Science.gov

Sample records for l-alanine difracao multipla

  1. Vibrational dynamics of crystalline L-alanine

    SciTech Connect

    Bordallo, H.N.; Eckert, J.; Barthes, M.

    1997-11-01

    The authors report a new, complete vibrational analysis of L-alanine and L-alanine-d{sub 4} which utilizes IINS intensities in addition to frequency information. The use of both isotopomers resulted in a self-consistent force field for and assignment of the molecular vibrations in L-alanine. Some details of the calculation as well as a comparison of calculated and observed IINS spectra are presented. The study clarifies a number of important issues on the vibrational dynamics of this molecule and presents a self-consistent force field for the molecular vibrations in crystalline L-alanine.

  2. Atomic Layer Deposition of L-Alanine Polypeptide

    DOE PAGESBeta

    Fu, Yaqin; Li, Binsong; Jiang, Ying-Bing; Dunphy, Darren R.; Tsai, Andy; Tam, Siu-Yue; Fan, Hongyou Y.; Zhang, Hongxia; Rogers, David; Rempe, Susan; et al

    2014-10-30

    L-Alanine polypeptide thin films were synthesized via atomic layer deposition (ALD). Rather, instead of using an amino acid monomer as the precursor, an L-alanine amino acid derivatized with a protecting group was used to prevent self-polymerization, increase the vapor pressure, and allow linear cycle-by-cycle growth emblematic of ALD. Moreover, the successful deposition of a conformal polypeptide film has been confirmed by FTIR, TEM, and Mass Spectrometry, and the ALD process has been extended to polyvaline.

  3. Expression of an L-alanine dehydrogenase gene in Zymomonas mobilis and excretion of L-alanine

    SciTech Connect

    Uhlenbusch, I.; Sahm, H.; Sprenger, G.A. )

    1991-05-01

    Gene alaD for L-alanine dehydrogenase from Bacillus sphaericus was cloned and introduced into Z. mobilis. Under the control of the strong promoter of the pyruvate decarboxylase (pdc) gene, the enzyme was expressed up to a specific activity of nearly 1 {mu}mol {center dot} min{sup {minus}1} {center dot} mg of protein{sup {minus}1} in recombinant cells. As a result of this high L-alanine dehydrogenase activity, growing cells excreted up to 10 mmol of alanine per 280 mmol of glucose utilized into a mineral salts medium. By the addition of 85 mM NH{sub 4}{sup +} to the medium, growth of the recombinant cells stopped, and up to 41 mmol of alanine was secreted. As alanine dehydrogenase competed with pyruvate decarboxylase (PDC) for the same substrate (pyruvate), PDC activity was reduced by starvation for the essential PDC cofactor thiamine PP{sub i}. A thiamine auxotrophy mutant of Z. mobilis which carried the alaD gene was starved for 40 h in glucose-supplemented mineral salts medium and then shifted to mineral salts medium with 85 mM NH {sub 4}{sup +} and 280 mmol of glucose. The recombinants excreted up to 84 mmol of alanine over 25 h. Alanine excretion proceeded at an initial velocity of 238 nmol {center dot} min{sup {minus}1} {center dot} mg(dry weight){sup {minus}1}. Despite this high activity, the excretion rate seemed to be a limiting factor, as the intracellular concentration of alanine was as high as 260 mM at the beginning of the excretion phase and decreased to 80 to 90 mM over 24 h.

  4. Catalytic properties of Sepharose-bound L-alanine dehydrogenase from Bacillus cereus.

    PubMed

    Mureşan, L; Vancea, D; Presecan, E; Porumb, H; Lascu, I; Oargă, M; Matinca, D; Abrudan, I; Bârzu, O

    1983-02-15

    (1) L-Alanine dehydrogenase from Bacillus cereus was purified by a two-step chromatographic procedure involving Cibacron-Blue 3G-A Sepharose 4B-CL, and Sepharose 6B-CL, and immobilized on CNBr-activated Sepharose 4B. (2) Following immobilization via two of the six subunits, L-alanine dehydrogenase retained 66% of the specific activity of the soluble enzyme. The affinity of the immobilized enzyme for NH4+, pyruvate and L-alanine, was not different to that of the soluble form. The Km of the Sepharose-bound L-alanine dehydrogenase for pyridine coenzymes was 6-8-times higher than in the soluble case. (3) The stability of L-alanine dehydrogenase towards urea or thermal denaturation was increased by immobilization. (4) The incubation at 37 degrees C for 24 h of the immobilized L-alanine dehydrogenase with 3 M NH4Cl/NH4OH buffer (pH 9) released 70% of the enzyme. The specific activity and the affinity of the 'solubilized' L-alanine dehydrogenase for the pyridine coenzymes was the same as that obtained with the original, soluble L-alanine dehydrogenase. PMID:6404304

  5. Initiation of Spore Germination in Bacillus subtilis: Relationship to Inhibition of l-Alanine Metabolism

    PubMed Central

    Prasad, Chandan

    1974-01-01

    The inhibitory effects of anthranilic acid esters (methyl anthranilate and N-methyl anthranilate) on the l-alanine-induced initiation of spore germination was examined in Bacillus subtilis 168. Methyl anthranilate irreversibly inhibited alanine initiation by a competitive mechanism. In its presence, the inhibition could be reversed only by the combined addition of d-glucose, d-fructose, and K+. Both l-alanine dehydrogenase and l-glutamate-pyruvate transaminase, enzymes which catalyze the first reaction in l-alanine metabolism, were competitively inhibited by methyl anthranilate. The Ki values for germination initiation (0.053 mM) and of l-glutamate-pyruvate transaminase (0.068 mM) were similar, whereas that for l-alanine dehydrogenase (0.4 mM) was six to seven times higher. Since a mutant lacking l-alanine dehydrogenase activity germinated normally in l-alanine alone, it is speculated that the major pathway of l-alanine metabolism during initiation may be via transmination reaction. PMID:4212093

  6. Efficient L-Alanine Production by a Thermo-Regulated Switch in Escherichia coli.

    PubMed

    Zhou, Li; Deng, Can; Cui, Wen-Jing; Liu, Zhong-Mei; Zhou, Zhe-Min

    2016-01-01

    L-Alanine has important applications in food, pharmaceutical and veterinary and is used as a substrate for production of engineered thermoplastics. Microbial fermentation could reduce the production cost and promote the application of L-alanine. However, the presence of L-alanine significantly inhibit cell growth rate and cause a decrease in the ultimate L-alanine productivity. For efficient L-alanine production, a thermo-regulated genetic switch was designed to dynamically control the expression of L-alanine dehydrogenase (alaD) from Geobacillus stearothermophilus on the Escherichia coli B0016-060BC chromosome. The optimal cultivation conditions for the genetically switched alanine production using B0016-060BC were the following: an aerobic growth phase at 33 °C with a 1-h thermo-induction at 42 °C followed by an oxygen-limited phase at 42 °C. In a bioreactor experiment using the scaled-up conditions optimized in a shake flask, B0016-060BC accumulated 50.3 g biomass/100 g glucose during the aerobic growth phase and 96 g alanine/100 g glucose during the oxygen-limited phase, respectively. The L-alanine titer reached 120.8 g/l with higher overall and oxygen-limited volumetric productivities of 3.09 and 4.18 g/l h, respectively, using glucose as the sole carbon source. Efficient cell growth and L-alanine production were reached separately, by switching cultivation temperature. The results revealed the application of a thermo-regulated strategy for heterologous metabolic production and pointed to strategies for improving L-alanine production. PMID:26453031

  7. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives

    PubMed Central

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Hori, Hatsuhiro; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2015-01-01

    We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intracellular l-alanine and its derivatives. Furthermore, the growth of the alaE-deficient mutant derived from the l-alanine-metabolizing strain was strongly inhibited in the presence of a physiological level of l-alanyl-l-alanine. Intact MLA301ΔalaE and MLA301ΔalaE/pAlaE cells producing plasmid-borne AlaE, accumulated approximately 200% and 50%, respectively, of the [3H]l-alanine detected in MLA301 cells, suggesting that AlaE exports l-alanine. When 200 mmol/L l-alanine-loaded inverted membrane vesicles prepared from MLA301ΔalaE/pAlaE were placed in a solution containing 200 mmol/L or 0.34 μmol/L l-alanine, energy-dependent [3H]l-alanine accumulation occurred under either condition. This energy-dependent uphill accumulation of [3H]l-alanine was strongly inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone but not by dicyclohexylcarbodiimide, suggesting that the AlaE-mediated l-alanine extrusion was driven by proton motive force. Based on these results, physiological roles of the l-alanine exporter are discussed. PMID:26073055

  8. Characterization of the l-alanine exporter AlaE of Escherichia coli and its potential role in protecting cells from a toxic-level accumulation of l-alanine and its derivatives.

    PubMed

    Kim, Seryoung; Ihara, Kohei; Katsube, Satoshi; Hori, Hatsuhiro; Ando, Tasuke; Isogai, Emiko; Yoneyama, Hiroshi

    2015-08-01

    We previously reported that the alaE gene of Escherichia coli encodes the l-alanine exporter AlaE. The objective of this study was to elucidate the mechanism of the AlaE exporter. The minimum inhibitory concentration of l-alanine and l-alanyl-l-alanine in alaE-deficient l-alanine-nonmetabolizing cells MLA301ΔalaE was 4- and >4000-fold lower, respectively, than in the alaE-positive parent cells MLA301, suggesting that AlaE functions as an efflux pump to avoid a toxic-level accumulation of intracellular l-alanine and its derivatives. Furthermore, the growth of the alaE-deficient mutant derived from the l-alanine-metabolizing strain was strongly inhibited in the presence of a physiological level of l-alanyl-l-alanine. Intact MLA301ΔalaE and MLA301ΔalaE/pAlaE cells producing plasmid-borne AlaE, accumulated approximately 200% and 50%, respectively, of the [(3) H]l-alanine detected in MLA301 cells, suggesting that AlaE exports l-alanine. When 200 mmol/L l-alanine-loaded inverted membrane vesicles prepared from MLA301ΔalaE/pAlaE were placed in a solution containing 200 mmol/L or 0.34 μmol/L l-alanine, energy-dependent [(3) H]l-alanine accumulation occurred under either condition. This energy-dependent uphill accumulation of [(3) H]l-alanine was strongly inhibited in the presence of carbonyl cyanide m-chlorophenylhydrazone but not by dicyclohexylcarbodiimide, suggesting that the AlaE-mediated l-alanine extrusion was driven by proton motive force. Based on these results, physiological roles of the l-alanine exporter are discussed. PMID:26073055

  9. Sodium dependency of L-alanine absorption in canine Thiry-Vella loops.

    PubMed

    Fleshler, B; Nelson, R A

    1970-03-01

    The effect of sodium on the absorption of L-alanine in vivo was tested by measuring the absorption of L-alanine from Thiry-Vella loops in dogs. Solutions containing L-alanine (10 or 50 mM) sodium at concentrations of 0, 74, or 145 m-equiv/1 and mannitol, as needed to maintain isotonicity were instilled into the loops for 10 minutes. Similar studies were done with L-alanine 50 mM and either 0 or 145 m-equiv/1 of sodium for five minutes. Under all conditions absorption of alanine was significantly less from the solution initially free of sodium. Although these differences were statistically significant, the physiological significance was not great since the actual differences in amounts of L-alanine absorbed were small. Insorption of sodium was low from the fluid which initially had no sodium, but exsorption proceeded rapidly and was unaffected by the luminal sodium concentration. This resulted in a rapid rise of intraluminal sodium concentration when no sodium was initially present. This persistent exsorption of sodium was, therefore, adequate to provide sodium in the lumen to activate the sodium-dependent carrier, postulated on the basis of studies in vitro. These data in vivo are consistent with the view that sodium at the intraluminal surface is important in accelerating amino acid transport, but indicate that in the absence of added intraluminal sodium the gut mucosa itself, under normal circumstances, provides the sodium needed for L-alanine absorption. PMID:5423904

  10. Exchange interactions and magnetic dimension in Cu(L-alanine)2

    NASA Astrophysics Data System (ADS)

    Calvo, R.; Passeggi, M. C. G.; Novak, M. A.; Symko, O. G.; Oseroff, S. B.; Nascimento, O. R.; Terrile, M. C.

    1991-01-01

    A study of the magnetic properties of the copper (II) complex of the amino acid l-alanine [Cu(l-alanine)2] is reported. The susceptibility of a powder sample has been measured between 0.013 and 240 K. A linear-spin-chain model with antiferromagnetic exchange coupling J=-0.52 K fits well the susceptibility data above 0.3 K. Room-temperature electron paramagnetic resonance (EPR) spectra of single crystals of Cu(l-alanine)2 at 9 and 35 GHz show a single, exchange-narrowed resonance. The g tensor, with principal values g1=2.0554+/-0.0005, g2=2.1064+/-0.0005, and g3=2.2056+/-0.0005, reflects the crystal structure of Cu(l-alanine)2 and the electronic properties of the copper ions. The observed angular variation of the linewidth is attributed to the magnetic interactions, narrowed by the exchange coupling between copper ions, and shows a contribution characteristic of the dipole-dipole interaction in a spin system with a predominant two-dimensional spin dynamics. Considering the exchange-collapsed resonance corresponding to the two lattice sites for copper in Cu(l-alanine)2, we evaluate an exchange constant ||J(AB1)||=0.47 K between nonequivalent copper neighbors in a spin chain, similar to the value obtained from the susceptibility data. The one-dimensional magnetic behavior suggested by the susceptibility data in Cu(l-alanine)2, where the metal ions are distributed in layers, is explained by proposing that carboxylate bridges provide electronic paths for superexchange interactions between coppers. Considering the characteristics of the molecular structure of Cu(l-alanine)2, the layers seem to be magnetically split off into one-dimensional zigzag ribbons. The apparent disagreement between the one-dimensional behavior suggested by the susceptibility data and the two-dimensional behavior of the spin dynamics suggested by the EPR linewidth is analyzed.

  11. Inducible l-Alanine Exporter Encoded by the Novel Gene ygaW (alaE) in Escherichia coli ▿

    PubMed Central

    Hori, Hatsuhiro; Yoneyama, Hiroshi; Tobe, Ryuta; Ando, Tasuke; Isogai, Emiko; Katsumata, Ryoichi

    2011-01-01

    We previously isolated a mutant hypersensitive to l-alanyl-l-alanine from a non-l-alanine-metabolizing Escherichia coli strain and found that it lacked an inducible l-alanine export system. Consequently, this mutant showed a significant accumulation of intracellular l-alanine and a reduction in the l-alanine export rate compared to the parent strain. When the mutant was used as a host to clone a gene(s) that complements the dipeptide-hypersensitive phenotype, two uncharacterized genes, ygaW and ytfF, and two characterized genes, yddG and yeaS, were identified. Overexpression of each gene in the mutant resulted in a decrease in the intracellular l-alanine level and enhancement of the l-alanine export rate in the presence of the dipeptide, suggesting that their products function as exporters of l-alanine. Since ygaW exhibited the most striking impact on both the intra- and the extracellular l-alanine levels among the four genes identified, we disrupted the ygaW gene in the non-l-alanine-metabolizing strain. The resulting isogenic mutant showed the same intra- and extracellular l-alanine levels as observed in the dipeptide-hypersensitive mutant obtained by chemical mutagenesis. When each gene was overexpressed in the wild-type strain, which does not intrinsically excrete alanine, only the ygaW gene conferred on the cells the ability to excrete alanine. In addition, expression of the ygaW gene was induced in the presence of the dipeptide. On the basis of these results, we concluded that YgaW is likely to be the physiologically most relevant exporter for l-alanine in E. coli and proposed that the gene be redesignated alaE for alanine export. PMID:21531828

  12. L-alanine in a droplet of water: a density-functional molecular dynamics study.

    PubMed

    Degtyarenko, Ivan M; Jalkanen, Karl J; Gurtovenko, Andrey A; Nieminen, Risto M

    2007-04-26

    We report the results of a Born-Oppenheimer molecular dynamics study on an L-alanine amino acid in neutral aqueous solution. The whole system, the L-alanine zwitterion and 50 water molecules, was treated quantum mechanically. We found that the hydrophobic side chain (R = CH3) defines the trajectory path of the molecule. Initially fully hydrated in an isolated droplet of water, the amino acid moves to the droplet's surface, exposing its hydrophobic methyl group and alpha-hydrogen out of the water. The structure of an L-alanine with the methyl group exposed to the water surface was found to be energetically favorable compared to a fully hydrated molecule. The dynamic behavior of the system suggests that the first hydration shell of the amino acid is localized around carboxylate (CO2-) and ammonium (NH3+) functional groups; it is highly ordered and quite rigid. In contrast, the hydration shell around the side chain is much less structured, suggesting a modest influence of the methyl group on the structure of water. The number of water molecules in the first hydration shell of an alanine molecule is constantly changing; the average number was found to equal 7. The molecular dynamics results show that L-alanine in water does not have a preferred conformation, as all three of the molecule's functional sites (i.e., CH3, NH3+, CO2-) perform rotational movements around the C(alpha)-site bond. PMID:17407339

  13. Growth and characterization of pure and semiorganic nonlinear optical Lithium Sulphate admixtured l-alanine crystal

    NASA Astrophysics Data System (ADS)

    Vela, T.; Selvarajan, P.; Freeda, T. H.; Balasubramanian, K.

    2013-04-01

    Lithium sulphate admixtured l-alanine (LSLA) salt was synthesized and the solubility of the commercially available l-alanine and the synthesized LSLA sample was determined in de-ionized water at various temperatures. In accordance with the solubility data, the saturated aqueous solutions of l-alanine and lithium admixtured l-alanine were prepared separately and the single crystals of the samples were grown by the solution method with a slow evaporation technique. Studying single x-ray diffraction shows that pure and LSLA crystal belong to the orthorhombic system with a non-centrosymmetric space group P212121. Using the powder x-ray diffraction study, the crystallinity of the grown crystals is confirmed and the diffraction peaks are indexed. The various functional groups present in the pure and LSLA crystal are elucidated from Fourier transform infrared spectroscopy study. UV-visible transmittance is recorded to study the optical transmittance range for the grown crystals. The powder second harmonic generation test confirms the nonlinear optical property of the grown crystals. From the microhardness test, the hardness of the grown crystals is estimated. The dielectric behaviour, such as the dielectric constant and the loss of the sample, are measured as a function of temperature and frequency. The ac conductivity of the grown crystals is also studied and the activation energy is calculated.

  14. L-alanine uptake in membrane vesicles from Mytilus edulis gills

    SciTech Connect

    Pajor, A.M.; Wright, S.H.

    1986-03-05

    Previous studies have shown that gills from M. edulis can accumulate L-alanine from seawater by a saturable process specific for ..cap alpha..-neutral amino acids. This uptake occurs against chemical gradients in excess of 10/sup 6/ to 1. To further characterize this uptake, membrane vesicles were prepared from M. edulis gill tissue by differential centrifugation. Enrichments of putative enzyme markers (relative to that in combined initial fractions) were as follows: ..gamma..-Glutamyltranspeptidase, 25-30x; Alkaline Phosphatase, 5-6x; K/sup +/-dependent para-Nitrophenyl Phosphatase, 3-5x; Succinate Dehydrogenase 0.1-0.2x. These results suggest that the preparation is enriched in plasma membranes, although histochemical studies will be needed to verify this. The time course of /sup 14/C-L-alanine uptake in the presence of inwardly-directed Na/sup +/ gradient showed a transient overshoot (3-5 fold) at 10 minutes which decreased to equilibrium after six hours. The size of the overshoot and early uptake rates depended on the size of the inwardly-directed Na/sup +/ gradient. No overshoot was seen in the presence of inwardly-directed gradients of LiCl or choline-Cl, or with equilibrium concentrations NaCl or mannitol. A reduced overshoot was seen with a gradient of NaSCN. A small overshoot was seen with an inwardly-directed gradient of KCl. Transport of L-alanine included saturable and diffusive components. Uptake of 6 ..mu..M L-alanine was inhibited more than 80% by 100 ..mu..M ..cap alpha..-zwitterionic amino acids (alanine, leucine, glycine); by 30 to 75% by proline, aspartate and lysine; and less than 20% by a ..beta..-amino acid, taurine. The results of these experiments agree with those from intact gill studies and support the hypothesis that L-alanine is transported into gill epithelial cells by a secondary active transport process involving Na/sup +/.

  15. Functionalization of single-walled carbon nanotubes with uracil, guanine, thymine and L-alanine

    NASA Astrophysics Data System (ADS)

    Silambarasan, D.; Iyakutti, K.; Vasu, V.

    2014-06-01

    Experimental investigation of functionalization of oxidized single-walled carbon nanotubes (OSWCNTs) with three nucleic acid bases such as uracil, guanine, thymine and one amino acid, L-alanine is carried out. Initially, the SWCNTs are oxidized by acid treatment. Further, the oxidized SWCNTs are effectively functionalized with aforementioned biological compounds by ultrasonication. The diameter of OSWCNTs has increased after the adsorption of biological compounds. The cumulative Π-Π stacking, hydrogen bond and polar interaction are the key factors to realize the adsorption. The amount of adsorption of each biological compound is estimated. The adsorption of guanine is more among all the four biological compounds.

  16. Rapid Crystallization of L-Alanine on Engineered Surfaces using Metal-Assisted and Microwave-Accelerated Evaporative Crystallization.

    PubMed

    Alabanza, Anginelle M; Pozharski, Edwin; Aslan, Kadir

    2012-01-01

    This study demonstrates the application of metal-assisted and microwave-accelerated evaporative crystallization (MA-MAEC) technique to rapid crystallization of L-alanine on surface engineered silver nanostructures. In this regard, silver island films (SIFs) were modified with hexamethylenediamine (HMA), 1-undecanethiol (UDET), and 11-mercaptoundecanoic acid (MUDA), which introduced -NH(2), -CH(3) and -COOH functional groups to SIFs, respectively. L-Alanine was crystallized on these engineered surfaces and blank SIFs at room temperature and using MA-MAEC technique. Significant improvements in crystal size, shape, and quality were observed on HMA-, MUDA- and UDET-modified SIFs at room temperature (crystallization time = 144, 40 and 147 min, respectively) as compared to those crystals grown on blank SIFs. Using the MA-MAEC technique, the crystallization time of L-alanine on engineered surfaces were reduced to 17 sec for microwave power level 10 (i.e., duty cycle 100%) and 7 min for microwave power level 1 (duty cycle 10%). Raman spectroscopy and powder x-ray diffraction (XRD) measurements showed that L-Alanine crystals grown on engineered surfaces using MA-MAEC technique had identical characteristic peaks of L-alanine crystals grown using traditional evaporative crystallization. PMID:22267957

  17. Controlled radical polymerization of an acrylamide containing L-alanine moiety via ATRP.

    PubMed

    Rafiee, Zahra

    2016-02-01

    Homopolymerization of an optically active acrylamide having an amino acid moiety in the side chain, N-acryloyl-L-alanine (AAla) was carried out via atom transfer radical polymerization (ATRP) at room temperature using 2-hydroxyethyl-2'-methyl-2'-bromopropionate (HMB) or sodium-4-(bromomethyl)benzoate (SBB) as initiator in pure water, methanol/water mixture and pure methanol solvents. The polymerization reaction resulted in the optically active biocompatible amino acid-based homopolymer in good yield with narrow molecular weight distribution. The number average molecular weight increased with conversion and polydispersity was low. The structure and molecular weight of synthesized polymer were characterized by (1)H NMR, FT-IR spectroscopic techniques and size-exclusion chromatography. PMID:26385362

  18. Growth, Structural And Optical Studies On Bis L-alanine Lithium Chloride (BLALC) Single Crystal

    NASA Astrophysics Data System (ADS)

    Rose, A. S. J. Lucia; Selvarajan, P.; Perumal, S.

    2011-10-01

    Bis L-alanine Lithium Chloride (BLALC) single crystals were grown successfully by solution method with slow evaporation technique at room temperature. Crystals of size 15 x 9 x 4 mm3 have been obtained in 28 days. The grown crystals were colourless and transparent. Single crystal X-ray diffraction (XRD) study showed that BLALC belongs to orthorhombic system with a non-centro-symmetric space group P212121. The crystallinity of BLALC crystal was confirmed by the powder X-ray diffraction study and diffraction peaks were indexed. The functional groups of the grown crystals have been identified by FTIR studies. UV-visible transmittance spectrum was recorded to study the optical transparency of BLALC crystal. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz-Perry powder technique.

  19. Experimental and DFT computational studies of L-alanine cadmium chloride crystals

    NASA Astrophysics Data System (ADS)

    Ignatius, I. Cicili; Dheivamalar, S.; Kirubavathi, K.; Selvaraju, K.

    2016-05-01

    In this work, we report the combined experimental and theoretical study on molecular structure and vibrational spectra of nonlinear optical crystal L-alanine cadmium chloride (LACC). The single X-ray diffraction studies have revealed that the compound crystallizes in monoclinic system C2 space group with cell parameters a = 16.270, b = 7.358, c = 7.887 and Z = 4. FTIR and Raman spectra of the nonlinear optical materials LACC have been recorded and analyzed. The optimized geometric bond length and bond angles are obtained with the help of density functional theory (DFT) (B3LYP) calculation. The optimized geometric bond lengths and bond angles obtained by using DFT show good agreement with the experimental data. Using the natural bond orbital analysis the electronic effect and hydrogen bonding were confirmed. The HOMO-LUMO energy gap and the first order hyperpolarizability were calculated and it supports the nonlinear optical activity of LACC crystal.

  20. Gliotoxicity of the cyanotoxin, β-methyl-amino-L-alanine (BMAA)

    PubMed Central

    Chiu, Alexander S.; Gehringer, Michelle M.; Braidy, Nady; Guillemin, Gilles J.; Welch, Jeffrey H.; Neilan, Brett A.

    2013-01-01

    The amino acid variant β-methyl-amino-L-alanine (BMAA) has long been associated with the increased incidence and progression of the amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC). Previous studies have indicated that BMAA damages neurons via excitotoxic mechanisms. We have challenged rat olfactory ensheathing cells (OECs) with exogenous BMAA and found it to be cytotoxic. BMAA also induces a significant increase in Ca2+ influx, enhanced production of reactive oxygen species (ROS), and disrupts mitochondrial activity in OECs. This is the first study investigating BMAA toxicity using pure glial cells. These findings align BMAA with the three proposed mechanisms of degeneration in ALS, those being non-cell autonomous death, excitotoxicity and mitochondrial dysfunction. PMID:23508043

  1. Linking β-methylamino-L-alanine exposure to sporadic amyotrophic lateral sclerosis in Annapolis, MD.

    PubMed

    Field, Nicholas C; Metcalf, James S; Caller, Tracie A; Banack, Sandra A; Cox, Paul A; Stommel, Elijah W

    2013-08-01

    Most amyotrophic lateral sclerosis (ALS) cases occur sporadically. Some environmental triggers have been implicated, including beta-methylamino-L-alanine (BMAA), a cyanobacteria produced neurotoxin. This study aimed to identify environmental risk factors common to three sporadic ALS patients who lived in Annapolis, Maryland, USA and developed the disease within a relatively short time and within close proximity to each other. A questionnaire was used to identify potential risk factors for ALS among the cohort of patients. One common factor among the ALS patients was the frequent consumption of blue crab. Samples of blue crab from the patients' local fish market were tested for BMAA using LC-MS/MS. BMAA was identified in these Chesapeake Bay blue crabs. We conclude that the presence of BMAA in the Chesapeake Bay food web and the lifetime consumption of blue crab contaminated with BMAA may be a common risk factor for sporadic ALS in all three patients. PMID:23660330

  2. The fate of the cyanobacterial toxin β-N-methylamino-L-alanine in freshwater mussels.

    PubMed

    Downing, Simoné; Contardo-Jara, Valeska; Pflugmacher, Stephan; Downing, Timothy Grant

    2014-03-01

    The cyanobacterial neurotoxin, β-N-methylamino-l-alanine (BMAA) has been suggested as a causative agent for certain neurodegenerative diseases. This cyanotoxin bioaccumulates in an array of aquatic organisms, in which it occurs as both a free amino acid and in a protein-associated form. This study was intended to investigate the environmental fate of BMAA by examining the metabolism of isotopically labeled BMAA in four freshwater mussel species. All species showed substantial uptake of BMAA from the culture media. Data showed no significant evidence for BMAA catabolism in any of the animals but did suggest metabolism via the reversible covalent modification of BMAA in freshwater mussels, a process that appears to be variable in different species. PMID:24507126

  3. Catalytic Stereoinversion of L-Alanine to Deuterated D-Alanine.

    PubMed

    Moozeh, Kimia; So, Soon Mog; Chin, Jik

    2015-08-01

    A combination of an achiral pyridoxal analogue and a chiral base has been developed for catalytic deuteration of L-alanine with inversion of stereochemistry to give deuterated D-alanine under mild conditions (neutral pD and 25 °C) without the use of any protecting groups. This system can also be used for catalytic deuteration of D-alanine with retention of stereochemistry to give deuterated D-alanine. Thus a racemic mixture of alanine can be catalytically deuterated to give an enantiomeric excess of deuterated D-alanine. While catalytic deracemization of alanine is forbidden by the second law of thermodynamics, this system can be used for catalytic deracemization of alanine with deuteration. Such green and biomimetic approach to catalytic stereocontrol provides insights into efficient amino acid transformations. PMID:26119066

  4. Gliotoxicity of the cyanotoxin, β-methyl-amino-L-alanine (BMAA).

    PubMed

    Chiu, Alexander S; Gehringer, Michelle M; Braidy, Nady; Guillemin, Gilles J; Welch, Jeffrey H; Neilan, Brett A

    2013-01-01

    The amino acid variant β-methyl-amino-L-alanine (BMAA) has long been associated with the increased incidence and progression of the amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC). Previous studies have indicated that BMAA damages neurons via excitotoxic mechanisms. We have challenged rat olfactory ensheathing cells (OECs) with exogenous BMAA and found it to be cytotoxic. BMAA also induces a significant increase in Ca2+ influx, enhanced production of reactive oxygen species (ROS), and disrupts mitochondrial activity in OECs. This is the first study investigating BMAA toxicity using pure glial cells. These findings align BMAA with the three proposed mechanisms of degeneration in ALS, those being non-cell autonomous death, excitotoxicity and mitochondrial dysfunction. PMID:23508043

  5. Discovery of an L-alanine ester prodrug of the Hsp90 inhibitor, MPC-3100.

    PubMed

    Kim, Se-Ho; Tangallapally, Rajendra; Kim, In Chul; Trovato, Richard; Parker, Daniel; Patton, J Scott; Reeves, Leslie; Bradford, Chad; Wettstein, Daniel; Baichwal, Vijay; Papac, Damon; Bajji, Ashok; Carlson, Robert; Yager, Kraig M

    2015-11-15

    Various types of Hsp90 inhibitors have been and continue to undergo clinical investigation. One development candidate is the purine-based, synthetic Hsp90 inhibitor 1 (MPC-3100), which successfully completed a phase I clinical study. However, further clinical development of 1 was hindered by poor solubility and consequent formulation issues and promoted development of a more water soluble prodrug. Towards this end, numerous pro-moieties were explored in vitro and in vivo. These studies resulted in identification of L-alanine ester mesylate, 2i (MPC-0767), which exhibited improved aqueous solubility, adequate chemical stability, and rapid bioconversion without the need for solubilizing excipients. Based on improved physical characteristics and favorable PK and PD profiles, 2i mesylate was selected for further development. A convergent, scalable, chromatography-free synthesis for 2i mesylate was developed to support further clinical evaluation. PMID:26483201

  6. Fibrous biodegradable l-alanine-based scaffolds for vascular tissue engineering.

    PubMed

    Srinath, Deepta; Lin, Shigang; Knight, Darryl K; Rizkalla, Amin S; Mequanint, Kibret

    2014-07-01

    In vascular tissue engineering, three-dimensional (3D) biodegradable scaffolds play an important role in guiding seeded cells to produce matrix components by providing both mechanical and biological cues. The objective of this work was to fabricate fibrous biodegradable scaffolds from novel poly(ester amide)s (PEAs) derived from l-alanine by electrospinning, and to study the degradation profiles and its suitability for vascular tissue-engineering applications. In view of this, l-alanine-derived PEAs (dissolved in chloroform) were electrospun together with 18-30% w/w polycaprolactone (PCL) to improve spinnability. A minimum of 18% was required to effectively electrospin the solution while the upper value was set in order to limit the influence of PCL on the electrospun PEA fibres. Electrospun fibre mats with average fibre diameters of ~0.4 µm were obtained. Both fibre diameter and porosity increased with increasing PEA content and solution concentration. The degradation of a PEA fibre mat over a period of 28 days indicated that mass loss kinetics was linear, and no change in molecular weight was found, suggesting a surface erosion mechanism. Human coronary artery smooth muscle cells (HCASMCs) cultured for 7 days on the fibre mats showed significantly higher viability (p < 0.0001), suggesting that PEA scaffolds provided a better microenvironment for seeded cells compared with control PCL fibre mats of similar fibre diameter and porosity. Furthermore, elastin expression on the PEA fibre mats was significantly higher than the pure PEA discs and pure PCL fibre mat controls (p < 0.0001). These novel biodegradable PEA fibrous scaffolds could be strong candidates for vascular tissue-engineering applications. PMID:22899439

  7. High-temperature Raman study of L-alanine, L-threonine and taurine crystals related to thermal decomposition

    NASA Astrophysics Data System (ADS)

    Cavaignac, A. L. O.; Lima, R. J. C.; Façanha Filho, P. F.; Moreno, A. J. D.; Freire, P. T. C.

    2016-03-01

    In this work high-temperature Raman spectra are used to compare temperature dependence of the lattice mode wavenumber of L-alanine, L-threonine and taurine crystals. Anharmonic effects observed are associated with intermolecular N-H· · ·O hydrogen bond that plays an important role in thermal decomposition process of these materials. Short and strong hydrogen bonds in L-alanine crystal were associated with anharmonic effects in lattice modes leading to low thermal stability compared to taurine crystals. Connection between thermal decomposition process and anharmonic effects is furnished for the first time.

  8. Determination of β-Cyano-L-alanine, γ-Glutamyl-β-cyano-L-alanine, and Common Free Amino Acids in Vicia sativa (Fabaceae) Seeds by Reversed-Phase High-Performance Liquid Chromatography

    PubMed Central

    Megías, Cristina; Cortés-Giraldo, Isabel; Girón-Calle, Julio; Vioque, Javier; Alaiz, Manuel

    2014-01-01

    A method for determination of β-cyano-L-alanine, γ-glutamyl-β-cyano-L-alanine and other free amino acids in Vicia sativa is presented. Seed extracts were derivatized by reaction with diethyl ethoxymethylenemalonate and analyzed by reverse-phase high-performance liquid chromatography. Calibration curves showed very good linearity of the response. The limit of detection and quantification was 0.15 and 0.50 μM, respectively. The method has high intra- (RSD = 0.28–0.31%) and interrepeatability (RSD = 2.76–3.08%) and remarkable accuracy with a 99% recovery in spiked samples. The method is very easy to carry out and allows for ready analysis of large number of samples using very basic HPLC equipment because the derivatized samples are very stable and have very good chromatographic properties. The method has been applied to the determination of γ-glutamyl-β-cyano-L-alanine, β-cyano-L-alanine, and common free amino acids in eight wild populations of V. sativa from southwestern Spain. PMID:25587488

  9. Growth and characterization of L-alanine cadmium bromide a semiorganic nonlinear optical crystals.

    PubMed

    Ilayabarathi, P; Chandrasekaran, J

    2012-10-01

    A new semiorganic nonlinear optical crystal, l-alanine cadmium bromide (LACB) was grown from aqueous solution by slow solvent evaporation method at room temperature. As grown crystals were characterized for its spectral, thermal, linear and second order nonlinear optical properties. LACB crystallizes in orthorhombic system and unit cell parameters a=5.771(2)Å, b=6.014(4)Å, c=12.298(2)Å, α=β=γ=90° and volume=426.8(3)Å(3). The mode of vibrations of different molecular groups present in the crystal was identified by FTIR study. The grown crystals were found to be transparent in the entire visible region. The thermal strength and the decomposition of the grown crystals were studied using TG/DTA and DSC analysis. Dielectric measurement revealed that the crystals had very low dielectric constant at higher frequency in room temperature. The mechanical behavior was studied by Vicker's microhardness tester. The grown crystal has negative photoconductivity nature. The fluorescence spectrum of the crystal was recorded and its optical band gap is about 3.356 eV. The NLO property of crystal using modified Kurtz-Perry powder technique with Nd:YAG laser light of wavelength 1064nm indicated that their second harmonic generation (SHG) efficiency was half that of pure KDP. PMID:22885081

  10. Biotransfer of β-N-Methylamino-l-alanine (BMAA) in a Eutrophicated Freshwater Lake

    PubMed Central

    Lage, Sandra; Annadotter, Heléne; Rasmussen, Ulla; Rydberg, Sara

    2015-01-01

    β-N-Methylamino-l-alanine (BMAA), a neurotoxic non-protein amino acid, plays a significant role as an environmental risk factor in neurodegenerative diseases, such as amyotrophic lateral sclerosis. BMAA producers occur globally, colonizing almost all habitats and represent species from distinct phytoplanktonic groups, i.e., cyanobacteria, diatoms, and dinoflagellates. Bioaccumulation of BMAA in invertebrate and vertebrate organisms has also been registered around the globe. In the Baltic Sea, BMAA has been detected in several commercial fish species, raising the question of the bioaccumulation of BMAA in Swedish limnic systems. Here we find the presence of BMAA in water samples from Lake Finjasjön and identify its bioaccumulation patterns in both plankti-benthivorous and piscivorous fish, according to fish species, total weight, gender, and season of collection. For the first time, a large number of fish individuals were used in order to draw conclusions on BMAA bioaccumulation in a closed ecological community based on a statistical approach. We may, therefore, conclude that feeding patterns (plankti-benthivorous) and increased age of fish may lead to a higher tissue concentration of BMAA. PMID:25738330

  11. Transcription and genetic analyses of a putative N-acetylmuramyl-L-alanine amidase in Borrelia burgdorferi

    PubMed Central

    Yang, Yu; Li, Chunhao

    2010-01-01

    In this study, a putative N-acetylmuramyl-L-alanine amidase gene (bb0666) was identified in the genome of the Lyme disease spirochete Borrelia burgdorferi. This protein shares c. 30% identity with its counterparts from other bacteria. Reverse transcriptase-PCR analysis showed that bb0666 along with two other genes (bb0665 and bb0667) are cotranscribed with the motility and chemotaxis genes. This newly identified operon is termed as pami. Sequence and primer extension analyses showed that pami was regulated by a σ70-like promoter, which is designated as Pami. Transcriptional analysis using a gene encoding green fluorescence protein as a reporter demonstrated that Pami functions in both Escherichia coli and B. burgdorferi. Genetic studies showed that the Δbb0666 mutant grows in long chains of unseparated cells, whose phenotype is similar to its counterparts in E. coli. Taken together, these results demonstrate that bb0666 is a homolog of MurNac-LAAs that contributes to the cell division of B. burgdorferi. PMID:19025570

  12. Moments and distribution functions for polypeptide chains. Poly-L-alanine.

    PubMed

    Conrad, J C; Flory, P J

    1976-01-01

    Statistical mechanical averages of vectors and tensors characterizing the configurations of polypeptides have been calculated for poly-L-alanines (PLA) of xu = 2-400 peptide units. These quantities are expressed in the reference frame of the first peptide unit, the X axis being situated along the virtual bond, the Y axis in the plane of the peptide unit. The persistence vector a identical to (r) converges rapidly with chain length to its limit a infinity which lies virtually in the XZ plane. Configurational averages of Cartesian tensors up to the sixth rank formed from the displacement vector p = r-a have been computed. For xu greater than 50 the even moments of fourth and sixth rank formed from the reduced vector p for the real chain are well repreented by the freely jointed chain with 21.7 virtual bonds equivalent to one of the model. The moments of p display assymmetry for xu less than 50. Density distribution functions Wa(p), evaluated from the three-dimensional Hermite series truncated at the term in the polynomial involving the tensors of p of sixth rank, display no obvious symmetry for xu less than 50. Approximate spherical symmetry of the distribution of p about a is observed only for xu greater than or equal to 100. PMID:1249990

  13. Quantification of neurotoxin BMAA (β-N-methylamino-L-alanine) in seafood from Swedish markets

    NASA Astrophysics Data System (ADS)

    Jiang, Liying; Kiselova, Nadezda; Rosén, Johan; Ilag, Leopold L.

    2014-11-01

    The neurotoxin β-N-methylamino-L-alanine (BMAA) produced naturally by cyanobacteria, diatoms and dinoflagellates can be transferred and accumulated up the food chain, and may be a risk factor for neurodegenerative diseases. This study provides the first systematic screening of BMAA exposure of a large population through the consumption of seafood sold in metropolitan markets. BMAA was distinguished from known isomers by liquid chromatography tandem mass spectrometry after acidic hydrolysis and derivatization. Using deuterium-labeled internal standard, BMAA was quantified as 0.01-0.90 μg/g wet weight of tissues in blue mussel, oyster, shrimp, plaice, char and herring, but was undetectable (<0.01 μg/g) in other samples (salmon, cod, perch and crayfish). Provided that the content of BMAA detected is relevant for intake calculations, the data presented may be used for a first estimation of BMAA exposure through seafood from Swedish markets, and to refine the design of future toxicological experiments and assessments.

  14. Biotransfer of β-N-methylamino-L-alanine (BMAA) in a eutrophicated freshwater lake.

    PubMed

    Lage, Sandra; Annadotter, Heléne; Rasmussen, Ulla; Rydberg, Sara

    2015-03-01

    β-N-Methylamino-L-alanine (BMAA), a neurotoxic non-protein amino acid, plays a significant role as an environmental risk factor in neurodegenerative diseases, such as amyotrophic lateral sclerosis. BMAA producers occur globally, colonizing almost all habitats and represent species from distinct phytoplanktonic groups, i.e., cyanobacteria, diatoms, and dinoflagellates. Bioaccumulation of BMAA in invertebrate and vertebrate organisms has also been registered around the globe. In the Baltic Sea, BMAA has been detected in several commercial fish species, raising the question of the bioaccumulation of BMAA in Swedish limnic systems. Here we find the presence of BMAA in water samples from Lake Finjasjön and identify its bioaccumulation patterns in both plankti-benthivorous and piscivorous fish, according to fish species, total weight, gender, and season of collection. For the first time, a large number of fish individuals were used in order to draw conclusions on BMAA bioaccumulation in a closed ecological community based on a statistical approach. We may, therefore, conclude that feeding patterns (plankti-benthivorous) and increased age of fish may lead to a higher tissue concentration of BMAA. PMID:25738330

  15. β-N-methylamino-L-alanine (BMAA) metabolism in the aquatic macrophyte Ceratophyllum demersum.

