Science.gov

Sample records for kyoto3dii fabry-perot mode

  1. High-finesse fiber Fabry-Perot cavities: stabilization and mode matching analysis

    NASA Astrophysics Data System (ADS)

    Gallego, J.; Ghosh, S.; Alavi, S. K.; Alt, W.; Martinez-Dorantes, M.; Meschede, D.; Ratschbacher, L.

    2016-03-01

    Fiber Fabry-Perot cavities, formed by micro-machined mirrors on the end-facets of optical fibers, are used in an increasing number of technical and scientific applications, where they typically require precise stabilization of their optical resonances. Here, we study two different approaches to construct fiber Fabry-Perot resonators and stabilize their length for experiments in cavity quantum electrodynamics with neutral atoms. A piezo-mechanically actuated cavity with feedback based on the Pound-Drever-Hall locking technique is compared to a novel rigid cavity design that makes use of the high passive stability of a monolithic cavity spacer and employs thermal self-locking and external temperature tuning. Furthermore, we present a general analysis of the mode matching problem in fiber Fabry-Perot cavities, which explains the asymmetry in their reflective line shapes and has important implications for the optimal alignment of the fiber resonators. Finally, we discuss the issue of fiber-generated background photons. We expect that our results contribute toward the integration of high-finesse fiber Fabry-Perot cavities into compact and robust quantum-enabled devices in the future.

  2. Meta-Optics with Nanowire Grid Arrays: Hyperbolic Fabry-Perot Modes and Hyperbolic Tamm Plasmons

    NASA Astrophysics Data System (ADS)

    Durach, Maxim; Keene, David; Lepain, Matthew

    2015-03-01

    In this talk we introduce a new class of structures - cavities formed by metal-dielectric metasurfaces. These cavities support a zoo of various resonances, including hyperbolic Tamm plasmons and hyperbolic Fabry-Perot modes, which feature anisotropic clover-leaf dispersion parallel to the metasurface and strong coupling between TM and TE polarizations in the modes. The properties and spectrum of the modes are highly tunable by the dimensional and material parameters of the structure and can be used for directional emission, modification of radiation produced by electric dipole emitters into magnetic dipole radiation as well as 90 degree polarization rotators and polarization rotation mirrors.

  3. Gain-guided index-antiguided fiber with a Fabry-Perot layer for large mode area laser amplifiers.

    PubMed

    Lai, Chih-Hsien; Chen, Hsuan-Yu; Du, Cheng-Han; Chiou, Yih-Peng

    2015-02-23

    We propose a modified gain-guided index-antiguided (GGIAG) fiber structure for large mode area laser amplifiers, in which a thin dielectric layer is placed between the low-index core and the high-index cladding. The introduced dielectric layer functions as a Fabry-Perot etalon. By letting the resonant wavelength of the Fabry-Perot layer coincide with the signal wavelength, the signal is gain-guided in the fiber core. Moreover, the pump is confined in the low-index core owing to the antiresonant reflection originated from the Fabry-Perot layer. Numerical results indicate that the leakage loss of the pump can be minified over two orders of magnitude in the proposed structure, and thus the end-pumping efficiency could be enhanced significantly. PMID:25836427

  4. Coupling of Solute Vibrational Modes with a Fabry-Perot Optical Cavity Mode

    NASA Astrophysics Data System (ADS)

    Dunkelberger, Adam; Compton, Ryan; Fears, Kenan; Spann, Bryan; Long, James; Simpkins, Blake; Owrutsky, Jeffrey

    2015-03-01

    Electronic transitions of systems confined in optical microcavities can strongly couple to cavity modes, giving rise to new, mixed-character modes. Recent studies have demonstrated similar coherent coupling between the vibrational modes of a thin polymer film and a Fabry-Perot optical cavity mode. This coupling manifests experimentally as a splitting of the transmissive cavity mode into two dispersive branches separated by the vacuum Rabi splitting. Here we present recent experimental results for the coupling of solution-phase compounds with an optical cavity. Solutions of W(CO)6, Mo(CO)6, and NCS- contained in cavities show strong coupling between the solute chromophores in the mid-infrared and cavity modes. We show that the methodology established with polymer-filled cavities is generally applicable to liquids but that the fluidity of the sample complicates the cavity construction. Varied cavity thicknesses can give rise to spatial gradients in coupling strength and difficulty in targeting a specific cavity-mode order. We also compare the transmission of the mixed vibrational-cavity modes in cavities constructed from either metallic or dielectric reflectors which impacts the cavity resonance line width. NRC Postdoctoral Fellow.

  5. Analysis of threshold conditions for generation of a closed mode in a Fabry-Perot semiconductor laser

    SciTech Connect

    Slipchenko, S. O. Podoskin, A. A.; Pikhtin, N. A.; Sokolova, Z. N.; Leshko, A. Y.; Tarasov, I. S.

    2011-05-15

    Threshold conditions for generation of a closed mode in the crystal of the Fabry-Perot semiconductor laser with a quantum-well active region are analyzed. It is found that main parameters affecting the closed mode lasing threshold for the chosen laser heterostructure are as follows: the optical loss in the passive region, the optical confinement factor of the closed mode in the gain region, and material gain detuning. The relations defining the threshold conditions for closed mode lasing in terms of optical and geometrical characteristics of the semiconductor laser are derived. It is shown that the threshold conditions can be satisfied at a lower material gain in comparison with the Fabry-Perot cavity mode due to zero output loss for the closed mode.

  6. Doubly-Resonant Fabry-Perot Cavity for Power Enhancement of Burst-Mode Picosecond Ultraviolet Pulses

    SciTech Connect

    Abudureyimu, Reheman; Huang, Chunning; Liu, Yun

    2015-01-01

    We report on a first experimental demonstration of locking a doubly-resonant Fabry-Perot cavity to burst-mode picosecond ultraviolet (UV) pulses by using a temperature controlled dispersion compensation method. This technique will eventually enable the intra cavity power enhancement of burst-mode 402.5MHz/50ps UV laser pulses with a MW level peak power required for the laser assisted H- beam stripping experiment at the Spallation Neutron Source.

  7. Single-mode Fabry-Perot laser with deeply etched slanted double trenches

    NASA Astrophysics Data System (ADS)

    Li, Xun; Zhu, Zhongshu; Xi, Yanping; Han, Lin; Ke, Cheng; Pan, Yue; Huang, Weiping

    2015-08-01

    This work proposed and demonstrated a single-mode Fabry-Perot (FP) laser structure with a pair of deeply etched slanted trenches inside the cavity. We implemented the proposed mode selection scheme in conventional 1310 nm InAlGaAs/InP strained-layer multiple-quantum-well ridge waveguide FP laser diodes and obtained single-mode operation with a side-mode suppression ratio (SMSR) as high as 35 dB . The single-mode yield was approximately 55%, and other device performance measures such as the threshold and the slope efficiency were not greatly affected. Additionally, temperature cycling and aging tests show no exceptional disadvantages when compared with the performance of conventional FP lasers. Fiber-optic transmission tests show that the proposed device can send directly modulated 2.5 Gbps and 6.25 Gbps optical signals for distances of over 50 km in standard single-mode fiber. Thus, as a cost-effective solution, this device is promising as a replacement for conventional distributed feedback laser diodes in specific applications where single-mode operation is indispensable but precise control of the lasing wavelength and/or very high SMSR (e.g., > 40 dB ) are not required.

  8. Multiwavelength pulse generation using a SESAM-based mode-locked fiber laser together with Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    Chen, Changxiu; Wu, Zhichao; Fu, Songnian; Luo, Yiyang; Liu, Bin; Liu, Deming

    2015-09-01

    A simple and compact configuration of multiwavelength pulse generator is proposed and experimentally demonstrated, using a SESAM-based passively mode-locked fiber laser together with fiber Fabry-Perot filter. By optimizing the dispersion of fiber ring cavity, a flat rectangular optical spectrum with 3 dB bandwidth of 8.1 nm is obtained, with power fluctuation of <0.5 dB. Inserting a fiber Fabry-Perot filter at the output of passively mode-locked fiber laser, we can simultaneously obtain 40 channels with 0.2 nm wavelength spacing, under the condition of <3 dB power uniformity. After wavelength-division demultiplexing and optic-to-electronic conversion, the full width at half maximum (FWHM) of single channel pulse is measured to be 30 ps while the repetition rate of pulse train is 20.3 MHz.

  9. Impact of mode partition noise in free-running gain-switched Fabry-Perot laser for 2-dimensional OCDMA.

    PubMed

    Wang, Xu; Chan, Kam

    2004-07-26

    Free-running gain-switched Fabry-Perot laser diode is an appropriate incoherent broadband optical source for incoherent 2-dimensional optical code division multiple access. However, the mode partition noise (MPN) in the laser seriously degrades performance. We derived a bit error rate (BER) expression in the presence of MPN using the power spectra of the laser. The theory agreed with the experimental results. There was a power penalty and BER floor due to the MPN in the laser. Therefore, this scheme should be operated with a sufficiently large number of modes. At least 9 modes should be used for error-free transmission at 1 Gbit/s for the laser we investigated in this work. PMID:19483858

  10. Two-mode multiline laser stabilization using a Fabry-Perot filter under analog and digital computer control

    NASA Astrophysics Data System (ADS)

    de Serio, R.; Ruff, G. A.; Wing, W. H.

    1984-02-01

    A scanning Fabry-Perot interferometer, servolocked to one of the output frequencies of a multiline laser, is used as a tracking filter so that a second servoloop can accurately stabilize that laser line to features of its intensity-versus-frequency profile. More stable locks occur where two longitudinal modes lase simultaneously than where the single-mode line intensity is maximized. Both analog and digital servoloops have been used for stabilizing a continuous-wave CO laser cavity. The microcomputer-aided digital stabilization yields the more reliable frequency locks and needs negligible frequency dithering. It has produced short-term (less than 1 s) laser linewidths less than 100 kHz and long-term (greater than 100 s) instability estimated as 80 kHz at a laser operating frequency of 55 THz in a noisy laboratory environment.

  11. Commissioning MOS and Fabry-Perot modes for the Robert Stobie Spectrograph on the Southern African Large Telescope

    NASA Astrophysics Data System (ADS)

    Koeslag, A. R.; Williams, T. B.; Nordsieck, K. H.; Romero-Colmenero, E.; Vaisanen, P. H.; Maartens, D. S.

    2014-07-01

    The Southern African Large Telescope (SALT) currently has three instruments: the imaging SALTICAM, the new High Resolution Spectrograph (HRS) which is in the process of being commissioned and the Robert Stobie Spectrograph (RSS). RSS has multiple science modes, of which long slit spectroscopy was originally commissioned; We have commissioned two new science modes: Multi Object Spectroscopy (MOS) and Fabry-Perot (FP). Due to the short track times available on SALT it is vital that acquisition is as efficient as possible. This paper will discuss how we implemented these modes in software and some of the challenges we had to overcome. MOS requires a slit-mask to be aligned with a number of stars. This is done in two phases: in MOS calibration the positions of the slits are detected using a through-slit image and RA/DEC database information, and in MOS acquisition the detector sends commands to the telescope control system (TCS) in an iterative and interactive fashion for fine mask/detector alignment to get the desired targets on the slits. There were several challenges involved with this system, and the user interface evolved to make the process as efficient as possible. We also had to overcome problems with the manufacturing process of the slit-masks. FP requires the precise alignment each of the two etalons installed on RSS. The software makes use of calibration tables to get the etalons into roughly aligned starting positions. An exposure is then done using a calibration arc lamp, producing a ring pattern. Measurement of the rings allows the determination of the adjustments needed to properly align the etalons. The software has been developed to optimize this process, along with software tools that allow us to fine tune the calibration tables. The software architecture allows the complexity of automating the FP calibration and procedures to be easily managed.

  12. Adaptive Optics at Optical Wavelengths: Test Observations of Kyoto 3DII Connected to Subaru Telescope AO188

    NASA Astrophysics Data System (ADS)

    Matsubayashi, K.; Sugai, H.; Shimono, A.; Akita, A.; Hattori, T.; Hayano, Y.; Minowa, Y.; Takeyama, N.

    2016-09-01

    Adaptive optics (AO) enables us to observe objects with high spatial resolution, which is important in most astrophysical observations. Most AO systems are operational at near-infrared wavelengths but not in the optical range, because optical observations require a much higher performance to obtain the same Strehl ratio as near-infrared observations. Therefore, to enable AO-assisted observations at optical wavelengths, we connected the Kyoto Tridimensional Spectrograph II (Kyoto 3DII), which can perform integral field spectroscopy, to the second generation AO system of the Subaru Telescope (AO188). We developed a new beam-splitter that reflects light below 594 nm for the wavefront sensors of AO188 and transmits above 644 nm for Kyoto 3DII. We also developed a Kyoto 3DII mount at the Nasmyth focus of the Subaru Telescope. In test observations, the spatial resolution of the combined AO188–Kyoto 3DII was higher than that in natural seeing conditions, even at 6500 Å. The full width at half maximum of an undersampled (1.5 spaxels) bright guide star (7.0 mag in the V-band) was 0.″12.

  13. DWDM channel spacing tunable optical TDM carrier from a mode-locked weak-resonant-cavity Fabry-Perot laser diode based fiber ring.

    PubMed

    Peng, Guo-Hsuan; Chi, Yu-Chieh; Lin, Gong-Ru

    2008-08-18

    A novel optical TDM pulsed carrier with tunable mode spacing matching the ITU-T defined DWDM channels is demonstrated, which is generated from an optically injection-mode-locked weak-resonant-cavity Fabry-Perot laser diode (FPLD) with 10%-end-facet reflectivity. The FPLD exhibits relatively weak cavity modes and a gain spectral linewidth covering >33.5 nm. The least common multiple of the mode spacing determined by both the weak-resonant-cavity FPLD and the fiber-ring cavity can be tunable by adjusting length of the fiber ring cavity or the FPLD temperature to approach the desired 200GHz DWDM channel spacing of 1.6 nm. At a specific fiber-ring cavity length, such a least-common- multiple selection rule results in 12 lasing modes between 1532 and 1545 nm naturally and a mode-locking pulsewidth of 19 ps broadened by group velocity dispersion among different modes. With an additional intracavity bandpass filter, the operating wavelength can further extend from 1520 to 1553.5 nm. After channel filtering, each selected longitudinal mode gives rise to a shortened pulsewidth of 12 ps due to the reduced group velocity dispersion. By linear dispersion compensating with a 55-m long dispersion compensation fiber (DCF), the pulsewidth can be further compressed to 8 ps with its corresponding peak-to-peak chirp reducing from 9.7 to 4.3 GHz. PMID:18711579

  14. All-silica, large mode area, single mode photonic bandgap fibre with Fabry-Perot resonant structures

    NASA Astrophysics Data System (ADS)

    Várallyay, Zoltán; Kovács, Péter

    2016-03-01

    All-silica, photonic crystal fibres consisting of a low index, silica core surrounded by higher index inclusions embedded in a silica matrix to form a photonic bandgap cladding were numerically analysed. The aim of the investigations was to modify the guiding properties of the fibre by introducing resonant structural entities. These structural modifications are realised by altering the refractive index of certain high index inclusions in the photonic crystal cladding resulting in mode coupling between the core mode and the mode propagated in the modified index region. This results in an increased effective core area of the fundamental core mode and consequently decreased nonlinearity as well as modified effective index compared to the effective index of the unmodified structure and resonant dispersion profile that can be used for pulse compression or optical delay purposes.

  15. Backward-mode multiwavelength photoacoustic scanner using a planar Fabry-Perot polymer film ultrasound sensor for high-resolution three-dimensional imaging of biological tissues

    NASA Astrophysics Data System (ADS)

    Zhang, Edward; Laufer, Jan; Beard, Paul

    2008-02-01

    A multiwavelength backward-mode planar photoacoustic scanner for 3D imaging of soft tissues to depths of several millimeters with a spatial resolution in the tens to hundreds of micrometers range is described. The system comprises a tunable optical parametric oscillator laser system that provides nanosecond laser pulses between 600 and 1200 nm for generating the photoacoustic signals and an optical ultrasound mapping system based upon a Fabry-Perot polymer film sensor for detecting them. The system enables photoacoustic signals to be mapped in 2D over a 50 mm diameter aperture in steps of 10 μm with an optically defined element size of 64 μm. Two sensors were used, one with a 22 μm thick polymer film spacer and the other with a 38 μm thick spacer providing -3 dB acoustic bandwidths of 39 and 22 MHz, respectively. The measured noise equivalent pressure of the 38 μm sensor was 0.21 kPa over a 20 MHz measurement bandwidth. The instrument line-spread function (LSF) was measured as a function of position and the minimum lateral and vertical LSFs found to be 38 and 15 μm, respectively. To demonstrate the ability of the system to provide high-resolution 3D images, a range of absorbing objects were imaged. Among these was a blood vessel phantom that comprised a network of blood filled tubes of diameters ranging from 62 to 300 μm immersed in an optically scattering liquid. In addition, to demonstrate the applicability of the system to spectroscopic imaging, a phantom comprising tubes filled with dyes of different spectral characteristics was imaged at a range of wavelengths. It is considered that this type of instrument may provide a practicable alternative to piezoelectric-based photoacoustic systems for high-resolution structural and functional imaging of the skin microvasculature and other superficial structures.

  16. Hollow-core fiber Fabry-Perot photothermal gas sensor.

    PubMed

    Yang, Fan; Tan, Yanzhen; Jin, Wei; Lin, Yuechuan; Qi, Yun; Ho, Hoi Lut

    2016-07-01

    A highly sensitive, compact, and low-cost trace gas sensor based on photothermal effect in a hollow-core fiber Fabry-Perot interferometer (FPI) is described. The Fabry-Perot sensor is fabricated by splicing a piece of hollow-core photonic bandgap fiber (HC-PBF) to single-mode fiber pigtails at both ends. The absorption of a pump beam in the hollow core results in phase modulation of probe beam, which is detected by the FPI. Experiments with a 2 cm long HC-PBF with femtosecond laser drilled side-holes demonstrated a response time of less than 19 s and noise equivalent concentration (NEC) of 440 parts-per-billion (ppb) using a 1 s lock-in time constant, and the NEC goes down to 117 ppb (2.7×10-7 in absorbance) by using 77 s averaging time. PMID:27367092

  17. Fabry-Perot observations of comet Austin

    NASA Technical Reports Server (NTRS)

    Schultz, David; Scherb, F.; Roesler, F. L.; Li, G.; Harlander, J.; Roberts, T. P. P.; Vandenberk, D.; Nossal, S.; Coakley, M.; Oliversen, Ronald J.

    1990-01-01

    Preliminary results of a program to observe Comet Austin (1990c1) from 16 April to 4 May and from 11 May to 27 May 1990 using the West Auxiliary of the McMath Solar Telescope on Kitt Peak, Arizona were presetned. The observations were made with a 15 cm duel-etalon Fabry-Perot scanning and imaging spectrometer with two modes of operation: a high resolution mode with a velocity resolution of 1.2 km/s and a medium resolution mode with a velocity resolution 10 km/s. Scanning data was obtained with an RCA C31034A photomultiplier tube and imaging data was obtained with a Photometrics LN2 cooled CCD camera with a 516 by 516 Ford chip. The results include: (1) information on the coma outflow velocity from high resolution spectral profiles of (OI)6300 and NH2 emissions, (2) gaseous water production rates from medium resolution observation of (OI)6300, (3) spectra of H2O(+) emissions in order to study the ionized component of the coma, (4) spatial distribution of H2O(+) emission features from sequences of velocity resolved images (data cubes), and (5) spatial distribution of (OI)6300 and NH2 emissions from medium resolution images. The field of view on the sky was 10.5 arcminutes in diameter. In the imaging mode the CCD was binned 4 by 4 resulting in 7.6 sec power pixel and a subarray readout for a field of view of 10.5 min.

  18. Strained layer Fabry-Perot device

    DOEpatents

    Brennan, Thomas M.; Fritz, Ian J.; Hammons, Burrell E.

    1994-01-01

    An asymmetric Fabry-Perot reflectance modulator (AFPM) consists of an active region between top and bottom mirrors, the bottom mirror being affixed to a substrate by a buffer layer. The active region comprises a strained-layer region having a bandgap and thickness chosen for resonance at the Fabry-Perot frequency. The mirrors are lattice matched to the active region, and the buffer layer is lattice matched to the mirror at the interface. The device operates at wavelengths of commercially available semiconductor lasers.

  19. Alignment locking to suspended Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Slagmolen, Bram J. J.; Barton, Mark; Mow-Lowry, Conor; de Vine, Glenn; Rabeling, David S.; Chow, Jong H.; Romann, Albert; Zhao, Chunnong; Gray, Malcolm B.; McClelland, David E.

    2005-09-01

    In this paper we report on the alignment locking of an in vacuum 77 m long suspended mirror Fabry-Perot cavity. Lock was achieved by mode-matching a 500 mW Nd:YAG NPRO onto a pre-mode cleaner, the output of which was then mode-matched to the suspended cavity. The longitudinal locking was achieved by feeding back to the laser frequency actuator to follow the cavity resonance. Subsequent implementation of a hybrid auto-alignment system enhanced the stability of the circulating power inside the cavity. Preliminary results are presented.

  20. Nanocomposite polyacrylamide based open cavity fiber Fabry-Perot humidity sensor.

    PubMed

    Yao, Jun; Zhu, Tao; Duan, De-Wen; Deng, Ming

    2012-11-01

    A humidity sensor with a low temperature sensitivity is proposed and demonstrated by coating a nanocomposite hygrometer polyacrylamide in an open interferometric cavity of a fiber Fabry-Perot interferometer. In this paper the Fabry-Perot structure is formed by splicing one short section of single mode fiber between two sections of single mode fiber with a larger offset fusing method. Experimental results show that relative humidity (RH) sensitivity of the sensor is ∼0.1 nm/(1% RH) in the range of 38% to 78% RH and ∼5.868 nm/(1%RH) in the range of 88% to 98% RH, respectively. PMID:23128715

  1. Stable fiber-based Fabry-Perot cavity

    SciTech Connect

    Steinmetz, T.; Colombe, Y.; Hunger, D.; Haensch, T. W.; Balocchi, A.; Warburton, R. J.; Reichel, J.

    2006-09-11

    The development of a fiber-based, tunable optical cavity with open access is reported. The cavity is of the Fabry-Perot type and is formed with miniature spherical mirrors positioned on the end of single- or multimode optical fibers by a transfer technique, which involves lifting a high-quality mirror from a smooth convex substrate, either a ball lens or microlens. The cavities typically have a finesse of {approx}1000 and a mode volume of 600 {mu}m{sup 3}. The detection of small ensembles of cold Rb atoms guided through such a cavity on an atom chip is demonstrated.

  2. High-temperature fiber-optic Fabry-Perot interferometric sensors

    SciTech Connect

    Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu

    2015-05-15

    A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved.

  3. High-temperature fiber-optic Fabry-Perot interferometric sensors.

    PubMed

    Ding, Wenhui; Jiang, Yi; Gao, Ran; Liu, Yuewu

    2015-05-01

    A photonic crystal fiber (PCF) based high-temperature fiber-optic sensor is proposed and experimentally demonstrated. The sensor head is a Fabry-Perot cavity manufactured with a short section of endless single-mode photonic crystal fiber (ESM PCF). The interferometric spectrum of the Fabry-Perot interferometer is collected by a charge coupled device linear array based micro spectrometer. A high-resolution demodulation algorithm is used to interrogate the peak wavelengths. Experimental results show that the temperature range of 1200 °C and the temperature resolution of 1 °C are achieved. PMID:26026548

  4. Silk fibroin diaphragm-based fiber-tip Fabry-Perot pressure sensor.

    PubMed

    Cheng, Linghao; Wang, Cengzhong; Huang, Yunyun; Liang, Hao; Guan, Bai-Ou

    2016-08-22

    A miniature fiber-optic Fabry-Perot is built on the tip of a single mode fiber with a thin silk fibroin film as the diaphragm for pressure measurement. The silk fibroin film is regenerated from aqueous silk fibroin solution obtained by an environmentally benign fabrication process, which exhibits excellent optical and physicochemical properties, such as transparency in visible and near infrared region, membrane-forming ability, good adhesion, and high mechanical strength. The resulted Fabry-Perot pressure sensor is therefore highly biocompatible and shows good airtightness with a response of 12.3 nm/kPa in terms of cavity length change. PMID:27557238

  5. Robust Fabry-Perot interference in dual-gated Bi2Se3 devices

    NASA Astrophysics Data System (ADS)

    Finck, A. D. K.; Kurter, C.; Huemiller, E. D.; Hor, Y. S.; Van Harlingen, D. J.

    2016-05-01

    We study Fabry-Perot interference in hybrid devices, each consisting of a mesoscopic superconducting disk deposited on the surface of a three-dimensional topological insulator. Such structures are hypothesized to contain protected zero modes known as Majorana fermions bound to vortices. The interference manifests as periodic conductance oscillations of magnitude ˜ 0.1 e 2 / h . These oscillations show no strong dependence on bulk carrier density or sample thickness, suggesting that they result from phase coherent transport in surface states. However, the Fabry-Perot interference can be tuned by both top and back gates, implying strong electrostatic coupling between the top and bottom surfaces of topological insulator.

  6. Striped Fabry-Perots: Improved efficiency for velocimetry

    SciTech Connect

    McMillan, C.; Steinmetz, L.

    1990-07-01

    Removing a narrow stripe of the reflective coating from the input mirror of a Fabry-Perot interferometer can dramatically increase the amount of light transmitted through the system; we have observed gains in excess of 50 when we compare a conventional Fabry-Perot with the striped Fabry-Perot under similar lighting conditions. The stripe affects the distribution of light in the Fabry-Perot peaks causing them to be lower in the center of the pattern. We examine this distribution, and discuss its application in analyzing velocities. 6 refs., 6 figs., 1 tab.

  7. An Archetype Semi-Ring Fabry-Perot (SRFP) Resonator

    NASA Technical Reports Server (NTRS)

    Taghavi-Larigani, Shervin; VanZyl, Jakob

    2009-01-01

    We introduce and demonstrate the generation of a novel resonator, termed Semi-Ring Fabry-Perot (SRFP), that exhibits unique features, such as, its use of one plane mirror, allowing the SRFP to be easily fabricated as a symmetrical device. In addition to its unique features, it exhibits advantages of ring and Fabry-Perot resonators: 1) compared to a ring resonator that only allows a transmitted intensity, the Semi-Ring Fabry-Perot (SRFP) supports standing waves, allowing both a reflected and transmitted intensity; 2) the reflected light spectrum of the SRFP resonator is much narrower than similar Fabry-Perot, implying higher finesse.

  8. Three Cavity Tunable MEMS Fabry Perot Interferometer

    PubMed Central

    Parashar, Avinash; Shah, Ankur; Packirisamy, Muthukumaran; Sivakumar, Narayanswamy

    2007-01-01

    In this paper a four-mirror tunable micro electro-mechanical systems (MEMS) Fabry Perot Interferometer (FPI) concept is proposed with the mathematical model. The spectral range of the proposed FPI lies in the infrared spectrum ranging from 2400 to 4018 (nm). FPI can be finely tuned by deflecting the two middle mirrors (or by changing the three cavity lengths). Two different cases were separately considered for the tuning. In case one, tuning was achieved by deflecting mirror 2 only and in case two, both mirrors 2 and 3 were deflected for the tuning of the FPI.

  9. Millimeter-long fiber Fabry-Perot cavities.

    PubMed

    Ott, Konstantin; Garcia, Sebastien; Kohlhaas, Ralf; Schüppert, Klemens; Rosenbusch, Peter; Long, Romain; Reichel, Jakob

    2016-05-01

    We demonstrate fiber Fabry-Perot (FFP) cavities with concave mirrors that can be operated at cavity lengths as large as 1.5 mm without significant deterioration of the finesse. This is achieved by using a laser dot machining technique to shape spherical mirrors with ultralow roughness and employing single-mode fibers with large mode area for good mode matching to the cavity. Additionally, in contrast to previous FFPs, these cavities can be used over an octave-spanning frequency range with adequate coatings. We also show directly that shape deviations caused by the fiber's index profile lead to a finesse decrease as observed in earlier attempts to build long FFP cavities, and show a way to overcome this problem. PMID:27137597

  10. All-optical logic gates and wavelength conversion via the injection locking of a Fabry-Perot semiconductor laser

    NASA Astrophysics Data System (ADS)

    Harvey, E.; Pochet, M.; Schmidt, J.; Locke, T.; Naderi, N.; Usechak, N. G.

    2013-03-01

    This work investigates the implementation of all-optical logic gates based on optical injection locking (OIL). All-optical inverting, NOR, and NAND gates are experimentally demonstrated using two distributed feedback (DFB) lasers, a multi-mode Fabry-Perot laser diode, and an optical band-pass filter. The DFB lasers are externally modulated to represent logic inputs into the cavity of the multi-mode Fabry-Perot slave laser. The input DFB (master) lasers' wavelengths are aligned with the longitudinal modes of the Fabry-Perot slave laser and their optical power is used to modulate the injection conditions in the Fabry-Perot slave laser. The optical band-pass filter is used to select a Fabry- Perot mode that is either suppressed or transmitted given the logic state of the injecting master laser signals. When the input signal(s) is (are) in the on state, injection locking, and thus the suppression of the non-injected Fabry-Perot modes, is induced, yielding a dynamic system that can be used to implement photonic logic functions. Additionally, all-optical photonic processing is achieved using the cavity-mode shift produced in the injected slave laser under external optical injection. The inverting logic case can also be used as a wavelength converter — a key component in advanced wavelength-division multiplexing networks. As a result of this experimental investigation, a more comprehensive understanding of the locking parameters involved in injecting multiple lasers into a multi-mode cavity and the logic transition time is achieved. The performance of optical logic computations and wavelength conversion has the potential for ultrafast operation, limited primarily by the photon decay rate in the slave laser.

  11. Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by two methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback. We coupled a nominal 935 run-wavelength Fabry-Perot laser diode to an ultra narrow band (18 pm) FBG. When tuned by varying its temperature, the laser wavelength is pulled toward the centerline of the Bragg grating, and the spectrum of the laser output is seen to fall into three discrete stability regimes as measured by the side-mode suppression ratio.

  12. Fabry-Perot diaphragm fiber-optic sensor.

    PubMed

    Chin, Ken K; Sun, Yan; Feng, Guanhua; Georgiou, George E; Guo, Kangzhu; Niver, Edip; Roman, Harry; Noe, Karen

    2007-11-01

    The general theory of a diaphragm fiber-optic sensor (DFOS) is proposed. We use a critical test to determine if a DFOS is based on Fabry-Perot interference or intensity modulation. By use of the critical test, this is the first design, to the best of our knowledge, of a purely Fabry-Perot DFOS, fabricated with microelectromechanical system technology, and characterized as an audible microphone and ultrasonic hydrophone with orders of improvement in signal-to-noise ratio. PMID:17973004

  13. Integrated Fabry-Perot optical space switches

    NASA Astrophysics Data System (ADS)

    Menard, Michael

    As information technologies are adopted by more people to accomplish a greater variety of tasks, the need for optical telecommunication networks with higher capacity and flexibility grows. In addition to improving throughput by increasing transmission rates and the number of wavelength channels, novel network architectures using optical burst or packet based switching are investigated because they allow a more efficient use of transmission capacity and they enable the reorganisation of wavelength connections according to traffic demands. The implementation of such networks requires fast, broadband, transparent, and scalable optical space switches. Although research on optical space switches has been on going for decades, no solution that meets all of the above requirements has been reported yet. The work presented in this thesis introduces a novel optical space switch configuration based on tunable integrated Fabry-Perot filters working at oblique incidence and investigates their performance. A design method to implement this new switch concept is described and demonstrated with the fabrication and characterisation of optical prototypes. The prototypes are implemented in GaAs/AlGaAs planar waveguides and they are designed to be operated using the electro-optic effect. Deep etching is used to create the switch features and a comprehensive optimization of the waveguide structure is conducted to minimize radiation losses. To maximize the number of wavelength channels that can be controlled with a small refractive index modulation, the switches have a 200 GHz comb frequency response that transmits/reflects one out of every two channels on the ITU 100 GHz grid. Thus, shifting their frequency response by one channel spacing is sufficient to change the state of every channel. Furthermore, four Fabry-Perot cavities are coupled to obtain a flat and wide theoretical passband of more than 50 GHz. A Gaussian beam propagation analysis is performed to determine the minimum beam

  14. Temperature-independent refractometer based on fiber-optic Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Li, Jiacheng; Qiao, Xueguang; Wang, Ruohui; Rong, Qiangzhou; Bao, Weijia; Shao, Zhihua; Yang, Tingting

    2016-04-01

    A miniature fiber-optic refractometer based on Fabry-Perot interferometer (FPI) has been proposed and experimentally demonstrated. The sensing head consists of a short section of photonics crystal fiber (PCF) spliced to a single mode fiber (SMF), in which the end-face of the PCF is etched to remove holey structure with hydrofluoric (HF) acid. A Fabry-Perot interference spectrum is achieved based on the reflections from the fusion splicing interface and the end-face of the core of PCF. The interference fringe is sensitive to the external refractive index (RI) with an intensity-referenced sensitivity of 358.27 dB/RIU ranging from 1.33 to 1.38. The sensor has also been implemented for the concentration measurement of λ-phage DNA solution. In addition, the dip intensity is insensitive to the ambient temperature variation, making it a good candidate for temperature-independent bio-sensing area.

  15. Swift: A Widefield Imaging Fabry Perot for Sofia

    NASA Technical Reports Server (NTRS)

    Stacey, Gordon J.

    1999-01-01

    Contract was to pursue feasibility studies of the SOFIA Widefield Imaging Fabry-Perot (SWIFT). SWIFT was proposed as a two color 18 to 40 microns imaging Fabry-Perot that utilized two Rockwell/Boeing 256 x 256 pixel Si:Sb BIBs as detective devices. The colors were to be split between 26 and 30 microns using a MgO dichroic. The resolution achieving devices were to be a pair of cryogenic fully tunable scanning Fabry-Perot interferometers (FPIs), two in each band. For high resolving powers, a third, fixed FPI is inserted into the beam. The FPI mirrors were to be made of free standing metal mesh. We also proposed to look into a long wavelength (40 to 210 microns) band during the feasibility study period. We produced a proposal to USRA, submitted in July 1997 that substantially refined our ideas. We decided the long wavelength science was compelling, so the baseline wavelength coverage for SWIFT was widened to 17 to 205 microns. Under typical operations, we proposed to simultaneously image in two bands: 22 to 38 microns, and 50 to 205 microns. The bands were to be split by a cold CaF2 dichroic. The short wavelength (SW) band was to employ a 256 x 256 pixel Boeing/Rockwell Si:Sb BIB array, and the long wavelength (LW) band was to employ a Goddard 6 x 32 (upgradable to 32 x 32) element array of monolithic silicon "pop-up" bolometers as detective devices. The two color capability doubled the data taking efficiency, and ensured "perfect" registration between the images obtained in each band. For the SW band, the beam was to be fully sampled (0.7" pixels, 1.4 in. beam) at 17 microns, and over sampled at longer wavelengths. Even so, SWIFT has a very large (3 ft x 3 ft) field of view. To match the SW and LW fields of view (initially in one dimension only, but in 2-dimensions with 32 x 32 upgrade), SWIFT was to under sample at 63 microns (5.6 in pixels, 5.2 in beam) resulting in a 0.56 x 3 in (upgrade to 3 in x 3 in) field of view. Each band has both Lo-Res (R triple bond

  16. Fabry-Perot microcavity for diamond-based photonics

    NASA Astrophysics Data System (ADS)

    Janitz, Erika; Ruf, Maximilian; Dimock, Mark; Bourassa, Alexandre; Sankey, Jack; Childress, Lilian

    2015-10-01

    Open Fabry-Perot microcavities represent a promising route for achieving a quantum electrodynamics (cavity-QED) platform with diamond-based emitters. In particular, they offer the opportunity to introduce high-purity, minimally fabricated material into a tunable, high quality factor optical resonator. Here, we demonstrate a fiber-based microcavity incorporating a thick (>10 μ m ) diamond membrane with a finesse of 17 000, corresponding to a quality factor Q ˜106 . Such minimally fabricated thick samples can contain optically stable emitters similar to those found in bulk diamond. We observe modified microcavity spectra in the presence of the membrane, and we develop analytic and numerical models to describe the effect of the membrane on cavity modes, including loss and coupling to higher-order transverse modes. We estimate that a Purcell enhancement of approximately 20 should be possible for emitters within the diamond in this device, and we provide evidence that better diamond surface treatments and mirror coatings could increase this value to 200 in a realistic system.

  17. The South Pole Imaging Fabry Perot Interferometer (SPIFI)

    NASA Technical Reports Server (NTRS)

    Stacey, G. J.; Bradford, C. M.; Swain, M. R.; Jackson, J. M.; Bolato, A. D.; Davidson, J. A.; Savage, M.

    1996-01-01

    The design and construction of the South Pole imaging Fabry-Perot interferometer (SPIFI) is reported. The SPIFI is a direct detection imaging spectrometer for use in the far infrared and submillimeter bands accessible to the 1.7 m telescope at the South Pole, and in the submillimeter bands accessible to the 15 m James Clerk Maxwell Telescope (JCMT), HI. It employs a 5 x 5 silicon bolometer array and three cryogenic Fabry Perot interferometers in series in order to achieve velocity resolutions of between 300 km/s and 30 km/s over the entire field of view with a resolution of up to 1 km/s at the center pixel. The scientific justification for the instrument is discussed, considering the spectral lines available to SPIFI. The optical path, the cryogenic Fabry-Perot, the adiabatic demagnetization refrigerator and the detector array are described. The instrument's sensitivity is presented and compared with coherent systems.

  18. Confocal Fabry-Perot interferometer for frequency stabilization of laser

    NASA Astrophysics Data System (ADS)

    Pan, H.-J.; Ruan, P.; Wang, H.-W.; Li, F.

    2011-02-01

    The frequency shift of laser source of Doppler lidar is required in the range of a few megahertzs. To satisfy this demand, a confocal Fabry-Perot (F-P) interferometer was manufactured as the frequency standard for frequency stabilization. After analyzing and contrasting the center frequency shift of confocal Fabry-Perot interferometers that are made of three different types of material with the change of temperature, the zerodur material was selected to fabricate the interferometer, and the cavity mirrors were optically contacted onto the end of spacer. The confocal Fabry-Perot interferometer was situated within a double-walled chamber, and the change of temperature in the chamber was less than 0.01 K. The experimental results indicate that the free spectral range is 500 MHz, the full-width at half maximum is 3.33 MHz, and the finesse is 150.

  19. Design and Fabrication of a Fabry-Perot Electrooptic Modulator

    NASA Technical Reports Server (NTRS)

    Banks, C.; Yelleswarapu, C.; Sharma, A.; Frazier, D.; Penn, B.; Abdeldayem, H.; Geveden, Rex D. (Technical Monitor)

    2001-01-01

    The research to design a Fabry-Perot electrooptic modulator with an intracavity electrooptically active organic material is based on the initial results of Wang et. al. [1] using poled polymer thin films. The main feature of the proposed device is the observation that in traditional electrooptic modulators like a Pockels cell, it requires few kilovolts of driving voltage to cause a 3 dB modulation even in high figure-of-merit electrooptic. materials like LiNbO3. The driving voltage for the modulator can be reduced to as low as 10 volts by introducing the electrooptic material inside the resonant cavity of a Fabry-Perot modulator. This is because the transmission of the Fabry-Perot cavity varies nonlinearly with the change of refractive index or phase of light due to applied electric field. We describe in this report the progress made so far in the design and fabrication of the proposed device.

  20. Design and Fabrication of a Fabry-Perot Electrooptic Modulator

    NASA Technical Reports Server (NTRS)

    Banks, C.; Yelleswarapu, C.; Sharma, A.; Frazier, D.; Penn, B.; Abdeldayem, H.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    The research to design a Fabry-Perot electrooptic modulator with an intracavity electrooptically active organic material is based on the initial results of Wang et. al. using poled polymer thin films. The main feature of the proposed device is the observation that in traditional electrooptic modulators like a Pockels cell, it requires few kilovolts of driving voltage to cause a 3 dB modulation even in high figure-of-merit electrooptic materials like LiNbO3. The driving voltage for the modulator can be reduced to as low as 10 volts by introducing the electrooptic material inside the resonant cavity of a Fabry-Perot modulator. This is because the transmission of the Fabry-Perot cavity varies nonlinearly with the change of refractive index or phase of light due to applied electric field. We describe in this report the progress made so far in the design and fabrication of the proposed device.

  1. Atmospheric temperature sensing with a multiorder Fabry-Perot interferometer.

    PubMed

    Wang, J; Drayson, S R; Hayes, P B

    1989-12-01

    A Fabry-Perot interferometer has a periodic response. By matching the free spectral range of a Fabry-Perot interferometer (FPI) with the period of the CO(2) spectrum, considerable advantages of throughput and spectral resolution can be achieved, leading to high spectral resolution and vertical resolution for atmospheric temperature sounders. In this paper, the concept of a high resolution multiorder Fabry-Perot interferometer using portions of the 15-microm and 4.3-microm bands of CO(2)for the purpose of atmospheric temperature sounding is discussed. Suitable sounding spectral positions, FPI free spectral range, and weighting functions are calculated. An effective spectral resolution of 0.02 cm(-1) can be achieved by the proposed sounder with a FPI finess of ~100 which is within the present state-of-the-art technology in the infrared region, leading to considerable improvement in the vertical resolution of the atmospheric temperature sounder. PMID:20555996

  2. Performance of a dual Fabry-Perot cavity refractometer.

    PubMed

    Egan, Patrick F; Stone, Jack A; Hendricks, Jay H; Ricker, Jacob E; Scace, Gregory E; Strouse, Gregory F

    2015-09-01

    We have built and characterized a refractometer that utilizes two Fabry-Perot cavities formed on a dimensionally stable spacer. In the typical mode of operation, one cavity is held at vacuum, and the other cavity is filled with nitrogen gas. The differential change in length between the cavities is measured as the difference in frequency between two helium-neon lasers, one locked to the resonance of each cavity. This differential change in optical length is a measure of the gas refractivity. Using the known values for the molar refractivity and virial coefficients of nitrogen, and accounting for cavity length distortions, the device can be used as a high-resolution, multi-decade pressure sensor. We define a reference value for nitrogen refractivity as n-1=(26485.28±0.3)×10(-8) at p=100.0000  kPa, T=302.9190  K, and λ(vac)=632.9908  nm. We compare pressure determinations via the refractometer and the reference value to a mercury manometer. PMID:26368682

  3. Vibration-induced elastic deformation of Fabry-Perot cavities

    SciTech Connect

    Chen Lisheng; Hall, John L.; Ye Jun; Yang Tao; Zang Erjun; Li Tianchu

    2006-11-15

    We perform a detailed numerical analysis of Fabry-Perot cavities used for state-of-the-art laser stabilization. Elastic deformation of Fabry-Perot cavities with various shapes and mounting methods is quantitatively analyzed using finite-element analysis. We show that with a suitable choice of mounting schemes it is feasible to minimize the susceptibility of the resonator length to vibrational perturbations. This investigation offers detailed information on stable optical cavities that may benefit the development of ultrastable optical local oscillators in optical atomic clocks and precision measurements probing the fundamental laws of physics.

  4. CIV Polarization Measurements Using a Vacuum Ultraviolet Fabry Perot

    NASA Technical Reports Server (NTRS)

    West, Edward A.

    2009-01-01

    Marshall Space Flight Center's (MSFC) is developing a Vacuum Ultraviolet (VUV) Fabry Perot that will be launched on a sounding rocket for high throughput, high-cadence, extended field of view CIV (155nm) measurements. These measurements will provide (i) Dopplergrams for studies of waves, oscillations, explosive events, and mass motions through the transition region, and, (ii), polarization measurements to study the magnetic field in the transition region. This paper will describe the scientific goals of the instrument, a brief description of the optics and the polarization characteristics of the VUV Fabry Perot.

  5. Silicon Carbide Mounts for Fabry-Perot Interferometers

    NASA Technical Reports Server (NTRS)

    Lindemann, Scott

    2011-01-01

    Etalon mounts for tunable Fabry- Perot interferometers can now be fabricated from reaction-bonded silicon carbide structural components. These mounts are rigid, lightweight, and thermally stable. The fabrication of these mounts involves the exploitation of post-casting capabilities that (1) enable creation of monolithic structures having reduced (in comparison with prior such structures) degrees of material inhomogeneity and (2) reduce the need for fastening hardware and accommodations. Such silicon carbide mounts could be used to make lightweight Fabry-Perot interferometers or could be modified for use as general lightweight optical mounts. Heretofore, tunable Fabry-Perot interferometer structures, including mounting hardware, have been made from the low-thermal-expansion material Invar (a nickel/iron alloy) in order to obtain the thermal stability required for spectroscopic applications for which such interferometers are typically designed. However, the high mass density of Invar structures is disadvantageous in applications in which there are requirements to minimize mass. Silicon carbide etalon mounts have been incorporated into a tunable Fabry-Perot interferometer of a prior design that originally called for Invar structural components. The strength, thermal stability, and survivability of the interferometer as thus modified are similar to those of the interferometer as originally designed, but the mass of the modified interferometer is significantly less than the mass of the original version.

  6. A Fabry-Perot Solid Etalon for Teaching.

    ERIC Educational Resources Information Center

    Bruce, P. J.; And Others

    1986-01-01

    Describes a solid etalon Fabry-Perot interferometer, discussing free spectral range, instrumental finesse, and temperature effects. Provides schematic of temperature control/display circuit. Explains use of 100 millimeter camera lens and 10 power micrometer eyepiece for resolving rings and measure diameters. (JM)

  7. Characterization of a Fabry - Perot - Based electrooptic Modulator

    NASA Technical Reports Server (NTRS)

    Banks, C.; Yelleswarapu, C.; Sharma, A.; Frazier, D.; Penn, B.; Abdeldayem, H.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    An electrooptic modulator using a thin slice of LiNbO3 within the cavity of a Fabry-Perot interferometer is designed and fabricated. The modulator is operated with 633 nm light from a He-Ne laser. Results related to characterization of this modulator are presented.

  8. A Coaxial Cable Fabry-Perot Interferometer for Sensing Applications

    PubMed Central

    Huang, Jie; Wang, Tao; Hua, Lei; Fan, Jun; Xiao, Hai; Luo, Ming

    2013-01-01

    This paper reports a novel coaxial cable Fabry-Perot interferometer for sensing applications. The sensor is fabricated by drilling two holes half-way into a coaxial cable. The device physics was described. The temperature and strain responses of the sensor were tested. The measurement error was calculated and analyzed. PMID:24212121

  9. Development of the Fabry-Perot Spectrometer Application

    NASA Technical Reports Server (NTRS)

    Browne, Kathryn

    2015-01-01

    Methane is a greenhouse gas with global warming effects 20 times more detrimental than carbon dioxide. Currently, only aircraft missions measure methane and do not provide continuous monitoring, This presentation will cover the Fabry-Perot spectrometer which will provide continuous monitoring of methane. It will also cover the development of the software used to extract and process the data the spectrometer collects.

  10. Fabry-Perot resonance enhanced electrically pumped random lasing from ZnO films

    NASA Astrophysics Data System (ADS)

    Ni, P. N.; Shan, C. X.; Wang, S. P.; Lu, Y. J.; Li, B. H.; Shen, D. Z.

    2015-12-01

    Fabry-Perot (F-P) resonance has been introduced into Au/MgO/ZnO structure in order to improve the performance of electrically pumped random lasing in this structure. It is found that the lasing threshold of this structure is significantly reduced by introducing the F-P resonance due to the better optical confinement. Meanwhile, this structure shows improved random lasing output characteristics with less random lasing modes and strong dominant output mode due to the gain competition process. The results demonstrate that introducing F-P resonance into the random media provides an effective strategy towards controllable, high performance electrically pumped random lasers.

  11. Nanofiber Fabry-Perot microresonator for nonlinear optics and cavity quantum electrodynamics.

    PubMed

    Wuttke, C; Becker, M; Brückner, S; Rothhardt, M; Rauschenbeutel, A

    2012-06-01

    We experimentally realize a Fabry-Perot-type optical microresonator near the cesium D2 line wavelength based on a tapered optical fiber, equipped with two fiber Bragg gratings that enclose a subwavelength diameter waist. Owing to the very low taper losses, the finesse of the resonator reaches F=86 while the on-resonance transmission is T=11%. The characteristics of our resonator fulfill the requirements of nonlinear optics and cavity quantum electrodynamics in the strong coupling regime. These characteristics, combined with the demonstrated ease of use and advantageous mode geometry, open a realm of applications. PMID:22660083

  12. Fabry-Perot cavity based on sapphire-derived fiber for high temperature sensor

    NASA Astrophysics Data System (ADS)

    Chen, Pengfei; Pang, Fufei; Zhao, Ziwen; Hong, Lin; Chen, Na; Chen, Zhenyi; Wang, Tingyun

    2015-09-01

    An optical fiber high temperature sensor is demonstrated by using a special sapphire-derived fiber. An air cavity is easily created through splicing the sapphire-derived fiber with standard single mode fiber (SMF). Utilizing the air cavity as one reflecting face, a Fabry-Perot (F-P) interferometer is fabricated in the special fiber. Attributed to the high ratio alumina component, the F-P interferometer exhibits high sensitivity response to temperature variation within the range up to 1000 °C. The sensitivity is 15.7 pm/°C.

  13. Characterization of miniature fiber-optic Fabry-Perot interferometric sensors based on hollow silica tube

    NASA Astrophysics Data System (ADS)

    Jia, Pinggang; Fang, Guocheng; Wang, Daihua

    2016-06-01

    A miniature fiber-optic Fabry-Perot interferometer (MOFPI) fabricated by splicing a hollow silica tube (HST) with inner diameter of 4 µm to the end of a single-mode fiber is investigated and experimentally demonstrated. The theoretical relationship between the free spectrum range and the length of HST is verified by fabricating several MOFPIs with different lengths. We characterize the MOFPIs for temperature, liquid refractive index, and strain. Experimental results show that the sensitivities of the temperature, liquid refractive index, and strain are 16.42 pm/℃,-118.56 dB/RIU, and 1.21 pm/µɛ, respectively.

  14. Spectral engineering by flexible tunings of optical Tamm states and Fabry-Perot cavity resonance.

    PubMed

    Zhang, Xu-Lin; Song, Jun-Feng; Feng, Jing; Sun, Hong-Bo

    2013-11-01

    We present a design for spectral engineering in a metal dual distributed Bragg reflector (DBR)-based structure. Optical Tamm states and Fabry-Perot cavity mode, dual windows for light-matter interaction enhancement, can be excited simultaneously and tuned flexibly, including their respective bandwidth and resonant wavelength, due to the variable reflection phase from the outer DBR's internal surface. The design can find applications in solar cells for light trappings. Via calculations of overall absorptivity, the proposed simpler dual-states-based scheme is demonstrated to be almost as effective as the coherent-light-trapping scheme, owing to the dual-states-induced broader-band absorption enhancement. PMID:24177099

  15. Fiber Fabry-Perot interferometer with controllable temperature sensitivity.

    PubMed

    Zhang, Xinpu; Peng, Wei; Zhang, Yang

    2015-12-01

    We proposed a fiber taper based on the Fabry-Perot (FP) interferometer structure with controllable temperature sensitivity. The FP interferometer is formed by inserting a segment of tapered fiber tip into the capillary and subsequently splicing the other end of the capillary to a single-mode fiber (SMF), the tapered fiber endface, and the spliced face form the FP cavity. Through controlling the inserted tapered fiber length, a series of FP interferometers were made. Because the inserted taper tip has the degree of freedom along the fiber axial, when the FP interferometer is subjected to temperature variation, the thermal expansion of the fiber taper tip will resist the FP cavity length change caused by the evolution of capillary length, and we can control the temperature sensitivity by adjusting the inserted taper length. In this structure, the equivalent thermal expansion coefficient of the FP interferometer can be defined; it was used to evaluate the temperature sensitivity of the FP interferometer, which provides an effective method to eliminate the temperature effect and to enhance other measurement accuracy. We fabricated the FP interferometers and calibrated their temperature characters by measuring the wavelength shift of the resonance dips in the reflection spectrum. In a temperature range of 50°C to 150°C, the corresponding temperature sensitivities can be controlled between 0 and 1.97 pm/°C when the inserted taper is between 75 and 160 μm. Because of its controllable temperature sensitivity, ease of fabrication, and low cost, this FP interferometer can meet different temperature sensitivity requirements in various application areas, especially in the fields which need temperature insensitivity. PMID:26625075

  16. Fiber optic, Fabry-Perot high temperature sensor

    NASA Technical Reports Server (NTRS)

    James, K.; Quick, B.

    1984-01-01

    A digital, fiber optic temperature sensor using a variable Fabry-Perot cavity as the sensor element was analyzed, designed, fabricated, and tested. The fiber transmitted cavity reflection spectra is dispersed then converted from an optical signal to electrical information by a charged coupled device (CCD). A microprocessor-based color demodulation system converts the wavelength information to temperature. This general sensor concept not only utilizes an all-optical means of parameter sensing and transmitting, but also exploits microprocessor technology for automated control, calibration, and enhanced performance. The complete temperature sensor system was evaluated in the laboratory. Results show that the Fabry-Perot temperature sensor has good resolution (0.5% of full seale), high accuracy, and potential high temperature ( 1000 C) applications.

  17. Georgia Institute of Technology Fabry-Perot measurements

    NASA Astrophysics Data System (ADS)

    1991-10-01

    The Fabry-Perot cavity and its implementation to carry out Fourier Transform Spectroscopy (FTS) are detailed. Synthesized sources are used to scan frequency from 26 to 100 GHz for recording of data. Measured data for rexolite 1422 and Corning 7940 is presented. Dielectric constant and loss tangent accuracies are restricted to plus or minus 0.005 and 0.0001 respectively. These error bars are dominated by variations observed in the sample thickness.

  18. Fabry-Perot interferometer utilized for displacement measurement in a large measuring range

    SciTech Connect

    Wang, Yung-Cheng; Shyu, Lih-Horng; Chang, Chung-Ping

    2010-09-15

    The optical configuration of a Fabry-Perot interferometer is uncomplicated. This has already been applied in different measurement systems. For the displacement measurement with the Fabry-Perot interferometer, the result is significantly influenced by the tilt angles of the measurement mirror in the interferometer. Hence, only for the rather small measuring range, the Fabry-Perot interferometer is available. The goal of this investigation is to enhance the measuring range of Fabry-Perot interferometer by compensating the tilt angles. To verify the measuring characteristic of the self-developed Fabry-Perot interferometer, some comparison measurements with a reference standard have been performed. The maximum deviation of comparison experiments is less than 0.3 {mu}m in the traveling range of 30 mm. The experimental results show that the Fabry-Perot interferometer is highly stable, insensitive to environment effects, and can meet the measuring requirement of the submicrometer order.

  19. Micromachined Tunable Fabry-Perot Filters for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Barclay, Richard; Bier, Alexander; Chen, Tina; DiCamillo, Barbara; Deming, Drake; Greenhouse, Matthew; Henry, Ross; Hewagama, Tilak; Jacobson, Mindy; Loughlin, James; Krebs, Carolyn A. (Technical Monitor)

    2002-01-01

    Micromachined Fabry-Perot tunable filters with a large clear aperture (12.5 to 40 mm) are being developed as an optical component for wide-field imaging 1:1 spectroscopy. This program applies silicon micromachining fabrication techniques to miniaturize Fabry-Perot filters for astronomical science instruments. The filter assembly consists of a stationary etalon plate mated to a plate in which the etalon is free to move along the optical axis on silicon springs attached to a stiff silicon support ring. The moving etalon is actuated electrostatically by electrode pairs on the fixed and moving etalons. To reduce mass, both etalons are fabricated by applying optical coatings to a thin freestanding silicon nitride film held flat in drumhead tension rather than to a thick optical substrate. The design, electro-mechanical modeling, fabrication, and initial results will be discussed. The potential application of the miniature Fabry-Perot filters will be briefly discussed with emphasis on the detection of extra-solar planets.

  20. Highly sensitive force sensor based on optical microfiber asymmetrical Fabry-Perot interferometer.

    PubMed

    Gong, Yuan; Yu, Cai-Bin; Wang, Ting-Ting; Liu, Xiu-Ping; Wu, Yu; Rao, Yun-Jiang; Zhang, Ming-Lei; Wu, Hui-Juan; Chen, Xiao-Xiao; Peng, Gang-Ding

    2014-02-10

    An asymmetrical Fabry-Perot interferometric (AFPI) force sensor is fabricated based on a narrowband reflection of low-reflectivity fiber Bragg grating (LR-FBG) and a broadband Fresnel reflection of the cleaved fiber end. The AFPI sensor includes a section of microfiber made by tapering and it achieves a force sensitivity of 0.221 pm/μN with a tapered microfiber of 40 mm length and 6.1 μm waist diameter. Compared with similar AFPI structure in 125 μm-diameter single mode fiber, the force sensitivity of the microfiber AFPI structure is greatly enhanced due to its smaller diameter and can be optimized for different force scales by controlling the diameter. The fabrication process of the AFPI sensor is simple and cost-effective. The AFPI sensor has better multiplexing capacity than conventional extrinsic fiber-optic Fabry-Perot sensors, while it also release the requirement on the wavelength matching of the FBG-pair-based FPI. PMID:24663648

  1. Holographic liquid crystal polarization grating with Fabry-Perot structure.

    PubMed

    Sakamoto, Moritsugu; Yamaguchi, Haruki; Noda, Kohei; Sasaki, Tomoyuki; Kawatsuki, Nobuhiro; Ono, Hiroshi

    2016-03-15

    A holographic liquid crystal polarization grating with a Fabry-Perot structure was developed. Because of its resonant structure, the device offers high levels of control of the diffraction properties of incident-polarized light beams, depending on the resonance conditions. The diffracted light beams are emitted in both the reflection and transmission directions, and the device thus works as a multibranch polarization grating with double optical paths, unlike a conventional polarization grating. These device features were experimentally demonstrated and were also explained theoretically. PMID:26977643

  2. Multichannel Fabry-Perot spectrometer for infrared astronomy

    NASA Technical Reports Server (NTRS)

    Jennings, Donald E.; Boyle, R. J.

    1986-01-01

    A multichannel design which makes use of the radiation normally rejected in a Fabry-Perot spectrometer is described, with application to infrared astronomy. The present optical design minimizes the diameters of the etalon and optics. The use of spherical mirrors ensures that no radiation is lost through the entrance aperture, and the beams can be completely collimated at the etalon. Laboratory studies demonstrate that the ability to employ eight channels increases by a factor of four the flux integrated during a given time period compared with that of a single-channel instrument. The spectrometer is nondispersive, and the source can be imaged at each of several output spectral positions.

  3. Novel optical characteristics of a Fabry-Perot resonator with embedded PT-symmetrical grating.

    PubMed

    Kulishov, Mykola; Kress, Bernard; Jones, H F

    2014-09-22

    We explore the optical properties of a Fabry-Perot resonator with an embedded Parity-Time (PT) symmetrical grating. This PT-symmetrical grating is non diffractive (transparent) when illuminated from one side and diffracting (Bragg reflection) when illuminated from the other side, thus providing a unidirectional reflective functionality. The incorporated PT-symmetrical grating forms a resonator with two embedded cavities. We analyze the transmission and reflection properties of these new structures through a transfer matrix approach. Depending on the resonator geometry these cavities can interact with different degrees of coherency: fully constructive interaction, partially constructive interaction, partially destructive interaction, and finally their interaction can be completely destructive. A number of very unusual (exotic) nonsymmetrical absorption and amplification behaviors are observed. The proposed structure also exhibits unusual lasing performance. Due to the PT-symmetrical grating, there is no chance of mode hopping; it can lase with only a single longitudinal mode for any distance between the distributed reflectors. PMID:25321786

  4. Hydrocarbon gas detection with microelectromechanical Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Mannila, Rami; Tuohiniemi, Mikko; Mäkynen, Jussi; Näkki, Ismo; Antila, Jarkko

    2013-05-01

    VTT Technical Research Centre of Finland has developed microelectromechanical (MEMS) Fabry-Perot interferometer (FPI) for hydrocarbon measurements. Fabry-Perot interferometer is a structure where is two highly reflective surfaces separated by a tunable air gap. The MEMS FPI is a monolithic device, i.e. it is made entirely on one substrate in a batch process, without assembling separate pieces together. The gap is adjusted by moving the upper mirror with electrostatic force, so there are no actual moving parts. The manufactured MEMS FPIs have been characterized. The tuning wavelength range of the MEMS FPI is 2.8-3.5 μm and its spectral resolution is 50-60 nm. VTT has designed and manufactured a handheld size demonstrator device based on the technology presented in this abstract. This device demonstrates gas detecting by measuring cigarette lighter gas and various plastic materials transmission spectra. The demonstrator contains light source, gas cell, MEMS FPI, detector and control electronics. It is connected to a laptop by USB connection, additional power supply or connection is not needed.

  5. The IRAF Fabry-Perot analysis package: Ring fitting

    NASA Technical Reports Server (NTRS)

    Shopbell, P. L.; Bland-Hawthorn, J.; Cecil, G.

    1992-01-01

    As introduced at ADASSI, a Fabry-Perot analysis package for IRAF is currently under development as a joint effort of ourselves and Frank Valdes of the IRAF group. Although additional portions of the package were also implemented, we report primarily on the development of a robust ring fitting task, useful for fitting the calibration rings obtained in Fabry-Perot observations. The general equation of an ellipse is fit to the shape of the rings, providing information on ring center, ellipticity, and position angle. Such parameters provide valuable information on the wavelength response of the etalon and the geometric stability of the system. Appropriate statistical weighting is applied to the pixels to account for increasing numbers with radius, the Lorentzian cross-section, and uneven illumination. The major problems of incomplete, non-uniform, and multiple rings are addressed with the final task capable of fitting rings regardless of center, cross-section, or completion. The task requires only minimal user intervention, allowing large numbers of rings to be fit in an extremely automated manner.

  6. Fabry-Perot interferometer embedded in a glass chip fabricated by femtosecond laser.

    PubMed

    Lin, Cheng-Hsiang; Jiang, Lan; Xiao, Hai; Chai, Yen-Hsin; Chen, Shean-Jen; Tsai, Hai-Lung

    2009-08-15

    We report a simple Fabry-Perot interferometer (FPI) embedded in a glass chip, which is capable of precisely measuring the refractive indices of liquid samples. The microdevice is the integration of a single-mode optical fiber and a microchannel in the photosensitive glass fabricated by femtosecond laser followed by thermal treatment, wet etching, and annealing. The function of the FPI is demonstrated by measuring the refractive indices of water and methanol. The interference visibility is more than 4.0 dB, which is sufficient for most sensing applications. This refractive index sensor with rigid structure could be further integrated to become a more complex 3D lab-on-a-chip for reliable biomedical applications. PMID:19684798

  7. A simple Fabry-Perot pressure sensor fabricated on fiber optic tip

    NASA Astrophysics Data System (ADS)

    Di Palma, Pasquale; Natale, Daniele; Campopiano, Stefania; Iadicicco, Agostino

    2016-05-01

    In this work, we demonstrate an extrinsic pressure sensor realized on single mode fiber tip by means of simple fabrication steps and with low-cost instrumentations. The sensing element consists in a Fabry-Perot cavity: one reflecting surface is the end of the optical fiber, precisely cut, and the other one is a metallic diaphragm. Under the action of the external pressure, the metallic diaphragm bends changing the optical cavity length and, consequently, the characteristics of the reflected signal. The holder structure, which allows the alignment of the fiber tip and reflecting diaphragm, consists in a commercial zirconia ferule with external diameter of Dex = 2.5 mm. Despite its simplicity and cost-effectiveness, the achieved results show performance comparable to more complex and expensive configurations. By using an aluminum plate as reflecting diaphragm. sensitivity ranging in the 70-130pm/mmHg is experimentally.

  8. An optimized strain demodulation method for PZT driven fiber Fabry-Perot tunable filter

    NASA Astrophysics Data System (ADS)

    Sheng, Wenjuan; Peng, G. D.; Liu, Yang; Yang, Ning

    2015-08-01

    An optimized strain-demodulation-method based on piezo-electrical transducer (PZT) driven fiber Fabry-Perot (FFP) filter is proposed and experimentally demonstrated. Using a parallel processing mode to drive the PZT continuously, the hysteresis effect is eliminated, and the system demodulation rate is increased. Furthermore, an AC-DC compensation method is developed to address the intrinsic nonlinear relationship between the displacement and voltage of PZT. The experimental results show that the actual demodulation rate is improved from 15 Hz to 30 Hz, the random error of the strain measurement is decreased by 95%, and the deviation between the test values after compensation and the theoretical values is less than 1 pm/με.

  9. Diaphragm-free fiber-optic Fabry-Perot interferometer based on tapered hollow silica tube

    NASA Astrophysics Data System (ADS)

    Fang, Guocheng; Jia, Pinggang; Liang, Ting; Tan, Qiulin; Hong, Yingping; Liu, Wenyi; Xiong, Jijun

    2016-07-01

    A miniature fiber-optic Fabry-Perot interferometer fabricated by splicing a diaphragm-free hollow silica tube to a single-mode fiber and fusing the inner core to a taper is presented. The tapered zone forces lights to propagate from the fiber core into the silica tube, and the lights is reflected from the end faces of the optical fiber and the hollow silica tube. The contrast ratio of the interference fringe is determined by the minimum inner diameter of hollow silica tube. The responses of the proposed interferometer to high-temperature, gas refractive index, liquid refractive index and pressure were measured and were found to be linear with sensitivities of 16.26 pm/°C, 610.47 nm/RIU, -122.36 dB/RIU and 1.56 pm/kPa, respectively.

  10. Fiber Bragg grating Fabry-Perot cavity sensor based on pulse laser demodulation technique

    NASA Astrophysics Data System (ADS)

    Gao, Fangfang; Chen, Jianfeng; Liu, Yunqi; Wang, Tingyun

    2011-12-01

    We demonstrate a fiber laser sensing technique based on fiber Bragg grating Fabry-Perot (FBG-FP) cavity interrogated by pulsed laser, where short pulses generated from active mode-locked erbium-doped fiber ring laser and current modulated DFB laser are adopted. The modulated laser pulses launched into the FBG-FP cavity produce a group of reflected pulses. The optical loss in the cavity can be determined from the power ratio of the first two pulses reflected from the cavity. This technique does not require high reflectivity FBGs and is immune to the power fluctuation of the light source. Two short pulse laser sources were compared experimentally with each other on pulse width, pulse stability, pulse chirp and sensing efficiency.

  11. Pressure sensing of Fabry-Perot interferometer with a microchannel demodulated by a FBG

    NASA Astrophysics Data System (ADS)

    Yu, Yongqin; Chen, Xue; Huang, Quandong; Du, Chenlin; Ruan, Shuangchen

    2015-07-01

    A novel and compact fiber-probe pressure sensor was demonstrated based on micro Fabry-Perot interferometer (FPI). The device was fabricated by splicing both ends of a short section simplified hollow-core photonic crystal fiber (SHCPCF) with single mode fibers (SMFs), and then a micro channel was drilled by femtosecond laser micromachining in the SHC-PCF to significantly enhance the pressure sensitivity. The pressure sensing characteristics based on micro-FPI have been investigated by measuring the signals through the demodulation of phase since the external signal imposing on the interferometer will induce the phase change of interference signal. Then a FBG was cascaded to demodulate the signal. A micro FPI demonstrates a maximum pressure sensitivity of 32 dB/MPa, while a low temperature cross-sensitivity of 0.27 KPa/°C. Hence it may have potential for pressure applications in harsh environment.

