Science.gov

Sample records for l-leucine l-isoleucine l-valine

  1. New hydrophobic L-amino acid salts: maleates of L-leucine, L-isoleucine and L-norvaline.

    PubMed

    Arkhipov, Sergey G; Rychkov, Denis A; Pugachev, Alexey M; Boldyreva, Elena V

    2015-07-01

    Crystals of maleates of three amino acids with hydrophobic side chains [L-leucenium hydrogen maleate, C6H14NO2(+)·C4H3O4(-), (I), L-isoleucenium hydrogen maleate hemihydrate, C6H14NO2(+)·C4H3O4(-)·0.5H2O, (II), and L-norvalinium hydrogen maleate-L-norvaline (1/1), C5H11NO2(+)·C4H3O4(-)·C5H12NO2, (III)], were obtained. The new structures contain C2(2)(12) chains, or variants thereof, that are a common feature in the crystal structures of amino acid maleates. The L-leucenium salt is remarkable due to a large number of symmetrically non-equivalent units (Z' = 3). The L-isoleucenium salt is a hydrate despite the fact that L-isoleucine is a nonpolar hydrophobic amino acid (previously known amino acid maleates formed hydrates only with lysine and histidine, which are polar and hydrophilic). The L-norvalinium salt provides the first example where the dimeric cation L-Nva...L-NvaH(+) was observed. All three compounds have layered noncentrosymmetric structures. Preliminary tests have shown the presence of the second harmonic generation (SGH) effect for all three compounds. PMID:26146397

  2. The contest for precursors: channelling L-isoleucine synthesis in Corynebacterium glutamicum without byproduct formation.

    PubMed

    Vogt, Michael; Krumbach, Karin; Bang, Won-Gi; van Ooyen, Jan; Noack, Stephan; Klein, Bianca; Bott, Michael; Eggeling, Lothar

    2015-01-01

    L-Isoleucine is an essential amino acid, which is required as a pharma product and feed additive. Its synthesis shares initial steps with that of L-lysine and L-threonine, and four enzymes of L-isoleucine synthesis have an enlarged substrate specificity involved also in L-valine and L-leucine synthesis. As a consequence, constructing a strain specifically overproducing L-isoleucine without byproduct formation is a challenge. Here, we analyze for consequences of plasmid-encoded genes in Corynebacterium glutamicum MH20-22B on L-isoleucine formation, but still obtain substantial accumulation of byproducts. In a different approach, we introduce point mutations into the genome of MH20-22B to remove the feedback control of homoserine dehydrogenase, hom, and threonine dehydratase, ilvA, and we assay sets of genomic promoter mutations to increase hom and ilvA expression as well as to reduce dapA expression, the latter gene encoding the dihydrodipicolinate synthase. The promoter mutations are mirrored in the resulting differential protein levels determined by a targeted LC-MS/MS approach for the three key enzymes. The best combination of genomic mutations was found in strain K2P55, where 53 mM L-isoleucine could be obtained. Whereas in fed-batch fermentations with the plasmid-based strain, 94 mM L-isoleucine with L-lysine as byproduct was formed; with the plasmid-less strain K2P55, 109 mM L-isoleucine accumulated with no substantial byproduct formation. The specific molar yield with the latter strain was 0.188 mol L-isoleucine (mol glucose)(-1) which characterizes it as one of the best L-isoleucine producers available and which does not contain plasmids. PMID:25301583

  3. Metabolic engineering of Corynebacterium glutamicum ATCC13869 for L-valine production.

    PubMed

    Chen, Cheng; Li, Yanyan; Hu, Jinyu; Dong, Xunyan; Wang, Xiaoyuan

    2015-05-01

    In this study, an L-valine-producing strain was developed from Corynebacterium glutamicum ATCC13869 through deletion of the three genes aceE, alaT and ilvA combined with the overexpression of six genes ilvB, ilvN, ilvC, lrp1, brnF and brnE. Overexpression of lrp1 alone increased L-valine production by 16-fold. Deletion of the aceE, alaT and ilvA increased L-valine production by 44-fold. Overexpression of the six genes ilvB, ilvN, ilvC, lrp1, brnE and brnF in the triple deletion mutant WCC003 further increased L-valine production. The strain WCC003/pJYW-4-ilvBNC1-lrp1-brnFE produced 243mM L-valine in flask cultivation and 437mM (51g/L) L-valine in fed-batch fermentation and lacked detectable amino-acid byproduct such as l-alanine and l-isoleucine that are usually found in the fermentation of L-valine-producing C. glutamicum. PMID:25769288

  4. A novel l-isoleucine-4?-dioxygenase and l-isoleucine dihydroxylation cascade in Pantoea ananatis

    PubMed Central

    Smirnov, Sergey V; Sokolov, Pavel M; Kotlyarova, Veronika A; Samsonova, Natalya N; Kodera, Tomohiro; Sugiyama, Masakazu; Torii, Takayoshi; Hibi, Makoto; Shimizu, Sakayu; Yokozeki, Kenzo; Ogawa, Jun

    2013-01-01

    A unique operon structure has been identified in the genomes of several plant- and insect-associated bacteria. The distinguishing feature of this operon is the presence of tandem hilA and hilB genes encoding dioxygenases belonging to the PF13640 and PF10014 (BsmA) Pfam families, respectively. The genes encoding HilA and HilB from Pantoea ananatis AJ13355 were cloned and expressed in Escherichia coli. The culturing of E. coli cells expressing hilA (E. coli-HilA) or both hilA and hilB (E. coli-HilAB) in the presence of l-isoleucine resulted in the conversion of l-isoleucine into two novel biogenic compounds: l-4?-isoleucine and l-4,4?-dihydroxyisoleucine, respectively. In parallel, two novel enzymatic activities were detected in the crude cell lysates of the E. coli-HilA and E. coli-HilAB strains: l-isoleucine, 2-oxoglutarate: oxygen oxidoreductase (4?-hydroxylating) (HilA) and l-4?-hydroxyisoleucine, 2-oxoglutarate: oxygen oxidoreductase (4-hydroxylating) (HilB), respectively. Two hypotheses regarding the physiological significance of C-4(4?)-hydroxylation of l-isoleucine in bacteria are also discussed. According to first hypothesis, the l-isoleucine dihydroxylation cascade is involved in synthesis of dipeptide antibiotic in P. ananatis. Another unifying hypothesis is that the C-4(4?)-hydroxylation of l-isoleucine in bacteria could result in the synthesis of signal molecules belonging to two classes: 2(5H)-furanones and analogs of N-acyl homoserine lactone. PMID:23554367

  5. Construction of l-Isoleucine Overproducing Strains of Corynebacterium glutamicum

    NASA Astrophysics Data System (ADS)

    Sahm, H.; Eggeling, L.; Morbach, S.; Eikmanns, B.

    Nowadays the gram-positive bacterium Corynebacterium glutamicum is used for the industrial production of the amino acids l-glutamate (1×106tons/year) and l-lysine (300×103tons/year). The classical approach to obtain amino acid overproducing strains of C. glutamicum was mutagenesis and then a selection of mutants. In the past 10 years the genetic engineering and amplification of genes have become fascinating methods for studying metabolic pathways in greater detail and for constructing microbial strains with desired genotypes. To obtain l-isoleucine overproducing strains of C. glutamicum we therefore studied the l-isoleucine biosynthesis by overexpression of the various corresponding genes. To enable a flux increase in recombinant strains all genes specific for l-threonine and l-isoleucine biosynthesis were cloned from this bacterium. We demonstratet that amplification of the feedback inhibition insensitive homoserine dehydrogenase and homoserine kinase in a high l-lysine overproducing strain enable the channeling of the carbon flow from the intermediate l-aspartate semialdehyde towards homoserine, resulting in an accumulation of l-threonine. To obtain effective l-isoleucine overproduction a deregulated threonine dehydratase was overexpressed in l-threonine producing strains of C. glutamicum. In this way the l-threonine was converted to l-isoleucine, which was secreted up to 30g/l into the culture medium.

  6. Optical Properties of TGS Crystal with L-Valine Admixture

    SciTech Connect

    Stadnyk, V. Yo. Romanyuk, N. A.; Kiryk, Yu. I.

    2010-11-15

    The thermal expansion and temperature and the spectral dependences of the refractive indices and birefringence of triglycine sulphate (TGS) crystals with a 5% L-valine admixture have been investigated. It is established that the introduction of L-valine weakens the temperature dependence of the refractive indices and the birefringence and thermal expansion of TGS crystals. The parameters of the Sellmeier formula, refractions, and electronic polarizabilities are calculated. The changes observed may be related to the increase in hardness of admixture-containing crystals, the decrease in the spontaneous polarization, the replacement of the refraction components of the valine bond, or the spontaneous electro-optic effect.

  7. Application of metabolic engineering for the biotechnological production of L-valine.

    PubMed

    Oldiges, Marco; Eikmanns, Bernhard J; Blombach, Bastian

    2014-07-01

    The branched chain amino acid L-valine is an essential nutrient for higher organisms, such as animals and humans. Besides the pharmaceutical application in parenteral nutrition and as synthon for the chemical synthesis of e.g. herbicides or anti-viral drugs, L-valine is now emerging into the feed market, and significant increase of sales and world production is expected. In accordance, well-known microbial production bacteria, such as Escherichia coli and Corynebacterium glutamicum strains, have recently been metabolically engineered for efficient L-valine production under aerobic or anaerobic conditions, and the respective cultivation and production conditions have been optimized. This review summarizes the state of the art in L-valine biosynthesis and its regulation in E. coli and C. glutamicum with respect to optimal metabolic network for microbial L-valine production, genetic strain engineering and bioprocess development for L-valine production, and finally, it will shed light on emerging technologies that have the potential to accelerate strain and bioprocess engineering in the near future. PMID:24816722

  8. A Mathematical Model for the Branched Chain Amino Acid Biosynthetic Pathways of

    E-print Network

    Mjolsness, Eric

    A Mathematical Model for the Branched Chain Amino Acid Biosynthetic Pathways of Escherichia coli K TITLE: Mathematical Model of Amino Acid Biosynthesis SUMMARY As a first step towards the elucidation for the biosynthesis of the branched chain amino acids, L-isoleucine, L- valine, and L-leucine. This has been

  9. l-Valine Production with Pyruvate Dehydrogenase Complex-Deficient Corynebacterium glutamicum?

    PubMed Central

    Blombach, Bastian; Schreiner, Mark E.; Holátko, Ji?í; Bartek, Tobias; Oldiges, Marco; Eikmanns, Bernhard J.

    2007-01-01

    Corynebacterium glutamicum was engineered for the production of l-valine from glucose by deletion of the aceE gene encoding the E1p enzyme of the pyruvate dehydrogenase complex and additional overexpression of the ilvBNCE genes encoding the l-valine biosynthetic enzymes acetohydroxyacid synthase, isomeroreductase, and transaminase B. In the absence of cellular growth, C. glutamicum ?aceE showed a relatively high intracellular concentration of pyruvate (25.9 mM) and produced significant amounts of pyruvate, l-alanine, and l-valine from glucose as the sole carbon source. Lactate or acetate was not formed. Plasmid-bound overexpression of ilvBNCE in C. glutamicum ?aceE resulted in an approximately 10-fold-lower intracellular pyruvate concentration (2.3 mM) and a shift of the extracellular product pattern from pyruvate and l-alanine towards l-valine. In fed-batch fermentations at high cell densities and an excess of glucose, C. glutamicum ?aceE(pJC4ilvBNCE) produced up to 210 mM l-valine with a volumetric productivity of 10.0 mM h?1 (1.17 g l?1 h?1) and a maximum yield of about 0.6 mol per mol (0.4 g per g) of glucose. PMID:17293513

  10. L-Leucine and NO-mediated cardiovascular function.

    PubMed

    Yang, Ying; Wu, Zhenlong; Meininger, Cynthia J; Wu, Guoyao

    2015-03-01

    Reduced availability of nitric oxide (NO) in the vasculature is a major factor contributing to the impaired action of insulin on blood flow and, therefore, insulin resistance in obese and diabetic subjects. Available evidence shows that vascular insulin resistance plays an important role in the pathogenesis of cardiovascular disease, the leading cause of death in developed nations. Interestingly, increased concentrations of L-leucine in the plasma occur in obese humans and other animals with vascular dysfunction. Among branched-chain amino acids, L-leucine is unique in inhibiting NO synthesis from L-arginine in endothelial cells and may modulate cardiovascular homeostasis in insulin resistance. Results of recent studies indicate that L-leucine is an activator of glutamine:fructose-6-phosphate aminotransferase (GFAT), which is the first and a rate-controlling enzyme in the synthesis of glucosamine (an inhibitor of endothelial NO synthesis). Through stimulating the mammalian target of rapamycin signaling pathway and thus protein synthesis, L-leucine may enhance GFAT protein expression, thereby inhibiting NO synthesis in endothelial cells. We propose that reducing circulating levels of L-leucine or endothelial GFAT activity may provide a potentially novel strategy for preventing and/or treating cardiovascular disease in obese and diabetic subjects. Such means may include dietary supplementation with either ?-ketoglutarate to enhance the catabolism of L-leucine in the small intestine and other tissues or with N-ethyl-L-glutamine to inhibit GFAT activity in endothelial cells. Preventing leucine-induced activation of GFAT by nutritional supplements or pharmaceutical drugs may contribute to improved cardiovascular function by enhancing vascular NO synthesis. PMID:25552397

  11. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum.

