzle flow in two different scattering configurations to evaluate its usefulness for Rayleigh measurements compared to a traditional non-tunable fused silica Fabry-Perot etalon.

  13. Acid-etched Fabry-Perot micro-cavities in optical fibres

    NASA Astrophysics Data System (ADS)

    Machavaram, V. R.; Badcock, R. A.; Fernando, G. F.

    2007-07-01

    Significant progress has been made in recent years on the design and fabrication of optical fibre-based sensor systems for applications in structural health monitoring. Two sensor designs have tended to dominate namely, fibre Bragg gratings and extrinsic fibre Fabry-Perot sensors. However, the cost and time associated with these sensors is relatively high and as a consequence, the current paper describes a simple procedure to fabricate intrinsic fibre Fabry-Perot interferometric strain sensors. The technique involves the use of hydrofluoric acid to etch a cavity in a cleaved optical fibre. Two such etched cavities were fusion spliced to create an intrinsic fibre Fabry-Perot cavity. The feasibility of using this device for strain monitoring was demonstrated. Excellent correlation was obtained between the optical and surface-mounted electrical resistance strain gauge.

  14. Method and apparatus for a Fabry-Perot multiple beam fringe sensor

    NASA Technical Reports Server (NTRS)

    James, Kenneth A. (Inventor); Quick, William H. (Inventor); Strahan, Virgil H. (Inventor)

    1982-01-01

    A method and the resulting apparatus for implementing a unique multiple beam fringe sensor that is adapted to be interfaced with a low cost, compact fiber optic transmission system in order to provide an accurate digital representation of a physical parameter (e.g. temperature) of a remote sample. The sensor is fabricated so as to include a Fabry-Perot gap formed between the ends of two mated optical fibers. By examining the optical characteristics of light that is transmitted through the Fabry-Perot sensor gap, an indication of gap width can be ascertained. Accordingly, a change in Fabry-Perot sensor gap width is related to a change in the particular physical parameter to be measured.

  15. Tunable Fabry-Perot filter in cobalt doped fiber formed by optically heated fiber Bragg gratings pair

    NASA Astrophysics Data System (ADS)

    Li, Ying; Zhou, Bin; Zhang, Liang; He, Sailing

    2015-06-01

    In this paper, a tunable fiber Fabry-Perot (F-P) filter by all-optical heating is proposed. Two high reflective fiber Bragg gratings (FBG) fabricated in cobalt doped single mode fiber form the F-P cavity. The cobalt-doped fiber used here is an active fiber, and it transforms optical power from a control laser into heat effectively due to the nonradiative processes. The generated heat raises the refraction index of the fiber and enlarges the F-P cavity's length, realizing the all-optical tuning characteristics. By adjusting the power of the control laser, the resonant wavelength of our proposed fiber F-P filter can be high precisely controlled. The cavity length of the filter is carefully designed to make sure the longitude mode spacing is comparable to the grating bandwidth, making it single mode operating.

  16. Evaluation of Fabry-Perot polymer film sensors made using hard dielectric mirror deposition

    NASA Astrophysics Data System (ADS)

    Buchmann, Jens; Zhang, Edward; Scharfenorth, Chris; Spannekrebs, Bastian; Villringer, Claus; Laufer, Jan

    2016-03-01

    Fabry-Perot (FP) polymer film sensors offer high acoustic sensitivity, small element sizes, broadband frequency response and optical transmission to enable high resolution, backward mode photoacoustic (PA) imaging. Typical approaches to sensor fabrication involve the deposition of stacks of alternating dielectric materials to form interferometer mirrors, which are separated by a polymer spacer. If hygroscopic soft dielectric materials are used, a protective polymer layer is typically required. In this study, methods for the deposition of water-resistant, hard dielectric materials onto polymers were explored to improve the robustness and performance of the sensors. This involved the optimisation of the fabrication process, the optical and acoustic characterisation of the sensors, and a comparison of the frequency response with the output of an acoustic forward model. The mirrors, which were separated by a 20 μm Parylene spacer, consisted of eight double layers of Ta2O5 and SiO2 deposited onto polymer substrates using temperature-optimised electron vapour deposition. The free spectral range of the interferometer was 32 nm, its finesse FR = 91, and its visibility V = 0.72. The noise-equivalent pressure was 0.3 kPa (20 MHz bandwidth). The measured frequency response was found to be more resonant at 25 MHz compared to sensors with soft dielectric mirrors, which was also in good agreement with the output of a forward model of the sensor. The sensors were used in a PA scanner to acquire 3-D images in tissue phantoms.

  17. Fabry-Perot interferometer based on etched side-hole fiber for microfluidic refractive index sensing

    NASA Astrophysics Data System (ADS)

    Wu, Shengnan; Yan, Guofeng; Zhou, Bin; He, Sailing

    2015-08-01

    In this paper, we present a novel fiber-optic open-cavity Fabry-Perot interferometer (FPI), which is specially designed for microfluidic refractive index (RI) sensing. An etching Side-hole fiber (SHF) was sandwiched between in two single-mode-fibers (SMF) and then a cavity was opened up by chemical etching method in the SHF. The minute order of the etching process endow such FPIs with low cost and ease of fabrication. For further microfluidic sensing test, the FPI was integrated with a cross microfluidic slit that was fabricated through photolithography. The refractive index response of the FPI was characterized using sodium hydroxide solution with RI range from 1.3400 to 1.3470. Experimental results show that FPIs with different length of open-cavity have the similar liner RI response with different RI sensitivities. The optimal RI sensitivity of more than 1138 nm/RI can be achieved with open-cavity length of 56 μm. The temperature response was also investigated, which shows that FPIs exhibit a very low temperature cross-sensitivities of 4.00 pm/ °C and 1.95 pm/ °C corresponding FPIs with cavity length of 123 μm and 56 μm, respectively. Such good performance renders the FPI a promising in-line microfluidic sensor for temperature-insensitive RI sensing.

  18. Temperature sensitivity characteristics of HCPCF-based Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohui; Jiang, Mingshun; Sui, Qingmei; Song, Furong

    2016-01-01

    Optical fiber Fabry-Perot interferometers (FPIs) formed by splicing hollow-core photonic crystal fiber (HCPCF) to single mode fiber (SMF) are proposed, and the temperature sensitivity characteristics are investigated theoretically and experimentally. Interestingly, the HCPCF-based FPIs with different structures have different responses to temperature: the FPI formed by a short HCPCF and a long SMF pigtail has a linear wavelength response to temperature with a sensitivity of 9.17 pm/°C and its fringe contrast is nearly temperature-insensitive; while the FPI with a long HCPCF and a short SMF cap is temperature-insensitive both for wavelength and fringe contrast. Refractive index (RI) test results show good linear response based on fringe contrast. Thus the HCPCF-based FPI sensors can be applied to temperature detection and RI measurement simultaneously with negligible cross-sensitivity or completely temperature-independent measurement by using different structures. Due to the advantages of small size, robust structure, easy fabrication, low cost and good fringe visibility, the HCPCF-based FPI sensors have broad application prospect in the fields of biology, chemistry and so on.

  19. Extrinsic fiber-optic Fabry-Perot interferometer sensor for refractive index measurement of optical glass

    SciTech Connect

    Chen Jihuan; Zhao Jiarong; Huang Xuguang; Huang Zhenjian

    2010-10-10

    A simple fiber-optic sensor based on Fabry-Perot interference for refractive index measurement of optical glass is investigated both theoretically and experimentally. A broadband light source is coupled into an extrinsic fiber Fabry-Perot cavity formed by the surfaces of a sensing fiber end and the measured sample. The interference signals from the cavity are reflected back into the same fiber. The refractive index of the sample can be obtained by measuring the contrast of the interference fringes. The experimental data meet with the theoretical values very well. The proposed technique is a new method for glass refractive index measurement with a simple, solid, and compact structure.

  20. In-fiber Fabry-Perot refractometer assisted by a long-period grating.

    PubMed

    Mosquera, L; Sáez-Rodriguez, D; Cruz, J L; Andrés, M V

    2010-02-15

    We present an optical fiber refractometer based on a Fabry-Perot interferometer defined by two fiber Bragg gratings and an intracavity long-period grating that makes the light confined in the resonator interact with the surrounding medium. The external refractive index is monitored by the resonant frequencies of the Fabry-Perot interferometer, which can be measured either in transmission or in reflection. In this first experiment, wavelength shifts measured with a resolution of 0.1 pm have allowed one to establish a refractive index detection limit of 2.1x10(-5). PMID:20160835

  1. Flat top liquid crystal tunable filter using coupled Fabry-Perot cavities.

    PubMed

    Alboon, Shadi A; Lindquist, Robert G

    2008-01-01

    In this paper, a coupled Fabry-Perot cavities filter, using the liquid crystal as the tunable medium, is investigate to achieve tunable flat top filtering performance across the C and L bands. A tandem coupled Fabry-Perot is presented for a tunable passband filter with flat top and minimum ripple in the passband. The overall tuning range of the filter is 172 nm. Several designs are shown with comparable performance to the commercial available 100 GHz fixed single channel filters. PMID:18521153

  2. Use of gamma ray radiation to parallel the plates of a Fabry-Perot interferometer

    NASA Technical Reports Server (NTRS)

    Skinner, Wilbert R.; Hays, Paul B.; Anderson, Sally M.

    1987-01-01

    The use of gamma radiation to parallel the plates of a Fabry-Perot etalon is examined. The method for determining the etalon parallelism, and the procedure for irradiating the posts are described. Changes in effective gap for the etalon over the surface are utilized to measure the parallelism of the Fabry-Perot etalon. An example in which this technique is applied to an etalon of fused silica plates, which are 132 mm in diameter and coded with zinc sulfide and cryolite, with Zerodur spaces 2 cm in length. The effect of the irradiation of the posts on the thermal performance of the etalon is investigated.

  3. Tunable Fabry-Perot filter for imaging spectroscopy in the infrared

    NASA Astrophysics Data System (ADS)

    Schwarze, Craig R.; Rentz, Julia R.; Carlson, David L.; Vaillancourt, Robert M.; Genetti, George J.; Engel, James R.

    2002-02-01

    We present a new hyperspectral imaging system for the long wave infrared (LWIR) based on a tunable first-order Fabry-Perot Scanning Spectrometer (FPSS). The FPSS operates over 8 O 12 micrometers with a spectral resolution of 1% of the wavelength. The FPSS has a 22 degree field of view and a spatial resolution of 0.11 degrees. The key components of the FPSS system are the collection optics, a tunable Fabry-Perot etalon, optical position sensors, a closed-loop positioning system, an uncooled microbolometer focal plane array, a digital frame grabber card, and a user-friendly Graphical User Interface (GUI).

  4. Solar CIV Vacuum-Ultraviolet Fabry-Perot Interferometers

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; West, Edward A.; Rees, David; McKay, Jack A.; Zukic, Maumer; Herman, Peter

    2006-01-01

    Aims: A tunable, high spectral resolution, high effective finesse, vacuum ultraviolet (VUV) Fabry-Perot interferometer (PPI) is designed for obtaining narrow-passband images, magnetograms, and Dopplergrams of the transition region emission line of CIV (155 nm). Methods: The integral part of the CIV narrow passband filter package (with a 2-10 pm FWHM) consists of a multiple etalon system composed of a tunable interferometer that provides high-spectral resolution and a static low-spectral resolution interferometer that allows a large effective free spectral range. The prefilter for the interferometers is provided by a set of four mirrors with dielectric high-reflective coatings. A tunable interferometer, a VUV piezoelectric-control etalon, has undergone testing using the surrogate F2 eximer laser line at 157 nm for the CIV line. We present the results of the tests with a description of the overall concept for a complete narrow-band CIV spectral filter. The static interferometer of the filter is envisioned as being hudt using a set of fixed MgF2 plates. The four-mirror prefilter is designed to have dielectric multilayer n-stacks employing the design concept used in the Ultraviolet Imager of NASA's Polar Spacecraft. A dual etalon system allows the effective free spectral range to be commensurate with the prefilter profile. With an additional etalon, a triple etalon system would allow a spectrographic resolution of 2 pm. The basic strategy has been to combine the expertise of spaceflight etalon manufacturing with VUV coating technology to build a VUV FPI which combines the best attributes of imagers and spectrographs into a single compact instrument. Results. Spectro-polarimetry observations of the transition region CIV emission can be performed to increase the understanding of the magnetic forces, mass motion, evolution, and energy release within the solar atmosphere at the base of the corona where most of the magnetic field is approximately force-free. The 2D imaging

  5. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser-induced water breakdown for refractive index sensing.

    PubMed

    Liu, Yi; Qu, Shiliang

    2014-01-20

    The Fabry-Perot interferometer (FPI) cavity in a single-mode fiber with two open faces was fabricated by using the method of femtosecond laser-induced water breakdown. Then the FPI cavity was annealed by the arc discharge to greatly smooth its internal surface. The whole fabrication process features simple operation and high efficiency. The fabricated FPI cavity exhibits a perfect interferometer spectrum with reflection loss of only -3 dB and fringe visibility of almost 30 dB. It can be used as a perfectly reliable liquid refractive index sensor, as it exhibits high sensitivity (1147.48 nm/RIU), good linearity (99.93%), good repeatability, high actual measurement accuracy (1.29×10(-4)RIU), large measurement range, and good temperature insensitive characteristic. PMID:24514135

  6. Optical fiber Fabry-Perot interferometer with pH sensitive hydrogel film for hazardous gases sensing

    NASA Astrophysics Data System (ADS)

    Zheng, Yangzi; Chen, Li Han; Chan, Chi Chiu; Dong, Xinyong; Yang, Jingyi; Tou, Zhi Qiang; So, Ping Lam

    2015-09-01

    An optical fiber Fabry-Perot interferometer (FPI) coated with polyvinyl alcohol/poly-acrylic acid (PVA/PAA) hydrogel film for toxic gases measurement has been developed. Splicing a short section of hollow core fiber between two single mode fibers forms the FPI. Dip-coated pH-sensitive PVA/PAA hydrogel film on the fiber end performs as a receptor for binding of volatile acids or ammonia, which makes the sensing film swelling or shrinking and results in the dip wavelength shift of the FPI. By demodulating the evolution of reflection spectrum for various concentrations of volatile acids, a sensitivity of 20.8 nm/ppm is achieved with uniform linearity.

  7. Demonstration of all-optical two bit digital comparator using self-locked Fabry-Perot laser diode

    NASA Astrophysics Data System (ADS)

    Nakarmi, Bikash; Rakib-Uddin, M.; Won, Yong Hyub

    2012-02-01

    All-optical two bit digital comparator using single mode Fabry-Perot laser diodes (SMFP-LDs) is proposed and demonstrated with 10 Gbps PRBS signal of 231-1. Digital comparators are one of the important components for decision making circuits, threshold detection, which are used in optical signal processing and optical computing. The basic principle of the comparator is based on injection locking, multi-input injection locking and combinational input injection locking (CMIL) to realize the greater than, less than, and equal to function of the basic comparator circuit. These principles are used to realize the different optical logic gates which are combined together to demonstrate optical comparator with the minimum number of components, making the configuration cheaper and simpler. The proposed method draws less current and hence power effective too. Output waveform diagram and output eye diagram for all three cases of comparator are presented to verify all functions of all-optical comparator.

  8. Passive signal processing for a miniature Fabry-Perot interferometric sensor with a multimode laser-diode source

    NASA Astrophysics Data System (ADS)

    Ezbiri, A.; Tatam, R. P.

    1995-09-01

    A passive signal-processing technique for addressing a miniature low-finesse fiber Fabry-Perot interferometric sensor with a multimode laser diode is reported. Two modes of a multimode laser diode separated by 3 nm are used to obtain quadrature outputs from an \\similar 20 - mu m cavity. Wavelength-division demultiplexing combined with digital signal processing is used to recover the measurand-induced phase change. The technique is demonstrated for the measurement of vibration. The signal-to-noise ratio is \\similar 70 dB at 500 Hz for \\similar pi /2 rad displacement of the mirror, which results in a minimum detectable signal of \\similar 200 mu rad H z-1/2 . A quantitative discussion of miscalibration and systematic errors is presented.