    PubMed

    Downing, Simoné; Esterhuizen-Londt, Maranda; Grant Downing, Timothy

    2015-10-01

    The cyanobacterial neurotoxin, β-N-methylamino-l-alanine (BMAA) bioaccumulates and biomagnifies within the environment. However, most reports on the environmental presence of BMAA focus on the presence of BMAA in animals rather than in plants. Various laboratory studies have reported that this neurotoxin, implicated in neurodegenerative disease, is rapidly taken up by various aquatic and terrestrial plants, including crop plants. In this study the metabolism of BMAA in the aquatic macrophyte, Ceratophyllum demersum, was investigated using stable isotopically labelled BMAA. Data show that the toxin is rapidly removed from the environment by the plant. However, during depuration cellular BMAA concentrations decrease considerably, without excretion of the toxin back into the environment and without catabolism of BMAA, evidenced by the absence of label transfer to other amino acids. This strongly suggests that BMAA is metabolised via covalent modification and sequestered inside the plant as a BMAA-derivative. This modification may be reversed in humans following consumption of BMAA-containing plant material. These data therefore impact on the assessment of the risk of human exposure to this neurotoxin. PMID:26036420

  16. Bacteria do not incorporate β-N-methylamino-L-alanine into their proteins.

    PubMed

    van Onselen, Rianita; Cook, Niall A; Phelan, Richard R; Downing, Tim G

    2015-08-01

    β-N-methylamino-l-alanine (BMAA), is commonly found in both a free and proteinassociated form in various organisms exposed to the toxin. The long latency of development of neurodegeneration attributed to BMAA, is hypothesized to be the result of excitotoxicity following slow release of the toxin from protein reservoirs. It was recently suggested that these BMAA-protein associations may reflect misincorporation of BMAA in place of serine, as occurs, for example, when canavanine misincorporates in place of arginine. We therefore compared BMAA and canavanine toxicty in various bacterial species, and misincorporation of these amino acids into proteins in a bacterial protein expression system. None of the bacterial species showed any physiological stress responses to BMAA in contrast to the growth reduction observed when cultures were incubated in media containing canavanine. LC-MS analysis confirmed uptake of BMAA from growth media. However, after immobilized metal affinity chromatography and SDS-PAGE purification of proteins produced in an E scherichia coli expression system, no BMAA was detected by either LC-MS or LC-MS/MS analysis using two derivatization methods, or by orbitrap MS of trypsin digests of the protein. We therefore conclude that BMAA is not misincorporated into proteins in bacteria and that the observed BMAA-protein association in bacteria is superficial. PMID:26051985

  17. Acute β-N-Methylamino-L-alanine Toxicity in a Mouse Model.

    PubMed

    Al-Sammak, Maitham Ahmed; Rogers, Douglas G; Hoagland, Kyle D

    2015-01-01

    The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) is considered to be an "excitotoxin," and its suggested mechanism of action is killing neurons. Long-term exposure to L-BMAA is believed to lead to neurodegenerative diseases including Parkinson's and Alzheimer's diseases and amyotrophic lateral sclerosis (Lou Gehrig's disease). Objectives of this study were to determine the presumptive median lethal dose (LD50), the Lowest-Observed-Adverse-Effect Level (LOAEL), and histopathologic lesions caused by the naturally occurring BMAA isomer, L-BMAA, in mice. Seventy NIH Swiss Outbred mice (35 male and 35 female) were used. Treatment group mice were injected intraperitoneally with 0.03, 0.3, 1, 2, and 3 mg/g body weight L-BMAA, respectively, and control mice were sham-injected. The presumptive LD50 of L-BMAA was 3 mg/g BW and the LOAEL was 2 mg/g BW. There were no histopathologic lesions in brain, liver, heart, kidney, lung, or spleen in any of the mice during the 14-day study. L-BMAA was detected in brains and livers in all of treated mice but not in control mice. Males injected with 0.03 mg/g BW, 0.3 mg/g BW, and 3.0 mg/g BW L-BMAA showed consistently higher concentrations (P < 0.01) in brain and liver samples as compared to females in those respective groups. PMID:26604922

  18. Quantification of neurotoxin BMAA (β-N-methylamino-L-alanine) in seafood from Swedish markets.

    PubMed

    Jiang, Liying; Kiselova, Nadezda; Rosén, Johan; Ilag, Leopold L

    2014-01-01

    The neurotoxin β-N-methylamino-L-alanine (BMAA) produced naturally by cyanobacteria, diatoms and dinoflagellates can be transferred and accumulated up the food chain, and may be a risk factor for neurodegenerative diseases. This study provides the first systematic screening of BMAA exposure of a large population through the consumption of seafood sold in metropolitan markets. BMAA was distinguished from known isomers by liquid chromatography tandem mass spectrometry after acidic hydrolysis and derivatization. Using deuterium-labeled internal standard, BMAA was quantified as 0.01-0.90 μg/g wet weight of tissues in blue mussel, oyster, shrimp, plaice, char and herring, but was undetectable (<0.01 μg/g) in other samples (salmon, cod, perch and crayfish). Provided that the content of BMAA detected is relevant for intake calculations, the data presented may be used for a first estimation of BMAA exposure through seafood from Swedish markets, and to refine the design of future toxicological experiments and assessments. PMID:25373604

  19. Cyanobacterial Neurotoxin β-N-Methylamino-L-alanine (BMAA) in Shark Fins

    PubMed Central

    Mondo, Kiyo; Hammerschlag, Neil; Basile, Margaret; Pablo, John; Banack, Sandra A.; Mash, Deborah C.

    2012-01-01

    Sharks are among the most threatened groups of marine species. Populations are declining globally to support the growing demand for shark fin soup. Sharks are known to bioaccumulate toxins that may pose health risks to consumers of shark products. The feeding habits of sharks are varied, including fish, mammals, crustaceans and plankton. The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) has been detected in species of free-living marine cyanobacteria and may bioaccumulate in the marine food web. In this study, we sampled fin clips from seven different species of sharks in South Florida to survey the occurrence of BMAA using HPLC-FD and Triple Quadrupole LC/MS/MS methods. BMAA was detected in the fins of all species examined with concentrations ranging from 144 to 1836 ng/mg wet weight. Since BMAA has been linked to neurodegenerative diseases, these results may have important relevance to human health. We suggest that consumption of shark fins may increase the risk for human exposure to the cyanobacterial neurotoxin BMAA. PMID:22412816

  20. Cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) in shark fins.

    PubMed

    Mondo, Kiyo; Hammerschlag, Neil; Basile, Margaret; Pablo, John; Banack, Sandra A; Mash, Deborah C

    2012-02-01

    Sharks are among the most threatened groups of marine species. Populations are declining globally to support the growing demand for shark fin soup. Sharks are known to bioaccumulate toxins that may pose health risks to consumers of shark products. The feeding habits of sharks are varied, including fish, mammals, crustaceans and plankton. The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) has been detected in species of free-living marine cyanobacteria and may bioaccumulate in the marine food web. In this study, we sampled fin clips from seven different species of sharks in South Florida to survey the occurrence of BMAA using HPLC-FD and Triple Quadrupole LC/MS/MS methods. BMAA was detected in the fins of all species examined with concentrations ranging from 144 to 1836 ng/mg wet weight. Since BMAA has been linked to neurodegenerative diseases, these results may have important relevance to human health. We suggest that consumption of shark fins may increase the risk for human exposure to the cyanobacterial neurotoxin BMAA. PMID:22412816

  1. In vivo dose evaluation during gynaecological radiotherapy using L-alanine/ESR dosimetry.

    PubMed

    Rech, Amanda Burg; Barbi, Gustavo Lazzaro; Ventura, Luiz Henrique Almeida; Guimarães, Flavio Silva; Oliveira, Harley Francisco; Baffa, Oswaldo

    2014-06-01

    The dose delivered by in vivo 3-D external beam radiation therapy (EBRT) was verified with L-alanine/electron spin resonance (ESR) dosimetry for patients diagnosed with gynaecological cancer. Measurements were performed with an X-band ESR spectrometer. Dosemeters were positioned inside the vaginal cavity with the assistance of an apparatus specially designed for this study. Previous phantom studies were performed using the same conditions as in the in vivo treatment. Four patients participated in this study during 20-irradiation sessions, giving 220 dosemeters to be analysed. The doses were determined with the treatment planning system, providing dose confirmation. The phantom study resulted in a deviation between -2.5 and 2.1 %, and for the in vivo study a deviation between -9.2 and 14.2 % was observed. In all cases, the use of alanine with ESR was effective for dose assessment, yielding results consistent with the values set forth in the International Commission on Radiation Units and Measurements (ICRU) reports. PMID:24751984

  2. Uptake of a cyanotoxin, β-N-methylamino-L-alanine, by wheat (Triticum aestivum).

    PubMed

    Contardo-Jara, Valeska; Schwanemann, Torsten; Pflugmacher, Stephan

    2014-06-01

    In order to study the uptake of the cyanobacterial neurotoxin β-N-methylamino-l-alanine (BMAA) into the crop plant Triticum aestivum during germination and primary growth imbibed grains and 7-day-old seedlings were irrigated with 100 and 1000µg l(-1) BMAA for 4 days and 100µg l(-1) BMAA for 28 days. Content of derivatized free and protein-associated BMAA in seedlings, root and shoot tissue, respectively, were analyzed by LC-MS/MS. Free BMAA was only detected in seedlings exposed to 1000µg l(-1) BMAA, whereas protein-associated BMAA was found at both exposure concentrations. Irrigation with 100µgl(-1) BMAA led to an uptake of the neurotoxin into roots and shoots and to immediate protein-association. In roots, protein-associated BMAA was detectable after 5 days with peaking amounts after 14 days. Longer exposure did not cause further accumulation in roots. In contrast, protein-associated BMAA was detected in shoot samples after only 1 day. In shoots the highest amounts of protein-associated BMAA were found after 28 days. In turn, in both plant compartments free BMAA was below the measurable concentration. PMID:24675440

  3. Acute β-N-Methylamino-L-alanine Toxicity in a Mouse Model

    PubMed Central

    Al-Sammak, Maitham Ahmed; Rogers, Douglas G.; Hoagland, Kyle D.

    2015-01-01

    The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) is considered to be an “excitotoxin,” and its suggested mechanism of action is killing neurons. Long-term exposure to L-BMAA is believed to lead to neurodegenerative diseases including Parkinson's and Alzheimer's diseases and amyotrophic lateral sclerosis (Lou Gehrig's disease). Objectives of this study were to determine the presumptive median lethal dose (LD50), the Lowest-Observed-Adverse-Effect Level (LOAEL), and histopathologic lesions caused by the naturally occurring BMAA isomer, L-BMAA, in mice. Seventy NIH Swiss Outbred mice (35 male and 35 female) were used. Treatment group mice were injected intraperitoneally with 0.03, 0.3, 1, 2, and 3 mg/g body weight L-BMAA, respectively, and control mice were sham-injected. The presumptive LD50 of L-BMAA was 3 mg/g BW and the LOAEL was 2 mg/g BW. There were no histopathologic lesions in brain, liver, heart, kidney, lung, or spleen in any of the mice during the 14-day study. L-BMAA was detected in brains and livers in all of treated mice but not in control mice. Males injected with 0.03 mg/g BW, 0.3 mg/g BW, and 3.0 mg/g BW L-BMAA showed consistently higher concentrations (P < 0.01) in brain and liver samples as compared to females in those respective groups. PMID:26604922

  4. Cerebral uptake and protein incorporation of cyanobacterial toxin β-N-methylamino-L-alanine.

    PubMed

    Xie, Xiaobin; Basile, Margaret; Mash, Deborah C

    2013-10-01

    β-N-methylamino-L-alanine (BMAA) is a nonprotein amino acid produced by diverse species of free-living cyanobacteria found in terrestrial and aquatic environments worldwide. BMAA has been detected as a soluble (free) and insoluble protein-bound (bound) amino acid in brains of Alzheimer's disease, amyotrophic lateral sclerosis, and Guamanian amyotrophic lateral sclerosis/Parkinsonism dementia complex patients. A toxic reservoir of BMAA in the brain may be excitotoxic to neurons or serve to disrupt cerebral protein homeostasis. Here, we report tracer uptake kinetics and a time course for protein incorporation of [C]-L-BMAA into the brain of C57/BL6 mice. BMAA pharmacokinetic parameters measured in plasma show a rapid distribution phase and a terminal elimination half-life of 1.7 days following bolus intravenous administration. Total [C]-L-BMAA uptake to the brain reached a maximum at 1.5 h. Ex-vivo autoradiography of [C]-labeled BMAA showed dense labeling within the ventricles, choroid plexus, and whole-brain gray matter structures. Radioactivity measured in soluble and trichloroacetic acid precipitates was compared to determine the incorporation of [C]-L-BMAA into total brain protein. The maximal concentration of [C]-L-BMAA was measured in protein-bound fractions of brain at 4 h, followed by a corresponding decrease in the free pool of this nonprotein amino acid. The time-dependent association of [C]-L-BMAA in the protein-bound fraction suggests that BMAA may be trapped in new proteins by protein synthesis-dependent processes. BMAA may accumulate into growing polypeptide chains and recycle to the free pool with protein turnover. PMID:23979257

  5. Environmental neurotoxins β-N-methylamino-l-alanine (BMAA) and mercury in shark cartilage dietary supplements.

    PubMed

    Mondo, Kiyo; Broc Glover, W; Murch, Susan J; Liu, Guangliang; Cai, Yong; Davis, David A; Mash, Deborah C

    2014-08-01

    Shark cartilage products are marketed as dietary supplements with claimed health benefits for animal and human use. Shark fin and cartilage products sold as extracts, dry powders and in capsules are marketed based on traditional Chinese medicine claims that it nourishes the blood, enhances appetite, and energizes multiple internal organs. Shark cartilage contains a mixture of chondroitin and glucosamine, a popular nutritional supplement ingested to improve cartilage function. Sharks are long-lived apex predators, that bioaccumulate environmental marine toxins and methylmercury from dietary exposures. We recently reported detection of the cyanobacterial toxin β-N-methylamino-l-alanine (BMAA) in the fins of seven different species of sharks from South Florida coastal waters. Since BMAA has been linked to degenerative brain diseases, the consumption of shark products may pose a human risk for BMAA exposures. In this report, we tested sixteen commercial shark cartilage supplements for BMAA by high performance liquid chromatography (HPLC-FD) with fluorescence detection and ultra performance liquid chromatography/mass spectrometry/mass spectrometry (UPLC-MS/MS). Total mercury (Hg) levels were measured in the same shark cartilage products by cold vapor atomic fluorescence spectrometry (CVAFS). We report here that BMAA was detected in fifteen out of sixteen products with concentrations ranging from 86 to 265μg/g (dry weight). All of the shark fin products contained low concentrations of Hg. While Hg contamination is a known risk, the results of the present study demonstrate that shark cartilage products also may contain the neurotoxin BMAA. Although the neurotoxic potential of dietary exposure to BMAA is currently unknown, the results demonstrate that shark cartilage products may contain two environmental neurotoxins that have synergistic toxicities. PMID:24755394

  6. Solvated states of poly-L-alanine α-helix explored by Raman optical activity.

    PubMed

    Yamamoto, Shigeki; Furukawa, Tatsuya; Bouř, Petr; Ozaki, Yukihiro

    2014-05-22

    Raman optical activity (ROA) reveals surprising details of the secondary structure of polypeptides and proteins in solution phase. Yet specific spectral features, such as in the extended amide III region of hydrated α-helix, did not seem explicable by the generally accepted sensitivity of ROA to the local conformation. This is reconciled in the present study by simulations of ROA spectra for model α-helical structures. Two positive ROA peaks often observed at around 1340 and 1300 cm(-1) for polypeptides and proteins have been assigned to two types of solvated α-helices; one is stable in hydrophilic environment where amide groups make hydrogen bonds to solvent molecules or polar side chains (∼1340 cm(-1)), and the other is supported by a hydrophobic environment without the possibility of external hydrogen bonds (∼1300 cm(-1)). For poly-L-alanine (PLA), regarded as a good model of α-helical structure, the experimentally observed relative intensity ratio of the two ROA bands has been explained by a conformational equilibrium depending on the solvent polarity. The intensities of the bands reflect solvated and unsolvated α-helical geometries, with peptide backbone torsional angles (ϕi+1, ψi) of (-66°, -41°) and (-59°, -44°), respectively. Quantum-mechanical simulations of the ROA spectra utilizing the normal mode optimization and Cartesian tensor transfer methods indicate, however, that the change in dielectric constant of the solvent is the main factor for the spectral intensity change, whereas the influence of the conformational change is minor. PMID:24758541

  7. An Anhydro-N-Acetylmuramyl-l-Alanine Amidase with Broad Specificity Tethered to the Outer Membrane of Escherichia coli▿

    PubMed Central

    Uehara, Tsuyoshi; Park, James T.

    2007-01-01

    From its amino acid sequence homology with AmpD, we recognized YbjR, now renamed AmiD, as a possible second 1,6-anhydro-N-acetylmuramic acid (anhMurNAc)-l-alanine amidase in Escherichia coli. We have now confirmed that AmiD is an anhMurNAc-l-Ala amidase and demonstrated that AmpD and AmiD are the only enzymes present in E. coli that are able to cleave the anhMurNAc-l-Ala bond. The activity was present only in the outer membrane fraction obtained from an ampD mutant. In contrast to AmpD, which is specific for the anhMurNAc-l-alanine bond, AmiD also cleaved the bond between MurNAc and l-alanine in both muropeptides and murein sacculi. Unlike the periplasmic murein amidases, AmiD did not participate in cell separation. ampG mutants, which are unable to import GlcNAc-anhMurNAc-peptides into the cytoplasm, released mainly peptides into the medium due to AmiD activity, whereas an ampG amiD double mutant released a large amount of intact GlcNAc-anhMurNAc-peptides into the medium. PMID:17526703

  8. Synthesis, growth and optical properties of an efficient nonlinear optical single crystal: L-alanine DL-malic acid

    NASA Astrophysics Data System (ADS)

    Kirubagaran, R.; Madhavan, J.

    2015-02-01

    Single crystals of L-alanine DL-malic acid (LADLMA) have been grown from aqueous solution by slow-cooling technique. Powder X-ray diffraction studies reveal the structure of the crystal to be orthorhombic. The nonlinear optical conversion efficiency test was carried out for the grown crystals using the Kurtz powder technique. The third order nonlinear refractive index and the nonlinear absorption coefficient where evaluated by Z-scan measurements. As the material have a negative refractive index it could be used in the protection of optical sensors such as night vision devices.

  9. Novel NMDA receptor-specific desensitization/inactivation produced by ingestion of the neurotoxins, β-N-methylamino-L-alanine (BMAA) or β-N-oxalylamino-L-alanine (BOAA/β-ODAP).

    PubMed

    Koenig, Jane H; Goto, Joy J; Ikeda, Kazuo

    2015-01-01

    The environmental neurotoxins BMAA (β-N-methylamino-L-alanine) and BOAA (β-N-oxalylamino-L-alanine) are implicated as possible causative agents for the neurodegenerative diseases, amyotrophic lateral sclerosis/ParkinsonismDementia complex (ALS/PDC) and neurolathyrism, respectively. Both are structural analogs of the neurotransmitter, glutamate, and bind postsynaptic glutamate receptors. In this study, the effect of ingestion of these toxins on the response of a singly-innervated, identified, glutamatergic postsynaptic cell in a living, undissected Drosophila is observed by intracellular recording. Previously we have reported that ingested BMAA behaves as an NMDA agonist that produces an abnormal NMDA response in the postsynaptic cell. It is shown here that BOAA also behaves as an NMDA agonist, and produces an effect very similar to that of BMAA on the postsynaptic response. In response to a single stimulus, the amplitude of the NMDA component is decreased, while the time to peak and duration of the NMDA component are greatly increased. No discernable effect on the AMPA component of the response was observed. Furthermore, both BMAA and BOAA cause an NMDAR-specific desensitization in response to repetitive stimulation at the physiological frequency for the postsynaptic cell (5 Hz). The possibility that this phenomenon may represent a response to excessive Ca(2+) entry through NMDAR channels is discussed. This desensitization phenomenon, as well as the abnormal NMDAR gating characteristics induced by BMAA, appears to be rescued during higher frequency stimulation (e.g. 10, 20 Hz). PMID:25193276

  10. Response of L-alanine and 2-methylalanine minidosimeters for K-Band (24 GHz) EPR dosimetry

    NASA Astrophysics Data System (ADS)

    Chen, F.; Graeff, C. F. O.; Baffa, O.

    2007-11-01

    Minidosimeters of L-alanine and 2-methylalanine (2MA) were prepared and tested as potential candidates for small radiation field dosimetry. To quantify the free radicals created by radiation a K-Band (24 GHz) EPR spectrometer was used. X-rays provided by a 6 MV clinical linear accelerator were used to irradiate the minidosimeters in the dose range of 0.5-30 Gy. The dose-response curves for both radiation sensitive materials displayed a good linear behavior in the dose range indicated with 2MA being more radiation sensitive than L-alanine. Moreover, 2MA showed a smaller LLD (lower limit detection) value. The proposed system minidosimeter/K-Band spectrometer was able to detect 10 Gy EPR spectra with good signal-to-noise ratio (S/N). The overall uncertainty indicates that this system shows a good performance for the detection of dose values of 20 Gy and above, which are dose values typically used in radiosurgery treatments.

  11. Growth and characterization of nonlinear optical active L-alanine formate crystal by modified Sankaranarayanan Ramasamy (SR) method

    NASA Astrophysics Data System (ADS)

    Justin Raj, C.; Jerome Das, S.

    2007-06-01

    Single crystals of L-alanine formate ( L-AlFo) have been grown from aqueous solution by using the novel uniaxial crystal growth method of Sankaranarayanan and Ramasamy (SR) with a due modification in the growth assembly. A vertical bottom-seed ampoule was rotated by 90°/s using a stepper motor and was used for the growth of single crystal and ring heater was replaced by alternating 40 W filament lamps for maintaining the evaporation rate. L-alanine formate crystals of 10 mm diameter and 50 mm length have been grown with a growth rate 5 mm per day. The grown crystal was subjected to single-crystal X-ray analysis, which confirms that the crystal belongs to orthorhombic structure with space group P 212121. The presence of formate functional groups in L-AlFo and the protanation of ions were confirmed by Fourier transform infrared transmission (FTIR) analysis. The nonlinear optical (NLO) property of the grown crystal was confirmed by Kurtz powder test. The DRS UV-vis spectrum of the crystal shows that the crystal has UV cut-off at 205 nm. TGA/DTA studies revealed that the crystal was thermally stable up to 234 °C.

  12. Domain Motions and Functionally-Key Residues of L-Alanine Dehydrogenase Revealed by an Elastic Network Model.

    PubMed

    Li, Xing-Yuan; Zhang, Jing-Chao; Zhu, Yan-Ying; Su, Ji-Guo

    2015-01-01

    Mycobacterium tuberculosis L-alanine dehydrogenase (L-MtAlaDH) plays an important role in catalyzing L-alanine to ammonia and pyruvate, which has been considered to be a potential target for tuberculosis treatment. In the present work, the functional domain motions encoded in the structure of L-MtAlaDH were investigated by using the Gaussian network model (GNM) and the anisotropy network model (ANM). The slowest modes for the open-apo and closed-holo structures of the enzyme show that the domain motions have a common hinge axis centered in residues Met133 and Met301. Accompanying the conformational transition, both the 1,4-dihydronicotinamide adenine dinucleotide (NAD)-binding domain (NBD) and the substrate-binding domain (SBD) move in a highly coupled way. The first three slowest modes of ANM exhibit the open-closed, rotation and twist motions of L-MtAlaDH, respectively. The calculation of the fast modes reveals the residues responsible for the stability of the protein, and some of them are involved in the interaction with the ligand. Then, the functionally-important residues relevant to the binding of the ligand were identified by using a thermodynamic method. Our computational results are consistent with the experimental data, which will help us to understand the physical mechanism for the function of L-MtAlaDH. PMID:26690143

  13. Crystal Engineering of l-Alanine with l-Leucine Additive using Metal-Assisted and Microwave-Accelerated Evaporative Crystallization

    PubMed Central

    2015-01-01

    In this work, we demonstrated that the change in the morphology of l-alanine crystals can be controlled with the addition of l-leucine using the metal-assisted and microwave accelerated evaporative crystallization (MA-MAEC) technique. Crystallization experiments, where an increasing stoichiometric amount of l-leucine is added to initial l-alanine solutions, were carried out on circular poly(methyl methacrylate) (PMMA) disks modified with a 21-well capacity silicon isolator and silver nanoparticle films using microwave heating (MA-MAEC) and at room temperature (control experiments). The use of the MA-MAEC technique afforded for the growth of l-alanine crystals with different morphologies up to ∼10-fold faster than those grown at room temperature. In addition, the length of l-alanine crystals was systematically increased from ∼380 to ∼2000 μm using the MA-MAEC technique. Optical microscope images revealed that the shape of l-alanine crystals was changed from tetragonal shape (without l-leucine additive) to more elongated and wire-like structures with the addition of the l-leucine additive. Further characterization of l-alanine crystals was undertaken by Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy and powder X-ray diffraction (PXRD) measurements. In order to elucidate the growth mechanism of l-alanine crystals, theoretical simulations of l-alanine’s morphology with and without l-leucine additive were carried out using Materials Studio software in conjunction with our experimental data. Theoretical simulations revealed that the growth of l-alanine’s {011} and {120} crystal faces were inhibited due to the incorporation of l-leucine into these crystal faces in selected positions. PMID:24839404

  14. A study of conformational stability of poly(L-alanine), poly(L-valine), and poly(L-alanine)/poly(L-valine) blends in the solid state by (13)C cross-polarization/magic angle spinning NMR.

    PubMed

    Murata, Katsuyoshi; Kuroki, Shigeki; Kimura, Hideaki; Ando, Isao

    2002-06-01

    13C cross-polarization/magic angle spinning (CP/MAS) NMR and (1)H T(1rho) experiments of poly(L-alanine) (PLA), poly(L-valine) (PLV), and PLA/PLV blends have been carried out in order to elucidate the conformational stability of the polypeptides in the solid state. These were prepared by adding a trifluoroacetic acid (TFA) solution of the polymer with a 2.0 wt/wt % of sulfuric acid (H(2)SO(4)) to alkaline water. From these experimental results, it is clarified that the conformations of PLA and PLV in their blends are strongly influenced by intermolecular hydrogen-bonding interactions that cause their miscibility at the molecular level. PMID:11948439

  15. An Optical Overview of Poly[μ2-L-alanine-μ3-nitrato-sodium(I)] Crystals

    PubMed Central

    Gallegos-Loya, E.; Orrantia-Borunda, E.; Duarte-Moller, A.

    2012-01-01

    Single crystals of the semiorganic materials, L-alanine sodium nitrate (LASN) and D-alanine sodium nitrate (DASN), were grown from an aqueous solution by slow-evaporation technique. X-ray diffraction (XRD) studies were carried for the doped grown crystals. The absorption of these grown crystals was analyzed using UV-Vis-NIR studies, and it was found that these crystals possess minimum absorption from 200 to 1100 nm. An infrared (FTIR) spectrum of single crystal has been measured in the 4000–400 cm−1 range. The assignment of the observed vibrational modes to corresponding symmetry type has been performed. A thermogravimetric study was carried out to determine the thermal properties of the grown crystal. The efficiency of second harmonic generation was obtained by a variant of the Kurtz-Perry method. PMID:22566774

  16. Vibrational spectral characterization, NLO studies and charge transfer analysis of the organometallic material L-Alanine cadmium chloride

    NASA Astrophysics Data System (ADS)

    Arun Sasi, B. S.; Bright, K. C.; James, C.

    2016-01-01

    An organometallic nonlinear crystal, L-Alanine Cadmium Chloride (LACC) was synthesized by slow evaporation technique. The effects of hydrogen bonding on the structure, binding of ligand to metal ion, natural orbital occupancies, and vibrational frequencies were investigated using density functional theory (DFT) with the combined B3LYP and LANL2DZ basis set. Vibrational assignments were made on the basis of calculated potential energy distribution values from MOLVIB program. The topological analysis of electron localization function (ELF) provides basin population N (integrated density over the attractor basin), standard deviation (σ), and their relative fluctuation, defined as λ = σ2/N, which are sensitive criteria of delocalization. The molecular stability, electronic exchange interaction, and bond strength of the molecule were studied by natural bond orbital (NBO) analysis. The second harmonic generation (SHG) efficiency was determined using Kurtz and Perry method. Natural bond orbital analysis was carried out to study various intramolecular interactions that are responsible for the stabilization of the molecule.

  17. β-N-methylamino-L-alanine induces changes in both GSK3 and TDP-43 in human neuroblastoma.

    PubMed

    Muñoz-Saez, Emma; de Munck, Estefanía; Arahuetes, Rosa M; Solas, M Teresa; Martínez, Ana M; Miguel, Begoña G

    2013-01-01

    β-N-methylamino-L-alanine (L-BMAA) is a neurotoxic amino acid produced by most cyanobacteria, which are extensively distributed in different environments all over the world. L-BMAA has been linked to a variety of neurodegenerative diseases. This work aims to analyze the toxicological action of L-BMAA related to alterations observed in different neurodegenerative illness as Alzheimer disease and amyotrophic lateral sclerosis. Our results demonstrate that neuroblastoma cells treated with L-BMAA show an increase in glycogen synthase kinase 3 β (GSk3β) and induce accumulation of TAR DNA-binding protein 43 (TDP-43) truncated forms (C-terminal fragments), phosphorylated  and high molecular weight forms of TDP-43, that appears frequently in some neurodegenerative diseases. PMID:23665941

  18. Environmental modulation of microcystin and β-N-methylamino-L-alanine as a function of nitrogen availability.

    PubMed

    Scott, L L; Downing, S; Phelan, R R; Downing, T G

    2014-09-01

    The most significant modulators of the cyanotoxins microcystin and β-N-methylamino-L-alanine in laboratory cyanobacterial cultures are the concentration of growth-medium combined nitrogen and nitrogen uptake rate. The lack of field studies that support these observations led us to investigate the cellular content of these cyanotoxins in cyanobacterial bloom material isolated from a freshwater impoundment and to compare these to the combined nitrogen availability. We established that these toxins typically occur in an inverse relationship in nature and that their presence is mainly dependent on the environmental combined nitrogen concentration, with cellular microcystin present at exogenous combined nitrogen concentrations of 29 μM and higher and cellular BMAA correlating negatively with exogenous nitrogen at concentrations below 40 μM. Furthermore, opposing nutrient and light gradients that form in dense cyanobacterial blooms may result in both microcystin and BMAA being present at a single sampling site. PMID:24878376

  19. Self-Assembly, Supramolecular Organization, and Phase Behavior of L-Alanine Alkyl Esters (n = 9-18) and Characterization of Equimolar L-Alanine Lauryl Ester/Lauryl Sulfate Catanionic Complex.

    PubMed

    Sivaramakrishna, D; Swamy, Musti J

    2015-09-01

    A homologous series of l-alanine alkyl ester hydrochlorides (AEs) bearing 9-18 C atoms in the alkyl chain have been synthesized and characterized with respect to self-assembly, supramolecular structure, and phase transitions. The CMCs of AEs bearing 11-18 C atoms were found to range between 0.1 and 10 mM. Differential scanning calorimetric (DSC) studies showed that the transition temperatures (Tt), enthalpies (ΔHt) and entropies (ΔSt) of AEs in the dry state exhibit odd-even alternation, with the odd-chain-length compounds having higher Tt values, but the even-chain-length homologues showing higher values of ΔHt and ΔSt. In DSC measurements on hydrated samples, carried out at pH 5.0 and pH 10.0 (where they exist in cationic and neutral forms, respectively), compounds with 13-18 C atoms in the alkyl chain showed sharp gel-to-liquid crystalline phase transitions, and odd-even alternation was not seen in the thermodynamic parameters. The molecular structure, packing properties, and intermolecular interactions of AEs with 9 and 10 C atoms in the alkyl chain were determined by single crystal X-ray diffraction, which showed that the alkyl chains are packed in a tilted interdigitated bilayer format. d-Spacings obtained from powder X-ray diffraction studies exhibited a linear dependence on the alkyl chain length, suggesting that the other AEs also adopt an interdigitated bilayer structure. Turbidimetric, fluorescence spectroscopic, and isothermal titration calorimetric (ITC) studies established that in aqueous dispersions l-alanine lauryl ester hydrochloride (ALE·HCl) and sodium dodecyl sulfate (SDS) form an equimolar complex. Transmission electron microscopic and DSC studies indicate that the complex exists as unilamellar liposomes, which exhibit a sharp phase transition at ∼39 °C. The aggregates were disrupted at high pH, suggesting that the catanionic complex would be useful to develop a base-labile drug delivery system. ITC studies indicated that ALE·HCl forms

  20. Relative output factor and beam profile measurements of small radiation fields with an L-alanine/K-Band EPR minidosimeter

    SciTech Connect

    Chen Abrego, Felipe; Calcina, Carmen Sandra Guzman; Almeida, Adelaide de; Almeida, Carlos Eduardo de; Baffa, Oswaldo

    2007-05-15

    The performance of an L-alanine dosimeter with millimeter dimensions was evaluated for dosimetry in small radiation fields. Relative output factor (ROF) measurements were made for 0.5x0.5, 1x1, 3x3, 5x5, 10x10 cm{sup 2} square fields and for 5-, 10-, 20-, 40-mm-diam circular fields. In beam profile (BP) measurements, only 1x1, 3x3, 5x5 cm{sup 2} square fields and 10-, 20-, 40-mm-diam circular fields were used. For square and circular field irradiations, Varian/Clinac 2100, and a Siemens/Mevatron 6 MV linear accelerators were used, respectively. For a batch of 800 L-alanine minidosimeters (miniALAs) the average mass was 4.3{+-}0.5 (1{sigma}) mg, the diameter was 1.22{+-}0.07 (1{sigma}) mm, and the length was 3.5{+-}0.2 (1{sigma}) mm. A K-Band (24 GHz) electron paramagnetic resonance (EPR) spectrometer was used for recording the spectrum of irradiated and nonirradiated miniALAs. To evaluate the performance of the miniALAs, their ROF and BP results were compared with those of other types of detectors, such as an ionization chamber (PTW 0.125 cc), a miniTLD (LiF: Mg,Cu,P), and Kodak/X-Omat V radiographic film. Compared to other dosimeters, the ROF results for miniALA show differences of up to 3% for the smallest fields and 7% for the largest ones. These differences were within the miniALA experimental uncertainty ({approx}5-6% at 1{sigma}). For BP measurements, the maximum penumbra width difference observed between miniALA and film (10%-90% width) was less than 1 mm for square fields and within 1-2 mm for circular fields. These penumbra width results indicate that the spatial resolution of the miniALA is comparable to that of radiographic film and its dimensions are adequate for the field sizes used in this experiment. The K-Band EPR spectrometer provided adequate sensitivity for assessment of miniALAs with doses of the order of tens of Grays, making this dosimetry system (K-Band/miniALA) a potential candidate for use in radiosurgery dosimetry.

  1. Heterogeneity of L-alanine transport systems in brush-border membrane vesicles from rat placenta during late gestation.

    PubMed Central

    Alonso-Torre, S R; Serrano, M A; Medina, J M; Alvarado, F

    1992-01-01

    The placental uptake of L-alanine was studied by using purified brush-border membrane vesicles from rat trophoblasts. Saturation curves were carried out at 37 degrees C in buffers containing 100 mM (zero-trans)-NaSCN, -NaCl, -KSCN, -KCl, or -N-methyl-D-glucamine gluconate. The uncorrected uptake results were fitted by non-linear regression analysis to an equation involving one diffusional component either one or two saturable Michaelian transport terms. In the presence of NaCl, two distinct L-alanine transport systems were distinguished, named respectively System 1 (S-1; Vm1 about 760 pmol/s per mg of protein; KT1 = 0.5 mM) and System 2 (S-2; Vm2 about 1700 pmol/s per mg; KT2 = 9 mM). In contrast, in the presence of K+ (KCl = KSCN) or in the absence of any alkali-metal ions (N-methyl-D-glucamine gluconate), only one saturable system was apparent, which we identify as S-2. When Na+ is present, S-1, but not S-2, appears to be rheogenic, since its maximal transport capacity significantly increases in the presence of an inside-negative membrane potential, created either by replacing Cl- with the permeant anion thiocyanate (NaSCN > NaCl) or by applying an appropriate K+ gradient and valinomycin. alpha-(Methylamino)isobutyrate (methyl-AIB) appears to be a substrate of S-1, but not of S-2. For reasons that remain to be explained, however, methyl-AIB inhibits S-2. We conclude that S-1 represents a truly Na(+)-dependent mechanism, where Na+ behaves as an obligatory activator, whereas S-2 cannot discriminate between Na+ and K+, although its activity is higher in the presence of alkali-metal ions than in their absence (Na+ = K+ > N-methyl-D-glucammonium ion). S-2 appears to be fully developed 2 days before birth, whereas S-1 undergoes a capacity-type activation between days 19.5 and 21.5 of gestation, i.e. its apparent Vmax. nearly doubles, whereas its KT remains constant. PMID:1445280

  2. Is there a role for naturally occurring cyanobacterial toxins in neurodegeneration? The beta-N-methylamino-L-alanine (BMAA) paradigm.

    PubMed

    Papapetropoulos, Spiridon

    2007-06-01

    The naturally occurring, non-essential amino acid beta-N-methylamino-L-alanine (BMAA) has been recently found in high concentrations in brain tissues of patients with tauopathies such as the Amyotrophic Lateral Sclerosis-Parkinsonism-Dementia Complex (ALS/PDC) in the South Pacific island of Guam and in a small number of Caucasian, North American patients with sporadic Alzheimer's disease. BMAA is produced by cyanobacteria that are present in all conceivable aquatic and/or terrestrial ecosystems and may be accumulated in living tissues in free and protein-bound forms through the process of biomagnification. Although its role in human degenerative disease is highly debated, there is mounting evidence in support of the neurotoxic properties of BMAA that may be mediated via mechanisms involving among others the regulation of glutamate. Glutamate-related excitotoxicity is among the most prominent factors in the etiopathogenesis of human neurodegenerative diseases. Due to the wide geographical distribution of cyanobacteria and the possible implications of BMAA neurotoxic properties in public health more research towards this direction is warranted. PMID:17296249

  3. Quantitative proteomics analysis of zebrafish exposed to sub-lethal dosages of β-methyl-amino-L-alanine (BMAA)

    PubMed Central

    Frøyset, Ann Kristin; Khan, Essa Ahsan; Fladmark, Kari Espolin

    2016-01-01

    The non-protein amino acid β-methylamino-L-alanine (BMAA) is a neurotoxin present in microalgae and shown to accumulate in the food web. BMAA has been linked to the complex neurodegenerative disorder of Guam and to increased incidents sporadic ALS. Two main neurotoxic routes are suggested; an excitotoxic by acting as an agonist towards glutamate receptors and a metabolic by misincorporating into cellular proteins. We have used zebrafish, an increasingly used model for neurodegenerative diseases, to further identify signaling components involved in BMAA-induced toxicity. Zebrafish embryos were exposed to sub-lethal dosages of BMAA and a label-free proteomics analysis was conducted on larvae 4 days post fertilization. The exposed larvae showed no developmental abnormalities, but a reduced heart rate and increased expression of GSK3 isoforms. Search towards a reviewed database containing 2968 entries identified 480 proteins. Only 17 of these were regulated 2-fold or more in the exposed larvae. Seven of these proteins could be associated to glutamate receptor signaling and recycling. The remaining nine have all been linked to disturbance in protein homeostasis, reactive oxygen species (ROS) development or neuronal cell death. We also found that BMAA influenced the endocannabinoid system by up-regulation of fatty acid amide hydrolase (FAAH) and that FAAH inhibitor URB597 reduced the BMAA effect on heart rate and GSK3 expression. PMID:27404450

  4. Assessment of the mutagenic and genotoxic activity of cyanobacterial toxin beta-N-methyl-amino-L-alanine in Salmonella typhimurium.