    PubMed

    Mahr, Regina; Gätgens, Cornelia; Gätgens, Jochem; Polen, Tino; Kalinowski, Jörn; Frunzke, Julia

    2015-11-01

    Adaptive laboratory evolution has proven a valuable strategy for metabolic engineering. Here, we established an experimental evolution approach for improving microbial metabolite production by imposing an artificial selective pressure on the fluorescent output of a biosensor using fluorescence-activated cell sorting. Cells showing the highest fluorescent output were iteratively isolated and (re-)cultivated. The l-valine producer Corynebacterium glutamicum ?aceE was equipped with an L-valine-responsive sensor based on the transcriptional regulator Lrp of C. glutamicum. Evolved strains featured a significantly higher growth rate, increased l-valine titers (~25%) and a 3-4-fold reduction of by-product formation. Genome sequencing resulted in the identification of a loss-of-function mutation (UreD-E188*) in the gene ureD (urease accessory protein), which was shown to increase l-valine production by up to 100%. Furthermore, decreased l-alanine formation was attributed to a mutation in the global regulator GlxR. These results emphasize biosensor-driven evolution as a straightforward approach to improve growth and productivity of microbial production strains. PMID:26453945

  12. Co-production of S-adenosyl-L-methionine and L-isoleucine in Corynebacterium glutamicum.

    PubMed

    Han, Guoqiang; Hu, Xiaoqing; Wang, Xiaoyuan

    2015-10-01

    In this study, production of S-adenosyl-L-methionine in Corynebacterium glutamicum was investigated by overexpressing genes metK and vgb. Compared with vector control, overexpression of metK alone in C. glutamicum ATCC13032 and IWJ001 increased SAM production 5.11 and 11.65 times, respectively; while overexpression of metK and vgb in C. glutamicum ATCC13032 and IWJ001 increased SAM production 5.83 and 14.95 times, respectively. Further studies on IWJ001/pDXW-8-metk-vgb showed that the limiting factor for SAM production is intracellular ATP supply. Since IWJ001 is an L-isoleucine production strain, IWJ001/pDXW-8-metk-vgb could produce both SAM and L-isoleucine. After 72 h fermentation, SAM and L-isoleucine in IWJ001/pDXW-8-metk-vgb reached 0.67 g/L and 13.8 g/L, respectively. The results demonstrate the potential application of C. glutamicum for co-production of SAM and amino acids. PMID:26215341

  13. A Co 2O 2 metallacycle exclusively supported by L-valine

    NASA Astrophysics Data System (ADS)

    Galán-Mascarós, J. R.; Martí-Gastaldo, C.; Murcia-Martínez, A.

    2008-12-01

    [Co 2(OH) 2( L-valine) 4]·2.5H 2O has been prepared under hydrothermal conditions and constitutes the first example of a [Co 2O 2] core supported exclusively by aminoacids. This synthetic dimetallic model for redox active metalloenzymes is one of the few binary aminoacid compounds of biologically relevant metal ions that has been structurally characterized, showing the possibilities of this synthetic approach for preparation of models in bioinorganic chemistry.

  14. Adenosine 5?-Triphosphate-Yielding Pathways of Branched-Chain Amino Acid Fermentation by a Marine Spirochete

    PubMed Central

    Harwood, C. S.; Canale-Parola, E.

    1981-01-01

    The metabolic pathways utilized by an obligately anaerobic marine spirochete (strain MA-2) to ferment branched-chain amino acids were studied. The spirochete catabolized l-leucine to isovaleric acid, l-isoleucine to 2-methylbutyric acid, and l-valine to isobutyric acid, with accompanying CO2 production in each fermentation. Cell extracts of spirochete MA-2 converted l-leucine, l-isoleucine, and l-valine to 2-ketoisocaproic, 2-keto-3-methylvaleric, and 2-ketoisovaleric acids, respectively, through mediation of 2-ketoglutarate-dependent aminotransferase activities. The branched-chain keto acids were decarboxylated and oxidized to form isovaleryl coenzyme A, 2-methylbutyryl coenzyme A, and isobutyryl coenzyme A, respectively, in the presence of sulfhydryl coenzyme A and benzyl viologen. The acyl coenzyme A's were converted to acyl phosphates by phosphate branched-chain acyltransferase enzymatic activities. Branched-chain fatty acid kinase activities catalyzed formation of isovaleric, 2-methylbutyric, and isobutyric acids from isovaleryl phosphate, 2-methylbutyryl phosphate, and isobutyryl phosphate, respectively. Adenosine 5?-triphosphate was formed during conversion of branched-chain acyl phosphates to branched-chain fatty acids. The results indicate that conversion of l-leucine, l-isoleucine, and l-valine to branched-chain fatty acids by spirochete MA-2 results in adenosine 5?-triphosphate generation. The metabolic pathways utilized for this conversion involve amino acid amino-transferase, 2-keto acid oxidoreductase, phosphate acyltransferase, and fatty acid kinase activities. PMID:6270057

  15. Isolation and characterization of awamori yeast mutants with L-leucine accumulation that overproduce isoamyl alcohol.

    PubMed

    Takagi, Hiroshi; Hashida, Keisuke; Watanabe, Daisuke; Nasuno, Ryo; Ohashi, Masataka; Iha, Tomoya; Nezuo, Maiko; Tsukahara, Masatoshi

    2015-02-01

    Awamori shochu is a traditional distilled alcoholic beverage made from steamed rice in Okinawa, Japan. Although it has a unique aroma that is distinguishable from that of other types of shochu, no studies have been reported on the breeding of awamori yeasts. In yeast, isoamyl alcohol (i-AmOH), known as the key flavor of bread, is mainly produced from ?-ketoisocaproate in the pathway of L-leucine biosynthesis, which is regulated by end-product inhibition of ?-isopropylmalate synthase (IPMS). Here, we isolated mutants resistant to the L-leucine analog 5,5,5-trifluoro-DL-leucine (TFL) derived from diploid awamori yeast of Saccharomyces cerevisiae. Some of the mutants accumulated a greater amount of intracellular L-leucine, and among them, one mutant overproduced i-AmOH in awamori brewing. This mutant carried an allele of the LEU4 gene encoding the Ser542Phe/Ala551Val variant IPMS, which is less sensitive to feedback inhibition by L-leucine. Interestingly, we found that either of the constituent mutations (LEU4(S542F) and LEU4(A551V)) resulted in the TFL tolerance of yeast cells and desensitization to L-leucine feedback inhibition of IPMS, leading to intracellular L-leucine accumulation. Homology modeling also suggested that L-leucine binding was drastically inhibited in the Ser542Phe, Ala551Val, and Ser542Phe/Ala551Val variants due to steric hindrance in the cavity of IPMS. As we expected, awamori yeast cells expressing LEU4(S542F), LEU4(A551V), and LEU4(S542F/A551V) showed a prominent increase in extracellular i-AmOH production, compared with that of cells carrying the vector only. The approach described here could be a practical method for the breeding of novel awamori yeasts to expand the diversity of awamori taste and flavor. PMID:25060730

  16. Pushing product formation to its limit: metabolic engineering of Corynebacterium glutamicum for L-leucine overproduction.

    PubMed

    Vogt, Michael; Haas, Sabine; Klaffl, Simon; Polen, Tino; Eggeling, Lothar; van Ooyen, Jan; Bott, Michael

    2014-03-01

    Using metabolic engineering, an efficient L-leucine production strain of Corynebacterium glutamicum was developed. In the wild type of C. glutamicum, the leuA-encoded 2-isopropylmalate synthase (IPMS) is inhibited by low L-leucine concentrations with a K(i) of 0.4 mM. We identified a feedback-resistant IMPS variant, which carries two amino acid exchanges (R529H, G532D). The corresponding leuA(fbr) gene devoid of the attenuator region and under control of a strong promoter was integrated in one, two or three copies into the genome and combined with additional genomic modifications aimed at increasing L-leucine production. These modifications involved (i) deletion of the gene encoding the repressor LtbR to increase expression of leuBCD, (ii) deletion of the gene encoding the transcriptional regulator IolR to increase glucose uptake, (iii) reduction of citrate synthase activity to increase precursor supply, and (iv) introduction of a gene encoding a feedback-resistant acetohydroxyacid synthase. The production performance of the resulting strains was characterized in bioreactor cultivations. Under fed-batch conditions, the best producer strain accumulated L-leucine to levels exceeding the solubility limit of about 24 g/l. The molar product yield was 0.30 mol L-leucine per mol glucose and the volumetric productivity was 4.3 mmol l?¹ h?¹. These values were obtained in a defined minimal medium with a prototrophic and plasmid-free strain, making this process highly interesting for industrial application. PMID:24333966

  17. Nano spray-dried pyrazinamide-l-leucine dry powders, physical properties and feasibility used as dry powder aerosols.

    PubMed

    Kaewjan, Kanogwan; Srichana, Teerapol

    2014-10-21

    Abstract Objective: The aim of this study was to investigate the effect of adding l-leucine and using an ethanolic solvent on the physicochemical properties and aerodynamic behavior of nano spray-dried pyrazinamide (PZA)-l-leucine powders. Materials and methods: A nano spray dryer was employed to prepare PZA-l-leucine powders. The physicochemical properties were evaluated using a scanning electron microscope (SEM), differential scanning calorimetry and X-ray diffraction. The Andersen cascade impactor was used to evaluate the in vitro aerosolization performance of the sprayed powders. Results and discussion: The incorporation of l-leucine at 10% improved the percentage fine particle fraction (%FPF) in all ethanolic solvent formulations by up to nearly twofold (20.0-23.4%) compared to the normal spray-dried PZA of (8.8-13.0%). Changes in the particle density and morphology were also observed. The dense solid particles of PZA were completely converted to bulk hollow particles with a thin shell by increasing the l-leucine content up to 50%. Higher ethanol concentration resulted in larger dimensions of the hollow particle but did not directly affect the aerosolization performance. The co-spray dried PZA with 20% l-leucine in a 10% ethanol feed solvent gave the best aerosolization performance (FPF?=?33.0%). Conclusions: The co-spray dried PZA with a suitable l-leucine content using a nano spray drying technique could be applied to formulate the PZA DPI. PMID:25331092

  18. Liver functional metabolomics discloses an action of L-leucine against Streptococcus iniae infection in tilapias.

    PubMed

    Ma, Yan-Mei; Yang, Man-Jun; Wang, Sanying; Li, Hui; Peng, Xuan-Xian

    2015-08-01

    Streptococcus iniae seriously affects the intensive farming of tilapias. Much work has been conducted on prevention and control of S. iniae infection, but little published information on the metabolic response is available in tilapias against the bacterial infection, and no metabolic modulation way may be adopted to control this disease. The present study used GC/MS based metabolomics to characterize the metabolic profiling of tilapias infected by a lethal dose (LD50) of S. iniae and determined two characteristic metabolomes separately responsible for the survival and dying fishes. A reversal changed metabolite, decreased and increased l-leucine in the dying and survival groups, respectively, was identified as a biomarker which featured the difference between the two metabolomes. More importantly, exogenous l-leucine could be used as a metabolic modulator to elevate survival ability of tilapias infected by S. iniae. These results indicate that tilapias mount metabolic strategies to deal with bacterial infection, which can be regulated by exogenous metabolites such as l-leucine. The present study establishes an alternative way, metabolic modulation, to cope with bacterial infections. PMID:25957884

  19. Mechanism of specific influence of L-Glutamic acid on the shape of L-Valine crystals

    NASA Astrophysics Data System (ADS)

    Yoshiura, Hiromu; Nagano, Hiroshi; Hirasawa, Izumi

    2013-01-01

    The specific interaction between L-valine (L-Val) and L-glutamic acid (L-Glu) in the process of evaporative crystallization from an aqueous solution has been investigated. It was found that only 2.0% (wt/wt) of L-Glu against the total amount of L-Val was required to induce significant agglomeration of L-Val. Interestingly, the agglomeration was only induced under acidic conditions, suggesting that the electrostatic interaction was an effective factor for the agglomeration process. As well as the electrostatic interaction, the length of the amino acid side chain was identified as another important factor. In addition, we confirmed that the incorporation rate of L-Glu into L-Val crystals was different during the nucleation and crystal growth stages. Based on these results, a mechanism has been proposed for the interaction of L-Glu and L-Val during the agglomeration process.

  20. Fluorescence of the Schiff bases of pyridoxal and pyridoxal 5'-phosphate withL-isoleucine in aqueous solutions.

    PubMed

    Cambrón, G; Sevilla, J M; Pineda, T; Blázquez, M

    1996-03-01

    The present study reports on the absorption and emission properties of the Schiff bases formed by pyridoxal and pyridoxal 5'-phosphate withL-isoleucine in aqueous solutions. Species protonated at the imine and ring nitrogen are the most fluorescent in both Schiff bases with a quantum yield of 0.02, i.e., 20-fold the value found for species in alkaline solutions. In agreement with other studies, species protonated at the imine nitrogen shows an emission around 500 nm upon excitation at 415 nm. In contrast to previous observations on other PLP Schiff bases, emissions at 560 nm (PL-Ile) and 540 nm (PLP-Ile) are observed upon excitation at 365 and 415 nm, respectively. The emission at 470 nm found in PLP-Ile Schiff base upon excitation at 355 nm is ascribed to a multipolar monoprotonated species. An estimation for the pK a of the imine in the excited state ( ? 8.5) for both Schiff bases is also reached. Our results suggest that fast protonation reactions on the excited state are responsible for the observed fluorescence. These effects, in which the hydrogen bond and the phosphate group seem to play a role, could be extended to understanding coenzyme environments in proteins. PMID:24226991

  1. L-Valine derived chiral N-sulfinamides as effective organocatalysts for the asymmetric hydrosilylation of N-alkyl and N-aryl protected ketimines.