  9. A CMOS millimeter-wave transceiver embedded in a semi-confocal Fabry-Perot cavity for molecular spectroscopy.

    PubMed

    Drouin, Brian J; Tang, Adrian; Schlecht, Erich; Brageot, Emily; Gu, Q Jane; Ye, Y; Shu, R; Frank Chang, Mau-Chung; Kim, Y

    2016-08-21

    The extension of radio frequency complementary metal oxide semiconductor (CMOS) circuitry into millimeter wavelengths promises the extension of spectroscopic techniques in compact, power efficient systems. We are now beginning to use CMOS millimeter devices for low-mass, low-power instrumentation capable of remote or in situ detection of gas composition during space missions. We have chosen to develop a Flygare-Balle type spectrometer, with a semi-confocal Fabry-Perot cavity to amplify the pump power of a mm-wavelength CMOS transmitter that is directly coupled to the planar mirror of the cavity. We have built a pulsed transceiver system at 92-105 GHz inside a 3 cm base length cavity and demonstrated quality factor up to 4680, allowing for modes with 20 MHz bandwidth, with a sufficient cavity amplification factor for mW class transmitters. This work describes the initial gas measurements and outlines the challenges and next steps. PMID:27544098

  10. Transfer functions of double- and multiple-cavity Fabry Perot filters driven by Lorentzian sources

    NASA Astrophysics Data System (ADS)

    Marti, Javier; Capmany, Jose

    1996-12-01

    We derive expressions for the transfer functions of double- and multiple-cavity Fabry Perot filters driven by laser sources with Lorentzian spectrum. These are of interest because of their applications in sensing and channel filtering in optical frequency-division multiplexing networks.

  11. APPLICATION OF A FABRY-PEROT INTERFEROMETRY TO REMOTE SENSING OF GASEOUS POLLUTANTS

    EPA Science Inventory

    A method for the remote sensing of molecular species via the rotational Raman effect was developed. The method uses the properties of a scanning Fabry-Perot interferometer to multiplex the spectra in a manner specific for a given species. Furthermore, the method allows the 'in pr...

  12. Low-Cost, Single-Frequency Sources for Spectroscopy Using Conventional Fabry-Perot Diode Lasers

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Duerksen, Gary L.

    1999-01-01

    Commercial (uncoated) Fabry-Perot laser diodes are converted to single-frequency spectroscopy sources by passively locking the laser frequency to the band edge of a fiber Bragg grating, which phase-locks the laser oscillations through self-injection seeding.

  13. Low-Cost, Single-Frequency Sources for Spectroscopy using Conventional Fabry-Perot Diode Lasers

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Commercial (uncoated) Fabry-Perot laser diodes are converted to single-frequency spectroscopy sources by passively locking the laser frequency to the band edge of a fiber Bragg grating, which phase-locks the laser oscillations through self-injection seeding.

  14. Study of H-alpha emission from solar limb prominences using Fabry-Perot interferometry

    NASA Astrophysics Data System (ADS)

    Jarrett, A. H.; Stapelberg, J.; Lategan, A. H.

    1981-02-01

    The Fabry-Perot interferometer is an effective dispersing element for studying H-alpha emission from solar limb prominences. Having a reflecting coefficient in the range 0.85-0.95, the Fabry-Perot multiple beam interferometer behaves as an angular filter, forming circular interference fringes. Results from an investigation performed at the solar installation at Boyden Observatory in South Africa are presented, where a photographic Fabry-Perot interferometer was used to obtain fringes from the 656.3-nm H-alpha emission during April and May 1980. Successful scans were made with air admitted to the interferometer pressure chamber, and reduction of the data on photon count and chamber pressure was made by a UNIVAC 1108 computer. Sketches and profiles from the limb prominences are shown; a table of fringe half-widths, corrected for the instrumental width of the interferometer, were obtained by matching a Voigt function by a least-squares computer fit to the observed scanned Fabry-Perot fringe profiles.

  15. Development of tunable Fabry-Perot spectral camera and light source for medical applications

    NASA Astrophysics Data System (ADS)

    Kaarre, M.; Kivi, S.; Panouillot, P. E.; Saari, H.; Mäkynen, J.; Sorri, I.; Juuti, M.

    2013-05-01

    VTT has developed a fast, tunable Fabry-Perot (FP) filter component and applied it in making small, lightweight spectral cameras and light sources. One application field where this novel technology is now tested is medical field. A demonstrator has been made to test the applicability of FP based spectral filtering in the imaging of retina in visible light wavelength area.

  16. A new fiber-tip Fabry-Perot interferometer and its application for pressure measurement

    NASA Astrophysics Data System (ADS)

    Wang, Guanjun; Liu, Shen; Zhao, Jing; Liao, Changrui; Xu, Xizhen; Wang, Yiping

    2015-07-01

    This paper reports a new silica fiber-tip Fabry-Perot interferometer with thin film and large surface area characteristic for high pressure and vacuum degree detection simultaneously, which is fabricated by etching a flat fiber tip into concave surface firstly, with subsequent arc jointing the concave fiber into a inline Fabry-Perot cavity, then drawing one surface of the F-P cavity into several micrometers scale by arc discharge and finally etching the surface into sub-micrometer scale integrally. As the silica fiber-tip Fabry-Perot interferometer film thickness could be tailored very thinly by HF acid solution, plus the surface area of thin film could be expanded during the chemical etching process, the variation of the bubble cavity length is very sensitive to the inner/outer pressure difference of the fiber-tip Fabry-Perot interferometer. Experimental result shows an high sensitivity of 780nm/MPa is feasible. Such configuration has the advantages of lowcost, ease of fabrication and compact size, which make it a promising candidate for pressure and vacuum measurement.

  17. Pulsed-incoherent-light-injected Fabry-Perot laser diode for WDM passive optical networks.

    PubMed

    Kim, Hoon

    2010-01-18

    We propose and demonstrate a pulsed-incoherent-light-injected Fabry-Perot laser diode (FP-LD) which generates incoherent return-to-zero (RZ) signals for wavelength-division-multiplexing passive optical networks. For the generation of the RZ signals, we first convert the continuous-wave (CW) amplified spontaneous emission (ASE) into an ASE pulse train with a pulse carver, spectrum-slice it into multiple channels with a waveguide grating router, and then inject them into FP-LDs for data modulation. Thanks to a wide slicing bandwidth of the injected incoherent light, the spectral linewidth of the generated RZ signals is determined by the slicing bandwidth, without being affected by the use of the RZ format. Thus, compared to incoherent non-return-to-zero (NRZ) signals generated with CW-ASE-injected FP-LDs, the RZ signals have a similar spectral linewidth but a wide timing margin between adjacent bits. Thus, the proposed transmitter can offer better dispersion tolerance than the NRZ signals. For example, our experimental demonstration performed at 1.25 Gb/s shows approximately 50% higher dispersion tolerance than the NRZ signals generated with CW ASE-injected FP-LDs. Despite the large slicing bandwidth of 0.67 nm for the injected ASE, we were able to transmit 1.25-Gb/s signals over 45-km standard single-mode fiber without dispersion compensation. The receiver sensitivity is also improved by 1.5 dB by using the RZ format. PMID:20173999

  18. Measurements of the phase shift on reflection for low-order infrared Fabry-Perot interferometer dielectric stack mirrors.

    PubMed

    Mielke, S L; Ryan, R E; Hilgeman, T; Lesyna, L; Madonna, R G; Van Nostrand, W C

    1997-11-01

    A simple technique based on a Fizeau interferometer to measure the absolute phase shift on reflection for a Fabry-Perot interferometer dielectric stack mirror is described. Excellent agreement between the measured and predicted phase shift on reflection was found. Also described are the salient features of low-order Fabry-Perot interferometers and the demonstration of a near ideal low-order (1-10) Fabry-Perot interferometer through minimizing the phase dispersion on reflection of the dielectric stack. This near ideal performance of a low-order Fabry-Perot interferometer should enable several applications such as compact spectral imagers for solid and gas detection. The large free spectral range of such systems combined with an active control system will also allow simple interactive tuning of wavelength agile laser sources such as CO(2) lasers, external cavity diode lasers, and optical parametric oscillators. PMID:18264347

  19. Measurement of the carrier envelope offset frequency of a femtosecond frequency comb using a Fabry-Perot interferometer

    SciTech Connect

    Basnak, D V; Bikmukhametov, K A; Dmitrieva, N I; Dmitriev, Aleksandr K; Lugovoi, A A; Pokasov, P V; Chepurov, S V

    2010-10-15

    A method for measuring the carrier envelope offset (CEO) frequency of the femtosecond frequency comb with a bandwidth of less than one octave by using a Fabry-Perot interferometer is proposed and experimentally demonstrated. (laser components)

  20. Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1998-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings (FBG) has been achieved by two methods: (1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element; (2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  1. Stable CW Single Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by tWo methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback'. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  2. Development of a Fabry-Perot Interferometer for Ultra-Precise Measurements of Column CO2

    NASA Technical Reports Server (NTRS)

    Wilson, Emily L.; Georgieva, Elena M.; Heaps, William S.

    2005-01-01

    A passive Fabry-Perot based instrument is described for detecting column CO2 through absorption measurements at 1.58 microns . In this design, solar flux reaches the instrument platform and is directed through two channels. In the first channel, transmittance fi5nges from a Fabry-Perot interferometer are aligned with CO2 absorption lines so that absorption due to CO2 is primarily detected. The second channel encompasses the same frequency region as the first, but is comparatively more sensitive to changes in the solar flux than absorption due to CO2. The ratio of these channels is sensitive to changes in the total CO2 column, but not to changes in solar flux. This inexpensive instrument will offer high precision measurements (error 4%) in a compact package. Design of this instrument and preliminary ground-based measurements of column CO2 are presented here as well as strategies for deployment on aircraft and satellite platforms.

  3. Testing and characterization of a multispectral imaging Fabry-Perot interferometer for tropospheric trace species detection

    NASA Astrophysics Data System (ADS)

    Larar, Allen M.; Cook, William B.; Mills, Carl S.; Flood, Michael A.; Burcher, Ernest E.; Boyer, Charles M.; Puschell, Jeffrey J.

    2006-12-01

    The Tropospheric Trace Species Sensing Fabry-Perot Interferometer (TTSS-FPI) was a NASA Instrument Incubator Program (IIP) project for risk mitigation of enabling concepts and technology applicable to future NASA Science Mission Directorate atmospheric chemistry measurements. Within IIP an airborne sensor was developed and laboratory-tested to demonstrate the instrument concept and enabling technologies that are also applicable to the desired geostationary-based implementation. The concept is centered about an imaging Fabry-Perot interferometer (FPI) observing a narrow spectral interval within the strong 9.6 micron ozone infrared band with a spectral resolution ~0.07 cm -1, and also has applicability to and could simplify designs associated with sensors targeting measurement of other trace species. Results of testing and characterization of enabling subsystems and the overall instrument system are reported; emphasis is placed on recent laboratory testing performed to evaluate system-level radiometric, spatial, and spectral measurement fidelity.

  4. Fiber optic dynamic electric field sensor based on nematic liquid crystal Fabry-Perot etalon

    NASA Astrophysics Data System (ADS)

    Ko, Myeong Ock; Kim, Sung-Jo; Kim, Jong-Hyun; Jeon, Min Yong

    2014-05-01

    We propose a fiber-optic dynamic electric field sensor using a nematic liquid crystal (NLC) Fabry-Perot etalon and a wavelength-swept laser. The transmission wavelength of the NLC Fabry-Perot etalon depends on the applied electric field intensity. The change in the effective refractive index of the NLC is measured while changing the applied electric field intensity. It decreases from 1.67 to 1.51 as the applied the electric field intensity is increased. Additionally, we successfully measure the dynamic variation of the electric field using the high-speed wavelength-swept laser. By measuring the modulation frequency of the transmission peaks in the temporal domain, the frequency of the modulated electric field can be estimated.

  5. Electro-optic polymer spatial light modulator based on a Fabry-Perot interferometer configuration.

    PubMed

    Greenlee, Charles; Luo, J; Leedy, K; Bayraktaroglu, B; Norwood, R A; Fallahi, M; Jen, A K-Y; Peyghambarian, N

    2011-06-20

    A spatial light modulator (SLM) based on a Fabry-Perot interferometer configuration has been fabricated and tested. The Fabry-Perot spacer layer is a thin film of the SEO100 electro-optic polymer which serves as the nonlinear medium. Measurement results demonstrate the modulation of multiple pixels operating simultaneously at frequencies ranging from 300 kHz to 800 kHz which is significantly faster than SLMs based on liquid crystal and digital micromirror device technology. An average modulation contrast of 50% for all pixels is achieved with a drive voltage of 70 V(rms) at 100 kHz. Microwave speeds and CMOS compatibility are feasible with improved transmission line and cavity design. PMID:21716517

  6. FIFI: The MPE Garching/UC Berkeley Far-Infrared Imaging Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Geis, Norbert; Genzel, Reinhard; Haggerty, M.; Herrmann, F.; Jackson, J.; Madden, Suzanne C.; Nikola, T.; Poglitsch, Albrecht; Rumitz, M.; Stacey, G. J.

    1995-01-01

    We describe the performance characteristics of the MPE Garching/UC Berkeley Far-Infrared Imaging Fabry-Perot Interferometer (FIFI) for the Kuiper Airborne Observatory (KAO). The spectrometer features two or three cryogenic tunable Fabry-Perot filters in series giving spectral resolution R of up to 10(exp 5) in the range of 40 microns less than lambda less than 200 microns, and an imaging 5x5 array of photoconductive detectors with variable focal plane plate scale. The instrument works at background limited sensitivity of up to 2 x 10(exp -19) W cm(exp -2) Hz(exp -1/2) per pixel per resolution element at R = 10(exp 5) on the KAO.

  7. Coherent electron transparent tunneling through a single barrier within a Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Stolle, Jason; Baum, Chaz; Amann, Ryan; Haman, Ryan; Call, Tanner; Li, Wei

    2016-07-01

    Electromagnetic wave and quantum DeBroglie wave have many parallels between each other. We investigate the quantum mechanical counterpart of electromagnetic resonant tunneling through a non-absorbing metal layer. It is confirmed that an electron also has transparent transmission through a single barrier within a Fabry-Perot like cavity. This tunneling structure is actually a distortion of the Fabry-Perot echelon. We find that for a specific resonant electron energy, the cavity length is related to the electron's DeBroglie wavelength; and the single barrier can be located at a series positions with an interval equal to a half of the DeBroglie wavelength, not just at the center of the cavity. This tunneling phenomenon will have novel applications in quantum devices such as the resonant tunneling diode and scanning tunneling microscope. The results of this paper should also have impact on related electromagnetic research and application.

  8. Nonlinear optical processing with Fabry-Perot interferometers containing phase recording media

    NASA Technical Reports Server (NTRS)

    Bartholomew, B. J.; Lee, S. H.

    1980-01-01

    New techniques in nonlinear optical processing are explored, based on the operation of intensity level selection as performed by a Fabry-Perot interferometer containing a phase object. The image being processed is recorded on a medium between the mirrors as a spatially varying phase shift less than pi. The interferometer only transmits light through those portions of the object that corresponds to a single value of the phase and hence to a single intensity level in the input. More complicated operations such as thresholding and analog-to-digital conversion are performed by modulating the light source as the different levels are selected. Photoresist and lithium niobate have been used as phase objects, and experimental data for both are presented. Three kinds of Fabry-Perot interferometers have been used to demonstrate nonlinear processing using coherent and incoherent light. Color images have been produced with black and white inputs and white light illumination.

  9. Electric field sensor based on cholesteric liquid crystal Fabry-Perot etalon

    NASA Astrophysics Data System (ADS)

    Ko, Myeong Ock; Kim, Sung-Jo; Kim, Jong-Hyun; Lee, Bong Wan; Jeon, Min Yong

    2015-09-01

    We propose an electric field sensor using a cholesteric liquid crystal (CLC) Fabry-Perot etalon and a broadband optical source. The CLC cell consists of glass substrates, polyimide layers, electrodes, and CLC layer. There is a threshold behavior for CLC cell and no change in the transmitted wavelength occurs until a threshold value. The threshold value is 0.8 V/μm for fabricated CLC cell in this experiment. The transmitted or reflected wavelength from the CLC Fabry-Perot etalon depends on the applied electric field. The valley wavelengths of the transmitted light from the CLC device are linearly increased from 1303 nm to 1317 nm as the applied electric field to the CLC device is increased from 0.8 V/μm to 1.9 V/μm.

  10. Experimental characterization of Fabry-Perot resonances of magnetostatic volume waves in near-field metamaterials

    NASA Astrophysics Data System (ADS)

    Chabalko, Matthew J.; Ricketts, David S.

    2015-02-01

    In this work, we report on the experimental demonstration of magnetoquasistatic volume wave resonances in a 2-dimensional near field metamaterial (MM). Previous works have described only theoretically the magnetostatic waves in near field MMs and have reported peaks and valleys in the mutual coupling of MM enhanced wireless power transfer that they have attributed to Fabry-Perot resonances, however, neither has been experimentally measured nor characterized. We report on the direct magnetic field measurement of magnetostatic volume waves in a 2D near-field MM and show that the periodic peaks and valleys in mutual coupling observed previously are indeed due to a Fabry-Perot oscillation. In addition, we show that these resonances can be predicted from experimentally extracted permeability and the dimensions of the system.