    PubMed

    Novak, Matjaž; Hercog, Klara; Žegura, Bojana

    2016-08-01

    A neurotoxin β-N-methylamino-L-alanine (L-BMAA) is a non-protein amino acid produced by most cyanobacteria ubiquitously present in aquatic and terrestrial environments. Due to its global presence in surface waters, a widespread human exposure is possible and therefore this toxin represents a health risk for humans and animals. L-BMAA has been linked to the development of a variety of neurodegenerative diseases. Its neurotoxic activity has been extensively studied, while nothing is known on its genotoxic properties. In the present study we evaluated for the first time L-BMAA mutagenic potential using Ames assay on several Salmonella typhimurium strains (TA97a, TA98, TA100, TA102 and TA1535). The results showed that the toxin (up to 0.9 mg/plate) did not induce mutations without or with S9 metabolic activation. Its genotoxic activity was further studied with the SOS/umuC assay on S. typhimurium TA1535/pSK1002 and the results showed that it was not cytotoxic nor genotoxic for bacteria. The present study represents the first evidence that L-BMAA is not mutagenic nor genotoxic for bacteria even at concentrations much higher than those typically found in the environment. However, as most of the cyanobacterial toxins are not bacterial mutagens it is very important to further elucidate its genotoxic activity in eukaryotic cells. PMID:27137670

  5. Quantitative proteomics analysis of zebrafish exposed to sub-lethal dosages of β-methyl-amino-L-alanine (BMAA).

    PubMed

    Frøyset, Ann Kristin; Khan, Essa Ahsan; Fladmark, Kari Espolin

    2016-01-01

    The non-protein amino acid β-methylamino-L-alanine (BMAA) is a neurotoxin present in microalgae and shown to accumulate in the food web. BMAA has been linked to the complex neurodegenerative disorder of Guam and to increased incidents sporadic ALS. Two main neurotoxic routes are suggested; an excitotoxic by acting as an agonist towards glutamate receptors and a metabolic by misincorporating into cellular proteins. We have used zebrafish, an increasingly used model for neurodegenerative diseases, to further identify signaling components involved in BMAA-induced toxicity. Zebrafish embryos were exposed to sub-lethal dosages of BMAA and a label-free proteomics analysis was conducted on larvae 4 days post fertilization. The exposed larvae showed no developmental abnormalities, but a reduced heart rate and increased expression of GSK3 isoforms. Search towards a reviewed database containing 2968 entries identified 480 proteins. Only 17 of these were regulated 2-fold or more in the exposed larvae. Seven of these proteins could be associated to glutamate receptor signaling and recycling. The remaining nine have all been linked to disturbance in protein homeostasis, reactive oxygen species (ROS) development or neuronal cell death. We also found that BMAA influenced the endocannabinoid system by up-regulation of fatty acid amide hydrolase (FAAH) and that FAAH inhibitor URB597 reduced the BMAA effect on heart rate and GSK3 expression. PMID:27404450

  6. Equilibrium Dynamics of β-N-Methylamino-L-Alanine (BMAA) and Its Carbamate Adducts at Physiological Conditions.

    PubMed

    Zimmerman, David; Goto, Joy J; Krishnan, Viswanathan V

    2016-01-01

    Elevated incidences of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC) is associated with β-methylamino-L-alanine (BMAA), a non-protein amino acid. In particular, the native Chamorro people living in the island of Guam were exposed to BMAA by consuming a diet based on the cycad seeds. Carbamylated forms of BMAA are glutamate analogues. The mechanism of neurotoxicity of the BMAA is not completely understood, and BMAA acting as a glutamate receptor agonist may lead to excitotoxicity that interferes with glutamate transport systems. Though the interaction of BMAA with bicarbonate is known to produce carbamate adducts, here we demonstrate that BMAA and its primary and secondary adducts coexist in solution and undergoes a chemical exchange among them. Furthermore, we determined the rates of formation/cleavage of the carbamate adducts under equilibrium conditions using two-dimensional proton exchange NMR spectroscopy (EXSY). The coexistence of the multiple forms of BMAA at physiological conditions adds to the complexity of the mechanisms by which BMAA functions as a neurotoxin. PMID:27513925

  7. Effect of β-N-methylamino-L-alanine on oxidative stress of liver and kidney in rat.

    PubMed

    de Munck, Estefanía; Muñoz-Sáez, Emma; Antonio, María Teresa; Pineda, Javier; Herrera, Amparo; Miguel, Begoña G; Arahuetes, Rosa María

    2013-03-01

    β-N-methylamino-(L)-alanine (L)-BMAA) is a neurotoxic amino acid, found in the majority of cyanbacterial genera tested. Evidence for implication of (L)-BMAA in neurodegenerative disorders, like amyotrophic lateral sclerosis (ALS), relies on bioaccumulation and biomagnification from symbiotic cyanobacteria. The involvement of (L)-BMAA in oxidative stress was demonstrated in several studies in the central nervous system. In the present study, we investigated the effect of (L)-BMAA on the oxidative stress responses of liver and kidney in rats treated by intraperitoneal administration with this amino acid. Oxidative stress was demonstrated by the quantification of lipid peroxidation, the measurement of both catalase and glutathione peroxidase activities, as well as the quantification of glutathione (GSH) levels and the total antioxidant capacity. It was observed that (L)-BMAA caused a significant increase in the degree of lipid peroxidation and catalase activity in both organs. A significant increase in glutathione peroxidase activity was obtained only in liver, whereas glutathione levels were also increased in both organs. The total antioxidant capacity decreased in liver and increased in kidney. These results suggest that the oxidative stress was higher in liver than in kidney, and might be crucial for (L)-BMAA toxicological action. PMID:23328118

  8. The cyanobacterial neurotoxin β-N-methylamino-l-alanine (BMAA) induces neuronal and behavioral changes in honeybees.

    PubMed

    Okle, Oliver; Rath, Lisa; Galizia, C Giovanni; Dietrich, Daniel R

    2013-07-01

    The cyanobacterially produced neurotoxin beta-N-methylamino-l-alanine (BMAA) is thought to induce amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC)-like symptoms. However, its mechanism of action and its pathway of intoxication are yet unknown. In vivo animal models suitable for investigating the neurotoxic effect of BMAA with applicability to the human are scarce. Hence, we used the honeybee (Apis mellifera) since its nervous system is relatively simple, yet having cognitive capabilities. Bees fed with BMAA-spiked sugar water had an increased mortality rate and a reduced ability to learn odors in a classical conditioning paradigm. Using (14)C-BMAA we demonstrated that BMAA is biologically available to the bee, and is found in the head, thorax and abdomen with little to no excretion. BMAA is also transferred from one bee to the next via trophallaxis resulting in an exposure of the whole beehive. BMAA bath application directly onto the brain leads to an altered Ca(2+) homeostasis and to generation of reactive oxygen species. These behavioral and physiological observations suggest that BMAA may have effects on bee brains similar to those assumed to occur in humans. Therefore the bee could serve as a surrogate model system for investigating the neurological effects of BMAA. PMID:23591064

  9. The physiological effect of ingested β-N-methylamino-L-alanine on a glutamatergic synapse in an in vivo preparation.

    PubMed

    Goto, Joy J; Koenig, Jane H; Ikeda, Kazuo

    2012-11-01

    The neurotoxin, BMAA (β-N-methylamino-L-alanine), may be a risk factor for amyotrophic lateral sclerosis (ALS), Parkinson's (PD) and Alzheimer's (AD) disease. In vivo experiments have demonstrated that BMAA can cause a number of motor dysfunctions if ingested or injected, and in vitro experiments show that this toxin binds to glutamate receptors with deleterious results. Also, BMAA exists in the human food chain worldwide, and has been detected in the brains of ALS and AD patients. This paper offers the first demonstration by intracellular recording of the effect of ingested BMAA on the postsynaptic response of an identified glutamatergic cell in a living, undissected organism (Drosophila melanogaster), and correlates these observations with the specific motor dysfunctions that result from ingestion. The results suggest that BMAA acts as a glutamate agonist, causing NMDA receptor channels to remain open for prolonged periods of time, thereby damaging the cell by excitotoxicity. The effect on the postsynaptic response became apparent days before the function of the postsynaptic cell (wing beat) became affected. Severely depolarized cells were able to fully recover with the removal of BMAA from the food source, suggesting that blocking BMAA binding in the brain might be a good treatment strategy. PMID:22841708

  10. The use of L-serine to prevent β-methylamino-L-alanine (BMAA)-induced proteotoxic stress in vitro.

    PubMed

    Main, Brendan J; Dunlop, Rachael A; Rodgers, Kenneth J

    2016-01-01

    β-methylamino-L-alanine (BMAA), a non-protein amino acid synthesised by cyanobacteria, has been linked to a complex neurological disorder on Guam and more recently to other cases of sporadic ALS (sALS), however the mechanisms of BMAA toxicity are not completely understood. We have previously demonstrated that BMAA is misincorporated into newly synthesised proteins by human neuroblastoma cells and fibroblasts, resulting in the formation of autofluorescent material and the induction of apoptotic cell death. In the present study we show that BMAA at low levels does not cause an acute toxicity in neuroblastoma cells but increases the expression of the ER stress marker, C/EBP homologous protein (CHOP) and increases the activity of the pro-apoptotic enzyme caspase-3. We also observed an increase in the activity of the lysosomal cysteine proteases cathepsin B and L, characteristic of the accumulation of proteins in the lysosomal system. We were able to prevent these proteotoxic effects in neuroblastoma cells through co-treatment with l-serine suggesting that they resulted from incorporation of BMAA into proteins. Misincorporation provides a possible mechanism whereby BMAA could initiate misfolding, and the accumulation of aggregate-prone proteins in neurons. This build-up of misfolded proteins could explain the long latency period of the disease previously reported on Guam. PMID:26559613

  11. β-N-methylamino-L-alanine (BMAA) uptake by the animal model, Daphnia magna and subsequent oxidative stress.

    PubMed

    Esterhuizen-Londt, Maranda; Wiegand, Claudia; Downing, Tim G

    2015-06-15

    β-N-methylamino-l-alanine (BMAA), produced by cyanobacteria, is a neurotoxin implicated in Amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC). BMAA concentrations in cyanobacteria are lower than those thought to be necessary to result in neurological damage thus bioaccumulation or biomagnification is required to achieve concentrations able to cause neurodegeneration. Many cyanobacteria produce BMAA and uptake routes into the food web require examination. In this study we investigate the uptake of BMAA by adult phytoplanktivorus Daphnia magna via exposure to dissolved pure BMAA and BMAA containing cyanobacteria, as well as the subsequent oxidative stress response in the daphnia. Free BMAA and protein-associated BMAA were quantified by LC-MS/MS. Dissolved BMAA was taken up and was found as free BMAA in D. magna. No protein-associated BMAA was detected in D. magna after a 24-h exposure period. No BMAA was detectable in D. magna after exposure to BMAA containing cyanobacteria. BMAA inhibited the oxidative stress defence and biotransformation enzymes within 24-h exposure in the tested Daphnia and could therefore impair the oxidant status and the capability of detoxifying other substances in D. magna. PMID:25841344

  12. The cyanobacterial amino acid β-N-methylamino-l-alanine perturbs the intermediary metabolism in neonatal rats.

    PubMed

    Engskog, Mikael K R; Karlsson, Oskar; Haglöf, Jakob; Elmsjö, Albert; Brittebo, Eva; Arvidsson, Torbjörn; Pettersson, Curt

    2013-10-01

    The neurotoxic amino acid β-N-methylamino-l-alanine (BMAA) is produced by most cyanobacteria. BMAA is considered as a potential health threat because of its putative role in neurodegenerative diseases. We have previously observed cognitive disturbances and morphological brain changes in adult rodents exposed to BMAA during the development. The aim of this study was to characterize changes of major intermediary metabolites in serum following neonatal exposure to BMAA using a non-targeted metabolomic approach. NMR spectroscopy was used to obtain serum metabolic profiles from neonatal rats exposed to BMAA (40, 150, 460mg/kg) or vehicle on postnatal days 9-10. Multivariate data analysis of binned NMR data indicated metabolic pattern differences between the different treatment groups. In particular five metabolites, d-glucose, lactate, 3-hydroxybutyrate, creatine and acetate, were changed in serum of BMAA-treated neonatal rats. These metabolites are associated with changes in energy metabolism and amino acid metabolism. Further statistical analysis disclosed that all the identified serum metabolites in the lowest dose group were significantly (p<0.05) decreased. The neonatal rat model used in this study is so far the only animal model that displays significant biochemical and behavioral effects after a low short-term dose of BMAA. The demonstrated perturbation of intermediary metabolism may contribute to BMAA-induced developmental changes that result in long-term effects on adult brain function. PMID:23886855

  13. Autolytic system of Staphylococcus simulans 22: influence of cationic peptides on activity of N-acetylmuramoyl-L-alanine amidase.

    PubMed Central

    Bierbaum, G; Sahl, H G

    1987-01-01

    Pep 5 and nisin are cationic peptide antibiotics which in addition to their membrane-disruptive action induce autolysis in staphylococci. To investigate the mechanism of lysis induction, the influence of the peptides on the activity of the N-acetylmuramoyl-L-alanine amidase of Staphylococcus simulans 22 was studied. In experiments with isolated cell walls at low ionic strength, the amidase activity was stimulated by the addition of Pep 5 and nisin, as well as by polylysine, streptomycin, and mono- and divalent cations. The concentrations necessary for activation depended on the nature of the cation and ranged from 5 microM for poly-L-lysine (n = 17) to 150 mM for Na+ at a cell wall concentration of 100 micrograms of cell walls per ml. No effect was observed if the cell walls were devoid of polyanionic constituents. Kinetic data suggested that the amidase bound to the teichoic and teichuronic acids of the cell wall and was thereby inhibited. Cationic molecules reversed this inhibition, most likely by displacing the enzyme from the polyanions. If the concentrations of the larger peptides were high in relation to cell wall concentration, the activation turned into inhibition, presumably by interfering with the access of the enzyme to its substrate. These experiments demonstrate that the activity of the amidase is modulated by basic peptides in vitro and help to explain how Pep 5 and nisin may cause lysis of treated cells. Images PMID:2890620

  14. Equilibrium Dynamics of β-N-Methylamino-L-Alanine (BMAA) and Its Carbamate Adducts at Physiological Conditions

    PubMed Central

    Zimmerman, David; Goto, Joy J.; Krishnan, Viswanathan V

    2016-01-01

    Elevated incidences of Amyotrophic Lateral Sclerosis/Parkinsonism Dementia complex (ALS/PDC) is associated with β-methylamino-L-alanine (BMAA), a non-protein amino acid. In particular, the native Chamorro people living in the island of Guam were exposed to BMAA by consuming a diet based on the cycad seeds. Carbamylated forms of BMAA are glutamate analogues. The mechanism of neurotoxicity of the BMAA is not completely understood, and BMAA acting as a glutamate receptor agonist may lead to excitotoxicity that interferes with glutamate transport systems. Though the interaction of BMAA with bicarbonate is known to produce carbamate adducts, here we demonstrate that BMAA and its primary and secondary adducts coexist in solution and undergoes a chemical exchange among them. Furthermore, we determined the rates of formation/cleavage of the carbamate adducts under equilibrium conditions using two-dimensional proton exchange NMR spectroscopy (EXSY). The coexistence of the multiple forms of BMAA at physiological conditions adds to the complexity of the mechanisms by which BMAA functions as a neurotoxin. PMID:27513925

  15. Maternal Transfer of the Cyanobacterial Neurotoxin β-N-Methylamino-L-Alanine (BMAA) via Milk to Suckling Offspring

    PubMed Central

    Andersson, Marie; Karlsson, Oskar; Bergström, Ulrika; Brittebo, Eva B.; Brandt, Ingvar

    2013-01-01

    The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) has been implicated in the etiology of neurodegenerative disease and proposed to be biomagnified in terrestrial and aquatic food chains. We have previously shown that the neonatal period in rats, which in humans corresponds to the last trimester of pregnancy and the first few years of age, is a particularly sensitive period for exposure to BMAA. The present study aimed to examine the secretion of 14C-labeled L- and D-BMAA into milk in lactating mice and the subsequent transfer of BMAA into the developing brain. The results suggest that secretion into milk is an important elimination pathway of BMAA in lactating mothers and an efficient exposure route predominantly for L-BMAA but also for D-BMAA in suckling mice. Following secretion of [14C]L-BMAA into milk, the levels of [14C]L-BMAA in the brains of the suckling neonatal mice significantly exceeded the levels in the maternal brains. In vitro studies using the mouse mammary epithelial HC11 cell line confirmed a more efficient influx and efflux of L-BMAA than of D-BMAA in cells, suggesting enantiomer-selective transport. Competition experiments with other amino acids and a low sodium dependency of the influx suggests that the amino acid transporters LAT1 and LAT2 are involved in the transport of L-BMAA into milk. Given the persistent neurodevelopmental toxicity following injection of L-BMAA to neonatal rodent pups, the current results highlight the need to determine whether BMAA is enriched mother's and cow's milk. PMID:24194910

  16. The natural non-protein amino acid N-β-methylamino-L-alanine (BMAA) is incorporated into protein during synthesis.

    PubMed

    Glover, W Broc; Mash, Deborah C; Murch, Susan J

    2014-11-01

    N-β-methylamino-L-alanine (BMAA) is an amino acid produced by cyanobacteria and accumulated through trophic levels in the environment and natural food webs. Human exposure to BMAA has been linked to progressive neurodegenerative diseases, potentially due to incorporation of BMAA into protein. The insertion of BMAA and other non-protein amino acids into proteins may trigger protein misfunction, misfolding and/or aggregation. However, the specific mechanism by which BMAA is associated with proteins remained unidentified. Such studies are challenging because of the complexity of biological systems and samples. A cell-free in vitro protein synthesis system offers an excellent approach for investigation of changing amino acid composition in protein. In this study, we report that BMAA incorporates into protein as an error in synthesis when a template DNA sequence is used. Bicinchoninic acid assay of total protein synthesis determined that BMAA effectively substituted for alanine and serine in protein product. LC-MS/MS confirmed that BMAA was selectively inserted into proteins in place of other amino acids, but isomers N-(2-aminoethyl)glycine (AEG) and 2,4-diaminobutyric acid (DAB) did not share this characteristic. Incorporation of BMAA into proteins was significantly higher when genomic DNA from post-mortem brain was the template. About half of BMAA in the synthetic proteins was released with denaturation with sodium dodecylsulfonate and dithiothreitol, but the remaining BMAA could only be released by acid hydrolysis. Together these data demonstrate that BMAA is incorporated into the amino acid backbone of proteins during synthesis and also associated with proteins through non-covalent bonding. PMID:25096519

  17. Evaluation of a thiodipeptide, L-phenylalanyl-Ψ[CS-N]-L-alanine, as a novel probe for peptide transporter 1.

    PubMed

    Arakawa, Hiroshi; Saito, Sachi; Kanagawa, Masahiko; Kamioka, Hiroki; Yano, Kentaro; Morimoto, Kaori; Ogihara, Takuo

    2014-01-01

    L-Phenylalanyl-Ψ[CS-N]-l-alanine (Phe-Ψ-Ala), a thiourea dipeptide, was evaluated as a probe for peptide transporter 1 (PEPT1). Uptake of Phe-Ψ-Ala in PEPT1-overexpressing HeLa cells was significantly higher than that in vector-transfected HeLa cells and the Km value was 275 ± 32 µM. The uptake was pH-dependent, being highest at pH 6.0, and was significantly decreased in the presence of PEPT1 inhibitors [glycylsarcosine (Gly-Sar), cephalexin, valaciclovir, glycylglycine, and glycylproline]. In metabolism assay using rat intestinal mucosa, rat hepatic microsomes, and human hepatocytes, the amount of Phe-Ψ-Ala was unchanged, whereas phenylalanylalanine was extensively decomposed. The clearance, distribution volume, and half-life of intravenously administered Phe-Ψ-Ala in rats were 0.151 ± 0.008 L/h/kg, 0.235 ± 0.012 L/kg, and 1.14 ± 0.07 h, respectively. The maximum plasma concentration of orally administered Phe-Ψ-Ala (2.31 ± 0.60 µg/mL) in the presence of Gly-Sar was significantly decreased compared with that in the absence of glycylsarcosine (3.74 ± 0.44 µg/mL), suggesting that the intestinal absorption of Phe-Ψ-Ala is mediated by intestinal PEPT1. In conclusion, our results indicate that Phe-Ψ-Ala is a high-affinity, metabolically stable, non-radioactive probe for PEPT1, and it should prove useful in studies of PEPT1, e.g., for predicting drug-drug interactions mediated by PEPT1 in vitro and in vivo. PMID:25008848

  18. Development of an analytical procedure for quantifying the underivatized neurotoxin β-N-methylamino-L-alanine in brain tissues.

    PubMed

    Combes, Audrey; El Abdellaoui, Saïda; Vial, Jérome; Lagrange, Emmeline; Pichon, Valérie

    2014-07-01

    The cyanotoxin β-methylamino-L-alanine (BMAA) has received renewed attention as an environmental risk factor for sporadic cases of amyotrophic lateral sclerosis (ALS) (Nunn et al., Brain Res 410:375-379, 1987). The aim of the present study was to develop and to validate an analytical procedure that allows the quantification of native BMAA and of its natural isomer, 2,4 diaminobutyric acid (DAB), in brain tissues. An analytical procedure was previously reported by our group for the determination of underivatized BMAA in environmental samples. It included a step of sample clean-up by solid phase extraction (SPE) with a mixed-mode sorbent and the analyses were performed by LC/MS-MS using hydrophilic interaction chromatography and multiple reactions monitoring scan mode. As brain tissues have a higher lipid content, the crucial step of sample clean-up had been optimized by evaluating the efficiency of the addition of a liquid/liquid extraction step prior to the SPE procedure or alternatively, of washing steps to the SPE extraction procedure. The efficiency was checked by visualizing the complexity of the resulting chromatograms in LC/MS and their performance by using spiked brain samples. The optimized analytical procedure, including a washing step with cyclohexane to the SPE with a recovery yield close to 100%, was validated using the total error approach and allowed the quantification of BMAA in a concentration level ranging from 20 to 1,500 ng/g in brain samples. Finally, the feasibility of implementation of this procedure was verified in human brain samples from two patients who died of ALS. PMID:24858470

  19. Synthesis of a molecularly imprinted sorbent for selective solid-phase extraction of β-N-methylamino-L-alanine.

    PubMed

    Svoboda, Pavel; Combes, Audrey; Petit, Julia; Nováková, Lucie; Pichon, Valérie

    2015-11-01

    The aim of the work was to synthesize a molecularly imprinted material for the selective solid-phase extraction (SPE) of β-N-methylamino-L-alanine (L-2-amino-3-methylpropionic acid; BMAA) from cyanobacterial extracts. BMAA and its structural analogs that can be used as template are small, polar and hydrophilic molecules. These molecules are poorly soluble in organic solvents that are commonly used for the synthesis of acrylic-based polymers. Therefore, a sol gel approach was chosen to carry out the synthesis and the resulting sorbents were evaluated with different extraction procedures in order to determine their ability to selectively retain BMAA. The presence of imprinted cavities in the sorbent was demonstrated by comparing elution profiles obtained by using molecularly imprinted silica (MIS) and non-imprinted silica (NIS) as a control. The molecularly imprinted solid-phase extraction (MISPE) procedure was first developed in a pure medium (acetonitrile) and further optimized for the treatment of cyanobacterial samples. It was characterized by high elution recoveries (89% and 77% respectively in pure and in real media).The repeatability of the extraction procedure in pure medium, in real medium and the reproducibility of MIS synthesis all expressed as RSD values of extraction recovery of BMAA were equal to 3%, 12% and 5%, respectively. A MIS capacity of 0.34 µmol/g was measured. The matrix effects, which affected the quantification of BMAA when employing a mixed mode sorbent, were completely removed by adding a clean-up step of the mixed-mode sorbent extract on the MIS. PMID:26452922

  20. Maternal transfer of the cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) via milk to suckling offspring.

    PubMed

    Andersson, Marie; Karlsson, Oskar; Bergström, Ulrika; Brittebo, Eva B; Brandt, Ingvar

    2013-01-01

    The cyanobacterial neurotoxin β-N-methylamino-L-alanine (BMAA) has been implicated in the etiology of neurodegenerative disease and proposed to be biomagnified in terrestrial and aquatic food chains. We have previously shown that the neonatal period in rats, which in humans corresponds to the last trimester of pregnancy and the first few years of age, is a particularly sensitive period for exposure to BMAA. The present study aimed to examine the secretion of (14)C-labeled L- and D-BMAA into milk in lactating mice and the subsequent transfer of BMAA into the developing brain. The results suggest that secretion into milk is an important elimination pathway of BMAA in lactating mothers and an efficient exposure route predominantly for L-BMAA but also for D-BMAA in suckling mice. Following secretion of [(14)C]L-BMAA into milk, the levels of [(14)C]L-BMAA in the brains of the suckling neonatal mice significantly exceeded the levels in the maternal brains. In vitro studies using the mouse mammary epithelial HC11 cell line confirmed a more efficient influx and efflux of L-BMAA than of D-BMAA in cells, suggesting enantiomer-selective transport. Competition experiments with other amino acids and a low sodium dependency of the influx suggests that the amino acid transporters LAT1 and LAT2 are involved in the transport of L-BMAA into milk. Given the persistent neurodevelopmental toxicity following injection of L-BMAA to neonatal rodent pups, the current results highlight the need to determine whether BMAA is enriched mother's and cow's milk. PMID:24194910

  1. Reactivity of β-methylamino-L-alanine in complex sample matrixes complicating detection and quantification by mass spectrometry.

    PubMed

    Glover, W Broc; Liberto, Caitlyn M; McNeil, W Stephen; Banack, Sandra Anne; Shipley, Paul R; Murch, Susan J

    2012-09-18

    β-methylamino-l-alanine (BMAA) is a naturally occurring nonprotein amino acid originally discovered in cycad seeds and traditional foods of the Chamorro people of Guam. Recent research has implicated BMAA as a potential factor in neurodegenerative disease and described the production of BMAA in cyanobacteria, but conflicting results have complicated the interpretation of data. We hypothesized that the reactivity of BMAA with metal ions in the sample matrix and the formation of metal adducts in electrospray ionization mass spectrometry (MS) analysis confound results. Dilute solutions of TCA, MgCl(2), NaCl, CuCl(2), ZnCl(2) (0.01 M), or artificial ocean water (Instant Ocean, 3.5 g/L) reduced the signal attributable to the BMAA M + H(+) peak by 78-99.7%. The degree of adduct formation was significantly affected by MS settings such as induction voltage. A number of the detected ion peaks in BMAA standards were consistent with the formation of metal-BMAA complexes in addition to the adduct formation. A standard of Zn(BMAA)(2) was synthesized, and the effects of sample preparation, derivatization, column chromatography, pH, and interactions with serine were determined. Together, these data demonstrate that sample matrix, formation of adducts, and mass spectrometry settings complicate analysis of BMAA, that analysis by detection of the parent ion and daughter ion fragmentation patterns are highly susceptible to false negative findings, and that failure to detect BMAA cannot be considered proof of absence of the compound. PMID:22905767

  2. The cyanobacterial neurotoxin beta-N-methylamino-L-alanine (BMAA) induces neuronal and behavioral changes in honeybees

    SciTech Connect

    Okle, Oliver; Rath, Lisa; Galizia, C. Giovanni; Dietrich, Daniel R.

    2013-07-01

    The cyanobacterially produced neurotoxin beta-N-methylamino-L-alanine (BMAA) is thought to induce amyotrophic lateral sclerosis/Parkinsonism dementia complex (ALS/PDC)-like symptoms. However, its mechanism of action and its pathway of intoxication are yet unknown. In vivo animal models suitable for investigating the neurotoxic effect of BMAA with applicability to the human are scarce. Hence, we used the honeybee (Apis mellifera) since its nervous system is relatively simple, yet having cognitive capabilities. Bees fed with BMAA-spiked sugar water had an increased mortality rate and a reduced ability to learn odors in a classical conditioning paradigm. Using {sup 14}C-BMAA we demonstrated that BMAA is biologically available to the bee, and is found in the head, thorax and abdomen with little to no excretion. BMAA is also transferred from one bee to the next via trophallaxis resulting in an exposure of the whole beehive. BMAA bath application directly onto the brain leads to an altered Ca{sup 2+} homeostasis and to generation of reactive oxygen species. These behavioral and physiological observations suggest that BMAA may have effects on bee brains similar to those assumed to occur in humans. Therefore the bee could serve as a surrogate model system for investigating the neurological effects of BMAA. - Highlights: • Investigating of neurotoxic effects of BMAA in honeybees • BMAA impairs ALS markers (ROS, Ca{sup 2+}, learning, memory, odor) in bees. • A method for the observation of ROS development in living bees brain was established. • Honeybees are a suitable model to explore neurodegenerative processes. • Neurotoxic BMAA can be spread in bee populations by trophallaxis.

  3. Global cellular responses to β-methyl-amino-L-alanine (BMAA) by olfactory ensheathing glial cells (OEC).

    PubMed

    Chiu, Alexander S; Braidy, Nady; Marçal, Helder; Welch, Jeffrey H; Gehringer, Michelle M; Guillemin, Gilles J; Neilan, Brett A

    2015-06-01

    This study utilised a proteomics approach to identify any differential protein expression in a glial cell line, rat olfactory ensheathing cells (OECs), treated with the cyanotoxin β-methylamino-l-alanine (BMAA). Five proteins of interest were identified, namely Rho GDP-dissociation inhibitor 1 (RhoGDP1), Nck-associated protein 1 (NCKAP1), voltage-dependent anion-selective channel protein 1 (VDAC1), 3-hydroxyacyl-CoA dehydrogenase type-2 (3hCoAdh2), and ubiquilin-4 (UBQLN4). Four of these candidates, nuclear receptor subfamily 4 group A member 1 (Nur77), cyclophilin A (CyPA), RhoGDP1 and VDAC1, have been reported to be involved in cell growth. A microarray identified UBQLN4, palladin and CyPA, which have been implicated to have roles in excitotoxicity. Moreover, the NCKAP1, UBQLN4, CyPA and 3hCoAdh2 genes have been associated with abnormal protein aggregation. Differential expression of genes involved in mitochondrial activity, Nur77, 3hCoAdh2, VDAC1 and UBQLN4, were also identified. Confirmatory reverse transcription quantitative PCR (RT-qPCR) analysis of transcripts generated from the genes of interest corroborated the differential expression trends identified in the global protein analysis. BMAA induced cell cycle arrest in the G2/M phase of OEC and apoptosis after 48 h at concentrations of 250 μM and 500 μM. Collectively, this work advances our understanding of the mechanism of BMAA-mediated glial-toxicity in vitro. PMID:25797319

  4. A study of L-leucine, L-phenylalanine and L-alanine transport in the perfused rat mammary gland: possible involvement of LAT1 and LAT2.

    PubMed

    Shennan, D B; Calvert, D T; Travers, M T; Kudo, Y; Boyd, C A R

    2002-08-19

    The transport of L-leucine, L-phenylalanine and L-alanine by the perfused lactating rat mammary gland has been examined using a rapid, paired-tracer dilution technique. The clearances of all three amino acids by the mammary gland consisted of a rising phase followed by a rapid fall-off, respectively, reflecting influx and efflux of the radiotracers. The peak clearance of L-leucine was inhibited by BCH (65%) and D-leucine (58%) but not by L-proline. The inhibition of L-leucine clearance by BCH and D-leucine was not additive. L-leucine inhibited the peak clearance of radiolabelled L-leucine by 78%. BCH also inhibited the peak clearance of L-phenylalanine (66%) and L-alanine (33%) by the perfused mammary gland. Lactating rat mammary tissue was found to express both LAT1 and LAT2 mRNA. The results suggest that system L is situated in the basolateral aspect of the lactating rat mammary epithelium and thus probably plays a central role in neutral amino acid uptake from blood. The finding that L-alanine uptake by the gland was inhibited by BCH suggests that LAT2 may make a significant contribution to neutral amino acid uptake by the mammary epithelium. PMID:12101005

  5. Amino acids (L-arginine and L-alanine) passivated CdS nanoparticles: Synthesis of spherical hierarchical structure and nonlinear optical properties

    NASA Astrophysics Data System (ADS)

    Talwatkar, S. S.; Tamgadge, Y. S.; Sunatkari, A. L.; Gambhire, A. B.; Muley, G. G.

    2014-12-01

    CdS nanoparticles (NPs) passivated with amino acids (L-alanine and L-arginine) having spherical hierarchical morphology were synthesized by room temperature wet chemical method. Synthesized NPs were characterized by ultraviolet-visible (UV-vis) spectroscopy to study the variation of band gaps with concentration of surface modifying agents. Increase in band gap has been observed with the increase in concentration of surface modifying agents and was found more prominent for CdS NPs passivated with L-alanine. Powder X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis were carried out for the study of crystal structure and morphology of CdS NPs. The average particle size of CdS NPs calculated from Debye-Scherer formula was found to less than 5 nm and agrees well with those determined from UV-vis spectra and TEM data. Fourier transform infrared (FT-IR) spectroscopy was performed to know the functional groups of the grown NPs. Peaks in FT-IR spectra indicate the formation of CdS NPs and capping with L-alanine and L-arginine. Photoluminescence spectra of these NPs were also studied. Finally, colloidal solution of CdS-PVAc was subjected to Z-scan experiment under low power cw laser illumination to characterize them for third order nonlinear optical properties. CdS-PVAc colloidal solution shows enhanced nonlinear absorption due to RSA and weak FCA on account of two photon absorption processes triggered by thermal effect.

  6. Betaine: New Oxidant in the Stickland Reaction and Methanogenesis from Betaine and l-Alanine by a Clostridium sporogenes-Methanosarcina barkeri Coculture

    PubMed Central

    Naumann, Evelyn; Hippe, Hans; Gottschalk, Gerhard

    1983-01-01

    Growing and nongrowing cells of Clostridium sporogenes fermented betaine with l-alanine, l-valine, l-leucine, and l-isoleucine as electron donors in a coupled oxidation-reduction reaction (Stickland reaction). For the substrate combinations betaine and l-alanine and betaine and l-valine balance studies were performed; the results were in agreement with the following fermentation equation: 1 R- CH(NH2)-COOH + 2 betaine + 2 H2O → 1 R-COOH + 1 CO2 + 1 NH3 + 2 trimethylamine + 2 acetate. Growth and production of trimethylamine were strictly dependent on the presence of selenite in the medium. With cell suspensions it was shown that C. sporogenes was unable to catabolize betaine as a single substrate. Betaine, however, was reduced to trimethylamine and acetate under an atmosphere of molecular hydrogen. For the reduction of betaine by cell extracts of C. sporogenes, dimercaptans such as 1,4-dithiothreitol could serve as electron donors. No betaine reductase activity was detected in cells grown in a complex medium without betaine. The pH optimum of betaine reductase was at pH 7.3. When C. sporogenes was cocultured with Methanosarcina barkeri strain Fusaro on betaine together with l-alanine, an almost complete conversion of the two substrates to CH4, NH3, and presumably CO2 was observed. PMID:16346196

  7. Altered hepatic gluconeogenesis during L-alanine infusion in weight-losing lung cancer patients as observed by phosphorus magnetic resonance spectroscopy and turnover measurements.

    PubMed

    Leij-Halfwerk, S; van den Berg, J W; Sijens, P E; Wilson, J H; Oudkerk, M; Dagnelie, P C

    2000-02-01

    Profound alterations in host metabolism in lung cancer patients with weight loss have been reported, including elevated phosphomonoesters (PMEs) as detected by 31P magnetic resonance spectroscopy (MRS). In healthy subjects, infusion of L-alanine induced significant increases in hepatic PMEs and phosphodiesters (PDEs) due to rising concentrations of 3-phosphoglycerate and phosphoenolpyruvate, respectively. The aim of the present study was to monitor these changes in the tumor-free liver of lung cancer patients during L-alanine infusion by means of simultaneous 31P MRS and turnover measurements. Twenty-one lung cancer patients without liver metastases with (CaWL) or without weight loss (CaWS), and 12 healthy control subjects were studied during an i.v. L-alanine challenge of 1.4-2.8 mmol/kg followed by 2.8 mmol/kg/h for 90 min. Plasma L-alanine concentrations increased during alanine infusion, from 0.35-0.37 mM at baseline to 5.37 +/- 0.14 mM in the CaWL patients, 6.67 +/- 0.51 mM in the CaWS patients, and 8.47 +/- 0.88 mM in the controls (difference from baseline and between groups during alanine infusion, all P < 0.001). Glucose turnover and liver PME levels at baseline were significantly elevated in the CaWL patients. Alanine infusion increased whole-body glucose turnover by 8 +/- 3% in the CaWS patients (P = 0.03), whereas no significant change occurred in the CaWL and controls. PME levels increased by 50 +/- 16% in controls (area under the curve, P < 0.01) and by 87 +/- 31% in the CaWS patients (P < 0.05) after 45-90 min. In contrast, no significant changes in PME levels were observed in the CaWL patients. Plasma insulin concentrations increased during L-alanine infusion in all groups to levels that were lower in the CaWL patients than in the CaWS patients and controls (P < 0.05). In lung cancer patients, but not in controls, changes in PME and PDE levels during alanine infusion were inversely correlated with their respective baseline levels (r = -0.82 and -0

  8. Identification and Partial Characterization of a Novel UDP-N-Acetylenolpyruvoylglucosamine Reductase/UDP-N-Acetylmuramate:l-Alanine Ligase Fusion Enzyme from Verrucomicrobium spinosum DSM 4136T

    PubMed Central

    Naqvi, Kubra F.; Patin, Delphine; Wheatley, Matthew S.; Savka, Michael A.; Dobson, Renwick C. J.; Gan, Han Ming; Barreteau, Hélène; Blanot, Didier; Mengin-Lecreulx, Dominique; Hudson, André O.

    2016-01-01

    The enzymes involved in synthesizing the bacterial cell wall are attractive targets for the design of antibacterial compounds, since this pathway is essential for bacteria and is absent in animals, particularly humans. A survey of the genome of a bacterium that belongs to the phylum Verrucomicrobia, the closest free-living relative to bacteria from the Chlamydiales phylum, shows genetic evidence that Verrucomicrobium spinosum possesses a novel fusion open reading frame (ORF) annotated by the locus tag (VspiD_010100018130). The ORF, which is predicted to encode the enzymes UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) and UDP-N-acetylmuramate:l-alanine ligase (MurC) that are involved in the cytoplasmic steps of peptidoglycan biosynthesis, was cloned. In vivo analyses using functional complementation showed that the fusion gene was able to complement Escherichia coli murB and murC temperature sensitive mutants. The purified recombinant fusion enzyme (MurB/CVs) was shown to be endowed with UDP-N-acetylmuramate:l-alanine ligase activity. In vitro analyses demonstrated that the latter enzyme had a pH optimum of 9.0, a magnesium optimum of 10 mM and a temperature optimum of 44–46°C. Its apparent Km values for ATP, UDP-MurNAc, and l-alanine were 470, 90, and 25 μM, respectively. However, all attempts to demonstrate an in vitro UDP-N-acetylenolpyruvoylglucosamine reductase (MurB) activity were unsuccessful. Lastly, Hidden Markov Model-based similarity search and phylogenetic analysis revealed that this fusion enzyme could only be identified in specific lineages within the Verrucomicrobia phylum. PMID:27047475

  9. Determination of the anti-inflammatory and cytoprotective effects of l-glutamine and l-alanine, or dipeptide, supplementation in rats submitted to resistance exercise.

    PubMed

    Raizel, Raquel; Leite, Jaqueline Santos Moreira; Hypólito, Thaís Menezes; Coqueiro, Audrey Yule; Newsholme, Philip; Cruzat, Vinicius Fernandes; Tirapegui, Julio

    2016-08-01

    We evaluated the effects of chronic oral supplementation with l-glutamine and l-alanine in their free form or as the dipeptide l-alanyl-l-glutamine (DIP) on muscle damage, inflammation and cytoprotection, in rats submitted to progressive resistance exercise (RE). Wistar rats (n 8/group) were submitted to 8-week RE, which consisted of climbing a ladder with progressive loads. In the final 21 d before euthanasia, supplements were delivered in a 4 % solution in drinking water. Glutamine, creatine kinase (CK), lactate dehydrogenase (LDH), TNF-α, specific IL (IL-1β, IL-6 and IL-10) and monocyte chemoattractant protein-1 (MCP-1) levels were evaluated in plasma. The concentrations of glutamine, TNF-α, IL-6 and IL-10, as well as NF-κB activation, were determined in extensor digitorum longus (EDL) skeletal muscle. HSP70 level was assayed in EDL and peripheral blood mononuclear cells (PBMC). RE reduced glutamine concentration in plasma and EDL (P<0·05 v. sedentary group). However, l-glutamine supplements (l-alanine plus l-glutamine (GLN+ALA) and DIP groups) restored glutamine levels in plasma (by 40 and 58 %, respectively) and muscle (by 93 and 105 %, respectively). GLN+ALA and DIP groups also exhibited increased level of HSP70 in EDL and PBMC, consistent with the reduction of NF-κB p65 activation and cytokines in EDL. Muscle protection was also indicated by attenuation in plasma levels of CK, LDH, TNF-α and IL-1β, as well as an increase in IL-6, IL-10 and MCP-1. Our study demonstrates that chronic oral l-glutamine treatment (given with l-alanine or as dipeptide) following progressive RE induces cyprotective effects mediated by HSP70-associated responses to muscle damage and inflammation. PMID:27215379

  10. Effective production of 3,4-dihydroxyphenyl-L-alanine (L-DOPA) with Erwinia herbicola cells carrying a mutant transcriptional regulator TyrR.

    PubMed

    Koyanagi, Takashi; Katayama, Takane; Suzuki, Hideyuki; Nakazawa, Hidetsugu; Yokozeki, Kenzo; Kumagai, Hidehiko

    2005-02-01

    The enzymatic production of 3,4-dihydroxyphenyl-L-alanine (L-DOPA) using Erwinia herbicola cells involves the action of tyrosine phenol-lyase (Tpl, EC 4.1.99.2). Since Tpl is only synthesized under L-tyrosine-induced conditions, the addition of L-tyrosine to the medium is unavoidable when preparing cells (the enzyme source), but severely impedes the pure preparation of the final product L-DOPA. We circumvented this problem by using recombinant E. herbicola cells carrying a mutant transcriptional regulator TyrR, which is capable of activating the tpl promoter in the absence of L-tyrosine. PMID:15639092

  11. Hyperproduction of 3,4-dihydroxyphenyl-L-alanine (L-Dopa) using Erwinia herbicola cells carrying a mutant transcriptional regulator TyrR.

    PubMed

    Koyanagi, Takashi; Katayama, Takane; Suzuki, Hideyuki; Onishi, Akiko; Yokozeki, Kenzo; Kumagai, Hidehiko

    2009-05-01

    In the last few decades, enzymatic production of 3,4-dihydroxyphenyl-L-alanine (L-dopa) using tyrosine phenol-lyase (Tpl) has been industrialized. This method has an intrinsic problem of tyrosine contamination because Tpl is synthesized under tyrosine-induced conditions. Herein, we constructed a hyper-L-dopa-producing strain by exploiting a mutant TyrR, an activator of tpl. The highest productivity was obtained for the strain grown under non-induced conditions. It was 30-fold higher than that obtained for tyrosine-induced wild-type cells. PMID:19420686

  12. FT-IR and Raman spectroscopic and DFT studies of anti-cancer active molecule N-{(meta-ferrocenyl) Benzoyl} - L-Alanine - Glycine ethyl ester

    NASA Astrophysics Data System (ADS)

    Xavier, T. S.; Kenny, Peter T. M.; Manimaran, D.; Joe, I. Hubert

    2015-06-01

    FT-Raman and FT-IR spectra of N-{(meta-ferrocenyl) Benzoyl} - L-alanine - glycine ethyl ester were recorded in solid phase. The optimized molecular geometry, the vibrational wavenumbers, the infrared intensities and the Raman scattering intensities were calculated by using density functional method(B3LYP) with 6-31G(d, p) basis set. Vibrational assignment of the molecule was done by using potential energy distribution analysis. Natural bond orbital analysis, Mulliken charge analysis and HOMO-LUMO energy were used to elucidate the reasons for intra molecular charge transfer. Docking studies were conducted to predict its anticancer activity.

  13. Cyanobacterial Blooms and the Occurrence of the neurotoxin beta-N-methylamino-L-alanine (BMAA) in South Florida Aquatic Food Webs.

    PubMed

    Brand, Larry E; Pablo, John; Compton, Angela; Hammerschlag, Neil; Mash, Deborah C

    2010-09-01

    Recent studies demonstrate that most cyanobacteria produce the neurotoxin beta-N-methylamino-L-alanine (BMAA) and that it can biomagnify in at least one terrestrial food chain. BMAA has been implicated as a significant environmental risk in the development of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis (ALS). We examined several blooms of cyanobacteria in South Florida, and the BMAA content of resident animals, including species used as human food. A wide range of BMAA concentrations were found, ranging from below assay detection limits to approximately 7000 μg/g, a concentration associated with a potential long-term human health hazard. PMID:21057660

  14. Temperature-sensitive mutants of Escherichia coli K-12 with low activities of the L-alanine adding enzyme and the D-alanyl-D-alanine adding enzyme.

    PubMed

    Lugtenberg, E J; v Schijndel-van Dam, A

    1972-04-01

    A number of properties of temperature-sensitive mutants in murein synthesis are described. The mutants grow at 30 C but lyse at 42 C. One mutant possesses a temperature-sensitive d-alanyl-d-alanine adding enzyme, has an impaired rate of murein synthesis in vivo at both 30 and 42 C, and contains elevated levels of uridine diphosphate-N-acetyl-muramyl-tripeptide (UDP-MurNAc-l-Ala-d-Glu-m-diaminopimelic acid) at 42 C. The other mutant possesses an l-alanine adding enzyme with a very low in vitro activity at both 30 and 42 C. Its in vivo rate of murein synthesis is almost normal at 30 C but is much less at 42 C. When the murein precursors were isolated after incubation of the cells in the presence of (14)C-l-alanine, they contained only a fraction of the radioactivity that could be obtained from a wild-type strain. A genetic nomenclature for genes concerned with murein synthesis is proposed. PMID:4552998

  15. Tetra­kis-μ-l-alanine-κ8 O:O′-bis­[tetra­aqua­terbium(III)] hexa­perchlorate

    PubMed Central

    Mohamed, Musa E.; Chopra, Deepak; Venugopal, K. N.; Govender, Thavendran; Kruger, Hendrik G.; Maguire, Glenn E. M.