  12. Broadband High-Resolution Spectroscopy with Fabry-Perot Quantum Cascade Lasers

    NASA Astrophysics Data System (ADS)

    Wang, Yin; Wysocki, Gerard

    2014-06-01

    Simultaneous spectroscopic detection of large molecules with broad ro-vibrational spectra, and small molecules with well-resolved narrow spectral lines requires both broadband optical frequency coverage (>50 wn) and high resolution (<0.01 wn) to perform accurate spectral measurements. With the advent of room temperature, high power, continuous wave quantum cascade lasers (QCLs), high resolution mid-IR spectrometers for field applications became feasible. So far to address the broadband spectral coverage, external cavity (EC) QCLs with >100 wn tuning ranges have been spectroscopic sources of choice in the mid-IR; however EC-QCLs are rather complex opto-mechanical systems, which are vibration-sensitive, and construction of robust transportable systems is difficult. In this work we present a new method of performing broadband mid-IR spectroscopy using two free-running Fabry-Perot (FP) QCLs to perform multi-heterodyne down-conversion of optical signals to RF domain. The sample transmission spectrum probed by one multi-mode FP-QCL is down-converted to the RF domain through an optical multi-heterodyne process using a second FP-QCL as the local oscillator. Both a broadband multi-mode spectral measurement as well as high-resolution ( 15 MHz or 0.0005 wn) absorption spectroscopy of NH3 and N2O are demonstrated and show potential for all-solid-state FP-laser-based spectrometers for chemical sensing. Y. Wang, M. G. Soskind, W. Wang, and G. Wysocki, "High-resolution multi-heterodyne spectroscopy based on Fabry-Perot quantum cascade lasers," Appl Phys Lett 104, 0311141-0311145 (2014)

  13. Continuous-Wave Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking Using Feedback from a Fiber Bragg Grating

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1998-01-01

    Single-frequency operation of uncoated Fabry-Perot laser diodes is demonstrated by phase- locking the laser oscillations through self-injection seeding with feedback from a fiber Bragg grating. By precisely tuning the laser temperature so that an axial-mode coincides with the short-wavelength band edge of the grating, the phase of the feedback is made conjugate to that of the axial mode, locking the phase of the laser oscillations to that mode.

  14. The VELOPT code for estimating performance of a Fabry-Perot velocimeter

    SciTech Connect

    Goosman, D.R.

    1992-04-09

    The VELOPT code calculates an estimate of the performance of a Fabry- Perot (FP) velocimeter. The code is a macro-driven, Symphony spreadsheet written for an IBM PC. VELOPT is designed to be used in conjunction with the POWER codes, which estimate the amount of light entering a collection fiber and the ratio of collected light to light leaving the laser fiber. In this model a velocimeter system, single- frequency laser output illuminates a moving test surface through a lens. Reflected light from the test surface is concentrated by a lens into an optical collection fiber. The collected light is presented to a mode scrambler, a cylinder lens, a filter, and then to a striped Fabry-Perot interferometer (FPI). Light leaving the FPI is imaged via spherical lenses and one mirror onto the slit of an electronic streak camera. The image is intensified within the camera, and then is recorded on film. VELOPT takes 47 user inputs that describe the FP velocimeter system. The primary outputs from the code include the following estimates for each of the first four fringes: Energy per unit area reaching the film; optical density expected on both Polaroid 667 and TMAX3200 films; velocity and time resolution; and statistical smoothness of the streak records. Twenty-six other secondary output quantities for each fringe are also calculated. The finesse limitation due to the finite size of the mirrors is calculated in detail by the routine WALKOFF, which is internal to VELOPT. An estimate of the reduction in effective fill time of the FPI due to the finite spatial resolution of the streak camera is also calculated by VELPOPT.

  15. The VELOPT code for estimating performance of a Fabry-Perot velocimeter

    NASA Astrophysics Data System (ADS)

    Goosman, D. R.

    1992-04-01

    The VELOPT code calculates an estimate of the performance of a Fabry-Perot (FP) velocimeter. The code is a macro-driven, Symphony spreadsheet written for an IBM PC. VELOPT is designed to be used in conjunction with the POWER codes, which estimate the amount of light entering a collection fiber and the ratio of collected light to light leaving the laser fiber. In this model a velocimeter system, single-frequency laser output illuminates a moving test surface through a lens. Reflected light from the test surface is concentrated by a lens into an optical collection fiber. The collected light is presented to a mode scrambler, a cylinder lens, a filter, and then to a striped Fabry-Perot interferometer (FPI). Light leaving the FPI is imaged via spherical lenses and one mirror onto the slit of an electronic streak camera. The image is intensified within the camera, and then is recorded on film. VELOPT takes 47 user inputs that describe the FP velocimeter system. The primary outputs from the code include the following estimates for each of the first four fringes: Energy per unit area reaching the film; optical density expected on both Polaroid 667 and TMAX3200 films; velocity and time resolution; and statistical smoothness of the streak records. Twenty-six other secondary output quantities for each fringe are also calculated. The finesse limitation due to the finite size of the mirrors is calculated in detail by the routine WALKOFF, which is internal to VELOPT. An estimate of the reduction in effective fill time of the FPI due to the finite spatial resolution of the streak camera is also calculated by VELPOPT.

  16. A novel Michelson Fabry-Perot hybrid interference sensor based on the micro-structured fiber

    NASA Astrophysics Data System (ADS)

    Zhang, Yaxun; Zhang, Yu; Wang, Zhenzhen; Liu, Zhihai; Wei, Yong; Zhao, Enming; Yang, Xinghua; Zhang, Jianzhong; Yang, Jun; Yuan, Libo

    2016-09-01

    We propose and demonstrate a novel Michelson Fabry-Perot hybrid fiber interference sensor. By integrating a Michelson interferometer in a two-core fiber and a Fabry-Perot interferometer in a micro silica-capillary, we produce the Michelson Fabry-Perot hybrid interference sensor. Owing to the structure characteristic of the micro-structured fiber, this hybrid fiber interference sensor can achieve the measurement of the axial strain and radial bending simultaneously. The measurement sensitivity of the axial train is 0.015 nm/με and the measurement sensitivity of the radial bending is 1.393 nm/m-1.

  17. Focused ion beam post-processing of optical fiber Fabry-Perot cavities for sensing applications.

    PubMed

    André, Ricardo M; Pevec, Simon; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Marques, Manuel B; Donlagic, Denis; Bartelt, Hartmut; Frazão, Orlando

    2014-06-01

    Focused ion beam technology is combined with chemical etching of specifically designed fibers to create Fabry-Perot interferometers. Hydrofluoric acid is used to etch special fibers and create microwires with diameters of 15 μm. These microwires are then milled with a focused ion beam to create two different structures: an indented Fabry-Perot structure and a cantilever Fabry-Perot structure that are characterized in terms of temperature. The cantilever structure is also sensitive to vibrations and is capable of measuring frequencies in the range 1 Hz - 40 kHz. PMID:24921506

  18. Superconducting electromagnetic actuators for astronomical Fabry-Perot interferometers

    NASA Technical Reports Server (NTRS)

    Nishimura, T.; Low, F. J.; Shivanandan, K.

    1985-01-01

    Two types of superconducting electromagnetic actuators linear and angular - for precise control of Fabry-Perot spectrometer etalons at liquid helium temperature were manufactured and tested successfully. The linear displacement unit (45 Newtons/Amp) has maximum travel of + or - 44 microns with off-axis deviation of less than 1.5 arcseconds for 15 microns path. The angular unit has maximum tilt of + or - 8 arcminutes and can maintain parallelism of two etalons to better than 0.3 arcsecond of angle by compensating the differential contraction upon cooling and off-axis deviation of the linear displacement unit. These actuators are proving especially useful in low temperature infrared instrumentation where other choices, such as piezoelectric crystals, fail and where essentially zero power dissipation permits low infrared backgrounds to be maintained along with long cryogenic lifetimes.

  19. Intrinsic Fabry-Perot optical fiber sensors and their multiplexing

    DOEpatents

    Wang, Anbo

    2007-12-11

    An intrinsic Fabry-Perot optical sensor includes a thin film sandwiched between two fiber ends. When light is launched into the fiber, two reflections are generated at the two fiber/thin film interfaces due to a difference in refractive indices between the fibers and the film, giving rise to the sensor output. In another embodiment, a portion of the cladding of a fiber is removed, creating two parallel surfaces. Part of the evanescent fields of light propagating in the fiber is reflected at each of the surfaces, giving rise to the sensor output. In a third embodiment, the refractive index of a small portion of a fiber is changed through exposure to a laser beam or other radiation. Interference between reflections at the ends of the small portion give rise to the sensor output. Multiple sensors along a single fiber are multiplexed using an optical time domain reflectometry method.

  20. Fourier transform spectrometer based on Fabry-Perot interferometer.

    PubMed

    Al-Saeed, Tarek A; Khalil, Diaa A

    2016-07-10

    We analyze the Fourier transform spectrometer based on a symmetric/asymmetric Fabry-Perot interferometer. In this spectrometer, the interferogram is obtained by recording the intensity as a function of the interferometer length. Then, we recover the spectrum by applying the discrete Fourier transform (DFT) directly on the interferogram. This technique results in spectral harmonic overlap and fictitious wavenumber components outside the original spectral range. For this purpose, in this work, we propose a second method to recover the spectrum. This method is based on expanding the DFT of the interferogram and the spectrum by a Haar or box function. By this second method, we recovered the spectrum and got rid of the fictitious spectral components and spectral harmonic overlap. PMID:27409306

  1. HTS Fabry-Perot resonators for the far infrared

    SciTech Connect

    Keller, P.; Prenninger, M.; Pechen, E.V.; Renk, K.F.

    1996-12-31

    The authors report on far infrared (FIR) Fabry-Perot resonators (FPR) with high temperature superconductor (HTS) thin films as mirrors. For the fabrication of FPR they use two parallel MgO plates covered with YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} thin films on adjacent sides. They have measured the far-infrared transmissivity at 10 K with a Fourier transform infrared spectrometer. Very sharp resonances can be observed for frequencies below 6 THz where the MgO is transparent. The finesse (width of the first order resonance) is comparable to the FPR with metallic meshes as reflectors that are applied in the FIR spectroscopy and astronomy. They have also shown that thin films of gold are not an adequate substitute to HTS thin films and not suitable for the fabrication of high-quality FPR due to the ohmic losses.

  2. Photoacoustic imaging using an 8-beam Fabry-Perot scanner

    NASA Astrophysics Data System (ADS)

    Huynh, Nam; Ogunlade, Olumide; Zhang, Edward; Cox, Ben; Beard, Paul

    2016-03-01

    The planar Fabry Perot (FP) photoacoustic scanner has been shown to provide exquisite high resolution 3D images of soft tissue structures in vivo to depths up to approximately 10mm. However a significant limitation of current embodiments of the concept is low image acquisition speed. To increase acquisition speed, a novel multi-beam scanner architecture has been developed. This enables a line of equally spaced 8 interrogation beams to be scanned simultaneously across the FP sensor and the photoacoustic signals detected in parallel. In addition, an excitation laser operating at 200Hz was used. The combination of parallelising the detection and the high pulse repetition frequency (PRF) of the excitation laser has enabled dramatic reductions in image acquisition time to be achieved. A 3D image can now be acquired in 10 seconds and 2D images at video rates are now possible.

  3. Micromachined fiber optic Fabry-Perot underwater acoustic probe

    NASA Astrophysics Data System (ADS)

    Wang, Fuyin; Shao, Zhengzheng; Hu, Zhengliang; Luo, Hong; Xie, Jiehui; Hu, Yongming

    2014-08-01

    One of the most important branches in the development trend of the traditional fiber optic physical sensor is the miniaturization of sensor structure. Miniature fiber optic sensor can realize point measurement, and then to develop sensor networks to achieve quasi-distributed or distributed sensing as well as line measurement to area monitoring, which will greatly extend the application area of fiber optic sensors. The development of MEMS technology brings a light path to address the problems brought by the procedure of sensor miniaturization. Sensors manufactured by MEMS technology possess the advantages of small volume, light weight, easy fabricated and low cost. In this paper, a fiber optic extrinsic Fabry-Perot interferometric underwater acoustic probe utilizing micromachined diaphragm collaborated with fiber optic technology and MEMS technology has been designed and implemented to actualize underwater acoustic sensing. Diaphragm with central embossment, where the embossment is used to anti-hydrostatic pressure which would largely deflect the diaphragm that induce interferometric fringe fading, has been made by double-sided etching of silicon on insulator. By bonding the acoustic-sensitive diaphragm as well as a cleaved fiber end in ferrule with an outer sleeve, an extrinsic Fabry-Perot interferometer has been constructed. The sensor has been interrogated by quadrature-point control method and tested in field-stable acoustic standing wave tube. Results have been shown that the recovered signal detected by the sensor coincided well with the corresponding transmitted signal and the sensitivity response was flat in frequency range from 10 Hz to 2kHz with the value about -154.6 dB re. 1/μPa. It has been manifest that the designed sensor could be used as an underwater acoustic probe.

  4. Nanoporous Zeolite Thin Film-Based Fiber Intrinsic Fabry-Perot Interferometric Sensor for Detection of Dissolved Organics in Water

    PubMed Central

    Liu, Ning; Hui, Juan; Sun, Cunqiang; Dong, Junhang; Zhang, Luzheng; Xiao, Hai

    2006-01-01

    A fiber optic intrinsic Fabry-Perot interferometric (IFPI) chemical sensor was developed by fine-polishing a thin layer of polycrystalline nanoporous MFI zeolite synthesized on the cleaved endface of a single mode fiber. The sensor operated by monitoring the optical thickness changes of the zeolite thin film caused by the adsorption of organic molecules into the zeolite channels. The optical thickness of the zeolite thin film was measured by white light interferometry. Using methanol, 2-propanol, and toluene as the model chemicals, it was demonstrated that the zeolite IPFI sensor could detect dissolved organics in water with high sensitivity.

  5. A switchable dual-wavelength fiber laser based on asymmetric fiber Bragg grating Fabry-Perot cavity with a SESAM

    NASA Astrophysics Data System (ADS)

    Huang, Kaiqiang; Li, Qi; Chen, Haiyan

    2016-04-01

    A switchable dual-wavelength fiber laser with an asymmetric fiber Bragg grating (FBG)-Fabry-Perot (FP) cavity based a semiconductor saturable absorber mirror (SESAM) is proposed and experimentally demonstrated. The proof of concept device consists of a FGB laser with an asymmetric FBG-FP cavity, a SESAM as mode loss modulator, and a intracavity FBG as wavelength selector by changing its operation temperature. The results demonstrate the new concept of dual-wavelength fiber laser based SESAM with asymmetric FBG-FP cavity and the technical feasibility.

  6. Demonstrations Using a Fabry-Perot. I. Multiple-Slit Interference

    ERIC Educational Resources Information Center

    Roychoudhuri, Chandrasekhar

    1975-01-01

    Describes a demonstration technique for showing multiple-slit interference patterns with the use of a Fabry-Perot etalon and a laser beam. A simple derivation of the analytical expression for such fringes is presented. (Author/CP)

  7. Compact imaging spectrometer combining Fourier transform spectroscopy with a Fabry-Perot interferometer.

    PubMed

    Pisani, Marco; Zucco, Massimo

    2009-05-11

    An imaging spectrometer based on a Fabry-Perot interferometer is presented. The Fabry-Perot interferometer scans the mirror distance up to contact and the intensity modulated light signal is transformed using a Fourier Transform based algorithm, as the Michelson based Fourier Transform Spectrometers does. The resulting instrument has the advantage of a compact, high numerical aperture, high luminosity hyperspectral imaging device. Theory of operation is described along with one experimental realization and preliminary results. PMID:19434165

  8. High-precision velocimetry: optimization of a fabry-perot interferometer.

    PubMed

    Courteville, A; Salvadé, Y; Dändliker, R

    2000-04-01

    We present the optimization of a Fabry-Perot velocimeter designed to measure speed at a few millimeters per second with a relative uncertainty of 10(-8). We focus on the accuracy and the optimization of the Fabry-Perot, with a review of the uncertainties related to the geometry, the beam shape, and the Doppler frequency measurement. These errors are quantified to ensure that the required accuracy is reached. We then describe the practical implementation and show the results. PMID:18345045

  9. Method and apparatus for a Fabry-Perot multiple beam fringe sensor

    NASA Technical Reports Server (NTRS)

    James, Kenneth A. (Inventor); Quick, William H. (Inventor); Strahan, Virgil H. (Inventor)

    1986-01-01

    A method and, in one embodiment of the invention, the resulting apparatus for implementing a unique multiple beam fringe sensor that is adapted to be interfaced with a low cost, compact fiber optic transmission system in order to provide an accurate digital representation of a physical parameter (e.g. temperature) of a remote sample. The sensor is fabricated so as to include a Fabry-Perot gap formed between the ends of two mated optical fibers. By examining the optical characteristics of light that is transmitted through the Fabry-Perot sensor gap, an indication of gap width can be ascertained. Accordingly, a change in Fabry-Perot sensor gap width is related to a change in the particular physical parameter to be measured. In another embodiment of the invention, a second unique multiple beam fringe sensor having a Fabry-Perot gap is disclosed that is also adapted to provide an accurate digital representation of a physical parameter (e.g. temperature) of a remote sample. The sensor may be fabricated in two segments. A fiber containing segment includes each of a driving optical fiber for supplying incident light signals to the Fabry-Perot gap and a sensing optical fiber for receiving output light signals that have been transmitted twice through the Fabry-Perot gap, the optical characteristics of which output signals provide an indication of the parameter to be sensed. A transducer segment includes the Fabry-Perot gap formed therein and means responsive to the physical parameter for changing the width of the Fabry-Perot gap and, accordingly, the optical characteristics of the light signals passing therethrough.

  10. Tunable Fabry-Perot filter and grating hybrid modulator to improve dispersive spectrometer resolution

    NASA Astrophysics Data System (ADS)

    Fang, Liang; Li, Guojun; Yang, Huan; Zhou, Chongxi

    2016-05-01

    We describe a tunable Fabry-Perot filter and grating hybrid modulator to achieve a higher spectral resolution compared with that produced by a single grating with the same period. In the hybrid modulator, a tunable Fabry-Perot filter is designed with a long cavity to accommodate a multi-order narrowband pre-filter. A grating is then utilized to separate these multi-orders spatially. Scanning the air gap of the tunable Fabry-Perot filter within 1/2 wavelength, the entire spectrogram can be achieved by compositing each group of transmitted multi-orders. Light passes first through the Fabry-Perot cavity and then into the grating. Thus, all of the light is incident on the Fabry-Perot cavity at a given angle, which can reduce the requirement for incident beam alignment and simplify the operation of the hybrid modulator. The structural matching conditions of the tunable Fabry-Perot filter and grating were presented based on the operating law of the hybrid modulator. In terms of the Rayleigh criterion, the practical spectral resolution of the hybrid modulator can be increased by at least twice that of the single grating. Experiments with a neon lamp revealed that the spectral resolution of the hybrid modulator was nearly double that of a single grating.

  11. Influence of intensity loss in the cavity of a folded Fabry-Perot interferometer on interferometric signals

    SciTech Connect

    Shyu, Lih-Horng; Chang, Chung-Ping; Wang, Yung-Cheng

    2011-06-15

    Fabry-Perot interferometer is often used for the micro-displacement, because of its common optical path structure being insensitive to the environmental disturbances. Recently, the folded Fabry-Perot interferometer has been investigated for displacement measurements in large ranges. The advantages of a folded Fabry-Perot interferometer are insensitive to the tilt angle and higher optical resolution. But the design of the optical cavity has become more and more complicated. For this reason, the intensity loss in the cavity will be an important parameter for the distribution of the interferometric intensity. To obtain a more accurate result of such interferometer utilized for displacement measurements, the intensity loss of the cavity in the fabricated folded Fabry-Perot interferometer and the modified equation of the folded Fabry-Perot interferometer will be described. According to the theoretical and experimental results, the presented model is available for the analysis of displacement measurements by a folded Fabry-Perot interferometer.

  12. Evaluation of a Magneto-optical Filter and a Fabry-perot Interferometer for the Measurement of Solar Velocity Fields from Space

    NASA Technical Reports Server (NTRS)

    Rhodes, E. J., Jr.; Cacciani, A.; Blamont, J.; Tomczyk, S.; Ulrich, R. K.; Howard, R. F.

    1984-01-01

    A program was developed to evaluate the performance of three different devices as possible space-borne solar velocity field imagers. Two of these three devices, a magneto-optical filter and a molecular adherence Fabry-Perot interferometer were installed in a newly-constructed observing system located at the 60-foot tower telescope at the Mt. Wilson Observatory. Time series of solar filtergrams and Dopplergrams lasting up to 10 hours per day were obtained with the filter while shorter runs were obtained with the Fabry-Perot. Two-dimensional k (sub h)-omega power spectra which show clearly the well-known p-mode ridges were computed from the time series obtained with the magneto-optical filter. These power spectra were compared with similar power spectra obtained recently with the 13.7-m McMath spectrograph at Kitt Peak.

  13. GIFS Imaging Fabry--Perot Spectrometer: Measurement Technique and Intercomparison

    NASA Astrophysics Data System (ADS)

    Demajistre, R.; Yee, J.; Swartz, W. H.; Kelly, M. A.; Pitts, M. C.; Hostetler, C. A.

    2008-05-01

    A Geostationary Imaging Fabry--Perot Spectrometer (GIFS) prototype instrument has been developed and tested during a recent NASA P3B aircraft field campaign based at NASA/Wallops (Jan--Feb 2008). GIFS is a very high- resolution imaging spectrometer that resolves individual molecular oxygen lines for the inference of cloud height and other properties. Cloud properties are inferred by accurate measurement of the line shape of the backscattered light incident on the instrument. In particular, the line shape contains a record of the pressure broadening that occurs along the multiply scattered path of the light reaching the instrument. We present our initial analysis of the data collected during this campaign. We have identified several representative cases of cloud scenes in the dataset to validate the measurement concept. These cases include cloud-free measurements made over open ocean and thick unbroken cloud decks in areas where coincident high-precision cloud measurements are available from the NASA/Langley LIDAR onboard the Langley B200 research aircraft and CALIPSO. The data for these cases are analyzed in the context of standard radiation field modeling and instrument optical performance taken both during the flight and on the ground.

  14. Fabry-Perot Interferometer for Column CO2

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Kawa, Randolph; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    Global atmospheric CO2 measurements are essential to resolving significant discrepancies in our understanding of the global carbon budget and, hence, humankind's role in global climate change. The science measurement requirements for CO2 are extremely demanding (precision approx. 0.3%). No atmospheric chemical species has ever been measured from space with this precision. We are developing a novel application of a Fabry-Perot interferometer to detect spectral absorption of reflected sunlight by CO2 and O2 in the atmosphere. Preliminary design studies indicate that the method will be able to achieve the sensitivity and signal-to-noise detection required to measure column CO2 at the target specification. The objective of this program is to construct a prototype instrument for deployment on an aircraft to test the instrument performance and our ability to retrieve the data in the real atmosphere. To date we have assembled a laboratory bench system to begin testing the optical and electronic components. We are also measuring signal and noise levels in actual sunlight to evaluate component performance.

  15. Fabry-Perot Interferometer for Column CO2: Airborne

    NASA Technical Reports Server (NTRS)

    Kawa, S. R.; Heaps, W. S.; Mao, J.; Andrews, A. E.; Burris, J. F.; Miodek, M.; Georgieva, E.

    2002-01-01

    Global atmospheric CO2 measurements are essential to resolving significant discrepancies in our understanding of the global carbon budget and, hence, humankind's role in global climate change. The science measurement requirements for CO2 are, however, extremely demanding (precision approximately 0.3%). We are developing a novel application of a Fabry-Perot interferometer to detect spectral absorption of reflected sunlight by CO2 and O2 in the atmosphere that should be able to achieve sufficient sensitivity and signal-to-noise to measure column CO2 at the target specification. We are currently constructing a prototype instrument for deployment on aircraft. The aircraft version will measure total column CO2 and CO2 below the aircraft as well as O2, which allows normalization of CO2 column amounts for varying surface height and pressure. This instrument will be a valuable asset in carbon budget field studies as well as a useful tool for evaluating existing and future space-based CO2 measurements. We will present the instrument concept, sensitivity calculations, and the results of testing a bench system in the laboratory and outdoors on the ground. We will also discuss our plan for deployment on the aircraft and potential flight applications to the CO2 budget problem.

  16. Optical fiber Fabry-Perot interferometer for microorganism growth detection

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohui; Jiang, Mingshun; Sui, Qingmei; Luo, Shuyang; Geng, Xiangyi

    2016-07-01

    An optical fiber Fabry-Perot interferometer (FPI) based on hollow-core photonic crystal fiber (HCPCF) for microorganism growth detection is proposed and demonstrated. The FPI is formed by splicing both ends of a short section of HCPCF to SMFs and cleaving the SMF pigtail to a proper length. By measuring the fringe contrast of interference pattern, the refractive index (RI) changes of analyte during microorganism growth can be obtained. RI response of the sensor was investigated theoretically and experimentally. It shows linear response with sensitivity of -136 dB/RIU and good repeatability. Temperature response was also tested and the result confirms the low temperature cross-sensitivity of the sensor. Detection of yeast growth in liquid medium by the FPI sensor was conducted and the result shows the characteristic of typical yeast growth curve. With its advantages of high RI sensitivity, low temperature cross-sensitivity, capability for real-time measurement and so on, this FPI sensor has great potential in biosensing.

  17. Fabry-Perot Interferometer for Column CO2

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Kawa, S. Randolph; Krebs, Carolyn A. (Technical Monitor)

    2002-01-01

    Global atmospheric CO2 measurements are essential to resolving significant discrepancies in our understanding of the global carbon budget and, hence, humankind's role in global climate change. The science measurement requirements for CO2 are extremely demanding (precision is less than .3%). No atmospheric chemical species has ever been measured from space with this precision. We are developing a novel application of a Fabry-Perot interferometer to detect spectral absorption of reflected sunlight by CO2 and O2 in the atmosphere. Preliminary design studies indicate that the method will be able to achieve the sensitivity and signal-to-noise detection required to measure column CO2 at the target specification. The objective of this program is to construct a prototype instrument for deployment on an aircraft to test the instrument performance and our ability to retrieve the data in the real atmosphere. To date we have assembled a laboratory bench system to begin testing the optical and electronic components. We are also undertaking some measurements of signal and noise levels for actual sunlight reflecting from the ground in order to evaluate the potential of some components to meet the exacting requirements of this measurement.

  18. Design of broadband dielectric coatings for near-infrared Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Wang, Jinfeng; Mao, Weijun; Cui, Xiangqun

    2007-12-01

    Fabry-Perot interferometer has an important effect on near-infrared high spectral resolution spectrograph. In 1896, Ch. Fabry and Alfred Perot designed and used the Fabry-Perot interferometer for the first time. Since then the instruments using Fabry-Perot interference phenomena have been applied broadly to multi-field, such as astronomy, laser, and fiber-optic transmission. Fabry-Perot interferometer has many advantages such as narrow passband, high spectral resolution, high throughput, easy wave-length adjustment, simple structure and large aperture. Comparing with traditional visible light, the solar observation in near-infrared has many advantages: for example, weaker magnetic field strength can be more precisely measured with near-infrared spectrum .So developing the key technology of near-infrared high spectral resolution spectrograph--Fabry-Perot interferometer has become urgent. For developing near-infrared Fabry-Perot interferometer, there are four difficulties: producing high quality optical plane: peak-to-valley surface flatness better than λ/100 coating Fabry-Perot interferometer plates with broadband multilayer dielectric films(including spectrum performance, thickness uniformity and stress effects); controlling the distance of interference cavity; keeping constant temperature. In this paper, the process of designing broadband dielectric reflective and antireflective coatings applied in near-infrared Fabry-Perot is described and some problems of designing Fabry-Perot interferometer are discussed: the design of broadband dielectric mirror is described with reflectivity of 93.9+/-1.0% over spectral ranges from 1.0μm to 1.7μm by reflective phase shifts in the design of mirror coating, computing the required film thickness uniformity atλ/100 of peak-to-valley surface flatness; degradation of surface figure is perhaps more thanλ/100 even if the soft coating materials-zinc sulfide and cryolite are used, and in order to reduce the degradation of surface

  19. A novel single frequency stabilized Fabry-Perot laser diode at 1590 nm for gas sensing

    NASA Astrophysics Data System (ADS)

    Weldon, Vincent; Boylan, Karl; Corbett, Brian; McDonald, David; O'Gorman, James

    2002-09-01

    A novel single frequency stabilized Fabry-Perot (SFP) laser diode with an emission wavelength of λ=1590 nm for H 2S gas sensing is reported. Sculpting of the multi-mode spectral distribution of a FP laser to achieve single frequency emission is carried out using post growth photolitographic processing of the device. The resulting longitudinal-mode controlled FP laser has a stabilized single frequency emission with a side mode suppression ratio (SMSR) of 40 dB. The application of this device to spectroscopic based H 2S sensing is demonstrated by targeting absorption lines in the wavelength range 1588≤ λ≤1591 nm. Using wavelength modulation spectroscopy (WMS), a low detection limit of 120 ppm.m.Hz -1/2 was estimated while targeting the absorption line at 1590.08 nm. These initial results demonstrate the potential of the stabilized FP laser diode at this wavelength as a tunable, single frequency source for spectroscopic based gas sensing.

  20. Resolution improvement of grating spectrometer by using a tunable Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    Fang, Liang; Shi, Zhendong; Qiu, Chuankai; Zhou, Chongxi

    2015-10-01

    Aiming at the problem of the resolution reduction in a miniaturized grating spectrometer, we presented a method to improve its spectral resolution by inserting a tunable Fabry-Perot filter into its optical path before the grating. The Fabry-Perot filter was designed to filter out a partial spectrogram and separate the original undistinguishable spectral lines so as to make their actual wavelengths can be detected. The different cavity length of the Fabry-Perot filter is corresponding to the different separated partial spectrogram. Combining all the separated partial spectrograms, an entire spectrogram with improved resolution can be achieved. Experimentally, the spectral resolution of a grating dispersive system was improved from 2 nm to 1.2nm in a broad spectral range by insetting a homemade tunable Fabry-Perot filter, which demonstrated the feasibility of this scheme. The tunable Fabry-Perot filter is fit for miniaturization by using MEMS technology and is able to work as an independent module. The method proposed provides a potential way to improve the spectral resolution without reducing the spectral range of the existing miniaturized grating spectrometers.

  1. Study on the structure of bridge surface of the micro Fabry-Perot cavity tunable filter

    NASA Astrophysics Data System (ADS)

    Meng, Qinghua; Luo, Huan; Bao, Shiwei; Zhou, Yifan; Chen, Sihai

    2011-02-01

    Micro Fabry-Perot cavity tunable filters are widely applied in the area of Pushbroom Hyperspectral imaging, DWDM optical communication system and self-adaptive optics. With small volume, lower consumption and cost, the Micro Fabry-Perot cavity tunable filter can realize superior response speed, large spectral range, high definition and high reliability. By deposition metal membrane on silicon chip by MEMS technology, the micro Fabry-Perot cavity has been achieved, which is actuated by electrostatic force and can realize the function of an optical filter. In this paper, the micro-bridge structure of the micro Fabry-Perot cavity tunable filter has been studied. Finite element analysis software COMSOL Multiphysics has been adopted to design the structure of the micro-bridge of the micro filter. In order to simulate the working mechanism of the micro Fabry-Perot cavity and study the electrical and mechanical characteristics of the micro tunable filter,the static and dynamic characteriastics are analyzed, such as stress, displacement, transient response, etc. The corresponding parameters of the structure are considered as well by optimizition the filter's sustain structure.

  2. Phase modulating two Fabry-Perot interferometry and its application to nanometrology

    NASA Astrophysics Data System (ADS)

    Gou, Bin; Zhu, Lei; Miao, Jian; Huang, Yu; Wei, Tao; Zhu, Ruogu

    2010-10-01

    We discuss how to expend the SPM of double beam interferometer to multi-beam interferometer or Fabry-Perot interferometer and deduce the corresponding theoretical results in this paper. Besides the introduction section 1 the principle of Fabry-Perot interferometer and how to simplify the representation of its intensity are described in section 2. Two typical conditions such as (1) nearby the maximum and fineness coefficient F, the light phase θ satisfied the condition F sin2θ < 1 or (2) offset the maximum and F θ satisfied the condition F sin2θ > 1 considered. Phase modulating Fabry-Perot interferometry and theoretical results for 1, ramp, 2, saw teeth, 3, sinusoidal voltage modulating or SPM Fabry-Perot interferometer are deduced in section 3. It should be noted that the construction of double Fabry-Perot interferometer for nanometrology and the experimental results are stated in section 4. Our measurement resolution could be arrived in <0.3nm using the method of time space difference.

  3. Spectral imaging characterization of MOEM tunable Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam

    2012-03-01

    A miniature MOEM tunable Fabry-Perot (FP) filter development program to fabricate filters operating over spectral regions from the visible to the longwave infrared has recently succeeded in fabricating filters operating over visible/near infrared wavelength region from 400 to 800 nm. The main objective of this program is to design miniature hyperspectral imagers by placing such a miniature tunable FP filter in front of a commercial focal plane array with a suitable optical train. This novel MOEM filter design is based on using two semitransparent 30-nm thick silver-film mirrors-one fixed and one moving with application of an electrostatic force. The silver films were grown on low-cost thin commercial quartz wafers with low total thickness variation. The moving mirror is held in place by three leaf spring arm structures which were fabricated by wet etching of the quartz substrate. The size of the MOEM device is 18×24 mm2. The tunable FP filter has a 6-mm optical aperture. The fixed part has three electrodes to apply voltages and the moving mirror is used as a ground electrode. Au bumps were deposited in both parts in order to control the initial air gap distance and an Au-Au bonding was used to bond the two parts together. The electrostatic actuation changes the spacing between the two mirrors which changes the transmitted wavelength. The spectral imaging performance of MOEM filter was characterized using a tunable source and a CCD camera with suitable optics. This paper describes the MOEM filter, its characteristics and present spectral imaging characterization experiment and results.

  4. Gamma radiation resistant Fabry-Perot fiber optic sensors

    NASA Astrophysics Data System (ADS)

    Liu, Hanying; Miller, Don W.; Talnagi, Joseph

    2002-08-01

    The Nuclear Regulatory Commission (NRC) in 1998 completed a study of emerging technologies that could be applicable to measurement systems in nuclear power plants [H. M. Hashemian [et al.], "Advanced Instrumentation and Maintenance Technologies for Nuclear Power Plants," NUREG/CR-5501 (1998)]. This study concluded that advanced fiber optic sensing technology is an emerging technology that should be investigated. It also indicated that there had been very little research related to performance evaluation of fiber optic sensors in nuclear plant harsh environments, although substantial research has been performed on nuclear radiation effects on optical fibers in the last two decades. A type of Fabry-Perot fiber optic temperature sensor, which is manufactured by Fiso Technologies in Canada, is qualified to be a candidate for potential applications in nuclear radiation environment due to its unique signal processing technique and its resistance to power loss. The gamma irradiation effects on this type of sensors are investigated in this article. Two sensors were irradiated in a gamma irradiation field and one of them was irradiated up to a total gamma dose of 133 Mrad. The sensor on-line performance was monitored during each gamma irradiation test. Furthermore, the sensor static and dynamic performance before and after each irradiation test were evaluated according to the Standard ISA-dS67.06.01 ("Performance Monitoring for Nuclear Safety-Related Instrument Channels in Nuclear Power Plants", Standard ISA-dS67.06.01, Draft 7, Instrument Society of America, 1999). Although several abnormal phenomena were observed, analysis shows that gamma irradiation is not accredited to the abnormal behavior, which implies that this type of sensor is suitable to a gamma irradiation environment with a high gamma dose.

  5. Wavelength calibration with Fabry Perot Interferometers - yes we can!

    NASA Astrophysics Data System (ADS)

    Franziskus Bauer, Florian; Zechmeister, Mathias; Reiners, Ansgar

    2015-08-01

    Hollow-cathode lamps (HCLs) are used as default wavelength standard for spectroscopic measurements but have a number of well-known shortcomings. Advancing to cm/s precision in radial velocity experiments requires more stable calibration sources with more uniform line distributions. Fabry Perot Interferometers (FPI) are a practical alternative with a well-suited line distribution at relatively low cost. We present a simple method to characterize FPIs using standard HCLs and including the FPI spectrum in the wavelength calibration process. We propose to use the HCL wavelength solution to define a rough wavelength scale that is used to approximate the FPI peak positions. We assume that the FPI mirror distance is a smooth function of wavelength and utilize the large number of FPI peaks (typically 10^4) to consistently model all FPI peak wavelengths. With this approach, we anchor the dense FPI lines with the absolute HCL-scale combining their precision and accuracy. We test our method with the HARPS spectrograph and compare our wavelength calibration to one derived from a laser frequency comb (LFC) spectrum. Our combined HCL/FPI wavelength calibration removes the known, large-amplitude distortions of 50 m/s that occur in the HCL solution. Direct comparison with the LFC solution bears only small differences between the LFC and the HCL/FPI solutions and demonstrates that the HCL/FPI solution can overcome the most important shortcomings in HCL wavelength solutions. An FPI can provide an economical alternative to LFCs in particular for smaller projects.

  6. Multiplexed extrinsic Fabry-Perot interferometers and applications

    NASA Astrophysics Data System (ADS)

    Murphy, Kent A.; Bhatia, Vikram; Claus, Richard O.; Duncan, Paul G.; Jones, Mark E.; Grace, Jennifer L.; Greene, Jonathan A.; Tran, Tuan A.

    1995-09-01

    Extrinsic Fabry-Perot interferometric (EFPI) sensors have previously been demonstrated for relative strain and temperature measurements for smart structure applications. Inherent difficulties in the signal processing of these devices has created the need for absolute measurement capabilities. In this paper, we present an absolute measurement technique based upon white-light interferometric path matching. The system matches a reference gap to the sensing gap of an EFPI. When the difference of these two lengths is within the coherence length of the source, an intensity envelope is created in the system output. Determination of the corresponding path mismatch indicates the size of the sensor gap and hence strain can be determined. This measurement technique is capable of multiplexing an array of EFPI sensors and data will be presented demonstrating four multiplexed devices. Theoretical considerations for system optimization are also presented. As the only fiber-optic sensors subcontractor to Northrop Corporation on the Navy/Air Force-sponsored Smart Metallic Structures (SMS) program, Fiber & Sensor Technologies (F&S) is developing the optical fiber fatigue gage instrumentation for a multiplexed, in situ structural health monitoring system for aging aircraft. In March, 1995, F&S successfully demonstrated the system on a full-size F/A-18 wing-box spar fully instrumented with 12 of F&S' patented EFPI optical fiber strain gages. F&S is now in process of up-scaling the signal processing system in addition to the optics and intends to demonstrate a second generation multipoint sensor system capable of simultaneously monitoring strains at up to 60 different sites throughout the aircraft later in 1995 or early 1996.

  7. Application of High-Temperature Extrinsic Fabry-Perot Interferometer Strain Sensor

    NASA Technical Reports Server (NTRS)

    Piazza, Anthony

    2008-01-01

    In this presentation to the NASA Aeronautics Sensor Working Group the application of a strain sensor is outlined. The high-temperature extrinsic Fabry-Perot interferometer (EFPI) strain sensor was developed due to a need for robust strain sensors that operate accurately and reliably beyond 1800 F. Specifically, the new strain sensor would provide data for validating finite element models and thermal-structural analyses. Sensor attachment techniques were also developed to improve methods of handling and protecting the fragile sensors during the harsh installation process. It was determined that thermal sprayed attachments are preferable even though cements are simpler to apply as cements are more prone to bond failure and are often corrosive. Previous thermal/mechanical cantilever beam testing of EFPI yielded very little change to 1200 F, with excellent correlation with SG to 550 F. Current combined thermal/mechanical loading for sensitivity testing is accomplished by a furnace/cantilever beam loading system. Dilatometer testing has can also be used in sensor characterization to evaluate bond integrity, evaluate sensitivity and accuracy and to evaluate sensor-to-sensor scatter, repeatability, hysteresis and drift. Future fiber optic testing will examine single-mode silica EFPIs in a combined thermal/mechanical load fixture on C-C and C-SiC substrates, develop a multi-mode Sapphire strain-sensor, test and evaluate high-temperature fiber Bragg Gratings for use as strain and temperature sensors and attach and evaluate a high-temperature heat flux gauge.

  8. In vivo optical resolution photoacoustic microscopy using glancing angle-deposited nanostructured Fabry-Perot etalons.

    PubMed

    Hajireza, Parsin; Sorge, Jason; Brett, Michael; Zemp, Roger

    2015-04-01

    In this Letter, reflection-mode optical resolution photoacoustic microscopy (OR-PAM) using glancing angle-deposited (GLAD) nanostructured Fabry-Perot interferometers (FPI) for in vivo applications is reported. GLAD is a single-step physical vapor deposition (PVD) technique used to fabricate porous nanostructured thin films. Using titanium dioxide, a transparent semiconductor with a high refractive index (n=2.4), the GLAD technique can be employed to fabricate samples with tailored nano-porosity, refractive index periodicities, and high Q-factor reflectance spectra. The OR-PAM in vivo images of chorioallantoic membrane (CAM) of 5-day chicken embryo model are demonstrated. The phantom study shows lateral resolution and signal-to-noise ratio better than 7 μm and 35 dB, respectively. The sensitive GLAD FPI allows photoacoustic imaging down to a few-nJ pulse energy. To the best of our knowledge, this is the first time that a FPI-based reflection mode optical resolution photoacoustic imaging technique is demonstrated for in vivo applications. PMID:25831330

  9. Asymmetric tunable Fabry-Perot cavity using switchable polymer stabilized cholesteric liquid crystal optical Bragg mirror

    NASA Astrophysics Data System (ADS)

    Sathaye, Kedar S.; Dupont, Laurent; de Bougrenet de la Tocnaye, Jean-Louis

    2012-03-01

    Optical properties of an asymmetric Fabry-Perot (FP) cavity interferometer made up of a conventional metallic mirror and a polymer stabilized cholesteric liquid crystal (PSCLC) Bragg mirror have been investigated. The first FP cavity design comprises a gold mirror, an isotropic layer made up of the polymer glue, a quarter wave plate to convert the input linearly polarized modes into the circularly polarized modes inside the cavity, and the PSCLC Bragg mirror, all sandwiched between two indium tin oxide glass plates. The second FP cavity has a layer of conducting polymer deposited on the quarter-wave plate to apply the electric field only to the cholesteric stack. To have reflectivity above 95% in visible range we implement 30 layers of cholesteric liquid crystal in a planar Grandjean texture. The device compactness and the mirror parallelism due to the monolithic fabrication of FP are advantageous from the technical point of view. We test the FP tunability by shifting the resonance wavelength through an entire period; by applying electric field and/or by varying the temperature.

  10. Plasmon coupled Fabry-Perot lasing enhancement in graphene/ZnO hybrid microcavity.

    PubMed

    Li, Jitao; Jiang, Mingming; Xu, Chunxiang; Wang, Yueyue; Lin, Yi; Lu, Junfeng; Shi, Zengliang

    2015-01-01

    The response of graphene surface plasmon (SP) in the ultraviolet (UV) region and the realization of short-wavelength semiconductor lasers not only are two hot research areas of great academic and practical significance, but also are two important issues lacked of good understanding. In this work, a hybrid Fabry-Perot (F-P) microcavity, comprising of monolayer graphene covered ZnO microbelt, was constructed to investigate the fundamental physics of graphene SP and the functional extension of ZnO UV lasing. Through the coupling between graphene SP modes and conventional optical microcavity modes of ZnO, improved F-P lasing performance was realized, including the lowered lasing threshold, the improved lasing quality and the remarkably enhanced lasing intensity. The underlying mechanism of the improved lasing performance was proposed based on theoretical simulation and experimental characterization. The results are helpful to design new types of optic and photoelectronic devices based on SP coupling in graphene/semiconductor hybrid structures. PMID:25786359

  11. Rayleigh Scattering Measurements Using a Tunable Liquid Crystal Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Mielke-Fagan, Amy F.; Clem, Michelle M.; Elam, Kristie A.

    2010-01-01

    Spectroscopic Rayleigh scattering is an established flow diagnostic that has the ability to provide simultaneous density, velocity, and temperature measurements. The Fabry-Perot interferometer or etalon is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating these flow properties. This paper investigates the use of a tunable liquid crystal (LC) Fabry-Perot etalon in Rayleigh scattering experiments at NASA Glenn Research Center. The LC etalon provides a robust interferometry system that can be tuned rapidly by adjusting the voltage applied to the liquid crystal interface. Tuning the interferometer is often necessary to control the physical locations of the concentric interference fringes when Rayleigh light is imaged through the LC etalon. The LC etalon diagnostic system was tested in a 1-cm diameter nozzle flow in two different scattering configurations to evaluate its usefulness for Rayleigh measurements compared to a traditional non-tunable fused silica Fabry-Perot etalon.

  12. Use of PZT's for adaptive control of Fabry-Perot etalon plate figure

    NASA Technical Reports Server (NTRS)

    Skinner, WIlbert; Niciejewski, R.

    2005-01-01

    A Fabry Perot etalon, consisting of two spaced and reflective glass flats, provides the mechanism by which high resolution spectroscopy may be performed over narrow spectral regions. Space based applications include direct measurements of Doppler shifts of airglow absorption and emission features and the Doppler broadening of spectral lines. The technique requires a high degree of parallelism between the two flats to be maintained through harsh launch conditions. Monitoring and adjusting the plate figure by illuminating the Fabry Perot interferometer with a suitable monochromatic source may be performed on orbit to actively control of the parallelism of the flats. This report describes the use of such a technique in a laboratory environment applied to a piezo-electric stack attached to the center of a Fabry Perot etalon.

  13. Method and apparatus for a Fabry-Perot multiple beam fringe sensor

    NASA Technical Reports Server (NTRS)

    James, Kenneth A. (Inventor); Quick, William H. (Inventor); Strahan, Virgil H. (Inventor)

    1982-01-01

    A method and the resulting apparatus for implementing a unique multiple beam fringe sensor that is adapted to be interfaced with a low cost, compact fiber optic transmission system in order to provide an accurate digital representation of a physical parameter (e.g. temperature) of a remote sample. The sensor is fabricated so as to include a Fabry-Perot gap formed between the ends of two mated optical fibers. By examining the optical characteristics of light that is transmitted through the Fabry-Perot sensor gap, an indication of gap width can be ascertained. Accordingly, a change in Fabry-Perot sensor gap width is related to a change in the particular physical parameter to be measured.

  14. Acid-etched Fabry-Perot micro-cavities in optical fibres

    NASA Astrophysics Data System (ADS)

    Machavaram, V. R.; Badcock, R. A.; Fernando, G. F.

    2007-07-01

    Significant progress has been made in recent years on the design and fabrication of optical fibre-based sensor systems for applications in structural health monitoring. Two sensor designs have tended to dominate namely, fibre Bragg gratings and extrinsic fibre Fabry-Perot sensors. However, the cost and time associated with these sensors is relatively high and as a consequence, the current paper describes a simple procedure to fabricate intrinsic fibre Fabry-Perot interferometric strain sensors. The technique involves the use of hydrofluoric acid to etch a cavity in a cleaved optical fibre. Two such etched cavities were fusion spliced to create an intrinsic fibre Fabry-Perot cavity. The feasibility of using this device for strain monitoring was demonstrated. Excellent correlation was obtained between the optical and surface-mounted electrical resistance strain gauge.

  15. Tunable Fabry-Perot filter in cobalt doped fiber formed by optically heated fiber Bragg gratings pair

    NASA Astrophysics Data System (ADS)

    Li, Ying; Zhou, Bin; Zhang, Liang; He, Sailing

    2015-06-01

    In this paper, a tunable fiber Fabry-Perot (F-P) filter by all-optical heating is proposed. Two high reflective fiber Bragg gratings (FBG) fabricated in cobalt doped single mode fiber form the F-P cavity. The cobalt-doped fiber used here is an active fiber, and it transforms optical power from a control laser into heat effectively due to the nonradiative processes. The generated heat raises the refraction index of the fiber and enlarges the F-P cavity's length, realizing the all-optical tuning characteristics. By adjusting the power of the control laser, the resonant wavelength of our proposed fiber F-P filter can be high precisely controlled. The cavity length of the filter is carefully designed to make sure the longitude mode spacing is comparable to the grating bandwidth, making it single mode operating.

  16. Evaluation of Fabry-Perot polymer film sensors made using hard dielectric mirror deposition

    NASA Astrophysics Data System (ADS)

    Buchmann, Jens; Zhang, Edward; Scharfenorth, Chris; Spannekrebs, Bastian; Villringer, Claus; Laufer, Jan

    2016-03-01

    Fabry-Perot (FP) polymer film sensors offer high acoustic sensitivity, small element sizes, broadband frequency response and optical transmission to enable high resolution, backward mode photoacoustic (PA) imaging. Typical approaches to sensor fabrication involve the deposition of stacks of alternating dielectric materials to form interferometer mirrors, which are separated by a polymer spacer. If hygroscopic soft dielectric materials are used, a protective polymer layer is typically required. In this study, methods for the deposition of water-resistant, hard dielectric materials onto polymers were explored to improve the robustness and performance of the sensors. This involved the optimisation of the fabrication process, the optical and acoustic characterisation of the sensors, and a comparison of the frequency response with the output of an acoustic forward model. The mirrors, which were separated by a 20 μm Parylene spacer, consisted of eight double layers of Ta2O5 and SiO2 deposited onto polymer substrates using temperature-optimised electron vapour deposition. The free spectral range of the interferometer was 32 nm, its finesse FR = 91, and its visibility V = 0.72. The noise-equivalent pressure was 0.3 kPa (20 MHz bandwidth). The measured frequency response was found to be more resonant at 25 MHz compared to sensors with soft dielectric mirrors, which was also in good agreement with the output of a forward model of the sensor. The sensors were used in a PA scanner to acquire 3-D images in tissue phantoms.

  17. Temperature sensitivity characteristics of HCPCF-based Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Liu, Xiaohui; Jiang, Mingshun; Sui, Qingmei; Song, Furong

    2016-01-01

    Optical fiber Fabry-Perot interferometers (FPIs) formed by splicing hollow-core photonic crystal fiber (HCPCF) to single mode fiber (SMF) are proposed, and the temperature sensitivity characteristics are investigated theoretically and experimentally. Interestingly, the HCPCF-based FPIs with different structures have different responses to temperature: the FPI formed by a short HCPCF and a long SMF pigtail has a linear wavelength response to temperature with a sensitivity of 9.17 pm/°C and its fringe contrast is nearly temperature-insensitive; while the FPI with a long HCPCF and a short SMF cap is temperature-insensitive both for wavelength and fringe contrast. Refractive index (RI) test results show good linear response based on fringe contrast. Thus the HCPCF-based FPI sensors can be applied to temperature detection and RI measurement simultaneously with negligible cross-sensitivity or completely temperature-independent measurement by using different structures. Due to the advantages of small size, robust structure, easy fabrication, low cost and good fringe visibility, the HCPCF-based FPI sensors have broad application prospect in the fields of biology, chemistry and so on.

  18. Fabry-Perot interferometer based on etched side-hole fiber for microfluidic refractive index sensing

    NASA Astrophysics Data System (ADS)

    Wu, Shengnan; Yan, Guofeng; Zhou, Bin; He, Sailing

    2015-08-01

    In this paper, we present a novel fiber-optic open-cavity Fabry-Perot interferometer (FPI), which is specially designed for microfluidic refractive index (RI) sensing. An etching Side-hole fiber (SHF) was sandwiched between in two single-mode-fibers (SMF) and then a cavity was opened up by chemical etching method in the SHF. The minute order of the etching process endow such FPIs with low cost and ease of fabrication. For further microfluidic sensing test, the FPI was integrated with a cross microfluidic slit that was fabricated through photolithography. The refractive index response of the FPI was characterized using sodium hydroxide solution with RI range from 1.3400 to 1.3470. Experimental results show that FPIs with different length of open-cavity have the similar liner RI response with different RI sensitivities. The optimal RI sensitivity of more than 1138 nm/RI can be achieved with open-cavity length of 56 μm. The temperature response was also investigated, which shows that FPIs exhibit a very low temperature cross-sensitivities of 4.00 pm/ °C and 1.95 pm/ °C corresponding FPIs with cavity length of 123 μm and 56 μm, respectively. Such good performance renders the FPI a promising in-line microfluidic sensor for temperature-insensitive RI sensing.

  19. In-fiber Fabry-Perot refractometer assisted by a long-period grating.

    PubMed

    Mosquera, L; Sáez-Rodriguez, D; Cruz, J L; Andrés, M V

    2010-02-15

    We present an optical fiber refractometer based on a Fabry-Perot interferometer defined by two fiber Bragg gratings and an intracavity long-period grating that makes the light confined in the resonator interact with the surrounding medium. The external refractive index is monitored by the resonant frequencies of the Fabry-Perot interferometer, which can be measured either in transmission or in reflection. In this first experiment, wavelength shifts measured with a resolution of 0.1 pm have allowed one to establish a refractive index detection limit of 2.1x10(-5). PMID:20160835

  20. Flat top liquid crystal tunable filter using coupled Fabry-Perot cavities.

    PubMed

    Alboon, Shadi A; Lindquist, Robert G

    2008-01-01

    In this paper, a coupled Fabry-Perot cavities filter, using the liquid crystal as the tunable medium, is investigate to achieve tunable flat top filtering performance across the C and L bands. A tandem coupled Fabry-Perot is presented for a tunable passband filter with flat top and minimum ripple in the passband. The overall tuning range of the filter is 172 nm. Several designs are shown with comparable performance to the commercial available 100 GHz fixed single channel filters. PMID:18521153

  1. Tunable Fabry-Perot filter for imaging spectroscopy in the infrared

    NASA Astrophysics Data System (ADS)

    Schwarze, Craig R.; Rentz, Julia R.; Carlson, David L.; Vaillancourt, Robert M.; Genetti, George J.; Engel, James R.

    2002-02-01

    We present a new hyperspectral imaging system for the long wave infrared (LWIR) based on a tunable first-order Fabry-Perot Scanning Spectrometer (FPSS). The FPSS operates over 8 O 12 micrometers with a spectral resolution of 1% of the wavelength. The FPSS has a 22 degree field of view and a spatial resolution of 0.11 degrees. The key components of the FPSS system are the collection optics, a tunable Fabry-Perot etalon, optical position sensors, a closed-loop positioning system, an uncooled microbolometer focal plane array, a digital frame grabber card, and a user-friendly Graphical User Interface (GUI).

  2. Extrinsic fiber-optic Fabry-Perot interferometer sensor for refractive index measurement of optical glass

    SciTech Connect

    Chen Jihuan; Zhao Jiarong; Huang Xuguang; Huang Zhenjian

    2010-10-10

    A simple fiber-optic sensor based on Fabry-Perot interference for refractive index measurement of optical glass is investigated both theoretically and experimentally. A broadband light source is coupled into an extrinsic fiber Fabry-Perot cavity formed by the surfaces of a sensing fiber end and the measured sample. The interference signals from the cavity are reflected back into the same fiber. The refractive index of the sample can be obtained by measuring the contrast of the interference fringes. The experimental data meet with the theoretical values very well. The proposed technique is a new method for glass refractive index measurement with a simple, solid, and compact structure.

  3. Use of gamma ray radiation to parallel the plates of a Fabry-Perot interferometer

    NASA Technical Reports Server (NTRS)

    Skinner, Wilbert R.; Hays, Paul B.; Anderson, Sally M.

    1987-01-01

    The use of gamma radiation to parallel the plates of a Fabry-Perot etalon is examined. The method for determining the etalon parallelism, and the procedure for irradiating the posts are described. Changes in effective gap for the etalon over the surface are utilized to measure the parallelism of the Fabry-Perot etalon. An example in which this technique is applied to an etalon of fused silica plates, which are 132 mm in diameter and coded with zinc sulfide and cryolite, with Zerodur spaces 2 cm in length. The effect of the irradiation of the posts on the thermal performance of the etalon is investigated.

  4. Solar CIV Vacuum-Ultraviolet Fabry-Perot Interferometers

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; West, Edward A.; Rees, David; McKay, Jack A.; Zukic, Maumer; Herman, Peter

    2006-01-01

    Aims: A tunable, high spectral resolution, high effective finesse, vacuum ultraviolet (VUV) Fabry-Perot interferometer (PPI) is designed for obtaining narrow-passband images, magnetograms, and Dopplergrams of the transition region emission line of CIV (155 nm). Methods: The integral part of the CIV narrow passband filter package (with a 2-10 pm FWHM) consists of a multiple etalon system composed of a tunable interferometer that provides high-spectral resolution and a static low-spectral resolution interferometer that allows a large effective free spectral range. The prefilter for the interferometers is provided by a set of four mirrors with dielectric high-reflective coatings. A tunable interferometer, a VUV piezoelectric-control etalon, has undergone testing using the surrogate F2 eximer laser line at 157 nm for the CIV line. We present the results of the tests with a description of the overall concept for a complete narrow-band CIV spectral filter. The static interferometer of the filter is envisioned as being hudt using a set of fixed MgF2 plates. The four-mirror prefilter is designed to have dielectric multilayer n-stacks employing the design concept used in the Ultraviolet Imager of NASA's Polar Spacecraft. A dual etalon system allows the effective free spectral range to be commensurate with the prefilter profile. With an additional etalon, a triple etalon system would allow a spectrographic resolution of 2 pm. The basic strategy has been to combine the expertise of spaceflight etalon manufacturing with VUV coating technology to build a VUV FPI which combines the best attributes of imagers and spectrographs into a single compact instrument. Results. Spectro-polarimetry observations of the transition region CIV emission can be performed to increase the understanding of the magnetic forces, mass motion, evolution, and energy release within the solar atmosphere at the base of the corona where most of the magnetic field is approximately force-free. The 2D imaging

  5. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser-induced water breakdown for refractive index sensing.

    PubMed

    Liu, Yi; Qu, Shiliang

    2014-01-20

    The Fabry-Perot interferometer (FPI) cavity in a single-mode fiber with two open faces was fabricated by using the method of femtosecond laser-induced water breakdown. Then the FPI cavity was annealed by the arc discharge to greatly smooth its internal surface. The whole fabrication process features simple operation and high efficiency. The fabricated FPI cavity exhibits a perfect interferometer spectrum with reflection loss of only -3 dB and fringe visibility of almost 30 dB. It can be used as a perfectly reliable liquid refractive index sensor, as it exhibits high sensitivity (1147.48 nm/RIU), good linearity (99.93%), good repeatability, high actual measurement accuracy (1.29×10(-4)RIU), large measurement range, and good temperature insensitive characteristic. PMID:24514135

  6. Optical fiber Fabry-Perot interferometer with pH sensitive hydrogel film for hazardous gases sensing

    NASA Astrophysics Data System (ADS)

    Zheng, Yangzi; Chen, Li Han; Chan, Chi Chiu; Dong, Xinyong; Yang, Jingyi; Tou, Zhi Qiang; So, Ping Lam

    2015-09-01

    An optical fiber Fabry-Perot interferometer (FPI) coated with polyvinyl alcohol/poly-acrylic acid (PVA/PAA) hydrogel film for toxic gases measurement has been developed. Splicing a short section of hollow core fiber between two single mode fibers forms the FPI. Dip-coated pH-sensitive PVA/PAA hydrogel film on the fiber end performs as a receptor for binding of volatile acids or ammonia, which makes the sensing film swelling or shrinking and results in the dip wavelength shift of the FPI. By demodulating the evolution of reflection spectrum for various concentrations of volatile acids, a sensitivity of 20.8 nm/ppm is achieved with uniform linearity.

  7. Demonstration of all-optical two bit digital comparator using self-locked Fabry-Perot laser diode

    NASA Astrophysics Data System (ADS)

    Nakarmi, Bikash; Rakib-Uddin, M.; Won, Yong Hyub

    2012-02-01

    All-optical two bit digital comparator using single mode Fabry-Perot laser diodes (SMFP-LDs) is proposed and demonstrated with 10 Gbps PRBS signal of 231-1. Digital comparators are one of the important components for decision making circuits, threshold detection, which are used in optical signal processing and optical computing. The basic principle of the comparator is based on injection locking, multi-input injection locking and combinational input injection locking (CMIL) to realize the greater than, less than, and equal to function of the basic comparator circuit. These principles are used to realize the different optical logic gates which are combined together to demonstrate optical comparator with the minimum number of components, making the configuration cheaper and simpler. The proposed method draws less current and hence power effective too. Output waveform diagram and output eye diagram for all three cases of comparator are presented to verify all functions of all-optical comparator.

  8. Passive signal processing for a miniature Fabry-Perot interferometric sensor with a multimode laser-diode source

    NASA Astrophysics Data System (ADS)

    Ezbiri, A.; Tatam, R. P.

    1995-09-01

    A passive signal-processing technique for addressing a miniature low-finesse fiber Fabry-Perot interferometric sensor with a multimode laser diode is reported. Two modes of a multimode laser diode separated by 3 nm are used to obtain quadrature outputs from an \\similar 20 - mu m cavity. Wavelength-division demultiplexing combined with digital signal processing is used to recover the measurand-induced phase change. The technique is demonstrated for the measurement of vibration. The signal-to-noise ratio is \\similar 70 dB at 500 Hz for \\similar pi /2 rad displacement of the mirror, which results in a minimum detectable signal of \\similar 200 mu rad H z-1/2 . A quantitative discussion of miscalibration and systematic errors is presented.

  9. A CMOS millimeter-wave transceiver embedded in a semi-confocal Fabry-Perot cavity for molecular spectroscopy.

    PubMed

    Drouin, Brian J; Tang, Adrian; Schlecht, Erich; Brageot, Emily; Gu, Q Jane; Ye, Y; Shu, R; Frank Chang, Mau-Chung; Kim, Y

    2016-08-21

    The extension of radio frequency complementary metal oxide semiconductor (CMOS) circuitry into millimeter wavelengths promises the extension of spectroscopic techniques in compact, power efficient systems. We are now beginning to use CMOS millimeter devices for low-mass, low-power instrumentation capable of remote or in situ detection of gas composition during space missions. We have chosen to develop a Flygare-Balle type spectrometer, with a semi-confocal Fabry-Perot cavity to amplify the pump power of a mm-wavelength CMOS transmitter that is directly coupled to the planar mirror of the cavity. We have built a pulsed transceiver system at 92-105 GHz inside a 3 cm base length cavity and demonstrated quality factor up to 4680, allowing for modes with 20 MHz bandwidth, with a sufficient cavity amplification factor for mW class transmitters. This work describes the initial gas measurements and outlines the challenges and next steps. PMID:27544098

  10. Transfer functions of double- and multiple-cavity Fabry Perot filters driven by Lorentzian sources

    NASA Astrophysics Data System (ADS)

    Marti, Javier; Capmany, Jose

    1996-12-01

    We derive expressions for the transfer functions of double- and multiple-cavity Fabry Perot filters driven by laser sources with Lorentzian spectrum. These are of interest because of their applications in sensing and channel filtering in optical frequency-division multiplexing networks.

  11. APPLICATION OF A FABRY-PEROT INTERFEROMETRY TO REMOTE SENSING OF GASEOUS POLLUTANTS

    EPA Science Inventory

    A method for the remote sensing of molecular species via the rotational Raman effect was developed. The method uses the properties of a scanning Fabry-Perot interferometer to multiplex the spectra in a manner specific for a given species. Furthermore, the method allows the 'in pr...

  12. Development of tunable Fabry-Perot spectral camera and light source for medical applications

    NASA Astrophysics Data System (ADS)

    Kaarre, M.; Kivi, S.; Panouillot, P. E.; Saari, H.; Mäkynen, J.; Sorri, I.; Juuti, M.

    2013-05-01

    VTT has developed a fast, tunable Fabry-Perot (FP) filter component and applied it in making small, lightweight spectral cameras and light sources. One application field where this novel technology is now tested is medical field. A demonstrator has been made to test the applicability of FP based spectral filtering in the imaging of retina in visible light wavelength area.

  13. A new fiber-tip Fabry-Perot interferometer and its application for pressure measurement

    NASA Astrophysics Data System (ADS)

    Wang, Guanjun; Liu, Shen; Zhao, Jing; Liao, Changrui; Xu, Xizhen; Wang, Yiping

    2015-07-01

    This paper reports a new silica fiber-tip Fabry-Perot interferometer with thin film and large surface area characteristic for high pressure and vacuum degree detection simultaneously, which is fabricated by etching a flat fiber tip into concave surface firstly, with subsequent arc jointing the concave fiber into a inline Fabry-Perot cavity, then drawing one surface of the F-P cavity into several micrometers scale by arc discharge and finally etching the surface into sub-micrometer scale integrally. As the silica fiber-tip Fabry-Perot interferometer film thickness could be tailored very thinly by HF acid solution, plus the surface area of thin film could be expanded during the chemical etching process, the variation of the bubble cavity length is very sensitive to the inner/outer pressure difference of the fiber-tip Fabry-Perot interferometer. Experimental result shows an high sensitivity of 780nm/MPa is feasible. Such configuration has the advantages of lowcost, ease of fabrication and compact size, which make it a promising candidate for pressure and vacuum measurement.

  14. Low-Cost, Single-Frequency Sources for Spectroscopy Using Conventional Fabry-Perot Diode Lasers

    NASA Technical Reports Server (NTRS)

    Krainak, Michael A.; Duerksen, Gary L.

    1999-01-01

    Commercial (uncoated) Fabry-Perot laser diodes are converted to single-frequency spectroscopy sources by passively locking the laser frequency to the band edge of a fiber Bragg grating, which phase-locks the laser oscillations through self-injection seeding.

  15. Low-Cost, Single-Frequency Sources for Spectroscopy using Conventional Fabry-Perot Diode Lasers

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Commercial (uncoated) Fabry-Perot laser diodes are converted to single-frequency spectroscopy sources by passively locking the laser frequency to the band edge of a fiber Bragg grating, which phase-locks the laser oscillations through self-injection seeding.

  16. Study of H-alpha emission from solar limb prominences using Fabry-Perot interferometry

    NASA Astrophysics Data System (ADS)

    Jarrett, A. H.; Stapelberg, J.; Lategan, A. H.

    1981-02-01

    The Fabry-Perot interferometer is an effective dispersing element for studying H-alpha emission from solar limb prominences. Having a reflecting coefficient in the range 0.85-0.95, the Fabry-Perot multiple beam interferometer behaves as an angular filter, forming circular interference fringes. Results from an investigation performed at the solar installation at Boyden Observatory in South Africa are presented, where a photographic Fabry-Perot interferometer was used to obtain fringes from the 656.3-nm H-alpha emission during April and May 1980. Successful scans were made with air admitted to the interferometer pressure chamber, and reduction of the data on photon count and chamber pressure was made by a UNIVAC 1108 computer. Sketches and profiles from the limb prominences are shown; a table of fringe half-widths, corrected for the instrumental width of the interferometer, were obtained by matching a Voigt function by a least-squares computer fit to the observed scanned Fabry-Perot fringe profiles.