  11. Hydrogen production rates from ground-based Fabry-Perot observations of comet Kohoutek

    NASA Technical Reports Server (NTRS)

    Scherb, F.

    1981-01-01

    The only ground-based observations of a cometary hydrogen corona that have been obtained up to the present were carried out during the appearance of comet Kohoutek (1973 XII). Hydrogen Balmer alpha (H-alpha) emission from the gas cloud surrounding the comet was detected using a Fabry-Perot spectrometer at Kitt Peak National Observatory. These observations have been reexamined using (1) recently obtained solar full-disk Lyman beta emission line profiles, (2) a new calibration of the absolute sensitivity of the Fabry-Perot spectrometer based on comparison of NGC 7000 with standard stars and the planetary nebula NGC 7662, and (3) corrections for atmospheric extinction instead of the geocoronal H-alpha comparison method used previously to obtain comet H-alpha intensities. The new values for hydrogen production rates are in good agreement with results obtained from Lyman alpha observations of comet Kohoutek.

  12. Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review

    PubMed Central

    Islam, Md. Rajibul; Ali, Muhammad Mahmood; Lai, Man-Hong; Lim, Kok-Sing; Ahmad, Harith

    2014-01-01

    Optical fibers have been involved in the area of sensing applications for more than four decades. Moreover, interferometric optical fiber sensors have attracted broad interest for their prospective applications in sensing temperature, refractive index, strain measurement, pressure, acoustic wave, vibration, magnetic field, and voltage. During this time, numerous types of interferometers have been developed such as Fabry-Perot, Michelson, Mach-Zehnder, Sagnac Fiber, and Common-path interferometers. Fabry-Perot interferometer (FPI) fiber-optic sensors have been extensively investigated for their exceedingly effective, simple fabrication as well as low cost aspects. In this study, a wide variety of FPI sensors are reviewed in terms of fabrication methods, principle of operation and their sensing applications. The chronology of the development of FPI sensors and their implementation in various applications are discussed. PMID:24763250

  13. Deep Fabry-Perot imaging of NGC 6240: Kinematic evidence for merging galaxies

    NASA Technical Reports Server (NTRS)

    Hawthorn, J. Bland; Wilson, A. S.; Tully, R. B.

    1990-01-01

    The authors have observed the superluminous, infrared galaxy NGC 6240 (z = 0.025) at H alpha with the Hawaii Imaging Fabry-Perot Interferometer (HIFI - Bland and Tully 1989). During the past decade, observational evidence from all wavebands indicates that the unusual appearance of NGC 6240 has resulted from a collision between two gas-rich systems, a view which is supported by our spectrophotometric data. However, the origin of the enormous infrared luminosity (4 times 10(exp 11) solar luminosity) detected by the Infrared Astronomy Satellite (IRAS) remains highly controversial, where opinions differ on the relative roles of large-scale shocks, massive star formation or a buried 'active' nucleus. These mechanisms are discussed in the light of the author's Fabry-Perot observations.

  14. Low threshold Fabry-Perot optofluidic resonator fabricated by femtosecond laser micromachining.

    PubMed

    Simoni, F; Bonfadini, S; Spegni, P; Lo Turco, S; Lucchetta, D E; Criante, L

    2016-07-25

    We report the realization and characterization of an optofluidic microlaser based on a Fabry-Perot resonator fabricated by exploiting two direct writing fabrication techniques: the femtosecond laser micromachining and the inkjet printing technology. In this way a standard Fabry-Perot cavity has been integrated into an optofluidic chip. When using rhodamine 6G dissolved in ethanol at concentration of 5∙10-3 mol/l, laser emission was detected at a threshold energy density of 1.8 μJ/mm2 at least one order of magnitude lower than state-of-the-art optofluidic lasers. Linewidth below ~0.6 nm was measured under these conditions with a quality factor Q~103. These performances and robustness of the device makes it an excellent candidate for biosensing, security and environment monitoring applications. PMID:27464188

  15. Sensing Properties of a Fabry-Perot Dielectric Structure and Dimer Nanoparticles

    DOE PAGESBeta

    Polemi, A.; Shuford, K. L.

    2012-01-01

    We investigate the use of a Fabry-Perot dielectric structure combined with differently shaped nanoparticles for Surface Enhanced Raman Scattering. In particular, we show how an ideal two-layer Fabry-Perot configuration enhances the local surface field of silver nanoparticles positioned on the surface of the structure. We develop the concept using disc dimers and then extend the discussion to bowtie nanoparticles. The structure is excited by a single emitter, which couples to the nanoparticles through the dielectric layers, producing a wide aperture field that can be used to excite multiple dimers. We show how an array of nanoparticles can be properly arrangedmore » in order to increase the total scattering signal generated from the structure. The layered geometry produces robust field properties in between nanoparticles, making the overall sensing characteristics less sensitive to the interparticle seperation distance and incident polarization.« less

  16. Effect of the pump rate and loss perturbations on the lasing dynamics of a Fabry-Perot laser

    SciTech Connect

    Kumar, N; Ledenev, V I

    2010-11-13

    Transition from generation of the fundamental mode to generation of the fundamental and first modes is studied numerically under the action of nonstationary asymmetric perturbations of pump rate and loss distributions in the active medium layer. It is shown that emergence of perturbations directly leads to excitation of the first mode with significant amplitude. The regime of two-mode lasing in the presence of perturbations is shown to appear at a pump rate that is smaller than the threshold one for two-mode lasing in the absence of perturbations. It is found that the first-mode amplitude has a maximum at a frequency of intermode beatings of an unfilled Fabry-Perot resonator. It is also determined that emergence of nonstationary asymmetric perturbations leads to an increase in the average intensity of the fundamental mode. Various transition regimes to two-mode lasing are compared in different types and periods of perturbations. The operability of the scheme controlling the mode composition of laser radiation is considered. (lasers)

  17. An analytical study on bistability of Fabry Perot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Chen, Shuqiang; Yang, Huajun

    2016-06-01

    Optical bistabilities have been considered to be useful for sensor applications. As a typical nonlinear device, Fabry-Perot semiconductor optical amplifiers (FPSOAs) exhibit bistability under certain conditions. In this paper, the bistable characteristics in FPSOAs are investigated theoretically. Based on Adams's relationship between the incident optical intensity I in and the z-independent average intracavity intensity I av, an analytical expression of the bistable loop width in SOAs is derived. Numerical simulations confirm the accuracy of the analytical result.

  18. Diode laser frequency stabilization using a low cost, low finesse Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Hastings, Hannah; Jaber, Noura B.; Piatt, Georgia; Gregoric, Vincent C.; Carroll, Thomas J.; Noel, Michael W.

    2016-05-01

    Our lab employs low cost, low finesse Fabry-Perot cavities to stabilize the frequency of diode lasers used in ultra-cold Rydberg atom experiments. To characterize the stability of this technique, we perform a self-heterodyne linewidth measurement. For comparison, we also measure the linewidth when using a saturated absorption spectrometer to provide frequency stability. This work is supported by the National Science Foundation under Grants No. 1205895 and No. 1205897.

  19. Characteristics of Extrinsic Fabry-Perot Interferometric (EFPI) Fiber-Optic Strain Gages

    NASA Technical Reports Server (NTRS)

    Hare, David A.; Moore, Thomas C., Sr.

    2000-01-01

    The focus of this paper is a comparison of the strain-measuring characteristics of one type of commercially available fiber-optic strain sensor with the performance of conventional resistance strain gages. Fabry-Perot type fiber-optic strain sensors were selected for this testing program. Comparative testing is emphasized and includes load testing at room temperature with apparent strain characterization cryogenically and at elevated temperatures. The absolute accuracy of either of these types of strain gages is not addressed.

  20. Exact analysis of low-finesse multimode fiber extrinsic Fabry-Perot interferometers.

    PubMed

    Han, Ming; Wang, Anbo

    2004-08-20

    A straightforward theory is presented to accurately model the light inferences in a low-finesse multimode fiber extrinsic Fabry-Perot (FP) interferometer. The effect on the fringe visibility of the gap length, sensor structure imperfections, and modal power distributions is explored. The analysis is particularly useful in the design and optimization of sensors that use an extrinsic FP cavity as the sensing element. PMID:15352389

  1. Reduction of CCD observations made with a scanning Fabry-Perot interferometer. III. Wavelength scale refinement

    NASA Astrophysics Data System (ADS)

    Moiseev, A. V.

    2015-10-01

    We describe the recent modifications to the data reduction technique for observations acquired with the scanning Fabry-Perot interferometer (FPI) mounted on the 6-m telescope of the Special Astrophysical Observatory that allow the wavelength scale to be correctly computed in the case of large mutual offsets of studied objects in interferograms.We examine the parameters of the scanning FPIs used in the SCORPIO-2 multimode focal reducer.

  2. Method for removing a stripe from the coating of a Fabry-Perot mirror

    SciTech Connect

    Perry, S.J.; Steinmetz, L.L.

    1997-10-01

    We describe a method for removing a stripe from the coating of a Fabry-Perot mirror. This is accomplished by scraping off the soft coating with a finely lapped steel blade mounted on a precision mechanism to accurately position the blade and guide it for straight cuts. The width of the stripe is determined by selecting a blade of desired size. Previous methods and attempts are discussed.

  3. Shot noise in gravitational-wave detectors with Fabry-Perot arms.

    PubMed

    Lyons, T T; Regehr, M W; Raab, F J

    2000-12-20

    Shot-noise-limited sensitivity is calculated for gravitational-wave interferometers with Fabry-Perot arms, similar to those being installed at the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Italian-French Laser Interferometer Collaboration (VIRGO) facility. This calculation includes the effect of nonstationary shot noise that is due to phase modulation of the light. The resulting formula is experimentally verified by a test interferometer with suspended mirrors in the 40-m arms. PMID:18354690

  4. A compact Fourier transform imaging spectrometer employing a variable gap Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Lucey, Paul G.; Akagi, Jason; Bingham, Adam L.; Hinrichs, John L.; Knobbe, Edward T.

    2014-05-01

    Fourier transform spectroscopy is a widely employed method for obtaining visible and infrared spectral imagery, with applications ranging from the desktop to remote sensing. Most fielded Fourier transform spectrometers (FTS) employ the Michelson interferometer and measure the spectrum encoded in a time-varying signal imposed by the source spectrum interaction with the interferometer. A second, less widely used form of FTS is the spatial FTS, where the spectrum is encoded in a pattern sampled by a detector array. Recently we described using a Fabry-Perot interferometer, with a deliberately wedged gap geometry and engineered surface reflectivities, to produce an imaging spatial FTS. The Fabry-Perot interferometer can be much lighter and more compact than a conventional interferometer configuration, thereby making them suitable for portable and handheld applications. This approach is suitable for use over many spectral regimes of interest, including visible and infrared regions. Primary efforts to date have focused on development and demonstration of long wave infrared (LWIR) spectral imagers. The LWIR version of the miniaturized Fabry-Perot has been shown to be effective for various applications including spectral imaging-based chemical detection. The compact LWIR spectral imager employs uncooled optics and a microbolometer camera; a handheld version is envisioned for future development. Recent advancements associated with the spatial Fourier Transform imaging spectrometer system are described.

  5. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Georgieva, Elena M.; Heaps,William S.; Wilson, Emily L.

    2007-01-01

    A new type of remote sensing radiometer based upon the Fabry-Perot interferometric technique has been developed at NASA's Goddard Space Flight Center and tested from both ground and aircraft platform. The sensor uses direct or reflected sunlight and has channels for measuring column concentration of carbon dioxide at 1570 nm, oxygen lines sensitive to pressure and temperature at 762 and 768 nm, and water vapor (940 nm). A solid Fabry-Perot etalon is used as a tunable narrow bandpass filter to restrict the measurement to the gas of interest's absorption bands. By adjusting the temperature of the etalon, which changes the index of refraction of its material, the transmission fringes can be brought into nearly exact correspondence with absorption lines of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosphere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The technique is applicable to different chemical species. We have performed simulations and instrument design studies for CH4, "Cot isotope, and CO detection. Index Terms- Absorbing media, Atmospheric measurements, Fabry-Perot interferometers, Optical interferometry, Remote sensing.

  6. FABSOAR--A Fabry-Perot Spectrometer for Oxygen A-band Research Final Technical Report

    SciTech Connect

    Watchorn, Steven

    2010-09-10

    Because this was a Phase I project, it did not add extensively to the body of A-band knowledge. There was no basic research performed on that subject. The principal addition was that a mechanical and optical design for a triple-etalon Fabry-Perot interferometer (FABSOAR) capable of A-band sensing was sketched out and shown to be within readily feasible instrument fabrication parameters. The parameters for the proposed triple-etalon Fabry-Perot were shown to be very similar to existing Fabry-Perots built by Scientific Solutions. The mechanical design for the FABSOAR instrument incorporated the design of previous Scientific Solutions imagers, condensing the three three-inch-diameter etalons into a single, sturdy tube. The design allowed for the inclusion of a commercial off-the-shelf (COTS) filter wheel and a thermocooled CCD detector from Andor. The tube has supports to mount to a horizontal or vertical opticaltable surface, and was to be coupled to a Scientific Solutions pointing head at the Millstone Hill Observatory in Massachusetts for Phase II calibration and testing.

  7. Fiber-Optic Temperature Sensor Using a Thin-Film Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn

    1997-01-01

    A fiber-optic temperature sensor was developed that is rugged, compact, stable, and can be inexpensively fabricated. This thin-film interferometric temperature sensor was shown to be capable of providing a +/- 2 C accuracy over the range of -55 to 275 C, throughout a 5000 hr operating life. A temperature-sensitive thin-film Fabry-Perot interferometer can be deposited directly onto the end of a multimode optical fiber. This batch-fabricatable sensor can be manufactured at a much lower cost than can a presently available sensor, which requires the mechanical attachment of a Fabry-Perot interferometer to a fiber. The principal disadvantage of the thin-film sensor is its inherent instability, due to the low processing temperatures that must be used to prevent degradation of the optical fiber's buffer coating. The design of the stable thin-film temperature sensor considered the potential sources of both short and long term drifts. The temperature- sensitive Fabry-Perot interferometer was a silicon film with a thickness of approx. 2 microns. A laser-annealing process was developed which crystallized the silicon film without damaging the optical fiber. The silicon film was encapsulated with a thin layer of Si3N4 over coated with aluminum. Crystallization of the silicon and its encapsulation with a highly stable, impermeable thin-film structure were essential steps in producing a sensor with the required long-term stability.

  8. Experimental determination of intracavity losses of monolithic Fabry-Perot cavities made of Pr3+:Y2SiO5.

    PubMed

    Goto, Hayato; Nakamura, Satoshi; Ichimura, Kouichi

    2010-11-01

    We propose an experimental method with which all the following quantities can be determined separately: the intracavity loss and individual cavity-mirror transmittances of a monolithic Fabry-Perot cavity and furthermore the coupling efficiency between the cavity mode and the incident light. It is notable that the modified version of this method can also be applied to whispering-gallery-mode cavities. Using this method, we measured the intracavity losses of monolithic Fabry-Perot cavities made of Pr3+:Y2SiO5 at room temperature. The knowledge of the intracavity losses is very important for applications of such cavities, e.g., to quantum information technologies. It turns out that fairly high losses (about 0.1%) exist even for a sample with extremely low dopant concentration (2×10(-5) at. %). The experimental results also indicate that the loss may be mainly due to the bulk loss of Y2SiO5 crystal. The bulk loss is estimated to be 7×10(-4) cm(-1) (0.003 dB/cm) or lower. PMID:21164720

  9. Response of a Fabry Perot optical cavity to phase modulation sidebands for use in electro-optic control systems

    NASA Astrophysics Data System (ADS)

    Skeldon, Kenneth D.; Strain, Kenneth A.

    1997-09-01

    The worldwide endeavor to build long baseline laser interferometers to detect and study gravitational radiation is well under way. In the German British GEO600 project, it is proposed to pass the sidebands induced on the light by an electro-optic phase modulator through a Fabry Perot optical cavity used in transmission, called a mode cleaner. This can be achieved when the phase modulation frequency is matched to the first longitudinal-mode frequency of the mode cleaner cavity so that both carrier and sidebands are transmitted. The primary function of the mode cleaner is to reduce the geometry fluctuations associated with the light, and thus any such noise induced by the modulation process is also suppressed. We present the results of an experiment that investigates the feasibility of passing modulation sidebands through an optical cavity and the factors limiting its success. In particular, we show that it is possible to avoid introducing excess noise associated with the transmitted sidebands, provided that certain experimental criteria are satisfied. The research was carried out on a prototype mode cleaner cavity built and tested at Glasgow University but which is similar to the equivalent apparatus planned for GEO600.