    2010-01-01

    The asymmetric unit of the title compound, [Tb2(C3H7NO2)4(H2O)8](ClO4)6, contains a dinuclear cation and six perchlorate anions, one of which is disordered. In the cation, the four l-alanine mol­ecules are present in their zwitterionic form and bridge two Tb3+ ions through their carboxyl­ate O atoms. Each Tb atom is also coordinated by four water mol­ecules in a square-anti­prismatic geometry. In the crystal structure, the cations and anions are held together via inter­molecular O—H⋯O and N—H⋯O hydrogen bonds. PMID:21579659

  16. The metabolism of the non-proteinogenic amino acid β-N-methylamino-L-alanine (BMAA) in the cyanobacterium Synechocystis PCC6803.

    PubMed

    Downing, Simoné; Downing, Timothy Grant

    2016-06-01

    The neurotoxic amino acid β-N-methylamino-L-alanine (BMAA) is produced by cyanobacteria under nitrogen starvation conditions and its metabolism is closely associated with cellular nitrogen control. Very little is known regarding the metabolism or biosynthesis of this amino acid in the producing organisms and current knowledge is limited to the spontaneous formation of carbamate adducts in the presence of aqueous carbon dioxide, the rapid removal of free cellular BMAA upon the addition of ammonia to nitrogen-starved cyanobacterial cultures, and the link between cellular nitrogen status and BMAA synthesis. Data presented here show that exogenous BMAA is readily metabolised by cyanobacteria during which, the primary amino group is rapidly transferred to other cellular amino acids. Furthermore, data suggest that BMAA is metabolised in cyanobacteria via a reversible transamination reaction. This study presents novel data on BMAA metabolism in cyanobacteria and provides the first proposed biosynthetic precursor to BMAA biosynthesis in cyanobacteria. PMID:26948425

  17. Studies on optical, mechanical and transport properties of NLO active L-alanine formate single crystal grown by modified Sankaranarayanan Ramasamy (SR) method

    NASA Astrophysics Data System (ADS)

    Justin Raj, C.; Dinakaran, S.; Krishnan, S.; Milton Boaz, B.; Robert, R.; Jerome Das, S.

    2008-04-01

    Bulk single crystals of L-alanine formate of 10 mm diameter and 50 mm length have been grown with an aid of modified Sankaranarayanan-Ramasamy (SR) uniaxial crystal growth method within a period of ten days. The optical properties of the grown crystal were calculated from UV transmission spectral analysis. The second harmonic generation efficiency of the grown crystal was confirmed by Kurtz powder test. In order to determine the mechanical strength of the crystal, Vicker's microhardness test was carried along the growth plane (0 0 1). Dielectric studies reveal that both dielectric constant and dielectric loss decreases with increase in frequency. Photoconductivity study confirms the negative photoconducting nature of the crystal.

  18. Cyanobacterial Blooms and the Occurrence of the neurotoxin beta-N-methylamino-L-alanine (BMAA) in South Florida Aquatic Food Webs

    PubMed Central

    Brand, Larry E.; Pablo, John; Compton, Angela; Hammerschlag, Neil; Mash, Deborah C.

    2010-01-01

    Recent studies demonstrate that most cyanobacteria produce the neurotoxin beta-N-methylamino-L-alanine (BMAA) and that it can biomagnify in at least one terrestrial food chain. BMAA has been implicated as a significant environmental risk in the development of neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, and Amyotrophic Lateral Sclerosis (ALS). We examined several blooms of cyanobacteria in South Florida, and the BMAA content of resident animals, including species used as human food. A wide range of BMAA concentrations were found, ranging from below assay detection limits to approximately 7000 μg/g, a concentration associated with a potential long-term human health hazard. PMID:21057660

  19. Liquid chromatography and mass spectrometry for the analysis of N-β-methylamino-L-alanine with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate.

    PubMed

    Glover, W Broc; Cohen, Steven A; Murch, Susan J

    2015-01-01

    Numerous studies in the past decade have identified N-β-methylamino-L-alanine (BMAA) as a putative environmental neurotoxin. Produced by cyanobacteria and accumulated at different levels of the trophic system, BMAA has been detected in the brain tissue of human patients that died from progressive neurodegenerative disease. Research into the mechanism of neurotoxicity has been hampered by conflicting results and disagreement in the literature over analytical methods used for quantification and detection. While several research approaches have been tested, the use of the derivatizing reagent 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate is presented here as an effective and selective means for the analysis of BMAA and two co-occurring biological isomers, DAB and AEG, by liquid chromatography and tandem mass spectrometry. PMID:25323521

  20. Kinetic Studies and Mechanism of Hydrogen Peroxide Catalytic Decomposition by Cu(II) Complexes with Polyelectrolytes Derived from L-Alanine and Glycylglycine

    PubMed Central

    Skounas, Spyridon; Methenitis, Constantinos; Pneumatikakis, George; Morcellet, Michel

    2010-01-01

    The catalytic decomposition of hydrogen peroxide by Cu(II) complexes with polymers bearing L-alanine (PAla) and glycylglycine (PGlygly) in their side chain was studied in alkaline aqueous media. The reactions were of pseudo-first order with respect to [H2O2] and [L-Cu(II)] (L stands for PAla or PGlygly) and the reaction rate was increased with pH increase. The energies of activation for the reactions were determined at pH 8.8, in a temperature range of 293–308 K. A suitable mechanism is proposed to account for the kinetic data, which involves the Cu(II)/Cu(I) redox pair, as has been demonstrated by ESR spectroscopy. The trend in catalytic efficiency is in the order PGlygly>PAla, due to differences in modes of complexation and in the conformation of the macromolecular ligands. PMID:20721280

  1. Enantioselective Collision-Activated Dissociation of Gas-Phase Tryptophan Induced by Chiral Recognition of Protonated uc(l)-Alanine Peptides

    NASA Astrophysics Data System (ADS)

    Fujihara, Akimasa; Matsuyama, Hiroki; Tajiri, Michiko; Wada, Yoshinao; Hayakawa, Shigeo

    2016-06-01

    Enantioselective dissociation in the gas phase is important for enantiomeric enrichment and chiral transmission processes in molecular clouds regarding the origin of homochirality in biomolecules. Enantioselective collision-activated dissociation (CAD) of tryptophan (Trp) and the chiral recognition ability of uc(l)-alanine peptides (uc(l)-Ala n ; n = 2-4) were examined using a linear ion trap mass spectrometer. CAD spectra of gas-phase heterochiral H+(uc(d)-Trp)(uc(l)-Ala n ) and homochiral H+(uc(l)-Trp)(uc(l)-Ala n ) noncovalent complexes were obtained as a function of the peptide size n. The H2O-elimination product was observed in CAD spectra of both heterochiral and homochiral complexes for n = 2 and 4, and in homochiral H+(uc(l)-Trp)(uc(l)-Ala3), indicating that the proton is attached to the uc(l)-alanine peptide, and H2O loss occurs from H+(uc(l)-Ala n ) in the noncovalent complexes. H2O loss did not occur in heterochiral H+(uc(d)-Trp)(uc(l)-Ala3), where NH3 loss and (H2O + CO) loss were the primary dissociation pathways. In heterochiral H+(uc(d)-Trp)(uc(l)-Ala3), the protonation site is the amino group of uc(d)-Trp, and NH3 loss and (H2O + CO) loss occur from H+(uc(d)-Trp). uc(l)-Ala peptides recognize uc(d)-Trp through protonation of the amino group for peptide size n = 3. NH3 loss and (H2O + CO) loss from H+(uc(d)-Trp) proceeds via enantioselective CAD in gas-phase heterochiral H+(uc(d)-Trp)(uc(l)-Ala3) at room temperature, whereas uc(l)-Trp dissociation was not observed in homochiral H+(uc(l)-Trp)(uc(l)-Ala3). These results suggest that enantioselective dissociation induced by chiral recognition of uc(l)-Ala peptides through protonation could play an important role in enantiomeric enrichment and chiral transmission processes of amino acids.

  2. Carbon-Nanotube-Mediated Electrochemical Transition in a Redox-Active Supramolecular Hydrogel Derived from Viologen and an l-Alanine-Based Amphiphile.

    PubMed

    Datta, Sougata; Bhattacharya, Santanu

    2016-05-23

    A two-component hydrogelator (16-A)2 -V(2+) , comprising an l-alanine-based amphiphile (16-A) and a redox-active viologen based partner (V(2+) ), is reported. The formation the hydrogel depended, not only on the acid-to-amine stoichiometric ratio, but on the choice of the l-amino acid group and also on the hydrocarbon chain length of the amphiphilic component. The redox responsive property and the electrochemical behavior of this two-component system were further examined by step-wise chemical and electrochemical reduction of the viologen nucleus (V(2+) /V(+) and V(+) /V(0) ). The half-wave reduction potentials (E1/2 ) associated with the viologen ring shifted to more negative values with increasing amine component. This indicates that higher extent of salt formation hinders reduction of the viologen moiety. Interestingly, the incorporation of single-walled carbon nanotubes in the electrochemically irreversible hydrogel (16-A)2 -V(2+) transformed it into a quasi-reversible electrochemical system. PMID:27059107

  3. Pore Diameter Dependence and Segmental Dynamics of Poly-Z-L-lysine and Poly-L-alanine Confined in 1D Nanocylindrical Geometry

    NASA Astrophysics Data System (ADS)

    Tuncel, Eylul; Suzuki, Yasuhito; Iossifidis, Agathaggelos; Steinhart, Martin; Butt, Hans-Jurgen; Floudas, George; Duran, Hatice

    Structure formation, thermodynamic stability, phase and dynamic behaviors of polypeptides are strongly affected by confinement. Since understanding the changes in these behaviors will allow their rational design as functional devices with tunable properties, herein we investigated Poly-Z-L-lysine (PZLL) and Poly-L-alanine (PAla) homopolypeptides confined in nanoporous alumina containing aligned cylindrical nanopores as a function of pore size by differential scanning calorimetry (DSC), Fourier Transform Infrared Spectroscopy, Solid-state NMR, X-ray diffraction, Dielectric spectroscopy(DS). Bulk PZLL exhibits a glass transition temperature (Tg) at about 301K while PZLL nanorods showed slightly lower Tg (294K). The dynamic investigation by DS also revealed a decrease (4K) in Tg between bulk and PZLL nanorods. DS is a very sensitive probe of the local and global secondary structure relaxation through the large dipole to study effect of confinement. The results revealed that the local segmental dynamics, associated with broken hydrogen bonds, and segmental dynamics speed-up on confinement.

  4. Structural, vibrational spectroscopic studies and quantum chemical calculations of n-(2,4-dinitrophenyl)-L-alanine methyl ester by density functional theory

    NASA Astrophysics Data System (ADS)

    Govindarasu, K.; Kavitha, E.

    2015-05-01

    In this paper, the vibrational wavenumbers of N-(2,4-dinitrophenyl)-L-alanine methyl ester (abbreviated as Dnp-ala-ome) were obtained from ab initio studies based on the density functional theory approach with B3LYP and M06-2X/6-31G(d,p) level of theories. The optimized geometry and structural features of the most potential nonlinear optical crystal Dnp-ala-ome and the vibrational spectral investigations have been thoroughly described with the FT-Raman and FT-IR spectra supported by the DFT computations. FT-IR (4000-400 cm-1) and FT-Raman spectra (3500-50 cm-1) in the solid phase and the UV-Vis spectra that dissolved in ethanol were recorded in the range of 200-800 nm. The Natural population analysis and natural bond orbital (NBO) analysis have also been carried out to analyze the effects of intramolecular charge transfer, intramolecular and hyperconjugative interactions on the geometries. The effects of frontier orbitals, HOMO and LUMO, transition of electron density transfer have also been discussed. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of Dnp-ala-ome were calculated. In addition, molecular electrostatic potential (MEP) was investigated using theoretical calculations. The chemical reactivity and thermodynamic properties (heat capacity, entropy and enthalpy) of at different temperature are calculated.

  5. Beta-N-methylamino-l-alanine: LC-MS/MS Optimization, Screening of Cyanobacterial Strains and Occurrence in Shellfish from Thau, a French Mediterranean Lagoon

    PubMed Central

    Réveillon, Damien; Abadie, Eric; Séchet, Véronique; Brient, Luc; Savar, Véronique; Bardouil, Michèle; Hess, Philipp; Amzil, Zouher

    2014-01-01

    β-N-methylamino-l-alanine (BMAA) is a neurotoxic non-protein amino acid suggested to be involved in neurodegenerative diseases. It was reported to be produced by cyanobacteria, but also found in edible aquatic organisms, thus raising concern of a widespread human exposure. However, the chemical analysis of BMAA and its isomers are controversial, mainly due to the lack of selectivity of the analytical methods. Using factorial design, we have optimized the chromatographic separation of underivatized analogues by a hydrophilic interaction chromatography coupled to tandem mass spectrometry (HILIC-MS/MS) method. A combination of an effective solid phase extraction (SPE) clean-up, appropriate chromatographic resolution and the use of specific mass spectral transitions allowed for the development of a highly selective and sensitive analytical procedure to identify and quantify BMAA and its isomers (in both free and total form) in cyanobacteria and mollusk matrices (LOQ of 0.225 and 0.15 µg/g dry weight, respectively). Ten species of cyanobacteria (six are reported to be BMAA producers) were screened with this method, and neither free nor bound BMAA could be found, while both free and bound DAB were present in almost all samples. Mussels and oysters collected in 2009 in the Thau Lagoon, France, were also screened, and bound BMAA and its two isomers, DAB and AEG, were observed in all samples (from 0.6 to 14.4 µg/g DW), while only several samples contained quantifiable free BMAA. PMID:25405857

  6. Detection of Cyanotoxins, β-N-methylamino-l-alanine and Microcystins, from a Lake Surrounded by Cases of Amyotrophic Lateral Sclerosis

    PubMed Central

    Banack, Sandra Anne; Caller, Tracie; Henegan, Patricia; Haney, James; Murby, Amanda; Metcalf, James S.; Powell, James; Cox, Paul Alan; Stommel, Elijah

    2015-01-01

    A cluster of amyotrophic lateral sclerosis (ALS) has been previously described to border Lake Mascoma in Enfield, NH, with an incidence of ALS approximating 25 times expected. We hypothesize a possible association with cyanobacterial blooms that can produce β-N-methylamino-l-alanine (BMAA), a neurotoxic amino acid implicated as a possible cause of ALS/PDC in Guam. Muscle, liver, and brain tissue samples from a Lake Mascoma carp, as well as filtered aerosol samples, were analyzed for microcystins (MC), free and protein-bound BMAA, and the BMAA isomers 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl)glycine (AEG). In carp brain, BMAA and DAB concentrations were 0.043 μg/g ± 0.02 SD and 0.01 μg/g ± 0.002 SD respectively. In carp liver and muscle, the BMAA concentrations were 1.28 μg/g and 1.27 μg/g respectively, and DAB was not detected. BMAA was detected in the air filters, as were the isomers DAB and AEG. These results demonstrate that a putative cause for ALS, BMAA, exists in an environment that has a documented cluster of ALS. Although cause and effect have not been demonstrated, our observations and measurements strengthen the association. PMID:25643180

  7. Transfer of developmental neurotoxin β-N-methylamino-l-alanine (BMAA) via milk to nursed offspring: Studies by mass spectrometry and image analysis.

    PubMed

    Andersson, Marie; Karlsson, Oskar; Banack, Sandra Anne; Brandt, Ingvar

    2016-09-01

    The cyanobacterial non-proteinogenic amino acid β-N-methylamino-l-alanine (BMAA) is proposed to be involved in the etiology of amyotrophic lateral sclerosis/parkinsonism dementia complex. When administered as single doses to neonatal rats, BMAA gives rise to cognitive and neurodegenerative impairments in the adult animal. Here, we employed mass spectrometry (LC-MS/MS) and autoradiographic imaging to examine the mother-to-pup transfer of BMAA in rats. The results show that unchanged BMAA was secreted into the milk and distributed to the suckling pups. The concentration of BMAA in pup stomach milk and the neonatal liver peaked after 8h, while the concentration in the pup brain increased throughout the study period. About 1 and 6% of the BMAA recovered from adult liver and brain were released following hydrolysis, suggesting that this fraction was associated with protein. No association to milk protein was observed. Injection of rat pups with [methyl-(14)C]-l-BMAA or [carboxyl-(14)C]-l-BMAA resulted in highly similar distribution patterns, indicating no or low metabolic elimination of the methylamino- or carboxyl groups. In conclusion, BMAA is transported as a free amino acid to rat milk and suckling pups. The results strengthen the proposal that mothers' milk could be a source of exposure for BMAA in human infants. PMID:27320960

  8. Immobilization by Polyurethane of Pseudomonas dacunhae Cells Containing l-Aspartate β-Decarboxylase Activity and Application to l-Alanine Production

    PubMed Central

    Fusee, Murray C.; Weber, Jennifer E.

    1984-01-01

    Whole cells of Pseudomonas dacunhae containing l-aspartate β-decarboxylase activity were immobilized by mixing a cell suspension with a liquid isocyanate-capped polyurethane prepolymer (Hypol; W. R. Grace & Co., Lexington, Mass.). The immobilized cell preparation was used to convert l-aspartic acid to l-alanine. Properties of the immobilized P. dacunhae cells containing aspartate β-decarboxylase activity were investigated with batch reactors. Retention of enzyme activity was observed to be as much as 100% when cell lysis was allowed to occur before immobilization. The pH and temperature optima were determined to be 5.5 and 45°C, respectively. Immobilized P. dacunhael-aspartate β-decarboxylase activity was stabilized by the addition of 0.1 mM pyridoxal-5-phosphate and 0.1 mM α-ketoglutaric acid to a 1.7 M ammonium aspartate (pH 5.5) substrate solution. Under conditions of semicontinuous use in a batch reactor, a 2.5% loss in immobilized l-aspartate β-decarboxylase activity was observed over a 31-day period. PMID:16346636

  9. β-N-methylamino-l-alanine (BMAA) and isomers: Distribution in different food web compartments of Thau lagoon, French Mediterranean Sea.

    PubMed

    Réveillon, Damien; Abadie, Eric; Séchet, Véronique; Masseret, Estelle; Hess, Philipp; Amzil, Zouher

    2015-09-01

    The neurotoxin BMAA (β-N-methylamino-l-alanine) and its isomer DAB (2,4-diaminobutyric acid) have been detected in seafood worldwide, including in Thau lagoon (French Mediterranean Sea). A cluster of amyotrophic lateral sclerosis (ALS), a neurodegenerative disease associated with BMAA, has also been observed in this region. Mussels, periphyton (i.e. biofilms attached to mussels) and plankton were sampled between July 2013 and October 2014, and analyzed using HILIC-MS/MS. BMAA, DAB and AEG (N-(2-aminoethyl)glycine) were found in almost all the samples of the lagoon. BMAA and DAB were present at 0.58 and 0.83, 2.6 and 3.3, 4.0 and 7.2 μg g(-1) dry weight in plankton collected with nets, periphyton and mussels, respectively. Synechococcus sp., Ostreococcus tauri, Alexandrium catenella and eight species of diatoms were cultured and screened for BMAA and analogs. While Synechococcus sp., O. tauri and A. catenella did not produce BMAA under our culture conditions, four diatoms species contained both BMAA and DAB. Hence, diatoms may be a source of BMAA for mussels. Unlike other toxins produced by microalgae, BMAA and DAB were detected in significant amounts in tissues other than digestive glands in mussels. PMID:26254582

  10. Environmental neurotoxin interaction with proteins: Dose-dependent increase of free and protein-associated BMAA (β-N-methylamino-L-alanine) in neonatal rat brain.

    PubMed

    Karlsson, Oskar; Jiang, Liying; Ersson, Lisa; Malmström, Tim; Ilag, Leopold L; Brittebo, Eva B

    2015-01-01

    β-Methylamino-L-alanine (BMAA) is implicated in the aetiology of neurodegenerative disorders. Neonatal exposure to BMAA induces cognitive impairments and progressive neurodegenerative changes including intracellular fibril formation in the hippocampus of adult rats. It is unclear why the neonatal hippocampus is especially vulnerable and the critical cellular perturbations preceding BMAA-induced toxicity remains to be elucidated. The aim of this study was to compare the level of free and protein-associated BMAA in neonatal rat brain and peripheral tissues after different exposures to BMAA. Ultra-high performance liquid chromatography-tandem mass spectrometry analysis revealed that BMAA passed the neonatal blood-brain barrier and was distributed to all studied brain areas. BMAA was also associated to proteins in the brain, especially in the hippocampus. The level in the brain was, however, considerably lower compared to the liver that is not a target organ for BMAA. In contrast to the liver there was a significantly increased level of protein-association of BMAA in the hippocampus and other brain areas following repeated administration suggesting that the degradation of BMAA-associated proteins may be lower in neonatal brain than in the liver. Additional evidence is needed in support of a role for protein misincorporation in the neonatal hippocampus for long-term effects of BMAA. PMID:26498001

  11. Beta-N-methylamino-L-alanine: LC-MS/MS optimization, screening of cyanobacterial strains and occurrence in shellfish from Thau, a French Mediterranean lagoon.

    PubMed

    Réveillon, Damien; Abadie, Eric; Séchet, Véronique; Brient, Luc; Savar, Véronique; Bardouil, Michèle; Hess, Philipp; Amzil, Zouher

    2014-11-01

    β-N-methylamino-L-alanine (BMAA) is a neurotoxic non-protein amino acid suggested to be involved in neurodegenerative diseases. It was reported to be produced by cyanobacteria, but also found in edible aquatic organisms, thus raising concern of a widespread human exposure. However, the chemical analysis of BMAA and its isomers are controversial, mainly due to the lack of selectivity of the analytical methods. Using factorial design, we have optimized the chromatographic separation of underivatized analogues by a hydrophilic interaction chromatography coupled to tandem mass spectrometry (HILIC-MS/MS) method. A combination of an effective solid phase extraction (SPE) clean-up, appropriate chromatographic resolution and the use of specific mass spectral transitions allowed for the development of a highly selective and sensitive analytical procedure to identify and quantify BMAA and its isomers (in both free and total form) in cyanobacteria and mollusk matrices (LOQ of 0.225 and 0.15 µg/g dry weight, respectively). Ten species of cyanobacteria (six are reported to be BMAA producers) were screened with this method, and neither free nor bound BMAA could be found, while both free and bound DAB were present in almost all samples. Mussels and oysters collected in 2009 in the Thau Lagoon, France, were also screened, and bound BMAA and its two isomers, DAB and AEG, were observed in all samples (from 0.6 to 14.4 µg/g DW), while only several samples contained quantifiable free BMAA. PMID:25405857

  12. Detection of cyanotoxins, β-N-methylamino-L-alanine and microcystins, from a lake surrounded by cases of amyotrophic lateral sclerosis.

    PubMed

    Banack, Sandra Anne; Caller, Tracie; Henegan, Patricia; Haney, James; Murby, Amanda; Metcalf, James S; Powell, James; Cox, Paul Alan; Stommel, Elijah

    2015-02-01

    A cluster of amyotrophic lateral sclerosis (ALS) has been previously described to border Lake Mascoma in Enfield, NH, with an incidence of ALS approximating 25 times expected. We hypothesize a possible association with cyanobacterial blooms that can produce β-N-methylamino-L-alanine (BMAA), a neurotoxic amino acid implicated as a possible cause of ALS/PDC in Guam. Muscle, liver, and brain tissue samples from a Lake Mascoma carp, as well as filtered aerosol samples, were analyzed for microcystins (MC), free and protein-bound BMAA, and the BMAA isomers 2,4-diaminobutyric acid (DAB) and N-(2-aminoethyl)glycine (AEG). In carp brain, BMAA and DAB concentrations were 0.043 μg/g ± 0.02 SD and 0.01 μg/g ± 0.002 SD respectively. In carp liver and muscle, the BMAA concentrations were 1.28 μg/g and 1.27 μg/g respectively, and DAB was not detected. BMAA was detected in the air filters, as were the isomers DAB and AEG. These results demonstrate that a putative cause for ALS, BMAA, exists in an environment that has a documented cluster of ALS. Although cause and effect have not been demonstrated, our observations and measurements strengthen the association. PMID:25643180

  13. Detection of cyanobacterial neurotoxin β-N-methylamino-l-alanine within shellfish in the diet of an ALS patient in Florida.

    PubMed

    Banack, Sandra Anne; Metcalf, James S; Bradley, Walter G; Cox, Paul Alan

    2014-11-01

    Cyanobacteria produce the neurotoxic amino acid β-N-methylamino-l-alanine (BMAA), which in contaminated marine waters has been found to accumulate in shellfish. Exposure to BMAA has been associated with an increased risk of neurodegenerative disease. Analysis of blinded samples found BMAA to be present in neuroproteins of individuals who died from ALS and ALS/PDC, but generally not in the brains of patients who died of causes unrelated to neurodegeneration or Huntington's disease, an autosomal dominant neurodegenerative disease. We here report support for a link between a patient with ALS and chronic exposure to the cyanobacterial neurotoxin BMAA via shellfish consumption. The patient had frequently eaten lobsters collected in Florida Bay for approximately 30 years. LC-MS/MS analysis of two lobsters which this ALS patient had placed in his freezer revealed BMAA at concentrations of 27 and 4 μg/g, respectively, as well as the presence of 2,4-diaminobutyric acid (DAB), a BMAA isomer. Two additional lobsters recently collected from Florida Bay also contained the neurotoxins BMAA and DAB. These data suggest that invertebrates collected in water where cyanobacterial blooms are present, if consumed, may result in direct human exposure to these neurotoxic amino acids. The data support the assertion that prolonged exposure to BMAA may have played a role in the etiology of ALS in this patient. PMID:25123936

  14. Protein association of the neurotoxin and non-protein amino acid BMAA (β-N-methylamino-L-alanine) in the liver and brain following neonatal administration in rats.

    PubMed

    Karlsson, Oskar; Jiang, Liying; Andersson, Marie; Ilag, Leopold L; Brittebo, Eva B

    2014-04-01

    The environmental neurotoxin β-N-methylamino-L-alanine (BMAA) is not an amino acid that is normally found in proteins. Our previous autoradiographic study of (3)H-labeled BMAA in adult mice unexpectedly revealed a tissue distribution similar to that of protein amino acids. The aim of this study was to characterize the distribution of free and protein-bound BMAA in neonatal rat tissues following a short exposure using autoradiographic imaging and ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). The autoradiographic imaging of (14)C-L-BMAA demonstrated a distinct uptake of radioactivity that was retained following acid extraction in tissues with a high rate of cell turnover and/or protein synthesis. The UHPLC-MS/MS analysis conclusively demonstrated a dose-dependent increase of protein-associated BMAA in neonatal rat tissues. The level of protein-associated BMAA in the liver was more than 10 times higher than that in brain regions not fully protected by the blood-brain barrier which may be due to the higher rate of protein synthesis in the liver. In conclusion, this study demonstrated that BMAA was associated with rat proteins suggesting that BMAA may be misincorporated into proteins. However, protein-associated BMAA seemed to be cleared over time, as none of the samples from adult rats had any detectable free or protein-associated BMAA. PMID:24472610

  15. Environmental neurotoxin interaction with proteins: Dose-dependent increase of free and protein-associated BMAA (β-N-methylamino-L-alanine) in neonatal rat brain

    PubMed Central

    Karlsson, Oskar; Jiang, Liying; Ersson, Lisa; Malmström, Tim; Ilag, Leopold L.; Brittebo, Eva B.

    2015-01-01

    β-Methylamino-L-alanine (BMAA) is implicated in the aetiology of neurodegenerative disorders. Neonatal exposure to BMAA induces cognitive impairments and progressive neurodegenerative changes including intracellular fibril formation in the hippocampus of adult rats. It is unclear why the neonatal hippocampus is especially vulnerable and the critical cellular perturbations preceding BMAA-induced toxicity remains to be elucidated. The aim of this study was to compare the level of free and protein-associated BMAA in neonatal rat brain and peripheral tissues after different exposures to BMAA. Ultra-high performance liquid chromatography-tandem mass spectrometry analysis revealed that BMAA passed the neonatal blood-brain barrier and was distributed to all studied brain areas. BMAA was also associated to proteins in the brain, especially in the hippocampus. The level in the brain was, however, considerably lower compared to the liver that is not a target organ for BMAA. In contrast to the liver there was a significantly increased level of protein-association of BMAA in the hippocampus and other brain areas following repeated administration suggesting that the degradation of BMAA-associated proteins may be lower in neonatal brain than in the liver. Additional evidence is needed in support of a role for protein misincorporation in the neonatal hippocampus for long-term effects of BMAA. PMID:26498001

  16. Combined use of l-alanine tert butyl ester lactate and trimethyl-β-cyclodextrin for the enantiomeric separations of 2-arylpropionic acids nonsteroidal anti-inflammatory drugs.

    PubMed

    Mavroudi, Maria C; Kapnissi-Christodoulou, Constantina P

    2015-10-01

    In this study, a new CE method, employing a binary system of trimethyl-β-CD (TM-β-CD) and a chiral amino acid ester-based ionic liquid (AAIL), was developed for the chiral separation of seven 2-arylpropionic acid nonsteroidal anti-inflammatory drugs (NSAIDs). In particular, the enantioseparation of ibuprofen, ketoprofen, carprofen, indoprofen, flurbiprofen, naproxen, and fenoprofen was improved significantly by supporting the BGE with the chiral AAIL l-alanine tert butyl ester lactate (l-AlaC4 Lac). Parameters, such as concentrations of TM-β-CD and l-AlaC4 Lac, and buffer pH, were systematically examined in order to optimize the chiral separation of each NSAID. It was observed that the addition of the AAIL into the BGE improved both resolution and efficiency significantly. After optimization of separation conditions, baseline separation (Rs >1.5) of five of the analytes was achieved in less than 11 min, while the resolution of ibuprofen and flurbiprofen was approximately 1.2. The optimized enantioseparation conditions for all analytes involve a BGE of 5 mM sodium acetate/acetic acid (pH 5.0), an applied voltage of 30 kV, and a temperature of 20°C. In addition, the results obtained by computing the %-RSD values of the EOF and the two enantiomer peaks, demonstrated excellent run-to-run, batch-to-batch, and day-to-day reproducibilities. PMID:26080944

  17. Model Studies on the Antioxidative Effect of Polyphenols in Thermally Treated D-Glucose/L-Alanine Solutions with Added Metal Ions.

    PubMed

    Wilker, Daniel; Heinrich, Anna B; Kroh, Lothar W

    2015-12-30

    The influence of different polyphenolic compounds (PPs) on the Maillard reaction in a d-glucose/l-alanine model system with or without metal ions was studied under various reaction conditions. At temperatures up to 100 °C the PPs showed pro-oxidative effects due to their reducing effects on metal ions. This can be explained by a combined redox cycling mechanism of metals and PPs that promotes oxidation in the Maillard reaction. The antioxidative capacities of the PPs were measured with three different assays and correlated directly with their pro-oxidative effects on d-glucosone formation. The degree of the pro-oxidative effect depended not only on the PPs' reducing potential and their antioxidative ability but also on their concentration, the temperature, and the pH value of the model system. At low pH values and temperatures, the PPs were more stable and therefore showed an increased pro-oxidative tendency. In contrast, some of the used PPs were almost completely degraded at temperatures of 130 °C, and the formed polymers were able to complex metal ions. In the absence of these catalyzing ions, the oxidation ratio of d-glucose to d-glucosone was decreased. PMID:26634406

  18. Remarkable regioisomer control in the hydrogel formation from a two-component mixture of pyridine-end oligo(p-phenylenevinylene)s and N-decanoyl-L-alanine.

    PubMed

    Bhattacharjee, Subham; Datta, Sougata; Bhattacharya, Santanu

    2013-12-01

    N-Decanoyl-L-alanine (DA) was mixed with either colorless 4,4'-bipyridine (BP) or various derivatives such as chromogenic oligo(p-phenylenevinylene) (OPV) functionalized with isomeric pyridine termini in specific molar ratios. This mixtures form salt-type gels in a water/ethanol (2:1, v/v) mixture. The gelation properties of these two-component mixtures could be modulated by variation of the position of the ''N'' atom of the end pyridyl groups in OPVs. The presence of acid-base interactions in the self-assembly of these two-component systems leading to gelation was probed in detail by using stoichiometry-dependent UV/Vis and FTIR spectroscopy. Furthermore, temperature-dependent UV/Vis and fluorescence spectroscopy clearly demonstrated a J-type aggregation mode of these gelator molecules during the sol-to-gel transition process. Morphological features and the arrangement of the molecules in the gels were examined by using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) techniques. Calculation of the length of each molecular system by energy minimization in its extended conformation and comparison with the XRD patterns revealed that this class of gelator molecules adopts lamellar organizations. Rheological properties of these two-component systems provided clear evidence that the flow behavior could be modulated by varying the acid/amine ratio. Polarized optical microscopy (POM), differential scanning calorimetry (DSC), and XRD results revealed that the solid-phase behavior of such two-component mixtures (acid/base=2:1) varied significantly upon changing the proton-acceptor part from BP to OPV. Interestingly, the XRD pattern of these acid/base mixtures after annealing at their associated isotropic temperature was significantly different from that of their xerogels. PMID:24194380

  19. Analysis of β-N-methylamino-L-alanine (BMAA) in spirulina-containing supplements by liquid chromatography-tandem mass spectrometry

    PubMed Central

    2014-01-01

    Over the last decade the amino acid beta-N-methylamino-L-alanine (BMAA) has come under intense scrutiny. International laboratory and epidemiological research continues to support the hypothesis that environmental exposure to BMAA (e.g., through dietary practices, water supply) can promote the risk of various neurodegenerative diseases. A wide variety of cyanobacteria spp. have previously been reported to produce BMAA, with production levels dependent upon species, strain and environmental conditions. Since spirulina (Arthrospira spp.) is a member of the cyanobacteria phylum frequently consumed via dietary supplements, the presence of BMAA in such products may have public health implications. In the current work, we have analyzed ten spirulina-containing samples for the presence of BMAA; six pure spirulina samples from two separate raw materials suppliers, and four commercially-available multi-ingredient products containing 1.45 g of spirulina per 8.5 g serving. Because of controversy surrounding the measurement of BMAA, we have used two complementary liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods: one based on reversed phase LC (RPLC) with derivatization and the other based on hydrophilic interaction LC (HILIC). Potential matrix effects were corrected for by internal standardization using a stable isotope labeled BMAA standard. BMAA was not detected at low limits of detection (80 ng/g dry weight) in any of these product samples. Although these results are reassuring, BMAA analyses should be conducted on a wider sample selection and, perhaps, as part of ongoing spirulina production quality control testing and specifications. PMID:25120905

  20. Systematic detection of BMAA (β-N-methylamino-l-alanine) and DAB (2,4-diaminobutyric acid) in mollusks collected in shellfish production areas along the French coasts.

    PubMed

    Réveillon, Damien; Séchet, Véronique; Hess, Philipp; Amzil, Zouher

    2016-02-01

    The neurotoxin β-N-methylamino-l-alanine (BMAA) is naturally present in some microalgal species in the marine environment. The accumulation of BMAA has widely been observed in filter-feeding bivalves that are known to consume primary producers constituting the base of complex aquatic food webs. This study was performed to assess the occurrence of BMAA and isomers in mollusks collected from nine representative shellfish production areas located on the three French coasts (Channel, Atlantic and Mediterranean sites). The use of a highly selective and sensitive HILIC-MS/MS method, with D5DAB as internal standard, revealed the systematic detection of BMAA and DAB, in concentrations ranging from 0.20 to 6.7 μg g(-1) dry weight of digestive gland tissues of mollusks. While we detected BMAA in four strains of diatoms in a previous study, here BMAA was only detected in one diatom species previously not investigated out of the 23 microalgal species examined (belonging to seven classes). The concentrations of BMAA and DAB in mussels and oysters were similar at different sampling locations and despite the high diversity of phytoplankton populations that mollusks feed on at these locations. Only small variations of BMAA and DAB levels were observed and these were not correlated to any of the phytoplankton species reported. Therefore, extensive research should be performed on both origin and metabolism of BMAA in shellfish. The levels observed in this study are similar to those found in other studies in France or elsewhere. A previous study had related such levels to a cluster of Amyotrophic Lateral Sclerosis in the South of France; hence the widespread occurrence of BMAA in shellfish from all coasts in France found in this study suggests the need for further epidemiological and toxicological studies to establish the levels that are relevant for a link between the consumption of BMAA-containing foodstuffs and neurodegenerative diseases. PMID:26615827

  1. β-N-methylamino-l-alanine causes neurological and pathological phenotypes mimicking Amyotrophic Lateral Sclerosis (ALS): the first step towards an experimental model for sporadic ALS.

    PubMed

    de Munck, Estefanía; Muñoz-Sáez, Emma; Miguel, Begoña G; Solas, M Teresa; Ojeda, Irene; Martínez, Ana; Gil, Carmen; Arahuetes, Rosa Ma

    2013-09-01

    β-N-methylamino-l-alanine (L-BMAA) is a neurotoxic amino acid that has been related to various neurodegenerative diseases. The aim of this work was to analyze the biotoxicity produced by L-BMAA in vivo in rats, trying to elucidate its physiopathological mechanisms and to search for analogies between the found effects and pathologies like Amyotrophic Lateral Sclerosis (ALS). Our data demonstrated that the neurotoxic effects in vivo were dosage-dependent. For evaluating the state of the animals, a neurological evaluation scale was developed as well as a set of functional tests. Ultrastructural cell analysis of spinal motoneurons has revealed alterations both in endoplasmic reticulum and mitochondria. Since GSK3β could play a role in some neuropathological processes, we analyzed the alterations occurring in GSK3β levels in L-BMAA treated rats, we have observed an increase in the active form of GSK3β levels in lumbar spinal cord and motor cerebral cortex. On the other hand, (TAR)-DNA-binding protein 43 (TDP-43) increased in L-BMAA treated animals. Our results indicated that N-acetylaspartate (NAA) declined in animals treated with L-BMAA, and the ratio of N-acetylaspartate/choline (NAA/Cho), N-acetylaspartate/creatine (NAA/Cr) and N-acetylaspartate/choline+creatine (NAA/Cho+Cr) tended to decrease in lumbar spinal cord and motor cortex. This project offers some encouraging results that could help establishing the progress in the development of an animal model of sporadic ALS and L-BMAA could be a useful tool for this purpose. PMID:23688553

  2. β-N-Methylamino-L-alanine exposure alters defense against oxidative stress in aquatic plants Lomariopsis lineata, Fontinalis antipyretica, Riccia fluitans and Taxiphyllum barbieri.

    PubMed

    Contardo-Jara, Valeska; Funke, Marc Sebastian; Peuthert, Anja; Pflugmacher, Stephan

    2013-02-01

    Four different aquatic plants, the Pteridophyte Lomariopsis lineata and the Bryophytes Fontinalis antipyretica, Riccia fluitans and Taxiphyllum barbieri, were tested for their capacity to absorb the neurotoxin β-N-Methylamino-L-alanine (BMAA) from water and thus their possible applicability in a "Green Liver System". After exposure to 10 and 100 μg L(-1) BMAA for 1, 3, 7 and 14 days exposure concentration of medium and tissue were analyzed by LC-MS/MS. The amount removed by the plants within only 1 day was equal to the biological degradation of 14 days. Comparing the "BMAA-removal" capacity of the 4 tested aquatic plants R. fluitans, L. lineata and T. barbieri turned out to be most effective in cleaning the water from this cyanobacterial toxin by up to 97% within 14 days. Activity of the antioxidant enzymes peroxidase (POD) and catalase (CAT), as well as biotransformation enzyme glutathione S-transferase (GST) was compared between exposed and control plants to determine possible harmful effects induced by BMAA. Whereas the Bryophytes displayed increased POD activity and subsequent adaptation when exposed to the lower concentration, as well as partly inhibited antioxidant response at the higher applied BMAA concentration, the Pteridophyte L. lineata reacted with increased POD activity during the whole experiment and increased GST activity after longer exposure for 14 days. To give a recommendation of the suitability of an aquatic plant to be used for sustainable phytoremediation of contaminated water, testing of removal capacity of specific contaminants as well as studying general physiological parameters giving hint on survivability in such environments has to be combined. PMID:23177931

  3. Analysis of β-N-methylamino-L-alanine (BMAA) in spirulina-containing supplements by liquid chromatography-tandem mass spectrometry.

    PubMed

    McCarron, Pearse; Logan, Alan C; Giddings, Sabrina D; Quilliam, Michael A

    2014-01-01

    Over the last decade the amino acid beta-N-methylamino-L-alanine (BMAA) has come under intense scrutiny. International laboratory and epidemiological research continues to support the hypothesis that environmental exposure to BMAA (e.g., through dietary practices, water supply) can promote the risk of various neurodegenerative diseases. A wide variety of cyanobacteria spp. have previously been reported to produce BMAA, with production levels dependent upon species, strain and environmental conditions. Since spirulina (Arthrospira spp.) is a member of the cyanobacteria phylum frequently consumed via dietary supplements, the presence of BMAA in such products may have public health implications. In the current work, we have analyzed ten spirulina-containing samples for the presence of BMAA; six pure spirulina samples from two separate raw materials suppliers, and four commercially-available multi-ingredient products containing 1.45 g of spirulina per 8.5 g serving. Because of controversy surrounding the measurement of BMAA, we have used two complementary liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods: one based on reversed phase LC (RPLC) with derivatization and the other based on hydrophilic interaction LC (HILIC). Potential matrix effects were corrected for by internal standardization using a stable isotope labeled BMAA standard. BMAA was not detected at low limits of detection (80 ng/g dry weight) in any of these product samples. Although these results are reassuring, BMAA analyses should be conducted on a wider sample selection and, perhaps, as part of ongoing spirulina production quality control testing and specifications. PMID:25120905

  4. ALS-linked SOD1 in glial cells enhances ß-N-Methylamino L-Alanine (BMAA)-induced toxicity in Drosophila

    PubMed Central

    Islam, Rafique; Zhang, Bing

    2012-01-01

    Environmental factors have been implicated in the etiology of a number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). However, the role of environmental agents in ALS remains poorly understood. To this end, we used transgenic fruit flies (Drosophila melanogaster) to explore the interaction between mutant superoxide dismutase 1 (SOD1) and chemicals such as ß-N-methylamino L-alanine (BMAA), the herbicide agent paraquat, and superoxide species. We expressed ALS-linked human SOD1 (hSOD1A4V, and hSOD1G85R), hSOD1wt as well as the Drosophila native SOD1 (dSOD1) in motoneurons (MNs) or in glial cells alone and simultaneously in both types of cells. We then examined the effect of BMAA (3 mM), paraquat (20 mM), and hydrogen peroxide (H2O2, 1%) on the lifespan of SOD1-expressing flies. Our data show that glial expression of mutant and wild type hSOD1s reduces the ability of flies to climb. Further, we show that while all three chemicals significantly shorten the lifespan of flies, mutant SOD1 does not have a significant additional effect on the lifespan of flies fed on paraquat, but further shortens the lifespan of flies fed on H2O2. Finally, we show that BMAA shows a dramatic cell-type specific effect with mutant SOD1. Flies with expression of mutant hSOD1 in MNs survived longer on BMAA compared to control flies. In contrast, BMAA significantly shortened the lifespan of flies expressing mutant hSOD1 in glia. Consistent with a neuronal protection role, flies expressing these mutant hSOD1s in both MNs and glia also lived longer. Hence, our studies reveal a synergistic effect of mutant SOD1 with H2O2 and novel roles for mutant hSOD1s in neurons to reduce BMAA toxicity and in glia to enhance the toxicity of BMAA in flies. PMID:24627764

  5. Antiferromagnetic spin chain behavior and a transition to 3D magnetic order in Cu(D,L-alanine)2: Roles of H-bonds

    NASA Astrophysics Data System (ADS)

    Calvo, Rafael; Sartoris, Rosana P.; Calvo, Hernán L.; Chagas, Edson F.; Rapp, Raul E.