  17. Pulsed-incoherent-light-injected Fabry-Perot laser diode for WDM passive optical networks.

    PubMed

    Kim, Hoon

    2010-01-18

    We propose and demonstrate a pulsed-incoherent-light-injected Fabry-Perot laser diode (FP-LD) which generates incoherent return-to-zero (RZ) signals for wavelength-division-multiplexing passive optical networks. For the generation of the RZ signals, we first convert the continuous-wave (CW) amplified spontaneous emission (ASE) into an ASE pulse train with a pulse carver, spectrum-slice it into multiple channels with a waveguide grating router, and then inject them into FP-LDs for data modulation. Thanks to a wide slicing bandwidth of the injected incoherent light, the spectral linewidth of the generated RZ signals is determined by the slicing bandwidth, without being affected by the use of the RZ format. Thus, compared to incoherent non-return-to-zero (NRZ) signals generated with CW-ASE-injected FP-LDs, the RZ signals have a similar spectral linewidth but a wide timing margin between adjacent bits. Thus, the proposed transmitter can offer better dispersion tolerance than the NRZ signals. For example, our experimental demonstration performed at 1.25 Gb/s shows approximately 50% higher dispersion tolerance than the NRZ signals generated with CW ASE-injected FP-LDs. Despite the large slicing bandwidth of 0.67 nm for the injected ASE, we were able to transmit 1.25-Gb/s signals over 45-km standard single-mode fiber without dispersion compensation. The receiver sensitivity is also improved by 1.5 dB by using the RZ format. PMID:20173999

  18. Measurements of the phase shift on reflection for low-order infrared Fabry-Perot interferometer dielectric stack mirrors.

    PubMed

    Mielke, S L; Ryan, R E; Hilgeman, T; Lesyna, L; Madonna, R G; Van Nostrand, W C

    1997-11-01

    A simple technique based on a Fizeau interferometer to measure the absolute phase shift on reflection for a Fabry-Perot interferometer dielectric stack mirror is described. Excellent agreement between the measured and predicted phase shift on reflection was found. Also described are the salient features of low-order Fabry-Perot interferometers and the demonstration of a near ideal low-order (1-10) Fabry-Perot interferometer through minimizing the phase dispersion on reflection of the dielectric stack. This near ideal performance of a low-order Fabry-Perot interferometer should enable several applications such as compact spectral imagers for solid and gas detection. The large free spectral range of such systems combined with an active control system will also allow simple interactive tuning of wavelength agile laser sources such as CO(2) lasers, external cavity diode lasers, and optical parametric oscillators. PMID:18264347

  19. Measurement of the carrier envelope offset frequency of a femtosecond frequency comb using a Fabry-Perot interferometer

    SciTech Connect

    Basnak, D V; Bikmukhametov, K A; Dmitrieva, N I; Dmitriev, Aleksandr K; Lugovoi, A A; Pokasov, P V; Chepurov, S V

    2010-10-15

    A method for measuring the carrier envelope offset (CEO) frequency of the femtosecond frequency comb with a bandwidth of less than one octave by using a Fabry-Perot interferometer is proposed and experimentally demonstrated. (laser components)

  20. Stable CW Single-Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1998-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings (FBG) has been achieved by two methods: (1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element; (2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  1. Stable CW Single Frequency Operation of Fabry-Perot Laser Diodes by Self-Injection Phase Locking

    NASA Technical Reports Server (NTRS)

    Duerksen, Gary L.; Krainak, Michael A.

    1999-01-01

    Previously, single-frequency semiconductor laser operation using fiber Bragg gratings has been achieved by tWo methods: 1) use of the FBG as the output coupler for an anti-reflection-coated semiconductor gain element'; 2) pulsed operation of a gain-switched Fabry-Perot laser diode with FBG-optical and RF-electrical feedback'. Here, we demonstrate CW single frequency operation from a non-AR coated Fabry-Perot laser diode using only FBG optical feedback.

  2. Nonlinear optical processing with Fabry-Perot interferometers containing phase recording media

    NASA Technical Reports Server (NTRS)

    Bartholomew, B. J.; Lee, S. H.

    1980-01-01

    New techniques in nonlinear optical processing are explored, based on the operation of intensity level selection as performed by a Fabry-Perot interferometer containing a phase object. The image being processed is recorded on a medium between the mirrors as a spatially varying phase shift less than pi. The interferometer only transmits light through those portions of the object that corresponds to a single value of the phase and hence to a single intensity level in the input. More complicated operations such as thresholding and analog-to-digital conversion are performed by modulating the light source as the different levels are selected. Photoresist and lithium niobate have been used as phase objects, and experimental data for both are presented. Three kinds of Fabry-Perot interferometers have been used to demonstrate nonlinear processing using coherent and incoherent light. Color images have been produced with black and white inputs and white light illumination.

  3. Electric field sensor based on cholesteric liquid crystal Fabry-Perot etalon

    NASA Astrophysics Data System (ADS)

    Ko, Myeong Ock; Kim, Sung-Jo; Kim, Jong-Hyun; Lee, Bong Wan; Jeon, Min Yong

    2015-09-01

    We propose an electric field sensor using a cholesteric liquid crystal (CLC) Fabry-Perot etalon and a broadband optical source. The CLC cell consists of glass substrates, polyimide layers, electrodes, and CLC layer. There is a threshold behavior for CLC cell and no change in the transmitted wavelength occurs until a threshold value. The threshold value is 0.8 V/μm for fabricated CLC cell in this experiment. The transmitted or reflected wavelength from the CLC Fabry-Perot etalon depends on the applied electric field. The valley wavelengths of the transmitted light from the CLC device are linearly increased from 1303 nm to 1317 nm as the applied electric field to the CLC device is increased from 0.8 V/μm to 1.9 V/μm.

  4. Experimental characterization of Fabry-Perot resonances of magnetostatic volume waves in near-field metamaterials

    NASA Astrophysics Data System (ADS)

    Chabalko, Matthew J.; Ricketts, David S.

    2015-02-01

    In this work, we report on the experimental demonstration of magnetoquasistatic volume wave resonances in a 2-dimensional near field metamaterial (MM). Previous works have described only theoretically the magnetostatic waves in near field MMs and have reported peaks and valleys in the mutual coupling of MM enhanced wireless power transfer that they have attributed to Fabry-Perot resonances, however, neither has been experimentally measured nor characterized. We report on the direct magnetic field measurement of magnetostatic volume waves in a 2D near-field MM and show that the periodic peaks and valleys in mutual coupling observed previously are indeed due to a Fabry-Perot oscillation. In addition, we show that these resonances can be predicted from experimentally extracted permeability and the dimensions of the system.

  5. Hydrogen production rates from ground-based Fabry-Perot observations of comet Kohoutek

    NASA Technical Reports Server (NTRS)

    Scherb, F.

    1981-01-01

    The only ground-based observations of a cometary hydrogen corona that have been obtained up to the present were carried out during the appearance of comet Kohoutek (1973 XII). Hydrogen Balmer alpha (H-alpha) emission from the gas cloud surrounding the comet was detected using a Fabry-Perot spectrometer at Kitt Peak National Observatory. These observations have been reexamined using (1) recently obtained solar full-disk Lyman beta emission line profiles, (2) a new calibration of the absolute sensitivity of the Fabry-Perot spectrometer based on comparison of NGC 7000 with standard stars and the planetary nebula NGC 7662, and (3) corrections for atmospheric extinction instead of the geocoronal H-alpha comparison method used previously to obtain comet H-alpha intensities. The new values for hydrogen production rates are in good agreement with results obtained from Lyman alpha observations of comet Kohoutek.

  6. Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review

    PubMed Central

    Islam, Md. Rajibul; Ali, Muhammad Mahmood; Lai, Man-Hong; Lim, Kok-Sing; Ahmad, Harith

    2014-01-01

    Optical fibers have been involved in the area of sensing applications for more than four decades. Moreover, interferometric optical fiber sensors have attracted broad interest for their prospective applications in sensing temperature, refractive index, strain measurement, pressure, acoustic wave, vibration, magnetic field, and voltage. During this time, numerous types of interferometers have been developed such as Fabry-Perot, Michelson, Mach-Zehnder, Sagnac Fiber, and Common-path interferometers. Fabry-Perot interferometer (FPI) fiber-optic sensors have been extensively investigated for their exceedingly effective, simple fabrication as well as low cost aspects. In this study, a wide variety of FPI sensors are reviewed in terms of fabrication methods, principle of operation and their sensing applications. The chronology of the development of FPI sensors and their implementation in various applications are discussed. PMID:24763250

  7. Development of a Fabry-Perot Interferometer for Ultra-Precise Measurements of Column CO2

    NASA Technical Reports Server (NTRS)

    Wilson, Emily L.; Georgieva, Elena M.; Heaps, William S.

    2005-01-01

    A passive Fabry-Perot based instrument is described for detecting column CO2 through absorption measurements at 1.58 microns . In this design, solar flux reaches the instrument platform and is directed through two channels. In the first channel, transmittance fi5nges from a Fabry-Perot interferometer are aligned with CO2 absorption lines so that absorption due to CO2 is primarily detected. The second channel encompasses the same frequency region as the first, but is comparatively more sensitive to changes in the solar flux than absorption due to CO2. The ratio of these channels is sensitive to changes in the total CO2 column, but not to changes in solar flux. This inexpensive instrument will offer high precision measurements (error 4%) in a compact package. Design of this instrument and preliminary ground-based measurements of column CO2 are presented here as well as strategies for deployment on aircraft and satellite platforms.

  8. Testing and characterization of a multispectral imaging Fabry-Perot interferometer for tropospheric trace species detection

    NASA Astrophysics Data System (ADS)

    Larar, Allen M.; Cook, William B.; Mills, Carl S.; Flood, Michael A.; Burcher, Ernest E.; Boyer, Charles M.; Puschell, Jeffrey J.

    2006-12-01

    The Tropospheric Trace Species Sensing Fabry-Perot Interferometer (TTSS-FPI) was a NASA Instrument Incubator Program (IIP) project for risk mitigation of enabling concepts and technology applicable to future NASA Science Mission Directorate atmospheric chemistry measurements. Within IIP an airborne sensor was developed and laboratory-tested to demonstrate the instrument concept and enabling technologies that are also applicable to the desired geostationary-based implementation. The concept is centered about an imaging Fabry-Perot interferometer (FPI) observing a narrow spectral interval within the strong 9.6 micron ozone infrared band with a spectral resolution ~0.07 cm -1, and also has applicability to and could simplify designs associated with sensors targeting measurement of other trace species. Results of testing and characterization of enabling subsystems and the overall instrument system are reported; emphasis is placed on recent laboratory testing performed to evaluate system-level radiometric, spatial, and spectral measurement fidelity.

  9. Fiber optic dynamic electric field sensor based on nematic liquid crystal Fabry-Perot etalon

    NASA Astrophysics Data System (ADS)

    Ko, Myeong Ock; Kim, Sung-Jo; Kim, Jong-Hyun; Jeon, Min Yong

    2014-05-01

    We propose a fiber-optic dynamic electric field sensor using a nematic liquid crystal (NLC) Fabry-Perot etalon and a wavelength-swept laser. The transmission wavelength of the NLC Fabry-Perot etalon depends on the applied electric field intensity. The change in the effective refractive index of the NLC is measured while changing the applied electric field intensity. It decreases from 1.67 to 1.51 as the applied the electric field intensity is increased. Additionally, we successfully measure the dynamic variation of the electric field using the high-speed wavelength-swept laser. By measuring the modulation frequency of the transmission peaks in the temporal domain, the frequency of the modulated electric field can be estimated.

  10. Electro-optic polymer spatial light modulator based on a Fabry-Perot interferometer configuration.

    PubMed

    Greenlee, Charles; Luo, J; Leedy, K; Bayraktaroglu, B; Norwood, R A; Fallahi, M; Jen, A K-Y; Peyghambarian, N

    2011-06-20

    A spatial light modulator (SLM) based on a Fabry-Perot interferometer configuration has been fabricated and tested. The Fabry-Perot spacer layer is a thin film of the SEO100 electro-optic polymer which serves as the nonlinear medium. Measurement results demonstrate the modulation of multiple pixels operating simultaneously at frequencies ranging from 300 kHz to 800 kHz which is significantly faster than SLMs based on liquid crystal and digital micromirror device technology. An average modulation contrast of 50% for all pixels is achieved with a drive voltage of 70 V(rms) at 100 kHz. Microwave speeds and CMOS compatibility are feasible with improved transmission line and cavity design. PMID:21716517

  11. FIFI: The MPE Garching/UC Berkeley Far-Infrared Imaging Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Geis, Norbert; Genzel, Reinhard; Haggerty, M.; Herrmann, F.; Jackson, J.; Madden, Suzanne C.; Nikola, T.; Poglitsch, Albrecht; Rumitz, M.; Stacey, G. J.

    1995-01-01

    We describe the performance characteristics of the MPE Garching/UC Berkeley Far-Infrared Imaging Fabry-Perot Interferometer (FIFI) for the Kuiper Airborne Observatory (KAO). The spectrometer features two or three cryogenic tunable Fabry-Perot filters in series giving spectral resolution R of up to 10(exp 5) in the range of 40 microns less than lambda less than 200 microns, and an imaging 5x5 array of photoconductive detectors with variable focal plane plate scale. The instrument works at background limited sensitivity of up to 2 x 10(exp -19) W cm(exp -2) Hz(exp -1/2) per pixel per resolution element at R = 10(exp 5) on the KAO.

  12. Coherent electron transparent tunneling through a single barrier within a Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Stolle, Jason; Baum, Chaz; Amann, Ryan; Haman, Ryan; Call, Tanner; Li, Wei

    2016-07-01

    Electromagnetic wave and quantum DeBroglie wave have many parallels between each other. We investigate the quantum mechanical counterpart of electromagnetic resonant tunneling through a non-absorbing metal layer. It is confirmed that an electron also has transparent transmission through a single barrier within a Fabry-Perot like cavity. This tunneling structure is actually a distortion of the Fabry-Perot echelon. We find that for a specific resonant electron energy, the cavity length is related to the electron's DeBroglie wavelength; and the single barrier can be located at a series positions with an interval equal to a half of the DeBroglie wavelength, not just at the center of the cavity. This tunneling phenomenon will have novel applications in quantum devices such as the resonant tunneling diode and scanning tunneling microscope. The results of this paper should also have impact on related electromagnetic research and application.

  13. Sensing Properties of a Fabry-Perot Dielectric Structure and Dimer Nanoparticles

    DOE PAGESBeta

    Polemi, A.; Shuford, K. L.

    2012-01-01

    We investigate the use of a Fabry-Perot dielectric structure combined with differently shaped nanoparticles for Surface Enhanced Raman Scattering. In particular, we show how an ideal two-layer Fabry-Perot configuration enhances the local surface field of silver nanoparticles positioned on the surface of the structure. We develop the concept using disc dimers and then extend the discussion to bowtie nanoparticles. The structure is excited by a single emitter, which couples to the nanoparticles through the dielectric layers, producing a wide aperture field that can be used to excite multiple dimers. We show how an array of nanoparticles can be properly arrangedmore » in order to increase the total scattering signal generated from the structure. The layered geometry produces robust field properties in between nanoparticles, making the overall sensing characteristics less sensitive to the interparticle seperation distance and incident polarization.« less

  14. Low threshold Fabry-Perot optofluidic resonator fabricated by femtosecond laser micromachining.

    PubMed

    Simoni, F; Bonfadini, S; Spegni, P; Lo Turco, S; Lucchetta, D E; Criante, L

    2016-07-25

    We report the realization and characterization of an optofluidic microlaser based on a Fabry-Perot resonator fabricated by exploiting two direct writing fabrication techniques: the femtosecond laser micromachining and the inkjet printing technology. In this way a standard Fabry-Perot cavity has been integrated into an optofluidic chip. When using rhodamine 6G dissolved in ethanol at concentration of 5∙10-3 mol/l, laser emission was detected at a threshold energy density of 1.8 μJ/mm2 at least one order of magnitude lower than state-of-the-art optofluidic lasers. Linewidth below ~0.6 nm was measured under these conditions with a quality factor Q~103. These performances and robustness of the device makes it an excellent candidate for biosensing, security and environment monitoring applications. PMID:27464188

  15. Deep Fabry-Perot imaging of NGC 6240: Kinematic evidence for merging galaxies

    NASA Technical Reports Server (NTRS)

    Hawthorn, J. Bland; Wilson, A. S.; Tully, R. B.

    1990-01-01

    The authors have observed the superluminous, infrared galaxy NGC 6240 (z = 0.025) at H alpha with the Hawaii Imaging Fabry-Perot Interferometer (HIFI - Bland and Tully 1989). During the past decade, observational evidence from all wavebands indicates that the unusual appearance of NGC 6240 has resulted from a collision between two gas-rich systems, a view which is supported by our spectrophotometric data. However, the origin of the enormous infrared luminosity (4 times 10(exp 11) solar luminosity) detected by the Infrared Astronomy Satellite (IRAS) remains highly controversial, where opinions differ on the relative roles of large-scale shocks, massive star formation or a buried 'active' nucleus. These mechanisms are discussed in the light of the author's Fabry-Perot observations.

  16. Effect of the pump rate and loss perturbations on the lasing dynamics of a Fabry-Perot laser

    SciTech Connect

    Kumar, N; Ledenev, V I

    2010-11-13

    Transition from generation of the fundamental mode to generation of the fundamental and first modes is studied numerically under the action of nonstationary asymmetric perturbations of pump rate and loss distributions in the active medium layer. It is shown that emergence of perturbations directly leads to excitation of the first mode with significant amplitude. The regime of two-mode lasing in the presence of perturbations is shown to appear at a pump rate that is smaller than the threshold one for two-mode lasing in the absence of perturbations. It is found that the first-mode amplitude has a maximum at a frequency of intermode beatings of an unfilled Fabry-Perot resonator. It is also determined that emergence of nonstationary asymmetric perturbations leads to an increase in the average intensity of the fundamental mode. Various transition regimes to two-mode lasing are compared in different types and periods of perturbations. The operability of the scheme controlling the mode composition of laser radiation is considered. (lasers)

  17. Characteristics of Extrinsic Fabry-Perot Interferometric (EFPI) Fiber-Optic Strain Gages

    NASA Technical Reports Server (NTRS)

    Hare, David A.; Moore, Thomas C., Sr.

    2000-01-01

    The focus of this paper is a comparison of the strain-measuring characteristics of one type of commercially available fiber-optic strain sensor with the performance of conventional resistance strain gages. Fabry-Perot type fiber-optic strain sensors were selected for this testing program. Comparative testing is emphasized and includes load testing at room temperature with apparent strain characterization cryogenically and at elevated temperatures. The absolute accuracy of either of these types of strain gages is not addressed.

  18. Exact analysis of low-finesse multimode fiber extrinsic Fabry-Perot interferometers.

    PubMed

    Han, Ming; Wang, Anbo

    2004-08-20

    A straightforward theory is presented to accurately model the light inferences in a low-finesse multimode fiber extrinsic Fabry-Perot (FP) interferometer. The effect on the fringe visibility of the gap length, sensor structure imperfections, and modal power distributions is explored. The analysis is particularly useful in the design and optimization of sensors that use an extrinsic FP cavity as the sensing element. PMID:15352389

  19. Reduction of CCD observations made with a scanning Fabry-Perot interferometer. III. Wavelength scale refinement

    NASA Astrophysics Data System (ADS)

    Moiseev, A. V.

    2015-10-01

    We describe the recent modifications to the data reduction technique for observations acquired with the scanning Fabry-Perot interferometer (FPI) mounted on the 6-m telescope of the Special Astrophysical Observatory that allow the wavelength scale to be correctly computed in the case of large mutual offsets of studied objects in interferograms.We examine the parameters of the scanning FPIs used in the SCORPIO-2 multimode focal reducer.

  20. Method for removing a stripe from the coating of a Fabry-Perot mirror

    SciTech Connect

    Perry, S.J.; Steinmetz, L.L.

    1997-10-01

    We describe a method for removing a stripe from the coating of a Fabry-Perot mirror. This is accomplished by scraping off the soft coating with a finely lapped steel blade mounted on a precision mechanism to accurately position the blade and guide it for straight cuts. The width of the stripe is determined by selecting a blade of desired size. Previous methods and attempts are discussed.

  1. An analytical study on bistability of Fabry Perot semiconductor optical amplifiers

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Chen, Shuqiang; Yang, Huajun

    2016-06-01

    Optical bistabilities have been considered to be useful for sensor applications. As a typical nonlinear device, Fabry-Perot semiconductor optical amplifiers (FPSOAs) exhibit bistability under certain conditions. In this paper, the bistable characteristics in FPSOAs are investigated theoretically. Based on Adams's relationship between the incident optical intensity I in and the z-independent average intracavity intensity I av, an analytical expression of the bistable loop width in SOAs is derived. Numerical simulations confirm the accuracy of the analytical result.

  2. Diode laser frequency stabilization using a low cost, low finesse Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Hastings, Hannah; Jaber, Noura B.; Piatt, Georgia; Gregoric, Vincent C.; Carroll, Thomas J.; Noel, Michael W.

    2016-05-01

    Our lab employs low cost, low finesse Fabry-Perot cavities to stabilize the frequency of diode lasers used in ultra-cold Rydberg atom experiments. To characterize the stability of this technique, we perform a self-heterodyne linewidth measurement. For comparison, we also measure the linewidth when using a saturated absorption spectrometer to provide frequency stability. This work is supported by the National Science Foundation under Grants No. 1205895 and No. 1205897.

  3. Shot noise in gravitational-wave detectors with Fabry-Perot arms.

    PubMed

    Lyons, T T; Regehr, M W; Raab, F J

    2000-12-20

    Shot-noise-limited sensitivity is calculated for gravitational-wave interferometers with Fabry-Perot arms, similar to those being installed at the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the Italian-French Laser Interferometer Collaboration (VIRGO) facility. This calculation includes the effect of nonstationary shot noise that is due to phase modulation of the light. The resulting formula is experimentally verified by a test interferometer with suspended mirrors in the 40-m arms. PMID:18354690

  4. FABSOAR--A Fabry-Perot Spectrometer for Oxygen A-band Research Final Technical Report

    SciTech Connect

    Watchorn, Steven

    2010-09-10

    Because this was a Phase I project, it did not add extensively to the body of A-band knowledge. There was no basic research performed on that subject. The principal addition was that a mechanical and optical design for a triple-etalon Fabry-Perot interferometer (FABSOAR) capable of A-band sensing was sketched out and shown to be within readily feasible instrument fabrication parameters. The parameters for the proposed triple-etalon Fabry-Perot were shown to be very similar to existing Fabry-Perots built by Scientific Solutions. The mechanical design for the FABSOAR instrument incorporated the design of previous Scientific Solutions imagers, condensing the three three-inch-diameter etalons into a single, sturdy tube. The design allowed for the inclusion of a commercial off-the-shelf (COTS) filter wheel and a thermocooled CCD detector from Andor. The tube has supports to mount to a horizontal or vertical opticaltable surface, and was to be coupled to a Scientific Solutions pointing head at the Millstone Hill Observatory in Massachusetts for Phase II calibration and testing.

  5. A compact Fourier transform imaging spectrometer employing a variable gap Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Lucey, Paul G.; Akagi, Jason; Bingham, Adam L.; Hinrichs, John L.; Knobbe, Edward T.

    2014-05-01

    Fourier transform spectroscopy is a widely employed method for obtaining visible and infrared spectral imagery, with applications ranging from the desktop to remote sensing. Most fielded Fourier transform spectrometers (FTS) employ the Michelson interferometer and measure the spectrum encoded in a time-varying signal imposed by the source spectrum interaction with the interferometer. A second, less widely used form of FTS is the spatial FTS, where the spectrum is encoded in a pattern sampled by a detector array. Recently we described using a Fabry-Perot interferometer, with a deliberately wedged gap geometry and engineered surface reflectivities, to produce an imaging spatial FTS. The Fabry-Perot interferometer can be much lighter and more compact than a conventional interferometer configuration, thereby making them suitable for portable and handheld applications. This approach is suitable for use over many spectral regimes of interest, including visible and infrared regions. Primary efforts to date have focused on development and demonstration of long wave infrared (LWIR) spectral imagers. The LWIR version of the miniaturized Fabry-Perot has been shown to be effective for various applications including spectral imaging-based chemical detection. The compact LWIR spectral imager employs uncooled optics and a microbolometer camera; a handheld version is envisioned for future development. Recent advancements associated with the spatial Fourier Transform imaging spectrometer system are described.

  6. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Georgieva, Elena M.; Heaps,William S.; Wilson, Emily L.

    2007-01-01

    A new type of remote sensing radiometer based upon the Fabry-Perot interferometric technique has been developed at NASA's Goddard Space Flight Center and tested from both ground and aircraft platform. The sensor uses direct or reflected sunlight and has channels for measuring column concentration of carbon dioxide at 1570 nm, oxygen lines sensitive to pressure and temperature at 762 and 768 nm, and water vapor (940 nm). A solid Fabry-Perot etalon is used as a tunable narrow bandpass filter to restrict the measurement to the gas of interest's absorption bands. By adjusting the temperature of the etalon, which changes the index of refraction of its material, the transmission fringes can be brought into nearly exact correspondence with absorption lines of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosphere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The technique is applicable to different chemical species. We have performed simulations and instrument design studies for CH4, "Cot isotope, and CO detection. Index Terms- Absorbing media, Atmospheric measurements, Fabry-Perot interferometers, Optical interferometry, Remote sensing.

  7. Fiber-Optic Temperature Sensor Using a Thin-Film Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Beheim, Glenn

    1997-01-01

    A fiber-optic temperature sensor was developed that is rugged, compact, stable, and can be inexpensively fabricated. This thin-film interferometric temperature sensor was shown to be capable of providing a +/- 2 C accuracy over the range of -55 to 275 C, throughout a 5000 hr operating life. A temperature-sensitive thin-film Fabry-Perot interferometer can be deposited directly onto the end of a multimode optical fiber. This batch-fabricatable sensor can be manufactured at a much lower cost than can a presently available sensor, which requires the mechanical attachment of a Fabry-Perot interferometer to a fiber. The principal disadvantage of the thin-film sensor is its inherent instability, due to the low processing temperatures that must be used to prevent degradation of the optical fiber's buffer coating. The design of the stable thin-film temperature sensor considered the potential sources of both short and long term drifts. The temperature- sensitive Fabry-Perot interferometer was a silicon film with a thickness of approx. 2 microns. A laser-annealing process was developed which crystallized the silicon film without damaging the optical fiber. The silicon film was encapsulated with a thin layer of Si3N4 over coated with aluminum. Crystallization of the silicon and its encapsulation with a highly stable, impermeable thin-film structure were essential steps in producing a sensor with the required long-term stability.

  8. Experimental determination of intracavity losses of monolithic Fabry-Perot cavities made of Pr3+:Y2SiO5.

    PubMed

    Goto, Hayato; Nakamura, Satoshi; Ichimura, Kouichi

    2010-11-01

    We propose an experimental method with which all the following quantities can be determined separately: the intracavity loss and individual cavity-mirror transmittances of a monolithic Fabry-Perot cavity and furthermore the coupling efficiency between the cavity mode and the incident light. It is notable that the modified version of this method can also be applied to whispering-gallery-mode cavities. Using this method, we measured the intracavity losses of monolithic Fabry-Perot cavities made of Pr3+:Y2SiO5 at room temperature. The knowledge of the intracavity losses is very important for applications of such cavities, e.g., to quantum information technologies. It turns out that fairly high losses (about 0.1%) exist even for a sample with extremely low dopant concentration (2×10(-5) at. %). The experimental results also indicate that the loss may be mainly due to the bulk loss of Y2SiO5 crystal. The bulk loss is estimated to be 7×10(-4) cm(-1) (0.003 dB/cm) or lower. PMID:21164720

  9. Response of a Fabry Perot optical cavity to phase modulation sidebands for use in electro-optic control systems

    NASA Astrophysics Data System (ADS)

    Skeldon, Kenneth D.; Strain, Kenneth A.

    1997-09-01

    The worldwide endeavor to build long baseline laser interferometers to detect and study gravitational radiation is well under way. In the German British GEO600 project, it is proposed to pass the sidebands induced on the light by an electro-optic phase modulator through a Fabry Perot optical cavity used in transmission, called a mode cleaner. This can be achieved when the phase modulation frequency is matched to the first longitudinal-mode frequency of the mode cleaner cavity so that both carrier and sidebands are transmitted. The primary function of the mode cleaner is to reduce the geometry fluctuations associated with the light, and thus any such noise induced by the modulation process is also suppressed. We present the results of an experiment that investigates the feasibility of passing modulation sidebands through an optical cavity and the factors limiting its success. In particular, we show that it is possible to avoid introducing excess noise associated with the transmitted sidebands, provided that certain experimental criteria are satisfied. The research was carried out on a prototype mode cleaner cavity built and tested at Glasgow University but which is similar to the equivalent apparatus planned for GEO600.

  10. Response of a Fabry-Perot optical cavity to phase modulation sidebands for use in electro-optic control systems.

    PubMed

    Skeldon, K D; Strain, K A

    1997-09-20

    The worldwide endeavor to build long baseline laser interferometers to detect and study gravitational radiation is well under way. In the German-British GEO600 project, it is proposed to pass the sidebands induced on the light by an electro-optic phase modulator through a Fabry-Perot optical cavity used in transmission, called a mode cleaner. This can be achieved when the phase modulation frequency is matched to the first longitudinal-mode frequency of the mode cleaner cavity so that both carrier and sidebands are transmitted. The primary function of the mode cleaner is to reduce the geometry fluctuations associated with the light, and thus any such noise induced by the modulation process is also suppressed. We present the results of an experiment that investigates the feasibility of passing modulation sidebands through an optical cavity and the factors limiting its success. In particular, we show that it is possible to avoid introducing excess noise associated with the transmitted sidebands, provided that certain experimental criteria are satisfied. The research was carried out on a prototype mode cleaner cavity built and tested at Glasgow University but which is similar to the equivalent apparatus planned for GEO600. PMID:18259548

  11. Switchable and multi-wavelength linear fiber laser based on Fabry-Perot and Mach-Zehnder interferometers

    NASA Astrophysics Data System (ADS)

    Gutierrez-Gutierrez, J.; Rojas-Laguna, R.; Estudillo-Ayala, J. M.; Sierra-Hernández, J. M.; Jauregui-Vazquez, D.; Vargas-Treviño, M.; Tepech-Carrillo, L.; Grajales-Coutiño, R.

    2016-09-01

    In this manuscript, switchable and multi-wavelength erbium-doped fiber laser arrangement, based on Fabry-Perot (FPI) and Mach-Zehnder (MZI) interferometers is presented. Here, the FPI is composed by two air-microcavities set into the tip of conventional single mode fiber, this one is used as a partially reflecting mirror and lasing modes generator. And the MZI fabricated by splicing a segment of photonic crystal fiber (PCF) between a single-mode fiber section, was set into an optical fiber loop mirror that acts as full-reflecting and wavelength selective filter. Both interferometers, promotes a cavity oscillation into the fiber laser configuration, besides by curvature applied over the MZI, the fiber laser generates: single, double, triple and quadruple laser emissions with a signal to noise ratio (SNR) of 30 dB. These laser emissions can be switching between them from 1525 nm to 1534 nm by adjusting the curvature radius over the MZI. This laser fiber offers a wavelength and power stability at room temperature, compactness and low implementation cost. Moreover the linear laser proposed can be used in several fields such as spectroscopy, telecommunications and fiber optic sensing systems.

  12. Study of Fabry-Perot Etalon Stability and Tuning for Spectroscopic Rayleigh Scattering

    NASA Technical Reports Server (NTRS)

    Clem, Michelle M.; Mielke-Fagan, Amy F.; Elam, Kristie A.

    2010-01-01

    The Fabry-Perot interferometer is a commonly employed instrument for resolving the spectrum of molecular Rayleigh scattered light for the purpose of evaluating flow properties such as gas velocity and temperature. Rayleigh scattered light from a focused laser beam can be directly imaged through a solid Fabry-Perot etalon onto a CCD detector to provide the spectral content of the scattered light. The spatial resolution of the measurements is governed by the locations of interference fringes. The location of the fringes can be changed by altering the etalon?s physical characteristics, such as thickness and index of refraction. For a fused silica solid etalon the physical properties can be adjusted by changing the etalon temperature; hence changing the order of the interference pattern and the physical fringe locations. Controlling the temperature of the etalon can provide for a slow time-response spatial scanning method for this type of etalon system. A custom designed liquid crystal Fabry-Perot (LCFP) can provide for a fast time-response method of scanning the etalon system. Voltage applied to the liquid crystal interface sets the etalon?s properties allowing Rayleigh measurements to be acquired at varying spatial locations across the image of the laser beam over a very short time period. A standard fused silica etalon and a tunable LCFP etalon are characterized to select the system that is best suited for Rayleigh scattering measurements in subsonic and supersonic flow regimes. A frequency-stabilized laser is used to investigate the apparent frequency stability and temperature sensitivity of the etalon systems. Frequency stability and temperature sensitivity data of the fused silica and LCFP etalon systems are presented in this paper, along with measurements of the LCFP etalon?s tuning capabilities. Rayleigh scattering velocity measurements with both etalon systems are presented, in an effort to determine which etalon is better suited to provide optical flow

  13. On Fabry-Perot resonances of a wire-medium hyperlens

    NASA Astrophysics Data System (ADS)

    Kosulnikov, Sergei; Simovski, Constantin

    2015-06-01

    As it was recently shown an array of slightly diverging metal wires called wire-medium hyperlens can be used for the significant and very broadband enhancement of the radiation of small sources. Really, in the domain around the source the array operates as an infinite wire medium and near its effective surface it is well matched to free space that implies the gain in the far-field radiation. However, the matching on the surface is imperfect and implies dimensional resonances of Fabry-Perot type. The impact of these resonances and the frequency-averaged enhancement of dipole radiation in the wire-medium hyperlens is studied in the present paper.

  14. Nanodiamonds in Fabry-Perot cavities: a route to scalable quantum computing

    NASA Astrophysics Data System (ADS)

    Greentree, Andrew D.

    2016-02-01

    The negatively-charged nitrogen-vacancy colour centre in diamond has long been identified as a platform for quantum computation. However, despite beautiful proof of concept experiments, a pathway to true scalability has proven elusive. Now a group from Oxford and Grenoble-Alpes have shown coupling between nitrogen-vacancy centres and open Fabry-Perot cavities in a way that proves a clear route to scalable quantum computing (Johnson et al 2015 New J. Phys. 17 122003). And all at the relatively balmy temperature of 77 K.

  15. In-fiber Fabry-Perot interferometer for strain and magnetic field sensing.

    PubMed

    Costa, Greice K B; Gouvêa, Paula M P; Soares, Larissa M B; Pereira, João M B; Favero, Fernando; Braga, Arthur M B; Palffy-Muhoray, Peter; Bruno, Antonio C; Carvalho, Isabel C S

    2016-06-27

    In this paper we discuss the results obtained with an in-fiber Fabry-Perot interferometer (FPI) used in strain and magnetic field (or force) sensing. The intrinsic FPI was constructed by splicing a small section of a capillary optical fiber between two pieces of standard telecommunication fiber. The sensor was built by attaching the FPI to a magnetostrictive alloy in one configuration and also by attaching the FPI to a small magnet in another. Our sensors were found to be over 4 times more sensitive to magnetic fields and around 10 times less sensitive to temperature when compared to sensors constructed with Fiber Bragg Grating (FBG). PMID:27410621

  16. Performance improvement and characterization activities for an imaging Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Larar, Allen M.; Cook, William B.; Flood, Michael A.; Campbell, Joel F.; Boyer, Charles M.

    2008-10-01

    Risk mitigation activities for a prototype imaging Fabry-Perot Interferometer (FPI) system, development originating within NASA's Instrument Incubator Program (IIP) for enabling future space-based atmospheric composition missions, are continuing at NASA Langley Research Center. The system concept and technology are focused on observing tropospheric ozone around 9.6 micron, but also have applicability toward measurement of other trace species in different spectral regions and other applications. The latest results from performance improvement and laboratory characterization activities will be reported, with an emphasis placed on testing performed to evaluate system-level radiometric, spatial, and spectral measurement fidelity.

  17. High-sensitivity Fabry-Perot interferometric pressure sensor based on a nanothick silver diaphragm.

    PubMed

    Xu, Feng; Ren, Dongxu; Shi, Xiaolong; Li, Can; Lu, Weiwei; Lu, Lu; Lu, Liang; Yu, Benli

    2012-01-15

    We present a fiber-optic extrinsic Fabry-Perot interferometer pressure sensor based on a nanothick silver diaphragm. The sensing diaphragm, with a thickness measured in a few hundreds of nanometers, is fabricated by the electroless plating method, which provides a simple fabrication process involving a high-quality diaphragm at a low cost. The sensor exhibits a relatively linear response within the pressure variation range of 0-50 kPa, with a high pressure sensitivity of 70.5 nm/kPa. This sensor is expected to have potential applications in the field of highly sensitive pressure sensors. PMID:22854444

  18. Emulation of Fabry-Perot and Bragg resonators with temporal optical solitons.

    PubMed

    Voytova, T; Oreshnikov, I; Yulin, A V; Driben, R

    2016-06-01

    The scattering of weak dispersive waves (DWs) on several equally spaced temporal solitons is studied. It is shown by systematic numerical simulations that the reflection of the DWs from the soliton trains strongly depends on the distance between the solitons. The dependence of the reflection and transmission coefficients on the inter-soliton distance and the frequency of the incident waves are studied in detail, revealing fascinating quasi-periodic behavior. The analogy between the observed nonlinear phenomena in the temporal domain and the usual Fabry-Perot and Bragg resonators is discussed. PMID:27244384

  19. Measurement of unsteady gas temperature with optical fibre Fabry-Perot microsensors

    NASA Astrophysics Data System (ADS)

    Kilpatrick, J. M.; MacPherson, W. N.; Barton, J. S.; Jones, J. D. C.; Buttsworth, D. R.; Jones, T. V.; Chana, K. S.; Anderson, S. J.

    2002-05-01

    We describe the application of thin-film optical fibre Fabry-Perot (FFP) microsensors to high-bandwidth measurement of unsteady total temperature in transonic gas flows. An aerodynamic probe containing two temperature sensitive FFP microsensors was deployed in the rotor exit flow region of a gas turbine research rig. Measurements reveal gas temperature oscillations typically 4 K peak to peak at the blade passing frequency of 10 kHz with components to the third harmonic detected in the power spectrum of the temperature signal.

  20. Ground-based observations of equatorial thermosphere dynamics with a Fabry-Perot interferometer

    NASA Technical Reports Server (NTRS)

    Meriwether, J. W., Jr.; Biondi, M. A.

    1984-01-01

    Fabry-Perot determinations of thermospheric temperatures from 630.0 nm nightglow line width measurements were carried out for the period April to August, 1983. The nightly variation of the thermospheric temperature measured on 53 nights is compared with MSIS model predictions and found to agree occasionally with the model but, on the average, to exceed model predictions by approximately 180 K. The largest differences, 400 to 500 K occur during strongly increasing geomagnetic activity. Significant differences occur both during high geomagnetic/low solar activity and during low geomagnetic/high solar activity.

  1. A liquid helium cooled mid-infrared imaging Fabry-Perot spectrometer

    NASA Astrophysics Data System (ADS)

    Watarai, H.; Chaen, K.; Matsuhara, H.; Matsumoto, T.; Takahashi, H.

    1994-03-01

    A liquid helium cooled mid-infrared imaging Fabry-Perot spectrometer has been under development. A Si:P 5x5 detector array is used for this instrument. Although the array system has small format, but combination with junction field effect transistor (JFET) array will provide noise equivalent line flux of 1.0 x 10-21 w/sq cm(1000 sec, 10 sigma). This sensitivity is comparable with the short wavelength spectrometer (SWS) of the Infrared Space Observatory (ISO).

  2. Velocity distribution of neutral species during magnetron sputtering by Fabry-Perot interferometry

    SciTech Connect

    Britun, N.; Han, J. G.; Oh, S.-G.

    2008-04-07

    The velocity distribution of a metallic neutral species sputtered in a dc magnetron discharge was measured using a planar Fabry-Perot interferometer and a hollow cathode lamp as a reference source. The measurement was performed under different angles of view relative to the target surface. The velocity distribution function in the direction perpendicular to the target becomes asymmetrical as the Ar pressure decreases, whereas it remains nearly symmetrical when the line of sight is parallel to the target surface. The average velocity of the sputtered Ti atoms was measured to be about 2 km/s.

  3. Linear FBG Temperature Sensor Interrogation with Fabry-Perot ITU Multi-wavelength Reference

    PubMed Central

    Park, Hyoung-Jun; Song, Minho

    2008-01-01

    The equidistantly spaced multi-passbands of a Fabry-Perot ITU filter are used as an efficient multi-wavelength reference for fiber Bragg grating sensor demodulation. To compensate for the nonlinear wavelength tuning effect in the FBG sensor demodulator, a polynomial fitting algorithm was applied to the temporal peaks of the wavelength-scanned ITU filter. The fitted wavelength values are assigned to the peak locations of the FBG sensor reflections, obtaining constant accuracy, regardless of the wavelength scan range and frequency. A linearity error of about 0.18% against a reference thermocouple thermometer was obtained with the suggested method.

  4. Air cavity-based Fabry-Perot interferometer sensor fabricated using a sawing technique for refractive index measurement

    NASA Astrophysics Data System (ADS)

    Jung, Eun Joo; Lee, Woo-Jin; Kim, Myoung Jin; Hwang, Sung Hwan; Rho, Byung Sup

    2014-01-01

    We have demonstrated a refractive index sensor based on a fiber optic Fabry-Perot (FP) interferometer with an open air cavity fabricated using a one-step mechanical sawing technique. The sensor head consists of a short FP cavity near the fiber patch cord tip, which was assembled by joining a ceramic ferrule and a single-mode fiber together. Owing to the open air cavity in the sensor head, various liquid samples with different refractive index can fill in-line air cavity, which makes the device usable as a refractometer. Moreover, due to the sensor head encircled with the robust ceramic ferrule, the device is attractive for sensing measurement in harsh environments. The sensor was tested in different refractive index solutions. The experimental result shows that the attenuation peak wavelength of the sensor is shifted toward a shorter wavelength with increasing refractive index, and the refractive index sensitivity is ˜92.5 nm/refractive index unit (RIU) and 73.75 dB/RIU. The proposed sensor can be used as an in-line refractometer for many potential applications in the sensing field.

  5. Fast response Fabry-Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber.

    PubMed

    Tian, Jiajun; Lu, Zejin; Quan, Mingran; Jiao, Yuzhu; Yao, Yong

    2016-09-01

    We report a fast response microfluidic Fabry-Perot (FP) interferometer refractive index (RI) fiber sensor based on a concave-core photonic crystal fiber (CPCF), which is formed by directly splicing a section CPCF with a section of single mode fiber. The CPCF is made by cleaving a section of multimode photonic crystal fiber with an axial tension. The shallow concave-core of CPCF naturally forms the FP cavity with a very short cavity length. The inherent large air holes in the cladding of CPCF are used as the open channels to let liquid sample come in and out of FP cavity. In order to shorten the liquid channel length and eliminate the harmful reflection from the outside end face of the CPCF, the CPCF is cleaved with a tilted tensile force. Due to the very small cavity capacity, the short length and the large sectional area of the microfluidic channels, the proposed sensor provides an easy-in and easy-out structure for liquids, leading to great decrement of the measuring time. The proposed sensor exhibits fast measuring speed, the measuring time is less than 359 and 23 ms for distilled water and pure ethanol, respectively. We also experimentally study and demonstrate the superior performances of the sensor in terms of high RI sensitivity, good linear response, low temperature cross-sensitivity and easy fabrication. PMID:27607621

  6. Periodic error characterization in commercial heterodyne interferometer using an external cavity diode laser based Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Zhu, Minhao; Wei, Haoyun; Li, Yan

    2014-07-01

    Periodic error is a main error source that limits the measurement accuracy in heterodyne laser interferometry. An external cavity diode laser (ECDL) based Fabry-Perot (F-P) interferometer referenced to an optical frequency comb (OFC) is proposed to characterize the periodic error in heterodyne interferometers. The Pound-Drever-Hall locking technique is employed to lock the tracking ECDL frequency to the resonance of a high finesse F-P cavity. The frequency of a reference ECDL is locked to a selected mode of an OFC to generate a stable single optical frequency. The frequency change of the tracking ECDL induced by the cavity displacement is measured by beating with the reference ECDL locked to the OFC. Experiments show that the F-P interferometer system has a displacement resolution of 1.96 pm. We compared the measurement results of our system with a commercial plane mirror heterodyne interferometer. The period if the periodic error is about half wavelength, with an error amplitude of 4.8 nm.

  7. A Highly Sensitive Fiber-Optic Fabry-Perot Interferometer Based on Internal Reflection Mirrors for Refractive Index Measurement.

    PubMed

    Li, Xuefeng; Shao, Yujiao; Yu, Yuan; Zhang, Yin; Wei, Shaowen

    2016-01-01

    In this study, a new type of highly sensitive fiber-optic Fabry-Perot interferometer (FFPI) is proposed with a high sensitivity on a wide refractive index (RI) measurement range based on internal reflection mirrors of micro-cavity. The sensor head consists of a single-mode fiber (SMF) with an open micro-cavity. Since light reflections of gold thin films are not affected by the RI of different measuring mediums, the sensor is designed to improve the fringe visibility of optical interference through sputtering the gold films of various thicknesses on the inner surfaces of the micro-cavity, as a semi-transparent mirror (STM) and a total-reflection mirror (TRM). Experiments have been carried out to verify the feasibility of the sensor's design. It is shown that the fabricated sensor has strong interference visibility exceeding 15 dB over a wide measurement range of RI, and the sensor sensitivity is higher than 1160 nm/RIU, and RI resolution is better than 1.0 × 10(-6) RIU. PMID:27258273

  8. Effect of small variations in the refractive index of the ambient medium on the spectrum of a bent fibre-optic Fabry - Perot interferometer

    SciTech Connect

    Kulchin, Yurii N; Vitrik, O B; Gurbatov, S O

    2011-09-30

    The phase of light propagating through a bent optical fibre is shown to depend on the refractive index of the medium surrounding the fibre cladding when there is resonance coupling between the guided core mode and cladding modes. This shifts the spectral maxima in the bent fibre-optic Fabry - Perot interferometer. The highest phase and spectral sensitivities achieved with this interferometer configuration are 0.71 and 0.077, respectively, and enable changes in the refractive index of the ambient medium down to 5 Multiplication-Sign 10{sup -6} to be detected. This makes the proposed approach potentially attractive for producing highly stable, precision refractive index sensors capable of solving a wide range of liquid refractometry problems.

  9. A tunable, solid, Fabry-Perot etalon for solar seismology

    NASA Technical Reports Server (NTRS)

    Rust, David M.; Burton, Clive H.; Leistner, Achim J.

    1986-01-01

    A solid etalon has been designed and fabricated from a 50-mm diameter wafer of optical-quality lithium niobate. The finished etalon has a free spectral range of 0.325 nm at 588 nm. The parallel faces are coated with silver, and the central 15-mm aperture of the etalon has a finesse of 18.6. The reflective faces double as electrodes, and application of voltage will shift the passband. This feature was used in a servo circuit to stabilize the passband against temperature and tilt-induced drifts to better than three parts in one billion. Operated in the stabilized mode for day-long sessions, this filter alternately samples the wings of a narrow atomic absorption line in the solar spectrum and produces a signal proportional to velocity on the solar disk. The Fourier transform of this signal yields information on acoustic waves in the solar interior.

  10. Two Fabry-Perot interferometers for high precision wavelength calibration in the near-infrared

    NASA Astrophysics Data System (ADS)

    Schäfer, Sebastian; Reiners, Ansgar

    2012-09-01

    The most frequently used standard light sources for spectroscopic high precision wavelength calibration are hollow cathode lamps. These lamps, however, do not provide homogeneous line distribution and intensities. Particularly in the infrared, the number of useful lines is severely limited and the spectrum is contaminated by lines of the filler gas. With the goal of achieving sub m/s stability in the infrared, as required for detecting earthlike extra-solar planets, we are developing two passively stabilized Fabry-Perot interferometers for the red visible (600-1050nm) and near infrared wavelength regions (900-1350nm). Each of the two interferometers can produce ~15,000 lines of nearly constant brightness. The Fabry-Perot interferometers aim at a RV calibration precision of 10cm/s and are optimized in line shape and spacing for the infrared planet hunting CARMENES spectrograph that is currently being built for the Calar Alto 3.5m telescope. Here we present the first results of our work.

  11. Four-wave mixing in nonlinear interferometer Fabry-Perot with saturable absorbers

    NASA Astrophysics Data System (ADS)

    Ormachea, Omar A.; Romanov, Oleg G.; Tolstik, Alexei L.; Arce Diego, José Luis; Pereda Cubian, David; Fanjul Vélez, Félix

    2005-09-01

    In this work the different schemes of propagation and interaction of the light beams in nonlinear Fabry-Perot interferometer have been studied theoretically and experimentally. Degenerate and non-degenerate four-wave mixing have been realized in the cavity of Fabry-Perot type using Rhodamine-6G dye and polymethine dye 3274U solution as saturable absorber. The diffraction efficiency of intracavity dynamic grating has been studied in dependence on intensity of interacting beams and parameters of resonator. The theoretical model of the processes of intracavity degenerate and non-degenerate four-wave mixing has been developed and applied to the analysis of the efficiency of light beams conversion by mean of Bragg diffraction from intracavity dynamic gratings. For theoretical description of typical experimental situations we used the round-trip model of nonlinear interferometer adapted for the geometry of degenerate four-wave mixing, which can be realized in the scheme of symmetrical oblique incidence of pump, signal and probe beams to the front and back mirrors of cavity.

  12. Fabry-Perot Based Radiometers for Precise Measurement of Greenhouse Gases

    NASA Technical Reports Server (NTRS)

    Heaps, William S.; Wilson, Emily L.; Georgieva, Elena

    2007-01-01

    Differential radiometers based upon the Fabry-Perot interferometer have been developed and demonstrated that exhibit very great sensitivity to changes in the atmospheric column of carbon dioxide, oxygen, and water vapor. These instruments employ a solid Fabry-Perot etalon that is tuned to the proper wavelength by changing the temperature. By choosing the thickness of the etalon its multiple pass bands can be made to align with regularly space absorption features of the molecule under investigation. Use of multiple absorption features improves the optical throughput of the instrument and improves the stability of the instrument response with respect to environmental changes. Efforts are underway at Goddard to extend this technique to the carbon 13 isotope of carbon dioxide and to methane. These instruments are intrinsically rugged and can be made rather small and inexpensively. They therefore hold promise for widespread use in ground based networks for calibration of satellite instruments such as OCO and GOSAT. Results will be presented for ground based and airborne operations for these systems. The effects of atmospheric scattering, pointing errors, pressure broadening and temperature effects will be discussed with regard to achieving precision better than .5% required for validation of carbon dioxide column measured from space. Designs permitting the extension of the technique to an even larger number of atmospheric species will be discussed along with theoretical analysis of potential system performance.

  13. Nonlinear regression method for estimating neutral wind and temperature from Fabry-Perot interferometer data.

    PubMed

    Harding, Brian J; Gehrels, Thomas W; Makela, Jonathan J

    2014-02-01

    The Earth's thermosphere plays a critical role in driving electrodynamic processes in the ionosphere and in transferring solar energy to the atmosphere, yet measurements of thermospheric state parameters, such as wind and temperature, are sparse. One of the most popular techniques for measuring these parameters is to use a Fabry-Perot interferometer to monitor the Doppler width and breadth of naturally occurring airglow emissions in the thermosphere. In this work, we present a technique for estimating upper-atmospheric winds and temperatures from images of Fabry-Perot fringes captured by a CCD detector. We estimate instrument parameters from fringe patterns of a frequency-stabilized laser, and we use these parameters to estimate winds and temperatures from airglow fringe patterns. A unique feature of this technique is the model used for the laser and airglow fringe patterns, which fits all fringes simultaneously and attempts to model the effects of optical defects. This technique yields accurate estimates for winds, temperatures, and the associated uncertainties in these parameters, as we show with a Monte Carlo simulation. PMID:24514183

  14. Electrically tunable liquid-crystal Fabry-Perot device for terahertz radiation

    NASA Astrophysics Data System (ADS)

    Li, Hui; Pan, Fan; Liu, Kan; Wu, Yuntao; Zhang, Yanduo; Xie, Xiaolin

    2015-11-01

    In this paper, we will present a smart structure based on an electrically controlled liquid crystal (LC) Fabry-Perot to achieve terahertz (THz) filter, which has extremely potential in THz communication. This proposed structure doesn't need any mechanical movements because of adapting LC as a key material to compose the Fabry-Perot device. The THz filter based on LC, which is smart, light and cheap, can be realized to solve that common problem of short of tunable devices in THz radiation. The chosen LC material is E7, which has very stable and good transmissions in THz range. Under the external applied voltage, the alignment of the nematic LC allows the refractive index of the device to be tuned. Because of this feature, the resonant peaks could be shifted by changing the applied voltage. Especially, when the alignment is changed from planar to phototropic, the maximum value of the shift could be realized. The simulation result of the proposed device could be got. And the optimal structural parameters could be also got. Numerical analyses results have shown that the proposed structure has a high narrow transmission band and very sharp edges. This THz filter is novel for compact and smart features, so this kind of proposed THz filter is very attractive in many applications, such as THz communication, and THz spectral imaging.

  15. Compton scattering off polarized electrons with a high-finesse Fabry-Perot Cavity at Jlab

    SciTech Connect

    Nicolas Falletto; Martial Authier; Maud Baylac; M. Boyer; Francois Bugeon; Etienne Burtin; Christian Cavata; Nathalie Colombel; G. Congretel; R. Coquillard; G. Coulloux; Bertrand Couzy; P Deck; Alain Delbart; D. Desforges; A. Donati; B. Duboue; Stephanie Escoffier; F. Farci; Bernard Frois; P Girardot; J Guillotau; C Henriot; Claude Jeanney; M Juillard; J. P. Jorda; P. Legou; David Lhuillier; Y Lussignol; Phillippe Mangeot; X. Martin; Frederic Marie; Jacques Martino; M. Maurier; Bernard Mazeau; J.F. Millot; F. Molinie; J.-P. Mols; Jean-pierre Mouly; M. Mur; Damien Neyret; T. Pedrol; Stephane Platchkov; G. Pontet; Thierry Pussieux; Yannick Queinec; Philippe Rebourgeard; J. C. Sellier; Gerard Tarte; Christian Veyssiere; Andre Zakarian; Pierre Bertin; Alain Cosquer; Jian-ping Chen; Joseph Mitchell; J.-M. Mackowski; L. Pinard

    2001-03-01

    We built and commissioned a new type of Compton polarimeter to measure the electron beam polarization at the Thomas Jefferson National Accelerator Facility (Virginia, USA). The heart of this polarimeter is a high-finesse monolithic Fabry-Perot cavity. Its purpose is to amplify a primary 300 mW laser beam in order to improve the signal to noise ratio of the polarimeter. It is the first time that a high-finesse Fabry-Perot cavity is enclosed in the vacuum of a particle accelerator to monitor the beam polarization by Compton polarimetry. The measured finesse and amplification gain of the cavity are F=26000 and G=7300. The electron beam crosses this high-power photon source at an angle of 23 mrad in the middle of the cavity where the photon beam power density is estimated to be 0.85MW/cm2. We have used this facility during the HAPPEX experiment (April-July 1999) and we give a preliminary measurement of Compton scattering asymmetry.

  16. Blood pressure manometer using a twin Bragg grating Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    van Brakel, Adriaan; Swart, Pieter L.; Chtcherbakov, Anatoli A.; Shlyagin, Mikhail G.

    2005-02-01

    We propose the use of optical fiber Bragg gratings in a non-invasive blood pressure waveform monitor. Bragg gratings can be written in a Fabry-Perot interferometric configuration to yield a method of strain measurement that has both a high resolution and a wide unambiguous range. This fiber Bragg grating Fabry-Perot interferometer (FBGI) can be used as a sensor to detect strain resulting from blood pressure applied to the walls of an artery situated near the patient"s skin. Strain measurements taken on the skin surface, typically over the radial artery at the wrist, are encoded as phase shifts of the FBGI signal. These phase shifts may be obtained by the analytic representation of the interferometer signal in the wavelength domain or by Fourier analysis in the frequency domain. For the proof of concept a realistic physical model was constructed to simulate pressure conditions at the actual sensor location. The operation of the device is demonstrated by measurements of pressure-pulse waveforms obtained in real-time. This sensor was also successfully tested on human patients, and these results are also presented. Since it yields continuous readings of blood pressure non-invasively, further application of the optical manometer may yield an alternative to conventional sphygmomanometry.

  17. Hyperspectral Infrared Imaging of Flames Using a Spectrally Scanning Fabry-Perot Filter

    NASA Technical Reports Server (NTRS)

    Rawlins, W. T.; Lawrence, W. G.; Marinelli, W. J.; Allen, M. G.; Piltch, N. (Technical Monitor)

    2001-01-01

    The temperatures and compositions of gases in and around flames can be diagnosed using infrared emission spectroscopy to observe molecular band shapes and intensities. We have combined this approach with a low-order scanning Fabry-Perot filter and an infrared camera to obtain spectrally scanned infrared emission images of a laboratory flame and exhaust plume from 3.7 to 5.0 micrometers, at a spectral resolution of 0.043 micrometers, and a spatial resolution of 1 mm. The scanning filter or AIRIS (Adaptive Infrared Imaging Spectroradiometer) is a Fabry-Perot etalon operating in low order (mirror spacing = wavelength) such that the central spot, containing a monochromatic image of the scene, is viewed by the detector array. The detection system is a 128 x 128 liquid-nitrogen-cooled InSb focal plane array. The field of view is controlled by a 50 mm focal length multielement lens and an V4.8 aperture, resulting in an image 6.4 x 6.4 cm in extent at the flame and a depth of field of approximately 4 cm. Hyperspectral images above a laboratory CH4/air flame show primarily the strong emission from CO2 at 4.3 micrometers, and weaker emissions from CO and H2O. We discuss techniques to analyze the spectra, and plans to use this instrument in microgravity flame spread experiments.

  18. Refractive index and absorption detector for liquid chromatography based on Fabry-Perot interferometry

    DOEpatents

    Yeung, E.S.; Woodruff, S.D.

    1984-06-19

    A refractive index and absorption detector are disclosed for liquid chromatography. It is based in part on a Fabry-Perot interferometer and is used for the improved detection of refractive index and absorption. It includes a Fabry-Perot interferometer having a normally fixed first partially reflecting mirror and a movable second partially reflecting mirror. A chromatographic flow-cell is positioned between the mirrors along the optical axis of a monochromatic laser beam passing through the interferometer. A means for deriving information about the interference fringes coming out of the interferometer is used with a mini-computer to compute the refractive index of the specimen injected into the flow cell. The minicomputer continuously scans the interferometer for continuous refractive index readings and outputs the continuous results of the scans on a chart recorder. The absorption of the specimen can concurrently be scanned by including a second optical path for an excitation laser which will not interfere with the first laser, but will affect the specimen so that absorption properties can be detected. By first scanning for the refractive index of the specimen, and then immediately adding the excitation laser and subsequently scanning for the refractive index again, the absorption of the specimen can be computed and recorded. 10 figs.

  19. Refractive index and absorption detector for liquid chromatography based on Fabry-Perot interferometry

    DOEpatents

    Yeung, Edward S.; Woodruff, Steven D.

    1984-06-19

    A refractive index and absorption detector for liquid chromatography. It is based in part on a Fabry-Perot interferometer and is used for the improved detection of refractive index and absorption. It includes a Fabry-Perot interferometer having a normally fixed first partially reflecting mirror and a movable second partially reflecting mirror. A chromatographic flow-cell is positioned between the mirrors along the optical axis of a monochromatic laser beam passing through the interferometer. A means for deriving information about the interference fringes coming out of the interferometer is used with a mini-computer to compute the refractive index of the specimen injected into the flow cell. The minicomputer continuously scans the interferometer for continuous refractive index readings and outputs the continuous results of the scans on a chart recorder. The absorption of the specimen can concurrently be scanned by including a second optical path for an excitation laser which will not interfere with the first laser, but will affect the specimen so that absorption properties can be detected. By first scanning for the refractive index of the specimen, and then immediately adding the excitation laser and subsequently scanning for the refractive index again, the absorption of the specimen can be computed and recorded.

  20. Single resonance monolithic Fabry-Perot filters formed by volume Bragg gratings and multilayer dielectric mirrors

    NASA Astrophysics Data System (ADS)

    Lumeau, Julien; Koc, Cihan; Mokhun, Oleksiy; Smirnov, Vadim; Lequime, Michel; Glebov, Leonid B.

    2012-02-01

    High efficiency reflecting volume Bragg gratings (VBGs) recorded in PTR glass plates have shown un-preceded performances that make them very good candidates for narrowband spectral filtering with sub-nanometer spectral widths. However, decreasing the bandwidth to value below 30-50 pm is very challenging as it requires increasing the thickness of the RBG to more than 15-20 mm. To overcome this limitation, we propose a new approach which is a monolithic Fabry-Perot cavity which consists from a reflecting VBG with a multilayer dielectric mirror (MDM) deposited on its surface. A VBG with a grating vector perpendicular to its surface and a MDM produce a Fabry-Perot resonator with a single transmission band inside of the reflection spectrum of the VBG. We present a theoretical description of this new class of filters that allow achieving a single ultra-narrowband resonance associated with several hundred nanometers rejection band. Then we show the methods for designing and fabricating such filter. Finally, we present the steps that we followed in order to fabricate a first prototype for 852 nm and 1062 nm region that demonstrates a 30 pm bandwidth, 90+% transmission at resonance and a good agreement with theoretical simulation.

  1. Wideband and frequency-tunable microwave generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode with external optical injection.

    PubMed

    Pan, Shilong; Yao, Jianping

    2010-06-01

    Wideband and frequency-tunable microwave signal generation using an optoelectronic oscillator incorporating a Fabry-Perot laser diode (FP-LD) with external optical injection is proposed and demonstrated. Through external injection, the FP-LD functions as a tunable high-Q photonic microwave filter, and the frequency tuning is realized by either tuning the wavelength of the externally injected optical light or changing the temperature to adjust the longitudinal modes of the FP-LD. An experiment is performed; a microwave signal with a frequency tunable from 6.41 to 10.85 GHz is generated. The phase noise performance of the generated microwave signal is also investigated. PMID:20517459

  2. Ultra-high sensitivity Fabry-Perot interferometer gas refractive index fiber sensor based on photonic crystal fiber and Vernier effect.

    PubMed

    Quan, Mingran; Tian, Jiajun; Yao, Yong

    2015-11-01

    An ultra-high sensitivity open-cavity Fabry-Perot interferometer (FPI) gas refractive index (RI) sensor based on the photonic crystal fiber (PCF) and Vernier effect is proposed and demonstrated. The sensor is prepared by splicing a section of PCF to a section of fiber tube fused with a section of single mode fiber. The air holes running along the cladding of the PCF enable the gas to enter or leave the cavity freely. The reflection beam from the last end face of the PCF is used to generate the Vernier effect, which significantly improves the sensitivity of the sensor. Experimental results show that the proposed sensor can provide an ultra-high RI sensitivity of 30899 nm/RIU. This sensor has potential applications in fields such as gas concentration analyzing and humidity monitoring. PMID:26512476

  3. Fabry-Perot Interferometer-Based Electrooptic Modulator using LiNbO3 and Organic Thin Films

    NASA Technical Reports Server (NTRS)

    Banks, C.; Frazier, D.; Penn, B.; Abdeldayem, H.; Sharma, A.; Yelleswarapu, C.; Leyderman, Alexander; Correa, Margarita; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    We report the study of a Fabry-Perot electro-optical modulator using thin crystalline film NPP, and Crystalline LiNbO3. We are able to observe 14, and 60 percent degree of modulation. Measurements were carried using a standard lock-in amplifier with a silicon detector. The proposal to design a Fabry-Perot electro-optic modulator with an intracavity electro-optically active organic material was based on the initial results using poled polymer thin films. The main feature of the proposed device is the observation that in traditional electrooptic modulators like a Packets cell, it requires few kilovolts of driving voltage to cause a 3 dB modulation even in high figure-of-merit electrooptic materials like LiNbO3. The driving voltage for the modulator can be reduced to as low as 10 volts by introducing the electrooptic material inside die resonant cavity of a Fabry-Perot modulator. This is because the transmission of the Fabry-Perot cavity varies nonlinearly with the change of refractive index or phase of light due to applied electric field.

  4. Development of Fiber Fabry-Perot Interferometers as Stable Near-infrared Calibration Sources for High Resolution Spectrographs

    NASA Astrophysics Data System (ADS)

    Halverson, Samuel; Mahadevan, Suvrath; Ramsey, Lawrence; Hearty, Fred; Wilson, John; Holtzman, Jon; Redman, Stephen; Nave, Gillian; Nidever, David; Nelson, Matt; Venditti, Nick; Bizyaev, Dmitry; Fleming, Scott

    2014-05-01

    We discuss the ongoing development of single-mode fiber Fabry-Perot (FFP) Interferometers as precise astrophotonic calibration sources for high precision radial velocity (RV) spectrographs. FFPs are simple, inexpensive, monolithic units that can yield a stable and repeatable output spectrum. An FFP is a unique alternative to a traditional etalon, as the interferometric cavity is made of single-mode fiber rather than an air-gap spacer. This design allows for excellent collimation, high spectral finesse, rigid mechanical stability, insensitivity to vibrations, and no need for vacuum operation. The device we have tested is a commercially available product from Micron Optics.10 Our development path is targeted toward a calibration source for the Habitable-Zone Planet Finder (HPF), a near-infrared spectrograph designed to detect terrestrial-mass planets around low-mass stars, but this reference could also be used in many existing and planned fiber-fed spectrographs as we illustrate using the Apache Point Observatory Galactic Evolution Experiment (APOGEE) instrument. With precise temperature control of the fiber etalon, we achieve a thermal stability of 100 μK and associated velocity uncertainty of 22 cm s-1. We achieve a precision of ≈2 m s-1 in a single APOGEE fiber over 12 hr using this new photonic reference after removal of systematic correlations. This high precision (close to the expected photon-limited floor) is a testament to both the excellent intrinsic wavelength stability of the fiber interferometer and the stability of the APOGEE instrument design. Overall instrument velocity precision is 80 cm s-1 over 12 hr when averaged over all 300 APOGEE fibers and after removal of known trends and pressure correlations, implying the fiber etalon is intrinsically stable to significantly higher precision.

  5. Enhanced dual-band infrared absorption in a Fabry-Perot cavity with subwavelength metallic grating.

    PubMed

    Kang, Guoguo; Vartiainen, Ismo; Bai, Benfeng; Turunen, Jari

    2011-01-17

    The performance of infrared (IR) dual-band detector can be substantially improved by simultaneously increasing IR absorptions for both sensor bands. Currently available methods only provide absorption enhancement for single spectral band, but not for the dual-band. The Fabry-Perot (FP) cavity generates a series of resonances in multispectral bands. With this flexibility, we introduced a novel type of dual-band detector structure containing a multilayer FP cavity with two absorbing layers and a subwavelength-period grating mirror, which is capable of simultaneously enhancing the middle wave infrared (MWIR) and the long wave infrared (LWIR) detection. Compared with the bare-absorption-layer detector (common dual-band detector), the optimized FP cavity can provide about 13 times and 17 times absorption enhancement in LWIR and MWIR bands respectively. PMID:21263618

  6. Design of a reconfigurable optical add/drop multiplexer based on tunable Fabry-Perot array

    NASA Astrophysics Data System (ADS)

    Ye, Jiansen; Wang, Xin; Li, Zhuo; Yang, Yang; Xu, Rui; Shi, Rui

    2015-08-01

    With the development of optical fiber communication, dense wavelength division multiplexing (DWDM) system is important for the rapid management of multi-wavelength in the core node of the optical transmission network. In this paper, a reconfigurable optical add-drop multiplexer (ROADM) based on the tunable Fabry-Perot (F-P) array is proposed. An optical switch with high isolation and low crosstalk is designed by using the characteristics of filtering and tuning for the F-P array. The principle, structure, and function of the tunable F-P array are introduced. The characteristics of filtering and tuning for the F-P filter are also calculated, and the factor for the isolation, crosstalk, response time and insertion loss are analyzed. A single physical channel ROADM with 16 signal channels, which operates in C-band, is designed and optimized by simulation.