  10. Response of a Fabry-Perot optical cavity to phase modulation sidebands for use in electro-optic control systems.

    PubMed

    Skeldon, K D; Strain, K A

    1997-09-20

    The worldwide endeavor to build long baseline laser interferometers to detect and study gravitational radiation is well under way. In the German-British GEO600 project, it is proposed to pass the sidebands induced on the light by an electro-optic phase modulator through a Fabry-Perot optical cavity used in transmission, called a mode cleaner. This can be achieved when the phase modulation frequency is matched to the first longitudinal-mode frequency of the mode cleaner cavity so that both carrier and sidebands are transmitted. The primary function of the mode cleaner is to reduce the geometry fluctuations associated with the light, and thus any such noise induced by the modulation process is also suppressed. We present the results of an experiment that investigates the feasibility of passing modulation sidebands through an optical cavity and the factors limiting its success. In particular, we show that it is possible to avoid introducing excess noise associated with the transmitted sidebands, provided that certain experimental criteria are satisfied. The research was carried out on a prototype mode cleaner cavity built and tested at Glasgow University but which is similar to the equivalent apparatus planned for GEO600. PMID:18259548

  11. Switchable and multi-wavelength linear fiber laser based on Fabry-Perot and Mach-Zehnder interferometers

    NASA Astrophysics Data System (ADS)

    Gutierrez-Gutierrez, J.; Rojas-Laguna, R.; Estudillo-Ayala, J. M.; Sierra-Hernández, J. M.; Jauregui-Vazquez, D.; Vargas-Treviño, M.; Tepech-Carrillo, L.; Grajales-Coutiño, R.

    2016-09-01

    In this manuscript, switchable and multi-wavelength erbium-doped fiber laser arrangement, based on Fabry-Perot (FPI) and Mach-Zehnder (MZI) interferometers is presented. Here, the FPI is composed by two air-microcavities set into the tip of conventional single mode fiber, this one is used as a partially reflecting mirror and lasing modes generator. And the MZI fabricated by splicing a segment of photonic crystal fiber (PCF) between a single-mode fiber section, was set into an optical fiber loop mirror that acts as full-reflecting and wavelength selective filter. Both interferometers, promotes a cavity oscillation into the fiber laser configuration, besides by curvature applied over the MZI, the fiber laser generates: single, double, triple and quadruple laser emissions with a signal to noise ratio (SNR) of 30 dB. These laser emissions can be switching between them from 1525 nm to 1534 nm by adjusting the curvature radius over the MZI. This laser fiber offers a wavelength and power stability at room temperature, compactness and low implementation cost. Moreover the linear laser proposed can be used in several fields such as spectroscopy, telecommunications and fiber optic sensing systems.

  12. Study of Fabry-Perot Etalon Stability and Tuning for Spectroscopic Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Clem, Michelle M.; Mielke-Fagan, Amy F.; Elam, Kristie A.

    2010-01-01

    The Fabry-Perot interferometer is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating flow properties such as gas velocity and temperature. Rayleigh scattered light from a focused laser beam can be directly imaged through a solid Fabry-Perot etalon onto a CCD detector to provide the spectral content of the scattered light. The spatial resolution of the measurements is governed by the locations of interference fringes. The location of the fringes can be changed by altering the etalon?s physical characteristics, such as thickness and index of refraction. For a fused silica solid etalon the physical properties can be adjusted by changing the etalon temperature; hence changing the order of the interference pattern and the physical fringe locations. Controlling the temperature of the etalon can provide for a slow time-response spatial scanning method for this type of etalon system. A custom designed liquid crystal Fabry-Perot (LCFP) can provide for a fast time-response method of scanning the etalon system. Voltage applied to the liquid crystal interface sets the etalon?s properties allowing Rayleigh measurements to be acquired at varying spatial locations across the image of the laser beam over a very short time period. A standard fused silica etalon and a tunable LCFP etalon are characterized to select the system that is best suited for Rayleigh scattering measurements in subsonic and supersonic flow regimes. A frequency-stabilized laser is used to investigate the apparent frequency stability and temperature sensitivity of the etalon systems. Frequency stability and temperature sensitivity data of the fused silica and LCFP etalon systems are presented in this paper, along with measurements of the LCFP etalon?s tuning capabilities. Rayleigh scattering velocity measurements with both etalon systems are presented, in an effort to determine which etalon is better suited to provide optical flow

  13. A liquid helium cooled mid-infrared imaging Fabry-Perot spectrometer

    NASA Astrophysics Data System (ADS)

    Watarai, H.; Chaen, K.; Matsuhara, H.; Matsumoto, T.; Takahashi, H.

    1994-03-01

    A liquid helium cooled mid-infrared imaging Fabry-Perot spectrometer has been under development. A Si:P 5x5 detector array is used for this instrument. Although the array system has small format, but combination with junction field effect transistor (JFET) array will provide noise equivalent line flux of 1.0 x 10-21 w/sq cm(1000 sec, 10 sigma). This sensitivity is comparable with the short wavelength spectrometer (SWS) of the Infrared Space Observatory (ISO).

  14. Performance improvement and characterization activities for an imaging Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Larar, Allen M.; Cook, William B.; Flood, Michael A.; Campbell, Joel F.; Boyer, Charles M.

    2008-10-01

    Risk mitigation activities for a prototype imaging Fabry-Perot Interferometer (FPI) system, development originating within NASA's Instrument Incubator Program (IIP) for enabling future space-based atmospheric composition missions, are continuing at NASA Langley Research Center. The system concept and technology are focused on observing tropospheric ozone around 9.6 micron, but also have applicability toward measurement of other trace species in different spectral regions and other applications. The latest results from performance improvement and laboratory characterization activities will be reported, with an emphasis placed on testing performed to evaluate system-level radiometric, spatial, and spectral measurement fidelity.

  15. Velocity distribution of neutral species during magnetron sputtering by Fabry-Perot interferometry

    SciTech Connect

    Britun, N.; Han, J. G.; Oh, S.-G.

    2008-04-07

    The velocity distribution of a metallic neutral species sputtered in a dc magnetron discharge was measured using a planar Fabry-Perot interferometer and a hollow cathode lamp as a reference source. The measurement was performed under different angles of view relative to the target surface. The velocity distribution function in the direction perpendicular to the target becomes asymmetrical as the Ar pressure decreases, whereas it remains nearly symmetrical when the line of sight is parallel to the target surface. The average velocity of the sputtered Ti atoms was measured to be about 2 km/s.

  16. On Fabry-Perot resonances of a wire-medium hyperlens

    NASA Astrophysics Data System (ADS)

    Kosulnikov, Sergei; Simovski, Constantin

    2015-06-01

    As it was recently shown an array of slightly diverging metal wires called wire-medium hyperlens can be used for the significant and very broadband enhancement of the radiation of small sources. Really, in the domain around the source the array operates as an infinite wire medium and near its effective surface it is well matched to free space that implies the gain in the far-field radiation. However, the matching on the surface is imperfect and implies dimensional resonances of Fabry-Perot type. The impact of these resonances and the frequency-averaged enhancement of dipole radiation in the wire-medium hyperlens is studied in the present paper.

  17. Nanodiamonds in Fabry-Perot cavities: a route to scalable quantum computing

    NASA Astrophysics Data System (ADS)

    Greentree, Andrew D.

    2016-02-01

    The negatively-charged nitrogen-vacancy colour centre in diamond has long been identified as a platform for quantum computation. However, despite beautiful proof of concept experiments, a pathway to true scalability has proven elusive. Now a group from Oxford and Grenoble-Alpes have shown coupling between nitrogen-vacancy centres and open Fabry-Perot cavities in a way that proves a clear route to scalable quantum computing (Johnson et al 2015 New J. Phys. 17 122003). And all at the relatively balmy temperature of 77 K.

  18. In-fiber Fabry-Perot interferometer for strain and magnetic field sensing.

    PubMed

    Costa, Greice K B; Gouvêa, Paula M P; Soares, Larissa M B; Pereira, João M B; Favero, Fernando; Braga, Arthur M B; Palffy-Muhoray, Peter; Bruno, Antonio C; Carvalho, Isabel C S

    2016-06-27

    In this paper we discuss the results obtained with an in-fiber Fabry-Perot interferometer (FPI) used in strain and magnetic field (or force) sensing. The intrinsic FPI was constructed by splicing a small section of a capillary optical fiber between two pieces of standard telecommunication fiber. The sensor was built by attaching the FPI to a magnetostrictive alloy in one configuration and also by attaching the FPI to a small magnet in another. Our sensors were found to be over 4 times more sensitive to magnetic fields and around 10 times less sensitive to temperature when compared to sensors constructed with Fiber Bragg Grating (FBG). PMID:27410621

  19. Emulation of Fabry-Perot and Bragg resonators with temporal optical solitons.

    PubMed

    Voytova, T; Oreshnikov, I; Yulin, A V; Driben, R

    2016-06-01

    The scattering of weak dispersive waves (DWs) on several equally spaced temporal solitons is studied. It is shown by systematic numerical simulations that the reflection of the DWs from the soliton trains strongly depends on the distance between the solitons. The dependence of the reflection and transmission coefficients on the inter-soliton distance and the frequency of the incident waves are studied in detail, revealing fascinating quasi-periodic behavior. The analogy between the observed nonlinear phenomena in the temporal domain and the usual Fabry-Perot and Bragg resonators is discussed. PMID:27244384

  20. Measurement of unsteady gas temperature with optical fibre Fabry-Perot microsensors

    NASA Astrophysics Data System (ADS)

    Kilpatrick, J. M.; MacPherson, W. N.; Barton, J. S.; Jones, J. D. C.; Buttsworth, D. R.; Jones, T. V.; Chana, K. S.; Anderson, S. J.

    2002-05-01

    We describe the application of thin-film optical fibre Fabry-Perot (FFP) microsensors to high-bandwidth measurement of unsteady total temperature in transonic gas flows. An aerodynamic probe containing two temperature sensitive FFP microsensors was deployed in the rotor exit flow region of a gas turbine research rig. Measurements reveal gas temperature oscillations typically 4 K peak to peak at the blade passing frequency of 10 kHz with components to the third harmonic detected in the power spectrum of the temperature signal.

  1. Ground-based observations of equatorial thermosphere dynamics with a Fabry-Perot interferometer

    NASA Technical Reports Server (NTRS)

    Meriwether, J. W., Jr.; Biondi, M. A.

    1984-01-01

    Fabry-Perot determinations of thermospheric temperatures from 630.0 nm nightglow line width measurements were carried out for the period April to August, 1983. The nightly variation of the thermospheric temperature measured on 53 nights is compared with MSIS model predictions and found to agree occasionally with the model but, on the average, to exceed model predictions by approximately 180 K. The largest differences, 400 to 500 K occur during strongly increasing geomagnetic activity. Significant differences occur both during high geomagnetic/low solar activity and during low geomagnetic/high solar activity.

  2. Linear FBG Temperature Sensor Interrogation with Fabry-Perot ITU Multi-wavelength Reference

    PubMed Central

    Park, Hyoung-Jun; Song, Minho

    2008-01-01

    The equidistantly spaced multi-passbands of a Fabry-Perot ITU filter are used as an efficient multi-wavelength reference for fiber Bragg grating sensor demodulation. To compensate for the nonlinear wavelength tuning effect in the FBG sensor demodulator, a polynomial fitting algorithm was applied to the temporal peaks of the wavelength-scanned ITU filter. The fitted wavelength values are assigned to the peak locations of the FBG sensor reflections, obtaining constant accuracy, regardless of the wavelength scan range and frequency. A linearity error of about 0.18% against a reference thermocouple thermometer was obtained with the suggested method.

  3. High-sensitivity Fabry-Perot interferometric pressure sensor based on a nanothick silver diaphragm.

    PubMed

    Xu, Feng; Ren, Dongxu; Shi, Xiaolong; Li, Can; Lu, Weiwei; Lu, Lu; Lu, Liang; Yu, Benli

    2012-01-15

    We present a fiber-optic extrinsic Fabry-Perot interferometer pressure sensor based on a nanothick silver diaphragm. The sensing diaphragm, with a thickness measured in a few hundreds of nanometers, is fabricated by the electroless plating method, which provides a simple fabrication process involving a high-quality diaphragm at a low cost. The sensor exhibits a relatively linear response within the pressure variation range of 0-50 kPa, with a high pressure sensitivity of 70.5 nm/kPa. This sensor is expected to have potential applications in the field of highly sensitive pressure sensors. PMID:22854444

  4. Fast response Fabry-Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber.

    PubMed

    Tian, Jiajun; Lu, Zejin; Quan, Mingran; Jiao, Yuzhu; Yao, Yong

    2016-09-01

    We report a fast response microfluidic Fabry-Perot (FP) interferometer refractive index (RI) fiber sensor based on a concave-core photonic crystal fiber (CPCF), which is formed by directly splicing a section CPCF with a section of single mode fiber. The CPCF is made by cleaving a section of multimode photonic crystal fiber with an axial tension. The shallow concave-core of CPCF naturally forms the FP cavity with a very short cavity length. The inherent large air holes in the cladding of CPCF are used as the open channels to let liquid sample come in and out of FP cavity. In order to shorten the liquid channel length and eliminate the harmful reflection from the outside end face of the CPCF, the CPCF is cleaved with a tilted tensile force. Due to the very small cavity capacity, the short length and the large sectional area of the microfluidic channels, the proposed sensor provides an easy-in and easy-out structure for liquids, leading to great decrement of the measuring time. The proposed sensor exhibits fast measuring speed, the measuring time is less than 359 and 23 ms for distilled water and pure ethanol, respectively. We also experimentally study and demonstrate the superior performances of the sensor in terms of high RI sensitivity, good linear response, low temperature cross-sensitivity and easy fabrication. PMID:27607621

  5. Periodic error characterization in commercial heterodyne interferometer using an external cavity diode laser based Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Zhu, Minhao; Wei, Haoyun; Li, Yan

    2014-07-01

    Periodic error is a main error source that limits the measurement accuracy in heterodyne laser interferometry. An external cavity diode laser (ECDL) based Fabry-Perot (F-P) interferometer referenced to an optical frequency comb (OFC) is proposed to characterize the periodic error in heterodyne interferometers. The Pound-Drever-Hall locking technique is employed to lock the tracking ECDL frequency to the resonance of a high finesse F-P cavity. The frequency of a reference ECDL is locked to a selected mode of an OFC to generate a stable single optical frequency. The frequency change of the tracking ECDL induced by the cavity displacement is measured by beating with the reference ECDL locked to the OFC. Experiments show that the F-P interferometer system has a displacement resolution of 1.96 pm. We compared the measurement results of our system with a commercial plane mirror heterodyne interferometer. The period if the periodic error is about half wavelength, with an error amplitude of 4.8 nm.

  6. Air cavity-based Fabry-Perot interferometer sensor fabricated using a sawing technique for refractive index measurement

    NASA Astrophysics Data System (ADS)

    Jung, Eun Joo; Lee, Woo-Jin; Kim, Myoung Jin; Hwang, Sung Hwan; Rho, Byung Sup

    2014-01-01

    We have demonstrated a refractive index sensor based on a fiber optic Fabry-Perot (FP) interferometer with an open air cavity fabricated using a one-step mechanical sawing technique. The sensor head consists of a short FP cavity near the fiber patch cord tip, which was assembled by joining a ceramic ferrule and a single-mode fiber together. Owing to the open air cavity in the sensor head, various liquid samples with different refractive index can fill in-line air cavity, which makes the device usable as a refractometer. Moreover, due to the sensor head encircled with the robust ceramic ferrule, the device is attractive for sensing measurement in harsh environments. The sensor was tested in different refractive index solutions. The experimental result shows that the attenuation peak wavelength of the sensor is shifted toward a shorter wavelength with increasing refractive index, and the refractive index sensitivity is ˜92.5 nm/refractive index unit (RIU) and 73.75 dB/RIU. The proposed sensor can be used as an in-line refractometer for many potential applications in the sensing field.

  7. A Highly Sensitive Fiber-Optic Fabry-Perot Interferometer Based on Internal Reflection Mirrors for Refractive Index Measurement.