    2016-05-01

    We study the spin chain behavior, a transition to 3D magnetic order and the magnitudes of the exchange interactions for the metal-amino acid complex Cu(D,L-alanine)2•H2O, a model compound to investigate exchange couplings supported by chemical paths characteristic of biomolecules. Thermal and magnetic data were obtained as a function of temperature (T) and magnetic field (B0). The magnetic contribution to the specific heat, measured between 0.48 and 30 K, displays above 1.8 K a 1D spin-chain behavior that can be fitted with an intrachain antiferromagnetic (AFM) exchange coupling constant 2J0=(-2.12±0.08) cm-1 (defined as ℋex(i,i+1) = -2J0SiṡSi+1), between neighbor coppers at 4.49 Å along chains connected by non-covalent and H-bonds. We also observe a narrow specific heat peak at 0.89 K indicating a phase transition to a 3D magnetically ordered phase. Magnetization curves at fixed T = 2, 4 and 7 K with B0 between 0 and 9 T, and at T between 2 and 300 K with several fixed values of B0 were globally fitted by an intrachain AFM exchange coupling constant 2J0=(-2.27±0.02) cm-1 and g = 2.091±0.005. Interchain interactions J1 between coppers in neighbor chains connected through long chemical paths with total length of 9.51 Å cannot be estimated from magnetization curves. However, observation of the phase transition in the specific heat data allows estimating the range 0.1≤|2J1|≤0.4 cm-1, covering the predictions of various approximations. We analyze the magnitudes of 2J0 and 2J1 in terms of the structure of the corresponding chemical paths. The main contribution in supporting the intrachain interaction is assigned to H-bonds while the interchain interactions are supported by paths containing H-bonds and carboxylate bridges, with the role of the H-bonds being predominant. We compare the obtained intrachain coupling with studies of compounds showing similar behavior and discuss the validity of the approximations allowing to calculate the interchain

  6. Dietary protein reduction in sheep and goats: different effects on L-alanine and L-leucine transport across the brush-border membrane of jejunal enterocytes.

    PubMed

    Schröder, B; Schöneberger, M; Rodehutscord, M; Pfeffer, E; Breves, G

    2003-08-01

    It was the aim of this study to examine the potential regulatory effects of a long-term low dietary protein supply on the transport capacity of the jejunal brush-border membrane for amino acids. For this purpose, we used the neutral amino acids L-alanine (representative for nonessential amino acids) and L-leucine (representative for essential amino acids) as model substances. Ten sheep lambs, 8 weeks of age and 19-27 kg body weight, were allotted to two dietary regimes with either adequate or reduced protein supply which was achieved by 17.9% and 9.7% of crude protein in the concentrated feed, respectively. The feeding periods were 4-6 weeks in length. Similarly, eight goat kids of 5-7 weeks of age and 8-14 kg body weight were allotted to either adequate (crude protein 20.1%, feeding period 9-12 weeks) or reduced protein supply (10.1%, feeding period 17-18 weeks). Dietary protein reduction in lambs caused a significant body weight loss of 0.6 +/- 0.7 kg, whereas the body weight in control animals increased by 1.9 +/- 0.7 kg (P<0.05). Plasma urea concentrations decreased significantly by 60% (low protein 2.3 +/- 0.1 versus control 5.7 +/- 0.2 mmol l(-1), P<0.001). In kids, reduction of dietary protein intake led to significant decreases of the daily weight gain by 48% from 181 +/- 8 g to 94 +/- 3 g (P<0.001) and daily dry matter intake by 27% from 568 +/- 13 g to 417 +/- 6 g (P<0.01). Respective urea concentrations in plasma were reduced by 77% from 5.2 +/- 0.4 to 1.2 +/- 0.2 mmol l(-1) (P<0.01). Kinetic analyses of the initial rates of alanine uptake into isolated jejunal brush-border membrane vesicles from sheep and goats as affected by low dietary protein supply yielded that the apparent Km was neither significantly different between the species nor significantly affected by the feeding regime thus ranging between 0.12 and 0.16 mmol.l(-1). Reduction of dietary protein, however, resulted in significantly decreased Vmax values of the transport system by 25

  7. Quantum yields of decomposition and homo-dimerization of solid L-alanine induced by 7.2 eV Vacuum ultraviolet light irradiation: an estimate of the half-life of L-alanine on the surface of space objects.

    PubMed

    Izumi, Yudai; Nakagawa, Kazumichi

    2011-08-01

    One of the leading hypotheses regarding the origin of prebiotic molecules on primitive Earth is that they formed from inorganic molecules in extraterrestrial environments and were delivered by meteorites, space dust and comets. To evaluate the availability of extraterrestrial amino acids, it is necessary to examine their decomposition and oligomerization rates as induced by extraterrestrial energy sources, such as vacuum ultraviolet (VUV) and X-ray photons and high energy particles. This paper reports the quantum yields of decomposition ((8.2 ± 0.7) × 10(-2) photon(-1)) and homo-dimerization ((1.2 ± 0.3) × 10(-3) photon(-1)) and decomposition of the dimer (0.24 ± 0.06 photon(-1)) of solid L-alanine (Ala) induced by VUV light with an energy of 7.2 eV. Using these quantum yields, the half-life of L-Ala on the surface of a space object in the present earth orbit was estimated to be about 52 days, even when only photons with an energy of 7.2 eV emitted from the present Sun were considered. The actual half-life of solid L-Ala on the surface of a space object orbit around the present day Earth would certainly be much shorter than our estimate, because of the added effect of photons and particles of other energies. Thus, we propose that L-Ala needs to be shielded from solar VUV in protected environments, such as the interior of a meteorite, within a time scale of days after synthesis to ensure its arrival on the primitive Earth. PMID:21461647

  8. Energetics of the molecular interactions of L-alanine and L-serine with xylitol, D-sorbitol, and D-mannitol in aqueous solutions at 298.15 K

    NASA Astrophysics Data System (ADS)

    Mezhevoi, I. N.; Badelin, V. G.

    2013-04-01

    Integral enthalpies of dissolution Δsol H m of L-alanine and L-serine are measured via the calorimetry of dissolution in aqueous solutions of xylitol, D-sorbitol, and D-mannitol. Standard enthalpies of dissolution (Δsol H ○) and the transfer (Δtr H ○) of amino acids from water to binary solvent are calculated from the experimental data. Using the McMillan-Mayer theory, enthalpy coefficients of pairwise interactions h xy of amino acids with molecules of polyols are calculated that are negative. The obtained results are discussed within the theory of the prevalence of different types of interactions in mixed solutions and the effect of the structural features of interacting biomolecules on the thermochemical parameters of dissolution of amino acids.

  9. Improved detection of β-N-methylamino-L-alanine using N-hydroxysuccinimide ester of N-butylnicotinic acid for the localization of BMAA in blue mussels (Mytilus edulis).

    PubMed

    Andrýs, Rudolf; Zurita, Javier; Zguna, Nadezda; Verschueren, Klaas; De Borggraeve, Wim M; Ilag, Leopold L

    2015-05-01

    β-N-Methylamino-L-alanine (BMAA) is an important non-protein amino acid linked to neurodegenerative diseases, specifically amyotrophic lateral sclerosis (ALS). Because it can be transferred and bioaccumulated higher up the food chain, it poses significant public health concerns; thus, improved detection methods are of prime importance for the identification and management of these toxins. Here, we report the successful use of N-hydroxysuccinimide ester of N-butylnicotinic acid (C4-NA-NHS) for the efficient separation of BMAA from its isomers and higher sensitivity in detecting BMAA compared to the current method of choice using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AQC) derivatization. Implementation of this efficient method allowed localization of BMAA in the non-visceral tissues of blue mussels, suggesting that more efficient depuration may be required to remove this toxin prior to consumption. This is a crucial method in establishing the absence or presence of the neurotoxic amino acid BMAA in food, environmental or biomedical samples. PMID:25821115

  10. Occurrence and transfer of a cyanobacterial neurotoxin β-methylamino-L-alanine within the aquatic food webs of Gonghu Bay (Lake Taihu, China) to evaluate the potential human health risk.

    PubMed

    Jiao, Yiying; Chen, Qiankun; Chen, Xu; Wang, Xin; Liao, Xuewei; Jiang, Lijuan; Wu, Jun; Yang, Liuyan

    2014-01-15

    To evaluate the health risk of cyanobacterial blooms, the levels of the neurotoxic non-protein amino acid, β-methylamino-l-alanine (BMAA), was investigated in the freshwater ecosystem of Gonghu Bay in Lake Taihu. Lake Taihu is a large shallow lake contaminated by the excessive growth of Microcystis. Since BMAA has been measured in diverse cyanobacteria in different ecosystems all over the world, BMAA might also occur in Gonghu Bay. A long term monitoring of BMAA was done by HPLC-MS/MS method in cyanobacteria, mollusks, crustaceans and various fish species at different trophic levels of ecosystems in Gonghu Bay, some of which were popularly consumed by humans. Over the entire sampling period, the total average BMAA content in cyanobacteria, mollusks, crustaceans and various fish species were 4.12, 3.21, 3.76, and 6.05μgBMAA/g dry weight, respectively. Thus, BMAA could be biosynthesized by the blooming cyanobacteria in which Microcystis dominates. This toxin can be transferred through ascending trophic levels of the aquatic ecosystem in Gonghu Bay. The bioaccumulation of BMAA was observed in aquatic animals, especially in some fish species during the bloom-outbreak and bloom-decline phases. The discovery of the chronic neurotoxin BMAA in a large limnic ecosystem together with possible pathways of accumulation within major food webs deserves serious consideration due to its potential long-term risk to human health. PMID:24055662

  11. Effect of L-tryptophan injection in rats on some enzymes of amino acid metabolism in liver. I. In vitro studies of the effect of L-tryptophan and its metabolites on the extramitochondrial L-alanine: 2-ketoglutaric aminotransferase.

    PubMed

    Katsos, A; Philippidis, H; Palaiologos, G

    1981-02-01

    Fed and fasted rats were injected with L-tryptophan (12.5 mg/100 g body weight) and the specific activities of L-glutamic: NAD oxidoreductase (deaminating) (EC 1.4.1.2) (GDH), L-aspartic-2-ketoglutaric aminotransferase (EC 2.6.1.1) (GOT) and L-alanine-2-ketoglutaric aminotransferase (EC 2.6.1.2) (GPT) from hepatic mitochondria and cytosol were compared. L-tryptophan results in a decrease of mitochondrial GDH activity by 22% and of cytosolic GPT and GOT by 42% and 38% respectively in the liver of fasted rats. Xanthurenate is a potent inhibitor of purified extramitochondrial GPT, whereas anthranilate and quinolinate are less potent inhibitors. L-tryptophan, 5-OH-tryptophan and indole exert a slight inhibition. Kynurenine, 5-OH-tryptamine, tryptamine, picolinic acid, nicotinic acid and indoloacetic acid do not show any inhibition of GPT. It is suggested that L-tryptophan injection inhibits extramitochondrial GPT by its transformation to xanthurenate and anthranilate. PMID:7227974

  12. Quality measures of imaging mass spectrometry aids in revealing long-term striatal protein changes induced by neonatal exposure to the cyanobacterial toxin β-N-methylamino-L-alanine (BMAA).

    PubMed

    Karlsson, Oskar; Bergquist, Jonas; Andersson, Malin

    2014-01-01

    Many pathological processes are not directly correlated to dramatic alterations in protein levels. The changes in local concentrations of important proteins in a subset of cells or at specific loci are likely to play a significant role in disease etiologies, but the precise location might be unknown, or the concentration might be too small to be adequately sampled for traditional proteomic techniques. Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) is a unique analytical method that combines analysis of multiple molecular species and of their distribution in a single platform. As reproducibility is essential for successful biomarker discovery, it is important to systematically assess data quality in biologically relevant MALDI IMS experiments. In the present study, we applied four simple tools to study the reproducibility for individual sections, within-group variation, and between-group variation of data acquired from brain sections of 21 animals divided into three treatment groups. We also characterized protein changes in distinct regions of the striatum from six-month-old rats treated neonatally (postnatal days 9-10) with the cyanobacterial toxin β-N-methylamino-l-alanine (BMAA), which has been implicated in neurodegenerative diseases. The results showed that optimized experimental settings can yield high-quality MALDI IMS data with relatively low variation (14% to 15% coefficient of variance) that allow the characterization of subtle changes in protein expression in various subregions of the brain. This was further exemplified by the dose-dependent reduction of myelin basic protein in the caudate putamen and the nucleus accumbens of adult rats neonatally treated with BMAA (150 and 460 mg/kg). The reduction in myelin basic protein was confirmed through immunohistochemistry and indicates that developmental exposure to BMAA may induce structural effects on axonal growth and/or directly on the proliferation of oligodendrocytes

  13. Quality Measures of Imaging Mass Spectrometry Aids in Revealing Long-term Striatal Protein Changes Induced by Neonatal Exposure to the Cyanobacterial Toxin β-N-methylamino-L-alanine (BMAA)*

    PubMed Central

    Karlsson, Oskar; Bergquist, Jonas; Andersson, Malin

    2014-01-01

    Many pathological processes are not directly correlated to dramatic alterations in protein levels. The changes in local concentrations of important proteins in a subset of cells or at specific loci are likely to play a significant role in disease etiologies, but the precise location might be unknown, or the concentration might be too small to be adequately sampled for traditional proteomic techniques. Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) is a unique analytical method that combines analysis of multiple molecular species and of their distribution in a single platform. As reproducibility is essential for successful biomarker discovery, it is important to systematically assess data quality in biologically relevant MALDI IMS experiments. In the present study, we applied four simple tools to study the reproducibility for individual sections, within-group variation, and between-group variation of data acquired from brain sections of 21 animals divided into three treatment groups. We also characterized protein changes in distinct regions of the striatum from six-month-old rats treated neonatally (postnatal days 9–10) with the cyanobacterial toxin β-N-methylamino-l-alanine (BMAA), which has been implicated in neurodegenerative diseases. The results showed that optimized experimental settings can yield high-quality MALDI IMS data with relatively low variation (14% to 15% coefficient of variance) that allow the characterization of subtle changes in protein expression in various subregions of the brain. This was further exemplified by the dose-dependent reduction of myelin basic protein in the caudate putamen and the nucleus accumbens of adult rats neonatally treated with BMAA (150 and 460 mg/kg). The reduction in myelin basic protein was confirmed through immunohistochemistry and indicates that developmental exposure to BMAA may induce structural effects on axonal growth and/or directly on the proliferation of oligodendrocytes

  14. Determination of β-N-methylamino-L-alanine, N-(2-aminoethyl)glycine, and 2,4-diaminobutyric acid in Food Products Containing Cyanobacteria by Ultra-Performance Liquid Chromatography and Tandem Mass Spectrometry: Single-Laboratory Validation.

    PubMed

    Glover, W Broc; Baker, Teesha C; Murch, Susan J; Brown, Paula N

    2015-01-01

    A single-laboratory validation study was completed for the determination of β-N-methylamino-L-alanine (BMAA), N-(2-aminoethyl)glycine (AEG), and 2,4-diaminobutyric acid (DAB) in bulk natural health product supplements purchased from a health food store in Canada. BMAA and its isomers were extracted with acid hydrolysis to free analytes from protein association. Acid was removed with the residue evaporated to dryness and reconstituted with derivatization using 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate (AccQ-Fluor). Chromatographic separation and detection were achieved using RP ultra-performance LC coupled to a tandem mass spectrometer operated in multiple reaction monitoring mode. Data from biological samples were evaluated for precision and accuracy across different days to ensure repeatability. Accuracy was assessed by spike recovery of biological samples using varying amino acid concentrations, with an average recovery across all samples of 108.6%. The analytical range was found to be 764-0.746 ng/mL prior to derivatization, thereby providing a linear range compatible with potentially widely varying analyte concentrations in commercial health food products. Both the U. S. Food and Drug Administration (FDA) and U. S. Pharmacopeia definitions were evaluated for determining method limits, with the FDA approach found to be most suitable having an LOD of 0.187 ng/mL and LLOQ of 0.746 ng/mL. BMAA in the collected specimens was detected at concentrations lower than 1 μg/g, while AEG and DAB were found at concentrations as high as 100 μg/g. Finding these analytes, even at low concentrations, has potential public health significance and suggests a need to screen such products prior to distribution. The method described provides a rapid, accurate, and precise method to facilitate that screening process. PMID:26651568

  15. Transfer Partial Molar Isentropic Compressibilities of ( l-Alanine/ l-Glutamine/Glycylglycine) from Water to 0.512 {mol} \\cdot {kg}^{-1} Aqueous {KNO}3/0.512 {mol} \\cdot {kg}^{-1} Aqueous {K}2{SO}4 Solutions Between 298.15 K and 323.15 K

    NASA Astrophysics Data System (ADS)

    Riyazuddeen; Gazal, Umaima

    2013-03-01

    Speeds of sound of ( l-alanine/ l-glutamine/glycylglycine + 0.512 {mol}\\cdot {kg}^{-1} aqueous {KNO}3/0.512 {mol}\\cdot {kg}^{-1} aqueous {K}2{SO}4) systems have been measured for several molal concentrations of amino acid/peptide at different temperatures: T = (298.15 to 323.15) K. Using the speed-of-sound and density data, the parameters, partial molar isentropic compressibilities φ _{kappa }0 and transfer partial molar isentropic compressibilities Δ _{tr} φ _{kappa }0, have been computed. The trends of variation of φ _{kappa }0 and Δ _{tr} φ _{kappa }0 with changes in molal concentration of the solute and temperature have been discussed in terms of zwitterion-ion, zwitterion-water dipole, ion-water dipole, and ion-ion interactions operative in the systems.

  16. Ruthenium-nitrosyl complexes with glycine, L-alanine, L-valine, L-proline, D-proline, L-serine, L-threonine, and L-tyrosine: synthesis, X-ray diffraction structures, spectroscopic and electrochemical properties, and antiproliferative activity.

    PubMed

    Rathgeb, Anna; Böhm, Andreas; Novak, Maria S; Gavriluta, Anatolie; Dömötör, Orsolya; Tommasino, Jean Bernard; Enyedy, Eva A; Shova, Sergiu; Meier, Samuel; Jakupec, Michael A; Luneau, Dominique; Arion, Vladimir B

    2014-03-01

    The reactions of [Ru(NO)Cl5](2-) with glycine (Gly), L-alanine (L-Ala), L-valine (L-Val), L-proline (L-Pro), D-proline (D-Pro), L-serine (L-Ser), L-threonine (L-Thr), and L-tyrosine (L-Tyr) in n-butanol or n-propanol afforded eight new complexes (1-8) of the general formula [RuCl3(AA-H)(NO)](-), where AA = Gly, L-Ala, L-Val, L-Pro, D-Pro, L-Ser, L-Thr, and L-Tyr, respectively. The compounds were characterized by elemental analysis, electrospray ionization mass spectrometry (ESI-MS), (1)H NMR, UV-visible and ATR IR spectroscopy, cyclic voltammetry, and X-ray crystallography. X-ray crystallography studies have revealed that in all cases the same isomer type (from three theoretically possible) was isolated, namely mer(Cl),trans(NO,O)-[RuCl3(AA-H)(NO)], as was also recently reported for osmium analogues with Gly, L-Pro, and D-Pro (see Z. Anorg. Allg. Chem. 2013, 639, 1590-1597). Compounds 1, 4, 5, and 8 were investigated by ESI-MS with regard to their stability in aqueous solution and reactivity toward sodium ascorbate. In addition, cell culture experiments in three human cancer cell lines, namely, A549 (nonsmall cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon carcinoma), were performed, and the results are discussed in conjunction with the lipophilicity of compounds. PMID:24555845

  17. Ruthenium-Nitrosyl Complexes with Glycine, l-Alanine, l-Valine, l-Proline, d-Proline, l-Serine, l-Threonine, and l-Tyrosine: Synthesis, X-ray Diffraction Structures, Spectroscopic and Electrochemical Properties, and Antiproliferative Activity

    PubMed Central

    2014-01-01

    The reactions of [Ru(NO)Cl5]2– with glycine (Gly), l-alanine (l-Ala), l-valine (l-Val), l-proline (l-Pro), d-proline (d-Pro), l-serine (l-Ser), l-threonine (l-Thr), and l-tyrosine (l-Tyr) in n-butanol or n-propanol afforded eight new complexes (1–8) of the general formula [RuCl3(AA–H)(NO)]−, where AA = Gly, l-Ala, l-Val, l-Pro, d-Pro, l-Ser, l-Thr, and l-Tyr, respectively. The compounds were characterized by elemental analysis, electrospray ionization mass spectrometry (ESI-MS), 1H NMR, UV–visible and ATR IR spectroscopy, cyclic voltammetry, and X-ray crystallography. X-ray crystallography studies have revealed that in all cases the same isomer type (from three theoretically possible) was isolated, namely mer(Cl),trans(NO,O)-[RuCl3(AA–H)(NO)], as was also recently reported for osmium analogues with Gly, l-Pro, and d-Pro (see Z. Anorg. Allg. Chem.2013, 639, 1590–1597). Compounds 1, 4, 5, and 8 were investigated by ESI-MS with regard to their stability in aqueous solution and reactivity toward sodium ascorbate. In addition, cell culture experiments in three human cancer cell lines, namely, A549 (nonsmall cell lung carcinoma), CH1 (ovarian carcinoma), and SW480 (colon carcinoma), were performed, and the results are discussed in conjunction with the lipophilicity of compounds. PMID:24555845

  18. Chiral effects on helicity studied via the energy landscape of short (d, l)-alanine peptides

    NASA Astrophysics Data System (ADS)

    Neelamraju, Sridhar; Oakley, Mark T.; Johnston, Roy L.

    2015-10-01

    The homochirality of natural amino acids facilitates the formation of regular secondary structures such as α-helices and β-sheets. Here, we study the relationship between chirality and backbone structure for the example of hexa-alanine. The most stable stereoisomers are identified through global optimisation. Further, the energy landscape, a database of connected low-energy local minima and transition points, is constructed for various neutral and zwitterionic stereoisomers of hexa-alanine. Three order parameters for partial helicity are applied and metric disconnectivity graphs are presented with partial helicity as a metric. We also apply the Zimm-Bragg model to derive average partial helicities for Ace-(l-Ala)6-NHMe, Ace-(d-Ala-l-Ala)3-NHMe, and Ace-(l-Ala)3-(d-Ala)3-NHMe from the database of local minima and compare with previous studies.

  19. Structural and catalytic properties of L-alanine dehydrogenase from Bacillus cereus.

    PubMed

    Porumb, H; Vancea, D; Mureşan, L; Presecan, E; Lascu, I; Petrescu, I; Porumb, T; Pop, R; Bârzu, O

    1987-04-01

    Alanine dehydrogenase from Bacillus cereus, a non-allosteric enzyme composed of six identical subunits, was purified to homogeneity by chromatography on blue-Sepharose and Sepharose 6B-CL. Like other pyridine-linked dehydrogenases, alanine dehydrogenase is inhibited by Cibacron blue, competitively with respect to NADH and noncompetitively with respect to pyruvate. The enzyme was inactivated by 0.1 M glycine/HCl (pH 2) and reactivated by 0.1 M phosphate (pH 8) supplemented with NAD+ or NADH. The reactivation was characterized by sigmoidal kinetics indicating a complex mechanism involving rate-limiting folding and association steps. Cibacron blue interfered with renaturation, presumably by competition with NADH. Chromatography on Sepharose 6B-CL of the partially renatured alanine dehydrogenase led to the separation of several intermediates, but only the hexamer was characterized by enzymatic activity. By immobilization on Sepharose 4B, alanine dehydrogenase from B. cereus retained 66% of the specific activity of the soluble enzyme. After denaturation of immobilized alanine dehydrogenase with 7 M urea, 37% of the initial protein was still bound to Sepharose, indicating that on the average the hexamer was attached to the matrix via, at most, two subunits. The ability of the denatured, immobilized subunits to pick up subunits from solution shows their capacity to fold back to the native conformation after urea treatment. The formation of "hybrids" between subunits of enzyme from B. cereus and Bacillus subtilis demonstrates the close resemblance of the tertiary and quaternary structures of alanine dehydrogenases from these species. PMID:3104322

  20. Analysis of β-N-methylamino-L-alanine (L-BMAA) neurotoxicity in rat cerebellum.

    PubMed

    Muñoz-Sáez, Emma; de Munck García, Estefanía; Arahuetes Portero, Rosa Ma; Martínez, Ana; Solas Alados, Ma Teresa; Miguel, Begoña Gómez

    2015-05-01

    Due to its structural similarity to glutamate, L-BMAA could be a trigger for neurodegenerative disorders caused by changes in the intracellular medium, such as increased oxidative stress, mitochondrial dysfunction, impaired synthesis and protein degradation and the imbalance of some enzymes. It is also important to note that according to some published studies, L-BMAA will be incorporated into proteins, causing the alteration of protein homeostasis. Neuronal cells are particularly prone to suffer damage in protein folding and protein accumulation because they have not performed cellular division. In this work, we will analyse the cerebellum impairment triggered by L-BMAA in treated rats. The cerebellum is one of the most important subcortical motor centres and ensures that movements are performed with spatial and temporal precision. Cerebellum damage caused by L-BMAA can contribute to motor impairment. To characterize this neurodegenerative pathology, we first carried out ultrastructure analysis in Purkinje cells showing altered mitochondria, endoplasmic reticulum (ER), and Golgi apparatus (GA). We then performed biochemical assays of GSK3 and TDP-43 in cerebellum, obtaining an increase of both biomarkers with L-BMAA treatment and, finally, performed autophagy studies that revealed a higher level of these processes after treatment. This work provides evidence of cerebellar damage in rats after treatment with L-BMAA. Three months after treatment, affected rats cannot restore the normal functions of the cerebellum regarding motor coordination and postural control. PMID:25898785

  1. Excitotoxic potential of the cyanotoxin β-methyl-amino-L-alanine (BMAA) in primary human neurons.

    PubMed

    Chiu, Alexander S; Gehringer, Michelle M; Braidy, Nady; Guillemin, Gilles J; Welch, Jeffrey H; Neilan, Brett A

    2012-11-01

    The toxicity of the cyanobacterial modified amino acid, BMAA, has been described in rat, mouse and leech neurons. Particular emphasis has been placed on the potential ability of BMAA to induce neuronal damage via excitotoxic mechanisms. Here we present data indicating that the effects observed on lower organisms are also evident in a human model. Our data indicates that BMAA induces increased intracellular Ca²⁺ influx, DNA damage, mitochondrial activity, lactate dehydrogenase (LDH) release and generation of reactive oxygen species (ROS). The amelioration of LDH release in the presence of the N-methyl-D-aspartate (NMDA) receptor antagonist MK801 indicates that the neurotoxic effects of BMAA are mediated via NMDA receptor activation. Additionally, we have shown that BMAA induces the expression of neuronal nitric oxide synthase (nNOS) and caspase-3 indicating that it can stimulate apoptosis in human neurons, presumably via activation of NMDA receptors. PMID:22885173

  2. Metabotropic glutamate receptor 1 mediates the electrophysiological and toxic actions of the cycad derivative beta-N-Methylamino-L-alanine on substantia nigra pars compacta DAergic neurons.

    PubMed

    Cucchiaroni, Maria Letizia; Viscomi, Maria Teresa; Bernardi, Giorgio; Molinari, Marco; Guatteo, Ezia; Mercuri, Nicola B

    2010-04-14

    Amyotrophic lateral sclerosis-Parkinson dementia complex (ALS-PDC) is a neurodegenerative disease with ALS, parkinsonism, and Alzheimer's symptoms that is prevalent in the Guam population. beta-N-Methylamino alanine (BMAA) has been proposed as the toxic agent damaging several neuronal types in ALS-PDC, including substantia nigra pars compacta dopaminergic (SNpc DAergic) neurons. BMAA is a mixed glutamate receptor agonist, but the specific pathways activated in DAergic neurons are not yet known. We combined electrophysiology, microfluorometry, and confocal microscopy analysis to monitor membrane potential/current, cytosolic calcium concentration ([Ca(2+)](i)) changes, cytochrome-c (cyt-c) immunoreactivity, and reactive oxygen species (ROS) production induced by BMAA. Rapid toxin applications caused reversible membrane depolarization/inward current and increase of firing rate and [Ca(2+)](i) in DAergic neurons. The inward current (I(BMAA)) was mainly mediated by activation of metabotropic glutamate receptor 1 (mGluR1), coupled to transient receptor potential (TRP) channels, and to a lesser extent, AMPA receptors. Indeed, mGluR1 (CPCCOEt) and TRP channels (SKF 96365; Ruthenium Red) antagonists reduced I(BMAA), and a small component of I(BMAA) was reduced by the AMPA receptor antagonist CNQX. Calcium accumulation was mediated by mGluR1 but not by AMPA receptors. Application of a low concentration of NMDA potentiated the BMAA-mediated calcium increase. Prolonged exposure to BMAA caused significant modifications of membrane properties, calcium overload, cell shrinkage, massive cyt-c release into the cytosol and ROS production. In SNpc GABAergic neurons, BMAA activated only AMPA receptors. Our study identifies the mGluR1-activated mechanism induced by BMAA that may cause the neuronal degeneration and parkinsonian symptoms seen in ALS-PDC. Moreover, environmental exposure to BMAA might possibly also contribute to idiopathic PD. PMID:20392940

  3. Validation of the analytical procedure for the determination of the neurotoxin β-N-methylamino-L-alanine in complex environmental samples.

    PubMed

    Combes, Audrey; El Abdellaoui, Saïda; Sarazin, Cédric; Vial, Jérome; Mejean, Annick; Ploux, Olivier; Pichon, Valérie

    2013-04-10

    The neurotoxic l-2-amino-3-methylaminopropionic acid (BMAA) was hypothesized to be involved in sporadic cases of amyotrophic lateral sclerosis (ALS). Studies highlighting a possible implication of environmental factors in the incidence of sporadic ALS have become more numerous over recent years. Over the past years, the most widely used method for quantifying BMAA was based on the derivatization of this polar and basic molecule with a fluorescent compound (6-aminoquinolonyl-N-hydroxysuccinimidyl, 6-AQC). This derivatization allows the retention of the conjugate by reversed-phase liquid chromatography and its detection by fluorescence. Nevertheless, recent findings have shown that this method applied to complex samples may cause false positive responses. We therefore developed an analytical procedure for the determination of underivatized BMAA at trace level in complex environmental matrices (river water, cyanobacteria and biofilm) using solid-phase extraction (SPE) based on mixed mode sorbent to concentrate and clean up real samples. Analyzes were performed by hydrophilic interaction chromatography (HILIC) coupled to electrospray ionization and tandem mass spectrometry used in multiple reaction monitoring scan mode. Analytical procedures were validated for the different natural samples using the total error approach. BMAA can be quantified by these reliable and highly selective analytical methods in a range of only a few ng mL(-1) in river water and a few ng mg(-1) dry weight in cyanobacteria and biofilm matrices. PMID:23522111

  4. UDP-N-Acetylmuramic Acid l-Alanine Ligase (MurC) Inhibition in a tolC Mutant Escherichia coli Strain Leads to Cell Death

    PubMed Central

    Humnabadkar, Vaishali; Prabhakar, K. R.; Narayan, Ashwini; Sharma, Sreevalli; Guptha, Supreeth; Manjrekar, Praveena; Chinnapattu, Murugan; Ramachandran, Vasanthi; Hameed, Shahul P.; Ravishankar, Sudha

    2014-01-01

    The Mur ligases play an essential role in the biosynthesis of bacterial peptidoglycan and hence are attractive antibacterial targets. A screen of the AstraZeneca compound library led to the identification of compound A, a pyrazolopyrimidine, as a potent inhibitor of Escherichia coli and Pseudomonas aeruginosa MurC. However, cellular activity against E. coli or P. aeruginosa was not observed. Compound A was active against efflux pump mutants of both strains. Experiments using an E. coli tolC mutant revealed accumulation of the MurC substrate and a decrease in the level of product upon treatment with compound A, indicating inhibition of MurC enzyme in these cells. Such a modulation was not observed in the E. coli wild-type cells. Further, overexpression of MurC in the E. coli tolC mutant led to an increase in the compound A MIC by ≥16-fold, establishing a correlation between MurC inhibition and cellular activity. In addition, estimation of the intracellular compound A level showed an accumulation of the compound over time in the tolC mutant strain. A significant compound A level was not detected in the wild-type E. coli strain even upon treatment with high concentrations of the compound. Therefore, the lack of MIC and absence of MurC inhibition in wild-type E. coli were possibly due to suboptimal compound concentration as a consequence of a high efflux level and/or poor permeativity of compound A. PMID:25114134

  5. Modified triglycine sulphate (TGS) single crystals for pyroelectric infrared detector applications

    NASA Technical Reports Server (NTRS)

    Banan, M.; Lal, R. B.; Batra, Ashok

    1992-01-01

    Effects of caesium and cerium, L-alanine, and caesium plus L-alanine impurities on ferroelectric and pyroelectric properties of TGS crystals are investigated. Dielectric constant and loss, pyroelectric coefficient, spontaneous polarization, and coercive field measurements of these modified crystals, as a function of temperature, are reported. Caesium and cerium did not affect the electrical properties of TGS crystals significantly, whereas L-alanine- and, especially, Cs + L-alanine-doped TGS crystals exhibited promising improvements in pyroelectric properties, up to 48 C, as compared to pure TGS crystals.

  6. Substrate Specificity of the Aspartate:Alanine Antiporter (AspT) of Tetragenococcus halophilus in Reconstituted Liposomes*

    PubMed Central

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-01-01

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of l-aspartate1− with l-alanine0. Although physiological functions of AspT were well studied, l-aspartate1−:l-alanine0 antiport mechanisms are still unsolved. Here we report that the binding sites of l-aspartate and l-alanine are independently present in AspT by means of the kinetic studies. We purified His6-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (Km = 0.35 ± 0.03 mm for l-aspartate, Km = 0.098 ± 0 mm for d-aspartate, Km = 26 ± 2 mm for l-alanine, Km = 3.3 ± 0.2 mm for d-alanine). Competitive inhibition by various amino acids of l-aspartate or l-alanine in self-exchange reactions revealed that l-cysteine selectively inhibited l-aspartate self-exchange but only weakly inhibited l-alanine self-exchange. Additionally, l-serine selectively inhibited l-alanine self-exchange but barely inhibited l-aspartate self-exchange. The aspartate analogs l-cysteine sulfinic acid, l-cysteic acid, and d-cysteic acid competitively and strongly inhibited l-aspartate self-exchange compared with l-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of l-aspartate and l-alanine are independently located in the substrate translocation pathway of AspT. PMID:21719707

  7. Substrate specificity of the aspartate:alanine antiporter (AspT) of Tetragenococcus halophilus in reconstituted liposomes.

    PubMed

    Sasahara, Ayako; Nanatani, Kei; Enomoto, Masaru; Kuwahara, Shigefumi; Abe, Keietsu

    2011-08-19

    The aspartate:alanine antiporter (AspT) of the lactic acid bacterium Tetragenococcus halophilus is a member of the aspartate:alanine exchanger (AAEx) transporter family. T. halophilus AspT catalyzes the electrogenic exchange of L-aspartate(1-) with L-alanine(0). Although physiological functions of AspT were well studied, L-aspartate(1-):L-alanine(0) antiport mechanisms are still unsolved. Here we report that the binding sites of L-aspartate and L-alanine are independently present in AspT by means of the kinetic studies. We purified His(6)-tagged T. halophilus AspT and characterized its kinetic properties when reconstituted in liposomes (K(m) = 0.35 ± 0.03 mm for L-aspartate, K(m) = 0.098 ± 0 mm for D-aspartate, K(m) = 26 ± 2 mm for L-alanine, K(m) = 3.3 ± 0.2 mm for D-alanine). Competitive inhibition by various amino acids of L-aspartate or L-alanine in self-exchange reactions revealed that L-cysteine selectively inhibited L-aspartate self-exchange but only weakly inhibited L-alanine self-exchange. Additionally, L-serine selectively inhibited L-alanine self-exchange but barely inhibited L-aspartate self-exchange. The aspartate analogs L-cysteine sulfinic acid, L-cysteic acid, and D-cysteic acid competitively and strongly inhibited L-aspartate self-exchange compared with L-alanine self-exchange. Taken together, these kinetic data suggest that the putative binding sites of L-aspartate and L-alanine are independently located in the substrate translocation pathway of AspT. PMID:21719707

  8. Functional differentiation of human jejunum and ileum: A comparison of the handling of glucose, peptides, and amino acids

    PubMed Central

    Silk, D. B. A.; Webb, Joan P. W.; Lane, Annette E.; Clark, M. L.; Dawson, A. M.

    1974-01-01

    The characteristics of glucose, glycine, L-alanine, and glycyl-L-alanine absorption from the jejunum and ileum have been compared in normal human subjects. A perfusion technique has been used, and correct positioning of the perfusion tube has been confirmed by measuring the differential jejunal and ileal handling of bicarbonate. Glucose and glycine were absorbed faster from the jejunum than from the ileum of all subjects studied, and L-alanine was absorbed faster from the jejunum than from the ileum in five out of six subjects studied. In contrast, the dipeptide glycyl-L-alanine was absorbed at comparable rates from the jejunum and ileum. Higher concentrations of free amino acids were detected in the luminal contents aspirated during the ileal dipeptide perfusions. These results emphasize the importance of oligopeptide transport in the absorption of protein digestion products, especially in the human ileum, and the practical implications of these findings are discussed. PMID:4852103

  9. Mathematical Model of Metabolism and Electrophysiology of Amino Acid and Glucose Stimulated Insulin Secretion: In Vitro Validation Using a β-Cell Line

    PubMed Central

    Salvucci, Manuela; Neufeld, Zoltan; Newsholme, Philip

    2013-01-01

    We integrated biological experimental data with mathematical modelling to gain insights into the role played by L-alanine in amino acid-stimulated insulin secretion (AASIS) and in D-glucose-stimulated insulin secretion (GSIS), details important to the understanding of complex β-cell metabolic coupling relationships. We present an ordinary differential equations (ODEs) based simplified kinetic model of core metabolic processes leading to ATP production (glycolysis, TCA cycle, L-alanine-specific reactions, respiratory chain, ATPase and proton leak) and Ca2+ handling (essential channels and pumps in the plasma membrane) in pancreatic β-cells and relate these to insulin secretion. Experimental work was performed using a clonal rat insulin-secreting cell line (BRIN-BD11) to measure the consumption or production of a range of important biochemical parameters (D-glucose, L-alanine, ATP, insulin secretion) and Ca2+ levels. These measurements were then used to validate the theoretical model and fine-tune the parameters. Mathematical modelling was used to predict L-lactate and L-glutamate concentrations following D-glucose and/or L-alanine challenge and Ca2+ levels upon stimulation with a non metabolizable L-alanine analogue. Experimental data and mathematical model simulations combined suggest that L-alanine produces a potent insulinotropic effect via both a stimulatory impact on β-cell metabolism and as a direct result of the membrane depolarization due to Ca2+ influx triggered by L-alanine/Na+ co-transport. Our simulations indicate that both high intracellular ATP and Ca2+ concentrations are required in order to develop full insulin secretory responses. The model confirmed that K+ATP channel independent mechanisms of stimulation of intracellular Ca2+ levels, via generation of mitochondrial coupling messengers, are essential for promotion of the full and sustained insulin secretion response in β-cells. PMID:23520444

  10. Functional characterization of a melittin analog containing a non-natural tryptophan analog.

    PubMed

    Ridgway, Zachary; Picciano, Angela L; Gosavi, Pallavi M; Moroz, Yurii S; Angevine, Christopher E; Chavis, Amy E; Reiner, Joseph E; Korendovych, Ivan V; Caputo, Gregory A

    2015-07-01

    Tryptophan (Trp) is a naturally occurring amino acid, which exhibits fluorescence emission properties that are dependent on the polarity of the local environment around the Trp side chain. However, this sensitivity also complicates interpretation of fluorescence emission data. A non-natural analogue of tryptophan, β-(1-azulenyl)-L-alanine, exhibits fluorescence insensitive to local solvent polarity and does not impact the structure or characteristics of several peptides examined. In this study, we investigated the effect of replacing Trp with β-(1-azulenyl)-L-alanine in the well-known bee-venom peptide melittin. This peptide provides a model framework for investigating the impact of replacing Trp with β-(1-azulenyl)-L-alanine in a functional peptide system that undergoes significant shifts in Trp fluorescence emission upon binding to lipid bilayers. Microbiological methods including assessment of the antimicrobial activity by minimal inhibitory concentration (MIC) assays and bacterial membrane permeability assays indicated little difference between the Trp and the β-(1-azulenyl)-L-alanine-substituted versions of melittin. Circular dichroism spectroscopy showed both that peptides adopted the expected α-helical structures when bound to phospholipid bilayers and electrophysiological analysis indicated that both created membrane disruptions leading to significant conductance increases across model membranes. Both peptides exhibited a marked protection of the respective fluorophores when bound to bilayers indicating a similar membrane-bound topology. As expected, while fluorescence quenching and CD indicate the peptides are stably bound to lipid vesicles, the peptide containing β-(1-azulenyl)-L-alanine exhibited no fluorescence emission shift upon binding while the natural Trp exhibited >10 nm shift in emission spectrum barycenter. Taken together, the β-(1-azulenyl)-L-alanine can serve as a solvent insensitive alternative to Trp that does not have significant

  11. Functional Characterization of a Melittin Analog Containing a Non-natural Tryptophan Analog

    PubMed Central

    Gosavi, Pallavi M.; Moroz, Yurii S.; Angevine, Christopher E.; Chavis, Amy E.; Reiner, Joseph E.; Korendovych, Ivan V.; Caputo, Gregory A.