  7. Faraday-active Fabry-Perot resonator: transmission, reflection, and emissivity.

    PubMed

    Liptuga, Anatoliy; Morozhenko, Vasyl; Pipa, Viktor; Venger, Evgen; Kostiuk, Theodor

    2012-05-01

    The propagation of light within a semiconductor Faraday-active Fabry-Perot resonator is investigated theoretically and experimentally. It is shown that an external magnetic field radically changes the angular and spectral characteristics of transmission, reflection, and emissivity of the resonator not only for polarized, but also for unpolarized, light. Suppression of interference patterns and phase inversion of the interference extrema were observed in both monochromatic and polychromatic light. The investigations were carried out for the plane-parallel plates of n-InAs in the spectral range of free charge carrier absorption. The results can be used to create new controllable optical and spectroscopic devices for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures. PMID:22561938

  8. Doppler line profile analysis for a multichannel Fabry-Perot interferometer

    NASA Technical Reports Server (NTRS)

    Killeen, T. L.; Hays, P. B.

    1984-01-01

    A new method of instrument calibration and data analysis is presented for single-etalon interferometric measurements of winds, temperatures, and emission line intensities. The technique has been developed for the multichannel Fabry-Perot interferometer on the Dynamics Explorer spacecraft. A numerical representation of the instrumental transfer function is used based on a truncated Fourier series with empirically determined coefficients. The numerical form is compared with the conventional analytic form. The Fourier coefficients describing the instrument function are generated at the wavelength of a stable He-Ne laser and are translated to other wavelengths using an interpolation technique for both phase and power. A quasi-linear least-squares fitting process involving matrices provides for a rapid and accurate data reduction.

  9. Study on high temperature Fabry-Perot fiber acoustic sensor with temperature self-compensation

    NASA Astrophysics Data System (ADS)

    Hu, Pan; Tong, Xinglin; Zhao, Minli; Deng, Chengwei; Guo, Qian; Mao, Yan; Wang, Kun

    2015-09-01

    A Fabry-Perot (F-P) fiber acoustic sensor, which can work under high-temperature harsh environment with temperature self-compensation, is designed and prepared. A condenser was used to maintain the sensor to work in a stable temperature environment. Because of the special structure of the sensor and the function of the condenser, the cavity variation of the sensor caused by changes of external temperature from -10°C to 500°C would not exceed 8 nm. The experimental results show that the sensor has a good frequency response in a range of 1 to 5 kHz and the field experiment results show that it could be used for hydraulic decoking online monitoring by judging the acoustic frequency spectrum.

  10. Embedded intrinsic Fabry-Perot optical fiber sensors in cement concrete structures

    NASA Astrophysics Data System (ADS)

    Kim, Ki S.; Yoo, Jae-Wook; Kim, Seung Kwan; Kim, Byoung Yoon

    1996-05-01

    Intrinsic Fabry-Perot optical fiber sensors were embedded to the tensile side of the 20 cm by 20 cm by 150 cm cement concrete structures. The sensors were attached to the reinforcing steels and then, the cement concretes were applied. It took 30 days for curing the specimens. After that, the specimens were tested with 4-point bending method by a universal testing machine. Strains were measured and recorded by the strain gauges embedded near optical fiber sensors. Output data of fiber sensor showed good linearity to the strain data from the strain gauges up to 2000 microstrain. The optical fiber sensors showed good response after yielding of the structure while embedded metal film strain gauges did not show any response. We also investigated the behavior of the optical fiber sensor when the specimens were broken down. In conclusion, the optical fiber sensors can be used as elements of health monitoring systems for cement concrete infra-structures.

  11. Advancement of Optical Component Control for an Imaging Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    Larar, Allen M.; Cook, William B.; Flood, Michael A.; Campbell, Joel F.; Boyer, Charles M.

    2009-01-01

    Risk mitigation activities associated with a prototype imaging Fabry-Perot Interferometer (FPI) system are continuing at the NASA Langley Research Center. The system concept and technology center about enabling and improving future space-based atmospheric composition missions, with a current focus on observing tropospheric ozone around 9.6 micron, while having applicability toward measurement in different spectral regions and other applications. Recent activities have focused on improving an optical element control subsystem to enable precise and accurate positioning and control of etalon plates; this is needed to provide high system spectral fidelity critical for enabling the required ability to spectrally-resolve atmospheric line structure. The latest results pertaining to methodology enhancements, system implementation, and laboratory characterization testing will be reported

  12. Enhanced Bulk-Edge Coulomb Coupling in Fractional Fabry-Perot Interferometers.

    PubMed

    von Keyserlingk, C W; Simon, S H; Rosenow, Bernd

    2015-09-18

    Recent experiments use Fabry-Perot (FP) interferometry to claim that the ν=5/2 quantum Hall state exhibits non-Abelian topological order. We note that the experiments appear inconsistent with a model neglecting bulk-edge Coulomb coupling and Majorana tunneling, so we reexamine the theory of FP devices. Even a moderate Coulomb coupling may strongly affect some fractional plateaus, but very weakly affect others, allowing us to model the data over a wide range of plateaus. While experiments are consistent with the ν=5/2 state harboring Moore-Read topological order, they may have measured Coulomb effects rather than an "even-odd effect" due to non-Abelian braiding. PMID:26431008

  13. Optical design and characterization of a gas filled MEMS Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    Ayerden, N. Pelin; Ghaderi, Mohammadamir; de Graaf, Ger; Wolffenbuttel, Reinoud F.

    2015-05-01

    A concept for a highly integrated and miniaturized gas sensor based on infrared absorption, a Fabry-Perot type linear variable optical filter with integrated gas cell, is presented. The sample chamber takes up most of the space in a conventional spectrometer and is the only component that has so far not been miniaturized. In this concept the gas cell is combined with the resonator cavity of the filter. The optical design, fabrication, and characterization results on a MEMSbased realization are reported for a 24-25.5 μm long tapered resonator cavity. Multiple reflections from highly reflective mirrors enable this optical cavity to also act as a gas cell with an equivalent optical absorption path length of 8 mm. Wideband operation of the filter is ensured by fabrication of a tapered mirror. In addition to the functional integration and significant size reduction, the filter contains no moving parts, thus enables the fabrication of a robust microspectrometer

  14. Readout of micromechanical cantilever sensor arrays by Fabry-Perot interferometry

    SciTech Connect

    Wehrmeister, Jana; Fuss, Achim; Saurenbach, Frank; Berger, Ruediger; Helm, Mark

    2007-10-15

    The increasing use of micromechanical cantilevers in sensing applications causes a need for reliable readout techniques of micromechanical cantilever sensor (MCS) bending. Current optical beam deflection techniques suffer from drawbacks such as artifacts due to changes in the refraction index upon exchange of media. Here, an adaptation of the Fabry-Perot interferometer is presented that allows simultaneous determination of MCS bending and changes in the refraction index of media. Calibration of the instrument with liquids of known refraction index provides an avenue to direct measurement of bending with nanometer precision. Versatile construction of flow cells in combination with alignment features for substrate chips allows simultaneous measurement of two MCS situated either on the same, or on two different support chips. The performance of the instrument is demonstrate in several sensing applications, including adsorption experiments of alkanethioles on MCS gold surfaces, and measurement of humidity changes in air.

  15. Readout of micromechanical cantilever sensor arrays by Fabry-Perot interferometry.

    PubMed

    Wehrmeister, Jana; Fuss, Achim; Saurenbach, Frank; Berger, Rüdiger; Helm, Mark

    2007-10-01

    The increasing use of micromechanical cantilevers in sensing applications causes a need for reliable readout techniques of micromechanical cantilever sensor (MCS) bending. Current optical beam deflection techniques suffer from drawbacks such as artifacts due to changes in the refraction index upon exchange of media. Here, an adaptation of the Fabry-Perot interferometer is presented that allows simultaneous determination of MCS bending and changes in the refraction index of media. Calibration of the instrument with liquids of known refraction index provides an avenue to direct measurement of bending with nanometer precision. Versatile construction of flow cells in combination with alignment features for substrate chips allows simultaneous measurement of two MCS situated either on the same, or on two different support chips. The performance of the instrument is demonstrate in several sensing applications, including adsorption experiments of alkanethioles on MCS gold surfaces, and measurement of humidity changes in air. PMID:17979440

  16. Fabry-Perot interferometer measurement of static temperature and velocity for ASTOVL model tests

    NASA Technical Reports Server (NTRS)

    Kourous, Helen E.; Seacholtz, Richard G.

    1995-01-01

    A spectrally resolved Rayleigh/Mie scattering diagnostic was developed to measure temperature and wing-spanwise velocity in the vicinity of an ASTOVL aircraft model in the Lewis 9 x 15 Low Speed Wind Tunnel. The spectrum of argon-ion laser light scattered by the air molecules and particles in the flow was resolved with a Fabry-Perot interferometer. Temperature was extracted from the spectral width of the Rayleigh scattering component, and spanwise gas velocity from the gross spectral shift. Nozzle temperature approached 800 K, and the velocity component approached 30 m/s. The measurement uncertainty was about 5 percent for the gas temperature, and about 10 m/s for the velocity. The large difference in the spectral width of the Mie scattering from particles and the Rayleigh scattering from gas molecules allowed the gas temperature to be measured in flow containing both naturally occurring dust and LDV seed (both were present).

  17. Highly accurate spectral retardance characterization of a liquid crystal retarder including Fabry-Perot interference effects

    SciTech Connect

    Vargas, Asticio; Mar Sánchez-López, María del; García-Martínez, Pascuala; Arias, Julia; Moreno, Ignacio

    2014-01-21

    Multiple-beam Fabry-Perot (FP) interferences occur in liquid crystal retarders (LCR) devoid of an antireflective coating. In this work, a highly accurate method to obtain the spectral retardance of such devices is presented. On the basis of a simple model of the LCR that includes FP effects and by using a voltage transfer function, we show how the FP features in the transmission spectrum can be used to accurately retrieve the ordinary and extraordinary spectral phase delays, and the voltage dependence of the latter. As a consequence, the modulation characteristics of the device are fully determined with high accuracy by means of a few off-state physical parameters which are wavelength-dependent, and a single voltage transfer function that is valid within the spectral range of characterization.

  18. Development of Ultrasonic and Fabry-Perot Interferometer for Non-Destruction Inspection of Aging Aircraft

    NASA Technical Reports Server (NTRS)

    Smith, Alphonso C.

    1998-01-01

    Fabry-Perot Interferometer (FPI) sensor detection system was continued and refined modifications were made in the data acquisition and evaluation process during the last year. The ultrasonic and FPI detection system was improved from one to multiple sensor detectors. Physical models were developed to understand the physical phenomenon of this work. Multilayered flawed samples were fabricated for inspection by a prototype ultrasonic and FPI detection. Experimental data was verified with simulated results. Undergraduate students that were associated with this research gained valuable knowledge from this experience. This was a learning process helping students to understand the importance of research and its application to solve important technological problems. As a result of our students exposure to this research two and planning to continue this type of research work in graduate school. A prototype instrument package was laboratory tested an actual airframe structure for documentation purposes.

  19. Overview of laboratory testing results for an imaging Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Larar, Allen M.; Cook, William B.; Flood, Michael A.; Campbell, Joel F.; Boyer, Charles M.; Remus, Rubin G.; Burcher, Ernest E.; Puschell, Jeffery J.

    2007-10-01

    An airborne imaging Fabry-Perot Interferometer (FPI) system was developed within NASA's Instrument Incubator Program (IIP) to mitigate risk associated with implementation of such a device in future space-based atmospheric remote sensing missions. This system is focused on observing tropospheric ozone through measuring a narrow spectral interval within the strong 9.6 micron infrared ozone band at high spectral resolution, while the concept and technology also have applicability toward measurement of other trace species and other applications. The latest results from laboratory testing and characterization of enabling subsystems and the overall instrument system will be reported, with an emphasis placed on testing performed to evaluate system-level radiometric, spatial, and spectral measurement fidelity.

  20. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis

    PubMed Central

    Tosi, Daniele

    2015-01-01

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding. PMID:26528975

  1. Hybrid optical fiber Fabry-Perot interferometer for simultaneous measurement of gas refractive index and temperature.

    PubMed

    Wang, Ruohui; Qiao, Xueguang

    2014-11-10

    We present a hybrid miniature optical fiber Fabry-Perot interferometer for simultaneous measurement of gas refractive index and temperature. The interferometer is fabricated by cascading two short sections of capillary tubes with different inner diameters. One extrinsic interferometer is based on the air gap cavity formed by the capillary tube with large diameter. Another section of capillary tube with small inner diameter performs as an intrinsic interferometer and also provides a channel enabling gas to enter and leave the extrinsic cavity freely. The experiment shows that the different dips or peaks in fringe exhibit different responses to the changes in gas refractive index and temperature. Owing to this feature, simultaneous measurement of the gas refractive index and temperature can be realized. PMID:25402996

  2. Gas detection with microelectromechanical Fabry-Perot interferometer technology in cell phone

    NASA Astrophysics Data System (ADS)

    Mannila, Rami; Hyypiö, Risto; Korkalainen, Marko; Blomberg, Martti; Kattelus, Hannu; Rissanen, Anna

    2015-06-01

    VTT Technical Research Centre of Finland has developed a miniaturized optical sensor for gas detection in a cell phone. The sensor is based on a microelectromechanical (MEMS) Fabry-Perot interferometer, which is a structure with two highly reflective surfaces separated by a tunable air gap. The MEMS FPI is a monolithic device, i.e. it is made entirely on one substrate in a batch process, without assembling separate pieces together. The gap is adjusted by moving the upper mirror with electrostatic force, so there are no actual moving parts. VTT has designed and manufactured a MEMS FPI based carbon dioxide sensor demonstrator which is integrated to a cell phone shield cover. The demonstrator contains light source, gas cell, MEMS FPI, detector, control electronics and two coin cell batteries as a power source. It is connected to the cell phone by Bluetooth. By adjusting the wavelength range and customizing the MEMS FPI structure, it is possible to selectively sense multiple gases.

  3. The frequency-dependent directivity of a planar fabry-perot polymer film ultrasound sensor.

    PubMed

    Cox, Benjamin T; Beard, Paul C

    2007-02-01

    A model of the frequency-dependent directivity of a planar, optically-addressed, Fabry-Perot (FP), polymer film ultrasound sensor is described and validated against experimental directivity measurements made over a frequency range of 1 to 15 MHz and angles from normal incidence to 80 degrees. The model may be used, for example, as a predictive tool to improve sensor design, or to provide a noise-free response function that could be deconvolved from sound-field measurements in order to improve accuracy in high-frequency metrology and imaging applications. The specific question of whether effective element sizes as small as the optical-diffraction limit can be achieved was investigated. For a polymer film sensor with a FP cavity of thickness d, the minimum effective element radius was found to be about 0.9 d, and that an illumination spot radius of less than d/4 is required to achieve it. PMID:17328336

  4. Fiber laser sensor based on fiber-Bragg-grating Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Chen, Jianfeng; Liu, Yunqi; Cai, Tongjian; Wang, Tingyun

    2011-01-01

    We propose a fiber-Bragg-grating Fabry-Perot (FBG-FP) cavity sensor interrogated by a pulsed laser. The FBG-FP cavity is directly written into the same photosensitive fiber, which consists of a pair of FBGs with identical center wavelength. The modulated laser pulses are launched into the FBG-FP cavity. Each pulse produces a group of reflection and transmission pulses. The cavity loss in the FBG-FP cavity is determined from the power ratio of the first two pulses reflected from the cavity, which could be detected for the sensor measurement. This technique has the advantages that it does not require high reflectivity FBG and is immune to the power fluctuation of the light source.

  5. Fiber laser sensor based on fiber-Bragg-grating Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Chen, Jianfeng; Liu, Yunqi; Cai, Tongjian; Wang, Tingyun

    2010-12-01

    We propose a fiber-Bragg-grating Fabry-Perot (FBG-FP) cavity sensor interrogated by a pulsed laser. The FBG-FP cavity is directly written into the same photosensitive fiber, which consists of a pair of FBGs with identical center wavelength. The modulated laser pulses are launched into the FBG-FP cavity. Each pulse produces a group of reflection and transmission pulses. The cavity loss in the FBG-FP cavity is determined from the power ratio of the first two pulses reflected from the cavity, which could be detected for the sensor measurement. This technique has the advantages that it does not require high reflectivity FBG and is immune to the power fluctuation of the light source.

  6. Fabry-Perot microcavity sensor for H2-breath-test analysis

    NASA Astrophysics Data System (ADS)

    Vincenti, Maria Antonietta; De Sario, Marco; Petruzzelli, V.; D'Orazio, Antonella; Prudenzano, Francesco; de Ceglia, Domenico; Scalora, Michael

    2007-10-01

    Leak detection of hydrogen for medical purposes, based on the monitoring of the optical response of a simple Fabry-Perot microcavity, is proposed to investigate either the occurrence of lactose intolerance, or lactose malabsorption condition. Both pathologic conditions result in bacterial overgrowth in the intestine, which causes increased spontaneous emission of H2 in the human breath. Two sensitivity figures of merit are introduced to inspect changes in the sensor response, and to relate the microcavity response to a pathologic condition, which is strictly related to a different level of exhaled hydrogen. Different sensor configurations using a metal-dielectric microcavity are reported and discussed in order to make the most of the well-known ability of palladium to spontaneously absorb hydrogen.

  7. Faraday-Active Fabry-Perot Resonator: Transmission, Reflection, and Emissivity

    NASA Technical Reports Server (NTRS)

    Liptuga, Anatoliy; Morozhenko, Vasyl; Pipa, Viktor; Venger, Evgen; Kostiuk, Theodor

    2011-01-01

    The propagation of light within a semiconductor Faraday-active Fabry-Perot resonator (FAFR) is investigated theoretically and experimentally. It is shown that an external magnetic field radically changes the angular and spectral characteristics of transmission, reflection and emissivity of the resonator not only for polarized, but also for unpolarized light. Suppression of interference patterns and phase inversion of the interference extrema were observed in both monochromatic and polychromatic light. The investigations were carried out for the plane-parallel plates of n-InAs in the spectral range of free charge carrier absorption. The results can be used to create new controllable optical and spectroscopic devices for investigation of Faraday-active material properties and for control of parameters of plane-parallel layers and structures.

  8. Advanced Interrogation of Fiber-Optic Bragg Grating and Fabry-Perot Sensors with KLT Analysis.

    PubMed

    Tosi, Daniele

    2015-01-01

    The Karhunen-Loeve Transform (KLT) is applied to accurate detection of optical fiber sensors in the spectral domain. By processing an optical spectrum, although coarsely sampled, through the KLT, and subsequently processing the obtained eigenvalues, it is possible to decode a plurality of optical sensor results. The KLT returns higher accuracy than other demodulation techniques, despite coarse sampling, and exhibits higher resilience to noise. Three case studies of KLT-based processing are presented, representing most of the current challenges in optical fiber sensing: (1) demodulation of individual sensors, such as Fiber Bragg Gratings (FBGs) and Fabry-Perot Interferometers (FPIs); (2) demodulation of dual (FBG/FPI) sensors; (3) application of reverse KLT to isolate different sensors operating on the same spectrum. A simulative outline is provided to demonstrate the KLT operation and estimate performance; a brief experimental section is also provided to validate accurate FBG and FPI decoding. PMID:26528975

  9. Use of support vector machines and fabry-perot interferometry to classify states of a laser

    NASA Astrophysics Data System (ADS)

    McKinnon, John

    This thesis develops an algorithm that can determine if a laser is functioning correctly over a long period of time. A Fourier fit is created to model fringe profiles from a Fabry-Perot interferometer, and singular value decomposition is used to reduce noise in each signal. Levenberg-Marquardt gradient descent is performed to correctly locate the center of each image and to optimize each fit with respect to the spatial frequency. The Fourier fit is used to extract important information from each image to be used for separating the image types from one another. Principal component analysis is used to reduce the dimensionality of the data set and to plot a projection of the data using its first two principal components. It is determined that the image data are not linearly separable and require a non-linear support vector network to complete the classification of each image type.

  10. Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators.

    PubMed

    Xiao, Zhong-yin; Liu, De-jun; Ma, Xiao-long; Wang, Zi-hua

    2015-03-23

    In this paper, a multi-layered metallic structure is proposed, which consists of split-ring resonators on both sides of two dielectric substrates. Numerical results reveal that the structure realizes a high magnitude of 0.94, three bands and broadband (more than 8 GHz) asymmetric transmission for linearly polarized wave. These properties are not observed in previous works. In order to better know these transmission properties, the Fabry-Perot like resonance model has been introduced to analyze the enhancement mechanism of asymmetric transmission in the multi-layered structure. The physical mechanism of linearly polarized wave conversion and asymmetric transmission based on electric fields and currents distribution is also analyzed in detail, respectively. PMID:25837050

  11. Striped-double cavity fabry-perot interferometers using both glass and air cavities

    SciTech Connect

    Perry, S; Steinmetz, L

    1998-07-08

    We have used piezo-driven Fabry-Perot interferometers in the past far many continuous velocity-time measurements of fast moving surfaces. In order to avoid the annoying drift of some of these devices, we have developed and used inexpensive, solid glass, striped etalons with lengths up to 64 mm. Usable apertures are 35 mm by 80 mm with a finess of 25. A roundabout technique was devised for double cavity operation. We built a passive thermal housing for temperature stability, with tilt and height adjustments. We have also developed and used our first fixed etalon air-spaced cavity with a rotatable glass double- cavity insert. The rotation allows the referee cavity fractional order to be adjusted separately from that of the main cavity. It needs very little thermal protection, and eliminates the need for a roundabout scheme for double cavity operation, but is more costly than the solid glass version I

  12. Sapphire hard X-ray Fabry-Perot resonators for synchrotron experiments.

    PubMed

    Tsai, Yi Wei; Wu, Yu Hsin; Chang, Ying Yi; Liu, Wen Chung; Liu, Hong Lin; Chu, Chia Hong; Chen, Pei Chi; Lin, Pao Te; Fu, Chien Chung; Chang, Shih Lin

    2016-05-01

    Hard X-ray Fabry-Perot resonators (FPRs) made from sapphire crystals were constructed and characterized. The FPRs consisted of two crystal plates, part of a monolithic crystal structure of Al2O3, acting as a pair of mirrors, for the backward reflection (0 0 0 30) of hard X-rays at 14.3147 keV. The dimensional accuracy during manufacturing and the defect density in the crystal in relation to the resonance efficiency of sapphire FPRs were analyzed from a theoretical standpoint based on X-ray cavity resonance and measurements using scanning electron microscopic and X-ray topographic techniques for crystal defects. Well defined resonance spectra of sapphire FPRs were successfully obtained, and were comparable with the theoretical predictions. PMID:27140144

  13. A polymer-based Fabry-Perot filter integrated with 3-D MEMS structures

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Polymers have been considered as one of the most versatile materials in making optical devices for communication and sensor applications. They provide good optical transparency to form filters, lenses and many optical components with ease of fabrication. They are scalable and compatible in dimensions with requirements in optics and can be fabricated on inorganic substrates, such as silicon and quartz. Recent polymer synthesis also made great progresses on conductive and nonlinear polymers, opening opportunities for new applications. In this paper, we discussed hybrid-material integration of polymers on silicon-based microelectromechanical system (MEMS) devices. The motivation is to combine the advantages of demonstrated silicon-based MEMS actuators and excellent optical performance of polymers. We demonstrated the idea with a polymer-based out-of-plane Fabry-Perot filter that can be self-assembled by scratch drive actuators. We utilized a fabrication foundry service, MUMPS (Multi-User MEMS Process), to demonstrate the feasibility and flexibility of integration. The polysilicon, used as the structural material for construction of 3-D framework and actuators, has high absorption in the visible and near infrared ranges. Therefore, previous efforts using a polysilicon layer as optical interfaces suffer from high losses. We applied the organic compound materials on the silicon-based framework within the optical signal propagation path to form the optical interfaces. In this paper, we have shown low losses in the optical signal processing and feasibility of building a thin-film Fabry-Perot filter. We discussed the optical filter designs, mechanical design, actuation mechanism, fabrication issues, optical measurements, and results.

  14. A Novel, Poly-Etalon, Fabry-Perot for Planetary Research

    NASA Technical Reports Server (NTRS)

    Kerr, Robert B.; Doe, Richard; Noto, John

    1997-01-01

    In an effort to develop a mechanically robust, high throughput and solid state spectrometer several liquid crystal Fabry-Perot etalons were constructed. The etalons were tested for spectral response, radiation resistance and optical transmission. The first year of this project was spent developing and understanding the properties of the liquid crystal etalons; in the second year an intensified all-sky imaging system was developed around a pair of LC etalons. The imaging system, developed jointly with SRI International represents a unique brassboard to demonstrate the use of LC etalons as tunable filters. The first set of etalons constructed in year one of this project were tested for spectral response and throughput while etalon surrogates were exposed to proton radiation simulating the exposure of an object in Low Earth Orbit (LEO). The 2" diameter etalons had a measure finesse of approximately 10 and were tunable over five orders. Liquid crystals exposed to proton irradiation showed no signs of damage. In year two two larger diameter (3") etalons were constructed with gaps of 3 and 5 microns. This pair of etalons is for use in a high resolution, all-sky spectral imager. The WATUMI imager system follows the heritage of all sky, narrow band, intensified imagers however it includes two LC Fabry-Perot etalons to provide tunability and the ability to switch wavelengths rapidly, an import consideration in auroral airglow imaging. This work also resulted in two publications and one poster presentation. The instrument will be uniquely capable, with superior throughput and speed, to measure optical airglow of multiple emission lines in harsh conditions.

  15. Simultaneous measurement of refractive index and temperature with micro silica sphere cavity hybrid Fabry Perot optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Ranjbar Naeini, O. R.; Latifi, H.; Zibaii, M. I.

    2015-09-01

    In this article, a novel Micro Silica Sphere Cavity Hybrid Fabry Perot optical fiber sensor is reported where refractive index (RI) and temperature can be simultaneously measured. The sensor is based on Micro Silica Sphere that was fabricated using a capillary tube. The micro silica sphere and optical fiber form a Hybrid Fabry Perot cavity. The temperature cross sensitivity of this sensor is small enough to be used for accurate RI measurement. The temperature sensitivity and RI sensitivity are -0.0028 dBm/ºC, -0.0044 dBm/ºC , -24.09 dBm/RIU and -20.6 dBm/RIU respectively, using two selected resonances.

  16. Sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure measurement.

    PubMed

    Liao, Changrui; Liu, Shen; Xu, Lei; Wang, Chao; Wang, Yiping; Li, Zhengyong; Wang, Qiao; Wang, D N

    2014-05-15

    We demonstrate a sub-micron silica diaphragm-based fiber-tip Fabry-Perot interferometer for pressure sensing applications. The thinnest silica diaphragm, with a thickness of ∼320  nm, has been achieved by use of an improved electrical arc discharge technique. Such a sub-micron silica diaphragm breaks the sensitivity limitation imposed by traditional all-silica Fabry-Perot interferometric pressure sensors and, as a result, a high pressure sensitivity of ∼1036  pm/MPa at 1550 nm and a low temperature cross-sensitivity of ∼960  Pa/°C are achieved when a silica diaphragm of ∼500  nm in thickness is used. Moreover, the all-silica spherical structure enhanced the mechanical strength of the micro-cavity sensor, making it suitable for high sensitivity pressure sensing in harsh environments. PMID:24978213

  17. Observations of comet Levy 1990c in the (OI) 6300-A line with an imaging Fabry-Perot

    NASA Technical Reports Server (NTRS)

    Prasad, C. Debi; Jockers, Klaus; Rauer, H.; Geyer, E. H.

    1992-01-01

    We have observed the comet Levy 1990c during 16-25 August 1990 using the MPAE focal reducer system based Fabry-Perot etalon coupled with the 1 meter telescope of the Observatory of Hoher List. The free spectral range and resolution limit of the interferometer was approximately 2.18 A and approximately 0.171 A respectively. Classical Fabry-Perot fringes were recorded on a CCD in the cometary (OI) 6300 A line. They are well resolved from telluric air glow and cometary NH2 emission. Our observations indicate that the (OI) is distributed asymmetrically with respect to the center of the comet. In this paper we report the spatial distribution of (OI) emission and its line width in the coma of comet Levy.

  18. Microwave radiometric aircraft observations of the Fabry-Perot interference fringes of an ice-water system

    NASA Technical Reports Server (NTRS)

    Harrington, R. F.; Swift, C. T.; Fedors, J. C.

    1980-01-01

    Airborne stepped-frequency microwave radiometer (SFMR) observations of the Fabry-Perot interference fringes of ice-water systems are discussed. The microwave emissivity at normal incidence of a smooth layered dielectric medium over a semi-infinite dielectric medium is examined for the case of ice over water as a function of ice thickness and attenuation coefficient, and the presence of quarter-wavelength oscillations in emissivity as the ice thickness and frequency are varied is pointed out. Experimental observations of pronounced quarter-wavelength oscillations in radiometric brightness temperature due to the Fabry-Perot interference fringes over smooth sea ice and lake ice varying in roughness as the radiometer frequencies were scanned are then presented.

  19. Measurement of high-intensity focused ultrasound fields using miniaturized all-silica fiber-optic Fabry-Perot hydrophones

    NASA Astrophysics Data System (ADS)

    Jia, Ping-Gang; Ke, Ding; Wang, Dai-Hua; Zeng, Lu-Yu; Jiang, Xin-Yin; Liu, Lei

    2014-11-01

    High-intensity focused ultrasounds (HIFUs), as a novel non-invasive surgery technology, have been used effectively for cancer therapy. In order to ensure the HIFU treatment safety, the acoustic pressure distributions and the size of the focal regions of HIFU fields need to be measured accurately. In this paper, the lateral sensitive and tip-sensitive all-silica fiberoptic Fabry-Perot ultrasonic hydrophone systems and the corresponding experimental setups are established to measure HIFU fields, respectively. The acoustic pressure distributions of the HIFU field along the X-axis, Y-axis, and Z-axis are compared in the degassed water by the lateral sensitive and tip-sensitive fiber-optic Fabry-Perot ultrasonic hydrophones. Experimental results show that the tip-sensitive configuration can measure the acoustic pressure distribution in the focal region with high accuracy than the lateral-sensitive configuration.

  20. First Light from Triple-Etalon Fabry-Perot Interferometer for Atmospheric OI Airglow (6300 A)

    NASA Astrophysics Data System (ADS)

    Watchorn, S.; Noto, J.; Pedersen, T.; Betremieux, Y.; Migliozzi, M.; Kerr, R. B.

    2006-05-01

    Scientific Solutions, Inc. (SSI) has developed a triple-etalon Fabry-Perot interferometer (FPI) to observe neutral winds in the ionosphere by measuring neutral oxygen (O I) emission at 630.0 nm during the day. This instrument is to be deployed in the SSI airglow building at the Cerro Tololo observatory (30.17S 70.81W) in Chile, in support of the Comm/Nav Outage Forecast System (C/NOFS) project. Post-deployment observation will be made in conjunction with two other Clemson University Fabry-Perots in Peru, creating a longitudinal chain of interferometers for thermospheric observations. These instruments will make autonomous day and night observations of thermospheric dynamics. Instruments of this type can be constructed for a global chain of autonomous airglow observatories. The FPI presented in this talk consists of three independently pressure-controlled etalons, fed collimated light by a front optical train headed by an all-sky lens with a 160-degree field of view. It can be controlled remotely via a web-based service which allows any internet-connected computer to mimic the control computer at the instrument site. In fall 2005, the SSI system was first assembled at the Millstone Hill Observatory in Westford, Massachusetts, and made day and evening observations. It was then moved to the High-frequency Active Auroral Research Project (HAARP) site in Gakona, Alaska, to participate in joint optical/ionospheric heating campaigns. Additionally, natural airglow observations were made, both locally and remotely via the internet from Massachusetts. The Millstone and HAARP observations with two etalons yielded strong 630-nm atmospheric Fraunhofer absorption lines, with some suggestion of the Ring effect. By modeling the atmospheric absorption line as the constant times the corresponding solar absorption -- itself modeled as a Gaussian plus a polynomial -- the absorption feature is subtracted, leaving only the emission feature. Software ring-summing tools developed at the

  1. Microfluidic flowmeter based on micro "hot-wire" sandwiched Fabry-Perot interferometer.

    PubMed

    Li, Ying; Yan, Guofeng; Zhang, Liang; He, Sailing

    2015-04-01

    We present a compact microfluidic flowmeter based on Fabry-Perot interferometer (FPI). The FPI was composed by a pair of fiber Bragg grating reflectors and a micro Co(2+)-doped optical fiber cavity, acting as a "hot-wire" sensor. Microfluidic channels made from commercial silica capillaries were integrated with the FPIs on a chip to realize flow-rate sensing system. By utilizing a tunable pump laser with wavelength of 1480 nm, the proposed flowmeter was experimentally demonstrated. The flow rate of the liquid sample is determined by the induced resonance wavelength shift of the FPI. The effect of the pump power, microfluidic channel scale and temperature on the performance of our flowmeter was investigated. The dynamic response was also measured under different flow-rate conditions. The experimental results achieve a sensitivity of 70 pm/(μL/s), a dynamic range up to 1.1 μL/s and response time in the level of seconds, with a spatial resolution ~200 μm. Such good performance renders the sensor a promising supplementary component in microfluidic biochemical sensing system. Furthermore, simulation modal was built up to analyze the heat distribution of the "hot-wire" cavity and optimize the FPI structure as well. PMID:25968776

  2. Fabry-Perot measurements and analysis of TOW-2A liner collapse and jet formation

    SciTech Connect

    Simonson, S.C.; Winer, K.A.; Breithaupt, R.D.; Avara, G.R.; Baum, D.W.

    1996-07-01

    A TOW-2A 146 mm shaped charge was fired and observed with five beam Fabry-Perot laser velocimetry. The liner collapse velocities were measured at five lines of sight covering the outer half of the liner. A record of 8-10 {mu}s in length was obtained for each sight line The velocity records at late time differ for each location, reflecting the varying charge-to-mass ratio as the end of the liner is approached. The results were analyzed with the CALE-2D hydrodynamic simulation code. The calculations reproduce the jump-off times, the shapes of the velocity jumps and the late time velocity asymptotes, but they underestimate the jump-off velocities by 6-7%. The calculations show that there exist no features in the velocity records that require spallation to account for them. Rather, the standard Steinberg-Guinan material model adequately accounts for the response of this copper liner to LX-14.

  3. All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer.

    PubMed

    Shangguan, Mingjia; Xia, Haiyun; Wang, Chong; Qiu, Jiawei; Shentu, Guoliang; Zhang, Qiang; Dou, Xiankang; Pan, Jian-Wei

    2016-08-22

    An all-fiber, micro-pulse and eye-safe high spectral resolution wind lidar (HSRWL) at 1.5 μm is proposed and demonstrated by using a pair of upconversion single-photon detectors and a fiber Fabry-Perot scanning interferometer (FFP-SI). In order to improve the optical detection efficiency, both the transmission spectrum and the reflection spectrum of the FFP-SI are used for spectral analyses of the aerosol backscatter and the reference laser pulse. Taking advantages of high signal-to-noise ratio of the detectors and high spectral resolution of the FFP-SI, the center frequencies and the bandwidths of spectra of the aerosol backscatter are obtained simultaneously. Continuous LOS wind observations are carried out on two days at Hefei (31.843 °N, 117.265 °E), China. The horizontal detection range of 4 km is realized with temporal resolution of 1 minute. The spatial resolution is switched from 30 m to 60 m at distance of 1.8 km. In a comparison experiment, LOS wind measurements from the HSRWL show good agreement with the results from an ultrasonic wind sensor (Vaisala windcap WMT52). An empirical method is adopted to evaluate the precision of the measurements. The standard deviation of the wind speed is 0.76 m/s at 1.8 km. The standard deviation of bandwidth variation is 2.07 MHz at 1.8 km. PMID:27557211

  4. Spectral imaging characterization of quartz MOEM tunable Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam; Tan, Songsheng

    2012-07-01

    Recently, prototype MOEM tunable Fabry-Perot filters operating from 400 to 800 nm were fabricated under a program to design miniature hyperspectral imagers operating from the visible to the longwave infrared. The filter design uses two semitransparent 30 nm thick silver-film mirrors, one fixed and the other moving, on a low-cost thin commercial quartz substrate. The moving mirror is supported by three leaf spring arms, which are fabricated by wet etching of the quartz substrate. The tuning of the transmitted wavelength of light from the filter is achieved by electrostatically actuating the moving mirror to vary the distance between the two mirrors. The size of the device is 18×24 mm2. The fixed part has a 6 mm diameter mirror and three electrodes to apply voltages, and the moving mirror is used as a ground electrode. Au bumps deposited on both parts control the initial air gap distance, and an Au-Au bonding is used to bond the two parts together. The spectral imaging performance of the MOEM filter is characterized using a spectrally tunable source and a CCD camera with suitable optics. The authors present a brief description of the filter, its characteristics, spectral imaging characterization experiment and results.

  5. Analytical modelling of a refractive index sensor based on an intrinsic micro Fabry-Perot interferometer.

    PubMed

    Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana D; Cano-Contreras, Martin; Gallegos-Arellano, Eloisa; Jauregui-Vazquez, Daniel; Hernández-García, Juan C; Estudillo-Ayala, Julian M; Rojas-Laguna, Roberto

    2015-01-01

    In this work a refractive index sensor based on a combination of the non-dispersive sensing (NDS) and the Tunable Laser Spectroscopy (TLS) principles is presented. Here, in order to have one reference and one measurement channel a single-beam dual-path configuration is used for implementing the NDS principle. These channels are monitored with a couple of identical optical detectors which are correlated to calculate the overall sensor response, called here the depth of modulation. It is shown that this is useful to minimize drifting errors due to source power variations. Furthermore, a comprehensive analysis of a refractive index sensing setup, based on an intrinsic micro Fabry-Perot Interferometer (FPI) is described. Here, the changes over the FPI pattern as the exit refractive index is varied are analytically modelled by using the characteristic matrix method. Additionally, our simulated results are supported by experimental measurements which are also provided. Finally it is shown that by using this principle a simple refractive index sensor with a resolution in the order of 2.15 × 10(-4) RIU can be implemented by using a couple of standard and low cost photodetectors. PMID:26501277

  6. Analytical Modelling of a Refractive Index Sensor Based on an Intrinsic Micro Fabry-Perot Interferometer

    PubMed Central

    Vargas-Rodriguez, Everardo; Guzman-Chavez, Ana D.; Cano-Contreras, Martin; Gallegos-Arellano, Eloisa; Jauregui-Vazquez, Daniel; Hernández-García, Juan C.; Estudillo-Ayala, Julian M.; Rojas-Laguna, Roberto

    2015-01-01

    In this work a refractive index sensor based on a combination of the non-dispersive sensing (NDS) and the Tunable Laser Spectroscopy (TLS) principles is presented. Here, in order to have one reference and one measurement channel a single-beam dual-path configuration is used for implementing the NDS principle. These channels are monitored with a couple of identical optical detectors which are correlated to calculate the overall sensor response, called here the depth of modulation. It is shown that this is useful to minimize drifting errors due to source power variations. Furthermore, a comprehensive analysis of a refractive index sensing setup, based on an intrinsic micro Fabry-Perot Interferometer (FPI) is described. Here, the changes over the FPI pattern as the exit refractive index is varied are analytically modelled by using the characteristic matrix method. Additionally, our simulated results are supported by experimental measurements which are also provided. Finally it is shown that by using this principle a simple refractive index sensor with a resolution in the order of 2.15 × 10−4 RIU can be implemented by using a couple of standard and low cost photodetectors. PMID:26501277

  7. Fabry-Perot spectroscopy: a powerful method for detecting superbubbles in galaxy discs

    NASA Astrophysics Data System (ADS)

    Camps-Fariña, A.; Beckman, J.; Zaragoza-Cardiel, J.; Font, J.; Fathi, K.

    2015-02-01

    We present a new method for the detection and characterization of large scale expansion in galaxy discs based on Hα Fabry-Perot spectroscopy, taking advantage of the high spatial and velocity resolution of our instrument (GHαFaS). The method analyses multi-peaked emission line profiles to find expansion along the line of sight on a pixel-by-pixel basis. At this stage we have centred our attention on the large scale structures of expansive gas which show a coherent gradient of velocities from their centres as a result of both bubble shape and projection effect. The results show a wide range of expansion velocities in these superbubbles, ranging from 30-150 km/s, with the expected trend of finding the higher velocities in the more violent areas of the galaxies. We have applied the technique to the Antennae and M83, obtaining spectacular results, and used these to investigate to what extent kinematically derived ages can be found and used to characterize the ages of their massive star clusters.

  8. Underwater blast wave pressure sensor based on polymer film fiber Fabry-Perot cavity.

    PubMed

    Wang, Junjie; Wang, Meng; Xu, Jian; Peng, Li; Yang, Minghong; Xia, Minghe; Jiang, Desheng

    2014-10-01

    This paper describes the theoretical and experimental aspects of an optical underwater shock wave sensor based on a polymer film optical fiber Fabry-Perot cavity manufactured by vacuum deposition technology. The transduction mechanism of the sensor involves a normally incident acoustic stress wave that changes the thickness of the polymer film, thereby giving rise to a phase shift. This transient interferometric phase is interrogated by a three-phase-step algorithm. Theoretically, the sensor-acoustic-field interaction principle is analyzed, and the phase modulation sensitivity based on the theory of waves in the layered media is calculated. Experimentally, a static calibration test and a dynamic calibration test are conducted using a piston-type pressure calibration machine and a focusing-type electromagnetic shock wave. Results indicate that the repeatability, hysteresis, nonlinearity, and the overall measurement accuracy of the sensor within the full pressure range of 55 MPa are 1.82%, 0.86%, 1.81%, and 4.49%, respectively. The dynamic response time is less than 0.767 μs. Finally, three aspects that need further study for practical use are pointed out. PMID:25322237

  9. CIV Vacuum Ultraviolet Fabry-Perot Interferometers for Transition-Region Magnetography

    NASA Technical Reports Server (NTRS)

    Gary, G. Allen; West, Edward A.; Rees, David; Zukic, Maumer; Herman, Peter; Li, Jianzhao

    2006-01-01

    The vacuum ultraviolet region allows remote sensing of the upper levels of the solar atmosphere where the magnetic field dominates the physics. Obtaining an imaging interferometer that observes the transition region is the goal of this program. This paper gives a summary of our instrument development program (1998-2005) for a high-spectral-resolution, piezoelectric tunable Vacuum Ultraviolet Fabry-Perot Interferometer (VUV FPI) for obtaining narrow-passband images, magnetograms, and Dopplergrams of the transition region emission line of CN (155nm). A VUV interferometer will allow us to observe the magnetic field, flows, and heating events in the mid-transition region. The MSFC VUV FPI has measured values of FWHM approx. 9pm, FSR approx. 62pm, finesse approx. 5.3 and transmittance approx. 50% at 157nm. For the measurements, the University of Toronto's F2 eximer laser was used as an appropriate proxy for CIV 155nm. This has provided the first tunable interferometer with a FWHM compatible to VUV filter magnetograph.

  10. Wavelength-switched phase interrogator for extrinsic Fabry-Perot interferometric sensors.

    PubMed

    Xia, Ji; Xiong, Shuidong; Wang, Fuyin; Luo, Hong

    2016-07-01

    We report on phase interrogation of extrinsic Fabry-Perot interferometric (EFPI) sensors through a wavelength-switched unit with a polarization-maintaining fiber Bragg grating (PMFBG). The measurements at two wavelengths are first achieved in one total-optical path. The reflected peaks of the PMFBG with two natural wavelengths are in mutually perpendicular polarization detection, and they are switched through an electro-optic modulator at a high switching speed of 10 kHz. An ellipse fitting differential cross multiplication (EF-DCM) algorithm is proposed for interrogating the variation of the gap length of the EFPI sensors. The phase demodulation system has been demonstrated to recover a minimum phase of 0.42  μrad/Hz at the test frequency of 100 Hz with a stable intensity fluctuation level of ±0.8  dB. Three EFPI sensors with different cavity lengths are tested at the test frequency of 200 Hz, and the results indicate that the system can achieve the demodulation of EFPI sensors with different cavity lengths stably. PMID:27367107

  11. An optical fiber Fabry-Perot flow measurement technology based on partial bend structure.

    PubMed

    Yang, Huijia; Jiang, Junfeng; Zhang, Xuezhi; Pan, Yuheng; Zhu, Wanshan; Zhou, Xiang; Liu, Tiegen

    2016-08-01

    An optical fiber Fabry-Perot (F-P) flow measurement technology is presented, which is based on partial bend structure. A 90° partial bend structure is designed to achieve the non-probe flow measurement with a pressure difference. The fluid simulation results of partial bend structure show that the error of the pressure difference is below 0.05 kPa during steady flow. The optical fiber F-P sensor mounted on the elbow with pressure test accuracy of 1% full scale is used to measure the fluid flow. Flow test results show that when the flow varies from 1 m(3)/h to 6.5 m(3)/h at ambient temperature of 25 °C, the response time is 1 s and the flow test accuracy is 4.5% of the F-P flow test system, proving that the F-P flow test method based on partial bend structure can be used in fluid flow measurement. PMID:27587096

  12. Use of a Fabry Perot Interferometer to Isolate Pure Rotational Raman Spectra of Diatomic Molecules

    NASA Astrophysics Data System (ADS)

    Arshinov, Yuri; Bobrovnikov, Sergey

    1999-07-01

    We propose to use a Fabry Perot interferometer (FPI) as a comb frequency filter to isolate pure rotational Raman spectra (PRRS) of nitrogen molecules. In making the FPI s free spectral range equal to the spectral spacing between the lines of nitrogen PRRS, which are practically equidistant, one obtains a device with a comb transmission function with the same period. However, to match the FPI transmission comb completely with the comb of nitrogen PRRS lines one should tune the wavelength of the radiation used to excite the PRRS of nitrogen exactly to the position of any minimum in the FPI transmission comb. Thus to achieve this task for the case of nitrogen PRRS one must take the FPI s free spectral range f 4 B N 2 and the wavelength of the exciting radiation such that (1 exc ) 4 B N 2 ( k 1 2 ), where B N 2 is the rotational constant of the nitrogen molecule and k is an arbitrary integer number. In this case all (odd and even) pure rotational Raman lines of nitrogen will pass through the FPI while the line of exciting radiation is being suppressed. Additionally, a FPI cuts out the spectrally continuous sky background light from the spectral gaps between the PRRS lines.

  13. Switchable single-polarization dual-wavelength TDFL using PM Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    Liu, Shuo; Yan, Fengping; Liu, Peng; Zhang, Luna; Bai, Zhuoya; Yin, Bin; Zhou, Hong

    2016-05-01

    A switchable single-polarization (SP), dual-wavelength thulium-doped fiber laser using polarization maintaining (PM) Fabry-Perot (F-P) filter is proposed. A combination of the PM F-P filter, a polarization controller (PC) and a polarizer is used to ensure the SP lasing operation. A stable dual-wavelength lasing operation is obtained at 1941.82 nm and 1942.21 nm. By adjusting the PCs, the proposed laser can achieve SP single-wavelength lasing operation; the polarization extinction ratios are higher than 33 dB. When the pump power is higher than 2.98 W, the optical signal-to-noise ratios of the SP single-wavelength operation can reach 60 dB, and the output power variations are less than 0.32 dB (X-polarization) and 0.30 dB (Y-polarization). The slope efficiencies of SP lasing operation are 6.26% (X-polarization) and 8.79% (Y-polarization), respectively.

  14. Electro-Mechanical Simulation of a Large Aperture MOEMS Fabry-Perot Tunable Filter

    NASA Technical Reports Server (NTRS)

    Kuhn, Jonathan L.; Barclay, Richard B.; Greenhouse, Matthew A.; Mott, D. Brent; Satyapal, Shobita; Powers, Edward I. (Technical Monitor)

    2000-01-01

    We are developing a micro-machined electrostatically actuated Fabry-Perot tunable filter with a large clear aperture for application in high through-put wide-field imaging spectroscopy and lidar systems. In the first phase of this effort, we are developing key components based on coupled electro-mechanical simulations. In particular, the movable etalon plate design leverages high coating stresses to yield a flat surface in drum-head tension over a large diameter (12.5 mm). In this approach, the cylindrical silicon movable plate is back etched, resulting in an optically coated membrane that is suspended from a thick silicon support ring. Understanding the interaction between the support ring, suspended membrane, and coating is critical to developing surfaces that are flat to within stringent etalon requirements. In this work, we present the simulations used to develop the movable plate, spring suspension system, and electrostatic actuation mechanism. We also present results from tests of fabricated proof of concept components.

  15. Accurate determination of solid and liquid dispersions from spectra channeled with the Fabry-Perot interferometer.

    PubMed

    Khashan, M A; Nassif, A Y

    1997-09-20

    The band spacing of the fringes of equal chromatic order of a thin Fabry-Perot interferometer is compared when this interferometer contains air, a solid, or a liquid. This comparison enables the dispersion of the group velocity of light in these media to be known accurately to 2.4 parts in one thousand. The Sellmeier dispersion function is used to deduce the refractive indices with the same degree of accuracy. The order-transformation method is used to find the exact order values from the roughly known optical thickness. The exact order values for air and the sample are used to find the refractive index accurately to approximately 3 x 10(-5). A least-squares fitting of the accurate experimental data to the Sellmeier dispersion function enables the coefficients of the latter to be more precisely defined for solids such as glass and mica and for liquids such as glycerin and distilled water. The atomic parameters such as the density of states and the absorption wavelengths in the ultraviolet region of the spectrum for the given samples are deduced from the more precisely found Sellmeier coefficients. PMID:18259554

  16. Photoacoustic microscopy based on polydimethylsiloxane thin film Fabry-Perot optical interferometer

    NASA Astrophysics Data System (ADS)

    Park, Soongho; Eom, Jonghyun; Shin, Jun Geun; Rim, Sunghwan; Lee, Byeong Ha

    2016-03-01

    We present a photoacoustic microscopy (PAM) system based on a Fabry-Perot Interferometer (FPI) consisting of a transparent Polydimethylsiloxane (PDMS) thin film. Most of the PAM systems have limitations with the system alignment because the ultrasound transducers for detection are not transparent. Therefore, the excitation laser source should avoid the opaque transducer to illuminate the sample, which makes the system difficult to build-up. Especially, the system volume is highly limited to be compact. In our experiment, to solve these difficulties, a FPI based on the PDMS film has been implemented and applied to measure the acoustic wave signal. The system uses a FPI as an acoustic wave detector instead of a conventional ultrasound transducer. A tunable laser was used to choose the quadrature-point at which the signal has the highly sensitve and linear response to the acoustic wave. Also a 20Hz pulsed Nd:YAG laser was used to generate acoustic waves from a sample. When the acoustic waves arrive at the PDMS film, one of the surfaces of the film is modulated at the detecting point, which gives the tuned FPI interference signal. From the signal arriving time, the depth location of the sample is calculated. As a primary experiment using the PDMS thin film as an ultrasound transducer, a couple of narrow black friction tapes located in a water container were used as the samples. This proposed imaging method can be used in various applications for the detection and measurement of acoustic waves.

  17. Validation of the absolute extrinsic Fabry-Perot interferometer for strain measurements

    NASA Astrophysics Data System (ADS)

    Lawrence, Craig M.; Nelson, Drew V.

    1995-04-01

    This report presents the results of experiments performed to verify the performance of the fiber-optic absolute extrinsic Fabry-Perot interferometer (AEFPI) for strain measurements. In these experiments, AEFPI sensors are surface mounted and embedded in various materials and subjected to mechanical and thermal strains. Strains measured by the AEFPI are compared to analytical predictions and to metallic foil strain gage measurements where possible. The AEFPI sensors and demodulation equipment were purchased from Fiber and Sensor Technologies (F&S) in Virginia, and all experiments were performed at the Composites Laboratory of Sandia National Laboratories in Livermore, California. The results of the tests indicate that these sensors are suitable for static and quasi-static strain measurements in both surface mounted and embedded configurations; however, they have a resolution of 100 (mu) (epsilon) , which limits their potential applications. A brief explanation of the theory behind the operation of the AEFPI sensor is presented along with the manufacturer's specifications for the particular model used in thee experiments. The details of the experiments are then described, and a summary of the results presented. Finally, conclusions regarding the accuracy, resolution, linearity, and repeatability of the AEFPI are extracted from the data.

  18. Spectral imager based on Fabry-Perot interferometer for Aalto-1 nanosatellite

    NASA Astrophysics Data System (ADS)

    Mannila, Rami; Näsilä, Antti; Viherkanto, Kai; Holmlund, Christer; Näkki, Ismo; Saari, Heikki

    2013-09-01

    The Aalto-1 is a 3U-cubesat project coordinated by Aalto University. The satellite, Aalto-1, will be mainly built by students as project assignments and thesis works. The Aalto-1 is planned to launch on 2014. VTT Technical Research Centre of Finland is developing the main Earth observation payload, a miniaturized spectral imager unit, for the satellite. The spectral imager unit contains a spectral imager, a visible RGB-camera and control electronics of the cameras. Detailed design of the spectral imager unit has been completed and assembly of the spectral imager unit will be done in the autumn 2013. The spectral imager is based on a tunable Fabry-Perot interferometer (FPI) accompanied by an RGB CMOS image sensor. The FPI consists of two highly reflective surfaces separated by a tunable air gap and it is based on a piezo-actuated structure. The piezo-actuated FPI uses three piezo-actuators and is controlled in a closed capacitive feedback loop. The spectral resolution of the imager will be 8-15 nm at full width at half maximum and it will operate in the wavelength range 500-900 nm. Imaging resolution of the spectral imager is 1024x1024 pixels and the focal length of the optics is 32 mm and F-number is 3.4. Mass of the spectral imager unit is approximately 600 grams, and dimensions are 97 mm x 97 mm x 48 mm.

  19. Ultrafast Fabry-Perot fiber-optic pressure sensors for multimedia blast event measurements.

    PubMed

    Zou, Xiaotian; Wu, Nan; Tian, Ye; Zhang, Yang; Fitek, John; Maffeo, Michael; Niezrecki, Christopher; Chen, Julie; Wang, Xingwei

    2013-02-20

    A shock wave (SW) is characterized as a large pressure fluctuation that typically lasts only a few milliseconds. On the battlefield, SWs pose a serious threat to soldiers who are exposed to explosions, which may lead to blast-induced traumatic brain injuries. SWs can also be used beneficially and have been applied to a variety of medical treatments due to their unique interaction with tissues and cells. Consequently, it is important to have sensors that can quantify SW dynamics in order to better understand the physical interaction between body tissue and the incident acoustic wave. In this paper, the ultrafast fiber-optic sensor based on the Fabry-Perot interferometric principle was designed and four such sensors were fabricated to quantify a blast event within different media, simultaneously. The compact design of the fiber-optic sensor allows for a high degree of spatial resolution when capturing the wavefront of the traveling SW. Several blast event experiments were conducted within different media (e.g., air, rubber membrane, and water) to evaluate the sensor's performance. This research revealed valuable knowledge for further study of SW behavior and SW-related applications. PMID:23434996

  20. Dynamic interrogator for elastic wave sensing using Fabry Perot filters based on fiber Bragg gratings.

    PubMed

    Harish, Achar V; Varghese, Bibin; Rao, Babu; Balasubramaniam, Krishnan; Srinivasan, Balaji

    2015-07-01

    Use of in-fiber Fabry-Perot (FP) filters based on fiber Bragg gratings as both sensor as well as an interrogator for enhancing the detection limit of elastic wave sensing is investigated in this paper. The sensitivity of such a demodulation scheme depends on the spectral discrimination of the sensor and interrogator gratings. Simulations have shown that the use of in-fiber FP filters with high finesse provide better performance in terms of sensitivity compared to the demodulation using fiber Bragg gratings. Based on these results, a dynamic interrogator capable of sensing acoustic waves with amplitude of less than 1 micro-strain over frequencies of 10 kHz to several 100 kHz has been implemented. Frequency response of the fiber Bragg gratings in the given experimental setup has been compared to that of the conventional piezo sensors demonstrating that fiber Bragg gratings can be used over a relatively broad frequency range. Dynamic interrogator has been packaged in a compact box without any degradation in its performance. PMID:25783780

  1. Investigation of liquid crystal Fabry-Perot tunable filters: design, fabrication, and polarization independence.

    PubMed

    Isaacs, Sivan; Placido, Frank; Abdulhalim, Ibrahim

    2014-10-10

    Liquid crystal Fabry-Perot tunable filters are investigated in detail, with special attention to their manufacturability, design, tolerances, and polarization independence. The calculations were performed both numerically and analytically using the 4×4 propagation matrix method. A simplified analytic expression for the propagation matrix is derived for the case of nematic LC in the homogeneous geometry. At normal incidence, it is shown that one can use the 2×2 Abeles matrix method; however, at oblique incidence, the 4×4 matrix method is needed. The effects of dephasing originating from wedge or noncollimated light beams are investigated. Due to the absorption of the indium tin oxide layer and as an electrode, its location within the mirror multilayered stack is very important. The optimum location is found to be within the stack and not on its top or bottom. Finally, we give more detailed experimental results of our polarization-independent configuration that uses polarization diversity with a Wollaston prism. PMID:25322437

  2. A novel fiber optic Fabry-Perot structure with a micrometric diameter tip

    NASA Astrophysics Data System (ADS)

    Wang, Xingwei; Xu, Juncheng; Wang, Zhuang; Cooper, Kristie L.; Wang, Anbo

    2006-08-01

    This paper presents a novel fiber optic Fabry-Perot (FP) structure with a micrometric diameter tip. The fabrication of micro scale probes has become essential in intracellular surgery, in cell sensing, manipulation, and injection. It is of great importance in many fields, such as genetics, pathology, criminology, pharmacogenetics, and food safety. With such a tiny protrusion, the sensor can be inserted into micron size cells, say, for DNA analysis. With the FP cavity inside the fiber, the change of optical path difference (OPD) caused by the environment can be demodulated. In addition, the structure is intrinsically capable of temperature compensation. What's more, it is simple, cost-efficient, and compact. Last but not the least, the structure shows promise for nanometric protrusion. Once this goal is achieved, the sensor can be inserted into most cells. The sensor could pave the way for faster, more accurate medical diagnostic tests for countless conditions and may ultimately save lives by allowing earlier disease detection and intervention.

  3. Demodulation of a fiber Fabry-Perot strain rosette using white light interferometry

    NASA Astrophysics Data System (ADS)

    Zuliani, Gary Louis

    Fiber optic sensors are starting to be used in specialty application areas where electrical sensors are usually found, such as in aircraft and spacecraft. Fiber optic sensor technology has advantages over its electronic counterparts including small size and weight, immunity to electromagnetic interference, and ruggedness. The use of fiber interferometers as sensors is reviewed along with methods for demodulating their signals. The principles of path-matched differential interferometry and coherence multiplexing are demonstrated and applied to the design and construction of a system that simultaneously demodulates three fiber Fabry-Perot (FFP) interferometers. The FFP's formed the arms of a delta rosette which were bonded to the surface of an aluminum cantilevered beam and were illuminated with one broadband light source. The receiving interferometer consisted of a bulk Michelson interferometer with three distinct optical paths. A charge coupled device array was used as the detector allowing fringe shifts to be counted on a television monitor. Tensor measurements were made and found to be in good agreement when compared to those obtained from electrical strain gages.

  4. Observing the solar corona with a tunable Fabry-Perot filter.

    PubMed

    Noble, Matthew W; Rust, David M; Bernasconi, Pietro N; Pasachoff, Jay M; Babcock, Bryce A; Bruck, Megan A

    2008-11-01

    A solid Fabry-Perot etalon with a 0.16 A passband was used during the 180 s solar eclipse of 2006 for rapid scans of an emission line of the solar corona. The etalon was a Y-cut lithium niobate wafer coated with reflective and conductive (ITO) layers. Voltage applied perpendicular to the etalon face produced a passband shift of 0.0011 A V(-1). During the eclipse, 18 filtergrams were obtained at six 0.22 A steps across the profile of the forbidden [Fe X] spectral emission line at 6374.4 A, which results from the 10(6) K coronal plasma. The 9.3 x 9.3 arcmin field of view showed the structure of the corona above a newly emerged sunspot region. We discuss tests performed on the etalon before and after the eclipse. We also discuss the coronal observations, which show some features with 10 km s(-1) velocities in the line of sight. PMID:19122714

  5. Design of Fabry-Perot surface-emitting lasers with a periodic gain structure

    SciTech Connect

    Corzine, S.W.; Geels, R.S.; Scott, J.W.; Yan, R.H.; Coldren, L.A.

    1989-06-01

    In this paper, the authors present a detailed analysis of a Fabry-Perot surface-emitting laser (FP-SEL) which utilizes the recently proposed concept of periodic gain. They show that by employing the periodic gain concept, close to a factor of two reduction in threshold current should be possible, the ideal reduction of a factor of two being limited by the internal loss of the cavity. Multiple quantum well active regions are also considered and shown to provide greater than a factor of two improvement over bulk GaAs periodic and uniform gain configurations. The effects of index perturbations within the cavity created by interleaving active and passive segments are treated for different Al mole fractions within the passive segments. The effects are found to be small for chi < 0.3. In addition, optical pumping results on periodic gain DBR-SEL samples which exhibit very low optical power density thresholds (<3 x 10/sup 4/ W/cm/sup 2/) and narrow above-threshold linewidths (<2 A) are included.

  6. Design of Fabry-Perot surface-emitting lasers with a periodic gain structure

    SciTech Connect

    Corzine, S.W.; Geels, R.S.; Scott, J.W.; Yan, R.H.; Coldren, L.A.

    1989-06-01

    This reprint presents a detailed analysis of a Fabry-Perot Surface-Emitting Laser (FP-SEL) which utilizes the recently proposed concept of periodic gain. By employing the periodic gain concept, close to a factor of two reduction in threshold current should be possible, the ideal reduction of a factor of two being limited by the internal loss of the cavity. Multiple quantum-well active regions are also considered and shown to provide greater than a factor of two improvement over bulk-GaAs periodic and uniform gain configurations. The effects of index perturbations within the cavity created by interleaving active and passive segments are treated for different Al mole fractions within the passive segments. The effects are found to be small for x<0.3. In addition, optical pumping results on periodic gain DBR-SEL samples which exhibit very low optical power density thresholds (<30000 W/sq cm) and narrow above-threshold linewidth (<2A) are included.

  7. Liquid state Dynamic Nuclear Polarization probe with Fabry-Perot resonator at 9.2 T

    NASA Astrophysics Data System (ADS)

    Denysenkov, Vasyl; Prisner, Thomas

    2012-04-01

    Recent achievements in liquid state DNP at high magnetic fields showing significant enhancements on aqueous solutions have initiated strong interest in possible applications of this method to biomolecular research. However, in situ DNP of biomolecules at ambient temperatures is a challenging task due to high microwave losses leading to excessive sample heating. To avoid such heating the sample volume has to be reduced strongly to keep it away from the electric component of the microwave field. A helical double resonance structure, used for the first demonstrations of the applicability of Overhauser DNP to aqueous solutions at high magnetic fields (9.2 T), restricted the sample size to a very small volume of 2 nl. Together with a poor spectral resolution this resulted in small overall signal amplitude, hampering observations of biomolecules. Here we present a new type of the double resonance structure for liquid-state DNP which consists of a Fabry-Perot resonator for the microwave excitation and a stripline resonator for the NMR detection. This new double resonance structure (260 GHz/400 MHz) offers a 30-fold increase in aqueous sample volume (80 nl) with respect to the helical probe and exhibits improved NMR sensitivity and linewidth.

  8. Hot-wire sandwiched Fabry-Perot interferometer for microfluidic flow rate sensing

    NASA Astrophysics Data System (ADS)

    Li, Ying; Yan, Guofeng; Zhang, Liang; He, Sailing

    2015-08-01

    We present a Fabry-Perot interferometer for microfluidic flow rate sensing. The FPI was composed by a pair of fiber Bragg grating reflectors and a micro Co2+-doped optical fiber cavity, acting as a "hot-wire" sensor. A microfluidic channel made from commercial silica capillary was integrated with the FPIs on a chip to realize flow-rate sensing system. By utilizing a tunable pump laser with wavelength of 1480 nm, the proposed flowmeter was experimentally demonstrated. The flow rate of the liquid sample is determined by the induced resonance wavelength shift of the FPI. The effect of the pump power on the performance of our flowmeter was investigated. The dynamic response was also measured under different flow-rate conditions. The experimental results achieve a sensitivity of 70 pm/(μL/s), a dynamic range up to 1.1 μL/s and response time in the level of seconds. Such good performance renders the sensor a promising supplementary component in microfluidic biochemical sensing system.

  9. An optical fiber Fabry-Perot flow measurement technology based on partial bend structure

    NASA Astrophysics Data System (ADS)

    Yang, Huijia; Jiang, Junfeng; Zhang, Xuezhi; Pan, Yuheng; Zhu, Wanshan; Zhou, Xiang; Liu, Tiegen

    2016-08-01

    An optical fiber Fabry-Perot (F-P) flow measurement technology is presented, which is based on partial bend structure. A 90° partial bend structure is designed to achieve the non-probe flow measurement with a pressure difference. The fluid simulation results of partial bend structure show that the error of the pressure difference is below 0.05 kPa during steady flow. The optical fiber F-P sensor mounted on the elbow with pressure test accuracy of 1% full scale is used to measure the fluid flow. Flow test results show that when the flow varies from 1 m3/h to 6.5 m3/h at ambient temperature of 25 °C, the response time is 1 s and the flow test accuracy is 4.5% of the F-P flow test system, proving that the F-P flow test method based on partial bend structure can be used in fluid flow measurement.

  10. Optically tunable Fano resonance in a grating-based Fabry-Perot cavity-coupled microring resonator on a silicon chip.

    PubMed

    Zhang, Weifeng; Li, Wangzhe; Yao, Jianping

    2016-06-01

    A grating-based Fabry-Perot (FP) cavity-coupled microring resonator on a silicon chip is reported to demonstrate an all-optically tunable Fano resonance. In the device, an add-drop microring resonator (MRR) is employed, and one of the two bus waveguides is replaced by an FP cavity consisting of two sidewall Bragg gratings. By choosing the parameters of the gratings, the resonant mode of the FP cavity is coupled to one of the resonant modes of the MRR. Due to the coupling between the resonant modes, a Fano resonance with an asymmetric line shape resulted. Measurement results show a Fano resonance with an extinction ratio of 22.54 dB, and a slope rate of 250.4 dB/nm is achieved. A further study of the effect of the coupling on the Fano resonance is performed numerically and experimentally. Thanks to the strong light-confinement capacity of the MRR and the FP cavity, a strong two-photon absorption induced nonlinear thermal-optic effect resulted, which is used to tune the Fano resonance optically. PMID:27244392

  11. Stable narrow linewidth ring fiber laser with a passive fiber Bragg grating Fabry-Perot etalon and a fiber saturable absorber

    NASA Astrophysics Data System (ADS)

    Dai, Zhiyong; Wu, Bo; Peng, Zengshou; Ou, Zhonghua; Liu, Yongzhi

    2008-12-01

    Narrow linewidth fiber lasers have become more and more necessary in field of coherent communication, fiber optic sensor, and high resolutions optical spectrum analysis, especially long-range distributed fiber sensing system. In this paper, a simple and stable narrow linewidth Er3+ -doped ring fiber laser is first proposed and experimentally demonstrated. In the cavity, a passive fiber Bragg grating Fabry-Perot (FBG F-P) etalon acts as mode-selecting device to greatly reduce the longitudinal-mode density, while a section un-pumped Er3+ -doped fiber serves as a saturable absorber to ensure the single longitudinal-mode (SLM) operation. Meanwhile the stability of lasing frequency is further improved by controlling the temperature of the FBG F-P, and then through varying the temperature the lasing wavelength tuning is achieved also. Finally stable SLM laser at 1550nm with linewidth about 7.5 kHz, maximum output power 39 mW and the corresponding slope efficiency 30% is acquired.