    PubMed

    Li, Xuefeng; Shao, Yujiao; Yu, Yuan; Zhang, Yin; Wei, Shaowen

    2016-01-01

    In this study, a new type of highly sensitive fiber-optic Fabry-Perot interferometer (FFPI) is proposed with a high sensitivity on a wide refractive index (RI) measurement range based on internal reflection mirrors of micro-cavity. The sensor head consists of a single-mode fiber (SMF) with an open micro-cavity. Since light reflections of gold thin films are not affected by the RI of different measuring mediums, the sensor is designed to improve the fringe visibility of optical interference through sputtering the gold films of various thicknesses on the inner surfaces of the micro-cavity, as a semi-transparent mirror (STM) and a total-reflection mirror (TRM). Experiments have been carried out to verify the feasibility of the sensor's design. It is shown that the fabricated sensor has strong interference visibility exceeding 15 dB over a wide measurement range of RI, and the sensor sensitivity is higher than 1160 nm/RIU, and RI resolution is better than 1.0 × 10(-6) RIU. PMID:27258273

  8. Effect of small variations in the refractive index of the ambient medium on the spectrum of a bent fibre-optic Fabry - Perot interferometer

    SciTech Connect

    Kulchin, Yurii N; Vitrik, O B; Gurbatov, S O

    2011-09-30

    The phase of light propagating through a bent optical fibre is shown to depend on the refractive index of the medium surrounding the fibre cladding when there is resonance coupling between the guided core mode and cladding modes. This shifts the spectral maxima in the bent fibre-optic Fabry - Perot interferometer. The highest phase and spectral sensitivities achieved with this interferometer configuration are 0.71 and 0.077, respectively, and enable changes in the refractive index of the ambient medium down to 5 Multiplication-Sign 10{sup -6} to be detected. This makes the proposed approach potentially attractive for producing highly stable, precision refractive index sensors capable of solving a wide range of liquid refractometry problems.

  9. A tunable, solid, Fabry-Perot etalon for solar seismology

    NASA Technical Reports Server (NTRS)

    Rust, David M.; Burton, Clive H.; Leistner, Achim J.

    1986-01-01

    A solid etalon has been designed and fabricated from a 50-mm diameter wafer of optical-quality lithium niobate. The finished etalon has a free spectral range of 0.325 nm at 588 nm. The parallel faces are coated with silver, and the central 15-mm aperture of the etalon has a finesse of 18.6. The reflective faces double as electrodes, and application of voltage will shift the passband. This feature was used in a servo circuit to stabilize the passband against temperature and tilt-induced drifts to better than three parts in one billion. Operated in the stabilized mode for day-long sessions, this filter alternately samples the wings of a narrow atomic absorption line in the solar spectrum and produces a signal proportional to velocity on the solar disk. The Fourier transform of this signal yields information on acoustic waves in the solar interior.

  10. Compton scattering off polarized electrons with a high-finesse Fabry-Perot Cavity at Jlab

    SciTech Connect

    Nicolas Falletto; Martial Authier; Maud Baylac; M. Boyer; Francois Bugeon; Etienne Burtin; Christian Cavata; Nathalie Colombel; G. Congretel; R. Coquillard; G. Coulloux; Bertrand Couzy; P Deck; Alain Delbart; D. Desforges; A. Donati; B. Duboue; Stephanie Escoffier; F. Farci; Bernard Frois; P Girardot; J Guillotau; C Henriot; Claude Jeanney; M Juillard; J. P. Jorda; P. Legou; David Lhuillier; Y Lussignol; Phillippe Mangeot; X. Martin; Frederic Marie; Jacques Martino; M. Maurier; Bernard Mazeau; J.F. Millot; F. Molinie; J.-P. Mols; Jean-pierre Mouly; M. Mur; Damien Neyret; T. Pedrol; Stephane Platchkov; G. Pontet; Thierry Pussieux; Yannick Queinec; Philippe Rebourgeard; J. C. Sellier; Gerard Tarte; Christian Veyssiere; Andre Zakarian; Pierre Bertin; Alain Cosquer; Jian-ping Chen; Joseph Mitchell; J.-M. Mackowski; L. Pinard

    2001-03-01

    We built and commissioned a new type of Compton polarimeter to measure the electron beam polarization at the Thomas Jefferson National Accelerator Facility (Virginia, USA). The heart of this polarimeter is a high-finesse monolithic Fabry-Perot cavity. Its purpose is to amplify a primary 300 mW laser beam in order to improve the signal to noise ratio of the polarimeter. It is the first time that a high-finesse Fabry-Perot cavity is enclosed in the vacuum of a particle accelerator to monitor the beam polarization by Compton polarimetry. The measured finesse and amplification gain of the cavity are F=26000 and G=7300. The electron beam crosses this high-power photon source at an angle of 23 mrad in the middle of the cavity where the photon beam power density is estimated to be 0.85MW/cm2. We have used this facility during the HAPPEX experiment (April-July 1999) and we give a preliminary measurement of Compton scattering asymmetry.

  11. Two Fabry-Perot interferometers for high precision wavelength calibration in the near-infrared

    NASA Astrophysics Data System (ADS)

    Schäfer, Sebastian; Reiners, Ansgar

    2012-09-01

    The most frequently used standard light sources for spectroscopic high precision wavelength calibration are hollow cathode lamps. These lamps, however, do not provide homogeneous line distribution and intensities. Particularly in the infrared, the number of useful lines is severely limited and the spectrum is contaminated by lines of the filler gas. With the goal of achieving sub m/s stability in the infrared, as required for detecting earthlike extra-solar planets, we are developing two passively stabilized Fabry-Perot interferometers for the red visible (600-1050nm) and near infrared wavelength regions (900-1350nm). Each of the two interferometers can produce ~15,000 lines of nearly constant brightness. The Fabry-Perot interferometers aim at a RV calibration precision of 10cm/s and are optimized in line shape and spacing for the infrared planet hunting CARMENES spectrograph that is currently being built for the Calar Alto 3.5m telescope. Here we present the first results of our work.

  12. Four-wave mixing in nonlinear interferometer Fabry-Perot with saturable absorbers

    NASA Astrophysics Data System (ADS)

    Ormachea, Omar A.; Romanov, Oleg G.; Tolstik, Alexei L.; Arce Diego, José Luis; Pereda Cubian, David; Fanjul Vélez, Félix

    2005-09-01

    In this work the different schemes of propagation and interaction of the light beams in nonlinear Fabry-Perot interferometer have been studied theoretically and experimentally. Degenerate and non-degenerate four-wave mixing have been realized in the cavity of Fabry-Perot type using Rhodamine-6G dye and polymethine dye 3274U solution as saturable absorber. The diffraction efficiency of intracavity dynamic grating has been studied in dependence on intensity of interacting beams and parameters of resonator. The theoretical model of the processes of intracavity degenerate and non-degenerate four-wave mixing has been developed and applied to the analysis of the efficiency of light beams conversion by mean of Bragg diffraction from intracavity dynamic gratings. For theoretical description of typical experimental situations we used the round-trip model of nonlinear interferometer adapted for the geometry of degenerate four-wave mixing, which can be realized in the scheme of symmetrical oblique incidence of pump, signal and probe beams to the front and back mirrors of cavity.

  13. Fabry-Perot Based Radiometers for Precise Measurement of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Wilson, Emily L.; Georgieva, Elena

    2007-01-01

    Differential radiometers based upon the Fabry-Perot interferometer have been developed and demonstrated that exhibit very great sensitivity to changes in the atmospheric column of carbon dioxide, oxygen, and water vapor. These instruments employ a solid Fabry-Perot etalon that is tuned to the proper wavelength by changing the temperature. By choosing the thickness of the etalon its multiple pass bands can be made to align with regularly space absorption features of the molecule under investigation. Use of multiple absorption features improves the optical throughput of the instrument and improves the stability of the instrument response with respect to environmental changes. Efforts are underway at Goddard to extend this technique to the carbon 13 isotope of carbon dioxide and to methane. These instruments are intrinsically rugged and can be made rather small and inexpensively. They therefore hold promise for widespread use in ground based networks for calibration of satellite instruments such as OCO and GOSAT. Results will be presented for ground based and airborne operations for these systems. The effects of atmospheric scattering, pointing errors, pressure broadening and temperature effects will be discussed with regard to achieving precision better than .5% required for validation of carbon dioxide column measured from space. Designs permitting the extension of the technique to an even larger number of atmospheric species will be discussed along with theoretical analysis of potential system performance.

  14. Nonlinear regression method for estimating neutral wind and temperature from Fabry-Perot interferometer data.

    PubMed

    Harding, Brian J; Gehrels, Thomas W; Makela, Jonathan J

    2014-02-01

    The Earth's thermosphere plays a critical role in driving electrodynamic processes in the ionosphere and in transferring solar energy to the atmosphere, yet measurements of thermospheric state parameters, such as wind and temperature, are sparse. One of the most popular techniques for measuring these parameters is to use a Fabry-Perot interferometer to monitor the Doppler width and breadth of naturally occurring airglow emissions in the thermosphere. In this work, we present a technique for estimating upper-atmospheric winds and temperatures from images of Fabry-Perot fringes captured by a CCD detector. We estimate instrument parameters from fringe patterns of a frequency-stabilized laser, and we use these parameters to estimate winds and temperatures from airglow fringe patterns. A unique feature of this technique is the model used for the laser and airglow fringe patterns, which fits all fringes simultaneously and attempts to model the effects of optical defects. This technique yields accurate estimates for winds, temperatures, and the associated uncertainties in these parameters, as we show with a Monte Carlo simulation. PMID:24514183

  15. Electrically tunable liquid-crystal Fabry-Perot device for terahertz radiation

    NASA Astrophysics Data System (ADS)

    Li, Hui; Pan, Fan; Liu, Kan; Wu, Yuntao; Zhang, Yanduo; Xie, Xiaolin

    2015-11-01

    In this paper, we will present a smart structure based on an electrically controlled liquid crystal (LC) Fabry-Perot to achieve terahertz (THz) filter, which has extremely potential in THz communication. This proposed structure doesn't need any mechanical movements because of adapting LC as a key material to compose the Fabry-Perot device. The THz filter based on LC, which is smart, light and cheap, can be realized to solve that common problem of short of tunable devices in THz radiation. The chosen LC material is E7, which has very stable and good transmissions in THz range. Under the external applied voltage, the alignment of the nematic LC allows the refractive index of the device to be tuned. Because of this feature, the resonant peaks could be shifted by changing the applied voltage. Especially, when the alignment is changed from planar to phototropic, the maximum value of the shift could be realized. The simulation result of the proposed device could be got. And the optimal structural parameters could be also got. Numerical analyses results have shown that the proposed structure has a high narrow transmission band and very sharp edges. This THz filter is novel for compact and smart features, so this kind of proposed THz filter is very attractive in many applications, such as THz communication, and THz spectral imaging.

  16. Hyperspectral Infrared Imaging of Flames Using a Spectrally Scanning Fabry-Perot Filter

    NASA Technical Reports Server (NTRS)

    Rawlins, W. T.; Lawrence, W. G.; Marinelli, W. J.; Allen, M. G.; Piltch, N. (Technical Monitor)

    2001-01-01

    The temperatures and compositions of gases in and around flames can be diagnosed using infrared emission spectroscopy to observe molecular band shapes and intensities. We have combined this approach with a low-order scanning Fabry-Perot filter and an infrared camera to obtain spectrally scanned infrared emission images of a laboratory flame and exhaust plume from 3.7 to 5.0 micrometers, at a spectral resolution of 0.043 micrometers, and a spatial resolution of 1 mm. The scanning filter or AIRIS (Adaptive Infrared Imaging Spectroradiometer) is a Fabry-Perot etalon operating in low order (mirror spacing = wavelength) such that the central spot, containing a monochromatic image of the scene, is viewed by the detector array. The detection system is a 128 x 128 liquid-nitrogen-cooled InSb focal plane array. The field of view is controlled by a 50 mm focal length multielement lens and an V4.8 aperture, resulting in an image 6.4 x 6.4 cm in extent at the flame and a depth of field of approximately 4 cm. Hyperspectral images above a laboratory CH4/air flame show primarily the strong emission from CO2 at 4.3 micrometers, and weaker emissions from CO and H2O. We discuss techniques to analyze the spectra, and plans to use this instrument in microgravity flame spread experiments.

  17. Single resonance monolithic Fabry-Perot filters formed by volume Bragg gratings and multilayer dielectric mirrors

    NASA Astrophysics Data System (ADS)

    Lumeau, Julien; Koc, Cihan; Mokhun, Oleksiy; Smirnov, Vadim; Lequime, Michel; Glebov, Leonid B.

    2012-02-01

    High efficiency reflecting volume Bragg gratings (VBGs) recorded in PTR glass plates have shown un-preceded performances that make them very good candidates for narrowband spectral filtering with sub-nanometer spectral widths. However, decreasing the bandwidth to value below 30-50 pm is very challenging as it requires increasing the thickness of the RBG to more than 15-20 mm. To overcome this limitation, we propose a new approach which is a monolithic Fabry-Perot cavity which consists from a reflecting VBG with a multilayer dielectric mirror (MDM) deposited on its surface. A VBG with a grating vector perpendicular to its surface and a MDM produce a Fabry-Perot resonator with a single transmission band inside of the reflection spectrum of the VBG. We present a theoretical description of this new class of filters that allow achieving a single ultra-narrowband resonance associated with several hundred nanometers rejection band. Then we show the methods for designing and fabricating such filter. Finally, we present the steps that we followed in order to fabricate a first prototype for 852 nm and 1062 nm region that demonstrates a 30 pm bandwidth, 90+% transmission at resonance and a good agreement with theoretical simulation.

  18. Refractive index and absorption detector for liquid chromatography based on Fabry-Perot interferometry

    DOEpatents

    Yeung, E.S.; Woodruff, S.D.

    1984-06-19

    A refractive index and absorption detector are disclosed for liquid chromatography. It is based in part on a Fabry-Perot interferometer and is used for the improved detection of refractive index and absorption. It includes a Fabry-Perot interferometer having a normally fixed first partially reflecting mirror and a movable second partially reflecting mirror. A chromatographic flow-cell is positioned between the mirrors along the optical axis of a monochromatic laser beam passing through the interferometer. A means for deriving information about the interference fringes coming out of the interferometer is used with a mini-computer to compute the refractive index of the specimen injected into the flow cell. The minicomputer continuously scans the interferometer for continuous refractive index readings and outputs the continuous results of the scans on a chart recorder. The absorption of the specimen can concurrently be scanned by including a second optical path for an excitation laser which will not interfere with the first laser, but will affect the specimen so that absorption properties can be detected. By first scanning for the refractive index of the specimen, and then immediately adding the excitation laser and subsequently scanning for the refractive index again, the absorption of the specimen can be computed and recorded. 10 figs.

  19. Refractive index and absorption detector for liquid chromatography based on Fabry-Perot interferometry

    DOEpatents

    Yeung, Edward S.; Woodruff, Steven D.

    1984-06-19

    A refractive index and absorption detector for liquid chromatography. It is based in part on a Fabry-Perot interferometer and is used for the improved detection of refractive index and absorption. It includes a Fabry-Perot interferometer having a normally fixed first partially reflecting mirror and a movable second partially reflecting mirror. A chromatographic flow-cell is positioned between the mirrors along the optical axis of a monochromatic laser beam passing through the interferometer. A means for deriving information about the interference fringes coming out of the interferometer is used with a mini-computer to compute the refractive index of the specimen injected into the flow cell. The minicomputer continuously scans the interferometer for continuous refractive index readings and outputs the continuous results of the scans on a chart recorder. The absorption of the specimen can concurrently be scanned by including a second optical path for an excitation laser which will not interfere with the first laser, but will affect the specimen so that absorption properties can be detected. By first scanning for the refractive index of the specimen, and then immediately adding the excitation laser and subsequently scanning for the refractive index again, the absorption of the specimen can be computed and recorded.

  20. Blood pressure manometer using a twin Bragg grating Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    van Brakel, Adriaan; Swart, Pieter L.; Chtcherbakov, Anatoli A.; Shlyagin, Mikhail G.

    2005-02-01

    We propose the use of optical fiber Bragg gratings in a non-invasive blood pressure waveform monitor. Bragg gratings can be written in a Fabry-Perot interferometric configuration to yield a method of strain measurement that has both a high resolution and a wide unambiguous range. This fiber Bragg grating Fabry-Perot interferometer (FBGI) can be used as a sensor to detect strain resulting from blood pressure applied to the walls of an artery situated near the patient"s skin. Strain measurements taken on the skin surface, typically over the radial artery at the wrist, are encoded as phase shifts of the FBGI signal. These phase shifts may be obtained by the analytic representation of the interferometer signal in the wavelength domain or by Fourier analysis in the frequency domain. For the proof of concept a realistic physical model was constructed to simulate pressure conditions at the actual sensor location. The operation of the device is demonstrated by measurements of pressure-pulse waveforms obtained in real-time. This sensor was also successfully tested on human patients, and these results are also presented. Since it yields continuous readings of blood pressure non-invasively, further application of the optical manometer may yield an alternative to conventional sphygmomanometry.