    2015-01-01

    Tryptophan (Trp) is a naturally occurring amino acid, which exhibits fluorescence emission properties that are dependent on the polarity of the local environment around the Trp side chain. However, this sensitivity also complicates interpretation of fluorescence emission data. A non-natural analogue of tryptophan, β-(1-azulenyl)-L-alanine, exhibits fluorescence insensitive to local solvent polarity and does not impact the structure or characteristics of several peptides examined. In this study we investigated the effect of replacing Trp with β-(1-azulenyl)-L-alanine in the well-known bee-venom peptide melittin. This peptide provides a model framework for investigating the impact of replacing Trp with β-(1-azulenyl)-L- alanine in a functional peptide system that undergoes significant shifts in Trp fluorescence emission upon binding to lipid bilayers. Microbiological methods including assessment of the antimicrobial activity by minimal inhibitory concentration (MIC) assays and bacterial membrane permeability assays indicated little difference between the Trp and the β-(1-azulenyl)-L-alanine-substituted versions of melittin. Circular dichroism spectroscopy showed both that peptides adopted the expected α-helical structures when bound to phospholipid bilayers and electrophysiological analysis indicated that both created membrane disruptions leading to significant conductance increases across model membranes. Both peptides exhibited a marked protection of the respective fluorophores when bound to bilayers indicating a similar membrane-bound topology. As expected, while fluorescence quenching and CD indicate the peptides are stably bound to lipid vesicles, the peptide containing β-(1-azulenyl)-L-alanine exhibited no fluorescence emission shift upon binding while the natural Trp exhibited >10 nm shift in emission spectrum barycenter. Taken together, the β-(1-azulenyl)-L-alanine can serve as a solvent insensitive alternative to Trp that does not have significant

  12. XPS investigation on the structure of two dipeptides studied as models of self-assembling oligopeptides: comparison between experiments and theory

    NASA Astrophysics Data System (ADS)

    Battocchio, C.; Iucci, G.; Dettin, M.; Monti, S.; Carravetta, V.; Polzonetti, G.

    2008-03-01

    The adsorption on TiO2 surface of two dipeptides AE (L-alanine-L-glutamic acid) and AK (L-alanine-L-lysine), that are 'building blocks' of the more complex self-complementary amphiphilic oligopeptides and are therefore a good model in the interpretation of the complex peptide spectra, has been investigated both theoretically and experimentally. The chemical structure and composition of thin films of both dipeptides on TiO2 were investigated by XPS (X-ray photoelectron spectroscopy). Theoretical ab-initio calculations (ΔSCF) were also performed to simulate the spectra allowing a direct comparison between experiment and theory.

  13. Effect of Phenol on Bacillus subtilis Spores at Elevated Temperatures

    PubMed Central

    Russell, A. D.; Loosemore, Muriel

    1964-01-01

    The nature of the recovery medium is shown to influence the number of Bacillus subtilis spores which, after exposure to 2.5 or 5% phenol at high temperatures, can produce a visible colony. Higher survivor counts were obtained in nutrient agar containing L-alanine and D-glucose than in plain nutrient agar. PMID:14215968

  14. The total synthesis of pantocin B.

    PubMed

    Sutton, A E; Clardy, J

    2000-02-10

    [reaction: see text] Pantocin B, an unusual antibiotic produced by Erwinia herbicola, effectively controls E. amylovora, the pathogen causing the plant disease fire blight. A total synthesis of pantocin B from L-alanine, glycine, and L-malic acid is reported. PMID:10814312

  15. Synthesis, characterization, and biocompatible properties of alanine-grafted chitosan copolymers.

    PubMed

    Park, Gyu Han; Kang, Min-Sil; Knowles, Jonathan C; Gong, Myoung-Seon

    2016-04-01

    In order to overcome major problems regarding the lack of affinity to solvents and limited reactivity of the free amines of chitosan, introduction of appropriate spacer arms having terminal amine function is considered of interest.L-Alanine-N-carboxyanhydride was grafted onto chitosan via anionic ring-opening polymerization. The chemical and structural characterizations ofL-alanine-grafted chitosan (Ala-g-Cts) were confirmed through Fourier transform infrared spectroscopy and proton nuclear magnetic resonance spectroscopy ((1)H NMR). In addition, the viscoelastic properties ofAla-g-Cts were examined by means of a rotational viscometer, and thermal analysis was carried out with a thermogravimetric analyzer and differential scanning calorimetry. Morphological changes in the chitosanL-alanine moiety were determined by x-ray diffraction. To determine the feasibility of using these films as biomedical materials, we investigated the effects of theirL-alanine content on physical and mechanical properties. The biodegradation results of crosslinkedAla-g-Cts films were evaluated in phosphate-buffered solution containing lysozyme at 37℃. Proliferation of MC3T3-E1 cells on crosslinkedAla-g-Cts films was also investigated with use of the CCK-8 assay. PMID:26767393

  16. Combination of amino acids reduces pigmentation in B16F0 melanoma cells.

    PubMed

    Ishikawa, Masago; Kawase, Ichiro; Ishii, Fumio

    2007-04-01

    Amino acids, the building blocks of proteins, play significant roles in numerous physiological events in mammals. As the effects of amino acids on melanogenesis have yet to be demonstrated, the present study was conducted to identify whether amino acids, in particular alanine, glycine, isoleucine and leucine, influence melanogenesis in B16F0 melanoma cells. Glycine and L-isoleucine, but not D-isoleucine, reduced melanogenesis in a concentration-dependent manner without any morphological changes in B16F0 melanoma cells. L-Alanine and L-leucine, but not D-alanine and D-leucine, also reduced melanogenesis without any morphological changes in B16F0 melanoma cells. However these amino acids did not show a concentration-dependency. Combination of L-alanine and the other amino acids, particularly 4 amino acids combination, had an additive effect on the inhibition of melanogenesis compared with single treatment of L-alanine. None of the amino acids affected the activity of tyrosinase, a key enzyme in melanogenesis. These results suggest that L-alanine, glycine, L-isoleucine and L-leucine, but not the D-form amino acids, have a hypopigmenting effect in B16F0 melanoma cells, and that these effects are not due to the inhibition of tyrosinase activity. Combination of these 4 amino acids had the additive effect on hypopigmentation that was as similar as that of kojic acid. PMID:17409501

  17. Chemosensory tracking of scent trails by the planktonic shrimp Acetes sibogae australis.

    PubMed

    Hamner, P; Hamner, W M

    1977-03-01

    In the laboratory, planktonic shrimps (Acetes sibogae) precisely follow scent trails of food or paper soaked in meat extract, L-alanine, L-leucine, and L-methionine. In the ocean, Acetes may be able to follow scent trails as far as 20 meters to catch falling food. This demonstrates precise trail-following by pelagic animals. PMID:841313

  18. Unusual substrate specificity of the peptidoglycan MurE ligase from Erysipelothrix rhusiopathiae.

    PubMed

    Patin, Delphine; Turk, Samo; Barreteau, Hélène; Mainardi, Jean-Luc; Arthur, Michel; Gobec, Stanislav; Mengin-Lecreulx, Dominique; Blanot, Didier

    2016-02-01

    Erysipelothrix rhusiopathiae is a Gram-positive bacterium pathogenic to many species of birds and mammals, including humans. The main feature of its peptidoglycan is the presence of l-alanine at position 3 of the peptide stem. In the present work, we cloned the murE gene from E. rhusiopathiae and purified the corresponding protein as His6-tagged form. Enzymatic assays showed that E. rhusiopathiae MurE was indeed an l-alanine-adding enzyme. Surprisingly, it was also able, although to a lesser extent, to add meso-diaminopimelic acid, the amino acid found at position 3 in many Gram-negative bacteria, Bacilli and Mycobacteria. Sequence alignment of MurE enzymes from E. rhusiopathiae and Escherichia coli revealed that the DNPR motif that is characteristic of meso-diaminopimelate-adding enzymes was replaced by HDNR. The role of the latter motif in the interaction with l-alanine and meso-diaminopimelic acid was demonstrated by site-directed mutagenesis experiments and the construction of a homology model. The overexpression of the E. rhusiopathiae murE gene in E. coli resulted in the incorporation of l-alanine at position 3 of the peptide part of peptidoglycan. PMID:26700151

  19. CHARACTERIZATION OF AMINOPEPTIDASE IN THE FREE-LIVING NEMATODE PANAGRELLUS REDIVIVUS: SUBCELLULAR DISTRIBUTION AND POSSIBLE ROLE IN NEUROPEPTIDE METABOLISM

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aminopeptidase was detected in homogenates of the free-living nematode Panagrellus redivivus with the aminoacyl substrate L-alanine-4-nitroanilide (Ala-4-NA). Subcellular distribution of the enzyme was unequal, with approximately 80 percent of total aminopeptidase in the soluble fraction and the rem...

  20. Stereospecificity of reactions catalyzed by bacterial D-amino acid transaminase.

    PubMed

    Martínez del Pozo, A; Merola, M; Ueno, H; Manning, J M; Tanizawa, K; Nishimura, K; Soda, K; Ringe, D

    1989-10-25

    The spectral shift from 420 to 338 nm when pure bacterial D-amino acid transaminase binds D-amino acid substrates is also exhibited in part by high concentrations of L-amino acids (L-alanine and L-glutamate) but not by simple dicarboxylic acids or monoamines. Slow processing of L-alanine to D-alanine was observed both by coupled enzymatic assays using D-amino acid oxidase and by high pressure liquid chromatography analysis employing an optically active chromophore (Marfey's reagent). When the acceptor for L-alanine was alpha-ketoglutarate, D-glutamate was also formed. This minor activity of the transaminase involved both homologous (L-alanine and D-alanine) and heterologous (L-alanine and D-glutamate) substrate pairs and was a function of the nature of the keto acid acceptor. In the presence of alpha-ketoisovalerate, DL-alanine was almost completely processed to D-valine; within the limits of the assay no L-valine was detected. With alpha-ketoisocaproate, 90% of the DL-alanine was converted to D-leucine. In the mechanism of this transaminase reaction, there may be more stereoselective constraints for the protonation of the quinonoid intermediate during the second half-reaction of the transamination reaction, i.e. the donation of the amino group from the pyridoxamine 5'-phosphate coenzyme to a second keto acid acceptor, than during removal of the alpha proton in the initial steps of the reaction pathway. Thus, with this D-amino acid transaminase, the discrete steps of transamination ensure fidelity of the stereospecificity of reaction pathway. PMID:2808352

  1. Differential localization of putative amino acid receptors in taste buds of the channel catfish, Ictalurus punctatus.

    PubMed

    Finger, T E; Bryant, B P; Kalinoski, D L; Teeter, J H; Böttger, B; Grosvenor, W; Cagan, R H; Brand, J G

    1996-09-01

    The taste system of catfish, having distinct taste receptor sites for L-alanine and L-arginine, is highly sensitive to amino acids. A previously described monoclonal antibody (G-10), which inhibits L-alanine binding to a partial membrane fraction (P2) derived from catfish (Ictalurus punctatus) taste epithelium, was found in Western blots to recognize a single band, at apparent MW of 113,000 D. This MW differs from the apparent MW for the presumed arginine receptor identified previously by PHA-E lectin affinity. In order to test whether PHA-E lectin actually reacts with the arginine-receptor, reconstituted membrane proteins partially purified by PHA-E affinity were used in artificial lipid bilayers. These reconstituted channels exhibited L-arginine-activated activity similar to that found in taste cell membranes. Accordingly, we utilized the PHA-E lectin and G-10 antibody as probes to differentially localize the L-alanine and L-arginine binding sites on the apical surface of catfish taste buds. Each probe labels numerous, small (0.5-1.0 micron) patches within the taste pore of each taste bud. This observation suggests that each bud is not tuned to a single taste substance, but contains putative receptor sites for both L-arginine and L-alanine. Further, analysis of double-labeled tissue reveals that the PHA-E and G-10 sites tend to be separate within each taste pore. These findings imply that in catfish, individual taste cells preferentially express receptors to either L-arginine or L-alanine. In addition, PHA-E binds to the apices of solitary chemoreceptor cells in the epithelium, indicating that this independent chemoreceptor system may utilize some receptor sites similar to those in taste buds. PMID:8876468

  2. Use of vibrational spectroscopy to study protein and DNA structure, hydration, and binding of biomolecules: A combined theoretical and experimental approach

    NASA Astrophysics Data System (ADS)

    Jalkanen, K. J.; Jürgensen, V. Würtz; Claussen, A.; Rahim, A.; Jensen, G. M.; Wade, R. C.; Nardi, F.; Jung, C.; Degtyarenko, I. M.; Nieminen, R. M.; Herrmann, F.; Knapp-Mohammady, M.; Niehaus, T. A.; Frimand, K.; Suhai, S.

    We report on our work with vibrational absorption, vibrational circular dichroism, Raman scattering, Raman optical activity, and surface-enhanced Raman spectroscopy to study protein and DNA structure, hydration, and the binding of ligands, drugs, pesticides, or herbicides via a combined theoretical and experimental approach. The systems we have studied systematically are the amino acids (L-alanine, L-tryptophan, and L-histidine), peptides (N-4271 acetyl L-alanine N?-methyl amide, N-acetyl L-tryptophan N?-methyl amide, N-acetyl L-histidine N?-methyl amide, L-alanyl L-alanine, tri-L-serine, N-acetyl L-alanine L-proline L-tyrosine N?-methyl amide, Leu-enkephalin, cyclo-(gly-L-pro)3, N-acetyl (L-alanine)n N?-methyl amide), 3-methyl indole, and a variety of small molecules (dichlobenil and 2,6-dochlorobenzamide) of relevance to the protein systems under study. We have used molecular mechanics, the SCC-DFTB, SCC-DFTB+disp, RHF, MP2, and DFT methodologies for the modeling studies with the goal of interpreting the experimentally measured vibrational spectra for these molecules to the greatest extent possible and to use this combined approach to understand the structure, function, and electronic properties of these molecules in their various environments. The application of these spectroscopies to biophysical and environmental assays is expanding, and therefore a thorough understanding of the phenomenon from a rigorous theoretical basis is required. In addition, we give some exciting and new preliminary results which allow us to extend our methods to even larger and more complex systems. The work presented here is the current state of the art to this ever and fast changing field of theoretical spectroscopic interpretation and use of VA, VCD, Raman, ROA, EA, and ECD spectroscopies.

  3. Role of H{sub 2}O{sub 2} on the kinetics of low-affinity high-capacity Na{sup +}-dependent alanine transport in SHR proximal tubular epithelial cells

    SciTech Connect

    Pinto, Vanda; Pinho, Maria Joao; Jose, Pedro A.; Soares-da-Silva, Patricio

    2010-07-30

    Research highlights: {yields} H{sub 2}O{sub 2} in excess is required for the presence of a low-affinity high-capacity component for the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake in SHR PTE cells only. {yields} It is suggested that Na{sup +} binding in renal ASCT2 may be regulated by ROS in SHR PTE cells. -- Abstract: The presence of high and low sodium affinity states for the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake in immortalized renal proximal tubular epithelial (PTE) cells was previously reported (Am. J. Physiol. 293 (2007) R538-R547). This study evaluated the role of H{sub 2}O{sub 2} on the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake of ASCT2 in immortalized renal PTE cells from Wistar Kyoto rat (WKY) and spontaneously hypertensive rat (SHR). Na{sup +} dependence of [{sup 14}C]-L-alanine uptake was investigated replacing NaCl with an equimolar concentration of choline chloride in vehicle- and apocynin-treated cells. Na{sup +} removal from the uptake solution abolished transport activity in both WKY and SHR PTE cells. Decreases in H{sub 2}O{sub 2} levels in the extracellular medium significantly reduced Na{sup +}-K{sub m} and V{sub max} values of the low-affinity high-capacity component in SHR PTE cells, with no effect on the high-affinity low-capacity state of the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake. After removal of apocynin from the culture medium, H{sub 2}O{sub 2} levels returned to basal values within 1 to 3 h in both WKY and SHR PTE cells and these were found stable for the next 24 h. Under these experimental conditions, the Na{sup +}-K{sub m} and V{sub max} of the high-affinity low-capacity state were unaffected and the low-affinity high-capacity component remained significantly decreased 1 day but not 4 days after apocynin removal. In conclusion, H{sub 2}O{sub 2} in excess is required for the presence of a low-affinity high-capacity component for the Na{sup +}-dependent [{sup 14}C]-L-alanine uptake in SHR PTE cells only

  4. R76 in transmembrane domain 3 of the aspartate:alanine transporter AspT is involved in substrate transport.

    PubMed

    Suzuki, Satomi; Nanatani, Kei; Abe, Keietsu

    2016-01-01

    The L-aspartate:L-alanine antiporter of Tetragenococcus halophilus (AspT) possesses an arginine residue (R76) within the GxxxG motif in the central part of transmembrane domain 3 (TM3)-a residue that has been estimated to transport function. In this study, we carried out amino acid substitutions of R76 and used proteoliposome reconstitution for analyzing the transport function of each substitution. Both l-aspartate and l-alanine transport assays showed that R76K has higher activity than the AspT-WT (R76), whereas R76D and R76E have lower activity than the AspT-WT. These results suggest that R76 is involved in AspT substrate transport. PMID:26849958

  5. Electrophysiological responses of Xenopus oocytes to amino acids: criteria for expression of injected mRNA coding chemoreceptors.

    PubMed

    Etoh, M; Yoshii, K

    1994-10-01

    Responses of endogenous transporters/receptors of Xenopus oocytes to L-alanine, L-arginine, L-leucine and L-serine were investigated under voltage clamp conditions. (a) Concentration-response relations for the amino acids followed Langmuir's adsorption isotherm. (b) The neutral amino acids required Na+ to elicit the responses, whereas L-arginine did not. (c) The responses to L-alanine decreased with decreasing pH and became undetectable at pH 5.5. The present experiments supply criteria to judge if the oocytes translate exogenous mRNA coding taste or olfactory receptor proteins for the amino acids, the best characterized stimuli, especially in fishes. PMID:7956120

  6. Electrophysiological evidence for the broad distribution of specific odorant receptor molecules across the olfactory organ of the channel catfish.

    PubMed

    Chang, Q; Caprio, J

    1996-10-01

    To determine if there is a spatial segregation of responsiveness to odorants within the olfactory epithelium, microelectrode recordings were obtained from small populations of olfactory receptor neurons located across different lamellar sensory regions of the olfactory organ of the channel catfish, lctalurus punctatus. Stimuli included L-alanine, L-methionine, L-arginine hydrochloride, L-glutamic acid, ATP and a mixture of bile salts-odorants previously reported to stimulate independent receptor sites in aquatic species. The peak integrated olfactory receptor responses at each recording site were standardized to the response to L-alanine. The relative stimulatory effectiveness of the stimuli was preserved across the 10 olfactory lamellae recording sites. These data support previous molecular biological results of a broad distribution of receptor neurons that express specific receptor genes across the olfactory organ of the channel catfish. PMID:8902281

  7. Modification of olfactory-related behavior in juvenile Atlantic salmon by changes in pH.

    PubMed

    Royce-Malmgren, C H; Watson, W H

    1987-03-01

    The hypothesis that low pH modifies the response of salmonids to certain olfactory stimuli was tested. An interactive video-computer system was used to monitor the behavior of juvenile Atlantic salmon (Salmo salar). At a pH of 7.6, animals were attracted to glycine and avoidedL-alanine. These effects were dose-dependent, with a threshold of 10(-7) M. The response of the fish to both amino acids changed when the pH of the test chamber was gradually lowered from 7.6 to 5.1; they became attracted toL-alanine and indifferent to glycine. These effects were reversible with a return to pH 7.6. Our findings suggest that acid rain may contribute to reductions in salmonid populations in acidified rivers by impairing the recognition of olfactory cues by salmon during their spawning migration. PMID:24301892

  8. First-principles studies of pure and fluorine substituted alanines

    NASA Astrophysics Data System (ADS)

    Ahmad, Sardar; Vaizie, Hamide; Rahnamaye Aliabad, H. A.; Ahmad, Rashid; Khan, Imad; Ali, Zahid; Jalali-Asadabadi, S.; Ahmad, Iftikhar; Khan, Amir Abdullah

    2016-05-01

    This paper communicates the structural, electronic and optical properties of L-alanine, monofluoro and difluoro substituted alanines using density functional calculations. These compounds exist in orthorhombic crystal structure and the calculated structural parameters such as lattice constants, bond angles and bond lengths are in agreement with the experimental results. L-alanine is an indirect band gap insulator, while its fluorine substituted compounds (monofluoroalanine and difluoroalanine) are direct band gap insulators. The substitution causes reduction in the band gap and hence these optically tailored direct wide band gap materials have enhanced optical properties in the ultraviolet (UV) region of electromagnetic spectrum. Therefore, optical properties like dielectric function, refractive index, reflectivity and energy loss function are also investigated. These compounds have almost isotropic nature in the lower frequency range while at higher energies, they have a significant anisotropic nature.

  9. Monitoring the kinetics of Bacillus subtilis endospore germination via surface-enhanced Raman scattering spectroscopy.

    PubMed

    Daniels, Jacquitta K; Caldwell, Thomas P; Christensen, Kenneth A; Chumanov, George

    2006-03-01

    Mirror sandwich SERS substrates (M3S) were used to monitor the kinetics of Bacillus subtilis endospore germination. The sandwich configuration of the substrates allows real-time observation of germination in samples that contained only several hundred endospores. The enhancement provided by the substrates is attributed to the enhanced local electromagnetic field that originates from coupling between the Ag nanoparticles and the underlying metal film as well as from coupling between the Ag nanoparticles themselves. The germination kinetics at varying concentrations of l-alanine and different temperatures were studied by monitoring the intensity and growth of the Raman peak at 1010 cm(-1), which is characteristic of dipicolinic acid. A total of four concentrations (50, 75, 100, and 150 mM) of l-alanine and three different temperatures (30, 37, and 55 degrees C) were investigated. PMID:16503629

  10. Addition of amino acids and dipeptides to fullerene C{sub 60} giving rise to monoadducts

    SciTech Connect

    Romanova, V.S.; Tsyryapkin, V.A.; Vol`pin, M.E.

    1994-12-01

    The authors have developed a general method for the direct addition of amino acids and dipeptides of various structures to fullerene C{sub 60}. In all cases the addition involves the amino group. The reaction proceeds when the solutions of fullerene and an amino acid (or dipeptide) are mixed at 50-100 {degrees}C. The fullerene derivatives of the following amino acids and dipeptides have been obtained: glycine, p-aminobenzoic acid, {omega}-aminocaproic acid, L-proline, L-alanine, L-alanyl-Lalanine, D,L-alanyl-D,L-alanine, glycyl-L-valine. The adduct of methyl L-ananinate with C{sub 60} was also prepared.

  11. Dye-linked D-amino acid dehydrogenases: biochemical characteristics and applications in biotechnology.

    PubMed

    Satomura, Takenori; Sakuraba, Haruhiko; Suye, Shin-Ichiro; Ohshima, Toshihisa

    2015-11-01

    Dye-linked D-amino acid dehydrogenases (Dye-DADHs) catalyze the dehydrogenation of free D-amino acids in the presence of an artificial electron acceptor. Although Dye-DADHs functioning in catabolism of L-alanine and as primary enzymes in electron transport chains are widely distributed in mesophilic Gram-negative bacteria, biochemical and biotechnological information on these enzymes remains scanty. This is in large part due to their instability after isolation. On the other hand, in the last decade, several novel types of Dye-DADH have been found in thermophilic bacteria and hyperthermophilic archaea, where they contribute not only to L-alanine catabolism but also to the catabolism of other amino acids, including D-arginine and L-hydroxyproline. In this minireview, we summarize recent developments in our understanding of the biochemical characteristics of Dye-DADHs and their specific application to electrochemical biosensors. PMID:26362681

  12. Asymmetric adsorption by quartz - A model for the prebiotic origin of optical activity

    NASA Technical Reports Server (NTRS)

    Bonner, W. M.; Kavasmaneck, P. R.; Martin, F. S.; Flores, J. J.

    1975-01-01

    One mechanism previously proposed for the abiotic accumulation of molecules of one chirality in nature is asymmetric adsorption on the chiral surfaces of optically active quartz crystals. Earlier literature in this field is reviewed, with the conclusion that previous investigations of this phenomenon, using optical rotation criteria, have afforded ambiguous results. We now have studied the adsorption of radioactive D- and L-alanine on powdered d- and l-quartz, using change in radioactivity level as a criterion for both gross and differential adsorption, d-Quartz preferentially adsorbed D-alanine from anhydrous dimethyl-formamide solution, and l-quartz L-alanine. The differential adsorption varied between 1.0 and 1.8%. The implications of these observations are discussed from the viewpoint of early chemical evolution and the origin of optically active organic compounds in nature.

  13. Structure and function of a 40,000-molecular-weight protein antigen of Mycobacterium tuberculosis.

    PubMed Central

    Andersen, A B; Andersen, P; Ljungqvist, L

    1992-01-01

    A gene encoding a protein antigen from Mycobacterium tuberculosis with a molecular weight of 40,000 has been sequenced. On the basis of sequence homology and functional analyses, we demonstrated that the protein is an L-alanine dehydrogenase (EC 1.4.1.1). The enzyme was demonstrated in M. tuberculosis and Mycobacterium marinum but not in Mycobacterium bovis BCG. The enzyme may play a role in cell wall synthesis because L-alanine is an important constituent of the peptidoglycan layer. Although no consensus signal sequence was identified, we found evidence which suggests that the enzyme is secreted across the cell membrane. The enzyme was characterized and purified by chromatography, thus enabling further studies of its role in virulence and interaction with the immune system of M. tuberculosis-infected individuals. Images PMID:1587598

  14. Elastic and inelastic light scattering from single bacterial spores in an optical trap allows the monitoring of spore germination dynamics

    PubMed Central

    Peng, Lixin; Chen, De; Setlow, Peter; Li, Yong-qing

    2009-01-01

    Raman scattering spectroscopy and elastic light scattering intensity (ESLI) were used to simultaneously measure levels of Ca-dipicolinic acid (CaDPA) and changes in spore morphology and refractive index during germination of individual B. subtilis spores with and without the two redundant enzymes (CLEs), CwlJ and SleB, that degrade spores’ peptidoglycan cortex. Conclusions from these measurements include: 1) CaDPA release from individual wild-type germinating spores was biphasic; in a first heterogeneous slow phase, Tlag, CaDPA levels decreased ∼15% and in the second phase ending at Trelease, remaining CaDPA was released rapidly; 2) in L-alanine germination of wild-type spores and spores lacking SleB: a) the ESLI rose ∼2-fold shortly before Tlag at T1; b) following Tlag, the ESLI again rose ∼2-fold at T2 when CaDPA levels had decreased ∼50%; and c) the ESLI reached its maximum value at ∼Trelease and then decreased; 3) in CaDPA germination of wild-type spores: a) Tlag increased and the first increase in ESLI occurred well before Tlag, consistent with different pathways for CaDPA and L-alanine germination; b) at Trelease the ESLI again reached its maximum value; 4) in L-alanine germination of spores lacking both CLEs and unable to degrade their cortex, the time ΔTrelease (Trelease–Tlag) for excretion of ≥75% of CaDPA was ∼15-fold higher than that for wild-type or sleB spores; and 5) spores lacking only CwlJ exhibited a similar, but not identical ESLI pattern during L-alanine germination to that seen with cwlJ sleB spores, and the high value for ΔTrelease. PMID:19374431

  15. The Aspergillus nidulans proline permease as a model for understanding the factors determining substrate binding and specificity of fungal amino acid transporters.

    PubMed

    Gournas, Christos; Evangelidis, Thomas; Athanasopoulos, Alexandros; Mikros, Emmanuel; Sophianopoulou, Vicky

    2015-03-01

    Amino acid uptake in fungi is mediated by general and specialized members of the yeast amino acid transporter (YAT) family, a branch of the amino acid polyamine organocation (APC) transporter superfamily. PrnB, a highly specific l-proline transporter, only weakly recognizes other Put4p substrates, its Saccharomyces cerevisiae orthologue. Taking advantage of the high sequence similarity between the two transporters, we combined molecular modeling, induced fit docking, genetic, and biochemical approaches to investigate the molecular basis of this difference and identify residues governing substrate binding and specificity. We demonstrate that l-proline is recognized by PrnB via interactions with residues within TMS1 (Gly(56), Thr(57)), TMS3 (Glu(138)), and TMS6 (Phe(248)), which are evolutionary conserved in YATs, whereas specificity is achieved by subtle amino acid substitutions in variable residues. Put4p-mimicking substitutions in TMS3 (S130C), TMS6 (F252L, S253G), TMS8 (W351F), and TMS10 (T414S) broadened the specificity of PrnB, enabling it to recognize more efficiently l-alanine, l-azetidine-2-carboxylic acid, and glycine without significantly affecting the apparent Km for l-proline. S253G and W351F could transport l-alanine, whereas T414S, despite displaying reduced proline uptake, could transport l-alanine and glycine, a phenotype suppressed by the S130C mutation. A combination of all five Put4p-ressembling substitutions resulted in a functional allele that could also transport l-alanine and glycine, displaying a specificity profile impressively similar to that of Put4p. Our results support a model where residues in these positions determine specificity by interacting with the substrates, acting as gating elements, altering the flexibility of the substrate binding core, or affecting conformational changes of the transport cycle. PMID:25572393

  16. Functional Characterization of Alanine Racemase from Schizosaccharomyces pombe: a Eucaryotic Counterpart to Bacterial Alanine Racemase

    PubMed Central

    Uo, Takuma; Yoshimura, Tohru; Tanaka, Naotaka; Takegawa, Kaoru; Esaki, Nobuyoshi

    2001-01-01

    Schizosaccharomyces pombe has an open reading frame, which we named alr1+, encoding a putative protein similar to bacterial alanine racemase. We cloned the alr1+ gene in Escherichia coli and purified the gene product (Alr1p), with an Mr of 41,590, to homogeneity. Alr1p contains pyridoxal 5′-phosphate as a coenzyme and catalyzes the racemization of alanine with apparent Km and Vmax values as follows: for l-alanine, 5.0 mM and 670 μmol/min/mg, respectively, and for d-alanine, 2.4 mM and 350 μmol/min/mg, respectively. The enzyme is almost specific to alanine, but l-serine and l-2-aminobutyrate are racemized slowly at rates 3.7 and 0.37% of that of l-alanine, respectively. S. pombe uses d-alanine as a sole nitrogen source, but deletion of the alr1+ gene resulted in retarded growth on the same medium. This indicates that S. pombe has catabolic pathways for both enantiomers of alanine and that the pathway for l-alanine coupled with racemization plays a major role in the catabolism of d-alanine. Saccharomyces cerevisiae differs markedly from S. pombe: S. cerevisiae uses l-alanine but not d-alanine as a sole nitrogen source. Moreover, d-alanine is toxic to S. cerevisiae. However, heterologous expression of the alr1+ gene enabled S. cerevisiae to grow efficiently on d-alanine as a sole nitrogen source. The recombinant yeast was relieved from the toxicity of d-alanine. PMID:11244061

  17. Amino acid and peptide absorption in patients with coeliac disease and dermatitis herpetiformis

    PubMed Central

    Silk, D. B. A.; Kumar, Parveen J.; Perrett, D.; Clark, M. L.; Dawson, A. M.

    1974-01-01

    A double-lumen perfusion technique has been used to study amino acid and peptide absorption in eight normal control subjects, 13 patients with untreated adult coeliac disease, and 16 patients with dermatitis herpetiformis who had varying morphological abnormalities of the small bowel. All subjects were perfused with isotonic solutions containing 10 mM glycyl-L-alanine and 10 mM glycine + 10 mM L-alanine. Patients with adult coeliac disease had impaired absorption of glycine (p < 0·01) and L-alanine (p < 0·05) from the amino acid solution compared with the control subjects. Amino acid uptake from the dipeptide solution was not significantly impaired, although four individual patients had impaired uptake of both amino acids. In contrast to these findings, very few patients with dermatitis herpetiformis had impaired amino acid absorption from either solution. Sodium absorption was impaired from both solutions when the groups of patients with adult coeliac disease and dermatitis herpetiformis with subtotal villous atrophy and partial villous atrophy were studied, and there were patients in each group who secreted sodium and water. The results suggest that malabsorption of dietary protein is unlikely to occur in dermatitis herpetiformis but may occur and contribute to protein deficiency seen in some severe cases of adult coeliac disease. The impairment of sodium and water absorption provides evidence that there may be functional impairment of the jejunal mucosa in dermatitis herpetiformis as well as in adult coeliac disease. PMID:4820629

  18. Investigation of gamma radiation effect on chemical properties and surface morphology of some nonlinear optical (NLO) single crystals

    NASA Astrophysics Data System (ADS)

    Ahlam, M. A.; Ravishankar, M. N.; Vijayan, N.; Govindaraj, G.; Siddaramaiah; Gnana Prakash, A. P.

    2012-05-01

    The effect of Co-60 gamma irradiation on L-alanine cadmium chloride (LACC), L-alanine doped potassium dihydrogen orthophosphate (KDP) and L-arginine doped KDP nonlinear optical (NLO) single crystals were studied in doses ranging from 100 krad to 6 Mrad. The crystals were grown by slow evaporation method at room temperature. The effects of gamma irradiation on the chemical, surface morphology, DC electrical conductivity, thermal and mechanical properties of the grown crystals have been studied. The functional groups of unirradiated and irradiated crystals have been identified and confirmed by Fourier transform infrared (FTIR) studies. Scanning electron microscopy (SEM) of irradiated crystals shows some morphological changes in the crystals. The dc conductivity of LACC and L-alanine doped KDP crystals were found to increase with increase in radiation dose whereas in case of L-arginine doped KDP crystals, the dc conductivity was found to decrease with increase in radiation dose. Differential scanning calorimetry (DSC) thermograms reveals that there is no significant change in the melting point of the crystals after irradiation and the crystals does not decompose as a result of irradiation. The mechanical behavior of both unirradiated and irradiated crystals is explained with the indentation effects using Vicker's microhardness tester. The Vicker's hardness number HV and Mayer's index 'n' has been estimated and confirms that LACC belong to the hard materials.

  19. Effects of high-salinity seawater acclimation on the levels of D-alanine in the muscle and hepatopancreas of kuruma prawn, Marsupenaeus japonicus.

    PubMed

    Yoshikawa, Naoko; Yokoyama, Masahumi

    2015-12-10

    Changes in D- and L-alanine contents were determined in the muscle and hepatopancreas of kuruma prawn Marsupenaeus japonicus, during acclimation from seawater containing 100% salinity to artificial seawater containing 150% salinity. In the hepatopancreas, contents of both amino acids increased by approximately threefold. The activity of alanine racemase, which catalyzes the interconversion of D- and L-alanine, also increased in the high-salinity seawater. In addition, the expression of the gene encoding alanine racemase increased in the hepatopancreas with an increase in the alanine racemase activity. These data indicate that the biosynthesis of D- and L-alanine is controlled by the gene expression level of alanine racemase, and D-alanine in the hepatopancreas functions as a major osmolyte for isosmotic regulation. In contrast, the content of D-alanine and alanine racemase activity did not change in the muscle during hyper-osmotic acclimation. Therefore, we suggest that D-alanine, which exists in the several tissues of M. japonicus, is considered to be utilized in some different physiological phenomena in different tissues. PMID:26025417

  20. Biochemical studies of olfaction: binding specificity of radioactively labeled stimuli to an isolated olfactory preparation from rainbow trout (Salmo gairdneri).

    PubMed

    Cagan, R H; Zeiger, W N

    1978-10-01

    The extent of binding of 10 radioactively labeled odorant amino acids to a sedimentable fraction (fraction P2) derived from the olfactory rosettes of the rainbow trout Salmo gairdneri corresponded closely with their reported relative stimulatory effectiveness measured electrophysiologically. L isomers were bound to a greater extent than their respective D isomers. Binding of L-alanine was strongly and irreversibly inhibited by mercurials but was not affected by sulfhydryl-blocking reagents. Binding was saturable and reversible. Scatchard analyses gave evidence of two types of binding sites for most of the amino acids studied. The Kd values of the higher-affinity binding sites were similar among the amino acids, being in the range of 10(-6) M; differences occurred in the relative numbers of sites, n. These results, coupled with those from competition experiments, lead to the postulate that a multiplicity of types of olfactory binding sites exist in the trout: site TSA, which binds L-threonine, L-serine, and L-alanine; site L, which binds L-lysine; and site AB which binds beta-alanine. Tentative assignments are: site V, which binds L-valine; site H, which binds L-histidine; and site AD, which binds D-alanine. Site AD may be a lower affinity site for L-alanine. Binding of olfactory stimulus molecules appears to be an initial discrimination step in olfaction. PMID:283385

  1. Consummatory feeding behavior to amino acids in intact and anosmic channel catfish Ictalurus punctatus.

    PubMed

    Valentincic, T; Caprio, J

    1994-05-01

    The entire sequence of feeding behavior patterns exhibited by intact and anosmic channel catfish to food extracts was also released by single amino acids. L-arginine (> 10(-6) M), L-alanine (> 10(-6) M), and L-proline (> 10(-4) M) were each highly effective at releasing consummatory behavior patterns, such as turning, increasing pumping of water across the gill arches, and biting-snapping. Swallowing required solid objects, whereas rhythmic movement of the hyoid was released by > 10(-2) M L-arginine alone. For the biting-snapping behavior, the number of bites depended upon both the number of eddies containing the amino acid above the behavioral threshold concentration and the amino acid applied. Multiple eddies of > 10(-3) M L-proline and L-alanine provoked up to 25 bites per test; however, the most effective stimulus for releasing biting-snapping behavior at low concentrations was L-arginine (behavioral threshold 3 x 10(-7) M). In comparison to 10(-4) M L-alanine and L-arginine, other amino acids were less effective stimuli. PMID:8022905

  2. Purification and characterization of alanine dehydrogenase from a cyanobacterium, Phormidium lapideum.

    PubMed

    Sawa, Y; Tani, M; Murata, K; Shibata, H; Ochiai, H

    1994-11-01

    Alanine dehydrogenase (AlaDH) was purified to homogeneity from cell-free extracts of a non-N2-fixing filamentous cyanobacterium, Phormidium lapideum. The molecular mass of the native enzyme was 240 kDa, and SDS-PAGE revealed a minimum molecular mass of 41 kDa, suggesting a six-subunit structure. The NH2 terminal amino acid residues of the purified AlaDH revealed marked similarity with that of other AlaDHs. The enzyme was highly specific for L-alanine and NAD+, but showed relatively low amino-acceptor specificity. The pH optimum was 8.4 for reductive amination of pyruvate and 9.2 for oxidative deamination of L-alanine. The Km values were 5.0 mM for L-alanine and 0.04 mM for NAD+, 0.33 mM for pyruvate, 60.6 mM for NH4+ (pH 8.7), and 0.02 mM for NADH. Various L-amino acids including alanine, serine, threonine, and aromatic amino acids, inhibited the aminating reaction. The enzyme was inactivated upon incubation with pyridoxal 5'-phosphate (PLP) followed by reduction with sodium borohydride. The copresence of NADH and pyruvate largely protected the enzyme against the inactivation by PLP. PMID:7896761

  3. Biological activities of indoleacetylamino acids and their use as auxins in tissue culture

    SciTech Connect

    Hangarter, R.P.; Peterson, M.D.; Good, N.E.

    1980-05-01

    The auxin activities of a number of indoleacetylamino acid conjugates have been determined in three test systems: growth of tomato hypocotyl explants (Lycopersicon esculentum Mill. cv. Marglobe); growth of tobacco callus cultures (Nicotiana tabacum L. cv. Wisconsin 38); and ethylene production from pea stems (Pisum sativum L. cv. Alaska). The activities of the conjugates differ greatly depending on the amino acid moiety. Indoleacetyl-L-alanine supports rapid callus growth from the tomato hypocotyls while inhibiting growth of shoots and roots. Indoleacetlyglycine behaves in a similar manner but is somewhat less effective in supporting callus growth and in inhibiting growth of shoots and roots. Indoleacetylglycine behaves in a similar manner but is somewhat less effective in supporting callus growth and in inhibiting shoot formation. The other amino acid conjugates tested (valine, leucine, aspartic acid, threonine, methionine, phenylalanine, and proline) support shoot formation without supporting root formation or much callus growth. The tobacco callus system, which forms abundant shoots in the presence or absence of free indoleacetic acid, produces only rapid undifferentiated growth in the presence of indoleacetyl-L-alanine and indoleacetylglycine. The other conjugates inhibit shoot formatin weakly if at all. Most of the conjugates induce sustained ethylene production from the pea stems but at rates well below the initial rates observed with free indoleacetic acid. Many, but not all of the effects of conjugates such as indoleacetyl-L-alanine can be mimicked by frequent renewals of the supply of free indoleacetic acid.

  4. Purification and characterization of selenocysteine beta-lyase from Citrobacter freundii

    SciTech Connect

    Chocat, P.; Esaki, N.; Tanizawa, K.; Nakamura, K.; Tanaka, H.; Soda, K.

    1985-08-01

    The purification and characterization of bacterial selenocysteine beta-lyase, an enzyme which specifically catalyzes the cleavage of L-selenocysteine to L-alanine and Se0, are presented. The enzyme, purified to near homogeneity from Citrobacter freundii, is monomeric with a molecular weight of ca. 64,000 and contains 1 mol of pyridoxal 5'-phosphate as a cofactor per mol of enzyme. L-Selenocysteine is the sole substrate. L-Cysteine is a competitive inhibitor of the enzyme. The enzyme also catalyzes the alpha, beta elimination of beta-chloro-L-alanine to form NH3, pyruvate, and Cl- and is irreversibly inactivated during the reaction. The physicochemical properties, e.g., amino acid composition and subunit structure, of the bacterial enzyme are fairly different from those of the pig liver enzyme. However, the catalytic properties of both enzymes, e.g., substrate specificity and inactivation by the substrate or a mechanism-based inactivator, beta-chloro-L-alanine, are very similar.