  12. Theoretical investigation of a tunable external cavity diode laser based on a single cavity all-dielectric thin-film Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    Heng, Zhao; Xiao, Xiao; Bo, Li; Jin, Wang Wen; Yi, Hu; Youqin, Wang

    2016-07-01

    The single cavity all-dielectric thin film Fabry-Perot filter (s-AFPF) has been theoretically investigated in this paper as a means of tuning the wavelength in an external cavity diode laser (ECDL), and the means of limiting longitudinal mode hopping has been also theoretically investigated. When a TE or TM plane wave irradiates an s-AFPF, a quasi-linear relationship is found in a certain wavelength range between the optical intensity peak transmittance wavelength of s-AFPF and the cosine value of plane wave incident angle at s-AFPF. Based on this feature, we proposed and theoretically investigated an ECDL configuration based on an s-AFPF. By theoretical calculation, the actuator flat edge against the steel ball may be replaced by a bent edge to convert the mode-hop wavelength region into mode-hop-free wavelength region. The ECDL can be used in the application of environmental monitoring, atomic and molecular laser spectroscopy research, precise measurements, and so on.

  13. Fiber optical accelerometer based on 45 degrees Fabry-Perot cavity

    NASA Astrophysics Data System (ADS)

    Han, Jing; Zhang, Wentao; Wang, Zhaogang; Sun, Baochen; Xu, Binhong; Li, Fang

    2014-11-01

    The paper proposes an accelerometer construction based on 45-degrees Fabry-Perot (F-P) interferometer cavity. The uniform intensity cantilever consists of a mass block in the middle and a 45-degrees F-P cavity fixed inside the mass. The mass block can oscillate freely when the vibrating sensor is subject to the vibration and the F-P cavity length is changing. The G-lens end face and total reflective film make up the two reflective films of the F-P cavity, and the reflectivity are 4% and 90% respectively. In the F-P cavity, a 45-degrees mirror fixed in the middle of the G-lens and total reflective film. The mirror can change the transmission of the light and increase the optical path difference. The total reflective film fixed in the steel tube and the G-lens fixed in the fine tuning bolt. The bolt can fine adjust the F-P cavity in sensor encapsulating. The sensor structure lead to the optical loss in the airborne and tilted mirror, besides the distance of F-P gap in steel tube and the optical coupling efficiency can't work out accurately, so we did a series deterministic test before encapsulating, for example the selection of the structures, the diameter of the optical fibers and the diameter of the reflective films. At last, 9/125 μm optical fiber, 1.4 mm total reflective film and the structure of total reflective film out of steel tube were used for the accelerometer. The sensitivity can reach 0.042 rad/g and the resonant frequency of the accelerometer is 400 Hz.

  14. Development of the Double Etalon Fabry-Perot Interferometer for Determining Total and Tropospheric Ozone Concentrations

    NASA Technical Reports Server (NTRS)

    Cook, William

    1999-01-01

    Measuring and understanding the distribution of ozone through the lower levels of Earth's atmosphere are high priorities in global change and climate research. Of particular interest now is the global distribution of ozone in the upper troposphere and lower stratosphere. Global coverage of the stratospheric ozone is feasible only via remote sensing instruments on a space-based platform. And though extensive monitoring tropospheric ozone is possible using instruments flown aboard conventional aircraft, a space-based system would be significantly less costly and provide information over a much broader area and produce more uniform coverage. Here we describe the prototype of an instrument being developed to monitor, from an orbiting spacecraft, the ozone found in Earth's upper troposphere and lower stratosphere. Our new spectrometer is an infrared Fabry-Perot interferometer which uses two synchrounously tuned etalons: a high resolution narrow band device and a lower resolution broader band filtering etalon. The prototype is a scanning device making use of nearly collimated input radiation and a single element detector. As presently configured, it is capable of providing a resolution better than 0.07/cm with a spectral band width approximately 5/cm wide and centered at 1054.7/cm. For the future space-based emission device a modification of the the prototype was to be made to employ innovative circle-to-line detector optics, those developed or in development at UM/SPRL, and a focal plane array detector. These enhancements would enable a simultaneous recording of the entire spectral range of interest, but with simple detection electronics and a significant gain in signal-to-noise over that of the scanning version.

  15. Fabry Perot polymer film fibre-optic hydrophones and arrays for ultrasound field characterisation

    NASA Astrophysics Data System (ADS)

    Cox, B. T.; Zhang, E. Z.; Laufer, J. G.; Beard, P. C.

    2004-01-01

    An optical ultrasound sensing method based upon the detection of acoustically-induced changes in the optical thickness of a Fabry Perot (FP) polymer film sensing interferometer has been developed as an alternative to piezoelectric based detection methods for ultrasound measurement applications. The technique provides an inherently broadband (~30 MHz) response and excellent detection sensitivities (<10 kPa), comparable to those of piezoelectric PVDF transducers. An important distinguishing feature however is that the sensing geometry is defined by the area of the polymer sensing film that is optically addressed. As a result, very small element sizes can be obtained to provide low directional sensitivity without compromising detection sensitivity—a key advantage over piezoelectric transducers. It also means that, by spatially sampling over a relatively large aperture, a high density ultrasound array can readily be configured. Other advantages are that, the sensing element can be inexpensively batch fabricated using polymer film deposition techniques, has the ability to self-calibrate, is electrically passive and immune to EMI. A range of measurement devices using this type of sensor have now been developed. These include a miniature (0.25 mm o.d.) optical fibre hydrophone for in situ measurements of diagnostic and therapeutic medical ultrasound exposure. By rapidly scanning a focused laser beam over a planar FP sensor, a notional array of 3 cm aperture, 50 µm element size and 200 µm interelement spacing has also been demonstrated for rapid transducer field mapping applications. It is considered that this ability to fabricate acoustically small, highly sensitive receivers in a variety of configurations offers the prospect of developing a valuable new set of ultrasound measurement tools.

  16. Daytime operation of a pure rotational Raman lidar by use of a Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Arshinov, Yuri; Bobrovnikov, Sergey; Serikov, Ilya; Ansmann, Albert; Wandinger, Ulla; Althausen, Dietrich; Mattis, Ina; Müller, Detlef

    2005-06-01

    We propose to use a Fabry-Perot interferometer (FPI) in a pure rotational Raman lidar to isolate return signals that are due to pure rotational Raman scattering from atmospheric nitrogen against the sky background. The main idea of this instrumental approach is that a FPI is applied as a frequency comb filter with the transmission peaks accurately matched to a comb of practically equidistant lines of a pure rotational Raman spectrum (PRRS) of nitrogen molecules. Thus a matched FPI transmission comb cuts out the spectrally continuous sky background light from the spectral gaps between the PRRS lines of nitrogen molecules while it is transparent to light within narrow spectral intervals about these lines. As the width of the spectral gaps between the lines of the PRRS of nitrogen molecules is ~114 times the width of an individual spectral line, cutting out of the sky background from these gaps drastically improves the signal-to-background ratio of the pure rotational Raman lidar returns. This application of the FPI enables one to achieve daytime temperature profiling in the atmosphere with a pure rotational Raman lidar in the visible and near-UV spectral regions. We present an analysis of application of the FPI to filtering out the pure rotational Raman lidar returns against the solar background. To demonstrate the feasibility of the approach proposed, we present temperature profiles acquired during a whole-day measurement session in which a Raman lidar equipped with a FPI was used. For comparison, temperature profiles acquired with Vaisala radiosondes launched from the measurement site are also presented.

  17. Short-wave infrared (SWIR) spectral imager based on Fabry-Perot interferometer for remote sensing

    NASA Astrophysics Data System (ADS)

    Mannila, Rami; Holmlund, Christer; Ojanen, Harri J.; Näsilä, Antti; Saari, Heikki

    2014-10-01

    VTT Technical Research Centre of Finland has developed a spectral imager for short-wave infrared (SWIR) wavelength range. The spectral imager is based on a tunable Fabry-Perot interferometer (FPI) accompanied by a commercial InGaAs Camera. The FPI consists of two dielectric coated mirrors separated by a tunable air gap. Tuning of the air gap tunes also transmitted wavelength and therefore FPI acts as a tunable band bass filter. The FPI is piezo-actuated and it uses three piezo-actuators in a closed capacitive feedback loop for air gap tuning. The FPI has multiple order transmission bands, which limit free spectral range. Therefore spectral imager contains two FPI in a stack, to make possible to cover spectral range of 1000 - 1700 nm. However, in the first tests imager was used with one FPI and spectral range was limited to 1100-1600 nm. The spectral resolution of the imager is approximately 15 nm (FWHM). Field of view (FOV) across the flight direction is 30 deg. Imaging resolution of the spectral imager is 256 x 320 pixels. The focal length of the optics is 12 mm and F-number is 3.2. This imager was tested in summer 2014 in an unmanned aerial vehicle (UAV) and therefore a size and a mass of the imager were critical. Total mass of the imager is approximately 1200 grams. In test campaign the spectral imager will be used for forest and agricultural imaging. In future, because results of the UAV test flights are promising, this technology can be applied to satellite applications also.

  18. Large-aperture MOEMS Fabry-Perot interferometer for miniaturized spectral imagers

    NASA Astrophysics Data System (ADS)

    Rissanen, Anna; Langner, Andreas; Viherkanto, Kai; Mannila, Rami

    2015-02-01

    VTT's optical MEMS Fabry-Perot interferometers (FPIs) are tunable optical filters, which enable miniaturization of spectral imagers into small, mass producible hand-held sensors with versatile optical measurement capabilities. FPI technology has also created a basis for various hyperspectral imaging instruments, ranging from nanosatellites, environmental sensing and precision agriculture with UAVs to instruments for skin cancer detection. Until now, these application demonstrations have been mostly realized with piezo-actuated FPIs fabricated by non-monolithical assembly method, suitable for achieving very large optical apertures and with capacity to small-to-medium volumes; however large-volume production of MEMS manufacturing supports the potential for emerging spectral imaging applications also in large-volume applications, such as in consumer/mobile products. Previously reported optical apertures of MEMS FPIs in the visible range have been up to 2 mm in size; this paper presents the design, successful fabrication and characterization of MEMS FPIs for central wavelengths of λ = 500 nm and λ = 650 nm with optical apertures up to 4 mm in diameter. The mirror membranes of the FPI structures consist of ALD (atomic layer deposited) TiO2-Al2O3 λ/4- thin film Bragg reflectors, with the air gap formed by sacrificial polymer etching in O2 plasma. The entire fabrication process is conducted below 150 °C, which makes it possible to monolithically integrate the filter structures on other ICdevices such as detectors. The realized MEMS devices are aimed for nanosatellite space application as breadboard hyperspectral imager demonstrators.

  19. Ground-Based Hyperspectral Thermal Imaging of Volcanic Targets Using a Fabry-Perot Interferometer

    NASA Astrophysics Data System (ADS)

    Wright, R.; Lucey, P. G.; Garbeil, H.; Horton, K. A.; Crites, S. T.; Imai, A.; Wood, M.

    2013-12-01

    Thermal infrared (8-14 micron) remote sensing data are a rich source of information for a range of volcanological studies. Acquisition of spectral image data in this wavelength interval allows lava composition to be determined (mafic vs. felsic), and gas fluxes (sulfur dioxide, possibly carbon dioxide) to be estimated, as well as the discrimination of silicate ash clouds from water clouds. In this presentation we describe an approach for acquiring high spectral resolution image data at TIR wavelengths using a field portable imaging instrument. The instrument uses an uncooled microbolometer array and a Fabry-Perot interferometer to acquire the raw data. Radiometric calibration is provided by using a series of heated blackbody shutters aligned along the optical axis. Our current design yields 21 spectral samples between 8-14 microns, with each image having 256 image pixels in the y-dimension, and with a width (x-dimension) that varies with the duration of the scan, which occurs at a frame rate of 30 Hz. A peak signal-to-noise ratio of 1000:1 has been measured in the laboratory. Although microbolometers are less sensitive than photon detectors, such high SNR is achievable because interferometers benefit from the well-known multiplex and throughput advantages. The instrument weighs ~5 kg (excluding only the laptop, tripod and power supply) and uses an average of 5 W during imaging, with a peak power consumption of 7 W. In this presentation we will describe a) the instrument design, and c) how the data are processed. Finally we will present data acquired by the instrument to demonstrate the spectro-radiometric quality of the data that result.

  20. Deep Fabry-Perot Hα observations of two Sculptor group galaxies, NGC 247 and 300

    NASA Astrophysics Data System (ADS)

    Hlavacek-Larrondo, J.; Marcelin, M.; Epinat, B.; Carignan, C.; de Denus-Baillargeon, M.-M.; Daigle, O.; Hernandez, O.

    2011-09-01

    It has been suggested that diffuse ionized gas can extend all the way to the end of the H I disc, and even beyond, such as in the case of the warped galaxyNGC 253 (Bland-Hawthorn et al.). Detecting ionized gas at these radii could carry significant implications as to the distribution of dark matter in galaxies. With the aim of detecting this gas, we carried out a deep Hα kinematical analysis of two Sculptor group galaxies, NGC 247 and 300. The Fabry-Perot data were taken at the 36-cm Marseille Telescope in La Silla, Chile, offering a large field of view. With almost 20 hours of observations for each galaxy, very faint diffuse emission is detected. Typical emission measures of 0.1 cm-6 pc are reached. For NGC 247, emission extending up to a radius comparable with that of the H I disc (r˜ 13 arcmin) is found, but no emission is seen beyond the H I disc. For NGC 300, we detect ionized gas on the entirety of our field of view (rmax˜ 14 arcmin), and find that the bright H II regions are embedded in a diffuse background. Using the deep data, extended optical rotation curves are obtained, as well as mass models. These are the most extended optical rotation curves thus far for these galaxies. We find no evidence suggesting that NGC 247 has a warped disc, and to account for our non-detection of Hα emission beyond its H I disc, as opposed to the warped galaxy NGC 253, our results favour the model in which, only through a warp, ionization by hot young stars in the central region of a galaxy can let photons escape and ionize the interstellar medium in the outer parts.

  1. Fiber Fabry-Perot tunable filter for high-speed optical packet switching

    SciTech Connect

    Taranenko, N.L.; Tenbrink, S.C.; Hsu, K.; Miller, C.M.

    1997-01-01

    Tunable optical filters are important building blocks for All-Optical systems and networks. Fast optical tuning in several microseconds is necessary to perform high-speed optical packet switching. Multi- Gigabit/sec packet-switching will provide flexibility and higher network throughput when large numbers of users communicate simultaneously. One approach to achieve fast wavelength tuning is to use high-speed piezoelectrically-driven Fiber Fabry-Perot tunable filters (FFP-TFs). The requirement for tuning in microseconds raises a whole new set of challenges, such as ringing, thermostability and mechanical inertia control. It was shown that correlation between the mechanical resonance and optical response of the filter is important for the filter`s speed and for mounting hardware and control circuitry optimization. These features together with the FFP-TF`s high capacitance (approximately 0.25-0.5 microfarad) are being folded into building a special controller to substantially improve the shape of the driving signal and the response of the filter. The resultant controller enables tuning the high-speed FFP-TF three-orders-of- magnitude faster than that possible with standard commercial FFP-TFS. The fastest switching time achieved is 2.5 microseconds. As the result, a new packet-switched media access control protocol is being designed to minimize the searching time. The filter scans only once through the entire optical region and then tunes to all the required channels one after another in a few microseconds. It can help update Rainbow-2 Broadcast-and-Select High-Speed Wavelength Division Multiplexing All-Optical network that currently has a circuit- switched protocol using standard FFP-TFS.

  2. Development of Silicon-substrate Based Fabry-Perot Etalons for far-IR Astrophysics

    NASA Astrophysics Data System (ADS)

    Stacey, Gordon

    We propose to design, construct and test silicon-substrate-based (SSB) mirrors necessary for high performance Fabry-Perot interferometers (FPIs) to be used in the 25-40 um mid-IR band. These mirrors will be fabricated from silicon wafers that are anti-reflection coated (ARC) by micromachining an artificial dielectric meta-material on one side, and depositing optimized gold-metalized patterns on the other. Two mirrors with the metalized surfaces facing one-another form the Fabry-Perot cavity, also known as the FPI etalon. The exterior surfaces of the silicon mirrors are anti-reflection coated for both good transmission in the science band, and to prevent unwanted parasitic FPI cavities from forming between the four surfaces (one anti-reflection coated, one metalized for each mirror) of the FPI etalon. The mirrors will be tested within a Miniature Cryogenic Scanning Fabry-Perot (MCSF) that we have designed through support of a previous NASA grant (NNX09AB95G). This design is based on our long experience in constructing and using scanning FPI in the mid-IR to submm range, and fits within test-beds we have on hand that are suitable for both warm and cold tests. The key technologies are the ARC and tuned mirrors that are enabled by silicon nano-machining techniques. The creation of these SSB mirrors promises greatly improved performance over previous versions of mid-IR to submm-band FPIs that are based on mirrors made from free-standing metal mesh stretched over support rings. Performance is improved both structurally and in terms of sensitivity, and is measured as the product of the cavity finesse times transmission. Our electromagnetic modeling suggests that SSB mirrors will improve this product by a factor of 2 over the best free standing mesh etalons available. This translates into a factor of sqrt(2) improvement in sensitivity per etalon, or a full factor of 2 when used in a tandem (dual etalon) FPI spectrometer. The SSB improvements are due to both the stiff (~ 0

  3. Micro-Mechanical Voltage Tunable Fabry-Perot Filters Formed in (111) Silicon. Degree awarded by Colorado Univ., Boulder, CO

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1997-01-01

    The MEMS (Micro-Electro-Mechanical-Systems) technology is quickly evolving as a viable means to combine micro-mechanical and micro-optical elements on the same chip. One MEMS technology that has recently gained attention by the research community is the micro-mechanical Fabry-Perot optical filter. A MEMS based Fabry-Perot consists of a vertically integrated structure composed of two mirrors separated by an air gap. Wavelength tuning is achieved by applying a bias between the two mirrors resulting in an attractive electrostatic force which pulls the mirrors closer. In this work, we present a new micro-mechanical Fabry-Perot structure which is simple to fabricate and is integratable with low cost silicon photodetectors and transistors. The structure consists of a movable gold coated oxide cantilever for the top mirror and a stationary Au/Ni plated silicon bottom mirror. The fabrication process is single mask level, self aligned, and requires only one grown or deposited layer. Undercutting of the oxide cantilever is carried out by a combination of RIE and anisotropic KOH etching of the (111) silicon substrate. Metallization of the mirrors is provided by thermal evaporation and electroplating. The optical and electrical characteristics of the fabricated devices were studied and show promissing results. A wavelength shift of 120nm with 53V applied bias was demonstrated by one device geometry using 6.27 micrometer air gap. The finesse of the structure was 2.4. Modulation bandwidths ranging from 91KHz to greater than 920KHz were also observed. Theoretical calculations show that if mirror reflectivity, smoothness, and parallelism are improved, a finesse of 30 is attainable. The predictions also suggest that a reduction of the air gap to 1 micrometer results in an increased wavelength tuning range of 175 nm with a CMOS compatible 4.75V.

  4. Optical fiber Fabry-Perot interferometer cavity fabricated by femtosecond laser micromachining and fusion splicing for refractive index sensing.

    PubMed

    Liao, C R; Hu, T Y; Wang, D N

    2012-09-24

    We demonstrate a fiber in-line Fabry-Perot interferometer cavity sensor for refractive index measurement. The interferometer cavity is formed by drilling a micro-hole at the cleaved fiber end facet, followed by fusion splicing. A micro-channel is inscribed by femtosecond laser micromachining to vertically cross the cavity to allow liquid to flow in. The refractive index sensitivity obtained is ~994 nm/RIU (refractive index unit). Such a device is simple in configuration, easy for fabrication and reliable in operation due to extremely low temperature cross sensitivity of ~4.8 × 10(-6) RIU/°C. PMID:23037431

  5. Q-switching of a high-power solid-state laser by a fast scanning Fabry-Perot interferometer

    SciTech Connect

    Baburin, N V; Borozdov, Yu V; Danileiko, Yu K; Denker, B I; Ivanov, A D; Osiko, Vyacheslav V; Sverchkov, S E; Sidorin, A V; Chikov, V A; Ifflander, R; Hack, R; Kertesz, I; Kroo, N

    1998-07-31

    An investigation was made of the suitability of a Q-switch, based on a piezoelectrically scanned short-base Fabry-Perot interferometer, for an Nd{sup 3+}:YAG laser with an average output radiation power up to 2 kW. The proposed switch made it possible to generate of giant pulses of 60 - 300 ns duration at a repetition rate of 20 - 100 kHz. Throughout the investigated range of the pulse repetition rates the average power was at least equal to that obtained by cw lasing. Special requirements to be satisfied by the interferometer, essential for efficient Q-switching, were considered. (control of laser radiation parameters)

  6. New method to measure the angular antispring effect in a Fabry-Perot cavity with remote excitation using radiation pressure

    NASA Astrophysics Data System (ADS)

    Nagano, Koji; Enomoto, Yutaro; Nakano, Masayuki; Furusawa, Akira; Kawamura, Seiji

    2016-03-01

    In experiments with Fabry-Perot cavities consisting of suspended mirrors, an angular antispring effect on the mirror of the cavity is caused by radiation pressure from resonant light in the cavity. A new method was invented to measure the effect precisely with remote excitation on the mirror using the radiation pressure. This method was found to be available for the suspended 23 mg mirror and improved the measurement accuracy by a factor of two, compared with the previous method. This result leads to stable control systems to eliminate the angular instability of the mirror caused by the effect.

  7. Temperature Measurement Using all Fiber Fabry-Perot Interferometers Based on Phase Measurement Between Reference and Sensing Interferometer Spectral Characteristic

    NASA Astrophysics Data System (ADS)

    Njegovec, Matej; Đonlagic, Denis

    2010-04-01

    This paper presents the signal interrogator for fiber optic temperature sensors based on all-fiber miniature Fabry-Perot interferometers that are implemented by creation of the low reflectivity mirrors within optical fiber. This kind of Fabry-Perot interferometer has low finesse and nearly sinusoidal spectral characteristics. Since the optical path length between mirrors depends on refractive index and thereby temperature, change in sensor temperature shifts the sensor's spectral characteristics in wavelength domain. The presented measurement system is composed of the sensing interferometer and signal interrogator that further includes the reference interferometer. The reference interferometer is also an all-fiber interferometer with nearly identical length as sensing interferometer. The wavelength of the signal interrogator optical source was cyclically swept over available wavelength range while both interferometers' spectral responses were simultaneously recorded. The optical path length variation of the sensing interferometer was determined by direct phase difference measurement between both recorded sinusoidal spectral characteristics. This phase difference was directly correlated to the temperature difference between sensing and reference interferometer. Since reference interferometer was situated within the signal integrator its temperature was measured by the reference electrical sensors. Thus the proposed system can provide accurate absolute temperature measurements. In the proposed interrogator we used as an optical source a standard telecommunication DFB diode module with integrated thermo-electric cooler. Standard DFB diode can be shifted in wavelength for abut 2 nm, which allows interrogation of the Fabry-Perot interferometers having free spectral range below 2 nm. In case of an all fiber Fabry-Perot interferometers, this corresponds to interferometers with length that is more than 0.5 mm. Since recorded nearly sinusoidal spectral characteristics

  8. All-fiber widely wavelength-tunable thulium-doped fiber ring laser incorporating a Fabry-Perot filter

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Hu, K.; Sun, B.; Wang, T.

    2012-04-01

    We demonstrate 1940 to 2010 nm continuous CW wavelength-tuning in a thulium-doped fiber laser (TDFL), using only fiber-format components. A fiber Fabry-Perot (FP) tunable filter is employed to achieve the wavelength tunability of 70 nm. By imposing a 200 Hz triangle wave signal on the filter, rapid wavelength-sweeping is demonstrated from 1952 to 1992 nm every 5 ms, corresponding to 8 nm/ms. This all-fiber wavelength-tunable and swept laser may find applications such as gas monitoring in the wavelength region of 2 μm.

  9. Terahertz transparency at Fabry-Perot resonances of periodic slit arrays in a metal plate: experiment and theory

    NASA Astrophysics Data System (ADS)

    Lee, J. W.; Seo, M. A.; Park, D. J.; Jeoung, S. C.; Park, Q. H.; Lienau, Ch.; Kim, D. S.

    2006-12-01

    We report on a perfect transmission in one-dimensional metallic structure using time-domain terahertz spectroscopy. Fabry-Perot resonance appearing in spectral region below first Rayleigh minimum strongly enhances transmission up to over ninety-nine percent. Theoretical calculations reveal that under the perfect transmission condition, a symmetric eigenmode inside the slits is excited and a funneling of all incident energy onto the slits occurs, resulting in large energy concentration equivalent to the inverse sample coverage and high near-field enhancement of electric and magnetic field intensities. Our work opens way toward near-field terahertz amplification, applicable to high-field terahertz spectroscopy.

  10. Active suppression of air refractive index fluctuation using a Fabry-Perot cavity and a piezoelectric volume actuator

    SciTech Connect

    Banh, Tuan Quoc; Ohkubo, Yuria; Murai, Yoshinosuke; Aketagawa, Masato

    2011-01-01

    Air refractive index fluctuation ({Delta}n{sub air}) is one of the largest uncertainty sources in precision interferometry systems that require a resolution of nanometer order or less. We introduce a method for the active suppression of {Delta}n{sub air} inside a normal air-environment chamber using a Fabry-Perot cavity and a piezoelectric volume actuator. The temporal air refractive index (n{sub air}) at a local point is maintained constant with an expanded uncertainty of {approx}4.2x10{sup -9} (k=2), a sufficiently low uncertainty for precise measurements unaffected by {Delta}n{sub air} to be made inside a chamber.

  11. In-line silica capillary tube all-silica fiber-optic Fabry-Perot interferometric sensor for detecting high intensity focused ultrasound fields.

    PubMed

    Wang, D H; Wang, S J; Jia, P G

    2012-06-01

    Aiming at detecting high intensity focused ultrasound (HIFU) fields, this letter reports on a novel in-line silica capillary tube all-silica fiber-optic Fabry-Perot (ILSCT-ASFP) interferometric sensor fabricated by splicing a commercially available silica capillary tube to two single-mode fibers. The experimental results show that such a novel ILSCT-ASFP interferometric sensor with a cavity length of ∼60.76 μm has an excellent fringe visibility of up to ∼20 dB, and the fringe visibility is still good when the cavity length extends up to ∼1031.07 μm. The measured wavelength-temperature sensitivity of 0.000858 nm/°C shows that the wavelength drift of the fabricated ILSCT-ASFP interferometric sensor towards temperature is extremely low. Meanwhile, the measurement of HIFU fields by this novel sensor is demonstrated, and the experimental results indicate that the signal-to-noise ratio of the sensing system for sensing a 0.93 MHz HIFU field with a pressure of 2.69 MPa in the focus area can reach 42.8 dB. The corresponding noise equivalent pressure is 0.0194 MPa, and the calculated acoustic sensitivity is 65.4 mV/MPa over a 2.5 MHz measurement bandwidth. PMID:22660116

  12. Transferring the Rb+ hyperfine-structure stability to a Fabry-Perot resonator used as a frequency standard for astronomical spectrographs

    NASA Astrophysics Data System (ADS)

    Huke, Philipp; Holzhüter, Hanno; Reiners, Ansgar

    2015-06-01

    We report on the experimental realization of locking a Fabry-Perot interferometer (FPI) onto a stabilized diode laser for the calibration of astronomical spectrographs. The external cavity diode laser (ECDL) is stabilized to the 85Rb+ F* = 2 --> F = 3 transition with a pump-probe setup. The stability of the 85Rb+ reached between optical clocks is on the order of 10-13.1 and can be used to reduce the linewidth / drift of the ECDL to a few kHz.2 The measured linewidth of the transition is around 20 MHz due to unavoidable misalignment between pump- and probe-beam, power- and Doppler-broadening at room temperature.2 The aim is to transfer this stability to a FPI that can be used as optical frequency standard: Therefore the phase of the light reflected from the FPI is observed using the Pound-Drever-Hall method. The theoretically reachable stability of a few mHz/Hz3 is limited by different noise factors. In order to identify these noise factors we a) follow the calculation of noise factors given by, 4 b) calculate the contribution of misalignment and insufficient mode matching by applying the generalized matrix-formalism, 5 and c) estimate the contribution of the initial laser linewidth and the present electronic noise sources.

  13. Strain and high-temperature discrimination using a Type II fiber Bragg grating and a miniature fiber Fabry-Perot interferometer.

    PubMed

    Jiang, Yajun; Yang, Dexing; Yuan, Yuan; Xu, Jian; Li, Dong; Zhao, Jianlin

    2016-08-10

    A novel method for simultaneous measurement of strain and high temperature using a Type II fiber Bragg grating (FBG) and a miniature fiber Fabry-Perot interferometer (MFFPI) is proposed. The MFFPI is produced by fusion splicing a short section of quartz capillary tube with two single-mode fibers, and then it is exposed by a focused femtosecond laser and a phase mask to inscribe a Type II FBG nearby. The reflection spectrum of this sensor is the superposition of the reflection spectrum of the FBG and the interference fringe of the MFFPI. This sensor shows perfect high-temperature and strain responses. Because of the different responses to the uniform variations of strain and temperature, by measuring the reflection peak of FBG and one of the interference dips of the MFFPI, strain and temperature can be simultaneously determined. The resolutions of this particular sensor in measuring strain and temperature are estimated to be ±8.4  μϵ and ±3.3°C, respectively, in the range from 0 to 1122 μϵ and from 23°C to 600°C. PMID:27534477

  14. All-optical NRZ-to-PRZ format transformer with an injection-locked Fabry-Perot laser diode at unlasing condition

    NASA Astrophysics Data System (ADS)

    Chang, Yung-Cheng; Lin, Yu-Huang; Chen, J. H.; Lin, Gong-Ru

    2004-09-01

    By using an optical nonreturn-to-zero (NRZ) format data-stream to injection-lock an synchronously modulated Fabry-Perot laser diode at below threshold condition (without DC driving current), an output data-stream with pseudo-return-to-zero (PRZ) format can be generated at bit rate of up to 2.488 Gbit/s. Such an NRZ-to-PRZ format transformation is due to the injectionlocking induced gain-switching of the FPLD with the incoming NRZ data. The PRZ data-stream with a maximum on/off extinction ratio of 12.2 dB is obtained under the optical injecting power of -2 dBm and the RF driving power of 24.4 dBm. The best side-mode suppression ratio of 40 dB and the lowest timing jitter of 0.4 ps for the PRZ data-stream are observed. A power penalty of 1.2 dB is measured at a bit-error rate of 10-9 after NRZ-to-PRZ transformation. In application, the demonstration of an all-optical OR logic gate using the FPLD-based NRZ-to-PRZ transformer is also reported.

  15. Cascaded fiber-optic Fabry-Perot interferometers with Vernier effect for highly sensitive measurement of axial strain and magnetic field.

    PubMed

    Zhang, Peng; Tang, Ming; Gao, Feng; Zhu, Benpeng; Fu, Songnian; Ouyang, Jun; Shum, Perry Ping; Liu, Deming

    2014-08-11

    We report a highly sensitive fiber-optic sensor based on two cascaded intrinsic fiber Fabry-Perot interferometers (IFFPIs). The cascaded IFFPIs have different free spectral ranges (FSRs) and are formed by a short section of hollow core photonic crystal fiber sandwiched by two single mode fibers. With the superposition of reflective spectrum with different FSRs, the Vernier effect will be generated in the proposed sensor and we found that the strain sensitivity of the proposed sensor can be improved from 1.6 pm/με for a single IFFPI sensor to 47.14 pm/με by employing the Vernier effect. The sensor embed with a metglas ribbon can be also used to measure the magnetic field according to the similar principle. The sensitivity of the magnetic field measurement is achieved to be 71.57 pm/Oe that is significantly larger than the 2.5 pm/Oe for a single IFFPI sensor. PMID:25321041

  16. Enhancing the pressure sensitivity of a Fabry-Perot interferometer using a simplified hollow-core photonic crystal fiber with a microchannel

    NASA Astrophysics Data System (ADS)

    Yu, Yongqin; Chen, Xue; Huang, Quandong; Du, Chenlin; Ruan, Shuangchen; Wei, Huifeng

    2015-09-01

    We demonstrate a novel and compact fiber-probe pressure sensor based on a micro-Fabry-Perot interferometer (FPI). The device is fabricated by splicing both ends of a short-section simplified hollow-core photonic crystal fiber (SHC-PCF) with single-mode fibers. Then, a microchannel is drilled by a femtosecond laser micromachining in the SHC-PCF to allow air to diffuse in. The pressure sensing mechanism is based on the dependence of the air refractive index on pressure. We use both theory and experiment to investigate the sensing characteristics. A micro-FPI with a length of 272 μm demonstrates a pressure sensitivity of 4.071 nm/MPa at 1580 nm and a low-temperature sensitivity of 1.1 pm/°C at atmospheric pressure. We further study the temperature cross sensitivity of the sensor under different pressures. The sensor also shows strong stability and good reversibility, and may be potentially used in pressure sensing applications.

  17. SUNLITE program. Sub-Hertz relative frequency stabilization of two diode laser pumped Nd:YAG lasers locked to a Fabry-Perot interferometer

    NASA Technical Reports Server (NTRS)

    Byer, R. L.

    1990-01-01

    Two laser pumped Nd:YAG lasers were frequency stabilized to a commercial 6.327 GHz free spectral range Fabry-Perot interferometer yielding a best case beatnote linewidth of 330 MHz. In addition, a Fabry-Perot interferometer with a free spectral range of 680 MHz, a linewidth of 25 kHz, and a finesse of 27,500 was built, and when it was substituted in place of the commercial interferometer, it produced a robust and easily repeatable beatnote linewidth of 700 MHz.

  18. All-fiber upconversion high spectral resolution wind lidar using a Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Shangguan, Mingjia; Xia, Haiyun; Wang, Chong; Qiu, Jiawei; Shentu, Guoliang; Zhang, Qiang; Dou, Xiankang; Pan, Jian-wei

    2016-08-01

    An all-fiber, micro-pulse and eye-safe high spectral resolution wind lidar (HSRWL) at 1550nm is proposed and demonstrated by using a pair of upconversion single-photon detectors and a fiber Fabry-Perot scanning interferometer (FFP-SI). In order to improve the optical detection efficiency, both the transmission spectrum and the reflection spectrum of the FFP-SI are used for spectral analyses of the aerosol backscatter and the reference laser pulse. The reference signal is tapped from the outgoing laser and served as a zero velocity indicator. The Doppler shift is retrieved from a frequency response function Q, which is defined as the ratio of difference of the transmitted signal and the reflected signal to their sum. Taking advantages of high signal-to-noise ratio of the detectors and high spectral resolution of the FFP-SI, the Q spectra of the aerosol backscatter are reconstructed along the line-of-sight (LOS) of the telescope. By applying a least squares fit procedure to the measured Q spectra, the center frequencies and the bandwidths are obtained simultaneously. And then the Doppler shifts are determined relative to the center frequency of the reference signal. To eliminate the influence of temperature fluctuations on the FFP-SI, the FFP-SI is cased in a chamber with temperature stability of 0.001 during the measurement. Continuous LOS wind observations are carried out on two days at Hefei (31.843 N, 117.265 E), China. In the meantime, LOS wind measurements from the HSRWL show good agreement with the results from an ultrasonic wind sensor (Vaisala windcap WMT52). Due to the computational expensive of the convolution operation of the Q function, an empirical method is adopted to evaluate the quality of the measurements. The standard deviation of the wind speed is 0.76 m/s at the 1.8 km. The standard deviation of the retrieved bandwidth variation is 2.07 MHz at the 1.8 km.

  19. Fabry-Perot interferometer-based remote sensing of SO2

    NASA Astrophysics Data System (ADS)

    Kuhn, Jonas; Bobrowski, Nicole; Lübcke, Peter; Pöhler, Denis; Tirpitz, Jan-Lukas; Vogel, Leif; Platt, Ulrich

    2015-04-01

    We studied SO2 degassing from volcanoes and monitored the corresponding SO2 fluxes. Besides the effect on climate and the hazardous effects at a local scale, the absolute magnitude of SO2 fluxes or ratios of SO2 with other volcanic gases can be an indicator for volcanic activity and even help to understand and model processes in the interior of volcanoes. Due to its characteristic absorption structure, high abundance in the volcanic plume and low atmospheric background, SO2 can be easily identified and quantified by remote sensing techniques. DOAS and FTIR became standard techniques for volcanic SO2 measurements. Along with the development of portable devices they offer the advantage of simultaneous measurements of multiple gas species. However, both techniques often need complex data evaluation and observations are usually limited to a single viewing direction. Spatially resolved measurements, which are for instance required to determine gas fluxes, frequently have to be obtained sequentially leading to a relatively low time resolution. A further, today nearly established method to determine SO2 emission fluxes is the "SO2 camera". The SO2 camera has the advantage of a high spatial and temporal resolution, but is very limited in spectral information using only two wavelength channels and thus being less selective. Cross-interferences with volcanic plume aerosol, the ozone background, and other trace gases frequently cause problems in SO2 camera measurements. Here we introduce a novel passive remote sensing method for SO2 measurements in the atmosphere using a Fabry-Perot interferometer (FPI) setup. The transmission profile of this FPI consists of periodic transmission peaks that match the periodic SO2 absorption bands in the UV. In principle, this method allows imaging of two-dimensional SO2 distributions similarly to SO2 cameras. Interferences of standard SO2 cameras are greatly reduced with the FPI method. In addition, this technique can also be applied to other

  20. Flare response to the thermospheric diurnal neutral wind measured by the OMTIs' Fabry-Perot Interferometers

    NASA Astrophysics Data System (ADS)

    Yatagai, A. I.; Shiokawa, K.

    2014-12-01

    This research aims at investigating the influence of flare events to the thermospheric tidal wind in order to grasp the EUV effect of the solar activity to upper atmospheric circulation. The neutral wind at about 250km level observed with the 630nm airglow by Fabry-Perot interferometers of the Optical Mesosphere Thermosphere Imagers (OMTIs) is analyzed. We used the 15-minutes interval data at Shigaraki for the year 2000 to 2013. 10953 of 59881 samples became usable after a quality control. We used the flare list issued by NOAA extracted from the X-rays from GOES satellites. There are 131 of X-class flares and 1510 of M-class flares during the 14 years. However, the number of samples to which effective observation of FPI is carried out at the flare peak time was 51. Before composite of the wind at the time of solar flare (so-called superimposed epoc analysis), monthly climatological wind is made. First, the valid data of every month were averaged in every 15 minutes for 9-21 UTC, then, three months data were averaged. Further, the 15-minutes temporal variation data was smoothed with a Gaussian filter. From the 51 sample data containing the flare peak time, the zonal wind (Ve) and the meridional wind (Vn) were composed after deducted the above mentioned climatology with a flare peak time as the starting point (t=0). Supposing the atmosphere on the daytime side expands under the influence of the flare temporarily and the advection current to the night side is strengthened, the eastward (westward) wind should be strengthened before (after) midnight. Since the influence of the increment of the air expansion in mid-night may have been offset, the samples which flare occurs before midnight (39 samples) were composited. As a result, as for Ve, significant change of eastward wind to westward wind compared to the standard deviation is observed after 3hrs and a half after solar flare occurred, while as for Vn, significant enhancement of southward component is observed after 4

  1. A tunable electrochromic fabry-perot filter for adaptive optics applications.

    SciTech Connect

    Blaich, Jonathan David; Kammler, Daniel R.; Ambrosini, Andrea; Sweatt, William C.; Verley, Jason C.; Heller, Edwin J.; Yelton, William Graham

    2006-10-01

    The potential for electrochromic (EC) materials to be incorporated into a Fabry-Perot (FP) filter to allow modest amounts of tuning was evaluated by both experimental methods and modeling. A combination of chemical vapor deposition (CVD), physical vapor deposition (PVD), and electrochemical methods was used to produce an ECFP film stack consisting of an EC WO{sub 3}/Ta{sub 2}O{sub 5}/NiO{sub x}H{sub y} film stack (with indium-tin-oxide electrodes) sandwiched between two Si{sub 3}N{sub 4}/SiO{sub 2} dielectric reflector stacks. A process to produce a NiO{sub x}H{sub y} charge storage layer that freed the EC stack from dependence on atmospheric humidity and allowed construction of this complex EC-FP stack was developed. The refractive index (n) and extinction coefficient (k) for each layer in the EC-FP film stack was measured between 300 and 1700 nm. A prototype EC-FP filter was produced that had a transmission at 500 nm of 36%, and a FWHM of 10 nm. A general modeling approach that takes into account the desired pass band location, pass band width, required transmission and EC optical constants in order to estimate the maximum tuning from an EC-FP filter was developed. Modeling shows that minor thickness changes in the prototype stack developed in this project should yield a filter with a transmission at 600 nm of 33% and a FWHM of 9.6 nm, which could be tuned to 598 nm with a FWHM of 12.1 nm and a transmission of 16%. Additional modeling shows that if the EC WO{sub 3} absorption centers were optimized, then a shift from 600 nm to 598 nm could be made with a FWHM of 11.3 nm and a transmission of 20%. If (at 600 nm) the FWHM is decreased to 1 nm and transmission maintained at a reasonable level (e.g. 30%), only fractions of a nm of tuning would be possible with the film stack considered in this study. These tradeoffs may improve at other wavelengths or with EC materials different than those considered here. Finally, based on our limited investigation and material set

  2. Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation

    PubMed Central

    Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong

    2015-01-01

    An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity. PMID:26184201

  3. Shift and elimination of microwave Fabry-Perot resonances in a dielectric covered with a thin metal layer

    NASA Astrophysics Data System (ADS)

    Ragulis, Paulius; Simniškis, Rimantas; Kancleris, Žilvinas

    2015-04-01

    In this paper, we consider a plane electromagnetic wave incident onto a dielectric plate, which has one surface covered with a thin layer of metal. An oblique incident angle was considered for the TE (s polarization in optic) and TM (p polarization) plane waves. The thin metal layer is treated as an infinitesimal thickness. It was characterized by a surface conductivity and accounted for by a tangential magnetic field component step induced by the current flow in the metal layer. Compact expressions, which describe the reflection, transmission and absorption in a dielectric plate covered with a thin layer of metal, have been obtained. It was shown that by choosing the appropriate surface conductivity, the Fabry-Perot transmission resonances can be shifted to the position where the maximum reflection is observed in the case of an uncovered dielectric. On the other hand, the elimination of the Fabry-Perot resonances can be also achieved by choosing a proper metal surface conductivity. Measurements of the reflection from the glass covered with a thin layer of metal have been performed in a wide microwave frequency range (2-12 GHz) revealing a large difference in the measured reflection coefficient from the dielectric and metalized surfaces. The measured results fit well with those calculated by employing analytical expressions obtained in this paper.

  4. Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation.

    PubMed

    Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong

    2015-01-01

    An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity. PMID:26184201

  5. Parameter design of signal processing for transmission/reflection-type hybrid extrinsic Fabry Perot interferometric optical fiber sensors

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Hoon; Lee, Jung-Ju

    2005-02-01

    A transmission/reflection-type hybrid extrinsic Fabry-Perot interferometric (TRHEFPI) optical fiber sensor presents transmission-type and reflection-type sensor signals simultaneously, and measurement directions can be robustly distinguished with the phase lead or lag of the linear combination signal from the original sensor signal. This sensor principle compensates for the ambiguous distinction of the measurement directions and direction changes of conventional interferometric optical fiber sensors, including extrinsic Fabry-Perot interferometric optical fiber sensors, due to the exclusive use of fringe counting in signal processing. Designing a sensor coefficient in the linear combination signal is one of the most important works in signal processing for the TRHEFPI optical fiber sensor because the magnitude of the phase shifts depends on the sensor coefficient. A design method of the sensor coefficient is presented in this research. The method was verified with experimental sensor signals and applied to strain measurement experiments. A method of absolute measurement using the TRHEFPI optical fiber sensor is also presented.

  6. Tunable Fabry-Perot filter using hollow-core photonic bandgap fiber and micro-fiber for a narrow-linewidth laser.

    PubMed

    Wang, Xiaozhen; Zhu, Tao; Chen, Liang; Bao, Xiaoyi

    2011-05-01

    A novel tunable fiber Fabry-Perot (FP) filter is proposed and demonstrated by using a hollow-core photonic bandgap fiber (HC-PBF) and a micro-fiber. The interference cavity is a hollow core of HC-PBF. One of the reflection mirrors is the splicing point between a section of HC-PBF and a single mode fiber. The other reflection mirror is a gold-coated end of micro-fiber that uses chemical etching process to obtain the similar diameter as the core of HC-PBF. Hence the movable mirror can be adjusted with long distance inside the hollow core of HC-PBF. Tunable FP filter is used as a mode selecting component in the reflection mode to implement stable single longitudinal mode (SLM) operation in a ring laser. With FP cavity length of 0.25 ± 0.14 mm, the wavelength of SLM laser can be tuned over 1554-1562 nm with a tuning step of 0.2-0.3 nm, a side-mode suppression ratio (SMSR) of 32-36 dB and a linewidth of 3.0-5.1 kHz. With FP cavity length of 2.37 ± 0.37 mm, the SLM laser can be tuned over 1557.3-1560.2 nm with a tuning step of 0.06-0.1 nm, a SMSR of 44-51 dB and a linewidth of 1.8-3.0 kHz. PMID:21643220

  7. Frequency stabilization based on high finesse glass-ceramic Fabry-Perot cavity for a 632.8-nm He-Ne laser

    NASA Astrophysics Data System (ADS)

    Fu, Tingting; Yang, Kaiyong; Tan, Zhongqi; Luo, Zhifu; Wu, Suyong

    2014-12-01

    A frequency stabilization technique for a 632.8nm He-Ne laser with a high finesse Fabry-Perot cavity is introduced in this paper. The resonant frequency of the cavity is taken as the frequency standard .In this system the Fabry-Perot cavity is composed of a glass-ceramic spacer, with thermal expansion coefficient smaller than 2×10-8/°C , which means an excellent thermal stabilization which greatly decreases the thermal impacts on the cavity length in the desired constant-temperature environment.The intra-cavity spherical mirror is specially designed, which makes the Fabry-cavity a sensor element in our subsequent experiments for a new practical optical accelerometer .Both cavity mirrors were custom made in our laboratory which have reflectivities greater than 99.995% at 632.8nm, so the Fabry-Perot cavity has a finesse of about 62830. The half-maximum transmission line width is about 55.48 KHz and the free spectral range is 3.5GHz .In the experimental setup, we adopt the frequency stabilization circuit with small dithering .With proper dithering voltage, the laser can be precisely locked to the Fabry-Perot cavity minimum reflection point. Theoretically the frequency stability can reach 10-10 order.

  8. Coherent coupling between a molecular vibration and Fabry-Perot optical cavity to give hybridized states in the strong coupling limit (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Long, James P.; Owrutsky, Jeff C.; Fears, Kenan P.; Dressick, Walter J.; Dunkelberger, Adam D.; Compton, Ryan; Spann, Bryan; Simpkins, Blake S.

    2015-09-01

    Coherent coupling between an optical-transition and confined optical mode, when sufficiently strong, gives rise to new modes separated by the vacuum Rabi splitting. Such systems have been investigated for electronic-state transitions, however, only very recently have vibrational transitions been considered. Here, we bring strong polaritonic-coupling in cavities from the visible into the infrared where a new range of static and dynamic vibrational processes await investigation. First, we experimentally and numerically describe coupling between a Fabry-Perot cavity and carbonyl stretch (~1730 cm 1) in poly-methylmethacrylate. As is requisite for "strong coupling", the measured vacuum Rabi splitting of 132 cm 1 is much larger than the full width of the cavity (34 cm-1) and the inhomogeneously broadened carbonyl-stretch (24 cm-1). Agreement with classical theories providea evidence that the mixed-states are relatively immune to inhomogeneous broadening. Next, we investigate strong and weak coupling regimes through examination of cavities loaded with varying concentrations of urethane. Rabi splittings increases from 0 to ~104 cm-1 with concentrations from 0-20 vol% and are in excellent agreement to an analytical description using no fitting parameters. Ultra-fast pump-probe measurements reveal transient absorption signals over a frequency range well-separated from the vibrational band as well as modifications of energy relaxation times. Finally, we demonstrate coupling to liquids using the C-O stretching band (~1985 cm-1) of Mo(CO)6 in an aqueous solution. Opening the field of polaritonic coupling to vibrational species promises to be a rich arena amenable to a wide variety of infrared-active bonds that can be studied statically and dynamically.

  9. Mirror Birefringence in a Fabry-Perot Cavity and the Detection of Vacuum Birefringence in a Magnetic Field

    NASA Technical Reports Server (NTRS)

    Chui, T. C. P.; Shao, M.; Redding, D.; Gursel, Y.; Boden, A.

    1995-01-01

    We discuss the effect of mirror birefringence in two optical schemes designed to detect the quantum-electrodynamics (QED) predictions of vacuum birefringence under the influence of a strong magnetic field, B. Both schemes make use of a high finesse Fabry-Perot cavity (F-P) to increase the average path length of the light in the magnetic field. The first scheme, which we called the frequency scheme, is based on measurement of the beat frequency of two orthogonal polarized laser beams in the cavity. We show that mirror birefringence contributes to the detection uncertainties in first order, resulting in a high susceptibility to small thermal disturbances. We estimate that an unreasonably high thermal stability of 10-9 K is required to resolve the effect to 0.1%. In the second scheme, which we called the polarization rotation scheme, laser polarized at 45 relative to the B field is injected into the cavity.

  10. An ultra-low detection-limit optofluidic biosensor based on all glass Fabry-Perot cavity.

    PubMed

    Wu, Haibo; Huang, Hui; Bai, Min; Liu, Pengbo; Chao, Ming; Hu, Jie; Hao, Jian; Cao, Tun

    2014-12-29

    An all glass optofludic biosensor with high quality-factor Fabry-Perot cavity (FPC) channel was reported. The all glass sandwich structure can completely eliminate the etching roughness of the channel surface, and can extend the operating wavelength to visible and ultraviolet regions compared with that of Si-based sensor. The quality-factor of the FPC channel is 875, and the system noise can be reduced to 1.2 nV by combining optical differential detection with phase lock-in detection. A detection limit of 15ng/mL for glucose solution, which corresponds to a refractive index unit of 2.0 × 10-9, was experimentally demonstrated. The all glass FPC sensor features low cost and robust compared with surface-plasmon-resonance sensor and ring-resonator sensor. PMID:25607165

  11. Quantum-enhanced metrology based on Fabry-Perot interferometer by squeezed vacuum and non-Gaussian detection

    SciTech Connect

    Li, Wenfang; Du, Jinjin; Wen, Ruijuan; Li, Gang; Zhang, Tiancai

    2014-03-28

    We have investigated the transmission spectra of a Fabry-Perot interferometer (FPI) with squeezed vacuum state injection and non-Gaussian detection, including photon number resolving detection and parity detection. In order to show the suitability of the system, parallel studies were made of the performance of two other light sources: coherent state of light and Fock state of light either with classical mean intensity detection or with non-Gaussian detection. This shows that by using the squeezed vacuum state and non-Gaussian detection simultaneously, the resolution of the FPI can go far beyond the cavity standard bandwidth limit based on the current techniques. The sensitivity of the scheme has also been explored and it shows that the minimum detectable sensitivity is better than that of the other schemes.

  12. Comparison of plasma flow and thermospheric circulation over northern Scandinavia using EISCAT and a Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Rees, D.; Lloyd, N.; Charleton, P. J.; Carlson, M.; Murdin, J.; Haggstrom, I.

    1984-07-01

    EISCAT observations of ionospheric plasma drift obtained during 24 h on November 25-26, 1982, are compared with thermospheric-wind measurements obtained with a Fabry-Perot interferometer (FPI) at Kiruna, Sweden, during the hours of darkness (14-05 h UT). The data are presented in graphs, tables, and color diagrams and characterized in detail. The EISCAT-derived meridional-wind estimates for 312 km are found to agree to within 50 m/s with the FPI data; the zonal winds are about 50 percent faster than the FPI winds, exhibiting parallel fluctuations except after increases in neutral and ion temperatures. The differences are attributed to altitude gradients in the temperature data.

  13. Optical pressure/acoustic sensor with precise Fabry-Perot cavity length control using angle polished fiber.

    PubMed

    Wang, Wenhui; Wu, Nan; Tian, Ye; Wang, Xingwei; Niezrecki, Christopher; Chen, Julie

    2009-09-14

    This paper presents a novel Fabry-Perot (FP) optical fiber pressure/acoustic sensor. It consists of two V-shaped grooves having different sized widths, a diaphragm on the surface of the larger V-groove, and a 45 degrees angle-polished fiber. The precision of FP cavity length is determined by the fabrication process of photolithography and anisotropic etching of a silicon crystal. Therefore, the cavity length can be controlled on the order of ten nm. Sensors were fabricated and tested. Test results indicate that the sensors' cavity lengths have been controlled precisely. The packaged sensor has demonstrated very good static and dynamic responses compared to a commercially available pressure sensor and a microphone. PMID:19770876

  14. Combined fringe and Fabry-Perot laser anemometer for 3 component velocity measurements in turbine stator cascade facility

    NASA Technical Reports Server (NTRS)

    Seasholtz, Richard G.; Goldman, Louis J.

    1986-01-01

    A laser anemometer is described that was developed for use in a 508 mm diameter annular turbine stator cascade facility. All three velocity components are measured through a single restricted optical port, both within the stator vane row and downstream of the vanes. The measurements are made through a cylindrical window in the casing that matches the tip radius of the cascade. The stator tested has a contoured hub endwall that results in a large radial flow near the hub. The anemometer uses a standard fringe configuration (LFA) with a fluorescent aerosol seed to measure the axial and circumferential velocity components. The radial component is measured with a confocal Fabry-Perot interferometer. The two configurations are combined in a single optical system and can operate simultaneously. Data are presented to illustrate the capabilities of the system.

  15. Combined fringe and Fabry-Perot laser anemometer for three component velocity measurements in turbine stator cascade facility

    NASA Technical Reports Server (NTRS)

    Seasholtz, R. G.; Goldman, L. J.

    1986-01-01

    A laser anemometer is described that was developed for use in a 508 mm diameter annular turbine stator cascade facility. All three velocity components are measured through a single restricted optical port, both within the stator vane row and downstream of the vanes. The measurements are made through a cylindrical window in the casing that matches the tip radius of the cascade. The stator tested has a contoured hub endwall that results in a large radial flow near the hub. The anemometer uses a standard fringe configuration (LFA) with a fluorescent aerosol seed to measure the axial and circumferential velocity components. The radial component is measured with a confocal Fabry-Perot interferometer. The two configurations are combined in a single optical system and can operate simultaneously. Data are presented to illustrate the capabilities of the system.

  16. Wavelength modulation spectroscopy at 1530.32 nm for measurements of acetylene based on Fabry-Perot tunable filter

    NASA Astrophysics Data System (ADS)

    Yun-Long, Li; Bing-Chu, Yang; Xue-Mei, Xu

    2016-02-01

    Sensitive detection of acetylene (C2H2) is performed by absorption spectroscopy and wavelength modulation spectroscopy (WMS) based on Fiber Fabry-Perot tunable filter (FFP-TF) at 1530.32 nm. After being calibrated by Fiber Bragg Grating (FBG), FFP-TF is frequency-multiplexed and modulated at 20 Hz and 2.5 kHz respectively to achieve wavelength modulation. The linearity with 0.9907 fitting coefficient is obtained by measuring different concentrations in a 100 ppmv-400 ppmv range. Furthermore, the stability of the system is analyzed by detecting 50 ppmv and 100 ppmv standard gases for 2 h under room temperature and ambient pressure conditions respectively. The precision of 11 ppmv is achieved by calculating the standard deviation. Therefore, the measuring system of C2H2 detection can be applied in practical applications. Project supported by the National Natural Science Foundation of China (Grant Nos. 61172047 and 61071025).

  17. External electro-optic sampling utilizing a poled polymer asymmetric Fabry Perot cavity as an electro-optical probe tip

    NASA Astrophysics Data System (ADS)

    Chen, Kaixin; Zhang, Hongbo; Zhang, Daming; Yang, Han; Yi, Maobin

    2002-09-01

    External electro-optic sampling utilizing a poled polymer asymmetry Fabry-Perot cavity as electro-optic probe tip has been demonstrated. Electro-optical polymer spin coated on the high-reflectivity mirror (HRM) was corona poled. Thus, an asymmetric F-P cavity was formed based on the different reflectivity of the polymer and HRM and it converted the phase modulation that originates from electro-optic effect of the poled polymer to amplitude modulation, so only one laser beam is needed in this system. The principle of the sampling was analyzed by multiple reflection and index ellipsoid methods. A 1.2 GHz microwave signal propagating on coplanar waveguide transmission line was sampled, and the voltage sensitivity about 0.5 mV/ Hz was obtained.

  18. Amplification of the Signal Intensity of Fluorescence-Based Fiber-Optic Biosensors Using a Fabry-Perot Resonator Structure

    PubMed Central

    Hsieh, Meng-Chang; Chiu, Yi-Hsin; Lin, Sheng-Fu; Chang, Jenq-Yang; Chang, Chia-Ou; Chiang, Huihua Kenny

    2015-01-01

    Fluorescent biosensors have been widely used in biomedical applications. To amplify the intensity of fluorescence signals, this study developed a novel structure for an evanescent wave fiber-optic biosensor by using a Fabry-Perot resonator structure. An excitation light was coupled into the optical fiber through a laser-drilled hole on the proximal end of the resonator. After entering the resonator, the excitation light was reflected back and forth inside the resonator, thereby amplifying the intensity of the light in the fiber. Subsequently, the light was used to excite the fluorescent molecules in the reactive region of the sensor. The experimental results showed that the biosensor signal was amplified eight-fold when the resonator reflector was formed using a 92% reflective coating. Furthermore, in a simulation, the biosensor signal could be amplified 20-fold by using a 99% reflector. PMID:25690548

  19. SnO2-MOF-Fabry-Perot humidity optical sensor system based on fast Fourier transform technique

    NASA Astrophysics Data System (ADS)

    Lopez-Aldaba, A.; Lopez-Torres, D.; Ascorbe, J.; Rota-Rodrigo, S.; Elosua, C.; Lopez-Amo, M.; Arregui, F. J.; Corres, J. M.; Auguste, J.-L.; Jamier, R.; Roy, P.

    2016-05-01

    In this paper, a new sensor system for relative humidity measurements based on a SnO2 sputtering deposition on a microstructured optical fiber (MOF) low-finesse Fabry-Perot (FP) sensing head is presented and characterized. The interrogation of the sensing head is carried out by monitoring the Fast Fourier Transform phase variations of the FP interference frequency. This method is low-sensitive to signal amplitude variations and also avoids the necessity of tracking the evolution of peaks and valleys in the spectrum. The sensor is operated within a wide humidity range (20%-90% relative humidity) with a maximum sensitivity achieved of 0.14rad/%. The measurement method uses a commercial optical interrogator as the only active element, this compact solution allows real time analysis of the data.

  20. Differential Radiometers Using Fabry-Perot Interferometric Technique for Remote Sensing Determination of Various Atmospheric Trace Gases

    NASA Technical Reports Server (NTRS)

    Georgieva, E. M.; Heaps, W. S.; Wilson, E. L.

    2007-01-01

    New type of remote sensing instrument based upon the Fabry-Perot inte rferometric technique has been developed at NASA's Goddard Space Flight Center. Fabry-Perot interferometry (FPI) is a well known, powerful spectroscopic technique and one of its many applications is to be use d to measure greenhouse gases and also some harmful species in the at mosphere. With this technique, absorption of particular species is me asured and related to its concentration. A solid Fabry-Perot etalon is used as a frequency filter to restrict the measurement to particular absorption bands of the gas of interest. With adjusting the thicknes s of the etalon that separation (in frequency) of the transmitted fri nges can be made equal to the almost constant separation of the gas a bsorption lines. By adjusting the temperature of the etalon, which changes the index of refi-action of its material, the transmission fring es can be brought into nearly exact correspondence with absorption li nes of the particular species. With this alignment between absorption lines and fringes, changes in the amount of a species in the atmosph ere strongly affect the amount of light transmitted by the etalon and can be related to gas concentration. The instrument that we have dev eloped detects the absorption of various atmospheric trace gases in d irect or reflected sunlight. Our instrument employing Fabry-Perot interferometer makes use of two features to achieve high sensitivity. The first is high spectral resolution enabling one to match the width of an atmospheric absorption feature by the instrumental band pass. The second is high optical throughput enabled by using multiple spectral lines simultaneously. For any species that one wishes to measure, thi s first feature is available while the use of multiple spectral features can be employed only for species with suitable spectra and freedom from interfering species in the same wavelength region. We have deve loped an instrument for use as ground based

  1. The helium 10830 A line in early-type stars - an atlas of Fabry-Perot scans

    NASA Astrophysics Data System (ADS)

    Meisel, D. D.; Frank, Z. A.; Packard, M. L.; Saunders, B. A.

    1982-12-01

    Representative profiles of He I 10830 A in 65 early-type (O6-A1) stars over a wide range of luminosity are presented. The atlas scans were obtained using the Vaughan Fabry-Perot interferometer on the C. E. K. Mees 0.6 m and KPNO 0.9 m telescopes and usually cover a range of plus or minus 15 A at 1 A resolution with sampling distances between 0.5 A and 2 A depending on the photometer integration time required to reach reasonable Poisson counting statistics. The majority of the scans show very shallow, broad features which do not agree with plane-parallel NLTE model atmosphere calculations of the 10830 line by Auer and Mihalas (1972). Difficulties connected with previous theoretical studies of this line are briefly discussed, and suggestions for possible future modifications to the theory are made.

  2. The helium 10830 A line in early-type stars - An atlas of Fabry-Perot scans

    NASA Technical Reports Server (NTRS)

    Meisel, D. D.; Frank, Z. A.; Packard, M. L.; Saunders, B. A.

    1982-01-01

    Representative profiles of He I 10830 A in 65 early-type (O6-A1) stars over a wide range of luminosity are presented. The atlas scans were obtained using the Vaughan Fabry-Perot interferometer on the C. E. K. Mees 0.6 m and KPNO 0.9 m telescopes and usually cover a range of plus or minus 15 A at 1 A resolution with sampling distances between 0.5 A and 2 A depending on the photometer integration time required to reach reasonable Poisson counting statistics. The majority of the scans show very shallow, broad features which do not agree with plane-parallel NLTE model atmosphere calculations of the 10830 line by Auer and Mihalas (1972). Difficulties connected with previous theoretical studies of this line are briefly discussed, and suggestions for possible future modifications to the theory are made.

  3. A Near IR Fabry-Perot Interferometer for Wide Field, Low Resolution Hyperspectral Imaging on the Next Generation Space Telescope

    NASA Technical Reports Server (NTRS)

    Barry, R. K.; Satyapal, S.; Greenhouse, M. A.; Barclay, R.; Amato, D.; Arritt, B.; Brown, G.; Harvey, V.; Holt, C.; Kuhn, J.

    2000-01-01

    We discuss work in progress on a near-infrared tunable bandpass filter for the Goddard baseline wide field camera concept of the Next Generation Space Telescope (NGST) Integrated Science Instrument Module (ISIM). This filter, the Demonstration Unit for Low Order Cryogenic Etalon (DULCE), is designed to demonstrate a high efficiency scanning Fabry-Perot etalon operating in interference orders 1 - 4 at 30K with a high stability DSP based servo control system. DULCE is currently the only available tunable filter for lower order cryogenic operation in the near infrared. In this application, scanning etalons will illuminate the focal plane arrays with a single order of interference to enable wide field lower resolution hyperspectral imaging over a wide range of redshifts. We discuss why tunable filters are an important instrument component in future space-based observatories.

  4. Cryogenic mechanisms for scanning and interchange of the Fabry-Perot interferometers in the ISO long wavelength spectrometer

    NASA Technical Reports Server (NTRS)

    Davis, G. R.; Furniss, I.; Patrick, T. J.; Sidey, R. C.; Towlson, W. A.

    1991-01-01

    The Infrared Space Observatory (ISO) is an ESA cornerstone mission for infrared astronomy. Schedules for launch in 1993, its four scientific instruments will provide unprecedented sensitivity and spectral resolution at wavelengths which are inaccessible using ground-based techniques. One of these, the Long Wavelength Spectrometer (LWS), will operate in the 45 to 180 micron region (Emery et. al., 1985) and features two Fabry-Perot interferometers mounted on an interchange mechanism. The entire payload module of the spacecraft, comprising the 60 cm telescope and the four focal plane instruments, is maintained at 2 to 4 K by an onboard supply of liquid helium. The mechanical design and testing of the cryogenic interferometer and interchange mechanisms are described.

  5. Improvements in filtered Rayleigh scattering measurements using Fabry-Perot etalons for spectral filtering of pulsed, 532-nm Nd:YAG output

    NASA Astrophysics Data System (ADS)

    Sutton, Jeffrey A.; Patton, Randy A.

    2014-09-01

    In this manuscript, we investigate a new methodology for increasing the spectral purity of the second-harmonic output of an injection-seeded, frequency-doubled, Q-switched Nd:YAG laser operating near 532 nm. Specifically, tunable Fabry-Perot etalons (FPEs) are used as ultra-narrowband spectral filters, transmitting the desired single-mode output, while filtering out a significant portion of the broadband pedestal characteristic of injection-seeded lasers. A specific emphasis is placed on the design and optimization of the FPEs in the context of filtered Rayleigh scattering (FRS) measurements and how their utilization results in substantial increases in spectral purity, realizable attenuation of unwanted scattering, and applications in environments with high particulate levels. Experimental results show an increase in laser spectral purity of more than one order-of-magnitude (from 0.99997 to 0.999998) when using FPE filters, which led to a two-order-of-magnitude increase in achievable attenuation of laser light passing through a molecular iodine filter. The utility of the FPE-based spectral filtering of the pulsed Nd:YAG output for 2D FRS imaging was demonstrated in turbulent, isothermal gas-phase jets, seeded with varying levels of non-evaporating droplets with particle volume fractions ( F Vp) ranging from ~5 to >60 parts-per-million (ppm). After implementation of an optimized air-spaced FPE in the 532-nm output, no particle scattering was observed (based on visual and statistical analysis), even for the highest seed case ( F Vp ~ 60 ppm), and the gas-phase Rayleigh-Brillouin signals were collected without interference from the flowfield particulate. The current results suggest that the implementation of properly specified FPEs allows FRS to be applied in environments with high flowfield particulate levels; levels are well beyond what have been suitable for previous FRS measurements.