  1. Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection.

    PubMed

    Pan, Shilong; Yao, Jianping

    2010-06-01

    Wideband and frequency-tunable microwave signal generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode (FP-LD) with external optical injection is proposed and demonstrated. Through external injection, the FP-LD functions as a tunable high-Q photonic microwave filter, and the frequency tuning is realized by either tuning the wavelength of the externally injected optical light or changing the temperature to adjust the longitudinal modes of the FP-LD. An experiment is performed; a microwave signal with a frequency tunable from 6.41 to 10.85 GHz is generated. The phase noise performance of the generated microwave signal is also investigated. PMID:20517459

  2. Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect.

    PubMed

    Quan, Mingran; Tian, Jiajun; Yao, Yong

    2015-11-01

    An ultra-high sensitivity open-cavity Fabry-Perot interferometer (FPI) gas refractive index (RI) sensor based on the photonic crystal fiber (PCF) and Vernier effect is proposed and demonstrated. The sensor is prepared by splicing a section of PCF to a section of fiber tube fused with a section of single mode fiber. The air holes running along the cladding of the PCF enable the gas to enter or leave the cavity freely. The reflection beam from the last end face of the PCF is used to generate the Vernier effect, which significantly improves the sensitivity of the sensor. Experimental results show that the proposed sensor can provide an ultra-high RI sensitivity of 30899 nm/RIU. This sensor has potential applications in fields such as gas concentration analyzing and humidity monitoring. PMID:26512476

  3. Fabry-Perot Interferometer-Based Electrooptic Modulator using LiNbO3 and Organic Thin Films

    NASA Technical Reports Server (NTRS)

    Banks, C.; Frazier, D.; Penn, B.; Abdeldayem, H.; Sharma, A.; Yelleswarapu, C.; Leyderman, Alexander; Correa, Margarita; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We report the study of a Fabry-Perot electro-optical modulator using thin crystalline film NPP, and Crystalline LiNbO3. We are able to observe 14, and 60 percent degree of modulation. Measurements were carried using a standard lock-in amplifier with a silicon detector. The proposal to design a Fabry-Perot electro-optic modulator with an intracavity electro-optically active organic material was based on the initial results using poled polymer thin films. The main feature of the proposed device is the observation that in traditional electrooptic modulators like a Packets cell, it requires few kilovolts of driving voltage to cause a 3 dB modulation even in high figure-of-merit electrooptic materials like LiNbO3. The driving voltage for the modulator can be reduced to as low as 10 volts by introducing the electrooptic material inside die resonant cavity of a Fabry-Perot modulator. This is because the transmission of the Fabry-Perot cavity varies nonlinearly with the change of refractive index or phase of light due to applied electric field.

  4. Development of Fiber Fabry-Perot Interferometers as Stable Near-infrared Calibration Sources for High Resolution Spectrographs

    NASA Astrophysics Data System (ADS)

    Halverson, Samuel; Mahadevan, Suvrath; Ramsey, Lawrence; Hearty, Fred; Wilson, John; Holtzman, Jon; Redman, Stephen; Nave, Gillian; Nidever, David; Nelson, Matt; Venditti, Nick; Bizyaev, Dmitry; Fleming, Scott

    2014-05-01

    We discuss the ongoing development of single-mode fiber Fabry-Perot (FFP) Interferometers as precise astrophotonic calibration sources for high precision radial velocity (RV) spectrographs. FFPs are simple, inexpensive, monolithic units that can yield a stable and repeatable output spectrum. An FFP is a unique alternative to a traditional etalon, as the interferometric cavity is made of single-mode fiber rather than an air-gap spacer. This design allows for excellent collimation, high spectral finesse, rigid mechanical stability, insensitivity to vibrations, and no need for vacuum operation. The device we have tested is a commercially available product from Micron Optics.10 Our development path is targeted toward a calibration source for the Habitable-Zone Planet Finder (HPF), a near-infrared spectrograph designed to detect terrestrial-mass planets around low-mass stars, but this reference could also be used in many existing and planned fiber-fed spectrographs as we illustrate using the Apache Point Observatory Galactic Evolution Experiment (APOGEE) instrument. With precise temperature control of the fiber etalon, we achieve a thermal stability of 100 μK and associated velocity uncertainty of 22 cm s-1. We achieve a precision of ≈2 m s-1 in a single APOGEE fiber over 12 hr using this new photonic reference after removal of systematic correlations. This high precision (close to the expected photon-limited floor) is a testament to both the excellent intrinsic wavelength stability of the fiber interferometer and the stability of the APOGEE instrument design. Overall instrument velocity precision is 80 cm s-1 over 12 hr when averaged over all 300 APOGEE fibers and after removal of known trends and pressure correlations, implying the fiber etalon is intrinsically stable to significantly higher precision.

  5. Striped-double cavity fabry-perot interferometers using both glass and air cavities

    SciTech Connect

    Perry, S; Steinmetz, L

    1998-07-08

    We have used piezo-driven Fabry-Perot interferometers in the past far many continuous velocity-time measurements of fast moving surfaces. In order to avoid the annoying drift of some of these devices, we have developed and used inexpensive, solid glass, striped etalons with lengths up to 64 mm. Usable apertures are 35 mm by 80 mm with a finess of 25. A roundabout technique was devised for double cavity operation. We built a passive thermal housing for temperature stability, with tilt and height adjustments. We have also developed and used our first fixed etalon air-spaced cavity with a rotatable glass double- cavity insert. The rotation allows the referee cavity fractional order to be adjusted separately from that of the main cavity. It needs very little thermal protection, and eliminates the need for a roundabout scheme for double cavity operation, but is more costly than the solid glass version I

  6. Enhanced Bulk-Edge Coulomb Coupling in Fractional Fabry-Perot Interferometers.

    PubMed

    von Keyserlingk, C W; Simon, S H; Rosenow, Bernd

    2015-09-18

    Recent experiments use Fabry-Perot (FP) interferometry to claim that the ν=5/2 quantum Hall state exhibits non-Abelian topological order. We note that the experiments appear inconsistent with a model neglecting bulk-edge Coulomb coupling and Majorana tunneling, so we reexamine the theory of FP devices. Even a moderate Coulomb coupling may strongly affect some fractional plateaus, but very weakly affect others, allowing us to model the data over a wide range of plateaus. While experiments are consistent with the ν=5/2 state harboring Moore-Read topological order, they may have measured Coulomb effects rather than an "even-odd effect" due to non-Abelian braiding. PMID:26431008

  7. Optical design and characterization of a gas filled MEMS Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    Ayerden, N. Pelin; Ghaderi, Mohammadamir; de Graaf, Ger; Wolffenbuttel, Reinoud F.

    2015-05-01

    A concept for a highly integrated and miniaturized gas sensor based on infrared absorption, a Fabry-Perot type linear variable optical filter with integrated gas cell, is presented. The sample chamber takes up most of the space in a conventional spectrometer and is the only component that has so far not been miniaturized. In this concept the gas cell is combined with the resonator cavity of the filter. The optical design, fabrication, and characterization results on a MEMSbased realization are reported for a 24-25.5 μm long tapered resonator cavity. Multiple reflections from highly reflective mirrors enable this optical cavity to also act as a gas cell with an equivalent optical absorption path length of 8 mm. Wideband operation of the filter is ensured by fabrication of a tapered mirror. In addition to the functional integration and significant size reduction, the filter contains no moving parts, thus enables the fabrication of a robust microspectrometer

  8. Readout of micromechanical cantilever sensor arrays by Fabry-Perot interferometry

    SciTech Connect

    Wehrmeister, Jana; Fuss, Achim; Saurenbach, Frank; Berger, Ruediger; Helm, Mark

    2007-10-15

    The increasing use of micromechanical cantilevers in sensing applications causes a need for reliable readout techniques of micromechanical cantilever sensor (MCS) bending. Current optical beam deflection techniques suffer from drawbacks such as artifacts due to changes in the refraction index upon exchange of media. Here, an adaptation of the Fabry-Perot interferometer is presented that allows simultaneous determination of MCS bending and changes in the refraction index of media. Calibration of the instrument with liquids of known refraction index provides an avenue to direct measurement of bending with nanometer precision. Versatile construction of flow cells in combination with alignment features for substrate chips allows simultaneous measurement of two MCS situated either on the same, or on two different support chips. The performance of the instrument is demonstrate in several sensing applications, including adsorption experiments of alkanethioles on MCS gold surfaces, and measurement of humidity changes in air.

  9. Readout of micromechanical cantilever sensor arrays by Fabry-Perot interferometry.

    PubMed

    Wehrmeister, Jana; Fuss, Achim; Saurenbach, Frank; Berger, Rüdiger; Helm, Mark

    2007-10-01

    The increasing use of micromechanical cantilevers in sensing applications causes a need for reliable readout techniques of micromechanical cantilever sensor (MCS) bending. Current optical beam deflection techniques suffer from drawbacks such as artifacts due to changes in the refraction index upon exchange of media. Here, an adaptation of the Fabry-Perot interferometer is presented that allows simultaneous determination of MCS bending and changes in the refraction index of media. Calibration of the instrument with liquids of known refraction index provides an avenue to direct measurement of bending with nanometer precision. Versatile construction of flow cells in combination with alignment features for substrate chips allows simultaneous measurement of two MCS situated either on the same, or on two different support chips. The performance of the instrument is demonstrate in several sensing applications, including adsorption experiments of alkanethioles on MCS gold surfaces, and measurement of humidity changes in air. PMID:17979440

  10. Fabry-Perot interferometer measurement of static temperature and velocity for ASTOVL model tests

    NASA Technical Reports Server (NTRS)

    Kourous, Helen E.; Seacholtz, Richard G.

    1995-01-01

    A spectrally resolved Rayleigh/Mie scattering diagnostic was developed to measure temperature and wing-spanwise velocity in the vicinity of an ASTOVL aircraft model in the Lewis 9 x 15 Low Speed Wind Tunnel. The spectrum of argon-ion laser light scattered by the air molecules and particles in the flow was resolved with a Fabry-Perot interferometer. Temperature was extracted from the spectral width of the Rayleigh scattering component, and spanwise gas velocity from the gross spectral shift. Nozzle temperature approached 800 K, and the velocity component approached 30 m/s. The measurement uncertainty was about 5 percent for the gas temperature, and about 10 m/s for the velocity. The large difference in the spectral width of the Mie scattering from particles and the Rayleigh scattering from gas molecules allowed the gas temperature to be measured in flow containing both naturally occurring dust and LDV seed (both were present).

  11. Highly accurate spectral retardance characterization of a liquid crystal retarder including Fabry-Perot interference effects

    SciTech Connect

    Vargas, Asticio; Mar Sánchez-López, María del; García-Martínez, Pascuala; Arias, Julia; Moreno, Ignacio

    2014-01-21

    Multiple-beam Fabry-Perot (FP) interferences occur in liquid crystal retarders (LCR) devoid of an antireflective coating. In this work, a highly accurate method to obtain the spectral retardance of such devices is presented. On the basis of a simple model of the LCR that includes FP effects and by using a voltage transfer function, we show how the FP features in the transmission spectrum can be used to accurately retrieve the ordinary and extraordinary spectral phase delays, and the voltage dependence of the latter. As a consequence, the modulation characteristics of the device are fully determined with high accuracy by means of a few off-state physical parameters which are wavelength-dependent, and a single voltage transfer function that is valid within the spectral range of characterization.

  12. Development of Ultrasonic and Fabry-Perot Interferometer for Non-Destruction Inspection of Aging Aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Alphonso C.

    1998-01-01

    Fabry-Perot Interferometer (FPI) sensor detection system was continued and refined modifications were made in the data acquisition and evaluation process during the last year. The ultrasonic and FPI detection system was improved from one to multiple sensor detectors. Physical models were developed to understand the physical phenomenon of this work. Multilayered flawed samples were fabricated for inspection by a prototype ultrasonic and FPI detection. Experimental data was verified with simulated results. Undergraduate students that were associated with this research gained valuable knowledge from this experience. This was a learning process helping students to understand the importance of research and its application to solve important technological problems. As a result of our students exposure to this research two and planning to continue this type of research work in graduate school. A prototype instrument package was laboratory tested an actual airframe structure for documentation purposes.

  13. Overview of laboratory testing results for an imaging Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Larar, Allen M.; Cook, William B.; Flood, Michael A.; Campbell, Joel F.; Boyer, Charles M.; Remus, Rubin G.; Burcher, Ernest E.; Puschell, Jeffery J.

    2007-10-01

    An airborne imaging Fabry-Perot Interferometer (FPI) system was developed within NASA's Instrument Incubator Program (IIP) to mitigate risk associated with implementation of such a device in future space-based atmospheric remote sensing missions. This system is focused on observing tropospheric ozone through measuring a narrow spectral interval within the strong 9.6 micron infrared ozone band at high spectral resolution, while the concept and technology also have applicability toward measurement of other trace species and other applications. The latest results from laboratory testing and characterization of enabling subsystems and the overall instrument system will be reported, with an emphasis placed on testing performed to evaluate system-level radiometric, spatial, and spectral measurement fidelity.

  14. Enhanced dual-band infrared absorption in a Fabry-Perot cavity with subwavelength metallic grating.

    PubMed

    Kang, Guoguo; Vartiainen, Ismo; Bai, Benfeng; Turunen, Jari

    2011-01-17

    The performance of infrared (IR) dual-band detector can be substantially improved by simultaneously increasing IR absorptions for both sensor bands. Currently available methods only provide absorption enhancement for single spectral band, but not for the dual-band. The Fabry-Perot (FP) cavity generates a series of resonances in multispectral bands. With this flexibility, we introduced a novel type of dual-band detector structure containing a multilayer FP cavity with two absorbing layers and a subwavelength-period grating mirror, which is capable of simultaneously enhancing the middle wave infrared (MWIR) and the long wave infrared (LWIR) detection. Compared with the bare-absorption-layer detector (common dual-band detector), the optimized FP cavity can provide about 13 times and 17 times absorption enhancement in LWIR and MWIR bands respectively. PMID:21263618

  15. Design of a reconfigurable optical add/drop multiplexer based on tunable Fabry-Perot array

    NASA Astrophysics Data System (ADS)

    Ye, Jiansen; Wang, Xin; Li, Zhuo; Yang, Yang; Xu, Rui; Shi, Rui

    2015-08-01

    With the development of optical fiber communication, dense wavelength division multiplexing (DWDM) system is important for the rapid management of multi-wavelength in the core node of the optical transmission network. In this paper, a reconfigurable optical add-drop multiplexer (ROADM) based on the tunable Fabry-Perot (F-P) array is proposed. An optical switch with high isolation and low crosstalk is designed by using the characteristics of filtering and tuning for the F-P array. The principle, structure, and function of the tunable F-P array are introduced. The characteristics of filtering and tuning for the F-P filter are also calculated, and the factor for the isolation, crosstalk, response time and insertion loss are analyzed. A single physical channel ROADM with 16 signal channels, which operates in C-band, is designed and optimized by simulation.

  16. Faraday-active Fabry-Perot resonator: transmission, reflection, and emissivity.

    PubMed

    Liptuga, Anatoliy; Morozhenko, Vasyl; Pipa, Viktor; Venger, Evgen; Kostiuk, Theodor

    2012-05-01

    The propagation of light within a semiconductor Faraday-active Fabry-Perot resonator is investigated theoretically and experimentally. It is shown that an external magnetic field radically changes the angular and spectral characteristics of transmission, reflection, and emissivity of the resonator not only for polarized, but also for unpolarized, light. Suppression of interference patterns and phase inversion of the interference extrema were observed in both monochromatic and polychromatic light. The investigations were carried out for the plane-parallel plates of n-InAs in the spectral range of free charge carrier absorption. The results can be used to create new controllable optical and spectroscopic devices for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures. PMID:22561938

  17. Doppler line profile analysis for a multichannel Fabry-Perot interferometer

    NASA Technical Reports Server (NTRS)

    Killeen, T. L.; Hays, P. B.