  5. Purification and characterization of selenocysteine beta-lyase from Citrobacter freundii.

    PubMed Central

    Chocat, P; Esaki, N; Tanizawa, K; Nakamura, K; Tanaka, H; Soda, K

    1985-01-01

    The purification and characterization of bacterial selenocysteine beta-lyase, an enzyme which specifically catalyzes the cleavage of L-selenocysteine to L-alanine and Se0, are presented. The enzyme, purified to near homogeneity from Citrobacter freundii, is monomeric with a molecular weight of ca. 64,000 and contains 1 mol of pyridoxal 5'-phosphate as a cofactor per mol of enzyme. L-Selenocysteine is the sole substrate (Km, 0.95 mM). L-Cysteine is a competitive inhibitor of the enzyme (Ki, 0.65 mM). The enzyme also catalyzes the alpha, beta elimination of beta-chloro-L-alanine to form NH3, pyruvate, and Cl- and is irreversibly inactivated during the reaction. The physicochemical properties, e.g., amino acid composition and subunit structure, of the bacterial enzyme are fairly different from those of the pig liver enzyme (Esaki et al., J. Biol. Chem. 257:4386-4391, 1982). However, the catalytic properties of both enzymes, e.g., substrate specificity and inactivation by the substrate or a mechanism-based inactivator, beta-chloro-L-alanine, are very similar. PMID:2991201

  6. Analysis of the Effects of a gerP Mutation on the Germination of Spores of Bacillus subtilis

    PubMed Central

    Butzin, Xuan Yi; Troiano, Anthony J.; Coleman, William H.; Griffiths, Keren K.; Doona, Christopher J.; Feeherry, Florence E.; Wang, Guiwen; Li, Yong-qing

    2012-01-01

    As previously reported, gerP Bacillus subtilis spores were defective in nutrient germination triggered via various germinant receptors (GRs), and the defect was eliminated by severe spore coat defects. The gerP spores' GR-dependent germination had a longer lag time between addition of germinants and initiation of rapid release of spores' dipicolinic acid (DPA), but times for release of >90% of DPA from individual spores were identical for wild-type and gerP spores. The gerP spores were also defective in GR-independent germination by DPA with its associated Ca2+ divalent cation (CaDPA) but germinated better than wild-type spores with the GR-independent germinant dodecylamine. The gerP spores exhibited no increased sensitivity to hypochlorite, suggesting that these spores have no significant coat defect. Overexpression of GRs in gerP spores did lead to faster germination via the overexpressed GR, but this was still slower than germination of comparable gerP+ spores. Unlike wild-type spores, for which maximal nutrient germinant concentrations were between 500 μM and 2 mM for l-alanine and ≤10 mM for l-valine, rates of gerP spore germination increased up to between 200 mM and 1 M l-alanine and 100 mM l-valine, and at 1 M l-alanine, the rates of germination of wild-type and gerP spores with or without all alanine racemases were almost identical. A high pressure of 150 MPa that triggers spore germination by activating GRs also triggered germination of wild-type and gerP spores identically. All these results support the suggestion that GerP proteins facilitate access of nutrient germinants to their cognate GRs in spores' inner membrane. PMID:22904285

  7. D-cycloserine transport in human intestinal epithelial (Caco-2) cells: mediation by a H(+)-coupled amino acid transporter.

    PubMed Central

    Thwaites, D. T.; Armstrong, G.; Hirst, B. H.; Simmons, N. L.

    1995-01-01

    1. The ability of D-cycloserine to act as a substrate for H+/amino acid symport has been tested in epithelial layers of Caco-2 human intestinal cells. 2. In Na(+)-free media with the apical bathing media held at pH 6.0, D-cycloserine (20 mM) is an effective inhibitor of net transepithelial transport (Jnet) of L-alanine (100 microM) and its accumulation (across the apical membrane) in a similar manner to amino acid substrates (L-alanine, beta-alanine, L-proline and glycine). In contrast L-valine was ineffective as an inhibitor for H+/amino acid symport. Both inhibition of L-alanine Jnet and its accumulation by D-cycloserine were dose-dependent, maximal inhibition being achieved by 5-10 mM. 3. Both D-cycloserine and known substrates for H+/amino acid symport stimulated an inward short circuit current (Isc) when voltage-clamped monolayers of Caco-2 epithelia, mounted in Ussing chambers, were exposed to apical substrate in Na(+)-free media, with apical pH held at 6.0. The D-cycloserine dependent increase in Isc was dose-dependent with an apparent Km = 15.8 +/- 2.0 (mean +/- s.e. mean) mM, and Vmax = 373 +/- 21 nmol cm-2h-1. 4. D-Cycloserine (20 mM) induced a prompt acidification of Caco-2 cell cytosol when superfused at the apical surface in both Na+ and Na(+)-free conditions. Cytosolic acidification in response to D-cycloserine was dependent upon superfusate pH, being attenuated at pH 8 and enhanced in acidic media. 5. The increment in Isc with 20 mM D-cycloserine was non-additive with other amino acid substrates for H+/amino acid symport. PMID:8548174

  8. Mechanistic deductions from multiple kinetic and solvent deuterium isotope effects and pH studies of pyridoxal phosphate dependent carbon-carbon lyases: escherichia coli tryptophan indole-lyase

    SciTech Connect

    Kiick, D.M.; Phillips, R.S.

    1988-09-20

    Analysis of the pH dependence of the kinetic parameters and competitive inhibitor Ki values for tryptophan indole-lyase suggests two enzymic groups must be unprotonated in order to facilitate binding and catalysis of tryptophan. The V/K for tryptophan and the pKi for oxindolyl-L-alanine, a putative transition state analogue and competitive inhibitor, decrease below two pK values of 7.6 and 6.0, while the Ki for L-alanine, also a competitive inhibitor, is 3300-fold larger (20 mM) than that for oxindolyl-L-alanine and increases below a single pK of 7.6. A single pK of 7.6 is also observed in the V/K profile for the alternate substrate, S-methyl-L-cysteine. Therefore, the enzymic group with a pK of 7.6 is responsible for proton abstraction at the 2-position of tryptophan, while the enzymic group with a pK of 6.0 interacts with the indole portion of tryptophan and probably catalyzes formation of the indolenine tautomer of tryptophan (in concert with proton transfer to C-3 of indole from the group with pK 7.6) to facilitate carbon-carbon bond cleavage and elimination of indole. The pH variation of the primary deuterium isotope effects for proton abstraction at the 2-position of tryptophan (DV = 2.5 and D(V/Ktrp) = 2.8) are pH independent, while the Vmax for tryptophan or S-methyl-L-cysteine is the same and also pH independent. Thus, substrates bind only to the correctly protonated form of the enzyme. Further, tryptophan is not sticky, and the pK values observed in both V/K profiles are the correct ones.

  9. Probing the cruzain S2 recognition subsite: a kinetic and binding energy calculation study.

    PubMed

    Polticelli, Fabio; Zaini, Germano; Bolli, Alessandro; Antonini, Giovanni; Gradoni, Luigi; Ascenzi, Paolo

    2005-03-01

    Cysteine proteases are relevant to several aspects of the parasite life cycle and the parasite-host relationship. Moreover, they appear as promising targets for antiparasite chemotherapy. Here, a quantitative investigation on the catalytic properties of cruzain, the papain-like cysteine protease from epimastigotes of Trypanosoma cruzi, is reported. The results indicate that kinetics for the cruzain catalyzed hydrolysis of N-alpha-benzyloxycarbonyl-l-arginyl-l-alanine-(7-amino-4-methylcoumarin), N-alpha-benzyloxycarbonyl-l-phenylalanyl-l-alanine-(7-amino-4-methylcoumarin), and N-alpha-benzyloxycarbonyl-l-tyrosyl-l-alanine-(7-amino-4-methylcoumarin) can be consistently fitted to the minimum three-step mechanism of cysteine proteases involving the acyl.enzyme intermediate E.P; the deacylation step is rate-limiting in enzyme catalysis. Remarkably, these substrates show identical catalytic parameters. This reflects the ability of the cruzain Glu205 residue, located at the bottom of the S(2) subsite, to neutralize the substrate/inhibitor polar P(2) residues (e.g., Arg or Tyr) and to be solvent-exposed when substrate/inhibitor nonpolar P(2) residues (e.g., Phe) fit the S(2) subsite. More complex catalytic mechanisms are also discussed. Binding free-energy calculation provides a quantitative framework for the interpretation of these results; in particular, direct evidence for the compensatory effect between Coulomb interaction(s) and solvation effect(s) is reported. These results appear of general significance for a deeper understanding of (macro)molecular recognition and for the rational design of novel inhibitors of parasitic cysteine proteases. PMID:15723522

  10. Characterization of an Arginine:Pyruvate Transaminase in Arginine Catabolism of Pseudomonas aeruginosa PAO1▿

    PubMed Central

    Yang, Zhe; Lu, Chung-Dar

    2007-01-01

    The arginine transaminase (ATA) pathway represents one of the multiple pathways for l-arginine catabolism in Pseudomonas aeruginosa. The AruH protein was proposed to catalyze the first step in the ATA pathway, converting the substrates l-arginine and pyruvate into 2-ketoarginine and l-alanine. Here we report the initial biochemical characterization of this enzyme. The aruH gene was overexpressed in Escherichia coli, and its product was purified to homogeneity. High-performance liquid chromatography and mass spectrometry (MS) analyses were employed to detect the presence of the transamination products 2-ketoarginine and l-alanine, thus demonstrating the proposed biochemical reaction catalyzed by AruH. The enzymatic properties and kinetic parameters of dimeric recombinant AruH were determined by a coupled reaction with NAD+ and l-alanine dehydrogenase. The optimal activity of AruH was found at pH 9.0, and it has a novel substrate specificity with an order of preference of Arg > Lys > Met > Leu > Orn > Gln. With l-arginine and pyruvate as the substrates, Lineweaver-Burk plots of the data revealed a series of parallel lines characteristic of a ping-pong kinetic mechanism with calculated Vmax and kcat values of 54.6 ± 2.5 μmol/min/mg and 38.6 ± 1.8 s−1. The apparent Km and catalytic efficiency (kcat/Km) were 1.6 ± 0.1 mM and 24.1 mM−1 s−1 for pyruvate and 13.9 ± 0.8 mM and 2.8 mM−1 s−1 for l-arginine. When l-lysine was used as the substrate, MS analysis suggested Δ1-piperideine-2-carboxylate as its transamination product. These results implied that AruH may have a broader physiological function in amino acid catabolism. PMID:17416668

  11. Metabolic Effects of Insulin and IGFs on Gilthead Sea Bream (Sparus aurata) Muscle Cells

    PubMed Central

    Montserrat, Núria; Capilla, Encarnación; Navarro, Isabel; Gutiérrez, Joaquim

    2012-01-01

    Primary cultures of gilthead sea bream myocytes were performed in order to examine the relative metabolic function of insulin compared with IGF-I and IGF-II (insulin-like growth factors, IGFs) at different stages in the cell culture. In these cells, the in vitro effects of insulin and IGFs on 2-deoxyglucose (2-DG) and l-alanine uptake were studied in both myocytes (day 4) and small myotubes (day 9). 2-DG uptake in gilthead sea bream muscle cells was increased in the presence of insulin and IGFs in a time dependent manner and along with muscle cell differentiation. On the contrary, l-alanine uptake was also stimulated by insulin and IGFs but showed an inverse pattern, being the uptake higher in small myocytes than in large myotubes. The results of preincubation with inhibitors (PD-98059, wortmannin, and cytochalasin B) on 2-DG uptake indicated that insulin and IGFs stimulate glucose uptake through the same mechanisms, and evidenced that mitogenesis activator protein kinase (MAPK) and PI3K–Akt transduction pathways mediate the metabolic function of these peptides. In the same way, we observed that GLUT4 protein synthesis was stimulated in the presence of insulin and IGFs in gilthead sea bream muscle cells in a different manner at days 4 or 9 of the culture. In summary we describe here, for the first time, the effects of insulin and IGFs on 2-DG and l-alanine uptake in primary culture of gilthead sea bream muscle cells. We show that both MAPK and PI3K–Akt transduction pathways are needed in order to control insulin and IGFs actions in these cells. Moreover, changes in glucose uptake can be explained by the action of the GLUT4 transporter, which is stimulated in the presence of insulin and IGFs throughout the cell culture. PMID:22654873

  12. Biomagnification of cycad neurotoxins in flying foxes: implications for ALS-PDC in Guam.

    PubMed

    Banack, Sandra Anne; Cox, Paul Alan

    2003-08-12

    Beta-methylamino-L-alanine (BMAA) occurs in higher levels in museum specimens of the Guamanian flying fox than in the cycad seeds the flying foxes feed on, confirming the hypothesis that cycad neurotoxins are biomagnified within the Guam ecosystem. Consumption of a single flying fox may have resulted in an equivalent BMAA dose obtained from eating 174 to 1,014 kg of processed cycad flour. Traditional feasting on flying foxes may be related to the prevalence of neuropathologic disease in Guam. PMID:12913204

  13. REVERSAL OF d-CYCLOSERINE INHIBITION OF BACTERIAL GROWTH BY ALANINE

    PubMed Central

    Zygmunt, Walter A.

    1962-01-01

    Zygmunt, Walter A. (Mead Johnson & Co., Evansville, Ind.). Reversal of d-cycloserine inhibition of bacterial growth by alanine. J. Bacteriol. 84:154–156. 1962.—Reversal of the antibacterial activity of d-4-amino-3-isoxazolidone by alanine in bacterial cultures actively growing on chemically defined media was compared in cultures requiring exogenous alanine and those capable of its synthesis. dl-Alanine was the most effective reversal agent in Pediococcus cerevisiae, an alanine-requiring organism, and d-alanine was effective in Escherichia coli and Staphylococcus aureus, organisms synthesizing alanine. With all three cultures, l-alanine was the least effective reversal agent. PMID:16561951

  14. The Effects of the Toxic Cyanobacterium Limnothrix (Strain AC0243) on Bufo marinus Larvae

    PubMed Central

    Daniels, Olivia; Fabbro, Larelle; Makiela, Sandrine

    2014-01-01

    Limnothrix (strain AC0243) is a cyanobacterium, which has only recently been identified as toxin producing. Under laboratory conditions, Bufo marinus larvae were exposed to 100,000 cells mL−1 of Limnothrix (strain AC0243) live cultures for seven days. Histological examinations were conducted post mortem and revealed damage to the notochord, eyes, brain, liver, kidney, pancreas, gastrointestinal tract, and heart. The histopathological results highlight the toxicological impact of this strain, particularly during developmental stages. Toxicological similarities to β-N-Methylamino-l-alanine are discussed. PMID:24662524

  15. Antimicrobial Activity of Metal & Metal Oxide Nanoparticles Interfaced With Ligand Complexes Of 8-Hydroxyquinoline And α-Amino Acids

    NASA Astrophysics Data System (ADS)

    Bhanjana, Gaurav; Kumar, Neeraj; Thakur, Rajesh; Dilbaghi, Neeraj; Kumar, Sandeep

    2011-12-01

    Antimicrobial nanotechnology is a recent addition to the fight against disease causing organisms, replacing heavy metals and toxins. In the present work, mixed ligand complexes of metals like zinc, silver etc. and metal oxide have been synthesized using 8-hydroxyquinoline (HQ) as a primary ligand and N-and/O-donor amino acids such as L-serine, L-alanine, glycine, cysteine and histidine as secondary ligands. These complexes were characterized using different spectroscopic techniques. The complexes were tested for antifungal and antibacterial activity by using agar well diffusion bioassay.

  16. Structure-Activity Relationships of Somatostatin Analogs in the Rabbit Ileum and the Rat Colon

    PubMed Central

    Rosenthal, Linda E.; Yamashiro, Darrell J.; Rivier, Jean; Vale, Wylie; Brown, Marvin; Dharmsathaphorn, Kiertisin

    1983-01-01

    Somatostatin increases absorption of electrolytes and inhibits diarrhea in patients with endocrine tumors and short bowel syndrome. In an attempt to develop a gut-specific somatostatin analog, each amino acid in the somatostatin molecule was replaced with L-alanine, deleted, or substituted with its D-isomer. The potency of each analog to stimulate ion transport in the rabbit ileum was then determined using the modified Ussing chamber technique. The results were compared to the ability of each analog to inhibit the stimulated release of growth hormone from cultured rat anterior pituitary cells and to inhibit the arginine-stimulated release of insulin and glucagon in the rat in vivo. Analogs that showed gut selectivity were then tested for their ion transport properties in the rat colon. Results: (a) Substitution with L-alanine or deletion of the amino acid at position 6, 7, 8, or 9 and deletion of Threonine10-produced analogs with significantly reduced ion transport properties to <4% of somatostatin's action. The substitution also markedly reduced the ability of the compounds to inhibit the release of growth hormone, insulin, and glucagon. (b) Selectivity of intestinal ion transport was achieved by any one of the following alterations: L-alanine substitution at Phenylalanine11, deletion of Phenylalanine11, substitution with D-lysine at Lysine4, or substitution with L-alanine at Lysine4. These compounds had intestinal ion transport properties of 52, 34, 139, and 94%, respectively, while demonstrating little or no inhibition of growth hormone, insulin or glucagon release. Conclusions: (a) Phenylalanine6, Phenylalanine7, Tryptophan8, and Lysine9 are required for the ion transport and other biologic actions of somatostatin, whereas Threonine10 serves as an essential spacer. (b) Alteration at Phenylalanine11 or Lysine4 yields analogs that are selective for ion transport in the rabbit ileum and rat colon. These findings should be taken into consideration when developing a

  17. Growth and study of triglycine sulfate (TGS) crystals in low-G for infrared detector applications

    NASA Technical Reports Server (NTRS)

    Lal, R. B.; Batra, A. K.; Aggarwal, M. D.; Wilcox, W. R.; Trolinger, J. D.

    1991-01-01

    Experiments on growth of TGS crystals using (010) and (001) oriented disc shape seeds in the low gravity environment aboard Spacelab-3 are presented. The holographic interferograms reconstructed on the ground demonstrated diffusion limited growth. The morphology of the crystals grown was similar to that of crystals grown on earth, except the faces were not fully developed and planar. The device quality of these crytals is considered to be comparable with the best crystals grown on earth. Better infrared detector characteristics were obtained by doping TGS with Cs and L-alanine simultaneously on the ground. Crystals grown on (010) poled seeds show improved morphology and pyroelectric properties.

  18. Synthesis of homopolypeptides by aminolysis mediated by proteases encapsulated in silica nanospheres.

    PubMed

    Baker, Peter J; Patwardhan, Siddharth V; Numata, Keiji

    2014-11-01

    We report the encapsulation of three different proteases in bioinspired silica. Silica particles were formed under mild reaction conditions using cationic amine-rich ethyleneamines as initiators, which resulted in aggregations of nanoscale spheres. Following encapsulation, the proteases were characterized for their hydrolytic and aminolytic activities. The encapsulation resulted in an increase in the thermal stability of the proteases for both hydrolysis and aminolysis reactions. The enhanced thermal stability of the encapsulated proteases increased the production of poly-L-leucine by aminolysis. Furthermore, the encapsulation of papain resulted in an increase in the production of poly-L-alanine and poly-L-valine at 50 °C. PMID:25154484

  19. Demonstration of murine pancreas elastase and its interstrain variation by isoelectric focusing.

    PubMed

    von Deimling, O H; Gaa, A; Hameister, H

    1991-06-01

    Isoelectric focusing between pH 9 and 11 was used for separation of murine pancreas proteases. One of these proteases is characterized by its preference for N-acetyl-L-alanine-alpha-naphthylester as substrate and by its genetic linkage to bt, a coat color marker of chromosome 15. This protease was identified as elastase, and is probably elastase-1 (ELA-1). Because of the simple procedure and the excellent reproducibility of the focusing pattern, ELA-1 is recommended as a useful marker for mouse chromosome 15. PMID:1889396

  20. Polymerization of amino acids under primitive earth conditions.

    NASA Technical Reports Server (NTRS)

    Flores, J. J.; Ponnamperuma, C.

    1972-01-01

    Small amounts of peptides were obtained when equal amounts of methane and ammonia were reacted with vaporized aqueous solutions of C14-labeled glycine, L-alanine, L-aspartic acid, L-glutamic acid and L-threonine in the presence of a continuous spark discharge in a 24-hr cyclic process. The experiment was designed to demonstrate the possibility of peptide synthesis under simulated primeval earth conditions. It is theorized that some dehydration-condensation processes may have taken place, with ammonium cyanide, the hydrogencyanide tetramer or aminonitriles as intermediate products, during the early chemical evolution of the earth.

  1. In Vitro Bactericidal and Bacteriolytic Activity of Ceragenin CSA-13 against Planktonic Cultures and Biofilms of Streptococcus pneumoniae and Other Pathogenic Streptococci

    PubMed Central

    Menéndez, Margarita; García, Ernesto

    2014-01-01

    Ceragenin CSA-13, a cationic steroid, is here reported to show a concentration-dependent bactericidal/bacteriolytic activity against pathogenic streptococci, including multidrug-resistant Streptococcus pneumoniae. The autolysis promoted by CSA-13 in pneumococcal cultures appears to be due to the triggering of the major S. pneumoniae autolysin LytA, an N-acetylmuramoyl-L-alanine amidase. CSA-13 also disintegrated pneumococcal biofilms in a very efficient manner, although at concentrations slightly higher than those required for bactericidal activity on planktonic bacteria. CSA-13 has little hemolytic activity which should allow testing its antibacterial efficacy in animal models. PMID:25006964

  2. Slow-binding and competitive inhibition of 8-amino-7-oxopelargonate synthase, a pyridoxal-5'-phosphate-dependent enzyme involved in biotin biosynthesis, by substrate and intermediate analogs. Kinetic and binding studies.

    PubMed

    Ploux, O; Breyne, O; Carillon, S; Marquet, A

    1999-01-01

    8-Amino-7-oxopelargonate synthase catalyzes the first committed step of biotin biosynthesis in micro-organisms and plants. Because inhibitors of this pathway might lead to antibacterials or herbicides, we have undertaken an inhibition study on 8-amino-7-oxopelargonate synthase using six different compounds. d-Alanine, the enantiomer of the substrate of this pyridoxal-5'-phosphate-dependent enzyme was found to be a competitive inhibitor with respect to l-alanine with a Ki of 0.59 mm. The fact that this inhibition constant was four times lower than the Km for l-alanine was interpreted as the consequence of the inversion-retention stereochemistry of the catalyzed reaction. Schiff base formation between l or d-alanine and pyridoxal-5'-phosphate, in the active site of the enzyme, was studied using ultraviolet/visible spectroscopy. It was found that l and d-alanine form an external aldimine with equilibrium constants K = 4.1 mm and K = 37.8 mm, respectively. However, the equilibrium constant for d-alanine aldimine formation dramatically decreased to 1.3 mm in the presence of saturating concentration of pimeloyl-CoA, the second substrate. This result strongly suggests that the binding of pimeloyl-CoA induces a conformational change in the active site, and we propose that this new topology is complementary to d-alanine and to the putative reaction intermediate since they both have the same configuration. (+/-)-8-Amino-7-oxo-8-phosphonononaoic acid (1), the phosphonate derivative of the intermediate formed during the reaction, was our most potent inhibitor with a Ki of 7 microm. This compound behaved as a reversible slow-binding inhibitor, competitive with respect to l-alanine. Kinetic investigation showed that this slow process was best described by a one-step mechanism (mechanism A) with the following rate constants: k1 = 0.27 x 103 m-1.s-1, k2 = 1.8 s-1 and half-life for dissociation t1/2 = 6.3 min. The binding of compound 1 to the enzyme was also studied using

  3. Alpha-helical hydrophobic polypeptides form proton-selective channels in lipid bilayers

    NASA Technical Reports Server (NTRS)

    Oliver, A. E.; Deamer, D. W.

    1994-01-01

    Proton translocation is important in membrane-mediated processes such as ATP-dependent proton pumps, ATP synthesis, bacteriorhodopsin, and cytochrome oxidase function. The fundamental mechanism, however, is poorly understood. To test the theoretical possibility that bundles of hydrophobic alpha-helices could provide a low energy pathway for ion translocation through the lipid bilayer, polyamino acids were incorporated into extruded liposomes and planar lipid membranes, and proton translocation was measured. Liposomes with incorporated long-chain poly-L-alanine or poly-L-leucine were found to have proton permeability coefficients 5 to 7 times greater than control liposomes, whereas short-chain polyamino acids had relatively little effect. Potassium permeability was not increased markedly by any of the polyamino acids tested. Analytical thin layer chromatography measurements of lipid content and a fluorescamine assay for amino acids showed that there were approximately 135 polyleucine or 65 polyalanine molecules associated with each liposome. Fourier transform infrared spectroscopy indicated that a major fraction of the long-chain hydrophobic peptides existed in an alpha-helical conformation. Single-channel recording in both 0.1 N HCl and 0.1 M KCl was also used to determine whether proton-conducting channels formed in planar lipid membranes (phosphatidylcholine/phosphatidylethanolamine, 1:1). Poly-L-leucine and poly-L-alanine in HCl caused a 10- to 30-fold increase in frequency of conductive events compared to that seen in KCl or by the other polyamino acids in either solution. This finding correlates well with the liposome observations in which these two polyamino acids caused the largest increase in membrane proton permeability but had little effect on potassium permeability. Poly-L-leucine was considerably more conductive than poly-L-alanine due primarily to larger event amplitudes and, to a lesser extent, a higher event frequency. Poly-L-leucine caused two

  4. Dual effects of [Tyr(6)]-gamma2-MSH(6-12) on pain perception and in vivo hyperalgesic activity of its analogues.

    PubMed

    Wei, Chunnan; Huang, Wenmin; Xing, Xiaoting; Dong, Shouliang

    2010-09-01

    [Tyr(6)]-gamma2-MSH(6-12) with a short effecting time of about 20 min is one of the most potent rMrgC receptor agonists. To possibly increase its potency and metabolic stability, a series of analogues were prepared by replacing the Tyr(6) residue with the non-canonical amino acids 3-(1-naphtyl)-L-alanine, 4-fluoro-L-phenylalanine, 4-methoxy-L-phenylalanine and 3-nitro-L-tyrosine. Dose-dependent nociceptive assays performed in conscious rats by intrathecal injection of the MSH peptides showed [Tyr(6)]-gamma2-MSH(6-12) hyperalgesic effects at low doses (5-20 nmol) and analgesia at high doses (100-200 nmol). This analgesic activity is fully reversed by the kyotorphin receptor-specific antagonist Leu-Arg. For the two analogues containing in position 6, 4-fluoro-L-phenylalanine and 3-nitro-L-tyrosine, a hyperalgesic activity was not observed, while the 3-(1-naphtyl)-L-alanine analogue at 10 nmol dose was found to induce hyperalgesia at a potency very similar to gamma2-MSH(6-12), but with longer duration of the effect. Finally, the 4-methoxy-L-phenylalanine analogue (0.5 nmol) showed greatly improved hyperalgesic activity and prolonged effects compared to the parent [Tyr(6)]-gamma2-MSH(6-12) compound. PMID:20629198

  5. Contaminant-specific targeting of olfactory sensory neuron classes: connecting neuron class impairment with behavioural deficits.

    PubMed

    Dew, William A; Azizishirazi, Ali; Pyle, Greg G

    2014-10-01

    The olfactory system of fish comprises several classes of olfactory sensory neurons (OSNs). The odourants L-alanine and taurocholic acid (TCA) specifically activate microvillous or ciliated OSNs, respectively, in fish. We recorded electro-olfactograms (EOG) in fathead minnows (Pimephales promelas; a laboratory-reared model species) and wild yellow perch (Perca flavescens) whose olfactory chambers were perfused with either L-alanine or TCA to determine if OSN classes were differentially vulnerable to contaminants, in this case copper or nickel. Results were consistent in both species and demonstrated that nickel targeted and impaired microvillous OSN function, while copper targeted and impaired ciliated OSN function. This result suggests that contaminant-specific effects observed in model laboratory species extrapolate to wild fish populations. Moreover, fathead minnows exposed to copper failed to perceive a conspecific alarm cue in a choice maze, whereas those exposed to nickel could respond to the same conspecific cue. These results demonstrate that fathead minnows perceive conspecific, damage-released alarm cue by ciliated, but not microvillous, OSNs. Fish living in copper-contaminated environments may be more vulnerable to predation than those in clean lakes owing to targeted effects on ciliated OSNs. PMID:24630454

  6. Stimulation of olfactory receptors alters regulation of [Cai] in olfactory neurons of the catfish (Ictalurus punctatus).

    PubMed

    Restrepo, D; Boyle, A G

    1991-03-01

    Intracellular calcium was measured in single olfactory neurons from the channel catfish (Ictalurus punctatus) using the fluorescent Ca2+ indicator fura 2. In 5% of the cells, olfactory stimuli (amino acids) elicited an influx of calcium through the plasma membrane which led to a rapid transient increase in intracellular calcium concentration. Amino acids did not induce release of calcium from internal stores in these cells. Some cells responded specifically to one stimulus (L-alanine, L-arginine, L-norleucine and L-glutamate) while one cell responded to all stimuli. An increase in intracellular calcium could also be elicited in 50% of the cells by direct G-protein stimulation using aluminum fluoride. Because the fraction of cells which respond to direct G-protein stimulation is substantially larger than the fraction of cells responding to amino acids, we tested for possible damage of receptor proteins due to exposure of the olfactory neurons to papain during cell isolation. We find that pretreatment with papain does not alter specific binding of L-alanine and L-arginine to olfactory receptor sites in isolated olfactory cilia. The results are discussed in terms of their relevance to olfactory transduction. PMID:2051471

  7. Biochemical studies of olfaction: binding specificity of odorants to a cilia preparation from rainbow trout olfactory rosettes.

    PubMed

    Rhein, L D; Cagan, R H

    1983-08-01

    Cilia isolated from the olfactory epithelium (olfactory rosettes) of rainbow trout (Salmo gairdneri) bind amino acids, which are odor stimuli to this species. We demonstrate that L-threonine, L-serine, and L-alanine bind to a common site, TSA, in the cilia preparation. All possible mixtures of two of the amino acids as competitors, with the third as the 3H-labeled ligand, were studied. The effect of two combined (unlabeled) competitors was always substantially less than additive compared with their actions singly. Along with additional inhibition studies using mixtures of inhibitors, the data show that the three odorants must interact with at least one common binding site, TSA. Binding of L-[3H]lysine to site L was unaffected by addition of L-threonine, L-serine, or L-alanine, establishing its independence from site TSA. L-Arginine inhibited binding of L-[3H]lysine, showing that both of these basic amino acids interact with site L. The data establish the presence, in trout olfactory cilia, of at least two separate and noninteracting populations of odorant binding sites, TSA and L. PMID:6409997

  8. Modulation of antimicrobial effects of beta-lactams by amino acids in vitro.

    PubMed

    Gillissen, G; Schumacher, M; Breuer-Werle, M

    1991-06-01

    Glycine as well as 11 and 10, respectively, out of a total of 12 D-amino-acids tested increased the antimicrobial efficacy of imipenem (IMI) and of ampicillin (AMP) using the serosensitive strain E. coli ATCC 8739. D-proline was ineffective in assays with IMI as well as D-proline and D-leucine in assays with AMP. - In contrast, L-amino-acids behaved differently: In assays with IMI, 9 out of 13 isomers were ineffective whereas 3 were antagonistic (L-phenylalanine, L-serine, L-tryptophan). In combination with AMP, however, 10 L-amino acids had an antagonistic effect and 2 (L-leucine, L-methionine) were ineffective. L-alanine was an exception and showed a synergism with both antibiotics which was assumed to have been due to a racemase activity of cells. - Seroresistance of E. coli apparently reduced the synergistic effect of glycine and beta-lactams. - Glycine, alanine and tryptophan lost their typical synergistic or antagonistic effect with AMP when tested as di- or tri-amino-acid compounds. This was not the case with di-L-alanine - It is supposed that the synergistic effect of glycine or of D-amino-acids with beta-lactams can be explained mainly by an inhibition of carboxypeptidases. PMID:1930574

  9. Development of an orexin-2 receptor selective agonist, [Ala(11), D-Leu(15)]orexin-B.

    PubMed

    Asahi, Shuichi; Egashira, Shin-Ichiro; Matsuda, Masao; Iwaasa, Hisashi; Kanatani, Akio; Ohkubo, Mitsuru; Ihara, Masaki; Morishima, Hajime

    2003-01-01

    Investigation of L-alanine and D-amino acid replacement of orexin-B revealed that three L-leucine residues at the positions of 11, 14, and 15 in orexin-B were important to show selectivity for the orexin-2 receptor (OX(2)) over the orexin-1 receptor (OX(1)). L-Alanine substitution at position 11 and D-leucine substitution at positions 14 and 15 maintained the potency of orexin-B to mobilize [Ca(2+)](i) in CHO cells expressing the OX(2), while their potency for the OX(1) was significantly reduced. In combined substitutions, we identified that [Ala(11), D-Leu(15)]orexin-B showed a 400-fold selectivity for the OX(2) (EC(50)=0.13nM) over OX(1) (EC(50)=52nM). [Ala(11), D-Leu(15)]orexin-B is a beneficial tool for addressing the functional roles of the OX(2). PMID:12467628

  10. Greater Superficial Petrosal Nerve Transection in Rats does not Change Unconditioned Licking Responses to Putatively Sweet Taste Stimuli

    PubMed Central

    Jiang, Enshe; Blonde, Ginger; Garcea, Mircea

    2008-01-01

    The greater superficial petrosal nerve (GSP), innervating taste buds in the palate, is known to be exceptionally responsive to sucrose, especially compared with the responsiveness of the chorda tympani nerve (CT). However, whereas transection of the CT (CTX) alone has little or no effect on unconditioned licking responses to many “sweet” stimuli, the impact of GSP transection (GSPX) alone is equivocal. To further examine the role of the GSP on licking responses to putatively sweet-tasting substances, brief-access taste tests were conducted in nondeprived rats before and after sham surgery (SHAM) or CTX or GSPX. A range of concentrations of sucrose, L-alanine, glycine, and L-serine, with and without 1.0 mM inosine monophosphate (IMP) added, were used. All groups showed significant concentration-dependent increases in licking to all stimuli presurgically and postsurgically. CTX decreased licking responses relative to SHAM rats in the first sucrose test. There was also a group × concentration interaction for L-alanine, but post hoc tests did not reveal its basis. Other than this, there were no significant differences among the surgical groups. Interestingly, rats with GSPX tended to initiate fewer trials than SHAM rats. Overall, after GSPX, the remaining gustatory nerves are apparently sufficient to maintain concentration-dependent licking responses to all stimuli tested here. The disparity between our results and others in the literature where GSPX reduced licking responses to sucrose is possibly related to differences in surgical technique or test trial duration. PMID:18635557

  11. X-ray diffraction study of nanocrystalline and amorphous structure within major and minor ampullate dragline spider silks

    SciTech Connect

    Sampath, Sujatha; Isdebski, Thomas; Jenkins, Janelle E.; Ayon, Joel V.; Henning, Robert W.; Orgel, Joseph P.R.O.; Antipoa, Olga; Yarger, Jeffery L.

    2012-07-25

    Synchrotron X-ray micro-diffraction experiments were carried out on Nephila clavipes (NC) and Argiope aurantia (AA) major (MA) and minor ampullate (MiA) fibers that make up dragline spider silk. The diffraction patterns show a semi-crystalline structure with {beta}-poly(L-alanine) nanocrystallites embedded in a partially oriented amorphous matrix. A superlattice reflection 'S' diffraction ring is observed, which corresponds to a crystalline component larger in size and is poorly oriented, when compared to the {beta}-poly(L-alanine) nanocrystallites that are commonly observed in dragline spider silks. Crystallite size, crystallinity and orientation about the fiber axis have been determined from the wide-angle X-ray diffraction (WAXD) patterns. In both NC and AA, the MiA silks are found to be more highly crystalline, when compared with the corresponding MA silks. Detailed analysis on the amorphous matrix shows considerable differences in the degree of order of the oriented amorphous component between the different silks studied and may play a crucial role in determining the mechanical properties of the silks.

  12. Behavioral and electrophysiological dose-response relationships in adult western corn rootworm (Diabrotica virgifera virgifera LeConte) for host pollen amino acids.

    PubMed

    Hollister, Benedict; Mullin, Christopher A.

    1998-05-01

    A strong correlation is shown between taste cell inputs and phagostimulatory outputs with predominant dietary pollen amino acids for western corn rootworm, Diabrotica virgifera virgifera. Behavioral and electrophysiological dose-response profiles in adult beetles are presented for five major free amino acids in host pollens. Differential responses were found with strongest phagostimulation and sensory response elicited by L-alanine and L-serine, followed in order by L-proline and beta-alanine. gamma-Aminobutyric acid gave the weakest and most sporadic response. ED(50) values for phagostimulation and chemosensory input were 28.3nmol/disk and 13mM, respectively, for L-alanine and 17nmol/disk and 11mM, respectively, for serine. Threshold values for the responses were approximately 1-2mM. These behavioral and chemosensory dose-response ranges correspond closely to levels of free amino acids present in host plant pollens. Use of these response values in development of a pollen chemosensory code for western corn rootworm feeding is discussed. PMID:12770166

  13. Synthesis of deuterium-labelled halogen derivatives of L-tryptophan catalysed by tryptophanase.

    PubMed

    Winnicka, Elżbieta; Szymańska, Jolanta; Kańska, Marianna

    2016-06-01

    The isotopomers of halogen derivatives of l-tryptophan (l-Trp) (4'-F-, 7'-F-, 5'-Cl- and 7'-Br-l-Trp), specifically labelled with deuterium in α-position of the side chain, were obtained by enzymatic coupling of the corresponding halogenated derivatives of indole with S-methyl-l-cysteine in (2)H2O, catalysed by enzyme tryptophanase (EC 4.1.99.1). The positional deuterium enrichment of the resulting tryptophan derivatives was controlled using (1)H NMR. In accordance with the mechanism of the lyase reaction, a 100% deuterium labelling was observed in the α-position; the chemical yields were between 23 and 51%. Furthermore, β-F-l-alanine, synthesized from β-F-pyruvic acid by the l-alanine dehydrogenase reaction, has been tested as a coupling agent to obtain the halogenated deuterium-labelled derivatives of l-Trp. The chemical yield (∼30%) corresponded to that as observed with S-methyl-l-cysteine but the deuterium label was only 63%, probably due to the use of a not completely deuterated incubation medium. PMID:26586366

  14. Synthesis of nano-sized stereoselective imprinted polymer by copolymerization of (S)-2-(acrylamido) propanoic acid and ethylene glycol dimethacrylate in the presence of racemic propranolol and copper ion.

    PubMed

    Alizadeh, Taher; Bagherzadeh, Azam; Shamkhali, Amir Nasser

    2016-06-01

    A new chiral functional monomer of (S)-2-(acrylamido) propanoic acid was obtained by reaction of (l)-alanine with acryloyl chloride. The resulting monomer was characterized by FT-IR and HNMR and then utilized for the preparation of chiral imprinted polymer (CIP). This was carried out by copolymerization of (l)-alanine-derived chiral monomer and ethylene glycol dimethacrylate, in the presence of racemic propranolol and copper nitrate, via precipitation polymerization technique, resulting in nano-sized networked polymer particles. The polymer obtained was characterized by scanning electron microscopy and FT-IR. The non-imprinted polymer was also synthesized and used as blank polymer. Density functional theory (DFT) was also employed to optimize the structures of two diasterometric ternary complexes, suspected to be created in the pre-polymerization step, by reaction of optically active isomers of propranolol, copper ion and (S)-2-(acrylamido) propanoic acid. Relative energies and other characteristics of the described complexes, calculated by the DFT, predicted the higher stability of (S)-propranolol involved complex, compared to (R)-propranolol participated complex. Practical batch extraction test which employed CIP as solid phase adsorbent, indicated that the CIP recognized selectively (S)-propranolol in the racemic mixture of propranolol; whereas, the non-imprinted polymer (NIP) showed no differentiation capability between two optically active isomers of propranolol. PMID:27040217

  15. Chiral resolution of salbutamol in plasma sample by a new chiral ligand-exchange chromatography method after its extraction with nano-sized imprinted polymer.

    PubMed

    Alizadeh, Taher; Shamkhali, Amir Naser

    2016-01-15

    A new chromatographic procedure, based upon chiral ligand-exchange principal, was developed for the resolution of salbutamol enantiomers. The separation was carried out on a C18 column. (l)-Alanine and Cu(2+) were applied as chiral resolving agent and complexing ion, respectively. The kind of copper salt had definitive effect on the enantioseparation. Density functional theory (DFT) was used to substantiate the effect of various anions, accompanying Cu(2+), on the formation of ternary complexes, assumed to be created during separation process. The DFT results showed that the anion kind had huge effect on the stability difference between two corresponding diastereomeric complexes and their chemical structures. It was shown that the extent of participation of the chiral selector in the ternary diastereomeric complexes formation was managed by the anion kind, affecting thus the enantioseparation efficiency of the developed method. Water/methanol (70:30) mixture containing (l)-alanine-Cu(2+) (4:1) was found to be the best mobile phase for salbutamol enantioseparation. In order to analyze sulbutamol enantiomers in plasma samples, racemic salbutamol was first extracted from the samples via nano-sized salbutamol-imprinted polymer and then enantioseparated by the developed method. PMID:26720698

  16. D-Galacturonic Acid: A Highly Reactive Compound in Nonenzymatic Browning. 2. Formation of Amino-Specific Degradation Products.

    PubMed

    Wegener, Steffen; Bornik, Maria-Anna; Kroh, Lothar W

    2015-07-22

    Thermal treatment of aqueous solutions of D-galacturonic acid and L-alanine at pH 3, 5, and 8 led to rapid and more intensive nonenzymatic browning reactions compared to similar solutions of other uronic acids and to Maillard reactions of reducing sugars. The hemiacetal ring structures of uronic acids had a high impact on browning behavior and reaction pathways. Besides reductic acid (1,2-dihydroxy-2-cyclopenten-1-one), 4,5-dihydroxy-2-cyclopenten-1-one (DHCP), furan-2-carboxaldehyde, and norfuraneol (4-hydroxy-5-methyl-3-(2H)-furanone) could be detected as typical products of nonenzymatic uronic acid browning reactions. 2-(2-Formyl-1H-pyrrole-1-yl)propanoic acid (FPA) and 1-(1-carboxyethyl)-3-hydroxypyridin-1-ium (HPA) were identified as specific reaction products of uronic acids with amine participation like l-alanine. In contrast, the structurally related D-galacturonic acid methyl ester showed less browning activity and degradation under equal reaction conditions. Pectin-specific degradation products such as 5-formyl-2-furanoic acid and 2-furanoic acid were found but could not be verified for d-galacturonic acid monomers alone. PMID:26111613

  17. Identification of a Vibrio cholerae chemoreceptor that senses taurine and amino acids as attractants.

    PubMed

    Nishiyama, So-ichiro; Takahashi, Yohei; Yamamoto, Kentaro; Suzuki, Daisuke; Itoh, Yasuaki; Sumita, Kazumasa; Uchida, Yumiko; Homma, Michio; Imada, Katsumi; Kawagishi, Ikuro

    2016-01-01

    Vibrio cholerae, the etiological agent of cholera, was found to be attracted by taurine (2-aminoethanesulfonic acid), a major constituent of human bile. Mlp37, the closest homolog of the previously identified amino acid chemoreceptor Mlp24, was found to mediate taxis to taurine as well as L-serine, L-alanine, L-arginine, and other amino acids. Methylation of Mlp37 was enhanced upon the addition of taurine and amino acids. Isothermal titration calorimetry demonstrated that a purified periplasmic fragment of Mlp37 binds directly to taurine, L-serine, L-alanine and L-arginine. Crystal structures of the periplamic domain of Mlp37 revealed that L-serine and taurine bind to the membrane-distal PAS domain in essentially in the same way. The structural information was supported by characterising the in vivo properties of alanine-substituted mutant forms of Mlp37. The fact that the ligand-binding domain of the L-serine complex had a small opening, which would accommodate a larger R group, accounts for the broad ligand specificity of Mlp37 and allowed us to visualise ligand binding to Mlp37 with fluorescently labelled L-serine. Taken together, we conclude that Mlp37 serves as the major chemoreceptor for taurine and various amino acids. PMID:26878914

  18. Digestion under duress: nutrient acquisition and metabolism during hypoxia in the Pacific hagfish.

    PubMed

    Bucking, Carol; Glover, Chris N; Wood, Chris M

    2011-01-01

    Hagfish feed by immersing themselves in the body cavities of decaying animals. This ensures a rich nutrient source for absorption via the gills, skin, and gut, but it may also subject hagfish to reduced levels of dissolved oxygen and elevated levels of the products of biological degradation. This study investigated the impacts of hypoxia and ammonia on the assimilation and metabolism of selected nutrients (glycine, l-alanine, and glucose) in Pacific hagfish (Eptatretus stoutii). Throughout exposure to hypoxia, plasma glucose levels increased. This was not accompanied by an increase in gut glucose transport, which suggests mobilization of glucose from body glycogen stores. Hypoxia preexposure enhanced glycine absorption across the gut and the gill, although l-alanine uptake was unchanged in these tissues. A 24-h period of exposure to hypoxia in hagfish concurrently exposed to waterborne radio-labeled glycine led to a large (5.7-fold) increase in brain glycine accumulation. Preexposure to high levels of waterborne ammonia (10 mM) for 24 h had no impact on gut or skin glycine uptake. These results indicate that hagfish are adapted to maintain nutrient assimilation despite environmental stressors and that tissue-specific absorption of key nutrients such as glycine can even be enhanced in order to sustain critical functions during hypoxia. PMID:22030853

  19. Purification, characterization, and cDNA cloning of opine dehydrogenases from the polychaete rockworm Marphysa sanguinea.