  6. Type-II superlattice dual-band LWIR imager with M-barrier and Fabry-Perot resonance.

    PubMed

    Huang, Edward Kwei-wei; Haddadi, Abbas; Chen, Guanxi; Nguyen, Binh-Minh; Hoang, Minh-Anh; McClintock, Ryan; Stegall, Mark; Razeghi, Manijeh

    2011-07-01

    We report a high performance long-wavelength IR dual-band imager based on type-II superlattices with 100% cutoff wavelengths at 9.5 μm (blue channel) and 13 μm (red channel). Test pixels reveal background-limited behavior with specific detectivities as high as ~5×10¹¹ Jones at 7.9 μm in the blue channel and ~1×10¹¹ Jones at 10.2 μm in the red channel at 77 K. These performances were attributed to low dark currents thanks to the M-barrier and Fabry-Perot enhanced quantum efficiencies despite using thin 2 μm absorbing regions. In the imager, the high signal-to-noise ratio contributed to median noise equivalent temperature differences of ~20 milli-Kelvin for both channels with integration times on the order of 0.5 ms, making it suitable for high speed applications. PMID:21725479

  7. Intra-Tissue Pressure Measurement in Ex Vivo Liver Undergoing Laser Ablation with Fiber-Optic Fabry-Perot Probe.

    PubMed

    Tosi, Daniele; Saccomandi, Paola; Schena, Emiliano; Duraibabu, Dinesh Babu; Poeggel, Sven; Leen, Gabriel; Lewis, Elfed

    2016-01-01

    We report the first-ever intra-tissue pressure measurement performed during 1064 nm laser ablation (LA) of an ex vivo porcine liver. Pressure detection has been performed with a biocompatible, all-glass, temperature-insensitive Extrinsic Fabry-Perot Interferometry (EFPI) miniature probe; the proposed methodology mimics in-vivo treatment. Four experiments have been performed, positioning the probe at different positions from the laser applicator tip (from 0.5 mm to 5 mm). Pressure levels increase during ablation time, and decrease with distance from applicator tip: the recorded peak parenchymal pressure levels range from 1.9 kPa to 71.6 kPa. Different pressure evolutions have been recorded, as pressure rises earlier in proximity of the tip. The present study is the first investigation of parenchymal pressure detection in liver undergoing LA: the successful detection of intra-tissue pressure may be a key asset for improving LA, as pressure levels have been correlated to scattered recurrences of tumors by different studies. PMID:27092504

  8. A Fabry-Perot Interferometry Based MRI-Compatible Miniature Uniaxial Force Sensor for Percutaneous Needle Placement

    PubMed Central

    Shang, Weijian; Su, Hao; Li, Gang; Furlong, Cosme; Fischer, Gregory S.

    2014-01-01

    Robot-assisted surgical procedures, taking advantage of the high soft tissue contrast and real-time imaging of magnetic resonance imaging (MRI), are developing rapidly. However, it is crucial to maintain tactile force feedback in MRI-guided needle-based procedures. This paper presents a Fabry-Perot interference (FPI) based system of an MRI-compatible fiber optic sensor which has been integrated into a piezoelectrically actuated robot for prostate cancer biopsy and brachytherapy in 3T MRI scanner. The opto-electronic sensing system design was minimized to fit inside an MRI-compatible robot controller enclosure. A flexure mechanism was designed that integrates the FPI sensor fiber for measuring needle insertion force, and finite element analysis was performed for optimizing the correct force-deformation relationship. The compact, low-cost FPI sensing system was integrated into the robot and calibration was conducted. The root mean square (RMS) error of the calibration among the range of 0–10 Newton was 0.318 Newton comparing to the theoretical model which has been proven sufficient for robot control and teleoperation. PMID:25126153

  9. System and method for generating a displacement with ultra-high accuracy using a fabry-perot interferometer

    DOEpatents

    McIntyre, Timothy J.

    1994-01-01

    A system and method for generating a desired displacement of an object, i.e., a target, from a reference position with ultra-high accuracy utilizes a Fabry-Perot etalon having an expandable tube cavity for resolving, with an Iodine stabilized laser, displacements with high accuracy and for effecting (as an actuator) displacements of the target. A mechanical amplifier in the form of a micropositioning stage has a platform and a frame which are movable relative to one another, and the tube cavity of the etalon is connected between the platform and frame so that an adjustment in length of the cavity effects a corresponding, amplified movement of the frame relative to the cavity. Therefore, in order to provide a preselected magnitude of displacement of the stage frame relative to the platform, the etalon tube cavity is adjusted in length by a corresponding amount. The system and method are particularly well-suited for use when calibrating a high accuracy measuring device.

  10. Dual hollow core fiber-based Fabry-Perot interferometer for measuring the thermo-optic coefficients of liquids.

    PubMed

    Lee, Cheng-Ling; Ho, Hsuan-Yu; Gu, Jheng-Hong; Yeh, Tung-Yuan; Tseng, Chung-Hao

    2015-02-15

    A microcavity fiber Fabry-Perot interferometer (MFFPI) that is based on dual hollow core fibers (HCFs) is developed for measuring the thermo-optic coefficients (TOCs) of liquids. The proposed MFFPI was fabricated by fusion-splicing a tiny segment of the main-HCF with a diameter D of 30 μm and another section of feeding-HCF with a diameter of 5 μm. Then, the main-HCF was filled with liquid by capillary action through the feeding-HCF by immersing the MFFPI in the liquid. The TOCs of the Cargille liquid (n(D)=1.3), deionized (DI) water, and ethanol were accurately determined from the shift of the interference wavelength, which was due to the temperature variation. Our experimental results were also compared with other published studies to investigate the effectiveness of the proposed sensing scheme. The major advantage is that the miniature MFFPI can achieve the measurement of the TOCs of the liquids with picoliter volume, and the measured liquids also can be sealed off and stored inside the HCF to prevent contamination. PMID:25680124

  11. Climatologies of nighttime thermospheric winds and temperatures from Fabry-Perot interferometer measurements: From solar minimum to solar maximum

    NASA Astrophysics Data System (ADS)

    Fisher, Daniel J.; Makela, Jonathan J.; Meriwether, John W.; Buriti, Ricardo A.; Benkhaldoun, Zouhair; Kaab, Mohamed; Lagheryeb, Amine

    2015-08-01

    We present a climatology of quiet time thermospheric winds and temperatures estimated from high-resolution Fabry-Perot interferometer measurements of the 630.0 nm airglow emission spectral line shape. Three locations are examined in this long-term study: northeastern Brazil (August 2009 to August 2014), a midlatitude site in North Carolina, USA (June 2011 to December 2014), and a midlatitude site in Morocco (November 2013 to December 2014). We discuss the day-to-day, seasonal, and solar cycle trends and variations of thermospheric meridional winds, zonal winds, neutral temperatures, and for the first time vertical winds. Observations made from solar minimum to solar maximum (with F10.7 values ranging from ˜70 to ˜159 solar flux units) confirm that neutral temperatures have a strong solar cycle dependence. However, this data set shows that the neutral winds are more closely tied to the seasonal variation, rather than the solar cycle. We also present comparisons between the two midlatitude sites and include neutral wind comparisons to the updated Horizontal Wind Model 14.

  12. Intra-Tissue Pressure Measurement in Ex Vivo Liver Undergoing Laser Ablation with Fiber-Optic Fabry-Perot Probe

    PubMed Central

    Tosi, Daniele; Saccomandi, Paola; Schena, Emiliano; Duraibabu, Dinesh Babu; Poeggel, Sven; Leen, Gabriel; Lewis, Elfed

    2016-01-01

    We report the first-ever intra-tissue pressure measurement performed during 1064 nm laser ablation (LA) of an ex vivo porcine liver. Pressure detection has been performed with a biocompatible, all-glass, temperature-insensitive Extrinsic Fabry-Perot Interferometry (EFPI) miniature probe; the proposed methodology mimics in-vivo treatment. Four experiments have been performed, positioning the probe at different positions from the laser applicator tip (from 0.5 mm to 5 mm). Pressure levels increase during ablation time, and decrease with distance from applicator tip: the recorded peak parenchymal pressure levels range from 1.9 kPa to 71.6 kPa. Different pressure evolutions have been recorded, as pressure rises earlier in proximity of the tip. The present study is the first investigation of parenchymal pressure detection in liver undergoing LA: the successful detection of intra-tissue pressure may be a key asset for improving LA, as pressure levels have been correlated to scattered recurrences of tumors by different studies. PMID:27092504

  13. A laser locked Fabry-Perot etalon with 3 cm/s stability for wavelength calibration of Doppler spectrographs

    NASA Astrophysics Data System (ADS)

    Schwab, Christian; Gurevich, Yulia; Stuermer, Julian; Fuehrer, Thorsten; Lamoreaux, Steve; Walther, Thomas; Quirrenbach, Andreas

    2015-12-01

    Superior wavelength calibration is a major component in attaining Doppler precision of 10 cm/s and better with high resolution spectrographs. To achieve this goal, current calibration methods like thorium-argon lamps and iodine cells need to be replaced by more precise techniques. The ideal wavelength calibrator has a grid of densely spaced, narrow lines of equal brightness and works over a wide wavelength range. Laser frequency combs have received much attention recently, but they are complex and costly. We present an alternative method that builds on the success of passively stabilized Fabry-Perot etalons: we actively stabilize the etalon to an atomic transition, which provides an absolute frequency reference. We use saturated absorption laser spectroscopy to detect the hyperfine transitions of rubidium at 780 nm, a well-established frequency standard. Then we tune an etalon parameter (for instance, temperature) to keep one etalon peak coincident with the rubidium transition. Our setup is designed to be simple and robust, adaptable to various etalons, and to work in the infrared as well as the visible spectral range. We achieve a locking precision that is equivalent to a Doppler precision of better than 3 cm/s over any reasonable integration time.

  14. Fiber-optic gas pressure sensing with a laser-heated silicon-based Fabry-Perot interferometer.

    PubMed

    Liu, Guigen; Han, Ming

    2015-06-01

    We report a novel fiber-optic sensor for measurement of static gas pressure based on the natural convection of a heated silicon pillar attached to a fiber tip functioning as a Fabry-Perot interferometer (FPI). A visible laser beam is guided by the fiber to efficiently heat the silicon pillar, while an infrared whitelight source, also guided by the fiber, is used to measure the temperature of the FPI, which is influenced both by the laser power and the pressure through natural convection. We theoretically and experimentally show that, by monitoring the fringe shift caused by the laser heating, air pressure sensing with little temperature cross-sensitivity can be achieved. The pressure sensitivity can be easily tuned by adjusting the heating laser power. In our experiment, the sensor performance within the temperature range from 20°C to 50°C and the pressure range from 0 to 1400 psi has been characterized, showing an average sensitivity of -0.52  pm/psi. Compared to the passive version of the sensor, the pressure sensitivity was ∼15 times larger, and the temperature cross-sensitivity was ∼100 times smaller. PMID:26030532

  15. Nanoantenna-induced fringe splitting of Fabry-Perot interferometer: a model study of plasmonic/photonic coupling.

    PubMed

    Liu, Huanhuan; Erouel, Mohsen; Gerelli, Emmanuel; Harouri, Abdelmounaim; Benyattou, Taha; Orobtchouk, Régis; Milord, Laurent; Belarouci, Ali; Letartre, Xavier; Jamois, Cécile

    2015-11-30

    In this paper, we present a simple approach to study the coupling mechanisms between a plasmonic system consisting of bowtie nanoantennas and a photonic structure based on a Fabry-Perot interferometer. The nanoantenna array is represented by an equivalent homogeneous layer placed at the interferometer surface and yielding the effective dielectric function of the NA resonance. A phase matching model based on thin film interference is developed to describe the multi-layer interferences in the device and to analyze the fringe variations induced by the introduction of the plasmonic layer. The general model is validated by an experimental system consisting of a bowtie nanoantenna array and a porous-silicon-based interferometer. The optical response of this hybrid device exhibits both the enhancement induced by the nanoantenna resonance and the fringe pattern of the interferometer. Using the phase matching model, we demonstrate that strong coupling can occur in such a system, leading to fringe splitting. A study of the splitting strength and of the coupling behavior is given. The model study performed in this work enables to gain deeper understanding of the optical behavior of plasmonic/photonic hybrid devices. PMID:26698737

  16. Optimizing the external optical cavity parameters for performance improvement of a fiber grating Fabry-Perot laser

    NASA Astrophysics Data System (ADS)

    Hisham, Hisham Kadhum; Abas, Ahmad Fauzi; Amouzad Mahdiraji, Ghafour; Mahdi, Mohd Adzir; Mahamd Adikan, Faisal Rafiq

    2015-04-01

    The effects of the external optical cavity parameters (external optical cavity length ( L ext), amplitude coupling ( C o) and anti-reflection coating (ARC) reflectivity coefficients) on the noise and modulation spectra of a fiber grating Fabry-Perot laser are numerically analyzed for designing a laser that operates in strong feedback regime (Regime V). Fiber Bragg grating (FBG) is used as a wavelength selective element to control the properties of the laser output by controlling the external optical feedback (OFB) level. The study is performed by modifying a set of rate equations that are solved by considering the effects of external OFB and ambient temperature ( T) variations. We proposed a model to calculate the temperature dependence (TD) of laser characteristics according to the TD of laser parameters. An accurate analytical expression for the TD of threshold carrier density ( N th,fe) has been derived. The TD of N th,fe was calculated according to the TD of laser cavity parameters instead of using well-known empirical Pankove relationship via the use of characteristics temperature ( T o) and current ( I o). Results show that the optimum external fiber length ( L ext) is 3.1 cm. Also, it is shown that ARC with reflectivity value of 1 × 10-2 is sufficient for the laser to operate at low noise, good modulation response, and low fabrication complexity.

  17. Star formation in NGC 4449: MAMA-detector UV imagery and Fabry-Perot Balmer-line imagery

    NASA Technical Reports Server (NTRS)

    Hill, Robert S.; Home, Allen T.; Smith, Andrew M.; Bruhweiler, Fred C.; Cheng, K.P.; Hintzen, Paul M. N.; Oliversen, Ronald J.

    1994-01-01

    Using far-ultraviolet (FUV) and Balmer-line imagery, we investigate the star formation history of 22 large OB complexes in the Magellanic irregular galaxy NGC 4449. The FUV luminosity of NGC 4449 is comparable to those of late-type spirals and is greater than that of the LMC by approximately 2.4 mag, indicating substantial star formation in the last 10(exp 8) yr. FUV data were taken using a sounding-rocket telescope with a Multianode Microchannel Array (MAMA) detector, and Balmer-line data were taken using the Goddard Fabry-Perot Imager. The resulting imagery shows bright, roughly coincident FUV and H alpha sources throughout the extent of the visible galaxy. We model these sources using cluster-evolution codes. Although all sources are a few Myr old, clear age differences are found. In particular, several of the most recently active star formation regions are located together in the galaxy's northern periphery, which is apparently coincident with a large H I reservoir. The brightest and most massive OB complexes are found along the northeast-southwest surface brightness ridgeline (the 'bar'). Over the entire galaxy, star formation rates are consistent on timescales of 10(exp 6), 10(exp 8), and 10(exp 9) yr. A history of recent star formation is suggested with two main episodes, one predominantly in the bar ending approximately 5 Myr ago, and an ongoing one associated with an observed H I cloud.

  18. An efficient hexagonal switched beam antenna structure based on Fabry-Perot cavity leaky-wave antenna

    NASA Astrophysics Data System (ADS)

    Aymen El Cafsi, Mohamed; Nedil, Mourad; Osman, Lotfi; Gharsallah, Ali

    2015-11-01

    A novel design of switched beam antenna (SBA) system based on Fabry-Perot cavity leaky-wave antenna (FPC LWA) is designed and fabricated for base station operating in the unlicensed ISM central frequency band at 5.8 GHz of the wireless local area network (WLAN) standard. The proposed SBA is designed with hexagonal shape of FPC LWA Arrays in order to get 360° of coverage. The single element of FPC LWA array is composed of a patch antenna and covered by a Partially Reflective Surface (PRS), which is composed of a Metal Strip Grating and printed on a high permittivity Superstrate. First, the Transmission Line Model of FPC LWA is introduced to analyse and calculate the far-field components in E- and H planes by using the Transverse Equivalent Network. This approach is then compared with other full wave's commercial software such as Ansoft HFSS and CST Microwave Studio. Second, a parametric study is performed to evaluate the effect of the angle formed by the two successive FPC LWA on the radiation efficiency of the activate sector. To examine the performance of the proposed SBA, experimental prototype was fabricated and measured. As a result, multiple orthogonal beams (six beams) of 10 dBi of gain with low Side Lobes Level and 360° of coverage are produced. This SBA structure is suitable for WLAN communication systems.

  19. Near real-time analysis of extrinsic Fabry-Perot interferometric sensors under damped vibration using artificial neural networks

    NASA Astrophysics Data System (ADS)

    Dua, Rohit; Watkins, Steve E.

    2009-03-01

    Strain analysis due to vibration can provide insight into structural health. An Extrinsic Fabry-Perot Interferometric (EFPI) sensor under vibrational strain generates a non-linear modulated output. Advanced signal processing techniques, to extract important information such as absolute strain, are required to demodulate this non-linear output. Past research has employed Artificial Neural Networks (ANN) and Fast Fourier Transforms (FFT) to demodulate the EFPI sensor for limited conditions. These demodulation systems could only handle variations in absolute value of strain and frequency of actuation during a vibration event. This project uses an ANN approach to extend the demodulation system to include the variation in the damping coefficient of the actuating vibration, in a near real-time vibration scenario. A computer simulation provides training and testing data for the theoretical output of the EFPI sensor to demonstrate the approaches. FFT needed to be performed on a window of the EFPI output data. A small window of observation is obtained, while maintaining low absolute-strain prediction errors, heuristically. Results are obtained and compared from employing different ANN architectures including multi-layered feedforward ANN trained using Backpropagation Neural Network (BPNN), and Generalized Regression Neural Networks (GRNN). A two-layered algorithm fusion system is developed and tested that yields better results.

  20. Signal processing algorithm of newly developed transmission-type extrinsic Fabry-Perot interferometric optical fiber sensor

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Hoon; Lee, Jung-Ju; Kwon, Il-Bum

    2000-06-01

    The newly developed TEFPI (transmission-type extrinsic Fabry- Perot interferometric) optical fiber sensor can distinguish the direction of measurement more simply and effectively than the conventional reflection-type EFPI optical fiber sensors. The output signal of the TEFPI optical fiber sensor has the characteristics that the signal level of fringes shows a negative slope for a tensile direction and a positive slope for a compressive direction. Based on these characteristics, the direction of measurement of the TEFPI optical fiber sensor can be distinguished with ease. In this paper, the signal processing algorithm adequate to the TEFPI optical fiber sensor was developed. This algorithm can process signal with recognition of the positions of peaks, valleys and signal levels of fringes. Thus this can determine a measurement direction and the positions of direction changes by using the change trend of signal levels. The developed algorithm makes the post-process and real-time process of the signal of the TEFPI optical fiber sensor possible.

  1. A Fabry-Perot Interferometry Based MRI-Compatible Miniature Uniaxial Force Sensor for Percutaneous Needle Placement.

    PubMed

    Shang, Weijian; Su, Hao; Li, Gang; Furlong, Cosme; Fischer, Gregory S

    2013-01-01

    Robot-assisted surgical procedures, taking advantage of the high soft tissue contrast and real-time imaging of magnetic resonance imaging (MRI), are developing rapidly. However, it is crucial to maintain tactile force feedback in MRI-guided needle-based procedures. This paper presents a Fabry-Perot interference (FPI) based system of an MRI-compatible fiber optic sensor which has been integrated into a piezoelectrically actuated robot for prostate cancer biopsy and brachytherapy in 3T MRI scanner. The opto-electronic sensing system design was minimized to fit inside an MRI-compatible robot controller enclosure. A flexure mechanism was designed that integrates the FPI sensor fiber for measuring needle insertion force, and finite element analysis was performed for optimizing the correct force-deformation relationship. The compact, low-cost FPI sensing system was integrated into the robot and calibration was conducted. The root mean square (RMS) error of the calibration among the range of 0-10 Newton was 0.318 Newton comparing to the theoretical model which has been proven sufficient for robot control and teleoperation. PMID:25126153

  2. Thermal properties of lateral-current-injection semiconductor membrane Fabry-Perot laser under continuous-wave operation

    NASA Astrophysics Data System (ADS)

    Hiratani, Takuo; Doi, Kyohei; Lee, Jieun; Inoue, Daisuke; Amemiya, Tomohiro; Nishiyama, Nobuhiko; Arai, Shigehisa

    2015-04-01

    For the realization of on-chip optical interconnects, light sources enabling ultralow power consumption and high-efficiency operation are required. With this aim, we fabricated lateral-current-injection-type membrane Fabry-Perot lasers with a threshold current of 3.5 mA and an external differential quantum efficiency of 11% under a room temperature-continuous wave (RT-CW) condition. To the best of our knowledge, we experimentally evaluated the thermal properties of a membrane laser for the first time. From the measurement, we obtained a thermal resistance of 330 K/W, which well agreed with the theoretical value of 340 K/W. From the theoretical analysis, it was found that a reduction of the benzocyclobutene thickness was effective for reducing the thermal resistance of the membrane laser. Finally, we determined that the increase in thermal resistance for short cavity (less than 50 µm) devices is not a problem because self-heating is small for low operation current.

  3. Method of hybrid multiplexing for fiber-optic Fabry-Perot sensors utilizing frequency-shifted interferometry.

    PubMed

    Ou, Yiwen; Zhou, Ciming; Zheng, Angui; Cheng, Chunfu; Fan, Dian; Yin, Jiadi; Tian, Hui; Li, Mengmeng; Lu, Ying

    2014-12-10

    Experimental and theoretical research on hybrid multiplexing for fiber-optic Fabry-Perot (F-P) sensors based on frequency-shifted interferometry is presented. Four F-P sensors multiplexed in a hybrid configuration were experimentally investigated. The location of each multiplexed sensor was retrieved by performing the fast Fourier transform, and the reflection spectrum of each sensor was also obtained in spite of the spectral overlap, which was consistent with the results measured by an optical spectrum analyzer. With theoretical modeling, the maximum sensor number of a two-channel hybrid multiplexing system reaches 26 with crosstalk of less than -50  dB and a maximum frequency-domain signal-to-noise ratio (SNR) of ∼25  dB, when the source power is 2 mW and the sensor separation is optimal, i.e., 40 m. And the sensor number is almost twice that multiplexed by a serial system under the same conditions. An SNR improvement of 3.9 dB can be achieved by using a Hamming window in a noise-free system compared with a Hanning window. In addition, we applied the experimental multiplexing system to a strain sensing test. The cavity lengths and cavity-length shifts of the four F-P sensors were demodulated, which was consistent with the actual situation. It provides a new feasible method to multiplex F-P sensors at large scale. PMID:25608081

  4. Fabry-Perot Laser Ultrasonic Elastic Anisotropy Measurements on a Moving Paper Web

    SciTech Connect

    Walter, John Bradley; Telschow, Kenneth Louis; Gerhardstein, J. P.; Pufahl, B. M.; Habeger, C. C; Lafond, E. M.; Brodeur, P. H.

    1999-07-01

    On-line measurement of material properties is a goal of many manufacturers to improve production and quality. The elastic stiffness of paper is important for the paper industry. Currently, the elastic constants of paper are measured offline with contact ultrasonic methods [1-4]. Piezoelectric transducers are placed in contact with the paper surface to generate and detect plate wave modes, known as Lamb wave modes [5-7]. At low frequencies, where the wavelength of the elastic wave is larger than the paper thickness, two wave modes dominate in the paper, an anti-symmetric or flexural mode and a symmetric or thickness mode. Measurements of the phase velocities of these modes along both the machine direction (MD) and the perpendicular cross direction (CD) of the paper web provide an important parameter revealing the increased stiffness in the paper along the MD direction.

  5. An arrayed infrared filter based on liquid crystal Fabry-Perot effect for electrically tunable spectral imaging detection

    NASA Astrophysics Data System (ADS)

    Lin, Jiuning; Tong, Qing; Luo, Jun; Lei, Yu; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2015-12-01

    An arrayed electrically tunable infrared (IR) filter based on the key structure of liquid crystal Fabry-Perot (LC-FP) working in the wavelength range from 2.5 to 12 μm, is designed and fabricated successfully. According to the electrically controlled birefringence characteristics of nematic LC molecules, the refractive index of LC materials filled into a prefabricated microcavity can be adjusted by the spatial electric field stimulated between the top aluminum electrode patterned by conventional UV-photolithography and the bottom aluminum electrode in the LC-FP. The particular functions including key spectral selection and spectral adjustment, can be performed by the developed LC-FP filter driven and controlled electrically. Our experiments show that the maximum transmittance of the transmission peaks is ~24% and the peaks of transmission spectrum shift through applying different voltage signals with a root mean square (RMS) value ranging from 0 to ~21.7Vrms. The experimental results are consistent with the simulation according to the model constructed by us. As a 4-channel array-type IR filter, the top electrode of the device is composed of four same sub-electrodes, which is powered, respectively, to select desired transmission spectrum. Each of the units in the device is operated separately and synchronously, which means that spectral images of the same object can be obtained with different wavelengths in one shot. Without any mechanical parts, the developed LC-FP filter exhibits several advantages including ultra-small size, low cost, high reliability, high spectral selectivity, and compact integration.

  6. Experimental Evaluation of White Light Fabry-Perot Interferometry Fiber-Optic Strain Gages when Measuring Small Strains

    NASA Technical Reports Server (NTRS)

    St.Cyr, William; Figueroa, Fernando; VanDyke, David; McVay, Greg; Mitchell, Mark

    2002-01-01

    An experimental study was conducted to evaluate whether fiber optic strain gages (FOSG) are "better" sensors than typical foil gages. A particularly attractive feature of FOSG was their specified resolution of 0.01% of full-scale (0.1 micro strain for 1000 micro strain full-scale). This feature would make FOSG practical tank level sensors, by measuring very small strains on the support structure of a tank. A specific application in mind was to measure liquid oxygen tank level, with support beams that were predicted to contract approximately 11 micro strain as the tank goes from empty to full. Among various fiber optic technologies currently available, Fabry-Perot Interferometry using white light was selected. This technology exhibits highly desirable feature such as absolute strain measurement, linearity over its full-scale, and temperature compensation. However, experiment results suggest that the resolution is 0.8 micro strain, at best, calibration from one sensor to another can be off by 2.4 - 11.2%, and that temperature compensation is not fully predictable, with errors of up to 3.5 micro strain over an 11C range. Hence, when compared with classic foil gages, FOSG possess less accuracy, similar resolution and repeatability (precision), and superior linearity over their entire operating range. They are immune to EMI and their signals suffer minimal degradation over long distances. It is also expected that drift with time will be minimal in FOSG whereas the gage factor of foil sensors changes over time when exposed to varying environmental conditions. In conclusion, FOSG are "better" than foil gages as long as the application allows calibration of individual units as installed for operation.

  7. Extrinsic Fabry-Perot interferometry for noncontact temperature control of nanoliter-volume enzymatic reactions in glass microchips.

    PubMed

    Easley, Christopher J; Legendre, Lindsay A; Roper, Michael G; Wavering, Thomas A; Ferrance, Jerome P; Landers, James P

    2005-02-15

    Optical fiber extrinsic Fabry-Perot interferometry (EFPI) was investigated as a noncontact temperature sensor and utilized for regulating the temperature of small-volume solutions in microchips. Interference pattern analysis determined the optical path lengths (OPL) associated with reflections from various surfaces on or in the microchip, in particular, from gold sputtered on the bottom of a microchannel. Since OPL is directly proportional to refractive index, which is dependent on solution temperature, the EFPI sensor was capable of noncontact monitoring of solution temperature simply from alterations in the measured path length. Calibration of the sensor against a thermocouple was performed while heating the microchip in a noncontact manner with an IR lamp. The combination of EFPI temperature sensor, IR-mediated heating, and air cooling allowed a fully noncontact system for small-volume temperature control in microchip structures, and its utility was illustrated by optimal digestion of DNA by a temperature-dependent restriction endonuclease in 320 nL. The functionality and simplicity of the microchip EFPI temperature sensor was enhanced by replacing the prebonding sputtered gold with a tunable, chemically plated semireflective silver coating created in situ after chip fabrication. This provided an 8-fold improvement in the lowest detectable temperature change (deltaT = 0.1 degrees C), facilitated primarily by enhanced reflection from both the bottom and top surfaces of the microchannel. This approach for controlling micro- and nanoscale reactions--with heating, cooling, and temperature control being carried out in a completely noncontact fashion--provides an accurate and sensitive method for executing chemical and biochemical reactions in microchips. PMID:15858983

  8. Miniaturized imaging spectrometer based on Fabry-Perot MOEMS filters and HgCdTe infrared focal plane arrays

    NASA Astrophysics Data System (ADS)

    Velicu, S.; Buurma, C.; Bergeson, J. D.; Kim, Tae Sung; Kubby, J.; Gupta, N.

    2014-05-01

    Imaging spectrometry can be utilized in the midwave infrared (MWIR) and long wave infrared (LWIR) bands to detect, identify and map complex chemical agents based on their rotational and vibrational emission spectra. Hyperspectral datasets are typically obtained using grating or Fourier transform spectrometers to separate the incoming light into spectral bands. At present, these spectrometers are large, cumbersome, slow and expensive, and their resolution is limited by bulky mechanical components such as mirrors and gratings. As such, low-cost, miniaturized imaging spectrometers are of great interest. Microfabrication of micro-electro-mechanicalsystems (MEMS)-based components opens the door for producing low-cost, reliable optical systems. We present here our work on developing a miniaturized IR imaging spectrometer by coupling a mercury cadmium telluride (HgCdTe)-based infrared focal plane array (FPA) with a MEMS-based Fabry-Perot filter (FPF). The two membranes are fabricated from silicon-oninsulator (SOI) wafers using bulk micromachining technology. The fixed membrane is a standard silicon membrane, fabricated using back etching processes. The movable membrane is implemented as an X-beam structure to improve mechanical stability. The geometries of the distributed Bragg reflector (DBR)-based tunable FPFs are modeled to achieve the desired spectral resolution and wavelength range. Additionally, acceptable fabrication tolerances are determined by modeling the spectral performance of the FPFs as a function of DBR surface roughness and membrane curvature. These fabrication non-idealities are then mitigated by developing an optimized DBR process flow yielding high-performance FPF cavities. Zinc Sulfide (ZnS) and Germanium (Ge) are chosen as the low and the high index materials, respectively, and are deposited using an electron beam process. Simulations are presented showing the impact of these changes and non-idealities in both a device and systems level.

  9. Observations of storm time midlatitude ion-neutral coupling using SuperDARN radars and NATION Fabry-Perot interferometers

    NASA Astrophysics Data System (ADS)

    Joshi, P. P.; H. Baker, J. B.; Ruohoniemi, J. M.; Makela, J. J.; Fisher, D. J.; Harding, B. J.; Frissell, N. A.; Thomas, E. G.

    2015-10-01

    Ion drag is known to play an important role in driving neutral thermosphere circulation at auroral latitudes, especially during the main phase of geomagnetic storms. During the recovery phase, the neutrals are known to drive the ions and generate ionospheric electric fields and currents via the disturbance dynamo mechanism. At midlatitudes, the precise interplay between ions and neutrals is less understood largely because of the paucity of measurements that have been available. In this work, we investigate ion-neutral coupling at middle latitudes using colocated ion drift velocity measurements obtained from Super Dual Auroral Radar Network radars and neutral wind velocity and temperature measurements obtained from the North American Thermosphere Ionosphere Observing Network (NATION) Fabry-Perot interferometers. We examine one recent storm period on 2-3 October 2013 during both the main phase and late recovery phase. By using ion-neutral momentum exchange theory and a time-lagged correlation analysis, we analyze the coupling time scales and dominant driving mechanisms. We observe that during the main phase the neutrals respond to the ion convection on a time scale of ˜84 min which is significantly faster than what would be expected from local ion drag momentum forcing alone. This suggests that other storm time influences are important for driving the neutrals during the main phase, such as Joule heating. During the late recovery phase, the neutrals are observed to drive the ion convection without any significant time delay, consistent with the so-called "neutral fly wheel effect" or disturbance dynamo persisting well into the late recovery phase.

  10. Stratospheric temperature measurement with scanning Fabry-Perot interferometer for wind retrieval from mobile Rayleigh Doppler lidar.

    PubMed

    Xia, Haiyun; Dou, Xiankang; Shangguan, Mingjia; Zhao, Ruocan; Sun, Dongsong; Wang, Chong; Qiu, Jiawei; Shu, Zhifeng; Xue, Xianghui; Han, Yuli; Han, Yan

    2014-09-01

    Temperature detection remains challenging in the low stratosphere, where the Rayleigh integration lidar is perturbed by aerosol contamination and ozone absorption while the rotational Raman lidar is suffered from its low scattering cross section. To correct the impacts of temperature on the Rayleigh Doppler lidar, a high spectral resolution lidar (HSRL) based on cavity scanning Fabry-Perot Interferometer (FPI) is developed. By considering the effect of the laser spectral width, Doppler broadening of the molecular backscatter, divergence of the light beam and mirror defects of the FPI, a well-behaved transmission function is proved to show the principle of HSRL in detail. Analysis of the statistical error of the HSRL is carried out in the data processing. A temperature lidar using both HSRL and Rayleigh integration techniques is incorporated into the Rayleigh Doppler wind lidar. Simultaneous wind and temperature detection is carried out based on the combined system at Delhi (37.371°N, 97.374°E; 2850 m above the sea level) in Qinghai province, China. Lower Stratosphere temperature has been measured using HSRL between 18 and 50 km with temporal resolution of 2000 seconds. The statistical error of the derived temperatures is between 0.2 and 9.2 K. The temperature profile retrieved from the HSRL and wind profile from the Rayleigh Doppler lidar show good agreement with the radiosonde data. Specifically, the max temperature deviation between the HSRL and radiosonde is 4.7 K from 18 km to 36 km, and it is 2.7 K between the HSRL and Rayleigh integration lidar from 27 km to 34 km. PMID:25321553

  11. The introduction of spurious models in a hole-coupled Fabry-Perot open resonator

    NASA Technical Reports Server (NTRS)

    Cook, Jerry D.; Long, Kenwyn J.; Heinen, Vernon O.; Stankiewicz, Norbert

    1992-01-01

    A hemispherical open resonator has previously been used to make relative comparisons of the surface resistivity of metallic thin-film samples in the submillimeter wavelength region. This resonator is fed from a far-infrared laser via a small coupling hole in the center of the concave spherical mirror. The experimental arrangement, while desirable as a coupling geometry for monitoring weak emissions from the cavity, can lead to the introduction of spurious modes into the cavity. Sources of these modes are identified, and a simple alteration of the experimental apparatus to eliminate such modes is suggested.

  12. Comparison between method of lines and time domain method in evaluating the large signal responses of Fabry-Perot semiconductor lasers

    NASA Astrophysics Data System (ADS)

    Braverman, Ada L.

    1998-07-01

    An extensive comparison between two modeling methods: Method of Lines and Time Domain Method in analyzing the large signal responses of Fabry-Perot semiconductor lasers is presented. The methods are implemented in two numerical codes written in FORTRAN and using DIGITAL ALPHA workstations under VAX/VMS and UNIX operating systems. The comparison shows good agreement between the simulation results under specific conditions. A special accent is placed on the advantages and drawbacks of both methods by taking into account their numerical problems and the computational effort implied by simulations.

  13. Active Q-switching of a fiber laser using a modulated fiber Fabry-Perot filter and a fiber Bragg grating

    NASA Astrophysics Data System (ADS)

    Martínez Manuel, Rodolfo; Kaboko, J. J. M.; Shlyagin, M. G.

    2016-02-01

    We propose and demonstrate a simple and robust actively Q-switched erbium-doped fiber ring cavity laser. The Q-switching is based on dynamic spectral overlapping of two filters, namely a fiber Bragg grating-based filter and a fiber Fabry-Perot tunable filter. Using 3.5 m of erbium-doped fiber and a pump power of only 60 mW, Q-switched pulses with a peak power of 9.7 W and a pulse duration of 500 ns were obtained. A pulse repetition rate can be continuously varied from a single shot to a few KHz.

  14. Measurement of radiation-pressure-induced optomechanical dynamics in a suspended Fabry-Perot cavity

    SciTech Connect

    Corbitt, Thomas; Ottaway, David; Innerhofer, Edith; Pelc, Jason; Mavalvala, Nergis

    2006-08-15

    We report on experimental observation of radiation-pressure induced effects in a high-power optical cavity. These effects play an important role in next-generation gravitational wave detectors, as well as in quantum nondemolition interferometers. We measure the properties of an optical spring, created by coupling of an intense laser field to the pendulum mode of a suspended mirror, and also the parametric instability (PI) that arises from the coupling between acoustic modes of the cavity mirrors and the cavity optical mode. We measure an unprecedented optical rigidity of K=(3.08{+-}0.09)x10{sup 4} N/m, corresponding to an optical rigidity that is 6000 times stiffer than the mechanical stiffness, and PI strength R{approx_equal}3. We measure the unstable nature of the optical spring resonance, and demonstrate that the PI can be stabilized by feedback to the frequency of the laser source.

  15. Combination of highly nonlinear fiber, an optical bandpass filter, and a Fabry-Perot filter to improve the signal-to-noise ratio of a supercontinuum continuous-wave optical source

    NASA Astrophysics Data System (ADS)

    Nan, Yinbo; Huo, Li; Lou, Caiyun

    2005-05-01

    We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions.

  16. Combination of highly nonlinear fiber, an optical bandpass filter, and a Fabry-Perot filter to improve the signal-to-noise ratio of a supercontinuum continuous-wave optical source.

    PubMed

    Nan, Yinbo; Huo, Li; Lou, Caiyun

    2005-05-20

    We present a theoretical study of a supercontinuum (SC) continuous-wave (cw) optical source generation in highly nonlinear fiber and its noise properties through numerical simulations based on the nonlinear Schrödinger equation. Fluctuations of pump pulses generate substructures between the longitudinal modes that result in the generation of white noise and then in degradation of coherence and in a decrease of the modulation depths and the signal-to-noise ratio (SNR). A scheme for improvement of the SNR of a multiwavelength cw optical source based on a SC by use of the combination of a highly nonlinear fiber (HNLF), an optical bandpass filter, and a Fabry-Perot (FP) filter is presented. Numerical simulations show that the improvement in modulation depth is relative to the HNLF's length, the 3-dB bandwidth of the optical bandpass filter, and the reflection ratio of the FP filter and that the average improvement in modulation depth is 13.7 dB under specified conditions. PMID:15929296

  17. Active cancellation of residual amplitude modulation in a frequency-modulation based Fabry-Perot interferometer.

    PubMed

    Yu, Yinan; Wang, Yicheng; Pratt, Jon R

    2016-03-01

    Residual amplitude modulation (RAM) is one of the most common noise sources known to degrade the sensitivity of frequency modulation spectroscopy. RAM can arise as a result of the temperature dependent birefringence of the modulator crystal, which causes the orientation of the crystal's optical axis to shift with respect to the polarization of the incident light with temperature. In the fiber-based optical interferometer used on the National Institute of Standards and Technology calculable capacitor, RAM degrades the measured laser frequency stability and correlates with the environmental temperature fluctuations. We have demonstrated a simple approach that cancels out excessive RAM due to polarization mismatch between the light and the optical axis of the crystal. The approach allows us to measure the frequency noise of a heterodyne beat between two lasers individually locked to different resonant modes of a cavity with an accuracy better than 0.5 ppm, which meets the requirement to further determine the longitudinal mode number of the cavity length. Also, this approach has substantially mitigated the temperature dependency of the measurements of the cavity length and consequently the capacitance. PMID:27036752

  18. Measurement of ruby laser cavity losses by Fabry-Perot resonance.

    PubMed

    Nelson, D F; Rodgers, K F

    1967-03-01

    Determinations of optical loss in unpumped ruby laser crystals from measurements of the transmissivity vs optical path length (as changed by temperature) using an amplitude regulated, single mode, He-Ne laser beam probe are described. Excellent agreement between these measurements and the theory of Dufour and Picca was obtained for a flux-grown ruby using as-grown feedback surfaces. The essentially zero loss per pass beta (apart from end reflector losses) deduced from this comparison is in excellent agreement with a previous determination of the loss in this crystal from laser threshold measurements. The reduction of the effective surface roughness by deposition of multilayer zinc sulfide-cryolite reflectors was observed in these experiments. For a high quality, 7.5-cm long, 0.05 wt% Cr(2)O(3), 60 degrees orientation ruby rod, beta was found to be 0.03 +/- 0.03. For a 90 degrees orientation, 2.2-cm long, trumpet-shaped ruby used for continuous operation threshold studies, beta was found to be about 0.14. The problems of this type of loss measurement when index of refraction variations are present are discussed, and observations connecting the crystal quality and laser mode characteristics are presented. PMID:20057771

  19. Active cancellation of residual amplitude modulation in a frequency-modulation based Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Yu, Yinan; Wang, Yicheng; Pratt, Jon R.

    2016-03-01

    Residual amplitude modulation (RAM) is one of the most common noise sources known to degrade the sensitivity of frequency modulation spectroscopy. RAM can arise as a result of the temperature dependent birefringence of the modulator crystal, which causes the orientation of the crystal's optical axis to shift with respect to the polarization of the incident light with temperature. In the fiber-based optical interferometer used on the National Institute of Standards and Technology calculable capacitor, RAM degrades the measured laser frequency stability and correlates with the environmental temperature fluctuations. We have demonstrated a simple approach that cancels out excessive RAM due to polarization mismatch between the light and the optical axis of the crystal. The approach allows us to measure the frequency noise of a heterodyne beat between two lasers individually locked to different resonant modes of a cavity with an accuracy better than 0.5 ppm, which meets the requirement to further determine the longitudinal mode number of the cavity length. Also, this approach has substantially mitigated the temperature dependency of the measurements of the cavity length and consequently the capacitance.

  20. MWIR/LWIR filter based on Liquid-Crystal Fabry-Perot structure for tunable spectral imaging detection

    NASA Astrophysics Data System (ADS)

    Zhang, Huaidong; Muhammad, Afzal; Luo, Jun; Tong, Qing; Lei, Yu; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2015-03-01

    An electrically tunable medium-wave infrared (MWIR)/long-wave infrared (LWIR) filter based on the key structure of Liquid-Crystal (LC) Fabry-Perot (FP), which works in the wavelength range from 2.5 μm to 12 μm, is designed and fabricated successfully in this paper. According to the optical interference principle of the FP cavity and electrically controlled birefringence of nematic LC molecules, the particular functions including spectral selection and spectral staring and spectral adjustment, can be realized by the developed MWIR/LWIR filter driven and controlled electrically. As to the LC-FP filter, both planar reflective mirrors are shaped by depositing a layer of aluminum (Al) film (∼60 nm) over one side of double-side polished Zinc Selenide (ZnSe) wafer (∼1 mm), and then polyimide (PI) layer with the thickness of ∼100 nm is coated directly on Al film. With typical sandwich architecture, the depth of the cavity with nematic LC molecules sealed in is ∼7.5 μm. To make sure the LC molecules parallel aligned and twist regularly under voltage driving signal applied on Al film, which also acts as electrode, the V-grooves are formed in PI layer with the depth of ∼90 nm and the width of ∼350 nm at average by strong rubbing. The typical transmission spectrum in MWIR&LWIR wavelength range and several spectral images in MWIR wavelength range based on the fabricated LC-FP filter, have been obtained through applying a voltage driving-signal with different root-means-square (RMS) value over the electrodes of LC-FP filter in the selected voltage range from 0VRMS to 19.8VRMS. The testing result demonstrates a prospect of realization smart spectral imaging and further integrating the LC-FP filter with infrared focal plane arrays (FPAs) to achieve the purpose infrared multispectral imaging. The developed MWIR&LWIR LC-FP filters show some obvious advantages such as wide working wavelength range, electrically tunable spectral selection, ultra-compact, low cost, being

  1. Electrically tunable infrared filter based on the liquid crystal Fabry-Perot structure for spectral imaging detection.

    PubMed

    Zhang, Huaidong; Muhammmad, Afzal; Luo, Jun; Tong, Qing; Lei, Yu; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2014-09-01

    An electrically tunable infrared (IR) filter based on the liquid crystal (LC) Fabry-Perot (FP) key structure, which works in the wavelength range from 5.5 to 12 μm, is designed and fabricated successfully. Both planar reflective mirrors with a very high reflectivity of ∼95%, which are shaped by depositing a layer of aluminum (Al) film over one side of a double-sided polished zinc selenide wafer, are coupled into a dual-mirror FP cavity. The LC materials are filled into the FP cavity with a thickness of ∼7.5  μm for constructing the LC-FP filter, which is a typical type of sandwich architecture. The top and bottom mirrors of the FP cavity are further coated by an alignment layer with a thickness of ∼100  nm over Al film. The formed alignment layer is rubbed strongly to shape relatively deep V-grooves to anchor LC molecules effectively. Common optical tests show some particular properties; for instance, the existing three transmission peaks in the measured wavelength range, the minimum full width at half-maximum being ∼120  nm, and the maximum adjustment extent of the imaging wavelength being ∼500  nm through applying the voltage driving signal with a root mean square (RMS) value ranging from 0 to ∼19.8  V. The experiment results are consistent with the simulation, according to our model setup. The spectral images obtained in the long-wavelength IR range, through the LC-FP device driven by the voltage signal with a different RMS value, demonstrates the prospect of the realization of smart spectral imaging and further integrating the LC-FP filter with IR focal plane arrays. The developed LC-FP filters show some advantages, such as electrically tunable imaging wavelength, very high structural and photoelectronic response stability, small size and low power consumption, and a very high filling factor of more than 95% compared with common MEMS-FP spectral imaging approaches. PMID:25321356

  2. Resonant cavity modes in gallium oxide microwires

    NASA Astrophysics Data System (ADS)

    López, Iñaki; Nogales, Emilio; Méndez, Bianchi; Piqueras, Javier

    2012-06-01

    Fabry Perot resonant modes in the optical range 660-770 nm have been detected from single and coupled Cr doped gallium oxide microwires at room temperature. The luminescence is due to chromium ions and dominated by the broad band involving the 4T2-4A2 transition, strongly coupled to phonons, which could be of interest in tunable lasers. The confinement of the emitted photons leads to resonant modes detected at both ends of the wires. The separation wavelength between maxima follows the Fabry-Perot dependence on the wire length and the group refractive index for the Ga2O3 microwires.

  3. Smooth, low-damage, definition of InGaAlAs asymmetric Fabry-Perot optical transmission modulators by Cl{sub 2}+Ar reactive-ion-beam etching

    SciTech Connect

    Vawter, G.A.; Fritz, I.J.; Drummond, T.J.; Lee, S.R.; Hafich, M.J.; Howard, A.J.; Briggs, R.D.; Casalnuovo, S.A.; Griego, L.

    1996-02-01

    Chlorine-argon-based reactive-ion-beam etching was used successfully to etch novel InGaAlAs (1.32 {mu}m-wavelength Fabry-Perot resonator transmission) modulators. Resulting etch is very smooth, anisotropic, and has low etch-induced (sidewall) damage. Use of this simple chemistry eliminates difficulties with polymer formation encountered in hydrocarbon-based etches.

  4. Design and simulation of electrically addressed infrared filtering chip based on cascaded liquid-crystal Fabry-Perot effect for integration application of infrared spectral imaging sensor array

    NASA Astrophysics Data System (ADS)

    Zhang, Huaidong; Fu, Anbang; Zhang, Xinyu; Sang, Hongshi; Xie, Changsheng

    2013-09-01

    A wavelength tunable optical filter based on cascaded Liquid-Crystal Fabry-Perot (LC-FP) cavity with many working units has been proposed and simulated in this paper. By choosing different material and according geometric parameters, we simulated the structure in the wavelength of medium infrared (IR)(3-5μm) and far IR(8-14μm) with the algorithm of thin film matrix equation and iterative finite-difference. Finally, we give the spectrum of the structure under different driving-voltage. Combing this structure with uncooled infrared focal plane array (IRFPA), the image of many spectral bands can be obtained in one picture frame by applying different driving-voltage on each unit. Compared with other design, this structure has the advantages of wide free spectral range (FSR), compact integration, low cost and high stability.

  5. The use of the transmission windows of the Fabry-Perot interferometer in the detection of Raman scattered radiation from atmospheric gases.

    NASA Technical Reports Server (NTRS)

    Smith, W. H.; Barrett, J. J.

    1971-01-01

    Demonstration that the use of the Fabry-Perot interferometer as a filter with transmission windows occurring at regular intervals in wave numbers provides a highly sensitive method for detection of atmospheric gases using their rotational Raman spectra excited by a suitable laser. Some of the operating advantages include signal gains of several orders of magnitude, a simple direct interpretation of the results in terms of the density and types of the gaseous constituents, size and weight reductions from conventional apparatus, ease of operation, and relative freedom from interference from other molecules in the scattering volume. This method is compared with the techniques that have been discussed in the literature by other workers in the field.

  6. Realistic loss estimation due to the mirror surfaces in a 10 meters-long high finesse Fabry-Perot filter-cavity.

    PubMed

    Straniero, Nicolas; Degallaix, Jérôme; Flaminio, Raffaele; Pinard, Laurent; Cagnoli, Gianpietro

    2015-08-10

    In order to benefit over the entire frequency range from the injection of squeezed vacuum light at the output of laser gravitational wave detectors, a small bandwidth high finesse cavity is required. In this paper, we investigate the light losses due to the flatness and the roughness of realistic mirrors in a 10 meters-long Fabry-Perot filter cavity. Using measurements of commercial super-polished mirrors, we were able to estimate the cavity round trip losses separating the loss contribution from low and high spatial frequencies. By careful tuning of the cavity g-factor and the incident position of the light on the mirrors, round trip losses due to imperfect mirror surfaces as low as 3 ppm can be achieved in the simulations. PMID:26367993

  7. A New Remote Sensing Filter Radiometer Employing a Fabry-Perot Etalon and a CCD Camera for Column Measurements of Methane in the Earth Atmosphere

    NASA Technical Reports Server (NTRS)

    Georgieva, E. M.; Huang, W.; Heaps, W. S.

    2012-01-01

    A portable remote sensing system for precision column measurements of methane has been developed, built and tested at NASA GSFC. The sensor covers the spectral range from 1.636 micrometers to 1.646 micrometers, employs an air-gapped Fabry-Perot filter and a CCD camera and has a potential to operate from a variety of platforms. The detector is an XS-1.7-320 camera unit from Xenics Infrared solutions which combines an uncooled InGaAs detector array working up to 1.7 micrometers. Custom software was developed in addition to the graphical user basic interface X-Control provided by the company to help save and process the data. The technique and setup can be used to measure other trace gases in the atmosphere with minimal changes of the etalon and the prefilter. In this paper we describe the calibration of the system using several different approaches.

  8. Hydrogen-doping stabilized metallic VO{sub 2} (R) thin films and their application to suppress Fabry-Perot resonances in the terahertz regime

    SciTech Connect

    Zhao, Yong; Pan, Xuan; Bernussi, Ayrton A.; Fan, Zhaoyang; Karaoglan-Bebek, Gulten; Holtz, Mark

    2014-06-16

    We demonstrate that catalyst-assisted hydrogen spillover doping of VO{sub 2} thin films significantly alters the metal-insulator transition characteristics and stabilizes the metallic rutile phase at room temperature. With hydrogen inserted into the VO{sub 2} lattice, high resolution X-ray diffraction reveals expansion of the V-V chain separation when compared to the VO{sub 2}(R) phase. The donated free electrons, possibly from O-H bond formation, stabilize the VO{sub 2}(R) to low temperatures. By controlling the amount of dopants to obtain mixed insulating and metallic phases, VO{sub 2} resistivity can be continuously tuned until a critical condition is achieved that suppresses Fabry-Perot resonances. Our results demonstrate that hydrogen spillover is an effective technique to tune the electrical and optical properties of VO{sub 2} thin films.

  9. Simultaneous measurement of temperature and refractive index using focused ion beam milled Fabry-Perot cavities in optical fiber micro-tips.

    PubMed

    André, Ricardo M; Warren-Smith, Stephen C; Becker, Martin; Dellith, Jan; Rothhardt, Manfred; Zibaii, M I; Latifi, H; Marques, Manuel B; Bartelt, Hartmut; Frazão, Orlando

    2016-06-27

    Optical fiber micro-tips are promising devices for sensing applications in small volume and difficult to access locations, such as biological and biomedical settings. The tapered fiber tips are prepared by dynamic chemical etching, reducing the size from 125 μm to just a few μm. Focused ion beam milling is then used to create cavity structures on the tapered fiber tips. Two different Fabry-Perot micro-cavities have been prepared and characterized: a solid silica cavity created by milling two thin slots and a gap cavity. A third multi-cavity structure is fabricated by combining the concepts of solid silica cavity and gap cavity. This micro-tip structure is analyzed using a fast Fourier transform method to demultiplex the signals of each cavity. Simultaneous measurement of temperature and external refractive index is then demonstrated, presenting sensitivities of - 15.8 pm/K and -1316 nm/RIU, respectively. PMID:27410566

  10. Simple locking of infrared and ultraviolet diode lasers to a visible laser using a LabVIEW proportional-integral-derivative controller on a Fabry-Perot signal

    NASA Astrophysics Data System (ADS)

    Kwolek, J. M.; Wells, J. E.; Goodman, D. S.; Smith, W. W.

    2016-05-01

    Simultaneous laser locking of infrared (IR) and ultraviolet lasers to a visible stabilized reference laser is demonstrated via a Fabry-Perot (FP) cavity. LabVIEW is used to analyze the input, and an internal proportional-integral-derivative algorithm converts the FP signal to an analog locking feedback signal. The locking program stabilized both lasers to a long term stability of better than 9 MHz, with a custom-built IR laser undergoing significant improvement in frequency stabilization. The results of this study demonstrate the viability of a simple, computer-controlled, non-temperature-stabilized FP locking scheme for our applications, laser cooling of Ca+ ions, and its use in other applications with similar modest frequency stabilization requirements.

  11. Subkilohertz linewidth reduction of a DFB diode laser using self-injection locking with a fiber Bragg grating Fabry-Perot cavity.

    PubMed

    Wei, Fang; Yang, Fei; Zhang, Xi; Xu, Dan; Ding, Meng; Zhang, Li; Chen, Dijun; Cai, Haiwen; Fang, Zujie; Xijia, Gu

    2016-07-25

    A simple and low-cost 1550 nm semiconductor laser with subkilohertz intrinsic linewidth is experimentally demonstrated. A commercial distributed feedback diode laser is self-injection locked to the resonance transmission peaks of a fiber Bragg grating Fabry-Perot cavity through a polarization-maintaining fiber ring with the optical path length of 4 m, with the laser frequency noise suppressed by over 70 dB in the Fourier frequency band from 5 Hz and 1 kHz. The laser features an intrinsic Lorentzian linewidth of 125 Hz as well as a relative intensity noise of <-142 dBc/Hz above 2 MHz, and provides over 0.8 nm quasi-continuous tunability, which is suitable for advanced applications requiring a narrow linewidth laser with ultralow frequency noise. PMID:27464187

  12. Analysis and design of tunable wideband microwave photonics phase shifter based on Fabry-Perot cavity and Bragg mirrors in silicon-on-insulator waveguide.

    PubMed

    Qu, Pengfei; Zhou, Jingran; Chen, Weiyou; Li, Fumin; Li, Haibin; Liu, Caixia; Ruan, Shengping; Dong, Wei

    2010-04-20

    We designed a microwave (MW) photonics phase shifter, consisting of a Fabry-Perot filter, a phase modulation region (PMR), and distributed Bragg reflectors, in a silicon-on-insulator rib waveguide. The thermo-optics effect was employed to tune the PMR. It was theoretically demonstrated that the linear MW phase shift of 0-2pi could be achieved by a refractive index variation of 0-9.68x10(-3) in an ultrawideband (about 38?GHz-1.9?THz), and the corresponding tuning resolution was about 6.92 degrees / degrees C. The device had a very compact size. It could be easily integrated in silicon optoelectronic chips and expected to be widely used in the high-frequency MW photonics field. PMID:20411021

  13. Ground-Based Fabry-Perot Interferometry of the Terrestrial Nightglow with a Bare Charge-Coupled Device: Remote Field Site Deployment

    NASA Technical Reports Server (NTRS)

    Niciejewski, Rick; Killeen, Timothy L.; Turnbull, Matthew

    1994-01-01

    The application of Fabry-Perot interferometers (FPIs) to the study of upper atmosphere thermodynamics has largely been restricted by the very low light levels in the terrestrial airglow as well as the limited range in wavelength of photomultiplier tube (PMT) technology. During the past decade, the development of the scientific grade charge-coupled device (CCD) has progressed to the stage in which this detector has become the logical replacement for the PMT. Small fast microcomputers have made it possible to "upgrade" our remote field sites with bare CCDs and not only retain the previous capabilities of the existing FPls but expand the data coverage in both temporal and wavelength domains. The problems encountered and the solutions applied to the deployment of a bare CCD, with data acquisition and image reduction techniques, are discussed. Sample geophysical data determined from the FPI fringe profiles are shown for our stations at Peach Mountain, Michigan, and Watson Lake, Yukon Territory.

  14. Fabrication of a monolithically integrated multiple wavelength Fabry-Perot filter array using transparent etch stop layers for accurate wavelength determination

    NASA Astrophysics Data System (ADS)

    Convey, Diana; Le, Ngoc; Smith, Steven M.; Holm, Paige; Baker, Jeffrey

    2006-10-01

    In this paper we describe a method of fabricating a Fabry-Perot filter array consisting of four distinct wavelengths using a stopping layer, which in turn is discriminately measured. Precise control of the oxide thickness is demonstrated by using reflectance to measure center wavelengths (CWL) between 645nm-822nm with full width half maximum (FWHM) values of 15 nm. These parameters are used to confirm good narrow band filter characteristics. The physical and chemical properties of an oxide layer converted from a silicon-carbon-nitride (SiCN) etch stop layer (ESL) is reported for both as-deposited and the resultant oxidized film. The filter array can be fabricated directly on top of silicon photo diodes, to form a complete multi-wavelength sensor system. Fabricating a multi-wavelength filter array using etch-stop layers can provide better thickness control and across wafer uniformity compared to a timed-etch approach.

  15. Multi-physics simulation and fabrication of a compact 128 × 128 micro-electro-mechanical system Fabry-Perot cavity tunable filter array for infrared hyperspectral imager.

    PubMed

    Meng, Qinghua; Chen, Sihai; Lai, Jianjun; Huang, Ying; Sun, Zhenjun

    2015-08-01

    This paper demonstrates the design and fabrication of a 128×128 micro-electro-mechanical systems Fabry-Perot (F-P) cavity filter array, which can be applied for the hyperspectral imager. To obtain better mechanical performance of the filters, F-P cavity supporting structures are analyzed by multi-physics finite element modeling. The simulation results indicate that Z-arm is the key component of the structure. The F-P cavity array with Z-arm structures was also fabricated. The experimental results show excellent parallelism of the bridge deck, which agree with the simulation results. A conclusion is drawn that Z-arm supporting structures are important to hyperspectral imaging system, which can achieve a large tuning range and high fill factor compared to straight arm structures. The filter arrays have the potential to replace the traditional dispersive element. PMID:26368101

  16. Detailed analysis by Fabry-Perot method of slab photonic crystal line-defect waveguides and cavities in aluminium-free material system.

    PubMed

    Combrié, S; Weidner, E; DeRossi, A; Bansropun, S; Cassette, S; Talneau, A; Benisty, H

    2006-08-01

    A single-line-defect low-loss photonic crystal waveguide based on a perforated GaAs membrane in an aluminium-free material system is demonstrated. The GaInP lattice is matched to GaAs as the cladding/sacrificial layer. Fabry-Perot resonances are analyzed to obtain the group velocity dispersion for a 1-mm long guide. The losses are deduced to be close to 5 dB/cm, taking into account the wavelength dependent reflectivity of the guide extremities. In this framework, side-coupled nanocavities are also investigated. Feasibility of low-loss photonic-crystal-based devices combined with a reliable industrial material systems is thus demonstrated. PMID:19529104

  17. Tip-sensitive all-silica fiber-optic Fabry-Perot ultrasonic hydrophone for charactering high intensity focused ultrasound fields

    NASA Astrophysics Data System (ADS)

    Wang, D. H.; Jia, P. G.; Wang, S. J.; Zhao, C. L.; Zeng, D. P.; Wang, H.; Li, F. Q.

    2013-07-01

    This Letter reports on a tip-sensitive all-silica fiber-optic Fabry-Perot (TAFOFP) ultrasonic hydrophone for measuring high intensity focused ultrasound (HIFU) fields. The all-silica fiber-optic structure ensures that the TAFOFP ultrasonic hydrophone can withstand HIFU fields and the tip-sensitive configuration ensures that the TAFOFP ultrasonic hydrophone can achieve a high spatial resolution of 125 μm. The experimental results have shown that the TAFOFP ultrasonic hydrophone could stably measure the peak positive ultrasonic pressure as high as 4.34 MPa, and the measured ultrasonic pressure distributions of the HIFU field by the fabricated TAFOFP ultrasonic hydrophone agreed well with those by the piezoceramic needle hydrophone.

  18. In situ and air index measurements: influence of the deposition parameters on the shift of TiO2/SiO2 Fabry-Perot filters.

    PubMed

    Schmitt, B; Borgogno, J P; Albrand, G; Pelletier, E

    1986-11-01

    We measure the refractive index of thin films of TiO2 and SiO2 for given deposition parameters. Two complementary methods are used. The first is a postdeposition technique which uses the measurements of reflectance and transmittance in air. The second, in contrast, makes use of in situ measurements (under vacuum and during the actual deposition of the layer). The differences between the values deduced from the two methods can be explained by the amount of atmospheric moisture adsorbed by films. One tries to minimize these shifts for the two materials by choosing deposition parameters. The difficulties come from the absorption losses which must be as small as possible. We use the measured refractive indices of individual layers to give good numerical prediction of the wavelength shift (observed during the admittance of air after deposition in the vacuum chamber) of the transmittance peak of multidielectric Fabry-Perot filters. PMID:18235719

  19. MEMS Fabry-Perot interferometer-based spectrometer demonstrator for 7.5 μm to 9.5 μm wavelength range

    NASA Astrophysics Data System (ADS)

    Mäkynen, Jussi H.; Tuohiniemi, Mikko; Näsilä, Antti; Mannila, Rami; Antila, Jarkko E.

    2014-03-01

    VTT Technical research centre of Finland has developed a MEMS Fabry-Perot interferometer (FPI) for the wavelength range from 7.5 μm to 9.5 μm. The device consists of two Distributed Bragg Reflectors (DBR) manufactured with MEMS processing techniques. The full width half maximum of the transmission peak is 150nm. This transmission peak can be tuned from 7.5 μm to 9.5 μm by applying a control voltage from 0 V to 30 V. A laboratory demonstrator has been put together to show the use of this module as a part of a spectral measurement setup. Several gas samples have been measured with the setup and compared against measurement results found in literature.

  20. Performance of a Distributed Simultaneous Strain and Temperature Sensor Based on a Fabry-Perot Laser Diode and a Dual-Stage FBG Optical Demultiplexer

    PubMed Central

    Kim, Suhwan; Kwon, Hyungwoo; Yang, Injae; Lee, Seungho; Kim, Jeehyun; Kang, Shinwon

    2013-01-01

    A simultaneous strain and temperature measurement method using a Fabry-Perot laser diode (FP-LD) and a dual-stage fiber Bragg grating (FBG) optical demultiplexer was applied to a distributed sensor system based on Brillouin optical time domain reflectometry (BOTDR). By using a Kalman filter, we improved the performance of the FP-LD based OTDR, and decreased the noise using the dual-stage FBG optical demultiplexer. Applying the two developed components to the BOTDR system and using a temperature compensating algorithm, we successfully demonstrated the simultaneous measurement of strain and temperature distributions under various experimental conditions. The observed errors in the temperature and strain measured using the developed sensing system were 0.6 °C and 50 με, and the spatial resolution was 1 m, respectively. PMID:24284773

  1. Ground-based Fabry-Perot interferometry of the terrestrial nightglow with a bare charge-coupled device: remote field site deployment

    NASA Astrophysics Data System (ADS)

    Niciejewski, Rick J.; Killeen, Timothy L.; Turnbull, Matthew

    1994-02-01

    The application of Fabry-Perot interferometers (FPIs) to the study of upper atmosphere thermodynamics has largely been restricted by the very low light levels in the terrestrial airglow as well as the limited range in wavelength of photomultiplier tube (PMT) technology. During the past decade, the development of the scientific grade charge-coupled device (CCD) has progressed to the stage in which this detector has become the logical replacement for the PMT. Small fast microcomputers have made it possible to 'upgrade' our remote field sites with bare CCDs and not only retain the previous capabilities of the existing FPIs but expand the data coverage in both temporal and wavelength domains. The problems encountered and the solutions applied to the deployment of a bare CCD, with data acquisition and image reduction techniques, are discussed. Sample geophysical data determined from the FPI fringe profiles are shown for our stations at Peach Mountain, Michigan, and Watson Lake, Yukon Territory.

  2. Direct-detection Doppler wind measurements with a Cabannes Mie lidar: A. Comparison between iodine vapor filter and Fabry Perot interferometer methods

    NASA Astrophysics Data System (ADS)

    She, Chiao-Yao; Yue, Jia; Yan, Zhao-Ai; Hair, Johnathan W.; Guo, Jin-Jia; Wu, Song-Hua; Liu, Zhi-Shen

    2007-07-01

    Atmospheric line-of-sight (LOS) wind measurement by means of incoherent Cabannes-Mie lidar with three frequency analyzers with nearly the same maximum transmission of ˜80% that could be fielded at different wavelengths is analytically considered. These frequency analyzers are (a) a double-edge Fabry-Perot interferometer (FPI) at 1064 nm (IR-FPI), (b) a double-edge Fabry-Perot interferometer at 355 nm (UV-FPI), and (c) an iodine vapor filter (IVF) at 532 nm with two different methods, using either one absorption edge, single edge (se-IVF), or both absorption edges, double edge (de-IVF). The effect of the backscattered aerosol mixing ratio, Rb, defined as the ratio of the aerosol volume backscatter coefficient to molecular volume backscatter coefficient, on LOS wind uncertainty is discussed. Assuming a known aerosol mixing ratio, Rb, and 100,000 photons owing to Cabannes scattering to the receiver, in shot-noise-limited detection without sky background, the LOS wind uncertainty of the UV-FPI in the aerosol-free air (Rb=0), is lower by ˜16% than that of de-IVF, which has the lowest uncertainty for Rb between 0.02 and 0.08; for Rb>0.08, the IR-FPI yielded the lowest wind uncertainty. The wind uncertainty for se-IVF is always higher than that of de-IVF, but by less than a factor of 2 under all aerosol conditions, if the split between the reference and measurement channels is optimized. The design flexibility, which allows the desensitization of either aerosol or molecular scattering, exists only with the FPI system, leading to the common practice of using IR-FPI for the planetary boundary layer and using UV-FPI for higher altitudes. Without this design flexibility, there is little choice but to use a single wavelength IVF system at 532 nm for all atmospheric altitudes.

  3. All-glass extrinsic Fabry-Perot interferometer thermo-optic coefficient sensor based on a capillary bridged two fiber ends.