    1984-01-01

    A new method of instrument calibration and data analysis is presented for single-etalon interferometric measurements of winds, temperatures, and emission line intensities. The technique has been developed for the multichannel Fabry-Perot interferometer on the Dynamics Explorer spacecraft. A numerical representation of the instrumental transfer function is used based on a truncated Fourier series with empirically determined coefficients. The numerical form is compared with the conventional analytic form. The Fourier coefficients describing the instrument function are generated at the wavelength of a stable He-Ne laser and are translated to other wavelengths using an interpolation technique for both phase and power. A quasi-linear least-squares fitting process involving matrices provides for a rapid and accurate data reduction.

  18. Study on high temperature Fabry-Perot fiber acoustic sensor with temperature self-compensation

    NASA Astrophysics Data System (ADS)

    Hu, Pan; Tong, Xinglin; Zhao, Minli; Deng, Chengwei; Guo, Qian; Mao, Yan; Wang, Kun

    2015-09-01

    A Fabry-Perot (F-P) fiber acoustic sensor, which can work under high-temperature harsh environment with temperature self-compensation, is designed and prepared. A condenser was used to maintain the sensor to work in a stable temperature environment. Because of the special structure of the sensor and the function of the condenser, the cavity variation of the sensor caused by changes of external temperature from -10°C to 500°C would not exceed 8 nm. The experimental results show that the sensor has a good frequency response in a range of 1 to 5 kHz and the field experiment results show that it could be used for hydraulic decoking online monitoring by judging the acoustic frequency spectrum.

  19. Embedded intrinsic Fabry-Perot optical fiber sensors in cement concrete structures

    NASA Astrophysics Data System (ADS)

    Kim, Ki S.; Yoo, Jae-Wook; Kim, Seung Kwan; Kim, Byoung Yoon

    1996-05-01

    Intrinsic Fabry-Perot optical fiber sensors were embedded to the tensile side of the 20 cm by 20 cm by 150 cm cement concrete structures. The sensors were attached to the reinforcing steels and then, the cement concretes were applied. It took 30 days for curing the specimens. After that, the specimens were tested with 4-point bending method by a universal testing machine. Strains were measured and recorded by the strain gauges embedded near optical fiber sensors. Output data of fiber sensor showed good linearity to the strain data from the strain gauges up to 2000 microstrain. The optical fiber sensors showed good response after yielding of the structure while embedded metal film strain gauges did not show any response. We also investigated the behavior of the optical fiber sensor when the specimens were broken down. In conclusion, the optical fiber sensors can be used as elements of health monitoring systems for cement concrete infra-structures.

  20. Advancement of Optical Component Control for an Imaging Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Cook, William B.; Flood, Michael A.; Campbell, Joel F.; Boyer, Charles M.

    2009-01-01

    Risk mitigation activities associated with a prototype imaging Fabry-Perot Interferometer (FPI) system are continuing at the NASA Langley Research Center. The system concept and technology center about enabling and improving future space-based atmospheric composition missions, with a current focus on observing tropospheric ozone around 9.6 micron, while having applicability toward measurement in different spectral regions and other applications. Recent activities have focused on improving an optical element control subsystem to enable precise and accurate positioning and control of etalon plates; this is needed to provide high system spectral fidelity critical for enabling the required ability to spectrally-resolve atmospheric line structure. The latest results pertaining to methodology enhancements, system implementation, and laboratory characterization testing will be reported

  1. Fiber laser sensor based on fiber-Bragg-grating Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Chen, Jianfeng; Liu, Yunqi; Cai, Tongjian; Wang, Tingyun

    2011-01-01

    We propose a fiber-Bragg-grating Fabry-Perot (FBG-FP) cavity sensor interrogated by a pulsed laser. The FBG-FP cavity is directly written into the same photosensitive fiber, which consists of a pair of FBGs with identical center wavelength. The modulated laser pulses are launched into the FBG-FP cavity. Each pulse produces a group of reflection and transmission pulses. The cavity loss in the FBG-FP cavity is determined from the power ratio of the first two pulses reflected from the cavity, which could be detected for the sensor measurement. This technique has the advantages that it does not require high reflectivity FBG and is immune to the power fluctuation of the light source.

  2. Fiber laser sensor based on fiber-Bragg-grating Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Chen, Jianfeng; Liu, Yunqi; Cai, Tongjian; Wang, Tingyun

    2010-12-01

    We propose a fiber-Bragg-grating Fabry-Perot (FBG-FP) cavity sensor interrogated by a pulsed laser. The FBG-FP cavity is directly written into the same photosensitive fiber, which consists of a pair of FBGs with identical center wavelength. The modulated laser pulses are launched into the FBG-FP cavity. Each pulse produces a group of reflection and transmission pulses. The cavity loss in the FBG-FP cavity is determined from the power ratio of the first two pulses reflected from the cavity, which could be detected for the sensor measurement. This technique has the advantages that it does not require high reflectivity FBG and is immune to the power fluctuation of the light source.

  3. Fabry-Perot microcavity sensor for H2-breath-test analysis

    NASA Astrophysics Data System (ADS)

    Vincenti, Maria Antonietta; De Sario, Marco; Petruzzelli, V.; D'Orazio, Antonella; Prudenzano, Francesco; de Ceglia, Domenico; Scalora, Michael

    2007-10-01

    Leak detection of hydrogen for medical purposes, based on the monitoring of the optical response of a simple Fabry-Perot microcavity, is proposed to investigate either the occurrence of lactose intolerance, or lactose malabsorption condition. Both pathologic conditions result in bacterial overgrowth in the intestine, which causes increased spontaneous emission of H2 in the human breath. Two sensitivity figures of merit are introduced to inspect changes in the sensor response, and to relate the microcavity response to a pathologic condition, which is strictly related to a different level of exhaled hydrogen. Different sensor configurations using a metal-dielectric microcavity are reported and discussed in order to make the most of the well-known ability of palladium to spontaneously absorb hydrogen.

  4. Faraday-Active Fabry-Perot Resonator: Transmission, Reflection, and Emissivity

    NASA Technical Reports Server (NTRS)

    Liptuga, Anatoliy; Morozhenko, Vasyl; Pipa, Viktor; Venger, Evgen; Kostiuk, Theodor

    2011-01-01

    The propagation of light within a semiconductor Faraday-active Fabry-Perot resonator (FAFR) is investigated theoretically and experimentally. It is shown that an external magnetic field radically changes the angular and spectral characteristics of transmission, reflection and emissivity of the resonator not only for polarized, but also for unpolarized light. Suppression of interference patterns and phase inversion of the interference extrema were observed in both monochromatic and polychromatic light. The investigations were carried out for the plane-parallel plates of n-InAs in the spectral range of free charge carrier absorption. The results can be used to create new controllable optical and spectroscopic devices for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures.

  5. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis.

    PubMed

    Tosi, Daniele

    2015-01-01

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding. PMID:26528975

  6. Use of support vector machines and fabry-perot interferometry to classify states of a laser

    NASA Astrophysics Data System (ADS)

    McKinnon, John

    This thesis develops an algorithm that can determine if a laser is functioning correctly over a long period of time. A Fourier fit is created to model fringe profiles from a Fabry-Perot interferometer, and singular value decomposition is used to reduce noise in each signal. Levenberg-Marquardt gradient descent is performed to correctly locate the center of each image and to optimize each fit with respect to the spatial frequency. The Fourier fit is used to extract important information from each image to be used for separating the image types from one another. Principal component analysis is used to reduce the dimensionality of the data set and to plot a projection of the data using its first two principal components. It is determined that the image data are not linearly separable and require a non-linear support vector network to complete the classification of each image type.

  7. Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators.

    PubMed

    Xiao, Zhong-yin; Liu, De-jun; Ma, Xiao-long; Wang, Zi-hua

    2015-03-23

    In this paper, a multi-layered metallic structure is proposed, which consists of split-ring resonators on both sides of two dielectric substrates. Numerical results reveal that the structure realizes a high magnitude of 0.94, three bands and broadband (more than 8 GHz) asymmetric transmission for linearly polarized wave. These properties are not observed in previous works. In order to better know these transmission properties, the Fabry-Perot like resonance model has been introduced to analyze the enhancement mechanism of asymmetric transmission in the multi-layered structure. The physical mechanism of linearly polarized wave conversion and asymmetric transmission based on electric fields and currents distribution is also analyzed in detail, respectively. PMID:25837050

  8. The frequency-dependent directivity of a planar fabry-perot polymer film ultrasound sensor.

    PubMed

    Cox, Benjamin T; Beard, Paul C

    2007-02-01

    A model of the frequency-dependent directivity of a planar, optically-addressed, Fabry-Perot (FP), polymer film ultrasound sensor is described and validated against experimental directivity measurements made over a frequency range of 1 to 15 MHz and angles from normal incidence to 80 degrees. The model may be used, for example, as a predictive tool to improve sensor design, or to provide a noise-free response function that could be deconvolved from sound-field measurements in order to improve accuracy in high-frequency metrology and imaging applications. The specific question of whether effective element sizes as small as the optical-diffraction limit can be achieved was investigated. For a polymer film sensor with a FP cavity of thickness d, the minimum effective element radius was found to be about 0.9 d, and that an illumination spot radius of less than d/4 is required to achieve it. PMID:17328336

  9. Sapphire hard X-ray Fabry-Perot resonators for synchrotron experiments.

    PubMed

    Tsai, Yi Wei; Wu, Yu Hsin; Chang, Ying Yi; Liu, Wen Chung; Liu, Hong Lin; Chu, Chia Hong; Chen, Pei Chi; Lin, Pao Te; Fu, Chien Chung; Chang, Shih Lin

    2016-05-01

    Hard X-ray Fabry-Perot resonators (FPRs) made from sapphire crystals were constructed and characterized. The FPRs consisted of two crystal plates, part of a monolithic crystal structure of Al2O3, acting as a pair of mirrors, for the backward reflection (0 0 0 30) of hard X-rays at 14.3147 keV. The dimensional accuracy during manufacturing and the defect density in the crystal in relation to the resonance efficiency of sapphire FPRs were analyzed from a theoretical standpoint based on X-ray cavity resonance and measurements using scanning electron microscopic and X-ray topographic techniques for crystal defects. Well defined resonance spectra of sapphire FPRs were successfully obtained, and were comparable with the theoretical predictions. PMID:27140144

  10. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis

    PubMed Central

    Tosi, Daniele

    2015-01-01

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding. PMID:26528975

  11. Hybrid optical fiber Fabry-Perot interferometer for simultaneous measurement of gas refractive index and temperature.

    PubMed

    Wang, Ruohui; Qiao, Xueguang

    2014-11-10

    We present a hybrid miniature optical fiber Fabry-Perot interferometer for simultaneous measurement of gas refractive index and temperature. The interferometer is fabricated by cascading two short sections of capillary tubes with different inner diameters. One extrinsic interferometer is based on the air gap cavity formed by the capillary tube with large diameter. Another section of capillary tube with small inner diameter performs as an intrinsic interferometer and also provides a channel enabling gas to enter and leave the extrinsic cavity freely. The experiment shows that the different dips or peaks in fringe exhibit different responses to the changes in gas refractive index and temperature. Owing to this feature, simultaneous measurement of the gas refractive index and temperature can be realized. PMID:25402996

  12. Gas detection with microelectromechanical Fabry-Perot interferometer technology in cell phone

    NASA Astrophysics Data System (ADS)

    Mannila, Rami; Hyypiö, Risto; Korkalainen, Marko; Blomberg, Martti; Kattelus, Hannu; Rissanen, Anna

    2015-06-01

    VTT Technical Research Centre of Finland has developed a miniaturized optical sensor for gas detection in a cell phone. The sensor is based on a microelectromechanical (MEMS) Fabry-Perot interferometer, which is a structure with two highly reflective surfaces separated by a tunable air gap. The MEMS FPI is a monolithic device, i.e. it is made entirely on one substrate in a batch process, without assembling separate pieces together. The gap is adjusted by moving the upper mirror with electrostatic force, so there are no actual moving parts. VTT has designed and manufactured a MEMS FPI based carbon dioxide sensor demonstrator which is integrated to a cell phone shield cover. The demonstrator contains light source, gas cell, MEMS FPI, detector, control electronics and two coin cell batteries as a power source. It is connected to the cell phone by Bluetooth. By adjusting the wavelength range and customizing the MEMS FPI structure, it is possible to selectively sense multiple gases.

  13. A polymer-based Fabry-Perot filter integrated with 3-D MEMS structures

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Polymers have been considered as one of the most versatile materials in making optical devices for communication and sensor applications. They provide good optical transparency to form filters, lenses and many optical components with ease of fabrication. They are scalable and compatible in dimensions with requirements in optics and can be fabricated on inorganic substrates, such as silicon and quartz. Recent polymer synthesis also made great progresses on conductive and nonlinear polymers, opening opportunities for new applications. In this paper, we discussed hybrid-material integration of polymers on silicon-based microelectromechanical system (MEMS) devices. The motivation is to combine the advantages of demonstrated silicon-based MEMS actuators and excellent optical performance of polymers. We demonstrated the idea with a polymer-based out-of-plane Fabry-Perot filter that can be self-assembled by scratch drive actuators. We utilized a fabrication foundry service, MUMPS (Multi-User MEMS Process), to demonstrate the feasibility and flexibility of integration. The polysilicon, used as the structural material for construction of 3-D framework and actuators, has high absorption in the visible and near infrared ranges. Therefore, previous efforts using a polysilicon layer as optical interfaces suffer from high losses. We applied the organic compound materials on the silicon-based framework within the optical signal propagation path to form the optical interfaces. In this paper, we have shown low losses in the optical signal processing and feasibility of building a thin-film Fabry-Perot filter. We discussed the optical filter designs, mechanical design, actuation mechanism, fabrication issues, optical measurements, and results.

  14. A Novel, Poly-Etalon, Fabry-Perot for Planetary Research

    NASA Technical Reports Server (NTRS)

    Kerr, Robert B.; Doe, Richard; Noto, John

    1997-01-01

    In an effort to develop a mechanically robust, high throughput and solid state spectrometer several liquid crystal Fabry-Perot etalons were constructed. The etalons were tested for spectral response, radiation resistance and optical transmission. The first year of this project was spent developing and understanding the properties of the liquid crystal etalons; in the second year an intensified all-sky imaging system was developed around a pair of LC etalons. The imaging system, developed jointly with SRI International represents a unique brassboard to demonstrate the use of LC etalons as tunable filters. The first set of etalons constructed in year one of this project were tested for spectral response and throughput while etalon surrogates were exposed to proton radiation simulating the exposure of an object in Low Earth Orbit (LEO). The 2" diameter etalons had a measure finesse of approximately 10 and were tunable over five orders. Liquid crystals exposed to proton irradiation showed no signs of damage. In year two two larger diameter (3") etalons were constructed with gaps of 3 and 5 microns. This pair of etalons is for use in a high resolution, all-sky spectral imager. The WATUMI imager system follows the heritage of all sky, narrow band, intensified imagers however it includes two LC Fabry-Perot etalons to provide tunability and the ability to switch wavelengths rapidly, an import consideration in auroral airglow imaging. This work also resulted in two publications and one poster presentation. The instrument will be uniquely capable, with superior throughput and speed, to measure optical airglow of multiple emission lines in harsh conditions.

  15. Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement.

    PubMed

    Liao, Changrui; Liu, Shen; Xu, Lei; Wang, Chao; Wang, Yiping; Li, Zhengyong; Wang, Qiao; Wang, D N

    2014-05-15

    We demonstrate a sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure sensing applications. The thinnest silica diaphragm, with a thickness of ∼320  nm, has been achieved by use of an improved electrical arc discharge technique. Such a sub-micron silica diaphragm breaks the sensitivity limitation imposed by traditional all-silica Fabry-Perot interferometric pressure sensors and, as a result, a high pressure sensitivity of ∼1036  pm/MPa at 1550 nm and a low temperature cross-sensitivity of ∼960  Pa/°C are achieved when a silica diaphragm of ∼500  nm in thickness is used. Moreover, the all-silica spherical structure enhanced the mechanical strength of the micro-cavity sensor, making it suitable for high sensitivity pressure sensing in harsh environments. PMID:24978213

  16. Observations of comet Levy 1990c in the (OI) 6300-A line with an imaging Fabry-Perot

    NASA Technical Reports Server (NTRS)

    Prasad, C. Debi; Jockers, Klaus; Rauer, H.; Geyer, E. H.