    PubMed

    Wang, Chao; Wu, Xinjun; Zhou, Li; Sun, Jian

    2015-01-14

    L-Valine derived N-sulfinamides have been developed as efficient enantioselective Lewis basic organocatalysts for the asymmetric reduction of N-aryl and N-alkyl ketimines with trichlorosilane. Catalyst 3c afforded up to 99% yield and 96% ee in the reduction of N-alkyl ketimines and up to 98% yield and 98% ee in the reduction of N-aryl ketimines. PMID:25380100

  2. N-Acetyl-L-Leucine Accelerates Vestibular Compensation after Unilateral Labyrinthectomy by Action in the Cerebellum and Thalamus

    PubMed Central

    Xiong, Guoming; Potschka, Heidrun; Jahn, Klaus; Bartenstein, Peter; Brandt, Thomas; Dutia, Mayank; Dieterich, Marianne; Strupp, Michael; la Fougère, Christian; Zwergal, Andreas

    2015-01-01

    An acute unilateral vestibular lesion leads to a vestibular tone imbalance with nystagmus, head roll tilt and postural imbalance. These deficits gradually decrease over days to weeks due to central vestibular compensation (VC). This study investigated the effects of i.v. N-acetyl-DL-leucine, N-acetyl-L-leucine and N-acetyl-D-leucine on VC using behavioural testing and serial [18F]-Fluoro-desoxyglucose ([18F]-FDG)-?PET in a rat model of unilateral chemical labyrinthectomy (UL). Vestibular behavioural testing included measurements of nystagmus, head roll tilt and postural imbalance as well as sequential whole-brain [18F]-FDG-?PET was done before and on days 1,3,7 and 15 after UL. A significant reduction of postural imbalance scores was identified on day 7 in the N-acetyl-DL-leucine (p < 0.03) and the N-acetyl-L-leucine groups (p < 0.01), compared to the sham treatment group, but not in the N-acetyl-D-leucine group (comparison for applied dose of 24 mg i.v. per rat, equivalent to 60 mg/kg body weight, in each group). The course of postural compensation in the DL- and L-group was accelerated by about 6 days relative to controls. The effect of N-acetyl-L-leucine on postural compensation depended on the dose: in contrast to 60 mg/kg, doses of 15 mg/kg and 3.75 mg/kg had no significant effect. N-acetyl-L-leucine did not change the compensation of nystagmus or head roll tilt at any dose. Measurements of the regional cerebral glucose metabolism (rCGM) by means of ?PET revealed that only N-acetyl-L-leucine but not N-acetyl-D-leucine caused a significant increase of rCGM in the vestibulocerebellum and a decrease in the posterolateral thalamus and subthalamic region on days 3 and 7. A similar pattern was found when comparing the effect of N-acetyl-L-leucine on rCGM in an UL-group and a sham UL-group without vestibular damage. In conclusion, N-acetyl-L-leucine improves compensation of postural symptoms after UL in a dose-dependent and specific manner, most likely by activating the vestibulocerebellum and deactivating the posterolateral thalamus. PMID:25803613

  3. Platform Engineering of Corynebacterium glutamicum with Reduced Pyruvate Dehydrogenase Complex Activity for Improved Production of l-Lysine, l-Valine, and 2-Ketoisovalerate

    PubMed Central

    Buchholz, Jens; Schwentner, Andreas; Brunnenkan, Britta; Gabris, Christina; Grimm, Simon; Gerstmeir, Robert; Takors, Ralf; Eikmanns, Bernhard J.

    2013-01-01

    Exchange of the native Corynebacterium glutamicum promoter of the aceE gene, encoding the E1p subunit of the pyruvate dehydrogenase complex (PDHC), with mutated dapA promoter variants led to a series of C. glutamicum strains with gradually reduced growth rates and PDHC activities. Upon overexpression of the l-valine biosynthetic genes ilvBNCE, all strains produced l-valine. Among these strains, C. glutamicum aceE A16 (pJC4 ilvBNCE) showed the highest biomass and product yields, and thus it was further improved by additional deletion of the pqo and ppc genes, encoding pyruvate:quinone oxidoreductase and phosphoenolpyruvate carboxylase, respectively. In fed-batch fermentations at high cell densities, C. glutamicum aceE A16 ?pqo ?ppc (pJC4 ilvBNCE) produced up to 738 mM (i.e., 86.5 g/liter) l-valine with an overall yield (YP/S) of 0.36 mol per mol of glucose and a volumetric productivity (QP) of 13.6 mM per h [1.6 g/(liter × h)]. Additional inactivation of the transaminase B gene (ilvE) and overexpression of ilvBNCD instead of ilvBNCE transformed the l-valine-producing strain into a 2-ketoisovalerate producer, excreting up to 303 mM (35 g/liter) 2-ketoisovalerate with a YP/S of 0.24 mol per mol of glucose and a QP of 6.9 mM per h [0.8 g/(liter × h)]. The replacement of the aceE promoter by the dapA-A16 promoter in the two C. glutamicum l-lysine producers DM1800 and DM1933 improved the production by 100% and 44%, respectively. These results demonstrate that C. glutamicum strains with reduced PDHC activity are an excellent platform for the production of pyruvate-derived products. PMID:23835179

  4. The role of an L-leucine residue on the conformations of glycyl-L-leucine oligomers and its N- or C-terminal dependence: infrared absorption and Raman scattering studies.

    PubMed

    Okabayashi, Hiro-Fumi; Kanbe, Hide-Hiro; O'Connor, Charmian J

    2016-01-01

    The conformations of glycyl-L-leucine oligomers (GnL, residue number n = 3, 4, and 5) in the solid state were found to be similar to that of a polyglycine II (PGII). However, for L-leucyl-glycine oligomers (LGn; n = 3, 4, 5) in the solid state, LG3 and LG4 have already been confirmed to take a reverse-turn structure (LG3-type reverse-turn) while LG5 adopts a PGII-type helix. The present results provide evidence that the conformations of L-leucine-containing glycine oligomers depend strongly upon whether the L-leucine residue is placed in the N- or C-terminal position. For the aqueous G3L and G4L samples, we assumed that reverse-turn structures similar to the type II ?-turn, rather than the LG3-type reverse-turn, are stabilized in concentrated solution, probably as the result of aggregation. Models to explain the mechanism of these phenomena are presented. PMID:26385704

  5. The Natural Product N-Palmitoyl-l-leucine Selectively Inhibits Late Assembly of Human Spliceosomes.

    PubMed

    Effenberger, Kerstin A; James, Robert C; Urabe, Veronica K; Dickey, Bailey J; Linington, Roger G; Jurica, Melissa S

    2015-11-13

    The spliceosome is a dynamic complex of five structural RNAs and dozens of proteins, which assemble together to remove introns from nascent eukaryotic gene transcripts in a process called splicing. Small molecules that target different components of the spliceosome represent valuable research tools to investigate this complicated macromolecular machine. However, the current collection of spliceosome inhibitors is very limited. To expand the toolkit we used a high-throughput in vitro splicing assay to screen a collection of pre-fractions of natural compounds derived from marine bacteria for splicing inhibition. Further fractionation of initial hits generated individual peaks of splicing inhibitors that interfere with different stages of spliceosome assembly. With additional characterization of individual peaks, we identified N-palmitoyl-l-leucine as a new splicing inhibitor that blocks a late stage of spliceosome assembly. Structure-activity relationship analysis of the compound revealed that length of carbon chain is important for activity in splicing, as well as for effects on the cytological profile of cells in culture. Together these results demonstrate that our combination of in vitro splicing analysis with complex natural product libraries is a powerful strategy for identifying new small molecule tools with which to probe different aspects of spliceosome assembly and function. PMID:26408199

  6. Final report on key comparison CCQM-K55.c (L-(+)-Valine): Characterization of organic substances for chemical purity

    NASA Astrophysics Data System (ADS)

    Westwood, Steven; Josephs, Ralf; Choteau, Tiphaine; Daireaux, Adeline; Wielgosz, Robert; Davies, Stephen; Moad, Michael; Chan, Benjamin; Muñoz, Amalia; Conneely, Patrick; Ricci, Marina; Pires do Rego, Eliane Cristina; Garrido, Bruno C.; Violante, Fernando G. M.; Windust, Anthony; Dai, Xinhua; Huang, Ting; Zhang, Wei; Su, Fuhai; Quan, Can; Wang, Haifeng; Lo, Man-fung; Wong, Wai-fun; Gantois, Fanny; Lalerle, Béatrice; Dorgerloh, Ute; Koch, Matthias; Klyk-Seitz, Urszula-Anna; Pfeifer, Dietmar; Philipp, Rosemarie; Piechotta, Christian; Recknagel, Sebastian; Rothe, Robert; Yamazaki, Taichi; Zakaria, Osman Bin; Castro, E.; Balderas, M.; González, N.; Salazar, C.; Regalado, L.; Valle, E.; Rodríguez, L.; Ángel Laguna, L.; Ramírez, P.; Avila, M.; Ibarra, J.; Valle, L.; Pérez, M.; Arce, M.; Mitani, Y.; Konopelko, L.; Krylov, A.; Lopushanskaya, E.; Tang Lin, Teo; Liu, Qinde; Tong Kooi, Lee; Fernandes-Whaley, Maria; Prevoo-Franzsen, Désirée; Nhlapo, Nontete; Visser, Ria; Kim, Byungjoo; Lee, Hwashim; Kankaew, Pornhatai; Pookrod, Preeyaporn; Sudsiri, Nittaya; Shearman, Kittiya; Ceyhan Gören, Ahmet; Bilsel, Gökhan; Yilmaz, Hasibe; Bilsel, Mine; Çergel, Muhiddin; Gonca Çoskun, Fatma; Uysal, Emrah; Gündüz, Simay; Ün, Ilker; Warren, John; Bearden, Daniel W.; Bedner, Mary; Duewer, David L.; Lang, Brian E.; Lippa, Katrice A.; Schantz, Michele M.; Sieber, John R.

    2014-01-01

    Under the auspices of the Organic Analysis Working Group (OAWG) of the Comité Consultatif pour la Quantité de Matière (CCQM) a key comparison, CCQM K55.c, was coordinated by the Bureau International des Poids et Mesures (BIPM) in 2012. Twenty National Measurement Institutes or Designated Institutes and the BIPM participated. Participants were required to assign the mass fraction of valine present as the main component in the comparison sample for CCQM-K55.c. The comparison samples were prepared from analytical grade L-valine purchased from a commercial supplier and used as provided without further treatment or purification. Valine was selected to be representative of the performance of a laboratory's measurement capability for the purity assignment of organic compounds of low structural complexity [molecular weight range 100-300] and high polarity (pKOW > -2). The KCRV for the valine content of the material was 992.0 mg/g with a combined standard uncertainty of 0.3 mg/g. The key comparison reference value (KCRV) was assigned by combination of KCRVs assigned from participant results for each orthogonal impurity class. The relative expanded uncertainties reported by laboratories having results consistent with the KCRV ranged from 1 mg/g to 6 mg/g when using mass balance based approaches alone, 2 mg/g to 7 mg/g using quantitative 1H NMR (qNMR) based approaches and from 1 mg/g to 2.5 mg/g when a result obtained by a mass balance method was combined with a separate qNMR result. The material provided several analytical challenges. In addition to the need to identify and quantify various related amino acid impurities including leucine, isoleucine, alanine and ?-amino butyrate, care was required to select appropriate conditions for performing Karl Fischer titration assay for water content to avoid bias due to in situ formation of water by self-condensation under the assay conditions. It also proved to be a challenging compound for purity assignment by qNMR techniques. There was overall excellent agreement between participants in the identification and the quantification of the total and individual related structure impurities, water content, residual solvent and total non-volatile content of the sample. Appropriate technical justifications were developed to rationalise observed discrepancies in the limited cases where methodology differences led to inconsistent results. The comparison demonstrated that to perform a qNMR purity assignment the selection of appropriate parameters and an understanding of their potential influence on the assigned value is critical for reliable implementation of the method, particularly when one or more of the peaks to be quantified consist of complex multiplet signals. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  7. l-leucine partially rescues translational and developmental defects associated with zebrafish models of Cornelia de Lange syndrome

    PubMed Central

    Xu, Baoshan; Sowa, Nenja; Cardenas, Maria E.; Gerton, Jennifer L.

    2015-01-01

    Cohesinopathies are human genetic disorders that include Cornelia de Lange syndrome (CdLS) and Roberts syndrome (RBS) and are characterized by defects in limb and craniofacial development as well as mental retardation. The developmental phenotypes of CdLS and other cohesinopathies suggest that mutations in the structure and regulation of the cohesin complex during embryogenesis interfere with gene regulation. In a previous project, we showed that RBS was associated with highly fragmented nucleoli and defects in both ribosome biogenesis and protein translation. l-leucine stimulation of the mTOR pathway partially rescued translation in human RBS cells and development in zebrafish models of RBS. In this study, we investigate protein translation in zebrafish models of CdLS. Our results show that phosphorylation of RPS6 as well as 4E-binding protein 1 (4EBP1) was reduced in nipbla/b, rad21 and smc3-morphant embryos, a pattern indicating reduced translation. Moreover, protein biosynthesis and rRNA production were decreased in the cohesin morphant embryo cells. l-leucine partly rescued protein synthesis and rRNA production in the cohesin morphants and partially restored phosphorylation of RPS6 and 4EBP1. Concomitantly, l-leucine treatment partially improved cohesinopathy embryo development including the formation of craniofacial cartilage. Interestingly, we observed that alpha-ketoisocaproate (?-KIC), which is a keto derivative of leucine, also partially rescued the development of rad21 and nipbla/b morphants by boosting mTOR-dependent translation. In summary, our results suggest that cohesinopathies are caused in part by defective protein synthesis, and stimulation of the mTOR pathway through l-leucine or its metabolite ?-KIC can partially rescue development in zebrafish models for CdLS. PMID:25378554

  8. Application of a genetically encoded biosensor for live cell imaging of L-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains.