    PubMed

    Cao, Zhitao; Jiang, Lan; Wang, Sumei; Wang, Mengmeng; Liu, Da; Wang, Peng; Zhang, Fei; Lu, Yongfeng

    2015-03-20

    An all-glass extrinsic Fabry-Perot interferometer (EFPI) is demonstrated for thermal-optic coefficient (TOC) of water, glycerol, and their mixture (volume ratio of 1:1). The compensation for the thermal expansion of Fabry-Perot (FP) cavity is realized by assembling a glass capillary and optical fibers through a CO2 laser welding. The thermal responses of EFPIs are tested in air at different cavity lengths of 578.6 μm, 911.7 μm, and 1520.3 μm, respectively. The corresponding refractive index errors induced by thermal expansion of FP cavity are negligible, which are demonstrated to be 4.33×10-6  RIU/°C, 4.13×10-6  RIU/°C, and 3.45×10-6  RIU/°C when temperature increases from 20.03°C to 60.78°C. The thermal-optic coefficients of water, glycerol, and their mixture are measured to be -1.5×10-4  RIU/°C, -2.3×10-4  RIU/°C, and -2.0×10-4  RIU/°C, respectively. Our study suggests a potential use of this sensor for TOC measurements of liquids with the advantages of low costs and robustness. PMID:25968523

  4. Broadband ultrasound field mapping system using a wavelength tuned, optically scanned focused laser beam to address a Fabry Perot polymer film sensor.

    PubMed

    Zhang, Edward; Beard, Paul

    2006-07-01

    An optical system for rapidly mapping broad-band ultrasound fields with high spatial resolution has been developed. The transduction mechanism is based upon the detection of acoustically induced changes in the optical thickness of a thin polymer film acting as a Fabry Perot sensing interferometer (FPI). By using a PC-controlled galvanometer mirror to line-scan a focused laser beam over the surface of the FPI, and a wavelength-tuned phase bias control system to optimally set the FPI working point, a notional 1D ultrasound array was synthesized. This system enabled ultrasound fields to be mapped over an aperture of 40 mm, in 50-microm steps with an optically defined element size of 50 microm and an acquisition time of 50 ms per step. The sensor comprised a 38-microm polymer film FPI which was directly vacuum-deposited onto an impedance-matched polycarbonate backing stub. The -3 dB acoustic bandwidth of the sensor was 300 kHz to 28 MHz and the peak noise-equivalent-pressure was 10 kPa over a 20-MHz measurement bandwidth. To demonstrate the system, the outputs of various planar and focused pulsed ultrasound transducers with operating frequencies in the range 3.5 to 20 MHz were mapped. It is considered that this approach offers a practical and inexpensive alternative to piezoelectric-based arrays and scanning systems for rapid transducer field characterization and biomedical and industrial ultrasonic imaging applications. PMID:16889340

  5. Thermospheric wind field over Mawson and Davis, Antarctica; simultaneous observations by two Fabry-Perot spectrometers of λ630 nm emission

    NASA Astrophysics Data System (ADS)

    Greet, P. A.; Conde, M. G.; Dyson, P. L.; Innis, J. L.; Breed, A. M.; Murphy, D. J.

    1999-09-01

    The thermopheric oxygen λ630 nm emission has been observed using high-resolution Fabry-Perot spectrometers at Mawson (67.6°S, 62.9°E) and Davis (68.6°S, 78.0°E), Antarctica. A new technique, combining the results from the two instruments, is used to derive vector wind fields. The technique is described and applied to five nights of simultaneous cardinal point data obtained in 1997. Solar flux was low during this interval, typically F10.7=75. Of the five nights two were magnetically disturbed and three were quiet. The observations for the disturbed nights were compared to a TIEGCM model run and reasonable agreement was found in the first half of the night. On one of the disturbed nights a closed evening circulation cell and cross-polar jet could be identified in our data. On none of the nights was a morning circulation cell evident. Auroral imager data were used to locate the auroral oval. For several hours around magnetic midnight the auroral oval produces doldrums in the thermospheric winds that are not described by the model. Auroral doldrums are also seen on the quiet nights which otherwise maintain a flow approximately consistent with a pressure-gradient driver.

  6. A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    DOE PAGESBeta

    Rakhman, A.; Hafez, Mohamed A.; Nanda, Sirish K.; Benmokhtar, Fatiha; Camsonne, Alexandre; Cates, Gordon D.; Dalton, Mark M.; Franklin, Gregg B.; Friend, Megan L.; Michaels, Robert W.; et al

    2016-03-31

    Here, a high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO3 crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancement ofmore » 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.0 GeV and 50 μA.« less

  7. An analytical method to find the optimal parameters for gas detectors based on correlation spectroscopy using a Fabry-Perot interferometer

    NASA Astrophysics Data System (ADS)

    Vargas-Rodriguez, Everardo; Rutt, Harvey

    2005-10-01

    Several designs of infrared absorption based gas detector use a Fabry-Perot Interferometer (FPI) to modulate the incident light. In these systems, generally the FPI's fringes are matched with very well defined rotational absorption lines of a target molecule such as CO2, CO, N2O, CH4, etc. In order to obtain modulation the cavity length of the FPI is scanned over one half of the reference wavelength. In this work, we present a simple analytical method based on the Fourier Transform that describes the performance of these systems. Using this method the optimal reflectivity and optical spacing of the FPI can be determined. Furthermore, the modulated signal generated by the system as a function of the cavity length scan can be calculated by applying the inverse Fourier Transform. Finally, this method describes the underlying reasons why for some filters the background amplitude is severe, and gives guidance on the choice of optimised filters. Our method evaluates the optimal FPI parameters and the modulated signal much faster than the direct numerical computation which is used currently. Simulation results for different molecules in combination with diverse filters shapes are presented, with a comparison to directly computed results.

  8. A high-finesse Fabry-Perot cavity with a frequency-doubled green laser for precision Compton polarimetry at Jefferson Lab

    NASA Astrophysics Data System (ADS)

    Rakhman, A.; Hafez, M.; Nanda, S.; Benmokhtar, F.; Camsonne, A.; Cates, G. D.; Dalton, M. M.; Franklin, G. B.; Friend, M.; Michaels, R. W.; Nelyubin, V.; Parno, D. S.; Paschke, K. D.; Quinn, B. P.; Souder, P. A.; Tobias, W. A.

    2016-06-01

    A high-finesse Fabry-Perot cavity with a frequency-doubled continuous wave green laser (532 nm) has been built and installed in Hall A of Jefferson Lab for high precision Compton polarimetry. The infrared (1064 nm) beam from a ytterbium-doped fiber amplifier seeded by a Nd:YAG nonplanar ring oscillator laser is frequency doubled in a single-pass periodically poled MgO:LiNbO3 crystal. The maximum achieved green power at 5 W infrared pump power is 1.74 W with a total conversion efficiency of 34.8%. The green beam is injected into the optical resonant cavity and enhanced up to 3.7 kW with a corresponding enhancement of 3800. The polarization transfer function has been measured in order to determine the intra-cavity circular laser polarization within a measurement uncertainty of 0.7%. The PREx experiment at Jefferson Lab used this system for the first time and achieved 1.0% precision in polarization measurements of an electron beam with energy and current of 1.06 GeV and 50 μA.

  9. Comparisons between field-widen Michelson interferometer and Fabry-Perot interferometer as the spectroscopic filter in high spectral resolution lidar

    NASA Astrophysics Data System (ADS)

    Cheng, Zhongtao; Liu, Dong; Yang, Yongying; Huang, Hanlu; Shen, Yibing

    2013-09-01

    One of the pivotal challenges in high spectral resolution lidars (HSRLs) is the spectral discrimination process, which brings about more straightforward and accurate retrieval without a priori assumptions in contrast to standard backscatter lidars. Inteferometric filters such as Fabry-Perot interferometer (FPI) has shown great convenience for spectrally separating the Rayleigh and Mie scattered elements in HSRL returned signals. Based on interference of two incident beams, the field -widen Michelson interferometer (FWMI) may be also the same potential in this application as FPI in spite of some performance differences. In this paper, we concentrate on the performance comparisons of FWMI with FPI as spectroscopic filter in HSRL from the inspections of spectral discrimination characteristic, field of view (FOV) tolerance, the efficiency of power collection, etc. All these analytical comparisons are quantificational and will be beneficial to reasonable choice among the two optical filters for HSRL. The results indicate that in spite of a litter lower transmittance when processing the radiation with very small divergence and more rigorous tolerance for temperature stability and surface flatness compared with FPI, FWMI is still very competent in this spectral filtering process for its remarkable spectral discrimination characteristic and efficient photons collective ability which attributes to its field widen design and intrinsically outstanding spectral separation performance.

  10. Mid-latitude thermospheric dynamics as observed by the North American Thermosphere-Ionosphere Observing Network of imaging Fabry-Perot interferometers

    NASA Astrophysics Data System (ADS)

    Makela, J. J.; Meriwether, J. W.; Ridley, A. J.; Castellaz, M. W.; Ciocca, M.; Fisher, D. J.

    2012-12-01

    In June and July of 2012, three new imaging Fabry-Perot interferometers (FPI) were installed at the Urbana Atmospheric Observatory in Urbana, IL (University of Illinois), Peach Mountain Observatory in Pinkney, MI (University of Michigan), and Richmond, KY (Eastern Kentucky University). Together with the existing FPI operating at the Pisgah Astronomical Research Institute in Rosman, NC (Clemson University), these FPIs form the initial deployment of the North American Thermosphere-Ionosphere Observing Network (NATION). NATION represents a new midlatitude chain of instruments capable of providing measurements of the thermospheric neutral winds and temperatures through observations of the redline emission at 630.0 nm. We present results from the first five months of operations of these instruments. The capabilities of the network are also demonstrated, first with each instrument operating as a stand alone observatory and then with each instrument operating in concert with one another to form a distributed sensing system capable of providing temperature and horizontal vector wind measurements over the midwestern United States.

  11. Optical simulation of three-dimensional x-ray diffraction using two-dimensional lattices and a Fabry-Perot etalon

    NASA Astrophysics Data System (ADS)

    Sommer, W.

    2013-03-01

    The basic experimental setup of a Fabry-Perot etalon between a collimating and a focusing lens is modified by introducing 2D rectangular lattices between the etalon and the collimating lens. Consequently, the irradiance of the interference fringes on a screen in the focal plane of the focusing lens changes and is modified by the diffraction pattern of the 2D lattice. The constructive interference directions resulting from both the etalon and the diffraction by the 2D lattice have to correlate in order to obtain maximum irradiance. Considering this experiment in a didactical context and analysing how a 2D rectangular lattice is seen through the etalon, the investigation provides us with the concept of an optical space containing a row of virtual 2D lattices. Due to the partially reflecting plane surfaces of the etalon, different virtual images of the 2D lattice form a 3D lattice with a tetragonal or orthorhombic structure. As an optical interface, the simple setup with a 2D lattice and an etalon models a 3D lattice. Using a laser, the diffraction pattern of a 2D lattice and etalon can be used to optically simulate 3D x-ray diffraction. The experiments can be included wherever undergraduate or graduate students have to follow up Laue's formulation of x-ray diffraction.

  12. Self-induced laser line sweeping and self-pulsing in double-clad fiber lasers in Fabry-Perot and unidirectional ring cavities

    NASA Astrophysics Data System (ADS)

    Peterka, Pavel; Navrátil, Petr; Dussardier, Bernard; Slavík, Radan; Honzátko, Pavel; Kubecek, Václav

    2012-06-01

    Rare-earth doped fiber lasers are subject to instabilities and various self-pulsed regimes that can lead to catastrophic damage of their components. An interesting self-pulsing regime accompanied with laser wavelength drift with time is the so called self-induced laser line sweeping (SLLS). Despite the early observations of the SLLS in solid-state ruby lasers, in fiber lasers it was first time mentioned in literature only in 2009 where such a laser wavelength drift with time was observed in a relatively broad range of about 1076 -1084 nm in ring ytterbium-doped fiber laser (YDFL). The main characteristic of the SLLS is the scanning of the laser wavelength from shorter to longer wavelength, spanning over large interval of several nanometers, and instantaneous bounce backward. The period of this sweeping is usually quite long, of the order of seconds. This spectacular effect was attributed to spatial-hole burning caused by standing-wave in the laser cavity. In this paper we present experimental investigation of the SLLS in YDFLs in Fabry-Perot cavity and ring cavities. The SLLS was observed also in erbium-doped fiber laser around 1560 nm. We present for the first time observation of the laser wavelength sweep in reverse direction, i.e., from longer towards shorter wavelengths. It was observed in YDFL around 1080 nm.

  13. Simultaneous measurement of acoustic pressure and temperature in the HIFU fields using all-silica fiber optic Fabry-Perot hydorophone

    NASA Astrophysics Data System (ADS)

    Wang, Dai-Hua; Zeng, Lu-Yu; Jia, Ping-Gang; Liu, Lei; Jiang, Xin-Yin

    2014-11-01

    Accurately measuring the acoustic pressure distributions and the size of the focal regions of high-intensity focused ultrasound (HIFU) fields, as well as the temperature induced by the HIFUs, are significant for ensuring the efficiency and safety of treatments. In our previous work, a tip-sensitive all-silica fiber-optic Fabry-Perot (TAFOFP) ultrasonic hydrophone for measuring HIFU fields is developed. In this paper, we explore the possibility that utilizing the TAFOFP ultrasonic hydrophone to simultaneously measure the acoustic pressure of HIFU fields and the induced temperature. The TAFOFP ultrasonic hydrophone for simultaneously measuring the acoustic pressure and temperature is developed and the experiment setup for measuring the HIFU fields based on the developed TAFOFP ultrasonic hydrophone is established. The developed TAFOFP ultrasonic hydrophone is experimentally tested in the degassed water and tissue phantom to verify the possibility of simultaneously measuring the acoustic pressure and temperature. Experimental results show that the sensing system can simultaneously measure the acoustic pressure and temperature.

  14. Quasi-analytical synthesis of continuous phase correcting structures to increase the directivity of circularly polarized Fabry-Perot resonator antennas

    SciTech Connect

    Afzal, Muhammad U. Esselle, Karu P.

    2015-06-07

    This paper presents a quasi-analytical technique to design a continuous, all-dielectric phase correcting structures (PCSs) for circularly polarized Fabry-Perot resonator antennas (FPRAs). The PCS has been realized by varying the thickness of a rotationally symmetric dielectric block placed above the antenna. A global analytical expression is derived for the PCS thickness profile, which is required to achieve nearly uniform phase distribution at the output of the PCS, despite the non-uniform phase distribution at its input. An alternative piecewise technique based on spline interpolation is also explored to design a PCS. It is shown from both far- and near-field results that a PCS tremendously improves the radiation performance of the FPRA. These improvements include an increase in peak directivity from 22 to 120 (from 13.4 dBic to 20.8 dBic) and a decrease of 3 dB beamwidth from 41.5° to 15°. The phase-corrected antenna also has a good directivity bandwidth of 1.3 GHz, which is 11% of the center frequency.

  15. Two-dimensional high-speed and long-range tomography and profilometry using liquid-crystal Fabry-Perot resonator.

    PubMed

    Banh, Tuan Quoc; Suzuki, Kohei; Kimura, Munehiro; Shioda, Tatsutoshi

    2015-02-01

    A two-dimensional high-speed, long-range tomography and profilometry based on a low-coherence optical interferometry has been developed. A liquid-crystal Fabry-Perot resonator is fabricated to be a low-coherence optical frequency comb generator for expanding the measurement depth of the tomography and profilometry. The line-shape interference fringes with the individual fringe orders are obtained by a CCD camera in real time. The relative optical length, corresponding to the sample depth information, can be derived from the positions of the interference fringes on the CCD camera and their corresponding fringe orders. The fringe orders can be rapidly calculated using the effectiveness of the changeable extraordinary refractive index of the liquid-crystal material of the resonator. The finesse of the liquid-crystal resonator is approximate 9, giving an expansion of the measurement range of up to 9-fold (∼8  mm depth) with a resolution of profilometry and tomography of 3.7 μm and 11 μm, respectively. PMID:25967805

  16. Quasi-analytical synthesis of continuous phase correcting structures to increase the directivity of circularly polarized Fabry-Perot resonator antennas

    NASA Astrophysics Data System (ADS)

    Afzal, Muhammad U.; Esselle, Karu P.

    2015-06-01

    This paper presents a quasi-analytical technique to design a continuous, all-dielectric phase correcting structures (PCSs) for circularly polarized Fabry-Perot resonator antennas (FPRAs). The PCS has been realized by varying the thickness of a rotationally symmetric dielectric block placed above the antenna. A global analytical expression is derived for the PCS thickness profile, which is required to achieve nearly uniform phase distribution at the output of the PCS, despite the non-uniform phase distribution at its input. An alternative piecewise technique based on spline interpolation is also explored to design a PCS. It is shown from both far- and near-field results that a PCS tremendously improves the radiation performance of the FPRA. These improvements include an increase in peak directivity from 22 to 120 (from 13.4 dBic to 20.8 dBic) and a decrease of 3 dB beamwidth from 41.5° to 15°. The phase-corrected antenna also has a good directivity bandwidth of 1.3 GHz, which is 11% of the center frequency.

  17. 2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit.

    PubMed

    Wang, Ruijun; Sprengel, Stephan; Boehm, Gerhard; Muneeb, Muhammad; Baets, Roel; Amann, Markus-Christian; Roelkens, Gunther

    2016-09-01

    Heterogeneously integrated InP-based type-II quantum well Fabry-Perot lasers on a silicon waveguide circuit emitting in the 2.3 µm wavelength range are demonstrated. The devices consist of a "W"-shaped InGaAs/GaAsSb multi-quantum-well gain section, III-V/silicon spot size converters and two silicon Bragg grating reflectors to form the laser cavity. In continuous-wave (CW) operation, we obtain a threshold current density of 2.7 kA/cm2 and output power of 1.3 mW at 5 °C for 2.35 μm lasers. The lasers emit over 3.7 mW of peak power with a threshold current density of 1.6 kA/cm2 in pulsed regime at room temperature. This demonstration of heterogeneously integrated lasers indicates that the material system and heterogeneous integration method are promising to realize fully integrated III-V/silicon photonics spectroscopic sensors in the 2 µm wavelength range. PMID:27607711

  18. HST WFPC2 Images and CFHT Fabry-Perot Optical Spectra of the Starburst Disk and Energetic Superbubble in NGC 3079

    NASA Astrophysics Data System (ADS)

    Cecil, G.; Veilleux, S.; Filippenko, A. V.; Bland-Hawthorn, J.

    1999-12-01

    The nearly edge-on spiral LINER/Seyfert galaxy NGC 3079 (17 Mpc) has a ``boxy" bulge, stellar bar, and contains the most energetic known example of a windblown superbubble (ionized mass 107/ne Msun & KE 2x1056/ne erg) that extends 12" (1 kpc) above the disk. We have mapped emission-line profiles across the galaxy disk and superbubble with an imaging Fabry-Perot spectrophotometer. We have also obtained dithered WFPC2 658N Hα +[N II]λ 6583 and 814W continuum images of the inner 13-kpc diameter. We find that gas within 9-kpc diameter is lofted into narrow filaments that project up to 2 kpc above the disk, and which are usually unresolved in their narrow dimensions at 0\\farcs1 resolution. The superbubble is the most striking of these structures. The brightest filaments are organized into 4 distinct streams in azimuth that all fragment 0.7 kpc above the disk. The top of the superbubble is composed of numerous resolved droplets, each comprising 104/ne Msun of ionized gas, that resemble the ``cometary" blobs of stredded, dense clumps of disk material generated in the dense-disk+tenuous-halo hydro model of Suchkov et al (1994 ApJ, 430, 511). This morphology supports the presence of a free-streaming, blowout superwind, whose origin (AGN or starburst driven) and energetics we will discuss. The starburst disk is composed of diffuse filaments, along with numerous H II regions that are often ruptured on their top sides. A striking spray of linear filaments that trail for ⪆ 0.6 kpc behind unresolved ``bullets" is found outside the main starburst region. They emerge from a bright star-forming complex at ⪆ 7 kpc radius that lies well beyond the ends of the stellar bar, and which has X-ray luminosity 7*E38 erg/s in the ROSAT bands. This program is supported by NASA HST grant GO-6674

  19. Intrinsic Fabry-Perot interferometric fiber sensor based on ultra-short Bragg gratings for quasi-distributed strain and temperature measurements

    NASA Astrophysics Data System (ADS)

    Wang, Zhuang

    The health monitoring of smart structures in civil engineering is becoming more and more important as in-situ structural monitoring would greatly reduce structure life-cycle costs and improve reliability. The distributed strain and temperature sensing is highly desired in large structures where strain and temperature at over thousand points need to be measured simultaneously. It is difficult to carry out this task using conventional electrical strain sensors. Fiber optic sensors provide an excellent opportunity to fulfill this need due to their capability to multiplex many sensors along a single fiber cable. Numerous research studies have been conducted in past decades to increase the number of sensors to be multiplexed in a distributed sensor network. This dissertation presents detailed research work on the analysis, design, fabrication, testing, and evaluation of an intrinsic Fabry-Perot fiber optic sensor for quasi-distributed strain and temperature measurements. The sensor is based on two ultra-short and broadband reflection fiber Bragg gratings. One distinct feature of this sensor is its ultra low optical insertion loss, which allows a significant increase in the sensor multiplexing capability. Using a simple integrated sensor interrogation unit and an optical spectrum based signal processing algorithm, many sensors can be interrogated along a single optical fiber with high accuracy, high resolution and large dynamic range. Based on the experimental results and theoretical analysis, it is expected that more than 500 sensors can be multiplexed with little crosstalk using a frequency-division multiplexing technology. With this research, it is possible to build an easy fabrication, robust, high sensitivity and quasi-distributed fiber optic sensor network that can be operated reliably even in harsh environments or extended structures. This research was supported in part by U.S. National Science Foundation under grant CMS-0427951.

  20. Interferometric filters for spectral discrimination in high-spectral-resolution lidar: performance comparisons between Fabry-Perot interferometer and field-widened Michelson interferometer.

    PubMed

    Cheng, Zhongtao; Liu, Dong; Yang, Yongying; Yang, Liming; Huang, Hanlu

    2013-11-10

    Thanks to wavelength flexibility, interferometric filters such as Fabry-Perot interferometers (FPIs) and field-widened Michelson interferometers (FWMIs) have shown great convenience for spectrally separating the molecule and aerosol scattering components in the high-spectral-resolution lidar (HSRL) return signal. In this paper, performance comparisons between the FPI and FWMI as a spectroscopic discrimination filter in HSRL are performed. We first present a theoretical method for spectral transmission analysis and quantitative evaluation on the spectral discrimination. Then the process in determining the parameters of the FPI and FWMI for the performance comparisons is described. The influences from the incident field of view (FOV), the cumulative wavefront error induced by practical imperfections, and the frequency locking error on the spectral discrimination performance of the two filters are discussed in detail. Quantitative analyses demonstrate that FPI can produce higher transmittance while the remarkable spectral discrimination is one of the most appealing advantages of FWMI. As a result of the field-widened design, the FWMI still performs well even under the illumination with large FOV while the FPI is only qualified for a small incident angle. The cumulative wavefront error attaches a great effect on the spectral discrimination performance of the interferometric filters. We suggest if a cumulative wavefront error is less than 0.05 waves RMS, it is beneficial to employ the FWMI; otherwise, FPI may be more proper. Although the FWMI shows much more sensitivity to the frequency locking error, it can outperform the FPI given a locking error less than 0.1 GHz is achieved. In summary, the FWMI is very competent in HSRL applications if these practical engineering and control problems can be solved, theoretically. Some other estimations neglected in this paper can also be carried out through the analytical method illustrated herein. PMID:24216746

  1. Error calculation and analysis for an improved wind retrieval method based on the ground-based Fabry-Perot interferometer measurements

    NASA Astrophysics Data System (ADS)

    Wang, Houmao; Wang, Yongmei

    2015-11-01

    A ground-based Fabry-Perot interferometer (FPI) fabricated by American National Center for Atmospheric Research (A-NCAR) was deployed in Kelan (111.6° E, 38.7° N), in middle of China, to observe OH 892.0 nm, OI 630.0 nm, and OI 557.7 nm airglow emissions for wind retrieval of mesospheric and thermospheric atmosphere using a method based on the convolution of the source profile and instrumental function. Based on the instrument, wind velocities were retrieved using another retrieval method but improved in both noise reduction and choice of interference fringes, which can reduce the disturbance of bad fringes and advance the retrieval precision. The retrieval results were subsequently compared with the FPI wind products, and good agreement was found between them. The averaged deviations of wind velocities between the two retrieval methods depend on airglow intensity with 5.7 m/s for 892.0 nm emission, 6.18 m/s for 630.0 nm emission, and 3.66 m/s for 557.7 nm emission, respectively. Then, a new method was proposed for error calculation by considering the influence of airglow intensity, CCD dark noise, background emissions, and data processing, which can steadily evaluate the precision and reliability of wind retrieval. The relationships between errors derived from the two retrieval methods and airglow intensity were compared and analyzed. It is found that the variation of errors is inversely correlated with the variation of airglow intensity.

  2. Climatologies of nighttime upper thermospheric winds measured by ground-based Fabry-Perot interferometers during geomagnetically quiet conditions: 1. Local time, latitudinal, seasonal, and solar cycle dependence

    NASA Astrophysics Data System (ADS)

    Emmert, J. T.; Faivre, M. L.; Hernandez, G.; Jarvis, M. J.; Meriwether, J. W.; Niciejewski, R. J.; Sipler, D. P.; Tepley, C. A.

    2006-12-01

    We analyze ground-based Fabry-Perot interferometer observations of upper thermospheric (˜250 km) horizontal neutral winds derived from Doppler shifts in the 630.0 nm (red line) nightglow. The winds were measured over the following locations: South Pole (90°S), Halley (76°S, 27°W), Arequipa (17°S, 72°W), Arecibo (18°N, 67°W), Millstone Hill (43°N, 72°W), Søndre Strømfjord (67°N, 51°W), and Thule (77°N, 68°W). We derive climatological quiet time (Kp < 3) wind patterns as a function of local time, solar cycle, day of year, and the interplanetary magnetic field (IMF), and provide parameterized representations of these patterns. At the high-latitude stations, and at Arequipa near the geomagnetic equator, wind speeds tend to increase with increasing solar extreme ultraviolet (EUV) irradiance. Over Millstone Hill and Arecibo, solar EUV has a negative effect on wind magnitudes. As represented by the 10.7 cm radio flux proxy, the solar EUV dependence of the winds at all latitudes is characterized by a saturation or weakening of the effect above moderate values (F10.7 > 150). The seasonal dependence of the winds is generally annual, but there are isolated cases in which a semiannual variation is observed. Within the austral winter, winds measured from the South Pole show a substantial intraseasonal variation only along longitudes directed toward the magnetic pole. IMF effects are described in a companion paper.

  3. Characterization of Single-Mode Chalcogenide Glass Waveguides at 8.35 μm

    SciTech Connect

    Phillips, Mark C.; Qiao, Hong; Bernacki, Bruce E.; Anheier, Norman C.

    2009-05-01

    Laser-written single-mode waveguides in As2Se3/As2S3 films were characterized at 8.35 μm using the Fabry-Perot technique. Waveguide loss and refractive index were measured as a function of writing dose and compared to modeling results.

  4. The Feasibility of Tropospheric and Total Ozone Determination Using a Fabry-perot Interferometer as a Satellite-based Nadir-viewing Atmospheric Sensor. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Larar, Allen Maurice

    1993-01-01

    Monitoring of the global distribution of tropospheric ozone (O3) is desirable for enhanced scientific understanding as well as to potentially lessen the ill-health impacts associated with exposure to elevated concentrations in the lower atmosphere. Such a capability can be achieved using a satellite-based device making high spectral resolution measurements with high signal-to-noise ratios; this would enable observation in the pressure-broadened wings of strong O3 lines while minimizing the impact of undesirable signal contributions associated with, for example, the terrestrial surface, interfering species, and clouds. The Fabry-Perot Interferometer (FPI) provides high spectral resolution and high throughput capabilities that are essential for this measurement task. Through proper selection of channel spectral regions, the FPI optimized for tropospheric O3 measurements can simultaneously observe a stratospheric component and thus the total O3 column abundance. Decreasing stratospheric O3 concentrations may lead to an increase in biologically harmful solar ultraviolet radiation reaching the earth's surface, which is detrimental to health. In this research, a conceptual instrument design to achieve the desired measurement has been formulated. This involves a double-etalon fixed-gap series configuration FPI along with an ultra-narrow bandpass filter to achieve single-order operation with an overall spectral resolution of approximately .068 cm(exp -1). A spectral region of about 1 cm(exp -1) wide centered at 1054.73 cm(exp -1) within the strong 9.6 micron ozone infrared band is sampled with 24 spectral channels. Other design characteristics include operation from a nadir-viewing satellite configuration utilizing a 9 inch (diameter) telescope and achieving horizontal spatial resolution with a 50 km nadir footprint. A retrieval technique has been implemented and is demonstrated for a tropical atmosphere possessing enhanced tropospheric ozone amounts. An error analysis

  5. Controlling system for smart hyper-spectral imaging array based on liquid-crystal Fabry-Perot device

    NASA Astrophysics Data System (ADS)

    Jiang, Xue; Chen, Xin; Rong, Xin; Liu, Kan; Zhang, Xinyu; Ji, An; Xie, Changsheng

    2011-11-01

    A research for developing a kind of smart spectral imaging detection technique based on the electrically tunable liquidcrystal (LC) FP structure is launched. It has some advantages of low cost, highly compact integration, perfuming wavelength selection without moving any micro-mirror of FP device, and the higher reliability and stability. The controlling system for hyper-spectral imaging array based on LC-FP device includes mainly a MSP430F5438 as its core. Considering the characteristics of LC-FP device, the controlling system can provide a driving signal of 1-10 kHz and 0- 30Vrms for the device in a static driving mode. This paper introduces the hardware designing of the control system in detail. It presents an overall hardware solutions including: (1) the MSP430 controlling circuit, and (2) the operational amplifier circuit, and (3) the power supply circuit, and (4) the AD conversion circuit. The techniques for the realization of special high speed digital circuits, which is necessary for the PCB employed, is also discussed.

  6. Wavelength switching of picosecond pulses generated from a self-seeded Fabry-Perot laser diode with a tilted fiber Bragg grating formed in a graded-index multimode fiber.

    PubMed

    Liu, Yunqi; Chiang, Kin Seng

    2011-02-20

    We demonstrated the generation of wavelength-switchable picosecond pulses from a self-seeded Fabry-Perot laser diode that used a tilted fiber Bragg grating (FBG) formed in a graded-index multimode fiber as an external optical feedback element, where wavelength switching was achieved by controlling the modal distribution in the FBG. We measured the reflection spectra of multimode FBGs fabricated with different tilt angles and discussed the effects of the tilt angle on wavelength selection. By using a 20 mm long 1.65° tilted FBG and a fiber deformer to control the modal distribution in the FBG, we generated 2 GHz pulses with a wavelength switchable over 14 wavelengths at a spacing of ∼0.8 nm. PMID:21343961

  7. Experimental verification and investigation of disks scattering slab modes in metal-dielectric heterostructures

    PubMed Central

    Ding, Lan; Wang, Ke Jia; Wang, Wei; Zhu, De Feng; Yin, Chao Yun; Liu, Jin Song

    2013-01-01

    A thin dielectric plate can support conventional slab modes such as leaky Fabry-Perot, guided waves and radiation modes. When the plate is coated on a metallic subwavelength disk array, it can result in new confined modes, hereby named 'disks scattering slab modes' (DSSMs). By use of a terahertz time-domain spectroscopy system, we experimentally verify the existence of two types of DSSMs in terahertz range: one we refer to as highly confined disks scattering Fabry-Perot-like modes (DSFPMs) and the other as, weakly confined disks scattering radiation-like modes (DSRMs). Spectral characteristics of these confined modes are measured and numerically simulated. Particularly, based on the experimental results and a dipole-scattering model developed here, we show that the features of the DSFPMs can be tuned by changing the filling fraction of the disk array. We believe these results can make important contributions to the designs of new terahertz devices, including tunable absorbers and filters. PMID:23966179

  8. Optical-cell model based on the lasing competition of mode structures with different Q-factors in high-power semiconductor lasers

    SciTech Connect

    Podoskin, A. A. Shashkin, I. S.; Slipchenko, S. O.; Pikhtin, N. A.; Tarasov, I. S.

    2015-08-15

    A model describing the operation of a completely optical cell, based on the competition of lasing of Fabry-Perot cavity modes and the high-Q closed mode in high-power semiconductor lasers is proposed. Based on rate equations, the conditions of lasing switching between Fabry-Perot modes for ground and excited lasing levels and the closed mode are considered in the case of increasing internal optical loss under conditions of high current pump levels. The optical-cell operation conditions in the mode of a high-power laser radiation switch (reversible mode-structure switching) and in the mode of a memory cell with bistable irreversible lasing switching between mode structures with various Q-factors are considered.

  9. Generation of single longitudinal mode in a pulsed passively Q -switched Nd:YAG laser

    SciTech Connect

    Hariri, A.; Soltanmoradi, F.; Nayeri, M. )

    1990-08-01

    It is shown that a single longitudinal mode in a passively {ital Q}-switch Nd:YAG laser can be obtained by adjusting an intracavity saturable absorber gelatin film (BDN) to work as a mirror in a three-mirror Fabry--Perot resonator. With a 0.13-mm-thick gelatin film of 40% unsaturated transmission, a temporally smooth single-laser pulse of {similar to}10 ns duration has been obtained.

  10. Supermode suppression to below -130 dBc/Hz in a 10 GHz harmonically mode-locked external sigma cavity semiconductor laser.

    PubMed

    Yilmaz, Tolga; Depriest, C; Delfyett, P; Etemad, S; Braun, A; Abeles, J

    2003-05-01

    We demonstrate supermode suppression to levels below -125 dBc/Hz and -132 dBc/Hz using Fabry-Perot etalons with finesse values of 180 and 650, respectively, for a 10 GHz harmonically mode-locked external sigma cavity semiconductor laser. The laser was hybridly mode-locked using direct electrical modulation in a compact package without the need for an external modulator. PMID:19465973

  11. Climatology and IMF By dependence of quiet-time high-latitude upper thermospheric winds measured by ground-based Fabry-Perot Interferometers in the northern and southern hemispheres

    NASA Astrophysics Data System (ADS)

    Emmert, J. T.; Hernandez, G.; Jarvis, M. J.; Niciejewski, R. J.; Sipler, D. P.; Vennerstrom, S.

    2006-05-01

    We analyze ground-based Fabry-Perot interferometer observations, obtained from the CEDAR database, of upper thermospheric (~250 km) horizontal winds derived from Doppler shifts in the 630.0 nm (red line) nightglow. The winds were measured over the following locations: South Pole (90S), Halley (76S, 27W), Millstone Hill (43N, 72W), Sondre Stromfjord (67N, 51W), and Thule (77N, 68W). We derive climatological quiet-time (Kp < 3) wind patterns as a function of local time, solar cycle, day-of-year, and the y-component of the interplanetary magnetic field (IMF By). In magnetic coordinates, the quiet-time high latitude wind patterns are dominated by anti-sunward flow over the polar cap, with wind speeds that generally increase with increasing solar EUV irradiation. Within the limited seasonal coverage afforded by the nighttime (mostly winter) data, the day-of-year dependence is generally weak. IMF By exerts a strong influence on the wind patterns, particularly in the midnight sector. During winter, positive-By winds around midnight in the northern (southern) hemisphere are directed more toward the dusk (dawn) sector, compared to corresponding negative-By winds; this behavior is consistent with the By-dependence of statistical ionospheric convection patterns The strength of the wind response to IMF By tends to increase with increasing solar EUV irradiation, roughly in proportion to the increased wind speeds. Quiet-time IMF By effects are detectable at latitudes as low as that of Millstone Hill (magnetic latitude 53N).

  12. Single-mode quantum cascade lasers employing a candy-cane shaped monolithic coupled cavity

    NASA Astrophysics Data System (ADS)

    Liu, Peter Q.; Sladek, Kamil; Wang, Xiaojun; Fan, Jen-Yu; Gmachl, Claire F.

    2011-12-01

    We demonstrate single-mode quantum cascade lasers emitting at ˜4.5 μm by employing a monolithic "candy-cane" shaped coupled-cavity consisting of a straight section connecting at one end to a spiral section. The fabrication process is identical to those for simple Fabry-Perot-type ridge lasers. Continuously tunable single-mode emission across ˜8 cm-1 with side mode suppression ratio up to ˜25 dB and a single-mode operating current range of more than 70% above the threshold current is achieved when the lasers are operated in pulsed-mode from 80 K to 155 K.

  13. Single-longitudinal-mode Ho:LuAG laser at 2.1 μm

    NASA Astrophysics Data System (ADS)

    Liu, W.; Ju, Y. L.; Dai, T. Y.; Cui, Z.; Wu, J.; Yao, B. Q.; Duan, X. M.; Shen, Y. J.; Wang, Y. Z.

    2016-02-01

    In this letter we report a continuous wave Ho:LuAG laser running on single-longitudinal-mode operation. Two Fabry-Perot etalons were used to narrow the laser line-width. By regulating the angle of the etalons, single-longitudinal-mode lasing was achieved at a wavelength of 2100.65 nm. The maximum power and the slope efficiency of single-longitudinal-mode Ho:LuAG output are 264 mW and 14.5%, respectively. To our knowledge, this is the first time a Ho:LuAG laser with single-longitudinal-mode operation has been obtained.

  14. Fabry-Perot observations of comet Kohoutek

    NASA Technical Reports Server (NTRS)

    Roesler, F. L.; Scherb, F.; Huppler, D.; Reynolds, R. J.; Trauger, J.

    1975-01-01

    Observations of H alpha, H20(+), and emission lines from comet Kohoutek were made. Analyses of H alpha line profiles and line intensities indicate that the mean outflow velocity of the hydrogen atoms was 7.8 + or - 0.2 km s(-1) and that the hydrogen atom production rate varied for comet-sun distances between 1 AU and 0.4 AU. The identification of an H20(+) emission feature in certain H alpha scans indicates that the H20(+) ions were moving in a tailward direction with a velocity of 20 to 40 km s(-1) with respect to the comet nucleus. An upper limit of 1 part in 100 was found for the D/H ratio in the cometary atomic hydrogen cloud.

  15. Formation of single-mode laser in transverse plane of perovskite microwire via micromanipulation.

    PubMed

    Wang, Kaiyang; Gu, Zhiyuan; Liu, Shuai; Li, Jiankai; Xiao, Shumin; Song, Qinghai

    2016-02-01

    The synthesized perovskites are randomly distributed and their optical properties are fixed after synthesis. Here we demonstrate the tailoring of lasing properties of perovskite microwire via micromanipulation. One microwire has been lifted by a tungsten probe and repositioned on a nearby perovskite microplate with one end suspended in air. Consequently, the conventional Fabry-Perot lasers are completely suppressed and a single laser peak has been observed. The numerical calculations reveal that the single-mode laser is formed by the whispering-gallery mode in the transverse plane of microwire. Our research provides a simple way to tailor the properties of microwire postsynthesis. PMID:26907422

  16. Power enhancement of burst-mode UV pulses using a doubly-resonant optical cavity

    SciTech Connect

    Rahkman, Abdurahim; Notcutt, Mark; Liu, Yun

    2015-11-24

    We report a doubly-resonant enhancement cavity (DREC) that can realize a simultaneous enhancement of two incoming laser beams at different wavelengths and different temporal structures. The double-resonance condition is theoretically analyzed and different DREC locking methods are experimentally investigated. Simultaneous locking of a Fabry-Perot cavity to both an infrared (IR, 1064 nm) and its frequency tripled ultraviolet (UV, 355 nm) pulses has been demonstrated by controlling the frequency difference between the two beams with a fiber optic frequency shifter. The DREC technique opens a new paradigm in the applications of optical cavities to power enhancement of burst-mode lasers with arbitrary macropulse width and repetition rate.

  17. Exploring the Frequency Stability Limits of Whispering Gallery Mode Resonators for Metrological Applications

    NASA Technical Reports Server (NTRS)

    Chembo, Yanne K.; Baumgartel, Lukas; Grudinin, Ivan; Strekalov, Dmitry; Thompson, Robert; Yu, Nan

    2012-01-01

    Whispering gallery mode resonators are attracting increasing interest as promising frequency reference cavities. Unlike commonly used Fabry-Perot cavities, however, they are filled with a bulk medium whose properties have a significant impact on the stability of its resonance frequencies. In this context that has to be reduced to a minimum. On the other hand, a small monolithic resonator provides opportunity for better stability against vibration and acceleration. this feature is essential when the cavity operates in a non-laboratory environment. In this paper, we report a case study for a crystalline resonator, and discuss the a pathway towards the inhibition of vibration-and acceleration-induced frequency fluctuations.

  18. Improved signal-to-noise ratio of 10 GHz microwave signals generated with a mode-filtered femtosecond laser frequency comb.

    PubMed

    Diddams, S A; Kirchner, M; Fortier, T; Braje, D; Weiner, A M; Hollberg, L

    2009-03-01

    We use a Fabry-Perot cavity to optically filter the output of a Ti:sapphire frequency comb to integer multiples of the original 1 GHz mode spacing. This effectively increases the pulse repetition rate, which is useful for several applications. In the case of low-noise microwave signal generation, such filtering leads to improved linearity of the high-speed photodiodes that detect the mode-locked laser pulse train. The result is significantly improved signal-to-noise ratio at the 10 GHz harmonic with the potential for a shot-noise limited single sideband phase noise floor near -168 dBc/Hz. PMID:19259170

  19. High power dissipative soliton in an Erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror.

    PubMed

    Cabasse, A; Martel, G; Oudar, J L

    2009-06-01

    We report on a passively mode-locked erbium-doped fiber laser, using a high nonlinear modulation depth saturable absorber mirror, in a Fabry-Perot cavity. A segment of dispersion compensation fiber is added inside the cavity in order to build a high-positive dispersion regime. The setup produced highly chirped pulses with an energy of 1.8 nJ at a repetition rate of 33.5 MHz. Numerical simulations accurately reflect our experimental results and show that pulse-shaping in this laser could be interpreted as producing 'dissipative solitons'. PMID:19506601

  20. Two-mode model for metal-dielectric guided-mode resonance filters.

    PubMed

    Tuambilangana, Christelle; Pardo, Fabrice; Sakat, Emilie; Bouchon, Patrick; Pelouard, Jean-Luc; Haïdar, Riad

    2015-12-14

    Symmetric metal-dielectric guided-mode resonators (GMR) can operate as infrared band-pass filters, thanks to high-transmission resonant peaks and good rejection ratio. Starting from matrix formalism, we show that the behavior of the system can be described by a two-mode model. This model reduces to a scalar formula and the GMR is described as the combination of two independent Fabry-Perot resonators. The formalism has then been applied to the case of asymmetric GMR, in order to restore the properties of the symmetric system. This result allows designing GMR-on-substrate as efficient as free-standing systems, the same high transmission maximum value and high quality factor being conserved. PMID:26698960

  1. Photometric properties of solar halpha fabry-perot etalons. application to the analysis of the chromospheric fringe. (French Title: Propriétés photométriques d'étalons fabry-pérot pour la raie halpha. application à l'analyse de la frange chromosphérique du soleil.)

    NASA Astrophysics Data System (ADS)

    Bazin, C.; Koutchmy, S.

    2009-12-01

    We consider the use of the commercially available Fabry-Perot etalons (FP) for the imaging of the solar chromosphere in the Ha line of hydrogen. Three etalons of 40, 60 and 90 mm of diameter were evaluated and accurately analysed. At normal incidence the maximum transmission wavelength is 656.285 nm for the 60 and 40 mm etalons FP. The finesse has been found to be 13.3 for the FP 60mm, 8.7 for the FP 40 and 13.9 for the FP 90 mm. Shifts of the central wavelength as a function of the incidence angle were accurately measured. Polynomial curves giving the variation of the transmitted central wavelength when using a quasi-parallel beam from a point-like source are presented. Calibrations were done with a photometric accuracy using i/ a 16 bits CCD camera; ii/ a Littrow spectrograph of a spectral power 110000, a linear dispersion giving a .0058 nm/ pixel resolution and iii/ an artificial Sun with different angular extension used as a light source and iv/ adjustable in position optical components. The precise laboratory wavelength calibration was performed using a low pressure deuterium spectral lamp simultaneously illuminating the entrance slit. The variations of the FWHM of the transmission curves as a function of the incidence angle are also given for a typical etalon. Consequences resulting from the use of a significant aperture/ratio are tentatively discussed for the first time. An application to a precise solar photometric work using filtergrams is illustrated, with emphasis on the photometric accuracy resulting from the use of such etalons put before the entrance aperture of the imaging telescope. Monochromatic images of the solar chromospheric shell near the limbs were made, in order to deduce the variation of its thickness at poles and equator in order to measure the prolateness effect during this current minimum of solar activity (2009).

  2. Passive mode locking in erbium-ytterbium fiber lasers

    NASA Astrophysics Data System (ADS)

    Thai, Serey; Hayduk, Michael J.

    1999-11-01

    A novel mode-locked erbium-ytterbium fiber laser operating at 1550 nm using multiple quantum well (MQW) saturable absorbers was developed. The laser was constructed in a Fabry-Perot configuration using a fiber Bragg grating as a front reflector and a fiber Bragg grating output as a back reflector of the laser cavity. The passive mode-locking element placed inside the laser cavity is a 75 period InGaAs/InAlAs MQW saturable absorber grown lattice matched on an InP substrate. The output of the laser was taken through the other available port of a wavelength-division demultiplexer. The laser produced mode-locked output pulse trains at 16.67-MHz repetition rate and 10 mW of average output power.

  3. Doubly active Q switching and mode locking of an all-fiber laser.

    PubMed

    Cuadrado-Laborde, Christian; Díez, Antonio; Cruz, Jose L; Andrés, Miguel V

    2009-09-15

    Simultaneous and independent active Q switching and active mode locking of an erbium-doped fiber laser is demonstrated using all-fiber modulation techniques. A magnetostrictive rod attached to the output fiber Bragg grating modulates the Q factor of the Fabry-Perot cavity, whereas active mode locking is achieved by amplitude modulation with a Bragg-grating-based acousto-optic device. Fully modulated Q-switched mode-locked trains of optical pulses were obtained for a wide range of pump powers and repetition rates. For a Q-switched repetition rate of 500 Hz and a pump power of 100 mW, the laser generates trains of 12-14 mode-locked pulses of about 1 ns each, within an envelope of 550 ns, an overall energy of 0.65 microJ, and a peak power higher than 250 W for the central pulses of the train. PMID:19756079

  4. Spectral interference fringes in chirped large-mode-area fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Poozesh, Reza; Madanipour, Khosro; Vatani, Vahid

    2016-09-01

    Spectral interference fringes were experimentally observed in chirped large mode area fiber Bragg grating (CFBG) in the overlapping region of the reflected spectrum of fiber modes by a high resolution spectrometer. It was demonstrated that the interference is due to optical path difference of the reflected modes in slight chirped FBGs. By assuming chirped fiber Bragg gratings as a Fabry-Perot (FP) cavity, free spectral range (FSR) of FP was calculated 0.08 nm which is matched with measurement very well. Furthermore, the experiments show that axial tension and temperature changes of the CFBG do not have observable effects on the magnitude of FSR, however coiling of the fiber deceases spectral interference fringe amplitude without sensible effect on FSR magnitude. The results of this work can be utilized in bending sensors.

  5. Mode-locking external-cavity laser-diode sensor for displacement measurements of technical surfaces

    SciTech Connect

    Czarske, Juergen; Moebius, Jasper; Moldenhauer, Karsten

    2005-09-01

    A novel laser sensor for position measurements of technical solid-state surfaces is proposed. An external Fabry-Perot laser cavity is assembled by use of an antireflection-coated laser diode together with the technical surface. Mode locking results from pumping the laser diode synchronously to the mode spacing of the cavity. The laser cavity length, i.e., the distance to the measurement object, is determined by evaluation of the modulation transfer function of the cavity by means of a phase-locked loop. The mode-locking external-cavity laser sensor incorporates a resonance effect that results in highly resolving position and displacement measurements. More than a factor-of-10 higher resolution than with conventional nonresonant sensing principles is achieved. Results of the displacement measurements of various technical surfaces are reported. Experimental and theoretical investigations are in good agreement.

  6. Passively mode-locked picosecond erbium-doped fiber lasers using multiple quantum well saturable absorbers

    NASA Astrophysics Data System (ADS)

    Hayduk, Michael J.; Krol, Mark F.; Pollock, Clifford R.; Teegarden, Kenneth J.; Wicks, Gary W.; Kaechele, Walter

    1998-07-01

    An experimental study of the mode-locking process in erbium- doped fiber lasers (EDFLs) operating at 1.55 micrometer using multiple quantum well saturable absorbers is described. The self-starting passively mode-locked laser was constructed in a Fabry-Perot configuration using the saturable absorber as the back reflector of the cavity. Picosecond pulses that ranged from 3.1 to 38.8 ps were generated using a series of saturable absorbers. The pulse widths were dependent upon the optical properties of the saturable absorber used as the mode- locking element as well as the dispersive elements contained within the cavity. The output power of the EDFL varied from 0.2 to 6.7 mW and was also dependent upon the saturable absorber used in the cavity.

  7. In-Line Fiber Optic Interferometric Sensors in Single-Mode Fibers

    PubMed Central

    Zhu, Tao; Wu, Di; Liu, Min; Duan, De-Wen

    2012-01-01

    In-line fiber optic interferometers have attracted intensive attention for their potential sensing applications in refractive index, temperature, pressure and strain measurement, etc. Typical in-line fiber-optic interferometers are of two types: Fabry-Perot interferometers and core-cladding-mode interferometers. It's known that the in-line fiber optic interferometers based on single-mode fibers can exhibit compact structures, easy fabrication and low cost. In this paper, we review two kinds of typical in-line fiber optic interferometers formed in single-mode fibers fabricated with different post-processing techniques. Also, some recently reported specific technologies for fabricating such fiber optic interferometers are presented. PMID:23112608

  8. Harmonic mode-locking in a Tm-doped fiber laser: Characterization of its timing jitter and ultralong starting dynamics

    NASA Astrophysics Data System (ADS)

    Bao, Chengying; Yang, Changxi

    2015-12-01

    We report an experimental characterization on harmonic mode-locking in a Tm-doped fiber laser, which exhibits pump related timing jitter and ultralong mode-locking starting dynamics. The laser is pumped by a laser diode seeded EDFA. Harmonic mode-locking is initiated by nonlinear polarization rotation and showed a good long term stability. Timing jitter is found to be significantly influenced by the properties of laser diode seed for the EDFA. When switching the seed from a Fabry-Perot cavity laser diode to a distributed feedback (DFB) laser diode, timing jitter decreases from 16 ps to 6 ps. It also takes the laser an ultralong self-starting time (> 100 s), 3 order of magnitude longer than typical Er-doped or Yb-doped fiber lasers, to reach a steady harmonic mode-locking in some cases. These experimental evidences can contribute to a better understanding of Tm-doped fiber lasers.

  9. Electro-optical Tuning of Fabry-Perot Interferometers

    NASA Technical Reports Server (NTRS)

    Schwemmer, G. K.

    1986-01-01

    Compact unit operates much faster than conventional piezoelectric scanners. High voltage creates electric field in Pockels cell, changing refractive properties. Cell changes optical path length between mirrors without mechanically moving anything in gap. High voltage varied rapidly to scan interferometer. Voltage applied longitudinally or transversely, depending on type of Pockels cell. New electro-optic scanner scans given range in one-millionth time of piezoelectric scanner - tens to hundreds of nanoseconds per interferometer order. Also reducing size of interferometer.

  10. The Hawaii Imaging Fabry-Perot Interferometer (HIFI)

    NASA Technical Reports Server (NTRS)

    Bland, Jonathan; Cecil, Gerald; Tully, Brent

    1990-01-01

    At Mauna Kea Observatory, researchers conducted optical, imaging spectrophotometric studies of selected active galaxies using both the Canada-France-Hawaii 3.6m and University of Hawaii 2.2m telecopes (Tully, Bland and Cecil 1988). To maximize spatial resolution, researchers select galaxies independent of luminosity but known to possess interesting morphologies or high-velocity, extranuclear ionized gas (Walker 1968; Rubin and Ford 1968). They study both the large-scale patterns produced in IR-luminous, starburst systems (e.g., M82, NGC 253, NGC 6240) and those with compact, but spatially extended, circumnuclear, narrow line regions (e.g., M51, NGC 1068, NGC 4151). Current studies are restricted to the optical (SII), (NII) and (OIII) lines and the brightest Balmer recombination lines. These lines are, in principle, sufficient to constrain the dynamical structure and dominant excitation mechanism of the ionized component.

  11. Fabry-Perot MEMS Accelerometers for Advanced Seismic Imaging

    SciTech Connect

    Chisum, Brad

    2015-05-31

    This report summarizes the technical achievements that occurred over the duration of the project. On November 14th, 2014, Lumedyne Technologies Incorporated was acquired. As a result of the acquisition, the work toward seismic imaging applications was suspended indefinitely. This report captures the progress achieved up to that time.

  12. The GREGOR Fabry-Perot interferometer: status report and prospects

    NASA Astrophysics Data System (ADS)

    Puschmann, Klaus G.; Balthasar, Horst; Beck, Christian; Louis, Rohan E.; Popow, Emil; Seelemann, Thomas; Volkmer, Reiner; Woche, Manfred; Denker, Carsten

    2012-09-01

    The GREGOR Fabry-Ṕerot Interferometer (GFPI) is one of three first-light instruments of the German 1.5-meter GREGOR solar telescope at the Observatorio del Teide, Tenerife, Spain. The GFPI allows fast narrow-band imaging and post-factum image restoration. The retrieved physical parameters will be a fundamental building block for understanding the dynamic Sun and its magnetic field at spatial scales down to 50 km on the solar surface. The GFPI is a tunable dual-etalon system in a collimated mounting. It is designed for spectropolarimetric observations over the wavelength range from 530-860 nm with a theoretical spectral resolution of R ≍ 250,000. The GFPI is equipped with a full-Stokes polarimeter. Large-format, high-cadence CCD detectors with powerful computer hard- and software enable the scanning of spectral lines in time spans equivalent to the evolution time of solar features. The field-of-view of 50''×38'' covers a significant fraction of the typical area of active regions. We present the main characteristics of the GFPI including advanced and automated calibration and observing procedures. We discuss improvements in the optical design of the instrument and show first observational results. Finally, we lay out first concrete ideas for the integration of a second FPI, the Blue Imaging Solar Spectrometer, which will explore the blue spectral region below 530 nm.

  13. Resonant transmission and mode modulation of acoustic waves in H-shaped metallic gratings

    SciTech Connect

    Deng, Yu-Qiang; Fan, Ren-Hao; Zhang, Kun; Peng, Ru-Wen E-mail: dongxiang87@gmail.com; Qi, Dong-Xiang E-mail: dongxiang87@gmail.com

    2015-04-15

    In this work, we demonstrate that resonant full transmission of acoustic waves exists in subwavelength H-shaped metallic gratings, and transmission peaks can be efficiently tuned by adjusting the grating geometry. We investigate this phenomenon through both numerical simulations and theoretical calculations based on rigorous-coupled wave analysis. The transmission peaks are originated from Fabry-Perot resonances together with the couplings between the diffractive wave on the surface and the multiple guided modes in the slits. Moreover, the transmission modes can be efficiently tuned by adjusting the cavity geometry, without changing the grating thickness. The mechanism is analyzed based on an equivalent circuit model and verified by both the theoretical calculations and the numerical simulations. This research has potential application in acoustic-device miniaturization over a wide range of wavelengths.

  14. A tunable and switchable single-longitudinal-mode dual-wavelength fiber laser with a simple linear cavity.

    PubMed

    He, Xiaoying; Fang, Xia; Liao, Changrui; Wang, D N; Sun, Junqiang

    2009-11-23

    A simple linear cavity erbium-doped fiber laser based on a Fabry-Perot filter which consists of a pair of fiber Bragg gratings is proposed for tunable and switchable single-longitudinal-mode dual-wavelength operation. The single-longitudinal-mode is obtained by the saturable absorption of an unpumed erbium-doped fiber together with a narrow-band fiber Bragg grating. Under the high pump power (>166 mW) condition, the stable dual-wavelength oscillation with uniform amplitude can be realized by carefully adjusting the polarization controller in the cavity. Wavelength selection and switching are achieved by tuning the narrow-band fiber Bragg grating in the system. The spacing of the dual-wavelength can be selected at 0.20 nm (approximately 25.62 GHz), 0.22 nm (approximately 28.19 GHz) and 0.54 nm (approximately 69.19 GHz). PMID:19997420

  15. Ultralow noise and supermode suppression in an actively mode-locked external-cavity semiconductor diode ring laser.

    PubMed

    Depriest, C M; Yilmaz, T; Delfyett, P J; Etemad, S; Braun, A; Abeles, J

    2002-05-01

    We report what is to our knowledge the lowest phase and amplitude noise characteristics achieved to date in a 10-GHz pulse train produced by the active harmonic mode locking of an external-cavity semiconductor diode laser. Supermode noise has also been suppressed below -140 dBc/Hz by use of a high-finesse fiber Fabry-Perot etalon as an intracavity filter. Novel noise sideband measurements that extend to the Nyquist offset frequency suggest a significant advantage in using harmonic (rather than fundamental) mode locking to produce ultralow-noise pulse trains, owing to the relationship between the noise roll-off frequency and the fundamental cavity frequency. PMID:18007910

  16. Mode locking of an all-fiber laser by acousto-optic superlattice modulation.

    PubMed

    Cuadrado-Laborde, C; Diez, A; Delgado-Pinar, M; Cruz, J L; Andrés, M V

    2009-04-01

    Active mode locking of an erbium-doped all-fiber laser with a Bragg-grating-based acousto-optic modulator is demonstrated. The fiber Bragg grating was acoustically modulated by a standing longitudinal elastic wave, which periodically modulates the sidebands at twice the acoustic frequency. The laser has a Fabry-Perot configuration in which cavity loss modulation is achieved by tuning the output fiber Bragg grating to one of the acoustically induced sidebands. Optical pulses at 9 MHz repetition rate, 120 mW peak power, and 780 ps temporal width were obtained. The output results to be stable and has a timing jitter below 40 ps. The measured linewidth, 2.8 pm, demonstrates that these pulses are transform limited. PMID:19340236

  17. Power enhancement of burst-mode UV pulses using a doubly-resonant optical cavity

    DOE PAGESBeta

    Rahkman, Abdurahim; Notcutt, Mark; Liu, Yun

    2015-11-24

    We report a doubly-resonant enhancement cavity (DREC) that can realize a simultaneous enhancement of two incoming laser beams at different wavelengths and different temporal structures. The double-resonance condition is theoretically analyzed and different DREC locking methods are experimentally investigated. Simultaneous locking of a Fabry-Perot cavity to both an infrared (IR, 1064 nm) and its frequency tripled ultraviolet (UV, 355 nm) pulses has been demonstrated by controlling the frequency difference between the two beams with a fiber optic frequency shifter. The DREC technique opens a new paradigm in the applications of optical cavities to power enhancement of burst-mode lasers with arbitrarymore » macropulse width and repetition rate.« less

  18. Single-section mode-locked 1.55-μm InAs/InP quantum dot lasers grown by MOVPE

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Luo, Shuai; Ji, Hai-Ming; Liu, Song-Tao; Lu, Dan; Ji, Chen; Yang, Tao

    2016-07-01

    We report on ultra-short pulse single-section mode-locked lasers emitting at 1.55 μm, based on self-assembled InAs/InGaAsP/InP quantum dot active regions grown by metal-organic vapor phase epitaxy (MOVPE). For a 1.5-mm-long Fabry-Perot laser, mode-locking at a repetition rate of 29.8 GHz with pulse duration of 855 fs is obtained without any external pulse compression techniques. The mode-beating exhibits a narrow RF linewidth less than 30 kHz, and a wide frequency tuning range up to 73 MHz can be achieved by simply changing the injection current. Moreover, a higher repetition rate of 55.6 GHz and the transform limited Gaussian-pulse with the 707 fs pulse duration are achieved from a device with a shorter cavity length of 0.8 mm.

  19. Timing characterization of 100 GHz passively mode-locked discrete mode laser diodes.

    PubMed

    Bitauld, David; Osborne, Simon; O'Brien, Stephen

    2011-07-18

    We report on the characterization of the timing stability of passively mode-locked discrete mode diode laser sources. These are edge-emitting devices with a spatially varying refractive index profile for spectral filtering. Two devices with a mode-locking frequency of 100 GHz are characterized. The first device is designed to support a comb of six modes and generates near Fourier limited 1.9 ps pulses. The second supports four primary modes resulting in a sinusoidal modulation of the optical intensity. Using a cross-correlation technique, we measured a 20 fs pulse to pulse timing jitter for the first device, while, for the second device, a mode-beating (RF) linewidth of 1 MHz was measured using heterodyne mixing in a semiconductor optical amplifier. Comparison of these results with those obtained for an equivalent Fabry-Perot laser indicates that the spectral filtering mechanism employed does not adversely affect the timing properties of these passively mode-locked devices. PMID:21934760

  20. Single-mode deep-UV light source at 191.7  nm by seventh-harmonic generation of a high-power, Q-switched, injection-locked 1342  nm Nd:YVO₄ laser.

    PubMed

    Koch, Peter; Bartschke, Juergen; L'huillier, Johannes A

    2016-03-10

    A single-mode deep-UV laser at 191.7 nm is demonstrated by seventh-harmonic generation of a single-mode 1342 nm Nd:YVO₄ laser. The fundamental laser is an injection-locked, Q-switched ring laser at 10 kHz pulse repetition frequency. By cascaded second-harmonic and sum-frequency generation, an average power of 230 mW at 191.7 nm is achieved. At 185 mW, the setup features a Gaussian beam with a beam quality factor of M²<1.5. A pulse duration of 9 ns with pulse energy fluctuations of σ<3% is obtained. The long-term spectral width is approximately 240 MHz full width at half-maximum, measured with a homemade scanning confocal Fabry-Perot interferometer. This work opens possibilities in fiber Bragg grating production, allowing the inscription of long gratings. PMID:26974775

  1. Silicon-Based Optical Waveguide Modulators and Mode-Locked TITANIUM:SAPPHIRE Laser Dynamics.

    NASA Astrophysics Data System (ADS)

    Liu, Yanming

    Single-mode deeply-etched silicon-germanium/silicon (SiGe/Si) rib waveguides have been fabricated and characterized with low propagation losses and strong guiding. Such a waveguide structure is suitable for bent waveguide devices and provides efficient field overlapping, which is needed for devices requiring strong nonlinear coupling. Using the deeply-etched waveguide technique, we have fabricated Si/SiGe/Si Mach-Zehnder modulators, which show strong single-mode waveguiding but only small electro -optic modulation has been observed so far. Another Si modulator is a Fabry-Perot interferometer. We have demonstrated all-optical modulation at 1.3 μm and 1.5 μm in the reflection mode of the asymmetric Si Fabry-Perot interferometer by a control light beam at 0.85 mum. Both switching -on and switching-off operations are demonstrated by transversely moving the etalon. In addition, we have analyzed that silicon carbide (SiC) waveguides exhibit low loss for fundamental modes and high loss for higher-order modes at wavelengths from 0.6 to 1.6 mum. Electro-optic modulation is analyzed with a SiC-on-SiO_2 waveguide structure. Such modulators are potential candidates for high-speed electro-optic modulation for silicon-based optoelectronic devices. Furthermore, we studied the dynamics of a Kerr -lens self-mode-locked Ti:sapphire laser, generating 40 -fs pulses and tunable from 750 nm to 920 nm. A moving mirror was first proposed as a starting mechanism for self -mode locking and the starting dynamics is studied in detail. In addition, periodic pulse-train amplitude modulations have been observed and studied. The observation of the amplitude modulation further confirms the dynamic Kerr-lens self -focusing model of self-mode locking in Ti:sapphire lasers and helps us better understand the laser performance. Furthermore, dual-wavelength mode locking is observed over a broad tuning range, which would be very useful for two-wavelength subpicosecond optical sampling, such as pump

  2. High-sensitivity three-mode optomechanical transducer

    SciTech Connect

    Zhao, C.; Fang, Q.; Susmithan, S.; Miao, H.; Ju, L.; Fan, Y.; Blair, D.; Hosken, D. J.; Munch, J.; Veitch, P. J.; Slagmolen, B. J. J.

    2011-12-15

    Three-mode optomechanical interactions have been predicted to allow the creation of very high sensitivity transducers in which very strong optical self-cooling and strong optomechanical quantum entanglement are predicted. Strong coupling is achieved by engineering a transducer in which both the pump laser and a single signal sideband frequency are resonantly enhanced. Here we demonstrate that very high sensitivity can be achieved in a very simple system consisting of a Fabry-Perot cavity with CO{sub 2} laser thermal tuning. We demonstrate a displacement sensitivity of {approx}1x10{sup -17} m/{radical}(Hz), which is sufficient to observe a thermally excited acoustic mode in a 5.6 kg sapphire mirror with a signal-to-noise ratio of more than 20 dB. It is shown that a measurement sensitivity of {approx}2x10{sup -20} m/{radical}(Hz) limited by the quantum shot noise is achievable with optimization of the cavity parameters.

  3. Investigation of fade-out mechanism of resonance modes in optical transmission using stacked metallic sub-wavelength slit arrays

    NASA Astrophysics Data System (ADS)

    Tokuda, Yasunori; Sakaguchi, Koichiro; Takano, Keisuke; Fukushima, Takehiro; Hangyo, Masanori

    2014-06-01

    We investigated the behavior of optical transmission modes in stacked systems composed of metallic sub-wavelength slit-array plates separated by air gaps using simulations based on the finite-difference time-domain method. In double- and triple-stacked structures without a lateral displacement between the plates, the Fabry-Perot-like waveguide resonance modes are classified according to whether the resonance frequencies depend strongly on the air-gap spacing. By introducing a lateral displacement of the plates for both double- and triple-stacked structures, we found that the modes of one category, which were barely affected by changes in the air-gap spacing without the displacement, vary their resonance frequencies considerably when the optical paths are extremely narrow within the air-gap regions and, then, rapidly but continuously attenuate through mixing with the modes of the other category. We demonstrate that this marked behavior results from a manifest distortion in the spatial distribution of the electromagnetic fields for the modes of the first category, induced by the boundary condition at the slit ends changing from open-open to open-closed. Although all resonance modes in the two-tier system disappear continuously through cooperative mode mixing, some modes remain in the three-tier system that vanishes independently and discontinuously as the optical paths become blocked. These findings are indispensable for practical applications and for gaining a deeper understanding of this type of metamaterial.

  4. Plasmonic CROWs for Tunable Dispersion and High Quality Cavity Modes

    PubMed Central

    Wood, John J.; Lafone, Lucas; Hamm, Joachim M.; Hess, Ortwin; Oulton, Rupert F.