    PubMed

    Endo, Noriyuki; Kan-no, Nobuhiro; Nagahisa, Eizoh

    2007-06-01

    Alanopine dehydrogenase (AlDH) and three isoforms of strombine/alanopine dehydrogenase (St/AlDH) were purified from muscle tissue of the polychaete rockworm Marphysa sanguinea. The four enzymes, which can be distinguished by the isoelectric point, are monomeric 42 kDa proteins, possess similar pH-activity profiles, and display specificity for pyruvate and NAD(H). The three isoforms of St/AlDH show equivalent Km and Vmax for glycine and L-alanine and for D-strombine and meso-alanopine. Free amino acid levels in the muscle and D-strombine accumulation in vivo during muscle activity suggest that St/AlDHs function physiologically as StDH. AlDH shows specificity for L-alanine and meso-alanopine, but not for glycine or D-strombine. The amino acid sequences of AlDH and one of the St/AlDH isoforms were determined by a combination of amino acid sequence analysis and cDNA cloning. St/AlDH cDNA consisted of 1586 bp nucleotides that encode a 399-residue protein (43,346.70 Da), and AlDH cDNA consisted of 1587 bp nucleotides that encode a 399-residue protein (43,886.68 Da). The two amino acid sequences deduced from the cDNA displayed 67% amino acid identity, with greatest similarity to that of tauropine dehydrogenase from the polychaete Arabella iricolor. PMID:17350870

  20. Forced swimming and imipramine modify plasma and brain amino acid concentrations in mice.

    PubMed

    Murakami, Tatsuro; Yamane, Haruka; Tomonaga, Shozo; Furuse, Mitsuhiro

    2009-01-01

    The relationships between monoamine metabolism and forced swimming or antidepressants have been well studied, however information is lacking regarding amino acid metabolism under these conditions. Therefore, the aim of the present study was to investigate the effects of forced swimming and imipramine on amino acid concentrations in plasma, the cerebral cortex and the hypothalamus in mice. Forced swimming caused cerebral cortex concentrations of L-glutamine, L-alanine, and taurine to be increased, while imipramine treatment caused decreased concentrations of L-glutamate, L-alanine, L-tyrosine, L-methionine, and L-ornithine. In the hypothalamus, forced swimming decreased the concentration of L-serine while imipramine treatment caused increased concentration of beta-alanine. Forced swimming caused increased plasma concentration of taurine, while concentrations of L-serine, L-asparagine, L-glutamine and beta-alanine were decreased. Imipramine treatment caused increased plasma concentration of all amino acid, except for L-aspartate and taurine. In conclusion, forced swimming and imipramine treatment modify central and peripheral amino acid metabolism. These results may aid in the identification of amino acids that have antidepressant-like effects, or may help to refine the dosages of antidepressant drugs. PMID:19010319

  1. Enhancing (L)-isoleucine production by thrABC overexpression combined with alaT deletion in Corynebacterium glutamicum.

    PubMed

    Wang, Jing; Wen, Bing; Wang, Jian; Xu, Qingyang; Zhang, Chenglin; Chen, Ning; Xie, Xixian

    2013-09-01

    L-isoleucine is synthesized from 2-ketobutyrate and pyruvate in Corynebacterium glutamicum, and the supplies of these two precursors are important for L-isoleucine synthesis. C. glutamicum YILWΔalaT with alaT gene deletion (encoding alanine aminotransferase, a principal enzyme for L-alanine synthesis) was constructed to increase intracellular pyruvate availability, and the thrABC genes from Escherichia coli (encoding bifunctional aspartate kinase I-homoserine dehydrogenase I, homoserine kinase, and threonine synthetase) were overexpressed in C. glutamicum YILW and YILWΔalaT to increase the supply of intracellular 2-ketobutyrate. In the fed-batch fermentation, YILWpXMJ19thrABC, YILWΔalaT, and YILWΔalaTpXMJ19thrABC exhibited 5.3, 17.6, and 8.4 % higher L-isoleucine production than the original strain, respectively. Both YILWpXMJ19thrABC and YILWΔalaT excreted lower concentrations of L-lysine, L-alanine, and L-valine. YILWΔalaTpXMJ19thrABC exhibited a cumulative reduction of these by-products excretion, which indicated that thrABC overexpression combined with alaT deletion resulted in the metabolic flux redistribution from 2-ketobutyrate and pyruvate to L-isoleucine synthesis, and decreased the fluxes to by-products synthesis accordingly. PMID:23813403

  2. Temperature effects in first-principles solid state calculations of the chemical shielding tensor made simple

    SciTech Connect

    Monserrat, Bartomeu Needs, Richard J.; Pickard, Chris J.

    2014-10-07

    We study the effects of atomic vibrations on the solid-state chemical shielding tensor using first principles density functional theory calculations. At the harmonic level, we use a Monte Carlo method and a perturbative expansion. The Monte Carlo method is accurate but computationally expensive, while the perturbative method is computationally more efficient, but approximate. We find excellent agreement between the two methods for both the isotropic shift and the shielding anisotropy. The effects of zero-point quantum mechanical nuclear motion are important up to relatively high temperatures: at 500 K they still represent about half of the overall vibrational contribution. We also investigate the effects of anharmonic vibrations, finding that their contribution to the zero-point correction to the chemical shielding tensor is small. We exemplify these ideas using magnesium oxide and the molecular crystals L-alanine and β-aspartyl-L-alanine. We therefore propose as the method of choice to incorporate the effects of temperature in solid state chemical shielding tensor calculations using the perturbative expansion within the harmonic approximation. This approach is accurate and requires a computational effort that is about an order of magnitude smaller than that of dynamical or Monte Carlo approaches, so these effects might be routinely accounted for.

  3. Identification of a Vibrio cholerae chemoreceptor that senses taurine and amino acids as attractants

    PubMed Central

    Nishiyama, So-ichiro; Takahashi, Yohei; Yamamoto, Kentaro; Suzuki, Daisuke; Itoh, Yasuaki; Sumita, Kazumasa; Uchida, Yumiko; Homma, Michio; Imada, Katsumi; Kawagishi, Ikuro

    2016-01-01

    Vibrio cholerae, the etiological agent of cholera, was found to be attracted by taurine (2-aminoethanesulfonic acid), a major constituent of human bile. Mlp37, the closest homolog of the previously identified amino acid chemoreceptor Mlp24, was found to mediate taxis to taurine as well as L-serine, L-alanine, L-arginine, and other amino acids. Methylation of Mlp37 was enhanced upon the addition of taurine and amino acids. Isothermal titration calorimetry demonstrated that a purified periplasmic fragment of Mlp37 binds directly to taurine, L-serine, L-alanine and L-arginine. Crystal structures of the periplamic domain of Mlp37 revealed that L-serine and taurine bind to the membrane-distal PAS domain in essentially in the same way. The structural information was supported by characterising the in vivo properties of alanine-substituted mutant forms of Mlp37. The fact that the ligand-binding domain of the L-serine complex had a small opening, which would accommodate a larger R group, accounts for the broad ligand specificity of Mlp37 and allowed us to visualise ligand binding to Mlp37 with fluorescently labelled L-serine. Taken together, we conclude that Mlp37 serves as the major chemoreceptor for taurine and various amino acids. PMID:26878914

  4. Comparative genomics for mycobacterial peptidoglycan remodelling enzymes reveals extensive genetic multiplicity

    PubMed Central

    2014-01-01

    Background Mycobacteria comprise diverse species including non-pathogenic, environmental organisms, animal disease agents and human pathogens, notably Mycobacterium tuberculosis. Considering that the mycobacterial cell wall constitutes a significant barrier to drug penetration, the aim of this study was to conduct a comparative genomics analysis of the repertoire of enzymes involved in peptidoglycan (PG) remodelling to determine the potential of exploiting this area of bacterial metabolism for the discovery of new drug targets. Results We conducted an in silico analysis of 19 mycobacterial species/clinical strains for the presence of genes encoding resuscitation promoting factors (Rpfs), penicillin binding proteins, endopeptidases, L,D-transpeptidases and N-acetylmuramoyl-L-alanine amidases. Our analysis reveals extensive genetic multiplicity, allowing for classification of mycobacterial species into three main categories, primarily based on their rpf gene complement. These include the M. tuberculosis Complex (MTBC), other pathogenic mycobacteria and environmental species. The complement of these genes within the MTBC and other mycobacterial pathogens is highly conserved. In contrast, environmental strains display significant genetic expansion in most of these gene families. Mycobacterium leprae retains more than one functional gene from each enzyme family, underscoring the importance of genetic multiplicity for PG remodelling. Notably, the highest degree of conservation is observed for N-acetylmuramoyl-L-alanine amidases suggesting that these enzymes are essential for growth and survival. Conclusion PG remodelling enzymes in a range of mycobacterial species are associated with extensive genetic multiplicity, suggesting functional diversification within these families of enzymes to allow organisms to adapt. PMID:24661741

  5. Alteration of substrate specificity of alanine dehydrogenase

    PubMed Central

    Fernandes, Puja; Aldeborgh, Hannah; Carlucci, Lauren; Walsh, Lauren; Wasserman, Jordan; Zhou, Edward; Lefurgy, Scott T.; Mundorff, Emily C.

    2015-01-01

    The l-alanine dehydrogenase (AlaDH) has a natural history that suggests it would not be a promising candidate for expansion of substrate specificity by protein engineering: it is the only amino acid dehydrogenase in its fold family, it has no sequence or structural similarity to any known amino acid dehydrogenase, and it has a strong preference for l-alanine over all other substrates. By contrast, engineering of the amino acid dehydrogenase superfamily members has produced catalysts with expanded substrate specificity; yet, this enzyme family already contains members that accept a broad range of substrates. To test whether the natural history of an enzyme is a predictor of its innate evolvability, directed evolution was carried out on AlaDH. A single mutation identified through molecular modeling, F94S, introduced into the AlaDH from Mycobacterium tuberculosis (MtAlaDH) completely alters its substrate specificity pattern, enabling activity toward a range of larger amino acids. Saturation mutagenesis libraries in this mutant background additionally identified a double mutant (F94S/Y117L) showing improved activity toward hydrophobic amino acids. The catalytic efficiencies achieved in AlaDH are comparable with those that resulted from similar efforts in the amino acid dehydrogenase superfamily and demonstrate the evolvability of MtAlaDH specificity toward other amino acid substrates. PMID:25538307

  6. -aminobutyric acid as a required germinant for mutant spores of Bacillus megaterium.

    PubMed

    Foerster, H F

    1971-11-01

    Germinated spores of Bacillus megaterium QM B1551 were irradiated with ultraviolet light, and spore-forming survivors were screened for germination requirements. Spore strains which failed to germinate in a variety of defined solutions germinative for spores of the parent strain were obtained. Mutant spores germinated readily in solutions containing yeast extract or one of numerous complex preparations. gamma-Aminobutyric acid, obtained from yeast extract by column chromatography, was shown to be required for germination by the mutant spores. gamma-Aminobutyric acid and l-alanine at final concentrations of 1 mm each, in solutions of KI (40 mm), equaled the potency of yeast extract (1 mg/ml) in the germination of the mutant spores. One of several other amino acids could be substituted, though less effectively, for l-alanine. alpha-Aminobutyric acid, beta-aminobutyric acid, beta-alanine, and 5-aminovaleric acid were ineffective substitutes for gamma-aminobutyric acid in mutant spore germination. PMID:5001872

  7. Exploring Solute-Solvent Interactions of -Amino Acids in Aqueous [] Arrangements by Volumetric, Viscometric, Refractometric, and Acoustic Approach

    NASA Astrophysics Data System (ADS)

    Roy, Mahendra Nath; Roy, Milan Chandra; Basak, Saptarshi

    2014-05-01

    Qualitative and quantitative analysis of molecular interaction prevailing in glycine, l-alanine, l-valine, and aqueous solution of ionic liquid (IL) [1-ethylpyridinium tetrafluoroborate (] have been investigated by thermophysical properties. The apparent molar volume (), viscosity -coefficient, molal refraction (), and adiabatic compressibility ( of glycine, l-alanine, and l-valine have been studied in 0.001 mol , 0.003 mol , and 0.005 mol aqueous 1-ethylpyridinium tetrafluoroborate [] solutions at 298.15 K from the values of densities , viscosities (), refractive index (, and speed of sound , respectively. The extent of interaction, i.e., the solute-solvent interaction is expressed in terms of the limiting apparent molar volume (, viscosity -coefficient, and limiting apparent molar adiabatic compressibility (. The limiting apparent molar volumes (, experimental slopes ( derived from the Masson equation, and viscosity - and -coefficients using the Jones-Dole equation have been interpreted in terms of ion-ion and ion-solvent interactions, respectively. Molal refractions ( have been calculated with the help of the Lorentz-Lorenz equation. The role of the solvent (aqueous IL solution) and the contribution of solute-solute and solute-solvent interactions to the solution complexes have also been analyzed through the derived properties.

  8. Neurotoxic cyanobacterial toxins.

    PubMed

    Aráoz, Rómulo; Molgó, Jordi; Tandeau de Marsac, Nicole

    2010-10-01

    Worldwide development of cyanobacterial blooms has significantly increased in marine and continental waters in the last century due to water eutrophication. This phenomenon is favoured by the ability of planktonic cyanobacteria to synthesize gas vesicles that allow them to float in the water column. Besides, benthic cyanobacteria that proliferate at the bottom of lakes, rivers and costal waters form dense mats near the shore. Cyanobacterial massive proliferation is of public concern regarding the capacity of certain cyanobacterial strains to produce hepatotoxic and neurotoxic compounds that can affect public health, human activities and wild and stock animals. The cholinergic synapses and voltage-gated sodium channels constitute the targets of choice of cyanobacterial neurotoxins. Anatoxin-a and homoanatoxin-a are agonists of nicotinic acetylcholine receptors. Anatoxin-a(s) is an irreversible inhibitor of acetylcholinesterase. Saxitoxin, kalkitoxin and jamaicamide are blockers of voltage-gated sodium channels, whereas antillatoxin is an activator of such channels. Moreover the neurotoxic amino acid l-beta-N-methylamino-l-alanine was shown to be produced by diverse cyanobacterial taxa. Although controversial, increasing in vivo and in vitro evidence suggest a link between the ingestion of l-beta-N-methylamino-l-alanine and the development of amyotrophic lateral sclerosis/Parkinsonism-dementia complex, a neurodegenerative disease. This paper reviews the occurrence of cyanobacterial neurotoxins, their chemical properties, mode of action and biosynthetic pathways. PMID:19660486

  9. Metabolic changes in rats after intragastric administration of MGCD0103 (Mocetinostat), a HDAC class I inhibitor

    PubMed Central

    Zhang, Qingwei; Wu, Haiya; Wen, Congcong; Sun, Fa; Yang, Xuezhi; Hu, Lufeng

    2015-01-01

    MGCD0103, an isotype-selective HDACi, has been clinically evaluated for the treatment of hematologic malignancies and advanced solid tumors, alone and in combination with standard-of-care agents. In this study, we developed a serum metabolomic method based on gas chromatography-mass spectrometry (GC-MS) to evaluate the effect of intragastric administration of MGCD0103 on rats. The MGCD0103 group rats were given 20, 40, 80 mg/kg of MGCD0103 by intragastric administration each day for 7 days. Pattern recognition analysis, including both principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) revealed that intragastric administration of MGCD0103 induced metabolic perturbations. As compared to the control group, the levels of L-alanine, L-isoleucine, and L-leucine of MGCD0103 group decreased. The results indicate that metabolomic methods based on GC-MS may be useful to elucidate side effect of MGCD0103 through the exploration of biomarkers (L-alanine, L-isoleucine, and L-leucine). According to the pathological changes of liver at difference dosage, MGCD0103 is hepatotoxic and its toxity is dose-dependent. PMID:26464683

  10. Observation of 1H-13C and 1H-1H proximities in a paramagnetic solid by NMR at high magnetic field under ultra-fast MAS.

    PubMed

    Li, Shenhui; Trébosc, Julien; Lafon, Olivier; Zhou, Lei; Shen, Ming; Pourpoint, Frédérique; Amoureux, Jean-Paul; Deng, Feng

    2015-02-01

    The assignment of NMR signals in paramagnetic solids is often challenging since: (i) the large paramagnetic shifts often mask the diamagnetic shifts specific to the local chemical environment, and (ii) the hyperfine interactions with unpaired electrons broaden the NMR spectra and decrease the coherence lifetime, thus reducing the efficiency of usual homo- and hetero-nuclear NMR correlation experiments. Here we show that the assignment of (1)H and (13)C signals in isotopically unmodified paramagnetic compounds with moderate hyperfine interactions can be facilitated by the use of two two-dimensional (2D) experiments: (i) (1)H-(13)C correlations with (1)H detection and (ii) (1)H-(1)H double-quantum↔single-quantum correlations. These methods are experimentally demonstrated on isotopically unmodified copper (II) complex of l-alanine at high magnetic field (18.8 T) and ultra-fast Magic Angle Spinning (MAS) frequency of 62.5 kHz. Compared to (13)C detection, we show that (1)H detection leads to a 3-fold enhancement in sensitivity for (1)H-(13)C 2D correlation experiments. By combining (1)H-(13)C and (1)H-(1)H 2D correlation experiments with the analysis of (13)C longitudinal relaxation times, we have been able to assign the (1)H and (13)C signals of each l-alanine ligand. PMID:25557861

  11. Efficient Enzymatic Preparation of (13) N-Labelled Amino Acids: Towards Multipurpose Synthetic Systems.

    PubMed

    da Silva, Eunice S; Gómez-Vallejo, Vanessa; Baz, Zuriñe; Llop, Jordi; López-Gallego, Fernando

    2016-09-12

    Nitrogen-13 can be efficiently produced in biomedical cyclotrons in different chemical forms, and its stable isotopes are present in the majority of biologically active molecules. Hence, it may constitute a convenient alternative to Fluorine-18 and Carbon-11 for the preparation of positron-emitter-labelled radiotracers; however, its short half-life demands for the development of simple, fast, and efficient synthetic processes. Herein, we report the one-pot, enzymatic and non-carrier-added synthesis of the (13) N-labelled amino acids l-[(13) N]alanine, [(13) N]glycine, and l-[(13) N]serine by using l-alanine dehydrogenase from Bacillus subtilis, an enzyme that catalyses the reductive amination of α-keto acids by using nicotinamide adenine dinucleotide (NADH) as the redox cofactor and ammonia as the amine source. The integration of both l-alanine dehydrogenase and formate dehydrogenase from Candida boidinii in the same reaction vessel to facilitate the in situ regeneration of NADH during the radiochemical synthesis of the amino acids allowed a 50-fold decrease in the concentration of the cofactor without compromising reaction yields. After optimization of the experimental conditions, radiochemical yields were sufficient to carry out in vivo imaging studies in small rodents. PMID:27515007

  12. Effect alteration of methamphetamine by amino acids or their salts on ambulatory activity in mice.

    PubMed

    Kuribara, H; Tadokoro, S

    1983-02-01

    Effect alterations of methamphetamine by pretreatment of amino acids or their salts on ambulatory activity in mice were investigated to confirm a fact that certain amino acids, particularly monosodium L-glutamate, are added to methamphetamine by the street users, and that the amino acids augment the effect of methamphetamine. The ambulatory activity of mouse was measured by a tilting-type round activity cage of 25 cm in diameter. The amino acids or their salts tested were monosodium L-glutamate, monosodium L-aspartate, gamma-amino-butyric acid, L-alanine, L-lysine hydrochloride and L-arginine hydrochloride. A single administration of each chemical at doses of 1 and 2 g/kg i.p. did not induce a marked change in the ambulatory activity in mice. Methamphetamine 2 mg/kg s.c. induced an increase in the ambulatory activity with a peak at 40 min after the administration, and the increased ambulatory activity persisted for 3 hr. The ambulation-increasing effect of methamphetamine was augmented by the pretreatment of monosodium L-glutamate and monosodium L-aspartate at 30 min before the methamphetamine administration, while attenuated by the pretreatment of L-lysine hydrochloride and L-arginine hydrochloride in a dose-dependent manner. Gamma-aminobutyric acid and L-alanine did not affect the effect of methamphetamine. Similar augmentation and attenuation in the ambulation-increasing effect of methamphetamine were induced by the pretreatment of sodium bicarbonate 0.9 g/kg i.p. (urinary alkalizer) and ammonium chloride 0.07 g/kg i.p. (urinary acidifier), respectively. The urinary pH level was elevated by the administration of monosodium L-glutamate, monosodium L-aspartate and sodium bicarbonate, and decreased by L-lysine hydrochloride, L-arginine hydrochloride and ammonium chloride. Gamma-aminobutyric acid and L-alanine did not elicit a marked change in the urinary pH level. The present experiment confirms the fact in human that monosodium L-glutamate augments the effect of

  13. Functional and molecular characteristics of system L in human breast cancer cells.

    PubMed

    Shennan, D B; Thomson, J; Barber, M C; Travers, M T

    2003-04-01

    The functional and molecular properties of system L in human mammary cancer cells (MDA-MB-231 and MCF-7) have been examined. All transport experiments were conducted under Na(+)-free conditions. alpha-Aminoisobutyric acid (AIB) uptake by MDA-MB-231 and MCF-7 cells was almost abolished by BCH (2-amino-2-norbornane-carboxylic acid). AIB uptake by MDA-MB-231 cells was also inhibited by L-alanine (83.6%), L-lysine (75.6%) but not by L-proline. Similarly, L-lysine and L-alanine, respectively, reduced AIB influx into MCF-7 cells by 45.3% and 63.7%. The K(m) of AIB uptake into MDA-MB-231 and MCF-7 cells was, respectively, 1.6 and 8.8 mM, whereas the V(max) was, respectively, 9.7 and 110.0 nmol/mg protein/10 min. AIB efflux from MDA-MB-231 and MCF-7 cells was trans-stimulated by BCH, L-glutamine, L-alanine, L-leucine, L-lysine and AIB (all at 2 mM). In contrast, L-glutamate, L-proline, L-arginine and MeAIB had no effect. The interaction between L-lysine and AIB efflux was one of low affinity. The fractional release of AIB from MDA-MB-231 cells was trans-accelerated by D-leucine and D-tryptophan but not by D-alanine. MDA-MB-231 and MCF-7 cells expressed LAT1 and CD98 mRNA. MCF-7 cells also expressed LAT2 mRNA. The results suggest that AIB transport in mammary cancer cells under Na(+)-free conditions is predominantly via system L which acts as an exchange mechanism. The differences in the kinetics of AIB transport between MDA-MB-231 and MCF-7 cells may be due to the differential expression of LAT2. PMID:12659948

  14. Repression and inhibition of transport systems for branched-chain amino acids in Salmonella typhimurium.

    PubMed

    Kiritani, K; Ohnishi, K

    1977-02-01

    Kinetics of the transport systems common for entry of L-isoleucine, L-leucine, and L-valine in Salmonella typhimurium LT2 have been analyzed as a function of substrateconcentration in the range of 0.5 to 45 muM. The systems of transport mutants, KA203 (ilvT3) and KA204 (ilvT4), are composed of two components; apparent Km values for uptake of isoleucine, leucine, and valine by the low Km component are 2 muM, 2 to 3 muM, and 1 muM, respectively, and by the high Km component 30 muM, 20 to 40 muM, and 0.1 mM, respectively. The transport system(s) of the wild type has not been separated into components but rather displays single Km values of 9 muM for isoleucine, 10 muM for leucine, and 30 muM for valine. The transport activity of the wild type was repressed by L-leucine, alpha ketoisocaproate, glycyl-L-isoleucine, glycyl-L-leucine, and glycyl-L-methionine. That for the transport mutants was repressed by L-alanine, L-isoleucine, L-methionine, L-valine, alpha-ketoisovalerate, alpha-keto-beta-methylvalerate, glycyl-L-alanine, glycyl-L-threonine, and glycyl-L-valine, in addition to the compounds described above. Repression of the mutant transport systems resulted in disappearance of the low Km component for valine uptake, together with a decrease in Vmax of the high Km component; the kinetic analysis with isoleucine and leucine as substrates was not possible because of poor uptake. The maximum reduction of the transport activity for isoleucine was obtained after growing cells for two to three generations in a medium supplemented with repressor, and for the depression, protein synthesis was essential after removal of the repressor. The transport activity for labeled isoleucine in the transport mutant and wild-type strains was inhibited by unlabeled L-alanine, L-cysteine, L-isoleucine, L-leucine, L-methionine, L-threonine, and L-valine. D-Amino acids neither repressed nor inhibited the transport activity of cells for entry of isoleucine. PMID:320186

  15. Crystal structure of an unknown solvate of dodecakis-(μ2-alaninato-1:2κ(2) O:N,O)cerium(III)hexa-nickel(II) aqua-tris-(hydroxido-κO)tris-(nitrato-κ(2) O,O')cerate(III).

    PubMed

    Bezzubov, Stanislav I; Doljenko, Vladimir D; Churakov, Andrei V; Zharinova, Irina S; Kiselev, Yuri M

    2015-10-01

    The chiral title compound, [CeNi6(C3H6NO2)12][Ce(NO3)3(OH)3(H2O)], comprises a complex heterometallic Ni/Ce cation and a homonuclear Ce anion. Both the cation and anion exhibit point group symmetry 3. with the Ce(III) atom situated on the threefold rotation axis. The cation metal core consists of six Ni(II) atoms coordinated in a slightly distorted octa-hedral N2O4 configuration by N and O atoms of 12 deprotonated l-alaninate ligands exhibiting both bridging and chelating modes. This metal-organic coordination motif encapsulates one Ce(III) atom that shows an icosa-hedral coordination by the O-donor atoms of the l-alaninate ligands, with Ce-O distances varying in the range 2.455 (5)-2.675 (3) Å. In the anion, the central Ce(III) ion is bound to three bidentate nitrate ligands, to three hydroxide ligands and to one water mol-ecule, with Ce-O distances in the range 2.6808 (19)-2.741 (2) Å. The H atoms of the coordinating water mol-ecule are disordered over three positions due to its location on a threefold rotation axis. Disorder is also observed in fragments of two l-alaninate ligands, with occupancy ratios of 0.608 (14):0.392 (14) and 0.669 (8):0.331 (8), respectively, for the two sets of sites. In the crystal, the complex cations and anions assemble through O-H⋯O and N-H⋯O hydrogen bonds into a three-dimensional network with large voids of approximately 1020 Å(3). The contributions of highly disordered ethanol and water solvent mol-ecules to the diffraction data were removed with the SQUEEZE procedure [Spek (2015 ▸). Acta Cryst. C71, 9-18]. The given chemical formula and other crystal data do not take into account the unknown amount of these solvent mol-ecules. PMID:26594427

  16. /sup 13/N-labeled L-amino acids for in vivo assessment of local myocardial metabolism

    SciTech Connect

    Baumgartner, F.J.; Barrio, J.R.; Henze, E.; Schelbert, H.R.; MacDonald, N.S.; Phelps, M.E.; Kuhl, D.E.

    1981-06-01

    The hot cell synthesis of sterile, pyrogen-free /sup 13/N-labeled L-amino acids was accomplished by employing the appropriate immobilized enzymes on a CNBr-activated Sepharose support and using remote, semiautomated systems. The syntheses were completed 6-12 min after cyclotron production of (/sup 13/N)ammonia. Myocardial time-activity curves after intracoronary injection of /sup 13/N-labeled L-amino acids in dogs were triexponential in both normal and ischemic myocardium. Higher retention of /sup 13/N activity was observed in ischemic segments. Positron computed tomography imaging also showed increased uptake of /sup 13/N-labeled L-glutamate and L-alanine in ischemic segments compared with normal myocardium when blood flow corrections were made. Myocardial transaminases are primarily responsible for the observed retention fractions. It suggests the participation of the carbon skeletons of these amino acids in the Krebs cycle.

  17. Kinetics of acid hydrolysis and reactivity of some antibacterial hydrophilic iron(II) imino-complexes

    NASA Astrophysics Data System (ADS)

    Shaker, Ali Mohamed; Nassr, Lobna Abdel-Mohsen Ebaid; Adam, Mohamed Shaker Saied; Mohamed, Ibrahim Mohamed Abdelhalim

    2015-05-01

    Kinetic study of acid hydrolysis of some hydrophilic Fe(II) Schiff base amino acid complexes with antibacterial properties was performed using spectrophotometry. The Schiff base ligands were derived from sodium 2-hydroxybenzaldehyde-5-sulfonate and glycine, L-alanine, L-leucine, L-isoleucine, DL-methionine, DL-serine, or L-phenylalanine. The reaction was studied in aqueous media under conditions of pseudo-first order kinetics. Moreover, the acid hydrolysis was studied at different temperatures and the activation parameters were calculated. The general rate equation was suggested as follows: rate = k obs [Complex], where k obs = k 2 [H+]. The evaluated rate constants and activation parameters are consistent with the hydrophilicity of the investigated complexes.

  18. Enzymatic profile of Legionella pneumophilia.

    PubMed

    Müller, H E

    1981-03-01

    The enzyme activities of four strains of Legionella pneumophilia were investigated by using the API ZYM system (API System S.A., F-38390 Montalieu Vercieu, France) and synthetic substrates. Aminopeptidases were detected specifically against L-alanine, L-arginine, L-aspartic acid, L-cystine, L-glutaminic acid, glycine, L-histidine, L-isoleucine, L-leucine, L-lysine, L-methionine, L-phenylalanine, L-tryptophan, L-tyrosine, and L-valine. Furthermore, the bacteria possesses esterase activity splitting propionate, butyrate, caproate, caprylate, and caprate, but not laurate, myristate, palmitate, and stearate, esters. The enzymes studies were inhibited partially by aprotinin. No inhibition of phosphatase (pH range, 5.4 to 8.5) or of phosphoamidase was observed. Activities of arylsulfatase, chymotrypsin, trypsin, and glycosidases could not be detected. PMID:6165735

  19. Use of 4-sulfophenyl isothiocyanate labeling and mass spectrometry to determine the site of action of the streptococcolytic peptidoglycan hydrolase zoocin A.

    PubMed

    Gargis, Shaw R; Heath, Harry E; Heath, Lucie S; Leblanc, Paul A; Simmonds, Robin S; Abbott, Brian D; Timkovich, Russell; Sloan, Gary L

    2009-01-01

    Zoocin A is a streptococcolytic peptidoglycan hydrolase with an unknown site of action that is produced by Streptococcus equi subsp. zooepidemicus 4881. Zoocin A has now been determined to be a d-alanyl-l-alanine endopeptidase by digesting susceptible peptidoglycan with a combination of mutanolysin and zoocin A, separating the resulting muropeptides by reverse-phase high-pressure liquid chromatography, and analyzing them by mass spectrometry (MS) in both the positive- and negative-ion modes to determine their compositions. In order to distinguish among possible structures for these muropeptides, they were N-terminally labeled with 4-sulfophenyl isothiocyanate (SPITC) and analyzed by tandem MS in the negative-ion mode. This novel application of SPITC labeling and MS/MS analysis can be used to analyze the structure of peptidoglycans and to determine the sites of action of other peptidoglycan hydrolases. PMID:18978086

  20. Radiolysis of alanine adsorbed in a clay mineral

    SciTech Connect

    Aguilar-Ovando, Ellen Y.; Negron-Mendoza, Alicia

    2013-07-03

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically {gamma}-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  1. Amyotrophic lateral sclerosis and environmental factors

    PubMed Central

    Bozzoni, Virginia; Pansarasa, Orietta; Diamanti, Luca; Nosari, Guido; Cereda, Cristina; Ceroni, Mauro

    2016-01-01

    Summary Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that affects central and peripheral motor neuron cells. Its etiology is unknown, although a relationship between genetic background and environmental factors may play a major role in triggering the neurodegeneration. In this review, we analyze the role of environmental factors in ALS: heavy metals, electromagnetic fields and electric shocks, pesticides, β-N-methylamino-L-alanine, physical activity and the controversial role of sports. The literature on the single issues is analyzed in an attempt to clarify, as clearly as possible, whether each risk factor significantly contributes to the disease pathogenesis. After summarizing conflicting observations and data, the authors provide a final synthetic statement. PMID:27027889

  2. Crystal growth, structural and thermal studies of amino acids admixtured L-arginine phosphate monohydrate single crystals

    NASA Astrophysics Data System (ADS)

    Anandan, P.; Saravanan, T.; Parthipan, G.; Kumar, R. Mohan; Bhagavannarayana, G.; Ravi, G.; Jayavel, R.

    2011-05-01

    To study the improved characteristics of L-arginine phosphate monohydrate (LAP) crystals, amino acids mixed LAP crystals have been grown by slow cooling method. Amino acids like glycine, L-alanine, and L-valine have been selected for doping. Optical quality bulk crystals have been harvested after a typical growth period of about twenty days. The effect of amino acids in the crystal lattice and molecular vibrational frequencies of various functional groups in the crystals have been studied using X-ray powder diffraction and Fourier Transform infrared (FTIR) analyses respectively. Thermal behavior of the amino acids mixed LAP crystals have been studied from the TG and DTG analyses. High-resolution X-ray diffraction studies have been carried out to find the crystalline nature. Optical transmission studies have been carried out by UV-vis spectrophotometer. The cut off wavelength is below 240 nm for the grown crystals.

  3. Germination of Rhizopus oligosporus Sporangiospores

    PubMed Central

    Medwid, Richard D.; Grant, Dale W.

    1984-01-01

    The morphology of Rhizopus oligosporus (NRRL 2710) sporangiospores and their physiological requirements for germination were studied. Germination proceeded in two separable phases: phase I (swelling) and phase II (germ tube protrusion). The optimal conditions for germination were 42°C and pH 4.0. Sporangiospores contained insufficient endogenous carbon for swelling or germination to occur in distilled water. Initial swelling during phase I occurred only in the presence of a suitable carbohydrate. Subsequent production of germ tubes during phase II required exogenous sources of both carbon and nitrogen. Spores germinated most rapidly in mixtures of amino acids; l-proline and l-alanine were the most effective. These amino acids, at concentrations as low as 10−6 M, supported germination when combined with glucose and McIlvaine (citric acid-phosphate) buffer. d-Glucose, d-xylose, and d-mannose were the most effective carbohydrates tested for promotion of germination. Images PMID:16346671

  4. Anorexia nervosa with severe liver dysfunction and subsequent critical complications.

    PubMed

    Furuta, S; Ozawa, Y; Maejima, K; Tashiro, H; Kitahora, T; Hasegawa, K; Kuroda, S; Ikuta, N

    1999-07-01

    A twenty-year-old woman with anorexia nervosa (body mass index=11) suffered from severe liver dysfunction (aspartate aminotransferase 5,000 IU/l, alanine aminotransferase 3,980 IU/l, prothrombin time 32%), hypoglycemia (serum glucose 27 mg/dl), and pancreatic dysfunction (amylase 820 IU/l, lipase 558 IU/l). She fell into a depressive state with irritability, which was not improved by intravenous glucose. Despite treatment with plasmapheresis for the liver dysfunction, she subsequently developed pulmonary edema, acute renal failure, gastrointestinal bleeding, and disseminated intravascular coagulation. Hemodialysis, mechanical ventilation and drug therapy including prednisolone, prostaglandin E1, and branched-chain amino acid, improved her critical condition. In this case, malnutrition may have been the cause for the liver dysfunction and subsequent complications. PMID:10435364

  5. Amyotrophic lateral sclerosis and environmental factors.

    PubMed

    Bozzoni, V; Pansarasa, Orietta; Diamanti, L; Nosari, G; Cereda, C; Ceroni, M

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that affects central and peripheral motor neuron cells. Its etiology is unknown, although a relationship between genetic background and environmental factors may play a major role in triggering the neurodegeneration. In this review, we analyze the role of environmental factors in ALS: heavy metals, electromagnetic fields and electric shocks, pesticides, β-N-methylamino-L-alanine, physical activity and the controversial role of sports. The literature on the single issues is analyzed in an attempt to clarify, as clearly as possible, whether each risk factor significantly contributes to the disease pathogenesis. After summarizing conflicting observations and data, the authors provide a final synthetic statement. PMID:27027889

  6. Diatoms: A Novel Source for the Neurotoxin BMAA in Aquatic Environments

    PubMed Central

    Lage, Sandra; Jonasson, Sara; Shams, Shiva; Mehine, Martin; Ilag, Leopold L.; Rasmussen, Ulla

    2014-01-01

    Amyotrophic lateral sclerosis (ALS) or Lou Gehrig’s disease is a neurological disorder linked to environmental exposure to a non-protein amino acid, β-N-methylamino-L-alanine (BMAA). The only organisms reported to be BMAA-producing, are cyanobacteria – prokaryotic organisms. In this study, we demonstrate that diatoms – eukaryotic organisms – also produce BMAA. Ultra-high-performance liquid chromatography coupled with tandem mass spectrometry revealed the occurrence of BMAA in six investigated axenic diatom cultures. BMAA was also detected in planktonic field samples collected on the Swedish west coast that display an overrepresentation of diatoms relative to cyanobacteria. Given the ubiquity of diatoms in aquatic environments and their central role as primary producers and the main food items of zooplankton, the use of filter and suspension feeders as livestock fodder dramatically increases the risk of human exposure to BMAA-contaminated food. PMID:24392143

  7. In Vitro Destruction of Streptococcus pneumoniae Biofilms with Bacterial and Phage Peptidoglycan Hydrolases▿

    PubMed Central

    Domenech, Mirian; García, Ernesto; Moscoso, Miriam

    2011-01-01

    Host- and phage-coded cell wall hydrolases have been used to fight Streptococcus pneumoniae growing as planktonic cells in vitro as well as in animal models. Until now, however, the usefulness of these enzymes in biofilm-grown pneumococci has gone untested. The antipneumococcal activity of different cell wall hydrolases produced by S. pneumoniae and a number of its phages was examined in an in vitro biofilm model. The major pneumococcal autolysin LytA, an N-acetylmuramoyl-l-alanine amidase, showed the greatest efficiency in disintegrating S. pneumoniae biofilms. The phage-encoded lysozymes Cpl-1 and Cpl-7 were also very efficient. Biofilms formed by the close pneumococcal relatives Streptococcus pseudopneumoniae and Streptococcus oralis were also destroyed by the phage endolysins but not by the S. pneumoniae autolysin LytA. A cooperative effect of LytA and Cpl-1 in the disintegration of S. pneumoniae biofilms was recorded. PMID:21746941

  8. Radiolysis of alanine adsorbed in a clay mineral

    NASA Astrophysics Data System (ADS)

    Aguilar-Ovando, Ellen Y.; Negrón-Mendoza, Alicia

    2013-07-01

    Optical activity in molecules is a chemical characteristic of living beings. In this work, we examine the hypothesis of the influence of different mineral surfaces on the development of a specific chirality in organic molecules when subjected to conditions simulating the primitive Earth during the period of chemical evolution. By using X-ray diffraction techniques and HPLC/ELSD to analyze aqueous suspensions of amino acids adsorbed on minerals irradiated in different doses with a cobalt-60 gamma source, the experiments attempt to prove the hypothesis that some solid surfaces (like clays and meteorite rocks) may have a concentration capacity and protective role against external sources of ionizing radiation (specifically γ-ray) for some organic compounds (like some amino acids) adsorbed on them. Preliminary results show a slight difference in the adsorption and radiolysis of the D-and L-alanine.

  9. Circularly Polarized Luminescence of Chiral Perylene Diimide Based Enantiomers Triggered by Supramolecular Self-Assembly.

    PubMed

    Li, Fei; Li, Yunzhi; Wei, Guo; Wang, Yuxiang; Li, Shuhua; Cheng, Yixiang

    2016-08-26

    Two perylene diimide (PDI) enantiomers (d/l-PDI) incorporating the d/l-alanine moiety have been designed and synthesized. d/l-PDI in chloroform displays bright-yellow fluorescence that is redshifted to orange-red when the solvent contains a methanol fraction of 99 vol %. No circular dichroism (CD) or circularly polarized luminescence (CPL) signals were observed for d/l-PDI enantiomers in CHCl3 . Interestingly, the d/l-PDI enantiomers exhibit clear mirror-image Cotton effects and CPL emission in the aggregate state. The optical anisotropy factor (glum ) is as high as 0.02 at fm =99 %, which can be attributed to self-assembly through intermolecular π-π interactions in the aggregate state. PMID:27470269

  10. Morphometric and neurochemical alterations found in l-BMAA treated rats.

    PubMed

    de Munck, Estefanía; Muñoz-Sáez, Emma; Miguel, Begoña G; Solas, M Teresa; Martínez, Ana; Arahuetes, Rosa M

    2015-05-01

    Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive muscle paralysis that reflects the motoneurons' degeneration. Several studies support the relationship between β-N-methylamino-l-alanine (l-BMAA), a neurotoxic amino acid produced by cyanobacteria and diatoms, and the sporadic occurrence of ALS and other neurodegenerative diseases. Therefore, the study of its neurotoxicity mechanisms has assumed great relevance in recent years. Recently, our research team has proposed a sporadic ALS animal model by l-BMAA administration in rats, which displays many pathophysiological features of human ALS. In this paper, we deepen the characterization of this model corroborating the occurrence of alterations present in ALS patients such as decreased muscle volume, thinning of the motor cortex, enlarged brain's lateral ventricles, and alteration of both bulbar nuclei and neurotransmitters' levels. Therefore, we conclude that l-BMAA treated rats could be a good model which mimics degenerative features that ALS causes in humans. PMID:26002186