    PubMed

    Mustafi, Nurije; Grünberger, Alexander; Mahr, Regina; Helfrich, Stefan; Nöh, Katharina; Blombach, Bastian; Kohlheyer, Dietrich; Frunzke, Julia

    2014-01-01

    The majority of biotechnologically relevant metabolites do not impart a conspicuous phenotype to the producing cell. Consequently, the analysis of microbial metabolite production is still dominated by bulk techniques, which may obscure significant variation at the single-cell level. In this study, we have applied the recently developed Lrp-biosensor for monitoring of amino acid production in single cells of gradually engineered L-valine producing Corynebacterium glutamicum strains based on the pyruvate dehydrogenase complex-deficient (PDHC) strain C. glutamicum ?aceE. Online monitoring of the sensor output (eYFP fluorescence) during batch cultivation proved the sensor's suitability for visualizing different production levels. In the following, we conducted live cell imaging studies on C. glutamicum sensor strains using microfluidic chip devices. As expected, the sensor output was higher in microcolonies of high-yield producers in comparison to the basic strain C. glutamicum ?aceE. Microfluidic cultivation in minimal medium revealed a typical Gaussian distribution of single cell fluorescence during the production phase. Remarkably, low amounts of complex nutrients completely changed the observed phenotypic pattern of all strains, resulting in a phenotypic split of the population. Whereas some cells stopped growing and initiated L-valine production, others continued to grow or showed a delayed transition to production. Depending on the cultivation conditions, a considerable fraction of non-fluorescent cells was observed, suggesting a loss of metabolic activity. These studies demonstrate that genetically encoded biosensors are a valuable tool for monitoring single cell productivity and to study the phenotypic pattern of microbial production strains. PMID:24465669

  9. Jasmonoyl-l-Isoleucine Coordinates Metabolic Networks Required for Anthesis and Floral Attractant Emission in Wild Tobacco (Nicotiana attenuata)[C][W][OPEN

    PubMed Central

    Stitz, Michael; Hartl, Markus; Baldwin, Ian T.; Gaquerel, Emmanuel

    2014-01-01

    Jasmonic acid and its derivatives (jasmonates [JAs]) play central roles in floral development and maturation. The binding of jasmonoyl-l-isoleucine (JA-Ile) to the F-box of CORONATINE INSENSITIVE1 (COI1) is required for many JA-dependent physiological responses, but its role in anthesis and pollinator attraction traits remains largely unexplored. Here, we used the wild tobacco Nicotiana attenuata, which develops sympetalous flowers with complex pollination biology, to examine the coordinating function of JA homeostasis in the distinct metabolic processes that underlie flower maturation, opening, and advertisement to pollinators. From combined transcriptomic, targeted metabolic, and allometric analyses of transgenic N. attenuata plants for which signaling deficiencies were complemented with methyl jasmonate, JA-Ile, and its functional homolog, coronatine (COR), we demonstrate that (1) JA-Ile/COR-based signaling regulates corolla limb opening and a JA-negative feedback loop; (2) production of floral volatiles (night emissions of benzylacetone) and nectar requires JA-Ile/COR perception through COI1; and (3) limb expansion involves JA-Ile-induced changes in limb fresh mass and carbohydrate metabolism. These findings demonstrate a master regulatory function of the JA-Ile/COI1 duet for the main function of a sympetalous corolla, that of advertising for and rewarding pollinator services. Flower opening, by contrast, requires JA-Ile signaling-dependent changes in primary metabolism, which are not compromised in the COI1-silenced RNA interference line used in this study. PMID:25326292

  10. Crystal Engineering of l-Alanine with l-Leucine Additive using Metal-Assisted and Microwave-Accelerated Evaporative Crystallization.

    PubMed

    Mojibola, Adeolu; Dongmo-Momo, Gilles; Mohammed, Muzaffer; Aslan, Kadir

    2014-05-01

    In this work, we demonstrated that the change in the morphology of l-alanine crystals can be controlled with the addition of l-leucine using the metal-assisted and microwave accelerated evaporative crystallization (MA-MAEC) technique. Crystallization experiments, where an increasing stoichiometric amount of l-leucine is added to initial l-alanine solutions, were carried out on circular poly(methyl methacrylate) (PMMA) disks modified with a 21-well capacity silicon isolator and silver nanoparticle films using microwave heating (MA-MAEC) and at room temperature (control experiments). The use of the MA-MAEC technique afforded for the growth of l-alanine crystals with different morphologies up to ?10-fold faster than those grown at room temperature. In addition, the length of l-alanine crystals was systematically increased from ?380 to ?2000 ?m using the MA-MAEC technique. Optical microscope images revealed that the shape of l-alanine crystals was changed from tetragonal shape (without l-leucine additive) to more elongated and wire-like structures with the addition of the l-leucine additive. Further characterization of l-alanine crystals was undertaken by Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy and powder X-ray diffraction (PXRD) measurements. In order to elucidate the growth mechanism of l-alanine crystals, theoretical simulations of l-alanine's morphology with and without l-leucine additive were carried out using Materials Studio software in conjunction with our experimental data. Theoretical simulations revealed that the growth of l-alanine's {011} and {120} crystal faces were inhibited due to the incorporation of l-leucine into these crystal faces in selected positions. PMID:24839404

  11. Crystal Engineering of l-Alanine with l-Leucine Additive using Metal-Assisted and Microwave-Accelerated Evaporative Crystallization

    PubMed Central

    2015-01-01

    In this work, we demonstrated that the change in the morphology of l-alanine crystals can be controlled with the addition of l-leucine using the metal-assisted and microwave accelerated evaporative crystallization (MA-MAEC) technique. Crystallization experiments, where an increasing stoichiometric amount of l-leucine is added to initial l-alanine solutions, were carried out on circular poly(methyl methacrylate) (PMMA) disks modified with a 21-well capacity silicon isolator and silver nanoparticle films using microwave heating (MA-MAEC) and at room temperature (control experiments). The use of the MA-MAEC technique afforded for the growth of l-alanine crystals with different morphologies up to ?10-fold faster than those grown at room temperature. In addition, the length of l-alanine crystals was systematically increased from ?380 to ?2000 ?m using the MA-MAEC technique. Optical microscope images revealed that the shape of l-alanine crystals was changed from tetragonal shape (without l-leucine additive) to more elongated and wire-like structures with the addition of the l-leucine additive. Further characterization of l-alanine crystals was undertaken by Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy and powder X-ray diffraction (PXRD) measurements. In order to elucidate the growth mechanism of l-alanine crystals, theoretical simulations of l-alanine’s morphology with and without l-leucine additive were carried out using Materials Studio software in conjunction with our experimental data. Theoretical simulations revealed that the growth of l-alanine’s {011} and {120} crystal faces were inhibited due to the incorporation of l-leucine into these crystal faces in selected positions. PMID:24839404

  12. Interaction of L-alanyl-L-valine and L-valyl-L-alanine with organic vapors: thermal stability of clathrates, sorption capacity and the change in the morphology of dipeptide films.

    PubMed

    Ziganshin, Marat A; Gubina, Nadezhda S; Gerasimov, Alexander V; Gorbatchuk, Valery V; Ziganshina, Sufia A; Chuklanov, Anton P; Bukharaev, Anastas A

    2015-08-21

    The strong effect of the amino acid sequence in L-alanyl-L-valine and L-valyl-L-alanine on their sorption properties toward organic compounds and water, and the thermal stability of the inclusion compounds of these dipeptides have been found. Generally, L-valyl-L-alanine has a greater sorption capacity for the studied compounds, but the thermal stability of the L-alanyl-L-valine clathrates is higher. Unusual selectivity of L-valyl-L-alanine for vapors of few chloroalkanes was observed. The correlation between the change in the surface morphology of thin film of dipeptides and stoichiometry of their clathrates with organic compounds was found. This discovery may be used to predict the influence of vapors on the morphology of films of short-chain oligopeptides. PMID:26179850

  13. X-ray structure and computational study for N-acryloyl-L-valine, a versatile monomer for preparing smart drug delivery carriers

    NASA Astrophysics Data System (ADS)

    Tamasi, Gabriella; Casolaro, Mario; Cini, Renzo

    2012-12-01

    The title compound (NAV) has been synthesized by the acylation reaction of L-valine with acryloyl chloride, in alkaline solution. The X-ray crystal and molecular structure was solved and refined in the P212121 space group and was characterized by an almost coplanar H2Cdbnd CHsbnd C(dbnd O)sbnd N(sbnd H)sbnd C system, Cdbnd Csbnd Csbnd N, Cdbnd Csbnd Cdbnd O and (Cdbnd )Csbnd C(dbnd O)sbnd N(sbnd H)sbnd C torsion angles being +anti periplanar (+ap) (trans, +172(1)°), -syn periplanar (-sp, cys) (-8(1)°), and (-ap, trans) (-175(1)°). The carboxylic group plane is almost perpendicular to the amide plane (dihedral angle: 83(1)°) and the Odbnd Csbnd C(sbnd H)sbnd N(sbnd H) torsion angle is-sp, cys (-28(1)°). The Csbnd O bond distance at amide is 1.240(3) Å, whereas the Csbnd O bond distances at carboxylic group are 1.200(3) and 1.303(3) Å, respectively allowing an easy assignment of protonation site. The molecule has been theoretically analyzed via the methods of density functional theory DFT and semi-empirical quantum mechanics at PM3 level (SEQMPM3) in order to examine the conformational surface at the gas phase and in the presence of solvent molecules. The DFT computations at B3LYP/6-311++G** are the most reliable ones among those performed in this work (SEQMPM3, and B3LYP/6-31G**) as the agreement between computed and XRD bond parameters is excellent. Even the conformations are very reliable and the effect of the solvent was evaluated in a box of water molecules (at SEQMPM3) and through the PCM method at DFT for water, methanol, chloroform and other solvents.

  14. The mTORC1/4E-BP pathway coordinates hemoglobin production with L-leucine availability

    PubMed Central

    Chung, Jacky; Bauer, Daniel E.; Ghamari, Alireza; Nizzi, Christopher P.; Deck, Kathryn M.; Kingsley, Paul D.; Yien, Yvette Y.; Huston, Nicholas C.; Chen, Caiyong; Schultz, Iman J.; Dalton, Arthur J.; Wittig, Johannes G.; Palis, James; Orkin, Stuart H.; Lodish, Harvey F.; Eisenstein, Richard S.; Cantor, Alan B.; Paw, Barry H.

    2015-01-01

    In multicellular organisms, the mechanisms by which diverse cell types acquire distinct amino acids and how cellular function adapts to their availability are fundamental questions in biology. Here, we found that increased neutral essential amino acid (NEAA) uptake was a critical component of erythropoiesis. As red blood cells matured, expression of the amino acid transporter gene Lat3 increased, which increased NEAA import. Inadequate NEAA uptake by pharmacologic inhibition or RNAi-mediated knockdown of LAT3 triggered a specific reduction in hemoglobin production in zebrafish embryos and murine erythroid cells through the mTORC1 (mechanistic target of rapamycin complex 1)/4E-BP (eukaryotic translation initiation factor 4E-binding protein) pathway. CRISPR-mediated deletion of members of the 4E-BP family in murine erythroid cells rendered them resistant to mTORC1 and LAT3 inhibition and restored hemoglobin production. These results identify a developmental role for LAT3 in red blood cells and demonstrate that mTORC1 serves as a homeostatic sensor that couples hemoglobin production at the translational level to sufficient uptake of NEAAs, particularly L-leucine. PMID:25872869

  15. Acoustical Studies of L-leucine and L-asparagine in aqueous electrolyte through thermal expansion coefficient

    NASA Astrophysics Data System (ADS)

    Jajodia, S.; Chimankar, O. P.; Kalambe, A.; Goswami, S. G.

    2012-12-01

    Amino acids are the building blocks of the proteins; their study provides important information, about the behaviour of larger biomolecules such as proteins. The properties of proteins such as their structure, solubility, denaturation, etc. are greatly influenced by electrolytes. Ultrasonic velocity and density values have been used for evaluation of thermal expansion coefficient and adiabatic compressibility for ternary systems (amino acid/salt + water) namely L-leucine / L-asparagine each in 1.5 M aqueous solution of NaCl used as solvent for various concentrations and at different temperatures (298.15K - 323.15K). Present paper reports the variation of various thermoacoustical parameters such as Moelwyn-Hughes parameter (C1), Beyer's non-linearity parameter (B/A), internal pressure (Pi), fractional free volume (f), available volume (Va), repulsive exponent (n), molecular constant (r), van der Waals' constant (b), Debye temperatue (?D), etc. have been computed from the thermal expansion coefficient with the change of concentration and temperature. The variations of all these parameters have been interpreted in terms of various intermolecular interactions such as strong, weak, charge transfer, complex formation, hydrogen bonding interaction. The structure making and breaking properties of the interacting components existing in proposed ternary systems. It shows the associating and dissociating tendency of the molecules of solute in solvent.The hetromolecular interactions are present in both the ternary systems.

  16. One-step biosynthesis of ?-ketoisocaproate from l-leucine by an Escherichia coli whole-cell biocatalyst expressing an l-amino acid deaminase from Proteus vulgaris

    PubMed Central

    Song, Yang; Li, Jianghua; Shin, Hyun-dong; Du, Guocheng; Liu, Long; Chen, Jian

    2015-01-01

    This work aimed to develop a whole-cell biotransformation process for the production of ?-ketoisocaproate from L-leucine. A recombinant Escherichia coli strain was constructed by expressing an L-amino acid deaminase from Proteus vulgaris. To enhance ?-ketoisocaproate production, the reaction conditions were optimized as follows: whole-cell biocatalyst 0.8?g/L, leucine concentration 13.1?g/L, temperature 35?°C, pH 7.5, and reaction time 20?h. Under the above conditions, the ?-ketoisocaproate titer reached 12.7?g/L with a leucine conversion rate of 97.8%. In addition, different leucine feeding strategies were examined to increase the ?-ketoisocaproate titer. When 13.1?g/L leucine was added at 2-h intervals (from 0 to 22?h, 12 addition times), the ?-ketoisocaproate titer reached 69.1?g/L, while the leucine conversion rate decreased to 50.3%. We have developed an effective process for the biotechnological production of ?-ketoisocaproate that is more environmentally friendly than the traditional petrochemical synthesis approach. PMID:26217895

  17. The role of physico-chemical and bulk characteristics of co-spray dried L-leucine and polyvinylpyrrolidone on glidant and binder properties in interactive mixtures.