    2015-01-01

    Coupled resonator optical waveguides (CROWs) have the potential to revolutionise integrated optics, to slow-light and enhance linear and non-linear optical phenomena. Here we exploit the broad resonances and subwavelength nature of localized surface plasmons in a compact CROW design where plasmonic nanoparticles are side coupled to a dielectric waveguide. The plasmonic CROW features a low loss central mode with a highly tunable dispersion, that avoids coupling to the plasmonic nanoparticles close to the band-edge. We show that this low loss character is preserved in finite plasmonic CROWs giving rise to Fabry-Perot type resonances that have high quality factors of many thousands, limited only by the CROW length. Furthermore we demonstrate that the proposed CROW design is surprisingly robust to disorder. By varying the geometric parameters one can not only reduce the losses into dissipative or radiative channels but also control the outcoupling of energy to the waveguide. The ability to minimise loss in plasmonic CROWs while maintaining dispersion provides an effective cavity design for chip-integrated laser devices and applications in linear and non-linear nano-photonics. PMID:26631579

  5. Wavelength-tunable 10 GHz actively harmonic mode-locked fiber laser based on semiconductor optical amplifier

    NASA Astrophysics Data System (ADS)

    Mao, Yan; Tong, Xinglin; Wang, Zhiqiang; Zhan, Li; Hu, Pan; Chen, Liang

    2015-12-01

    We demonstrate a widely wavelength-tunable actively mode-locked fiber laser based on semiconductor optical amplifier. Beneficiating from the actively mode-locking operation and the wavelength-tunable characteristics of a Fabry-Perot filter, different harmonic mode-locking orders, from the fundamental mode-locking order (18.9 MHz) to the 520th order (9.832 GHz), can be easily achieved. The spectral bandwidth corresponding to the fundamental repetition rate is 0.12 nm with the pulse duration of 9.8 ns, leading to the TBP value of 146, which is about 460 times the transform-limited value for soliton pulse. The highest repetition rate of the mode-locked pulses we obtained is 9.832 GHz, with a signal-to-noise ratio up to 50 dB. The theoretical transform-limited pulse duration is 21 ps. Meanwhile, the central wavelength can be continuously tuned over 43.4 nm range (1522.8-1566.2 nm). The higher repetition rate and the widely tuning wavelength range make the fiber laser to own great potential and promising prospects in areas such as optical communication and photonic analog-to-digital conversion (ADC).

  6. Laser-diode pumped self-mode-locked praseodymium visible lasers with multi-gigahertz repetition rate.

    PubMed

    Zhang, Yuxia; Yu, Haohai; Zhang, Huaijin; Di Lieto, Alberto; Tonelli, Mauro; Wang, Jiyang

    2016-06-15

    We demonstrate efficient laser-diode pumped multi-gigahertz (GHz) self-mode-locked praseodymium (Pr3+) visible lasers with broadband spectra from green to deep red for the first time to our knowledge. With a Pr3+-doped GdLiF4 crystal, stable self-mode-locked visible pulsed lasers at the wavelengths of 522 nm, 607 nm, 639 nm, and 720 nm have been obtained with the repetition rates of 2.8 GHz, 3.1 GHz, 3.1 GHz, and 3.0 GHz, respectively. The maximum output power was 612 mW with the slope efficiency of 46.9% at 639 nm. The mode-locking mechanism was theoretically analyzed. The stable second-harmonic mode-locking with doubled repetition frequency was also realized based on the Fabry-Perot effect formed in the laser cavity. In addition, we find that the polarization directions were turned with lasing wavelengths. This work may provide a new way for generating efficient ultrafast pulses with high- and changeable-repetition rates in the visible range. PMID:27304265

  7. Optical coherence tomography for imaging of subpleural alveolar structure using a Fourier domain mode locked laser

    NASA Astrophysics Data System (ADS)

    Kirsten, Lars; Walther, Julia; Cimalla, Peter; Gaertner, Maria; Meissner, Sven; Koch, Edmund

    2011-06-01

    Optical coherence tomography (OCT) is a noninvasive imaging modality generating cross sectional and volumetric images of translucent samples. In Fourier domain OCT (FD OCT), the depth profile is calculated by a fast Fourier transformation of the interference spectrum, providing speed and SNR advantage and thus making FD OCT well suitable in biomedical applications. The interference spectrum can be acquired spectrally resolved in spectral domain OCT or time-resolved in optical frequency domain imaging (OFDI). Since OCT images still suffer from motion artifacts, especially under in vivo conditions, increased depth scan rates are required. Therefor, the principle of Fourier domain mode locking has been presented by R. Huber et al. circumventing the speed limitations of conventional FD OCT systems. In FDML lasers, a long single mode fiber is inserted in the ring resonator of the laser resulting in an optical round trip time of a few microseconds. Sweeping the wavelength synchronously by a tunable Fabry-Perot filter can provide wavelength sweeps with repetition rates up to a few MHz used for OFDI. Imaging of subpleural lung tissue for investigation of lung dynamics and its elastic properties is a further biomedical application demanding high-speed OCT imaging techniques. For the first time, the visualization of subpleural alveolar structures of a rabbit lung is presented by the use of an FDML-based OCT system enabling repetition rates of 49.5 kHz and 122.6 kHz, respectively.

  8. Characterization and modeling of a dispersive cavity mode-locked erbium-doped fiber laser

    NASA Astrophysics Data System (ADS)

    Hayduk, Michael J.; Haus, Joseph W.; Kaechele, Walter; Shaulov, Gary; Teegarden, Kenneth J.; Theimer, James P.; Wicks, Gary W.

    1999-07-01

    A novel, compact, polarization insensitive mode-locked erbium-doped fiber laser producing 2 ps pulses was constructed. The laser was passively mode-locked using a 75 period InGaAs/InAlAs multiple quantum well saturable absorber grown lattice matched on an InP substrate. The laser was constructed in a linear cavity, Fabry-Perot configuration with the saturable absorber at one end of the cavity and a chirped fiber Bragg grating at the other end. The output pulses are chirped and were further characterized by varying their energies and propagating them down different lengths of standard optical fiber. The laser cavity was modeled using the complex Ginzburg-Landau equation derived under the condition that nonlinear changes to the pulse must be small per round-trip. The contribution of the semiconductor saturable absorber was modeled using a two-level rate equation. The free carrier absorption within the semiconductor contributes to the refractive index which was shown numerically to result in an additional frequency shift. The modeling is in close agreement with the pulse propagation experiments.

  9. Steady-state entanglement and normal-mode splitting in an atom-assisted optomechanical system with intensity-dependent coupling

    SciTech Connect

    Barzanjeh, Sh.; Naderi, M. H.; Soltanolkotabi, M.

    2011-12-15

    In this paper, we study theoretically bipartite and tripartite continuous variable entanglement as well as normal-mode splitting in a single-atom cavity optomechanical system with intensity-dependent coupling. The system under consideration is formed by a Fabry-Perot cavity with a thin vibrating end mirror and a two-level atom in the Gaussian standing wave of the cavity mode. We first derive the general form of the Hamiltonian describing the tripartite intensity-dependent atom-field-mirror coupling due to the presence of the cavity mode structure. We then restrict our treatment to the first vibrational sideband of the mechanical resonator and derive a tripartite atom-field-mirror Hamiltonian. We show that when the optical cavity is intensely driven, one can generate bipartite entanglement between any pair in the tripartite system and that, due to entanglement sharing, atom-mirror entanglement is efficiently generated at the expense of optical-mechanical and optical-atom entanglement. We also find that in such a system, when the Lamb-Dicke parameter is large enough, one can simultaneously observe the normal mode splitting into three modes.

  10. Echelle spectrograph calibration with a frequency comb based on a harmonically mode-locked fiber laser: a proposal.

    PubMed

    McFerran, J J

    2009-05-10

    Details for constructing an astronomical frequency comb suitable as a wavelength reference for échelle spectrographs associated with optical telescopes are outlined. The source laser for the frequency comb is a harmonically mode-locked fiber laser with a central wavelength of 1.56 microm. The means of producing a repetition rate greater than 7 GHz and a peak optical power of approximately 8 kW are discussed. Conversion of the oscillator light into the visible can occur through a two-step process of (i) nonlinear conversion in periodically poled lithium niobate and (ii) spectral broadening in photonic crystal fiber. While not necessarily octave spanning in spectral range to permit the use of an f -to- 2f interferometer for offset frequency control, the frequency comb can be granted accuracy by linking the mode spacing and a comb tooth to separate frequency references. The design avoids the use of a Fabry-Perot cavity to increase the mode spacing of the frequency comb; however, the level of supermode suppression and sideband asymmetry in the fiber oscillator and in the subsequent frequency conversion stages are aspects that need to be experimentally tested. PMID:19424399

  11. Echelle spectrograph calibration with a frequency comb based on a harmonically mode-locked fiber laser: a proposal

    SciTech Connect

    McFerran, J. J.

    2009-05-10

    Details for constructing an astronomical frequency comb suitable as a wavelength reference for echelle spectrographs associated with optical telescopes are outlined. The source laser for the frequency comb is a harmonically mode-locked fiber laser with a central wavelength of 1.56 {mu}m. The means of producing a repetition rate greater than 7 GHz and a peak optical power of {approx}8 kW are discussed. Conversion of the oscillator light into the visible can occur through a two-step process of (i) nonlinear conversion in periodically poled lithium niobate and (ii) spectral broadening in photonic crystal fiber. While not necessarily octave spanning in spectral range to permit the use of an f -to- 2f interferometer for offset frequency control, the frequency comb can be granted accuracy by linking the mode spacing and a comb tooth to separate frequency references. The design avoids the use of a Fabry-Perot cavity to increase the mode spacing of the frequency comb; however, the level of supermode suppression and sideband asymmetry in the fiber oscillator and in the subsequent frequency conversion stages are aspects that need to be experimentally tested.

  12. Single Mode, Extreme Precision Doppler Spectrographs

    NASA Astrophysics Data System (ADS)

    Schwab, Christian; Leon-Saval, Sergio G.; Betters, Christopher H.; Bland-Hawthorn, Joss; Mahadevan, Suvrath

    2014-04-01

    The `holy grail' of exoplanet research today is the detection of an earth-like planet: a rocky planet in the habitable zone around a main-sequence star. Extremely precise Doppler spectroscopy is an indispensable tool to find and characterize earth-like planets; however, to find these planets around solar-type stars, we need nearly one order of magnitude better radial velocity (RV) precision than the best current spectrographs provide. Recent developments in astrophotonics (Bland-Hawthorn & Horton 2006, Bland-Hawthorn et al. 2010) and adaptive optics (AO) enable single mode fiber (SMF) fed, high resolution spectrographs, which can realize the next step in precision. SMF feeds have intrinsic advantages over multimode fiber or slit coupled spectrographs: The intensity distribution at the fiber exit is extremely stable, and as a result the line spread function of a well-designed spectrograph is fully decoupled from input coupling conditions, like guiding or seeing variations (Ihle et al. 2010). Modal noise, a limiting factor in current multimode fiber fed instruments (Baudrand & Walker 2001), can be eliminated by proper design, and the diffraction limited input to the spectrograph allows for very compact instrument designs, which provide excellent optomechanical stability. A SMF is the ideal interface for new, very precise wavelength calibrators, like laser frequency combs (Steinmetz et al. 2008, Osterman et al. 2012), or SMF based Fabry-Perot Etalons (Halverson et al. 2013). At near infrared wavelengths, these technologies are ready to be implemented in on-sky instruments, or already in use. We discuss a novel concept for such a spectrograph.

  13. Analysis of dual-mode lasing characteristics in a 1310-nm optically injected quantum dot distributed feedback laser

    NASA Astrophysics Data System (ADS)

    Raghunathan, R.; Olinger, J.; Hurtado, A.; Grillot, F.; Kovanis, V.; Lester, L. F.

    2015-03-01

    Recent work has shown the Quantum Dot (QD) material system to be well-suited to support dual-mode lasing. In particular, optical injection from a master laser (ML) into the residual Fabry-Perot (FP) modes of a 1310 nm Quantum Dot Distributed Feedback (QD-DFB) laser has been recently demonstrated to offer a highly reliable platform for stable dual-mode lasing operation. External controls on the ML, such as operating temperature and bias current, can be used to precisely adjust the spacing between the two lasing modes. This tunability of modeseparation is very promising for a range of applications requiring the generation of microwave, millimeter wave and terahertz signals. Considering the versatility and utility of such a scheme, it is imperative to acquire a deeper understanding of the factors that influence the dual-mode lasing process, in order to optimize performance. Toward this end, this paper seeks to further our understanding of the optically-injected dual-mode lasing mechanism. For fixed values of optical power injected into each FP residual mode and wavelength detuning, the dual-mode lasing characteristics are analyzed with regard to important system parameters such as the position and the intensity of the injected residual mode (relative to the Bragg and the other residual FP modes of the device) for two similarly-fabricated QD-DFBs. Results indicate that for dual mode lasing spaced less than 5 nm apart, the relative intensity of the injected FP mode and intracavity noise levels are critical factors in determining dual mode lasing behavior. Insight into the dual-mode lasing characteristics could provide an important design guideline for the master and QD-DFB slave laser cavities.

  14. Programmable high speed (~1MHz) Vernier-mode-locked frequency-swept laser for OCT imaging

    NASA Astrophysics Data System (ADS)

    Kourogi, M.; Kawamura, Y.; Yasuno, Y.; Oyaizu, H.; Miyao, H.; Imai, K.

    2008-02-01

    We propose and demonstrate a programmable high-speed, frequency-swept laser for swept-source optical coherence tomography (SS-OCT). This new technique is based on Vernier effect of two pieces of Fabry-Perot electro-optic modulators. This technique offers a non-mechanical optical filter with high resolution and wide tuning range. By applying it to a Fourier domain mode-locked laser, such sweeps are generated. The Vernier effect filter can be modulated by arbitrary wave forms, thus this laser source can eliminate the rescaling process which is the main bottle-neck of the operation time in SS-OCT by applying frequency sweep to equidistant spacing in frequency. Effective repetition frequencies of 100kHz~1MHz are demonstrated with a tuning range of 17THz (140nm) at 1550nm center wavelength. OCT imaging of in vivo human sweat duct with A-line rate of 100kHz and 300kHz are also demonstrated. The resolution of 12μm~ is realized without rescaling process. We present an analysis which suggests design approaches for optimization performance.

  15. Compact magnetograph

    NASA Technical Reports Server (NTRS)

    Title, A. M.; Gillespie, B. A.; Mosher, J. W.

    1982-01-01

    A compact magnetograph system based on solid Fabry-Perot interferometers as the spectral isolation elements was studied. The theory of operation of several Fabry-Perot systems, the suitability of various magnetic lines, signal levels expected for different modes of operation, and the optimal detector systems were investigated. The requirements that the lack of a polarization modulator placed upon the electronic signal chain was emphasized. The PLZT modulator was chosen as a satisfactory component with both high reliability and elatively low voltage requirements. Thermal control, line centering and velocity offset problems were solved by a Fabry-Perot configuration.

  16. Fiber pressure sensors based on periodical mode coupling effects

    NASA Astrophysics Data System (ADS)

    Lotem, Haim; Wang, Wen C.; Wang, Michael; Schaafsma, David; Skolnick, Bob; Grebel, Haim

    2005-05-01

    Fiber optic sensor technology offers the possibility of implementing low weight, high performance and cost effective health and damage assessment for infrastructure elements. Common fiber sensors are based on the effect of external action on the spectral response of a Fabry-Perot or a Bragg grating section, or on the modal dynamics in multimode (MM) fiber. In the latter case, the fiber itself acts as the sensor, giving it the potential for large range coverage. We were interested in this type of sensor because of its cost advantage in monitoring structural health. In the course of the research, a new type of a rugged modal filter device, based on off-center splicing, was developed. This device, in combination with a MM fiber, was found to be a potential single point-pressure sensing device. Additionally, by translating the pressing point along a MM sensing fiber with a constant load and speed, a sinusoidal intensity modulation was observed. This harmonic behavior, during load translation, is explained by the theory of mode coupling and dispersion. The oscillation period, L~0.43. mm, obtained at 980 nm in a Corning SMF-28 fiber, corresponds to the wavevector difference, Db, between the two-coupled modes, by L = 2p/Db. An additional outcome of the present research is the observation that the response of the loaded MM fiber is strongly dependent on the polarization state of the light traveling along the MM fiber due to different response of the modes to polarization active elements. Our main conclusions are that in MM fiber optic sensor design, special cautions need to be taken in order to stabilize the system, and that the sensitivity along a MM fiber sensor is periodic with a period of ~ 0.4 - 0.5 mm, depending on various fiber parameters and excited modes.

  17. Generation of Q-switched mode locking controlled rectangular noise-like soliton bunching in a Tm-doped fiber laser.

    PubMed

    Qiao, Tian; Chen, Weicheng; Lin, Wei; Yang, Zhongmin

    2016-08-01

    We report on an interesting phenomenon of the combination of Q-switched mode locked pulses (QSMLP) and rectangular noise-like pulses (RNLP) as a unit in a Tm-doped ring fiber laser which contains a Fabry-Perot (F-P) subcavity based on the nonlinear polarization evolution (NPE) technique. The RNLP and QSMLP are independently generated in the ring cavity and F-P subcavity, respectively. A notable characteristic is that the physical parameters of RNLP, e.g. repetition rate and pulse duration, are controlled by QSMLP. Thus, they form as a composite bunching, which is termed as "Q-switched mode locking controlled rectangular noise-like soliton bunching (QRNSB)". Further investigation shows that the existence of QRNSB only occurs in high pumping conditions, while both fundamental mode-locking pulses and the coexistence of QSMLP and solitons are achieved in low pumping ones. Our work can enrich the understanding of the nonlinear dynamics in fiber lasers. PMID:27505838

  18. Passively stabilized 215-W monolithic CW LMA-fiber laser with innovative transversal mode filter

    NASA Astrophysics Data System (ADS)

    Stutzki, Fabian; Jauregui, Cesar; Voigtländer, Christian; Thomas, Jens U.; Limpert, Jens; Nolte, Stefan; Tünnermann, Andreas

    2010-02-01

    We report on the development of a high power monolithic CW fiber oscillator with an output power of 215 W in a 20μm core diameter few-mode Large Mode Area fiber (LMA). The key parameters for stable operation are reviewed. With these optimizations the root mean square of the output power fluctuations can be reduced to less than 0.5 % on a timescale of 20 s, which represents an improvement of more than a factor 5 over a non-optimized fiber laser. With a real-time measurement of the mode content of the fiber laser it can be shown that the few-mode nature of LMA fibers is the main factor for the residual instability of our optimized fiber laser. The root of the problem is that Fiber Bragg Gratings (FBGs) written in multimode fibers exhibit a multi-peak reflexion spectrum in which each resonance corresponds to a different transversal mode. This reflectivity spectrum stimulates multimode laser operation, which results in power and pointing instabilities due to gain competition between the different transversal modes . To stabilize the temporal and spatial behavior of the laser output, we propose an innovative passive in-fiber transversal mode filter based on modified FBG-Fabry Perot structure. This structure provides different reflectivities to the different transversal modes according to the transversal distribution of their intensity profile. Furthermore, this structure can be completely written into the active fiber using fs-laser pulses. Moreover, this concept scales very well with the fiber core diameter, which implies that there is no performance loss in fibers with even larger cores. In consequence this structure is inherently power scalable and can, therefore, be used in kW-level fiber laser systems.

  19. Optimization of a Fabry-Perot Q-switch fiber optic laser

    NASA Astrophysics Data System (ADS)

    Armas Rivera, Ivan; Beltrán Pérez, Georgina; Kuzin, Evgene; Castillo Mixcóatl, Juan; Muñoz Aguirre, Severino

    2013-11-01

    Optical fiber Q-Switch lasers have been used in a variety of application areas in science as well as in industry owing to their multiple characteristics. A possible application is that owing to their high output power they can be used as pumping sources for supercontinuum generation. Such source can be employed in optical coherence tomography (OCT) focused to dermatology. Therefore it is important to develop sources with emission wavelength that are not injurious to human skin. In the present work erbium doped fiber (EDF) was used owing that its emission wavelength (1550 nm) is adequate for this purpose. The most efficient way of achieving high power in a Q-Switch laser is optimizing all the parameters involved in the pulses generation, such as pumping power, active medium length and modulation frequency. The results show that using a fiber length of 7 meters is possible to get 10 μJ of energy, a peak power of 140 W, an average power of 27.5mW with temporal widths of 500 ns. The laser uses an acousto-optic device to modulate the internal loses inside the cavity. As highly reflecting mirrors, a Sagnac Interferometer and a Fiber Bragg Grating was employed.

  20. Musical instrument recordings made with a fiber Fabry-Perot cavity: photonic guitar pickup.

    PubMed

    Ballard, Nicholas; Paz-Soldan, Daniel; Kung, Peter; Loock, Hans-Peter

    2010-04-10

    A 1 cm long, low-finesse fiber-optic cavity was used as a transducer for the vibrations of the soundboard of an acoustic guitar and of a violin. The reflected light is detected and then amplified and recorded using conventional audio instrumentation. The fiber-optic pickup is found to have a high response range in both amplitude (up to 100 microm displacement) and audio frequency (DC to 20 kHz) and good linearity up to a displacement of 225 microm. The audio noise is found to arise from the fiber-optic cables and, to a lesser extent, from the laser and laser driver. PMID:20390023

  1. Reduced near-infrared absorption using ultra-thin lossy metals in Fabry-Perot cavities

    PubMed Central

    Kocer, Hasan; Butun, Serkan; Li, Zhongyang; Aydin, Koray

    2015-01-01

    We show that a triple-layer metal-insulator-metal (MIM) structure has spectrally selective IR absorption, while an ultra-thin metal film has non-selective absorption in the near infrared wavelengths. Both sub-wavelength scale structures were implemented with an ultra-thin 6 nm Cr top layer. MIM structure was demonstrated to have near perfect absorption at λ = 1.2 μm and suppressed absorption at λ = 1.8 μm in which experimental and simulated absorptions of the thin Cr film are even higher than the MIM. Occurrence of absorption peaks and dips in the MIM were explained with the electric field intensity localization as functions of both the wavelength and the position. It has been shown that the power absorption in the lossy material is a strong function of the electric field intensity i.e. the more the electric field intensity, the more the absorption and vice versa. Therefore, it is possible to engineer IR emissive properties of these ultra-thin nanocavities by controlling the electric field localization with proper designs. PMID:25640732

  2. Monolithically integrated low linewidth comb source using gain switched slotted Fabry-Perot lasers.

    PubMed

    Alexander, J K; Morrissey, P E; Yang, H; Yang, M; Marraccini, P J; Corbett, B; Peters, F H

    2016-04-18

    A monolithically integrated low linewidth optical comb is demonstrated by gain switching of a three-section laser device. The device consists of a slave and master section separated by a shared slotted mirror section. Wavelength tunability has been demonstrated by varying the electrical bias of each section. The number of comb lines is shown to almost double with the addition of optical injection from the master section into the slave. The unmodulated device has a full width half max linewidth of ∼ 500 kHz, while the comb line set were measured to be ∼ 600 kHz, with little degradation as a result of gain switching. The FSR (free spectral range) of the demonstrated comb is 4 GHz, which is tunable within the bandwidth of the device, with a central wavelength of 1580.3 nm. PMID:27137237

  3. Wavelength-selective orbital-angular-momentum beam generation using MEMS tunable Fabry-Perot filter.

    PubMed

    Paul, Sujoy; Lyubopytov, Vladimir S; Schumann, Martin F; Cesar, Julijan; Chipouline, Arkadi; Wegener, Martin; Küppers, Franko

    2016-07-15

    We demonstrate an on-chip device capable of wavelength-selective generation of vortex beams, which is realized by a spiral phase plate integrated onto a microelectromechanical system (MEMS) tunable filter. This vortex MEMS filter, being capable of functioning simultaneously in both wavelength and orbital-angular-momentum (OAM) domains at the 1550 nm wavelength regime, is considered as a compact, robust, and cost-effective solution for simultaneous OAM- and wavelength-division multiplexed optical communications. The experimental OAM spectra for azimuthal orders 1, 2, and 3 show an OAM state purity >92% across a wavelength range of more than 30 nm. PMID:27420507

  4. Reduced near-infrared absorption using ultra-thin lossy metals in Fabry-Perot cavities.

    PubMed

    Kocer, Hasan; Butun, Serkan; Li, Zhongyang; Aydin, Koray

    2015-01-01

    We show that a triple-layer metal-insulator-metal (MIM) structure has spectrally selective IR absorption, while an ultra-thin metal film has non-selective absorption in the near infrared wavelengths. Both sub-wavelength scale structures were implemented with an ultra-thin 6 nm Cr top layer. MIM structure was demonstrated to have near perfect absorption at λ = 1.2 μm and suppressed absorption at λ = 1.8 μm in which experimental and simulated absorptions of the thin Cr film are even higher than the MIM. Occurrence of absorption peaks and dips in the MIM were explained with the electric field intensity localization as functions of both the wavelength and the position. It has been shown that the power absorption in the lossy material is a strong function of the electric field intensity i.e. the more the electric field intensity, the more the absorption and vice versa. Therefore, it is possible to engineer IR emissive properties of these ultra-thin nanocavities by controlling the electric field localization with proper designs. PMID:25640732

  5. Highly directive Fabry-Perot leaky-wave nanoantennas based on optical partially reflective surfaces

    SciTech Connect

    Lorente-Crespo, M.; Mateo-Segura, C.

    2015-05-04

    Nanoantennas enhance the conversion between highly localized electromagnetic fields and far-field radiation. Here, we investigate the response of a nano-patch partially reflective surface backed with a silver mirror to an optical source embedded at the centre of the structure. Using full wave simulations, we demonstrate a two orders of magnitude increased directivity compared to the isotropic radiator, 50% power confinement to a 13.8° width beam and a ±16 nm bandwidth. Our antenna does not rely on plasmonic phenomena thus reducing non-radiative losses and conserving source coherence.

  6. Compact large-aperture Fabry-Perot interferometer modules for gas spectroscopy at mid-IR

    NASA Astrophysics Data System (ADS)

    Kantojärvi, Uula; Varpula, Aapo; Antila, Tapani; Holmlund, Christer; Mäkynen, Jussi; Näsilä, Antti; Mannila, Rami; Rissanen, Anna; Antila, Jarkko; Disch, Rolf J.; Waldmann, Torsten A.

    2014-03-01

    VTT has developed Fabry-Pérot Interferometers (FPI) for visible and infrared wavelengths since 90's. Here we present two new platforms for mid-infrared gas spectroscopy having a large optical aperture to provide high optical throughput but still enabling miniaturized instrument size. First platform is a tunable filter that replaces a traditional filter wheel, which operates between wavelengths of 4-5 um. Second platform is for correlation spectroscopy where the interferometer provides a comb-like transmission pattern mimicking absorption of diatomic molecules at the wavelength range of 4.7-4.8 um. The Bragg mirrors have 2-4 thin layers of polysilicon and silicon oxide.

  7. Study on demodulation algorithm of fiber optic Fabry-Perot sensors based on spectrum adjusting

    NASA Astrophysics Data System (ADS)

    Zhang, Wentao; Dai, Jingyun; Sun, Baochen; Du, Yanliang

    2007-11-01

    This paper aims at proposing a modified algorithm based on spectrum adjusting. The theoretical analysis of the error between the real light source spectrum and the Gaussian spectrum is presented. The hardware of the demodulation system is introduced, including the coupler, collimation lens, volume phase grating, focus lens, CCD array, A/D card, and PC. The modified algorithm will adjust the interferometric spectrum of the sensor by getting rid of the effect of the light source spectrum. Experiment was carried out to test the performance of the demodulation system. It can be found from the result that the algorithm has improved the accuracy of the demodulation system significantly. The demodulation accuracy for the strain sensor is better than 0.5 microstrain.

  8. Study on monolithically integration miniaturized spectral imager by Fabry-Perot with Bragg stack

    NASA Astrophysics Data System (ADS)

    Liu, Shuyang; Zhou, Tao; Jia, Xiaodong; Cui, Hushan; Huang, Chengjun

    2016-01-01

    To break the limitation of the traditional spectral analysis system in low speed, high cost and huge size, this paper presents a CMOS-based monolithically miniaturized spectral system whose core component is the spectral imager. The idea of the spectral imager is to fabricate a spectral filter on top of the traditional CMOS imager. This paper designed a FP thin film filter consisted of Bragg stack as a mirror while both the material and the process is compatible with the CMOS imager fabrication. By the simulation, the filter is able to achieve a 2nm spectral resolution, which is a proof for the feasibility of the miniaturized spectral analysis system.

  9. Fabry-Perot sensors for the monitoring of FRP reinforced bridge decks

    NASA Astrophysics Data System (ADS)

    Benmokrane, Brahim; Quirion, Marco; El-Salakawy, Ehab; Debaiky, Ahmed S.; Lackey, Tom

    2004-07-01

    The extensive use of deicing salts in Canada during winter times is identified as the main reason behind the deterioration of highway bridges and parking garages. To fight this infrastructure crisis, Fibre Reinforced Polymers (FRP) has become a very attractive alternative to traditional reinforcing steel due to their non-corrosive nature and light weight. The replacement of steel with Glass FRP bars in bridge deck slabs has been extensively researched in the last few years. This paper presents the first efforts to implement these bars in two highway bridges in Quebec, Canada, and Vermont, USA. These projects are aimed to prove the feasibility of using GFRP bars in bridge construction. GFRP bars were used as reinforcement for parts of the deck slabs in the two bridges while traditional steel was used in the remaining parts. Fibre Optic Sensors (FOS) were used to measure strains in the concrete, reinforcing bars and steel girders. The sensors were surface mounted on the bars or steel girders using standard glue, or embedded in concrete. Static and dynamic testing of the bridges was done using loaded trucks placed for maximum stresses. The design, construction, testing, and results obtained from the bridges are briefly outlined in this paper. The results indicated the accuracy of the sensors and their feasibility for bridge construction and remote monitoring.

  10. CIV Polarization Measurements using a Vacuum Ultraviolet Fabry-Perot Interferometer

    NASA Technical Reports Server (NTRS)

    West, Edward; Gary, G. Allen; Cirtain, Jonathan; David, John; Kobayashi, Ken; Pietraszewski, Chris

    2009-01-01

    Marshall Space Flight Center's (MSFC) is developing a Vacuum Ultraviolet (VUV) Fabry-P rot Interferometer that will be launched on a sounding rocket for high throughput, high-cadence, extended field of view CIV (155nm) measurements. These measurements will provide (i) Dopplergrams for studies of waves, oscillations, explosive events, and mass motions through the transition region, and, (ii), polarization measurements to study the magnetic field in the transition region. This paper will describe the scientific goals of the instrument, a brief description of the optics and the polarization characteristics of the VUV Fabry P rot.

  11. A wavelength-switchable single-longitudinal-mode dual-wavelength erbium-doped fiber laser for switchable microwave generation.

    PubMed

    Pan, Shilong; Yao, Jianping

    2009-03-30

    A novel wavelength-switchable single-longitudinal-mode (SLM) dual-wavelength erbium-doped fiber laser (EDFL) implemented based on a sigma architecture that is composed of a ring loop and a linear standing wave arm is experimentally demonstrated. Gain competition that prevents stable dual-wavelength oscillation is effectively suppressed by placing the gain medium in the standing-wave arm and by introducing polarization hole burning (PHB) via polarization multiplexing of the two lasing wavelengths in the ring loop. The SLM operation is guaranteed by an ultranarrow Fabry- Perot filter (FPF) introduced by absorption saturation in an unpumped erbium-doped fiber (EDF) and the gain saturation in the gain medium. In addition, the ring cavity forms a Lyot filter for each wavelength. Thus, wavelength switching is achieved by simply adjusting the polarization state of either wavelength. By beating the two SLM wavelengths at a photodetector (PD), a microwave signal with a frequency tunable from approximately 10 to approximately 50 GHz is experimentally generated. PMID:19333306

  12. The self-started 10 GHz harmonic mode-locking of a hybrid weak-resonant-cavity laser diode and fiber ring link

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Ju; Chi, Yu-Chieh; Lin, Gong-Ru

    2013-06-01

    A self-started harmonic mode-locking of a hybrid weak-resonant-cavity Fabry-Perot laser diode and fiber ring link is demonstrated to serve as a pulsed optical for future 10 Gb s-1 RZ data transmission. Beginning with the optical injection-locking rate equation describing the optoelectronic oscillator structure, the pulsewidth formula in the active mode-locking theory is modified and illuminates the shortening of the pulsewidth as a function of the optical feedback ratio and the microwave power gain. The pulsewidth is narrower with the higher optical injection power and the higher microwave power gain because of the gain saturation of the laser diode and the increase of the modulation depth. The lowest jitter and pulsewidth of the pulse train are 0.9 ps and 20 ps, respectively. With the higher microwave power gain, the SNR and ER are improved up to 10.2 dB and 13.8 dB, respectively, due to the enhancement of the peak power and the elimination of the residual carrier. Under the optimized operation condition, the pulsed optical carrier can be externally encoded at 10 Gbit/s for RZ-OOK data transmission.

  13. Whispering-Gallery-Mode Tunable Narrow-Band-Pass Filter

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Iltchenko, Vladimir; Matsko, Andrey; Maleki, Lute

    2004-01-01

    An experimental tunable, narrow-band-pass electro-optical filter is based on a whispering-gallery resonator. This device is a prototype of tunable filters needed for the further development of reconfigurable networking wavelength-division multiplexers and communication systems that utilize radio-frequency (more specifically, microwave) subcarrier signals on optical carrier signals. The characteristics of whispering-gallery resonators that make them attractive for such applications include high tuning speed, compactness, wide tuning range, low power consumption, and compatibility with single-mode optical fibers. In addition, relative to Fabry-Perot resonators, these devices offer advantages of greater robustness and lower cost. As described in several prior NASA Tech Briefs articles, a whispering-gallery resonator is a spheroidal, disk-like, or toroidal body made of a highly transparent material. It is so named because it is designed to exploit whispering-gallery electromagnetic modes, which are waveguide modes that propagate circumferentially and are concentrated in a narrow toroidal region centered on the equatorial plane and located near the outermost edge. The experimental whispering-gallery tunable filter (see figure) is made from a disk of Z-cut LiNbO3 of 4.8-mm diameter and 0.17-mm thickness. The perimeter of the disk is rounded to a radius of curvature of 100 m. Metal coats on the flat faces of the disk serve as electrodes for exploiting the electro-optical effect in LiNbO3 for tuning. There is no metal coat on the rounded perimeter region, where the whispering-gallery modes propagate. Light is coupled from an input optical fiber into the whispering-gallery modes by means of a diamond prism. Another diamond prism is used to couple light from the whispering-gallery modes to an output optical fiber. This device is designed and operated to exploit transverse magnetic (TM) whispering- gallery modes, rather than transverse electric (TE) modes because the

  14. Reduction of mode partition noise of FP-LD by using Mach-Zehnder interferometer for RSOA-based DWDM applications.

    PubMed

    Yoo, Sang-Hwa; Moon, Sang-Rok; Kye, Myeonggyun; Lee, Chang-Hee

    2016-06-27

    We investigate reduction of mode partition noise of a spectrally sliced Fabry-Perot laser diode (FP-LD) for application to seeded DWDM systems. The proposed scheme for the noise reduction incorporates a fiber-based Mach-Zehnder interferometer (MZI) and a reflective semiconductor optical amplifier (RSOA). The MZI enables to reduce a relative intensity noise (RIN) more than 3 dB with better noise distributions. Experimental results of 10-Gb/s signal transmission exhibit a considerable bit-error-rate (BER) reduction by three orders of magnitude at the given received power. After the noise reduction, the FP-LD is applied to a 10-Gb/s DWDM system as a seed-light-source. In a local-seeding scheme, return-to-zero (RZ) and carrier-suppressed (CS)-RZ signal formats are compared as a function of transmission distance. Furthermore, a back-reflection induced impairment is evaluated in a remote-seeding scheme. We also count the number of useable channels to show the feasibility of DWDM transmission. PMID:27410602

  15. Hybrid single mode lasers fabricated using Si/SiO2/SiON micromachined platforms

    NASA Technical Reports Server (NTRS)

    Ksendzov, A.; Mansour, K.

    2003-01-01

    We have devised a hybridization scheme that, given suitable Fabri-Perot (F-P) ain medium, allows us to fabricate small, mechanically robust single frequency lasers in a wide spectral range, limited only by the transparency of the SiON material.

  16. Coherence collapse in monolithic quantum-dash-based passive mode-locked lasers

    NASA Astrophysics Data System (ADS)

    Merghem, K.; Rosales, R.; Azouigui, S.; Martinez, A.; Van Dijk, F.; Aubin, G.; Ramdane, A.

    2010-04-01

    Monolithic semiconductor mode-locked lasers (MLLs) are rising considerable interest for such diverse applications as very high speed optical time division multiplexing sources (40-160 GHz), all-optical signal processing, and low noise sampling for signal monitoring of optical networks. In a large number of these applications, MLLs may be subjected to optical feedback generated by unwanted reflections in optical systems which may greatly degrade laser performance. A number of experimental studies have been performed to evaluate the sensitivity of MLLs to optical feedback showing an increase of phase noise [1-5]. Quantum-dash (Qdash) based Fabry Perot lasers have been shown to exhibit an improved tolerance to feedback [6]. In this work, optical feedback tolerance is investigated for a monolithic quantum-dash-based passive mode-locked laser emitting at 1.58 μm. The two-section device generates ~5 ps pulses at a repetition rate of 17 GHz. The onset of the coherence collapse (CC) regime is experimentally determined by measuring the broadening of the longitudinal modes in the optical spectrum. Depending on bias condition, the CC regime is reached for values of feedback ranging from -35 dB to -29 dB at which emitted pulses were slighly broadened. The radio-frequency (RF) linewidth was simultaneously assessed and a drastic reduction of the RF linewidth with increasing feedback strength is evidenced. This indicates a reduction of the phase noise, thus implying a low "high frequency" timing jitter. We in particular observed an RF linewidth narrowing down to a value of less than 1 kHz under optical feedback.

  17. 948 kHz repetition rate, picosecond pulse duration, all-PM 1.03 μm mode-locked fiber laser based on nonlinear polarization evolution

    NASA Astrophysics Data System (ADS)

    Boivinet, S.; Lecourt, J.-B.; Hernandez, Y.; Fotiadi, A.; Mégret, P.

    2014-05-01

    We present in this study a PM all-fiber laser oscillator passively mode-locked (ML) at 1.03 μm. The laser is based on Nonlinear Polarization Evolution (NPE) in polarization maintaining (PM) fibers. In order to obtain the mode-locking regime, a nonlinear reflective mirror including a fibered polarizer, a long fiber span and a fibered Faraday mirror (FM) is inserted in a Fabry-Perot laser cavity. In this work we explain the principles of operation of this original laser design that permits to generate ultrashort pulses at low repetition (lower that 1MHz) rate with a cavity length of 100 m of fiber. In this experiment, the measured pulse duration is about 6 ps. To our knowledge this is the first all-PM mode-locked laser based on the NPE with a cavity of 100m length fiber and a delivered pulse duration of few picosecondes. Furthermore, the different mode-locked regimes of the laser, i.e. multi-pulse, noise-like mode-locked and single pulse, are presented together with the ways of controlling the apparition of these regimes. When the single pulse mode-locking regime is achieved, the laser delivers linearly polarized pulses in a very stable way. Finally, this study includes numerical results which are obtained with the resolution of the NonLinear Schrodinger Equations (NLSE) with the Split-Step Fourier (SSF) algorithm. This modeling has led to the understanding of the different modes of operation of the laser. In particular, the influence of the peak power on the reflection of the nonlinear mirror and its operation are studied.

  18. Highly efficient non-degenerate four-wave mixing under dual-mode injection in InP/InAs quantum-dash and quantum-dot lasers at 1.55 μm

    NASA Astrophysics Data System (ADS)

    Sadeev, T.; Huang, H.; Arsenijević, D.; Schires, K.; Grillot, F.; Bimberg, D.

    2015-11-01

    This work reports on non-degenerate four-wave mixing under dual-mode injection in metalorganic vapor phase epitaxy grown InP/InAs quantum-dash and quantum dot Fabry-Perot laser operating at 1550 nm. High values of normalized conversion efficiency of -18.6 dB, optical signal-to-noise ratio of 37 dB, and third order optical susceptibility normalized to material gain χ(3)/g0 of ˜4 × 10-19 m3/V3 are measured for 1490 μm long quantum-dash lasers. These values are similar to those obtained with distributed-feedback lasers and semiconductor optical amplifiers, which are much more complicated to fabricate. On the other hand, due to the faster gain saturation and enhanced modulation of carrier populations, quantum-dot lasers demonstrate 12 dB lower conversion efficiency and 4 times lower χ(3)/g0 compared to quantum dash lasers.

  19. Highly efficient non-degenerate four-wave mixing under dual-mode injection in InP/InAs quantum-dash and quantum-dot lasers at 1.55 μm

    SciTech Connect

    Sadeev, T. Arsenijević, D.; Huang, H.; Schires, K.; Grillot, F.; Bimberg, D.

    2015-11-09

    This work reports on non-degenerate four-wave mixing under dual-mode injection in metalorganic vapor phase epitaxy grown InP/InAs quantum-dash and quantum dot Fabry-Perot laser operating at 1550 nm. High values of normalized conversion efficiency of −18.6 dB, optical signal-to-noise ratio of 37 dB, and third order optical susceptibility normalized to material gain χ{sup (3)}/g{sub 0} of ∼4 × 10{sup −19} m{sup 3}/V{sup 3} are measured for 1490 μm long quantum-dash lasers. These values are similar to those obtained with distributed-feedback lasers and semiconductor optical amplifiers, which are much more complicated to fabricate. On the other hand, due to the faster gain saturation and enhanced modulation of carrier populations, quantum-dot lasers demonstrate 12 dB lower conversion efficiency and 4 times lower χ{sup (3)}/g{sub 0} compared to quantum dash lasers.

  20. Single Spatial-Mode Room-Temperature-Operated 3.0 to 3.4 micrometer Diode Lasers

    NASA Technical Reports Server (NTRS)

    Frez, Clifford F.; Soibel, Alexander; Belenky, Gregory; Shterengas, Leon; Kipshidze, Gela

    2010-01-01

    Compact, highly efficient, 3.0 to 3.4 m light emitters are in demand for spectroscopic analysis and identification of chemical substances (including methane and formaldehyde), infrared countermeasures technologies, and development of advanced infrared scene projectors. The need for these light emitters can be currently addressed either by bulky solid-state light emitters with limited power conversion efficiency, or cooled Interband Cascade (IC) semiconductor lasers. Researchers here have developed a breakthrough approach to fabrication of diode mid-IR lasers that have several advantages over IC lasers used for the Mars 2009 mission. This breakthrough is due to a novel design utilizing the strain-engineered quantum-well (QW) active region and quinternary barriers, and due to optimization of device material composition and growth conditions (growth temperatures and rates). However, in their present form, these GaSb-based laser diodes cannot be directly used as a part of sensor systems. The device spectrum is too broad to perform spectroscopic analysis of gas species, and operating currents and voltages are too high. In the current work, the emitters were fabricated as narrow-ridge waveguide index-guided lasers rather than broad stripe-gain guided multimode Fabry-Perot (FP) lasers as was done previously. These narrow-ridge waveguide mid-IR lasers exhibit much lower power consumptions, and can operate in a single spatial mode that is necessary for demonstration of single-mode distributed feedback (DBF) devices for spectroscopic applications. These lasers will enable a new generation of compact, tunable diode laser spectrometers with lower power consumption, reduced complexity, and significantly reduced development costs. These lasers can be used for the detection of HCN, C2H2, methane, and ethane.

  1. A pulsated weak-resonant-cavity laser diode with transient wavelength scanning and tracking for injection-locked RZ transmission.

    PubMed

    Lin, Gong-Ru; Chi, Yu-Chieh; Liao, Yu-Sheng; Kuo, Hao-Chung; Liao, Zhi-Wang; Wang, Hai-Lin; Lin, Gong-Cheng

    2012-06-18

    By spectrally slicing a single longitudinal-mode from a master weak-resonant-cavity Fabry-Perot laser diode with transient wavelength scanning and tracking functions, the broadened self-injection-locking of a slave weak-resonant-cavity Fabry-Perot laser diode is demonstrated to achieve bi-directional transmission in a 200-GHz array-waveguide-grating channelized dense-wavelength-division-multiplexing passive optical network system. Both the down- and up-stream slave weak-resonant-cavity Fabry-Perot laser diodes are non-return-to-zero modulated below threshold and coherently injection-locked to deliver the pulsed carrier for 25-km bi-directional 2.5 Gbits/s return-to-zero transmission. The master weak-resonant-cavity Fabry-Perot laser diode is gain-switched at near threshold condition and delivers an optical coherent pulse-train with its mode linewidth broadened from 0.2 to 0.8 nm by transient wavelength scanning, which facilitates the broadband injection-locking of the slave weak-resonant-cavity Fabry-Perot laser diodes with a threshold current reducing by 10 mA. Such a transient wavelength scanning induced spectral broadening greatly releases the limitation on wavelength injection-locking range required for the slave weak-resonant-cavity Fabry-Perot laser diode. The theoretical modeling and numerical simulation on the wavelength scanning and tracking effects of the master and slave weak-resonant-cavity Fabry-Perot laser diodes are performed. The receiving power sensitivity for back-to-back transmission at bit-error-rate <10(-10) is -25.6 dBm, and the power penalty added after 25-km transmission is less than 2 dB for all 16 channels. PMID:22714427

  2. Power scalable semiconductor disk lasers for frequency conversion and mode-locking

    SciTech Connect

    Okhotnikov, O G

    2008-12-31

    The semiconductor disk laser, a relatively novel type of light oscillators, is now under intensive development. These lasers produce an excellent beam quality in conjunction with a scalable output power. This paper presents recent achievements in power scalability, mode-locking and frequency conversion with optically-pumped semiconductor disk lasers. A novel concept for power scaling described here allows the thermal load of the gain material to be reduced, increasing the threshold of rollover and extending the capability for boosting the output power without degradation in the beam quality. The proposed technique is based on the multiple gain scheme. The total power of over 8 W was achieved in dual-gain configuration, while one-gain lasers could produce separately up to 4 W, limited by the thermal rollover of the output characteristics. The results show that the reduced thermal load to a gain element in a dual-gain cavity allows extending the range of usable pump powers boosting the laser output. Orange-red radiation required for a number of challenging applications can be produced through frequency-doubling using a GaInNAs/GaAs laser. Using such a disk laser operating at a fundamental wavelength of 1224 nm, we demonstrate an output power of 2.68 W in the visible region with an optical-to-optical conversion efficiency of 7.4%. The frequency-converted signal could be launched into a single-mode optical fibre with 70%-78% coupling efficiency, demonstrating good beam quality for the visible radiation. Using a Fabry-Perot glass etalon, the emission wavelength could be tuned over an 8-nm spectral range. We report on optically-pumped disk lasers passively mode-locked with a semiconductor saturable-absorber mirror. The potential of harmonic mode-locking in producing pulse trains at multigigahertz repetition rates has been explored. The mode-locked disk laser is investigated for different designs of the gain medium that allow bistable mode-locking to be controlled. An

  3. Observations of the plasma torus of Jupiter with a Fabry-Perot/charge-coupled device /CCD/ imaging spectrometer

    NASA Technical Reports Server (NTRS)

    Roesler, F. L.; Scherb, F.; Oliversen, R.; Jaehnig, K.; Williams, T.; York, D. G.; Jenkins, E. B.

    1981-01-01

    A description is presented of the use of a CCD imaging spectrometer which has been employed at a 2.1 m telescope to obtain monochromatic images in the red and near infrared. The system studied was Jupiter's plasma torus which circles the planet with radial extent about 5 RJ and 7 RJ (RJ is the radius of Jupiter). In ground based measurements the torus has been observed in the forbidden emission lines of S(plus) at 6716 A and 6731 A and S(plus plus) at 9531 A. Attention is given to aspects of instrumentation, observations, and performance. It is felt that the particular significance of the obtained results from the instrumental point of view is the demonstration that the CCD is an excellent detector for monochromatic imaging in the near infrared out to at least 10830 A and that pixel binning before readout can produce significantly improved S/N ratios for the study of faint, diffuse sources in cases where readout noise is dominant.

  4. Quantitative optical coherence elastography based on fiber-optic probe with integrated Fabry-Perot force sensor

    NASA Astrophysics Data System (ADS)

    Qiu, Yi; Wang, Yahui; Xu, Yiqing; Chandra, Namas; Haorah, James; Hubbi, Basil; Pfister, Bryan J.; Liu, Xuan

    2016-03-01

    Optical coherence tomography (OCT) is a versatile imaging technique and has great potential in tissue characterization for breast cancer diagnosis and surgical guidance. In addition to structural difference, cancerous breast tissue is usually stiffer compared to normal adipose breast tissue. However, previous studies on compression optical coherence elastography (OCE) are qualitative rather than quantitative. It is challenging to identify the cancerous status of tissue based on qualitative OCE results obtained from different measurement sessions or from different patients. Therefore, it is critical to develop technique that integrates structural imaging and force sensing, for quantitative elasticity characterization of breast tissue. In this work, we demonstrate a quantitative OCE (qOCE) microsurgery device which simultaneously quantifies force exerted to tissue and measures the resultant tissue deformation. The qOCE system is based on a spectral domain OCT engine operated at 1300 nm and a probe with an integrated Febry-Perot (FP) interferometric cavity at its distal end. The FP cavity is formed by the cleaved end of the lead-in fiber and the end surface of a GRIN lens which allows light to incident into tissue for structural imaging. The force exerted to tissue is quantified by the change of FP cavity length which is interrogated by a fiber-optic common-paths phase resolved OCT system with sub-nanometer sensitivity. Simultaneously, image of the tissue structure is acquired from photons returned from tissue through the GRIN lens. Tissue deformation is obtained through Doppler analysis. Tissue elasticity can be quantified by comparing the force exerted and tissue deformation.

  5. Compact vibration isolation and suspension for Australian International Gravitational Observatory: performance in a 72 m Fabry Perot cavity.

    PubMed

    Barriga, P; Dumas, J C; Woolley, A A; Zhao, C; Blair, D G

    2009-11-01

    This paper describes the first demonstration of vibration isolation and suspension systems, which have been developed with view to application in the proposed Australian International Gravitational Observatory. In order to achieve optimal performance at low frequencies new components and techniques have been combined to create a compact advanced vibration isolator structure. The design includes two stages of horizontal preisolation and one stage of vertical preisolation with resonant frequencies approximately 100 mHz. The nested structure facilitates a compact design and enables horizontal preisolation stages to be configured to create a superspring configuration, where active feedback can enable performance close to the limit set by seismic tilt coupling. The preisolation stages are combined with multistage three-dimensional (3D) pendulums. Two isolators suspending mirror test masses have been developed to form a 72 m optical cavity with finesse approximately 700 in order to test their performance. The suitability of the isolators for use in suspended optical cavities is demonstrated through their ease of locking, long term stability, and low residual motion. An accompanying paper presents the local control system and shows how simple upgrades can substantially improve residual motion performance. PMID:19947743

  6. Multilayer waveguide-grating mirror in the Fabry - Perot cavity of an alexandrite solid-state laser

    SciTech Connect

    Kondratyuk, V A; Mikhailov, V A; Lyndin, N M; Sychugov, V A; Parriaux, O

    1999-02-28

    A multilayer waveguide-grating optical component for laser cavities was proposed, made, and investigated. It is found that corrugation of all the layers of the component makes it possible to obtain a high coefficient of narrow-band (with respect to wavelength) reflection of moderate-power light beams. The possibility of the operation of the component in the laser cavity in narrow-band filter regime is noted. (laser applications and other topics in quantum electronics)

  7. Fatigue and post-fatigue performance of Fabry-Perot FOS installed on CFRP-strengthened RC-beams

    NASA Astrophysics Data System (ADS)

    Gheorghiu, Catalin; Labossiere, Pierre; Proulx, Jean

    2004-07-01

    There is a growing need for built-in monitoring systems for civil engineering infrastructures, due to problems such as increasing traffic loads and rising costs of maintenance and repair. Fibre optic sensors (FOS), capable of reading various parameters are promising candidates for life-long health monitoring of these structures. However, since FOS have only been introduced recently into the field of structural monitoring, their acceptance and widespread implementation will be conditioned by their durability under severe climatic and loading conditions. This paper reports on the performance of strain extrinsic FOS attached to carbon fibre reinforced polymer (CFRP) plates used to strengthen concrete structures. The specimens tested in this project are reinforced concrete (RC) beams with an additional external CFRP reinforcement. The FOS-instrumented beams were first subjected to fatigue loading for various numbers of cycles and load amplitudes. Then, they were tested monotonically to failure under four-point-bending. The test results provide an insight on the fatigue and post-fatigue behaviour of FOS used for monitoring reinforced concrete structures.

  8. All-fiber wavelength swept ring laser based on Fabry-Perot filter for optical frequency domain imaging

    PubMed Central

    Jun, Changsu; Villiger, Martin; Oh, Wang-Yuhl; Bouma, Brett E.

    2014-01-01

    Innovations in laser engineering have yielded several novel configurations for high repetition rate, broad sweep range, and long coherence length wavelength swept lasers. Although these lasers have enabled high performance frequency-domain optical coherence tomography, they are typically complicated and costly and many require access to proprietary materials or devices. Here, we demonstrate a simplified ring resonator configuration that is straightforward to construct from readily available materials at a low total cost. It was enabled by an insight regarding the significance of isolation against bidirectional operation and by configuring the sweep range of the intracavity filter to exceed its free spectral range. The design can easily be optimized to meet a range of operating specifications while yielding robust and stable performance. As an example, we demonstrate 240 kHz operation with 125 nm sweep range and >70 mW of average output power and demonstrate high quality frequency domain OCT imaging. The complete component list and directions for assembly of the laser are posted on-line at www.octresearch.org. PMID:25401614

  9. High temperature stability testing of Ge-doped and F-doped Fabry-Perot fibre optical sensors

    NASA Astrophysics Data System (ADS)

    Polyzos, Dimitrios; Mathew, Jinesh; MacPherson, William N.; Maier, Robert R...

    2016-05-01

    We present high temperature (~1100°C) stability tests of, Ge-doped and F-doped, optical fibre sensors. Our analysis includes the variation in their behaviours within high temperature environments and how the dopant diffusion affects their long term stability.

  10. Passively mode-locked erbium-doped fiber lasers using multiple quantum well saturable absorbers

    NASA Astrophysics Data System (ADS)

    Hayduk, Michael Joseph

    1997-09-01

    An experimental study of the mode-locking process in erbium-doped fiber lasers (EDFL's) operating at 1.55 μm using multiple quantum well saturable absorbers is presented. The self-starting passively mode-locked laser was constructed in a Fabry-Perot configuration using the saturable absorber as the back reflector of the cavity. Picosecond pulses that ranged from 14.2 to 38.8 ps were generated using a series of saturable absorbers. The pulse widths were dependent upon the optical properties of the saturable absorber used as the mode-locking element. The output power of the EDFL varied from 0.2 to 6.7 mW and was also dependent upon the saturable absorber used in the cavity. Soliton mode-locking using saturable absorbers was the mechanism responsible for the generation of the picosecond pulses by the EDFL. The long-lived carrier lifetime in the quantum wells was the primary optical property of the saturable absorber that determined the final pulse width. The carrier lifetimes of the eight individual saturable absorbers were investigated using time-resolved pump/probe experimental techniques. The lifetimes ranged from 40 to 1757 ps. The soliton mode- locking process allowed pulse widths of up to 45 times shorter than these carrier lifetimes to be produced. A self-starting passively mode-locked solid-state Cr4+:YAG laser was also developed using a novel saturable absorber mirror structure. The laser produced femtosecond pulses that were tunable from 1.488 to 1.535 μm. The average output power of the laser ranged from 40 to 80 mW at a repetition rate of 95 MHz. A minimum pulse width of 120 fs was generated at 1.488 μm. The high peak power of these pulses combined with its tunability in the 1.5 μm region made this laser an ideal spectroscopic source for use in the time-resolved pump/probe experiments.

  11. Frequency chirp and mode partition induced mutual constraint on the side-band phase noise of a mode-locking WRC-FPLD fiber ring self-started with a lengthened feedback loop

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Ju; Lin, Gong-Ru

    2013-04-01

    The specific mutual constraint effect of frequency chirp and mode partition on the side-band phase noise and timing jitter is theoretically and experimentally analyzed in a harmonically mode-locked weak-resonant-cavity Fabry-Perot laser diode (WRC-FPLD) fiber ring self-started by fiber-coupled optoelectronic feedback at 10 GHz with a lengthened loop. By inserting a 100 m long single-mode fiber into the feedback loop to self-start the mode-locking, minimal single-side-band phase noise of -70 dBc Hz-1 and -125 dBc Hz-1 are obtained at 100 Hz and 1 MHz offset, respectively. The optimized pulse-train exhibits a timing jitter of 0.67 ps and a pulsewidth of 18.5 ps. A significant degradation is observed for feedback loop lengths longer than 200 m due to the enhanced mode-partition noise contributed by the fiber-ring cavity incorporated in the WRC-FPLD. The theoretical model shows that the mutually coupled fiber-ring cavity and the optoelectronic feedback loop could provide a mode-locking pulse with a minimum phase noise of -135 dBc Hz-1 under the compromise of phase noise responses between the fiber-ring cavity and the feedback loop. These two factors hinder the improvement expected from the longer feedback loop and higher Q-value because the mode-partition noise is greatly enlarged when the multi-mode pulse experiences serious dispersion during distant transmission in the fiber. Under such a mutual constraint, the optimized return-to-zero (RZ) pulsed carrier is on-off keying (OOK) non-RZ data by 10 Gbit s-1, showing a high signal to noise ratio of 11 dB to achieve a receiving sensitivity of -19.2 dBm at a bit error rate (BER) of 10-9. When using the RZ pulsed carrier for data transmission at 10 Gbit s-1 in a passive optical network with a dense wavelength division multiplexing channelization of 200 GHz, the RZ-OOK data-stream still exhibits an error-free performance at a receiving power sensitivity as low as -17 dBm, even though a power penalty of 2.5 dB is added into

  12. Electromagnetic enhancement by a single nano-groove in metallic substrate.

    PubMed

    Zhang, Siwen; Liu, Haitao; Mu, Guoguang

    2010-07-01

    We propose systematic investigations of the electromagnetic enhancement by a single nano-groove in gold substrate. The impacts of the groove parameters and of the illumination conditions on the enhanced intensity are explored using a fully vectorial numerical method. The obtained data can be well predicted and explained by a simple Fabry-Perot model. By virtue of the semi-analytical model, we identify two main factors that enable giant electric-field enhancement in very narrow grooves: the Fabry-Perot resonance and the large wave impedance of the fundamental mode in the groove. PMID:20596141

  13. Surface modes at metallic an photonic crystal interfaces

    SciTech Connect

    Dai, Weitao

    2009-01-01

    this picture, they deduced naturally that when surface plasmons momentum-matching condition is satisfied, the surface plasmons are excited sufficiently and the transmission reaches its peak. I present a new theory from first principles to explain EOT through one-dimensional periodic subwavelength metallic slits in this thesis. This theory can also be extended to 2D hole arrays. I define the incident wavelengths that satisfy the momentum-matching condition as surface resonant wavelengths. I proved analytically that the transmission is actually zero at the surface resonant wavelengths. The correct logic is: When the momentum-matching condition is satisfied, the surface plasmons excited by each slit interfere constructively with each other, the total surface plasmons will go to infinity. But the law of nature forbids the infinity. The only solution is the surface plasmon excited by one slit is zero and all the energy is reflected. In my theory, the term corresponding to surface plasmons appear explicitly in the equations. So it confirms the importance of surface plasmons without any doubt. The theory divides the transmission process into two steps: energy collection process along the input surface and the propagation process in the slits. In the first process, the surface plasmons collect the energy along the input surface and carry them to the slits. This process happens efficiently at any wavelength other than the surface resonant wavelengths. So EOT can happen at almost any wavelength. After the energy enter the slits, the Fabry-Perot interference between the input and output surface decides how much energy is emitted from the slits. So the EOT wavelengths are decided by the Fabry-Perot resonances. I also use my theory to explain the data in literatures. The transmission spectra through 1D slits or 2D hole arrays in literatures agree with my theory very well. The new theory can explain a lot of experimental results published recently, such as the transmission through

  14. IONIZATION SOURCE OF A MINOR-AXIS CLOUD IN THE OUTER HALO OF M82

    SciTech Connect

    Matsubayashi, K.; Taniguchi, Y.; Kajisawa, M.; Shioya, Y.; Sugai, H.; Shimono, A.; Hattori, T.; Ozaki, S.; Yoshikawa, T.; Nagao, T.; Bland-Hawthorn, J.

    2012-12-10

    The M82 ''cap'' is a gas cloud at a projected radius of 11.6 kpc along the minor axis of this well-known superwind source. The cap has been detected in optical line emission and X-ray emission and therefore provides an important probe of the wind energetics. In order to investigate the ionization source of the cap, we observed it with the Kyoto3DII Fabry-Perot instrument mounted on the Subaru Telescope. Deep continuum, H{alpha}, [N II]{lambda}6583/H{alpha}, and [S II]{lambda}{lambda}6716,6731/H{alpha} maps were obtained with subarcsecond resolution. The superior spatial resolution compared to earlier studies reveals a number of bright H{alpha} emitting clouds within the cap. The emission line widths ({approx}< 100 km s{sup -1} FWHM) and line ratios in the newly identified knots are most reasonably explained by slow to moderate shocks velocities (v{sub shock} 40-80 km s{sup -1}) driven by a fast wind into dense clouds. The momentum input from the M82 nuclear starburst region is enough to produce the observed shock. Consequently, earlier claims of photoionization by the central starburst are ruled out because they cannot explain the observed fluxes of the densest knots unless the UV escape fraction is very high (f{sub esc} > 60%), i.e., an order of magnitude higher than observed in dwarf galaxies to date. Using these results, we discuss the evolutionary history of the M82 superwind. Future UV/X-ray surveys are expected to confirm that the temperature of the gas is consistent with our moderate shock model.

  15. Interferometric fiber optic temperature sensor using a low-coherence light source

    NASA Astrophysics Data System (ADS)

    Lee, Chung E.; Taylor, Henry F.

    1990-12-01

    An interferometric fiber optic sensor employing a light emitting diode (LED) as the optical source and two fiber Fabry-Perot interferometers (FFPI) which were fabricated in continuous length of a single-mode silica fiber is analyzed. The performance as a temperature sensor is demonstrated and the predicted behavior is confirmed.

  16. Biophotonic low-coherence sensors with boron-doped diamond thin layer

    NASA Astrophysics Data System (ADS)

    Milewska, D.; Karpienko, K.; Sobaszek, M.; Jedrzejewska-Szczerska, M.

    2016-03-01

    Low-coherence sensors using Fabry-Perot interferometers are finding new applications in biophotonic sensing, especially due to the rapid technological advances in the development of new materials. In this paper we discuss the possibility of using boron-doped nanodiamond layers to protect mirror in a Fabry-Perot interferometer. A low-coherence sensor using Fabry-Perot interferometer with a boron-doped nanodiamond (B-NCD) thin protective layer has been developed. B-NCD layers with different boron doping level were investigated. The boron level, expressed as the boron to carbon (/[C]) ratio in the gas phase, was: 0, 2000, 5000 or 10000 ppm. B-NCD layers were grown by chemical vapor deposition (CVD). The sensing Fabry-Perot interferometer, working in the reflective mode, was connected to the source and to the optical processor by single-mode fibers. Superluminescent diodes with Gaussian spectral density were used as sources, while an optical spectrum analyzer was used as an optical processor. The design of the sensing interferometer was optimized to attain the maximum interference contrast. The experiment has shown that B-NCD thin layers can be successfully used in biophotonic sensors.

  17. Whispering gallery mode resonators for frequency metrology applications

    NASA Astrophysics Data System (ADS)

    Baumgartel, Lukas

    This dissertation describes an investigation into the use of whispering gallery mode (WGM) resonators for applications towards frequency reference and metrology. Laser stabilization and the measurement of optical frequencies have enabled myriad technologies of both academic and commercial interest. A technology which seems to span both motivations is optical atomic clocks. These devices are virtually unimaginable without the ultra stable lasers plus frequency measurement and down-conversion afforded by Fabry Perot (FP) cavities and model-locked laser combs, respectively. However, WGM resonators can potentially perform both of these tasks while having the distinct advantages of compactness and simplicity. This work represents progress towards understanding and mitigating the performance limitations of WGM cavities for such applications. A system for laser frequency stabilization to a the cavity via the Pound-Drever-Hall (PDH) method is described. While the laser lock itself is found to perform at the level of several parts in 1015, a variety of fundamental and technical mechanisms destabilize the WGM frequency itself. Owing to the relatively large thermal expansion coefficients in optical crystals, environmental temperature drifts set the stability limit at time scales greater than the thermal relaxation time of the crystal. Uncompensated, these drifts pull WGM frequencies about 3 orders of magnitude more than they would in an FP cavity. Thus, two temperature compensation schemes are developed. An active scheme measures and stabilizes the mode volume temperature to the level of several nK, reducing the effective temperature coefficient of the resonator to 1.7x10-7 K-1; simulations suggest that the value could eventually be as low as 3.5x10-8 K-1, on par with the aforementioned FP cavities. A second, passive scheme is also described, which employs a heterogeneous resonator structure that capitalizes on the thermo-mechanical properties of one material and the optical

  18. Laser anemometer using a Fabry-Perot interferometer for measuring mean velocity and turbulence intensity along the optical axis in turbomachinery

    NASA Technical Reports Server (NTRS)

    Seasholtz, R. G.; Goldman, L. J.

    1982-01-01

    A technique for measuring a small optical axis velocity component in a flow with a large transverse velocity component is presented. Experimental results are given for a subsonic free jet operating in a laboratory environment, and for a 0.508 meter diameter turbine stator cascade. Satisfactory operation of the instrument was demonstrated in the stator cascade facility with an ambient acoustic noise level during operation of about 105 dB. In addition, the turbulence intensity measured with the interferometer was consistent with previous measurements taken with a fringe type laser anemometer.

  19. Dynamic characteristics of undoped and p-doped Fabry-Perot InAs/InP quantum dash based ridge waveguide lasers for access/metro networks

    SciTech Connect

    Mollet, O. Martinez, A.; Merghem, K.; Ramdane, A.; Joshi, S.; Provost, J.-G.; Lelarge, F.

    2014-10-06

    In this paper, we report the characteristics of InAs/InP quantum dashes (QDash) based lasers emitting around 1.55 μm. An unprecedented high modal gain of ∼100 cm{sup −1} is obtained for an optimized active structure by stacking 12 QDash layers. Directly modulated lasers allowed achieving a modulation bandwidth of ∼10 GHz and a Henry factor around 5. Thanks to p-type doping, the Henry factor value is reduced down to 2.7 while the modulation bandwidth still amounts to ∼10 GHz. This shows that doping of the active region is important to improve the dynamic characteristics of QDash lasers.

  20. HARLIE 3-D Aerosol Backscatter and Wind Profile Measurements During Recent Field Experiments: Background Noise Reduction with a Fabry-Perot Etalon Filter in the HARLIE System

    NASA Technical Reports Server (NTRS)

    Lee, Sangwoo; Miller, David O.; Schwemmer, Geary; Wilkerson, Thomas D.; Andrus, Ionio; Egbert, Cameron; Anderson, Mark; Starr, David OC. (Technical Monitor)

    2002-01-01

    Background noise reduction of War signals is one of the most important factors in achieving better signal to noise ratio and precise atmospheric data from Mar measurements. Fahey Perot etalons have been used in several lidar systems as narrow band pass filters in the reduction of scattered sunlight. An slalom with spectral bandwidth, (Delta)v=0.23/cm, free spectral range, FSR=6.7/cm, and diameter, d=24mm was installed in a fiber coupled box which included a 500 pm bandwidth interference Filter. The slalom box couples the telescope and detector with 200 pm core fibers and 21 mm focal length collimators. The angular magnification is M=48. The etalon box was inserted into the Holographic Airborne Rotating Lidar Instrument Experiment (HARLIE) system and tested during the HARGLO-2 intercomparison campaign conducted in November 2001 at Wallops Island, Virginia. This paper presents the preliminary test results of the slalom and a complete analysis will be presented at the conference.