    1992-01-01

    We have observed the comet Levy 1990c during 16-25 August 1990 using the MPAE focal reducer system based Fabry-Perot etalon coupled with the 1 meter telescope of the Observatory of Hoher List. The free spectral range and resolution limit of the interferometer was approximately 2.18 A and approximately 0.171 A respectively. Classical Fabry-Perot fringes were recorded on a CCD in the cometary (OI) 6300 A line. They are well resolved from telluric air glow and cometary NH2 emission. Our observations indicate that the (OI) is distributed asymmetrically with respect to the center of the comet. In this paper we report the spatial distribution of (OI) emission and its line width in the coma of comet Levy.

  17. Microwave radiometric aircraft observations of the Fabry-Perot interference fringes of an ice-water system

    NASA Technical Reports Server (NTRS)

    Harrington, R. F.; Swift, C. T.; Fedors, J. C.

    1980-01-01

    Airborne stepped-frequency microwave radiometer (SFMR) observations of the Fabry-Perot interference fringes of ice-water systems are discussed. The microwave emissivity at normal incidence of a smooth layered dielectric medium over a semi-infinite dielectric medium is examined for the case of ice over water as a function of ice thickness and attenuation coefficient, and the presence of quarter-wavelength oscillations in emissivity as the ice thickness and frequency are varied is pointed out. Experimental observations of pronounced quarter-wavelength oscillations in radiometric brightness temperature due to the Fabry-Perot interference fringes over smooth sea ice and lake ice varying in roughness as the radiometer frequencies were scanned are then presented.

  18. Measurement of high-intensity focused ultrasound fields using miniaturized all-silica fiber-optic Fabry-Perot hydrophones

    NASA Astrophysics Data System (ADS)

    Jia, Ping-Gang; Ke, Ding; Wang, Dai-Hua; Zeng, Lu-Yu; Jiang, Xin-Yin; Liu, Lei

    2014-11-01

    High-intensity focused ultrasounds (HIFUs), as a novel non-invasive surgery technology, have been used effectively for cancer therapy. In order to ensure the HIFU treatment safety, the acoustic pressure distributions and the size of the focal regions of HIFU fields need to be measured accurately. In this paper, the lateral sensitive and tip-sensitive all-silica fiberoptic Fabry-Perot ultrasonic hydrophone systems and the corresponding experimental setups are established to measure HIFU fields, respectively. The acoustic pressure distributions of the HIFU field along the X-axis, Y-axis, and Z-axis are compared in the degassed water by the lateral sensitive and tip-sensitive fiber-optic Fabry-Perot ultrasonic hydrophones. Experimental results show that the tip-sensitive configuration can measure the acoustic pressure distribution in the focal region with high accuracy than the lateral-sensitive configuration.

  19. Simultaneous measurement of refractive index and temperature with micro silica sphere cavity hybrid Fabry Perot optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Ranjbar Naeini, O. R.; Latifi, H.; Zibaii, M. I.

    2015-09-01

    In this article, a novel Micro Silica Sphere Cavity Hybrid Fabry Perot optical fiber sensor is reported where refractive index (RI) and temperature can be simultaneously measured. The sensor is based on Micro Silica Sphere that was fabricated using a capillary tube. The micro silica sphere and optical fiber form a Hybrid Fabry Perot cavity. The temperature cross sensitivity of this sensor is small enough to be used for accurate RI measurement. The temperature sensitivity and RI sensitivity are -0.0028 dBm/ºC, -0.0044 dBm/ºC , -24.09 dBm/RIU and -20.6 dBm/RIU respectively, using two selected resonances.

  20. First Light from Triple-Etalon Fabry-Perot Interferometer for Atmospheric OI Airglow (6300 A)

    NASA Astrophysics Data System (ADS)

    Watchorn, S.; Noto, J.; Pedersen, T.; Betremieux, Y.; Migliozzi, M.; Kerr, R. B.

    2006-05-01

    Scientific Solutions, Inc. (SSI) has developed a triple-etalon Fabry-Perot interferometer (FPI) to observe neutral winds in the ionosphere by measuring neutral oxygen (O I) emission at 630.0 nm during the day. This instrument is to be deployed in the SSI airglow building at the Cerro Tololo observatory (30.17S 70.81W) in Chile, in support of the Comm/Nav Outage Forecast System (C/NOFS) project. Post-deployment observation will be made in conjunction with two other Clemson University Fabry-Perots in Peru, creating a longitudinal chain of interferometers for thermospheric observations. These instruments will make autonomous day and night observations of thermospheric dynamics. Instruments of this type can be constructed for a global chain of autonomous airglow observatories. The FPI presented in this talk consists of three independently pressure-controlled etalons, fed collimated light by a front optical train headed by an all-sky lens with a 160-degree field of view. It can be controlled remotely via a web-based service which allows any internet-connected computer to mimic the control computer at the instrument site. In fall 2005, the SSI system was first assembled at the Millstone Hill Observatory in Westford, Massachusetts, and made day and evening observations. It was then moved to the High-frequency Active Auroral Research Project (HAARP) site in Gakona, Alaska, to participate in joint optical/ionospheric heating campaigns. Additionally, natural airglow observations were made, both locally and remotely via the internet from Massachusetts. The Millstone and HAARP observations with two etalons yielded strong 630-nm atmospheric Fraunhofer absorption lines, with some suggestion of the Ring effect. By modeling the atmospheric absorption line as the constant times the corresponding solar absorption -- itself modeled as a Gaussian plus a polynomial -- the absorption feature is subtracted, leaving only the emission feature. Software ring-summing tools developed at the

  1. Investigation of liquid crystal Fabry-Perot tunable filters: design, fabrication, and polarization independence.

    PubMed

    Isaacs, Sivan; Placido, Frank; Abdulhalim, Ibrahim

    2014-10-10

    Liquid crystal Fabry-Perot tunable filters are investigated in detail, with special attention to their manufacturability, design, tolerances, and polarization independence. The calculations were performed both numerically and analytically using the 4×4 propagation matrix method. A simplified analytic expression for the propagation matrix is derived for the case of nematic LC in the homogeneous geometry. At normal incidence, it is shown that one can use the 2×2 Abeles matrix method; however, at oblique incidence, the 4×4 matrix method is needed. The effects of dephasing originating from wedge or noncollimated light beams are investigated. Due to the absorption of the indium tin oxide layer and as an electrode, its location within the mirror multilayered stack is very important. The optimum location is found to be within the stack and not on its top or bottom. Finally, we give more detailed experimental results of our polarization-independent configuration that uses polarization diversity with a Wollaston prism. PMID:25322437

  2. Demodulation of a fiber Fabry-Perot strain rosette using white light interferometry

    NASA Astrophysics Data System (ADS)

    Zuliani, Gary Louis

    Fiber optic sensors are starting to be used in specialty application areas where electrical sensors are usually found, such as in aircraft and spacecraft. Fiber optic sensor technology has advantages over its electronic counterparts including small size and weight, immunity to electromagnetic interference, and ruggedness. The use of fiber interferometers as sensors is reviewed along with methods for demodulating their signals. The principles of path-matched differential interferometry and coherence multiplexing are demonstrated and applied to the design and construction of a system that simultaneously demodulates three fiber Fabry-Perot (FFP) interferometers. The FFP's formed the arms of a delta rosette which were bonded to the surface of an aluminum cantilevered beam and were illuminated with one broadband light source. The receiving interferometer consisted of a bulk Michelson interferometer with three distinct optical paths. A charge coupled device array was used as the detector allowing fringe shifts to be counted on a television monitor. Tensor measurements were made and found to be in good agreement when compared to those obtained from electrical strain gages.

  3. Use of a Fabry Perot Interferometer to Isolate Pure Rotational Raman Spectra of Diatomic Molecules

    NASA Astrophysics Data System (ADS)

    Arshinov, Yuri; Bobrovnikov, Sergey

    1999-07-01

    We propose to use a Fabry Perot interferometer (FPI) as a comb frequency filter to isolate pure rotational Raman spectra (PRRS) of nitrogen molecules. In making the FPI s free spectral range equal to the spectral spacing between the lines of nitrogen PRRS, which are practically equidistant, one obtains a device with a comb transmission function with the same period. However, to match the FPI transmission comb completely with the comb of nitrogen PRRS lines one should tune the wavelength of the radiation used to excite the PRRS of nitrogen exactly to the position of any minimum in the FPI transmission comb. Thus to achieve this task for the case of nitrogen PRRS one must take the FPI s free spectral range f 4 B N 2 and the wavelength of the exciting radiation such that (1 exc ) 4 B N 2 ( k 1 2 ), where B N 2 is the rotational constant of the nitrogen molecule and k is an arbitrary integer number. In this case all (odd and even) pure rotational Raman lines of nitrogen will pass through the FPI while the line of exciting radiation is being suppressed. Additionally, a FPI cuts out the spectrally continuous sky background light from the spectral gaps between the PRRS lines.

  4. Switchable single-polarization dual-wavelength TDFL using PM Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    Liu, Shuo; Yan, Fengping; Liu, Peng; Zhang, Luna; Bai, Zhuoya; Yin, Bin; Zhou, Hong

    2016-05-01

    A switchable single-polarization (SP), dual-wavelength thulium-doped fiber laser using polarization maintaining (PM) Fabry-Perot (F-P) filter is proposed. A combination of the PM F-P filter, a polarization controller (PC) and a polarizer is used to ensure the SP lasing operation. A stable dual-wavelength lasing operation is obtained at 1941.82 nm and 1942.21 nm. By adjusting the PCs, the proposed laser can achieve SP single-wavelength lasing operation; the polarization extinction ratios are higher than 33 dB. When the pump power is higher than 2.98 W, the optical signal-to-noise ratios of the SP single-wavelength operation can reach 60 dB, and the output power variations are less than 0.32 dB (X-polarization) and 0.30 dB (Y-polarization). The slope efficiencies of SP lasing operation are 6.26% (X-polarization) and 8.79% (Y-polarization), respectively.

  5. Electro-Mechanical Simulation of a Large Aperture MOEMS Fabry-Perot Tunable Filter

    NASA Technical Reports Server (NTRS)

    Kuhn, Jonathan L.; Barclay, Richard B.; Greenhouse, Matthew A.; Mott, D. Brent; Satyapal, Shobita; Powers, Edward I. (Technical Monitor)

    2000-01-01

    We are developing a micro-machined electrostatically actuated Fabry-Perot tunable filter with a large clear aperture for application in high through-put wide-field imaging spectroscopy and lidar systems. In the first phase of this effort, we are developing key components based on coupled electro-mechanical simulations. In particular, the movable etalon plate design leverages high coating stresses to yield a flat surface in drum-head tension over a large diameter (12.5 mm). In this approach, the cylindrical silicon movable plate is back etched, resulting in an optically coated membrane that is suspended from a thick silicon support ring. Understanding the interaction between the support ring, suspended membrane, and coating is critical to developing surfaces that are flat to within stringent etalon requirements. In this work, we present the simulations used to develop the movable plate, spring suspension system, and electrostatic actuation mechanism. We also present results from tests of fabricated proof of concept components.

  6. Accurate determination of solid and liquid dispersions from spectra channeled with the Fabry-Perot interferometer.

    PubMed

    Khashan, M A; Nassif, A Y

    1997-09-20

    The band spacing of the fringes of equal chromatic order of a thin Fabry-Perot interferometer is compared when this interferometer contains air, a solid, or a liquid. This comparison enables the dispersion of the group velocity of light in these media to be known accurately to 2.4 parts in one thousand. The Sellmeier dispersion function is used to deduce the refractive indices with the same degree of accuracy. The order-transformation method is used to find the exact order values from the roughly known optical thickness. The exact order values for air and the sample are used to find the refractive index accurately to approximately 3 x 10(-5). A least-squares fitting of the accurate experimental data to the Sellmeier dispersion function enables the coefficients of the latter to be more precisely defined for solids such as glass and mica and for liquids such as glycerin and distilled water. The atomic parameters such as the density of states and the absorption wavelengths in the ultraviolet region of the spectrum for the given samples are deduced from the more precisely found Sellmeier coefficients. PMID:18259554

  7. Photoacoustic microscopy based on polydimethylsiloxane thin film Fabry-Perot optical interferometer

    NASA Astrophysics Data System (ADS)

    Park, Soongho; Eom, Jonghyun; Shin, Jun Geun; Rim, Sunghwan; Lee, Byeong Ha

    2016-03-01

    We present a photoacoustic microscopy (PAM) system based on a Fabry-Perot Interferometer (FPI) consisting of a transparent Polydimethylsiloxane (PDMS) thin film. Most of the PAM systems have limitations with the system alignment because the ultrasound transducers for detection are not transparent. Therefore, the excitation laser source should avoid the opaque transducer to illuminate the sample, which makes the system difficult to build-up. Especially, the system volume is highly limited to be compact. In our experiment, to solve these difficulties, a FPI based on the PDMS film has been implemented and applied to measure the acoustic wave signal. The system uses a FPI as an acoustic wave detector instead of a conventional ultrasound transducer. A tunable laser was used to choose the quadrature-point at which the signal has the highly sensitve and linear response to the acoustic wave. Also a 20Hz pulsed Nd:YAG laser was used to generate acoustic waves from a sample. When the acoustic waves arrive at the PDMS film, one of the surfaces of the film is modulated at the detecting point, which gives the tuned FPI interference signal. From the signal arriving time, the depth location of the sample is calculated. As a primary experiment using the PDMS thin film as an ultrasound transducer, a couple of narrow black friction tapes located in a water container were used as the samples. This proposed imaging method can be used in various applications for the detection and measurement of acoustic waves.

  8. Observing the solar corona with a tunable Fabry-Perot filter.

    PubMed

    Noble, Matthew W; Rust, David M; Bernasconi, Pietro N; Pasachoff, Jay M; Babcock, Bryce A; Bruck, Megan A

    2008-11-01

    A solid Fabry-Perot etalon with a 0.16 A passband was used during the 180 s solar eclipse of 2006 for rapid scans of an emission line of the solar corona. The etalon was a Y-cut lithium niobate wafer coated with reflective and conductive (ITO) layers. Voltage applied perpendicular to the etalon face produced a passband shift of 0.0011 A V(-1). During the eclipse, 18 filtergrams were obtained at six 0.22 A steps across the profile of the forbidden [Fe X] spectral emission line at 6374.4 A, which results from the 10(6) K coronal plasma. The 9.3 x 9.3 arcmin field of view showed the structure of the corona above a newly emerged sunspot region. We discuss tests performed on the etalon before and after the eclipse. We also discuss the coronal observations, which show some features with 10 km s(-1) velocities in the line of sight. PMID:19122714

  9. Microfluidic flowmeter based on micro "hot-wire" sandwiched Fabry-Perot interferometer.

    PubMed

    Li, Ying; Yan, Guofeng; Zhang, Liang; He, Sailing

    2015-04-01

    We present a compact microfluidic flowmeter based on Fabry-Perot interferometer (FPI). The FPI was composed by a pair of fiber Bragg grating reflectors and a micro Co(2+)-doped optical fiber cavity, acting as a "hot-wire" sensor. Microfluidic channels made from commercial silica capillaries were integrated with the FPIs on a chip to realize flow-rate sensing system. By utilizing a tunable pump laser with wavelength of 1480 nm, the proposed flowmeter was experimentally demonstrated. The flow rate of the liquid sample is determined by the induced resonance wavelength shift of the FPI. The effect of the pump power, microfluidic channel scale and temperature on the performance of our flowmeter was investigated. The dynamic response was also measured under different flow-rate conditions. The experimental results achieve a sensitivity of 70 pm/(μL/s), a dynamic range up to 1.1 μL/s and response time in the level of seconds, with a spatial resolution ~200 μm. Such good performance renders the sensor a promising supplementary component in microfluidic biochemical sensing system. Furthermore, simulation modal was built up to analyze the heat distribution of the "hot-wire" cavity and optimize the FPI structure as well. PMID:25968776

  10. Fabry-Perot measurements and analysis of TOW-2A liner collapse and jet formation

    SciTech Connect

    Simonson, S.C.; Winer, K.A.; Breithaupt, R.D.; Avara, G.R.; Baum, D.W.

    1996-07-01

    A TOW-2A 146 mm shaped charge was fired and observed with five beam Fabry-Perot laser velocimetry. The liner collapse velocities were measured at five lines of sight covering the outer half of the liner. A record of 8-10 {mu}s in length was obtained for each sight line The velocity records at late time differ for each location, reflecting the varying charge-to-mass ratio as the end of the liner is approached. The results were analyzed with the CALE-2D hydrodynamic simulation code. The calculations reproduce the jump-off times, the shapes of the velocity jumps and the late time velocity asymptotes, but they underestimate the jump-off velocities by 6-7%. The calculations show that there exist no features in the velocity records that require spallation to account for them. Rather, the standard Steinberg-Guinan material model adequately accounts for the response of this copper liner to LX-14.