    PubMed

    Mangal, Sharad; Meiser, Felix; Lakio, Satu; Morton, David; Larson, Ian

    2015-02-20

    In this study, polyvinylpyrrolidone (PVP) was spray dried with l-leucine (PVP-Leu) to create a prototype multifunctional interactive excipient. The physico-chemical and bulk properties such as particle size, surface composition, surface energy and bulk cohesion of PVP-Leu was measured and compared against pure spray dried PVP (PVP-SD). The mixing behaviour of these excipients and their effect on flow and binder activity of paracetamol was assessed. The mean particle sizes of PVP-Leu PVP-SD and PVP were 2.5, 2.1 and 21.9?m, respectively. Surface composition characterization indicated that l-leucine achieved higher concentrations on the surface compared to the bulk of the PVP-Leu particles. The surface energy of PVP-Leu was significantly lower compared to PVP-SD. In addition, PVP-Leu exhibited a significantly lower bulk cohesion compared PVP-SD. The excipients were blended with paracetamol and qualitative characterization indicated that PVP-Leu blended more homogeneously with paracetamol compared to PVP-SD. Both PVP-Leu and PVP-SD then exhibited a significantly improved binder activity compared to PVP. The flow of the paracetamol was markedly improved with PVP-Leu while PVP-SD and PVP had negligible effect on its flow. This study reveals how physico-chemical and bulk properties of such prototype interactive excipients can play a key role in determining multi-factorial excipient performance. PMID:25572691

  18. AOG OBSTETRICS & GYNECOLOGY

    PubMed Central

    Guttuso, Thomas; McDermott, Michael P.; Su, Haiyan; Kieburtz, Karl

    2008-01-01

    OBJECTIVE To investigate whether L-isoleucine was effective in the treatment of hot flushes and whether L-isoleucine, L-valine, or the combination of both amino acids reduced fasting serum homocysteine. METHODS After a 1-week baseline period, 100 postmenopausal women experiencing at least five moderate-severe hot flushes per day were randomized with equal probability to one of four groups (phase 1/phase 2): placebo/L-valine, placebo/L-valine and L-isoleucine, L-isoleucine/L-valine, and L-isoleucine/L-valine and L-isoleucine. Phase 1 was 12 weeks long, and phase 2 was 10 weeks long. Patients took five capsules by mouth, twice a day throughout the study, with each capsule containing 500 mg of compound. Data were obtained from daily hot flush diaries, fasting blood work, and several questionnaires. The primary outcome variable was the percent change in hot flush composite score from baseline to week 12. RESULTS In phase 1 of the study, there were no significant differences between the L-isoleucine and placebo groups for any of the outcome measures. At week 12, there was a mean 13.9% decrease in hot flush composite score compared with baseline in the L-isoleucine group and a mean 25% decrease in the placebo group (P=.28). In phase 2 of the study, there was no significant change in fasting serum homocysteine levels associated with any of the amino acid therapies. CONCLUSION L-isoleucine therapy appears to be ineffective in the treatment of hot flushes in postmenopausal women. L-isoleucine and L-valine, either alone or in combination, appear to have no effect on fasting serum homocysteine levels. PMID:18591315

  19. Affinity of Smectite and Divalent Metal Ions (Mg2+, Ca2+, Cu2+) with L-leucine: An Experimental and Theoretical Approach Relevant to Astrobiology

    NASA Astrophysics Data System (ADS)

    Pandey, Pramod; Pant, Chandra Kala; Gururani, Kavita; Arora, Priyanka; Pandey, Neetu; Bhatt, Preeti; Sharma, Yogesh; Negi, Jagmohan Singh; Mehata, Mohan Singh

    2015-12-01

    Earth is the only known planet bestowed with life. Several attempts have been made to explore the pathways of the origin of life on planet Earth. The search for the chemistry which gave rise to life has given answers related to the formation of biomonomers, and their adsorption on solid surfaces has gained much attention for the catalysis and stabilization processes related to the abiotic chemical evolution of the complex molecules of life. In this communication, surface interactions of L-leucine (Leu) on smectite (SMT) group of clay (viz. bentonite and montmorillonite) and their divalent metal ion (Mg2+, Ca2+ and Cu2+) incorporated on SMT has been studied to find the optimal conditions of time, pH, and concentration at ambient temperature (298 K). The progress of adsorption was followed spectrophotometrically and further characterized by FTIR, SEM/EDS and XRD. Leu, a neutral/non polar amino acid, was found to have more affinity in its zwitterionic form towards Cu2+- exchanged SMT and minimal affinity for Mg2+- exchanged SMT. The vibrational frequency shifts of —NH3 + and —COO- favor Van der Waal's forces during the course of surface interaction. Quantum calculations using density functional theory (DFT) have been applied to investigate the absolute value of metal ion affinities of Leu (Leu—M2+ complex, M = Mg2+, Ca2+, Cu2+) with the help of their physico-chemical parameters. The hydration effect on the relative stability and geometry of the individual species of Leu—M2+ × (H2O)n, ( n =2 and 4) has also been evaluated within the supermolecule approach. Evidence gathered from investigations of surface interactions, divalent metal ions affinities and hydration effects with biomolecules may be important for better understanding of chemical evolution, the stabilization of biomolecules on solid surfaces and biomolecular-metal interactions. These results may have implications for understanding the origin of life and the preservation of biomarkers.

  20. Affinity of Smectite and Divalent Metal Ions (Mg(2+), Ca(2+), Cu(2+)) with L-leucine: An Experimental and Theoretical Approach Relevant to Astrobiology.

    PubMed

    Pandey, Pramod; Pant, Chandra Kala; Gururani, Kavita; Arora, Priyanka; Pandey, Neetu; Bhatt, Preeti; Sharma, Yogesh; Negi, Jagmohan Singh; Mehata, Mohan Singh

    2015-12-01

    Earth is the only known planet bestowed with life. Several attempts have been made to explore the pathways of the origin of life on planet Earth. The search for the chemistry which gave rise to life has given answers related to the formation of biomonomers, and their adsorption on solid surfaces has gained much attention for the catalysis and stabilization processes related to the abiotic chemical evolution of the complex molecules of life. In this communication, surface interactions of L-leucine (Leu) on smectite (SMT) group of clay (viz. bentonite and montmorillonite) and their divalent metal ion (Mg(2+), Ca(2+) and Cu(2+)) incorporated on SMT has been studied to find the optimal conditions of time, pH, and concentration at ambient temperature (298 K). The progress of adsorption was followed spectrophotometrically and further characterized by FTIR, SEM/EDS and XRD. Leu, a neutral/non polar amino acid, was found to have more affinity in its zwitterionic form towards Cu(2+)- exchanged SMT and minimal affinity for Mg(2+)- exchanged SMT. The vibrational frequency shifts of -NH3 (+) and -COO(-) favor Van der Waal's forces during the course of surface interaction. Quantum calculations using density functional theory (DFT) have been applied to investigate the absolute value of metal ion affinities of Leu (Leu-M(2+) complex, M?=?Mg(2+), Ca(2+), Cu(2+)) with the help of their physico-chemical parameters. The hydration effect on the relative stability and geometry of the individual species of Leu-M(2+)?×?(H2O)n, (n =2 and 4) has also been evaluated within the supermolecule approach. Evidence gathered from investigations of surface interactions, divalent metal ions affinities and hydration effects with biomolecules may be important for better understanding of chemical evolution, the stabilization of biomolecules on solid surfaces and biomolecular-metal interactions. These results may have implications for understanding the origin of life and the preservation of biomarkers. PMID:25952510

  1. Synthesis and characterization of poly-L-leucine initialized and immobilized by rehydrated hydrotalcite: understanding stability and the nature of interaction.

    PubMed

    Miranda, Ronald-Alexander; Finocchio, Elisabetta; Llorca, Jordi; Medina, Francisco; Ramis, Gianguido; Sueiras, Jesús E; Segarra, Anna M

    2013-10-01

    PLLs were synthesized by the ring-opening polycondensation (ROP) method using ?-L-leucine N-carboxyanhydride (NCA) and initialized by triethylamine (Et3N), water or rehydrated hydrotalcite (HTrus). The role of temperature, different initiators and water in ROP was further investigated. In general, the initiators used in the polymerization reaction lead to PLL alpha-helical chains containing 5-40 monomers with NCA endgroups via a monomer-activated mechanism. However, the water has a twofold effect on ROP, as both a nucleophile and a base, which involves competition between two different types of initiating mechanisms (nucleophilic attack or deprotonation of the NCA monomer) in the polymerization reaction. This competition provides as a main product NCA endgroups with an alpha-helical structure and leads to the formation of the PLL cyclic-chains and beta-sheet structures which reduce the polymer Mw and the PD of the polypeptide. Furthermore, the water can hydrolyze the NCA endgroups resulting in PLL alpha-helical chains that contain living groups as the main product. On the other hand, the HTrus presents a double role: as both an initiator and a support. The polymers synthesized in the presence of HTrus presented a HT-carboxylate endgroup. The PLLs immobilized in HTrus through an anion-exchange method performed for just 30 minutes presented the PLL immobilized in the interlayer space of the HTrus. The PLL chains of the immobilized counterpart are stabilized by H-bonding with the M-OH of the HT structure. All the polypeptides and biohybrid materials synthesized have been characterized using different techniques (EA, ICP, XRD, Raman, MALDI-TOF, ESI-TOF, FT-IR at increasing temperatures, TG/DT analyses and TEM). PMID:23942769

  2. Folding and translocation of the undecamer of poly-L-leucine across the water-hexane interface. A molecular dynamics study

    NASA Technical Reports Server (NTRS)

    Chipot, C.; Pohorille, A.

    1998-01-01

    The undecamer of poly-L-leucine at the water-hexane interface is studied by molecular dynamics simulations. This represents a simple model relevant to folding and insertion of hydrophobic peptides into membranes. The peptide, initially placed in a random coil conformation on the aqueous side of the system, rapidly translocates toward the hexane phase and undergoes interfacial folding into an alpha-helix in the subsequent 36 ns. Folding is nonsequential and highly dynamic. The initially formed helical segment at the N-terminus of the undecamer becomes transiently broken and, subsequently, reforms before the remainder of the peptide folds from the C-terminus. The formation of intramolecular hydrogen bonds during the folding of the peptide is preceded by a dehydration of the participating polar groups, as they become immersed in hexane. Folding proceeds through a short-lived intermediate, a 3(10)-helix, which rapidly interconverts to an alpha-helix. Both helices contribute to the equilibrium ensemble of folded structures. The helical peptide is largely buried in hexane, yet remains adsorbed at the interface. Its preferred orientation is parallel to the interface, although the perpendicular arrangement with the N-terminus immersed in hexane is only slightly less favorable. In contrast, the reversed orientation is highly unfavorable, because it would require dehydration of C-terminus carbonyl groups that do not participate in intramolecular hydrogen bonding. For the same reason, the transfer of the undecamer from the interface to the bulk hexane is also unfavorable. The results suggest that hydrophobic peptides fold in the interfacial region and, simultaneously, translocate into the nonpolar side of the interface. It is further implied that peptide insertion into the membrane is accomplished by rotating from the parallel to the perpendicular orientation, most likely in such a way that the N-terminus penetrates the bilayer.

  3. Comparative analysis of pharmacological treatments with N-acetyl-dl-leucine (Tanganil) and its two isomers (N-acetyl-L-leucine and N-acetyl-D-leucine) on vestibular compensation: Behavioral investigation in the cat.

    PubMed

    Tighilet, Brahim; Leonard, Jacques; Bernard-Demanze, Laurence; Lacour, Michel

    2015-12-15

    Head roll tilt, postural imbalance and spontaneous nystagmus are the main static vestibular deficits observed after an acute unilateral vestibular loss (UVL). In the UVL cat model, these deficits are fully compensated over 6 weeks as the result of central vestibular compensation. N-Acetyl-dl-leucine is a drug prescribed in clinical practice for the symptomatic treatment of acute UVL patients. The present study investigated the effects of N-acetyl-dl-leucine on the behavioral recovery after unilateral vestibular neurectomy (UVN) in the cat, and compared the effects of each of its two isomers N-acetyl-L-leucine and N-acetyl-D-leucine. Efficacy of these three drug treatments has been evaluated with respect to a placebo group (UVN+saline water) on the global sensorimotor activity (observation grids), the posture control (support surface measurement), the locomotor balance (maximum performance at the rotating beam test), and the spontaneous vestibular nystagmus (recorded in the light). Whatever the parameters tested, the behavioral recovery was strongly and significantly accelerated under pharmacological treatments with N-acetyl-dl-leucine and N-acetyl-L-leucine. In contrast, the N-acetyl-D-leucine isomer had no effect at all on the behavioral recovery, and animals of this group showed the same recovery profile as those receiving a placebo. It is concluded that the N-acetyl-L-leucine isomer is the active part of the racemate component since it induces a significant acceleration of the vestibular compensation process similar (and even better) to that observed under treatment with the racemate component only. PMID:26607469

  4. Far infrared spectra of solid state aliphatic amino acids in different protonation states

    NASA Astrophysics Data System (ADS)

    Trivella, Aurélien; Gaillard, Thomas; Stote, Roland H.; Hellwig, Petra

    2010-03-01

    Far infrared spectra of zwitterionic, cationic, and anionic forms of aliphatic amino acids in solid state have been studied experimentally. Measurements were done on glycine, L-alanine, L-valine, L-leucine, and L-isoleucine powder samples and film samples obtained from dried solutions prepared at pH ranging from 1 to 13. Solid state density functional theory calculations were also performed, and detailed potential energy distributions were obtained from normal mode results. A good correspondence between experimental and simulated spectra was achieved and this allowed us to propose an almost complete band assignment for the far infrared spectra of zwitterionic forms. In the 700-50 cm-1 range, three regions were identified, each corresponding to a characteristic set of normal modes. A first region between 700 and 450 cm-1 mainly contained the carboxylate bending, rocking, and wagging modes as well as the ammonium torsional mode. The 450-250 cm-1 region was representative of backbone and sidechain skeletal bending modes. At last, the low wavenumber zone, below 250 cm-1, was characteristic of carboxylate and skeletal torsional modes and of lattice modes. Assignments are also proposed for glycine cationic and anionic forms, but could not be obtained for all aliphatic amino acids due to the lack of structural data. This work is intended to provide fundamental information for the understanding of peptides vibrational properties.

  5. Rapid synthesis of new block copolyurethanes derived from L-leucine cyclodipeptide in reusable molten ammonium salts: novel and efficient green media for the synthesis of new hydrolysable and biodegradable copolyurethanes.

    PubMed

    Rafiemanzelat, Fatemeh; Abdollahi, Elahe

    2012-06-01

    This study concerns the synthesis of novel multi block polyurethane (PU) copolymers containing cyclodipeptide, taking the advantage of ionic liquids (ILs) under microwave irradiation. For this, L-leucine anhydride cyclodipeptide (LACP) was prepared and then a new class of poly(ether-urethane-urea)s (PEUUs) was synthesized in molten ammonium type ILs. ILs were used as reaction media and PUs were prepared via two-step polymerization method. In the first step, 4,4'-methylene-bis-(4-phenylisocyanate) (MDI) was reacted with LACP to produce isocyanate-terminated oligo(imide-urea) as hard segment (NCO-OIU). Chain extension of the aforementioned pre-polymer with polyethyleneglycol (PEG) of molecular weights of 1000 (PEG-1000) was the second step to furnish a series of new PEUUs. These multiblock copolymers are thermally stable, soluble in amide-type solvents, hydrolysable and biodegradable. PEUUs prepared in ILs under microwave irradiation showed more phase separation and crystallinity than PEUUs prepared under conventional method. The protocol presented here has the merits of environmentally benign, simple operation, convenient work-up, short reaction time and good yields without using volatile organic solvents, and catalysts. Ammonium type reaction media were air and water stable, and relatively cheap, which makes them suitable for application. The results demonstrate that they can be easily separated into water and reused without losing activity. Reusability of tetrabutylammonium bromide as reaction media makes the method a cost effective and environmentally benign method under microwave irradiation. Thus, we could prepare environmentally friendly polymers via environmentally benign method. PMID:21706232

  6. L-leucine, beta-hydroxy-beta-methylbutyric acid (HMB) and creatine monohydrate prevent myostatin-induced Akirin-1/Mighty mRNA down-regulation and myotube atrophy

    PubMed Central

    2014-01-01

    Background The purpose of this study was to examine if L-leucine (Leu), ?-hydroxy-?-methylbutyrate (HMB), or creatine monohydrate (Crea) prevented potential atrophic effects of myostatin (MSTN) on differentiated C2C12 myotubes. Methods After four days of differentiation, myotubes were treated with MSTN (10 ng/ml) for two additional days and four treatment groups were studied: 1) 3x per day 10 mM Leu, 2) 3x per day 10 mM HMB, 3) 3x per day 10 mM Crea, 4) DM only. Myotubes treated with DM without MSTN were analyzed as the control condition (DM/CTL). Following treatment, cells were analyzed for total protein, DNA content, RNA content, muscle protein synthesis (MPS, SUnSET method), and fiber diameter. Separate batch treatments were analyzed for mRNA expression patterns of myostatin-related genes (Akirin-1/Mighty, Notch-1, Ski, MyoD) as well as atrogenes (MuRF-1, and MAFbx/Atrogin-1). Results MSTN decreased fiber diameter approximately 30% compared to DM/CTL myotubes (p?

  7. Branched-chain and aromatic amino acid catabolism into aroma volatiles in Cucumis melo L. fruit

    PubMed Central

    Gonda, Itay; Bar, Einat; Portnoy, Vitaly; Lev, Shery; Burger, Joseph; Schaffer, Arthur A.; Tadmor, Ya'akov; Gepstein, Shimon; Giovannoni, James J.; Katzir, Nurit; Lewinsohn, Efraim

    2010-01-01

    The unique aroma of melons (Cucumis melo L., Cucurbitaceae) is composed of many volatile compounds biosynthetically derived from fatty acids, carotenoids, amino acids, and terpenes. Although amino acids are known precursors of aroma compounds in the plant kingdom, the initial steps in the catabolism of amino acids into aroma volatiles have received little attention. Incubation of melon fruit cubes with amino acids and ?-keto acids led to the enhanced formation of aroma compounds bearing the side chain of the exogenous amino or keto acid supplied. Moreover, L-[13C6]phenylalanine was also incorporated into aromatic volatile compounds. Amino acid transaminase activities extracted from the flesh of mature melon fruits converted L-isoleucine, L-leucine, L-valine, L-methionine, or L-phenylalanine into their respective ?-keto acids, utilizing ?-ketoglutarate as the amine acceptor. Two novel genes were isolated and characterized (CmArAT1 and CmBCAT1) encoding 45.6?kDa and 42.7?kDa proteins, respectively, that displayed aromatic and branched-chain amino acid transaminase activities, respectively, when expressed in Escherichia coli. The expression of CmBCAT1 and CmArAT1 was low in vegetative tissues, but increased in flesh and rind tissues during fruit ripening. In addition, ripe fruits of climacteric aromatic cultivars generally showed high expression of CmBCAT1 and CmArAT1 in contrast to non-climacteric non-aromatic fruits. The results presented here indicate that in melon fruit tissues, the catabolism of amino acids into aroma volatiles can initiate through a transamination mechanism, rather than decarboxylation or direct aldehyde synthesis, as has been demonstrated in other plants. PMID:20065117

  8. Analysis of acetohydroxyacid synthase variants from branched-chain amino acids-producing strains and their effects on the synthesis of branched-chain amino acids in Corynebacterium glutamicum.

    PubMed

    Guo, Yanfeng; Han, Mei; Xu, Jianzhong; Zhang, Weiguo

    2015-05-01

    Acetohydroxy acid synthase (AHAS) controls carbon flux through the branch point and determines the relative rates of the synthesis of isoleucine, valine and leucine, respectively. However, it is strongly regulated by its end products. In this study, we characterized AHAS variants from five branched-chain amino acids-producing strains. Amino acid substitution occurred in both catalytic subunit and regulatory subunit. Interestingly, AHAS variants reduced sensitivity to feedback inhibition by branched-chain amino acids (BCAAs). Although AHAS with amino acid substitution in regulatory subunit showed higher resistance, amino acid substitution in catalytic subunit could also endow AHAS with resistance to feedback inhibition. In addition, AHAS variants from V2 and L5 displayed about 1.4-fold higher specific activity compared to other AHAS variants. On the other hand, AHAS variant from V1 exhibited the highest resistance to BCAAs, 87% of original activity left even in the presence of 10mM BCAAs. Recombinant Corynebacteriumglutamicum strains were further constructed to investigate the effects of expressing AHAS variants on the synthesis of BCAAs and alanine (main by-product) in C. glutamicum. BCAAs production was increased with the increase of resistance to feedback inhibition, although valine showed a significant increase. For instance, C. g-1BN could accumulate 9.51g/l valine, 0.450g/l leucine and 0.180g/l isoleucine, and alanine was reduced to 0.477g/l. These AHAS variants are important for further improving performance of BCAAs-producing strain. PMID:25697867

  9. Combination of the dipeptidyl peptidase IV inhibitor LAF237 [(S)-1-[(3-hydroxy-1-adamantyl)ammo]acetyl-2-cyanopyrrolidine] with the angiotensin II type 1 receptor antagonist valsartan [N-(1-oxopentyl)-N-[[2'-(1H-tetrazol-5-yl)-[1,1'-biphenyl]-4-yl]methyl]-L-valine] enhances pancreatic islet morphology and function in a mouse model of type 2 diabetes.

    PubMed

    Cheng, Qianni; Law, Pui Ki; de Gasparo, Marc; Leung, Po Sing

    2008-12-01

    LAF237 [(S)-1-[(3-hydroxy-1-adamantyl)ammo]acetyl-2-cyanopyrrolidine] is an inhibitor of dipeptidyl peptidase IV that delays the degradation of glucagon-like peptide-1 (GLP-1). Valsartan [N-(1-oxopentyl)-N-[[2'-(1H-tetrazol-5-yl)[1,1'-biphenyl]-4-yl]methyl]-l-valine] is an antagonist of the angiotensin II type 1 receptor (AT1R) that reduces the incidence of type 2 diabetes mellitus. LAF237 and valsartan act on a common target through separate pathways to improve pancreatic islet cell function. We hypothesize that the combination of these two drugs acts in a synergistic or additive manner on islet function and structure. To test this hypothesis, we performed in vitro and in vivo studies. To measure the acute effect of the treatment, pancreatic islets of db/db mice were isolated and stimulated in vitro with glucose in the presence of valsartan (1 microM) and exendin-4 (100 nM), a GLP-1 receptor agonist. Combination treatment with valsartan and exendin-4 significantly enhanced glucose-stimulated insulin secretion from isolated islets. For studies of chronic effect, db/db mice received LAF237 (1 mg/kg/day) and/or valsartan (10 mg/kg/day). Islet cell reactive oxygen species (ROS), proliferation, apoptosis, fibrosis, beta-cell area, and glucose homeostasis were evaluated after 8 weeks of treatment, which showed that combination treatment resulted in a significant increase in pancreatic islet beta-cell area compared with monotherapy. This beneficial effect correlated with an increase in beta-cell proliferation and a decrease in ROS-induced islet apoptosis and fibrosis. These in vitro and in vivo data indicate that combination treatment with LAF237 and valsartan has significant beneficial additive effects on pancreatic beta-cell structure and function compared with their respective monotherapeutic effects. PMID:18787107

  10. Characterization and modification of enzymes in the 2-ketoisovalerate biosynthesis pathway of Ralstonia eutropha H16

    SciTech Connect

    Lu, JN; Brigham, CJ; Plassmeier, JK; Sinskey, AJ

    2014-08-01

    2-Ketoisovalerate is an important cellular intermediate for the synthesis of branched-chain amino acids as well as other important molecules, such as pantothenate, coenzyme A, and glucosinolate. This ketoacid can also serve as a precursor molecule for the production of biofuels, pharmaceutical agents, and flavor agents in engineered organisms, such as the betaproteobacterium Ralstonia eutropha. The biosynthesis of 2-ketoisovalerate from pyruvate is carried out by three enzymes: acetohydroxyacid synthase (AHAS, encoded by ilvBH), acetohydroxyacid isomeroreductase (AHAIR, encoded by ilvC), and dihydroxyacid dehydratase (DHAD, encoded by ilvD). In this study, enzymatic activities and kinetic parameters were determined for each of the three R. eutropha enzymes as heterologously purified proteins. AHAS, which serves as a gatekeeper for the biosynthesis of all three branched-chain amino acids, demonstrated the tightest regulation through feedback inhibition by l-valine (IC50 = 1.2 mM), l-isoleucine (IC50 = 2.3 mM), and l-leucine (IC50 = 5.4 mM). Intermediates in the valine biosynthesis pathway also exhibit feedback inhibitory control of the AHAS enzyme. In addition, AHAS has a very weak affinity for pyruvate (K-M = 10.5 mu M) and is highly selective towards 2-ketobutyrate (R = 140) as a second substrate. AHAIR and DHAD are also inhibited by the branched-chain amino acids, although to a lesser extent when compared to AHAS. Experimental evolution and rational site-directed mutagenesis revealed mutants of the regulatory subunit of AHAS (IlvH) (N11S, T34I, A36V, T104S, N11F, G14E, and N29H), which, when reconstituted with wild-type IlvB, lead to AHAS having reduced valine, leucine, and isoleucine sensitivity. The study of the kinetics and inhibition mechanisms of R. eutropha AHAS, AHAIR, and DHAD has shed light on interactions between these enzymes and the products they produce; it, therefore, can be used to engineer R. eutropha strains with optimal production of 2-ketoisovalerate for value-added materials.

  11. Heating improves poor compliance with branched chain amino acid-rich supplementation in patients with liver cirrhosis: A before-after pilot study.

    PubMed

    Itou, Minoru; Kawaguchi, Takumi; Taniguchi, Eitaro; Shiraishi, Satomi; Ibi, Ryoko; Mutou, Michiko; Okada, Teruyo; Uchida, Yuki; Otsuka, Momoka; Oriishi, Tetsuharu; Tanaka, Suiko; Takakura, Machiko; Mitsuyama, Keiichi; Tsuruta, Osamu; Sata, Michio

    2009-01-01

    Although branched chain amino acid (BCAA) supplementation improves malnutrition in cirrhotic patients, patient compliance with the administration of BCAA-rich supplements is poor due to their bitter taste. Since temperature is an important factor affecting taste, we examined the effect of heating on the stability of BCAAs and on the compliance of patients with liver cirrhosis with BCAA-rich supplement administration. A thermal denaturation test was first conducted, in which the BCAA-rich supplement Aminoleban® EN was heated to 37, 60, or 80°C for 30 or 60 min. The concentration of three amino acids, L-valine, L-leucine and L-isoleucine, was subsequently measured. The nutritional status of the cirrhotic patients was also evaluted. Patients presenting liver failure with a Child-Pugh class of A (n=2), B (n=2) or C (n=2) were hospitalized at Kurume University Hospital. Six patients with liver cirrhosis (HCV, n=3; HBV, n=1; alcohol, n=2) were enrolled. Venous blood samples were drawn in the morning after a 12-h overnight fast. The BCAA-rich supplement was administered to patients at room temperature (25°C) or heat loaded at 60°C for 10 min, with the temperature maintained above 45°C. Each patient was interviewed by a nationally registered dietitian regarding food consumption and intake of the BCAA-rich supplement immediately after each meal. Nutritional status was evaluated according to serum albumin levels, blood hemoglobin, prothrombin time and total lymphocyte count. No significant decrease was noted in valine, leucine or isoleucine levels following the heating of the BCAAs to 80°C. The caloric intake of the BCAA-rich supplement was significantly higher with administration after heating to 60°C, compared to caloric intake with administration at 25°C. In addition, heating of the BCAA-rich supplement significantly increased blood lymphocyte counts. In conclusion, heating did not affect the stability of the BCAAs, and may improve compliance with BCAA-rich supplement administration. As a result, the nutritional status of cirrhotic patients may be improved. PMID:21475931

  12. Synthesis and biological evaluation of L-valine-amidoximeesters as double prodrugs of amidines.

    PubMed

    Kotthaus, Joscha; Hungeling, Helen; Reeh, Christiane; Kotthaus, Jürke; Schade, Dennis; Wein, Silvia; Wolffram, Siegfried; Clement, Bernd

    2011-03-15

    In general, drugs containing amidines suffer from poor oral bioavailability and are often converted into amidoxime prodrugs to overcome low uptake from the gastrointestinal tract. The esterification of amidoximes with amino acids represents a newly developed double prodrug principle creating derivatives of amidines with both improved oral availability and water solubility. N-valoxybenzamidine (1) is a model compound for this principle, which has been transferred to the antiprotozoic drug pentamidine (8). Prodrug activation depends on esterases and mARC and is thus independent from activation by P450 enzymes. Therefore, drug-drug interactions or side effects will be minimized. The synthesis of these two compounds was established, and their biotransformation was studied in vitro and in vivo. Bioactivation of N-valoxybenzamidine (1) and N,N'-bis(valoxy)pentamidine (7) via hydrolysis and reduction has been demonstrated in vitro with porcine and human subcellular enzyme preparations and the mitochondrial Amidoxime Reducing Component (mARC). Moreover, activation of N-valoxybenzamidine (1) by porcine hepatocytes was studied. In vivo, the bioavailability in rats after oral application of N-valoxybenzamidine (1) was about 88%. Similarly, N,N'-bis(valoxy)pentamidine (7) showed oral bioavailability. Analysis of tissue samples revealed high concentrations of pentamidine (8) in liver and kidney. PMID:21345682

  13. Conformation of dehydropentapeptides containing four achiral amino acid residues - controlling the role of L-valine.

    PubMed

    Jewgi?ski, Micha?; Krzciuk-Gula, Joanna; Makowski, Maciej; Latajka, Rafa?; Kafarski, Pawe?

    2014-01-01

    Structural studies of pentapeptides containing an achiral block, built from two dehydroamino acid residues (?(Z)Phe and ?Ala) and two glycines, as well as one chiral L-Val residue were performed using NMR spectroscopy. The key role of the L-Val residue in the generation of the secondary structure of peptides is discussed. The obtained results suggest that the strongest influence on the conformation of peptides arises from a valine residue inserted at the C-terminal position. The most ordered conformation was found for peptide Boc-Gly-?Ala-Gly-?(Z)Phe-Val-OMe (3), which adopts a right-handed helical conformation. PMID:24778717

  14. ISOLEUCYL-tRNA SYNTHETASE OF E. coli B. A RAPID KINETIC INVESTIGATION OF THE L-ISOLEUCINE ACTIVATING REACTION

    E-print Network

    Holler, E.

    2008-01-01

    is how binding of a cognate tRNA will modify the kinetic andkinetic data. fluorescent reporter group for Recently, INS has been used as a in measuring bindingbinding of co-ligands could be best llilderstood for a random mechanism. The types of kinetic

  15. Synthesis of homopolypeptides by aminolysis mediated by proteases encapsulated in silica nanospheres.

    PubMed

    Baker, Peter J; Patwardhan, Siddharth V; Numata, Keiji

    2014-11-01

    We report the encapsulation of three different proteases in bioinspired silica. Silica particles were formed under mild reaction conditions using cationic amine-rich ethyleneamines as initiators, which resulted in aggregations of nanoscale spheres. Following encapsulation, the proteases were characterized for their hydrolytic and aminolytic activities. The encapsulation resulted in an increase in the thermal stability of the proteases for both hydrolysis and aminolysis reactions. The enhanced thermal stability of the encapsulated proteases increased the production of poly-L-leucine by aminolysis. Furthermore, the encapsulation of papain resulted in an increase in the production of poly-L-alanine and poly-L-valine at 50?°C. PMID:25154484

  16. L e t t e r The formation of cubane cluster controlled by L-valineGd

    E-print Network

    Gao, Song

    used in magnetic resonance imaging (MRI) as a contrast-enhancing agent for making tumor diag- nostics.2 Recently, with the development of rare earth addi- tives to fertilizers in agriculture, rare earth ions may of 1, which easily lose water in air.¤ X-Ray analysis revealed that the compound is composed

  17. Metabolic changes in rats after intragastric administration of MGCD0103 (Mocetinostat), a HDAC class I inhibitor

    PubMed Central

    Zhang, Qingwei; Wu, Haiya; Wen, Congcong; Sun, Fa; Yang, Xuezhi; Hu, Lufeng

    2015-01-01

    MGCD0103, an isotype-selective HDACi, has been clinically evaluated for the treatment of hematologic malignancies and advanced solid tumors, alone and in combination with standard-of-care agents. In this study, we developed a serum metabolomic method based on gas chromatography-mass spectrometry (GC-MS) to evaluate the effect of intragastric administration of MGCD0103 on rats. The MGCD0103 group rats were given 20, 40, 80 mg/kg of MGCD0103 by intragastric administration each day for 7 days. Pattern recognition analysis, including both principal component analysis (PCA) and partial least squares-discriminate analysis (PLS-DA) revealed that intragastric administration of MGCD0103 induced metabolic perturbations. As compared to the control group, the levels of L-alanine, L-isoleucine, and L-leucine of MGCD0103 group decreased. The results indicate that metabolomic methods based on GC-MS may be useful to elucidate side effect of MGCD0103 through the exploration of biomarkers (L-alanine, L-isoleucine, and L-leucine). According to the pathological changes of liver at difference dosage, MGCD0103 is hepatotoxic and its toxity is dose-dependent. PMID:26464683

  18. Intestinal nutrient absorption - A biomarker for deleterious heavy metals in aquatic environments

    SciTech Connect

    Farmanfarmaian, A. )

    1988-09-01

    The deleterious effects of heavy metals on absorptive processes at the membrane surface will be summarized. Among the deleterious heavy metal chlorides (HgCl{sub 2}, CH{sub 3}HgCl, CdCl{sub 2}, CoCl{sub 2}, SrCl{sub 2}) tested HgCl{sub 2}, CH{sub 3}HgCl, and CdCl{sub 2} inhibit the absorption of several amino acids and sugars (L-leucine, L-methionine, L-isoleucine, L-lysine, cyclolencine, D-glucose, and D-galactose). The dose dependent inhibition of L-leucine uptake by HgCl{sub 2} is shown in a number of fish from different collection sites representing nektonic plankton feeders as well as demersal carnivores. The same type of data is shown for both HgCl{sub 2} and HC{sub 3}HgCl in the case of the commercially important summer flounder. Since the overall rate of intestinal absorption of amino acids and sugars involves the three processes of simple diffusion, protein-mediated facilitated diffusions, and protein-mediated sodium dependent active transport, the inhibition of the overall rate may not be sensitive enough as a biomarker. However, the active component, which alone accumulates essential amino acids in the tissue, appears to be very sensitive and can be used as a biomarker. The terminal tissue-to-medium (T/M) ratio of L-leucine concentration shows a 2-3 fold accumulation in the absence of mercury. Since the diffusional components can at best equilibrate L-leucine across the membrane % inhibition of the active component can be calculated after subtracting 1 from the experimental T/M values. The resulting inhibition is very sever ranging from approximately 50-100% for HgCl{sub 2} and 20-70% for CH{sub 3}HgCl over a range of 5-20 ppm of mercury.

  19. Synthesis of New Five Coordinated Copper(II) and Nickel(II) Complexes of L-Valine and Kinetic Study of Copper(II) with Calf Thymus DNA.

    PubMed

    Tak, Aijaz Ahmad; Arjmand, Farukh; Tabassum, Sartaj

    2002-01-01

    Five coordinated novel complexes of CuII and NiII have been synthesized from benzil and 1,3- diaminopropane-CuII/NiII complex and characterized by elemental analysis, i.r., n.m.r., e.p.r, molar conductance and u.v-vis, spectroscopy. The complexes are ionic in nature and exhibit pentaeoordinated geometry around the metal ion. The reaction kinetics of C25H36N5O2CuCl with calf thymus DNA was studied by u.v-vis, spectroscopy in aqueous medium. The complex after interaction with calf thymus DNA shows shift in the absorption spectrum and hypochromicity indicating an intercalative binding mode. The Kobs values have been calculated under pseudo-first order conditions. The redox behaviour of complex C25H36N5O2CuCl in the presence and in the absence of calf thymus DNA in the aqueous solution has been investigated by cyclic voltammetry. The cyclic voitammogram exhibits one quasi-reversible redox wave corresponding to CuII/CuI redox couple with E1/2 values of -0.377 and -0.237 V respectively at a scan rate of 0.1Vs-1 .On interaction with calf thymus DNA, the complex C25H36N5O2CuCl exhibits shifts in both Ep as well as in E1/2 values, indicating strong binding of the complex to the calf thymus DNA. PMID:18475428

  20. Production of 2-ketoisocaproate with Corynebacterium glutamicum strains devoid of plasmids and heterologous genes.

    PubMed

    Vogt, Michael; Haas, Sabine; Polen, Tino; van Ooyen, Jan; Bott, Michael

    2015-03-01

    2-Ketoisocaproate (KIC), the last intermediate in l-leucine biosynthesis, has various medical and industrial applications. After deletion of the ilvE gene for transaminase B in l-leucine production strains of Corynebacterium glutamicum, KIC became the major product, however, the strains were auxotrophic for l-isoleucine. To avoid auxotrophy, reduction of IlvE activity by exchanging the ATG start codon of ilvE by GTG was tested instead of an ilvE deletion. The resulting strains were indeed able to grow in glucose minimal medium without amino acid supplementation, but at the cost of lowered growth rates and KIC production parameters. The best production performance was obtained with strain MV-KICF1, which carried besides the ilvE start codon exchange three copies of a gene for a feedback-resistant 2-isopropylmalate synthase, one copy of a gene for a feedback-resistant acetohydroxyacid synthase and deletions of ltbR and iolR encoding transcriptional regulators. In the presence of 1?mM l-isoleucine, MV-KICF1 accumulated 47?mM KIC (6.1?g?l(-1)) with a yield of 0.20?mol/mol glucose and a volumetric productivity of 1.41?mmol?KIC?l(-1) ?h(-1). Since MV-KICF1 is plasmid free and lacks heterologous genes, it is an interesting strain for industrial application and as platform for the production of KIC-derived compounds, such as 3-methyl-1-butanol. PMID:25488800

  1. Vibrational analysis of amino acids and short peptides in hydrated media. I. L-glycine and L-leucine.

    PubMed

    Derbel, Najoua; Hernández, Belén; Pflüger, Fernando; Liquier, Jean; Geinguenaud, Frédéric; Jaïdane, Nejmeddine; Lakhdar, Zohra Ben; Ghomi, Mahmoud

    2007-02-15

    Raman scattering and Fourier-transform infrared (FT-IR) attenuated transmission reflectance (ATR) spectra of two alpha-amino acids (alpha-AAs), i.e., glycine and leucine, were measured in H2O and D2O (at neutral pH and pD). This series of observed vibrational data gave us the opportunity to analyze vibrational features of both AAs in hydrated media by density functional theory (DFT) calculations at the B3LYP/6-31++G* level. Harmonic vibrational modes calculated after geometry optimization on the clusters containing each AA and 12 surrounding water molecules, which represent primary models for hydration scheme of amino acids, allowed us to assign the main observed peaks. PMID:17243664

  2. Reviewing the Effects of l-Leucine Supplementation in the Regulation of Food Intake, Energy Balance, and Glucose Homeostasis

    PubMed Central

    Pedroso, João A.B.; Zampieri, Thais T.; Donato, Jose

    2015-01-01

    Leucine is a well-known activator of the mammalian target of rapamycin (mTOR). Because mTOR signaling regulates several aspects of metabolism, the potential of leucine as a dietary supplement for treating obesity and diabetes mellitus has been investigated. The objective of the present review was to summarize and discuss the available evidence regarding the mechanisms and the effects of leucine supplementation on the regulation of food intake, energy balance, and glucose homeostasis. Based on the available evidence, we conclude that although central leucine injection decreases food intake, this effect is not well reproduced when leucine is provided as a dietary supplement. Consequently, no robust evidence indicates that oral leucine supplementation significantly affects food intake, although several studies have shown that leucine supplementation may help to decrease body adiposity in specific conditions. However, more studies are necessary to assess the effects of leucine supplementation in already-obese subjects. Finally, although several studies have found that leucine supplementation improves glucose homeostasis, the underlying mechanisms involved in these potential beneficial effects remain unknown and may be partially dependent on weight loss. PMID:26007339

  3. An extreme-halophile archaebacterium possesses the interlock type of prephenate dehydratase characteristic of the Gram-positive eubacteria

    NASA Technical Reports Server (NTRS)

    Jensen, R. A.; d'Amato, T. A.; Hochstein, L. I.

    1988-01-01

    The focal point of phenylalanine biosynthesis is a dehydratase reaction which in different organisms may be prephenate dehydratase, arogenate dehydratase, or cyclohexadienyl dehydratase. Gram-positive, Gram-negative, and cyanobacterial divisions of the eubacterial kingdom exhibit different dehydratase patterns. A new extreme-halophile isolate, which grows on defined medium and is tentatively designated as Halobacterium vallismortis CH-1, possesses the interlock type of prephenate dehydratase present in Gram-positive bacteria. In addition to the conventional sensitivity to feedback inhibition by L-phenylalanine, the phenomenon of metabolic interlock was exemplified by the sensitivity of prephenate dehydratase to allosteric effects produced by extra-pathway (remote) effectors. Thus, L-tryptophan inhibited activity while L-tyrosine, L-methionine, L-leucine and L-isoleucine activated the enzyme. L-Isoleucine and L-phenylalanine were effective at micromolar levels; other effectors operated at mM levels. A regulatory mutant selected for resistance to growth inhibition caused by beta-2-thienylalanine possessed an altered prephenate dehydratase in which a phenomenon of disproportionately low activity at low enzyme concentration was abolished. Inhibition by L-tryptophan was also lost, and activation by allosteric activators was diminished. Not only was sensitivity to feedback inhibition by L-phenylalanine lost, but the mutant enzyme was now activated by this amino acid (a mutation type previously observed in Bacillus subtilis). It remains to be seen whether this type of prephenate dehydratase will prove to be characteristic of all archaebacteria or of some archaebacterial subgroup cluster.

  4. Metabolomics changes in a rat model of obstructive jaundice: mapping to metabolism of amino acids, carbohydrates and lipids as well as oxidative stress.

    PubMed

    Long, Yue; Dong, Xin; Yuan, Yawei; Huang, Jinqiang; Song, Jiangang; Sun, Yumin; Lu, Zhijie; Yang, Liqun; Yu, Weifeng

    2015-07-01

    The study examined the global metabolic and some biochemical changes in rats with cholestasis induced by bile duct ligation (BDL). Serum samples were collected in male Wistar rats with BDL (n = 8) and sham surgery (n = 8) at day 3 after surgery for metabolomics analysis using a combination of reversed phase chromatography and hydrophilic interaction chromatography (HILIC) and quadrupole-time-of-flight mass spectrometry (Q-TOF MS). The serum levels of malondialdehyde (MDA), total antioxidative capacity (T-AOC), glutathione (GSH) and glutathione disulfide (GSSG), the activities of superoxide dismutase (SOD) and glutathion peroxidase (GSH-Px) were measured to estimate the oxidative stress state. Key changes after BDL included increased levels of l-phenylalanine, l-glutamate, l-tyrosine, kynurenine, l-lactic acid, LysoPC(c) (14:0), glycine and succinic acid and decreased levels of l-valine, PC(b) (19:0/0:0), taurine, palmitic acid, l-isoleucine and citric acid metabolism products. And treatment with BDL significantly decreased the levels of GSH, T-AOC as well as SOD, GSH-Px activities, and upregulated MDA levels. The changes could be mapped to metabolism of amino acids and lipids, Krebs cycle and glycolysis, as well as increased oxidative stress and decreased antioxidant capability. Our study indicated that BDL induces major changes in the metabolism of all 3 major energy substances, as well as oxidative stress. PMID:26236101

  5. Taxonomy of Phytopathogenic Pseudomonads1

    PubMed Central

    Sands, D. C.; Schroth, M. N.; Hildebrand, D. C.

    1970-01-01

    Phytopathogenic pseudomonads were placed into four major groups on the basis of nutritional and physiological characteristics. Group I consists of 86 strains of phytopathogens distinguishable from other fluorescent pseudomonads by low growth rates, ability to induce hypersensitivity on tobacco, absence of arginine dihydrolase, and relatively limited ranges of carbon sources. Most of these strains cannot utilize benzoate, 2-ketogluconate, spermine, ?-alanine, l-isoleucine, l-valine, and l-lysine. Most of the organisms in group I clustered into a small number of subgroups, each of which generally corresponded to a previously recognized nomenspecies. These subgroups differ with respect to the number of substrates used. As a rule, the organisms that utilize the fewest substrates have the most limited host ranges. The fluorescent pseudomonads of group II are arginine dihydrolase-positive and utilize a considerably larger number of carbon sources. Most pathogens of group II are similar to Pseudomonas fluorescens biotype A. Groups III and IV consist of nonfluorescent pseudomonads. These two groups can be distinguished by the number of carbon sources used and by pigmentation. An amended description of the flurescent pseudomonads and their internal subdivision is presented. PMID:5411761

  6. Purification and structure analysis of mycolic acids in Corynebacterium glutamicum.

    PubMed

    Yang, Yang; Shi, Feng; Tao, Guanjun; Wang, Xiaoyuan

    2012-04-01

    Corynebacterium glutamicum is widely used for producing amino acids. Mycolic acids, the major components in the cell wall of C. glutamicum might be closely related to the secretion of amino acids. In this study, mycolic acids were extracted from 5 strains of C. glutamicum, including ATCC 13032, ATCC 13869, ATCC 14067, L-isoleucine producing strain IWJ-1, and L-valine producing strain VWJ-1. Structures of these mycolic acids were analyzed using thin layer chromatography and electrospray ionization mass spectrometry. More than twenty molecular species of mycolic acid were observed in all 5 strains. They differ in the length (20-40 carbons) and saturation (0-3 double bonds) of their constituent fatty acids. The dominant species of mycolic acid in every strain was different, but their two hydrocarbon chains were similar in length (14-18 carbons), and the meromycolate chain usually contained double bonds. As the growth temperature of cells increased from 30°C to 34°C, the proportion of mycolic acid species containing unsaturated and shorter hydrocarbon chains increased. These results provide new information on mycolic acids in C. glutamicum, and could be useful for modifying the cell wall to increase the production of amino acids. PMID:22538651

  7. Metabolomics changes in a rat model of obstructive jaundice: mapping to metabolism of amino acids, carbohydrates and lipids as well as oxidative stress

    PubMed Central

    Long, Yue; Dong, Xin; Yuan, Yawei; Huang, Jinqiang; Song, Jiangang; Sun, Yumin; Lu, Zhijie; Yang, Liqun; Yu, Weifeng

    2015-01-01

    The study examined the global metabolic and some biochemical changes in rats with cholestasis induced by bile duct ligation (BDL). Serum samples were collected in male Wistar rats with BDL (n = 8) and sham surgery (n = 8) at day 3 after surgery for metabolomics analysis using a combination of reversed phase chromatography and hydrophilic interaction chromatography (HILIC) and quadrupole-time-of-flight mass spectrometry (Q-TOF MS). The serum levels of malondialdehyde (MDA), total antioxidative capacity (T-AOC), glutathione (GSH) and glutathione disulfide (GSSG), the activities of superoxide dismutase (SOD) and glutathion peroxidase (GSH-Px) were measured to estimate the oxidative stress state. Key changes after BDL included increased levels of l-phenylalanine, l-glutamate, l-tyrosine, kynurenine, l-lactic acid, LysoPCc (14:0), glycine and succinic acid and decreased levels of l-valine, PCb (19:0/0:0), taurine, palmitic acid, l-isoleucine and citric acid metabolism products. And treatment with BDL significantly decreased the levels of GSH, T-AOC as well as SOD, GSH-Px activities, and upregulated MDA levels. The changes could be mapped to metabolism of amino acids and lipids, Krebs cycle and glycolysis, as well as increased oxidative stress and decreased antioxidant capability. Our study indicated that BDL induces major changes in the metabolism of all 3 major energy substances, as well as oxidative stress. PMID:26236101

  8. Characterization of (R)-2-Hydroxyisocaproate Dehydrogenase and a Family III Coenzyme A Transferase Involved in Reduction of l-Leucine to Isocaproate by Clostridium difficile

    PubMed Central

    Kim, Jihoe; Darley, Daniel; Selmer, Thorsten; Buckel, Wolfgang

    2006-01-01

    The strictly anaerobic pathogenic bacterium Clostridium difficile occurs in the human gut and is able to thrive from fermentation of leucine. Thereby the amino acid is both oxidized to isovalerate plus CO2 and reduced to isocaproate. In the reductive branch of this pathway, the dehydration of (R)-2-hydroxyisocaproyl-coenzyme A (CoA) to (E)-2-isocaprenoyl-CoA is probably catalyzed via radical intermediates. The dehydratase requires activation by an ATP-dependent one-electron transfer (J. Kim, D. Darley, and W. Buckel, FEBS J. 272:550-561, 2005). Prior to the dehydration, a dehydrogenase and a CoA transferase are supposed to be involved in the formation of (R)-2-hydroxyisocaproyl-CoA. Deduced amino acid sequences of ldhA and hadA from the genome of C. difficile showed high identities to d-lactate dehydrogenase and family III CoA transferase, respectively. Both putative genes encoding the dehydrogenase and CoA transferase were cloned and overexpressed in Escherichia coli; the recombinant Strep tag II fusion proteins were purified to homogeneity and characterized. The substrate specificity of the monomeric LdhA (36.5 kDa) indicated that 2-oxoisocaproate (Km = 68 ?M, k cat = 31 s?1) and NADH were the native substrates. For the reverse reaction, the enzyme accepted (R)- but not (S)-2-hydroxyisocaproate and therefore was named (R)-2-hydroxyisocaproate dehydrogenase. HadA showed CoA transferase activity with (R)-2-hydroxyisocaproyl-CoA as a donor and isocaproate or (E)-2-isocaprenoate as an acceptor. By site-directed mutagenesis, the conserved D171 was identified as an essential catalytic residue probably involved in the formation of a mixed anhydride with the acyl group of the thioester substrate. However, neither hydroxylamine nor sodium borohydride, both of which are inactivators of the CoA transferase, modified this residue. The dehydrogenase and the CoA transferase fit well into the proposed pathway of leucine reduction to isocaproate. PMID:16957230

  9. Esterification of all four monoribonucleotides with acetyl-D-L-valine proceeds with a preference for the D-isomer but the D/L ratio in the products declines as a function of the hydrophobicity of the nucleotide

    NASA Technical Reports Server (NTRS)

    Wickramasinghe, N. S.; Lacey, J. C. Jr; Lacey JC, J. r. (Principal Investigator)

    1992-01-01

    We recently reported that esterification of 5'-AMP with N-acetyl amino acids proceeds with a preference for D-amino acids, and the D/L ratio in products declines as the hydrophobicity of the amino acid declines. Using one amino acid, Ac-Val, we now show that esterification of all four nucleotides proceeds with a preference for the D-isomer and the preference declines as the hydrophobicity of the nucleotide declines. So, in both types of experiments, the preferences seem determined by hydrophobic interactions.

  10. The Amino Acid Specificity for Activation of Phenylalanine Hydroxylase Matches the Specificity for Stabilization of Regulatory Domain Dimers.

    PubMed

    Zhang, Shengnan; Hinck, Andrew P; Fitzpatrick, Paul F

    2015-08-25

    Liver phenylalanine hydroxylase is allosterically activated by phenylalanine. The structural changes that accompany activation have not been identified, but recent studies of the effects of phenylalanine on the isolated regulatory domain of the enzyme support a model in which phenylalanine binding promotes regulatory domain dimerization. Such a model predicts that compounds that stabilize the regulatory domain dimer will also activate the enzyme. Nuclear magnetic resonance spectroscopy and analytical ultracentrifugation were used to determine the ability of different amino acids and phenylalanine analogues to stabilize the regulatory domain dimer. The abilities of these compounds to activate the enzyme were analyzed by measuring their effects on the fluorescence change that accompanies activation and on the activity directly. At concentrations of 10-50 mM, d-phenylalanine, l-methionine, l-norleucine, and (S)-2-amino-3-phenyl-1-propanol were able to activate the enzyme to the same extent as 1 mM l-phenylalanine. Lower levels of activation were seen with l-4-aminophenylalanine, l-leucine, l-isoleucine, and 3-phenylpropionate. The ability of these compounds to stabilize the regulatory domain dimer agreed with their ability to activate the enzyme. These results support a model in which allosteric activation of phenylalanine hydroxylase is linked to dimerization of regulatory domains. PMID:26252467

  11. The role of hydrophobic amino acid grafts in the enhancement of membrane-disruptive activity of pH-responsive pseudo-peptides

    PubMed Central

    Chen, Rongjun; Khormaee, Sariah; Eccleston, Mark E.; Slater, Nigel K.H.

    2011-01-01

    pH-responsive polymers have been synthesised by grafting l-valine (PV-75), l-leucine (PL-75) and l-phenylalanine (PP-75) onto the pendant carboxylic acid moieties of a pseudo-peptide, poly(l-lysine iso-phthalamide), at a stoichiometric degree of substitution of 75 mol%. The effect of such modification on the pH-, concentration- and time-dependent cell membrane-disruptive activity of the grafted polymers has been investigated using a haemolysis model. At 0.025 mg mL?1, the grafted polymers were almost non-haemolytic at pH 7.4, but mediated considerable membrane lysis after 60 min in the pH range characteristic of early endosomes, which ranked in the order: PP-75 > PL-75 > PV-75 > poly(l-lysine iso-phthalamide). PP-75 was 35-fold more lytic on a molar basis than the membrane-lytic peptide melittin. With increasing concentration, the grafted polymers showed an increased ability to lyse cell membranes and caused noticeable membrane disruption at physiological pH. The mechanism of the polymer-mediated membrane destabilisation has been investigated. The in-vitro cytotoxicity of the grafted polymers has been assessed using a propidium iodide fluorescence assay. It has been demonstrated by confocal microscopy that the grafted polymers can induce a significant release of endocytosed materials into the cytoplasm of HeLa cells, which is a feature critical for drug delivery applications. PMID:19138797

  12. Statistical optimization for improved production of cyclosporin a in solid-state fermentation.

    PubMed

    Survase, Shrikant A; Annapure, Uday S; Singhal, Rekha S

    2009-11-01

    This work evaluates the effect of different amino acids on production of CyA production in solid-state fermentation that was previously optimized for different fermentation parameters by one-factor-at-a-time for the maximum production of CyA by Tolypocladium inflatum MTCC 557. Based on the Plackett-Burman design, glycerol, ammonium sulfate, FeCl3, and inoculum size were selected for further optimization by response surface methodology (RSM). After identifying effective nutrients, RSM was used to develop mathematical model equations, study responses, and establish the optimum concentrations of the key nutrients for higher CyA production. It was observed that supplementation of medium containing (% w/w) glycerol, 1.53; ammonium sulfate, 0.95; FeCl3, 0.18; and inoculum size 6.4 ml/5g yielded a maximum of 7,106 mg/kg as compared with 6,480 mg CyA/kg substrate using one factor at a time. In the second step, the effect of amino acids on the production of CyA was studied. Addition of L-valine and L-leucine in combination after 20 h of fermentation resulted in maximum production of 8,166 mg/kg. PMID:19996692

  13. Spectral characterization of novel ternary zinc(II) complexes containing 1,10-phenanthroline and Schiff bases derived from amino acids and salicylaldehyde-5-sulfonates

    NASA Astrophysics Data System (ADS)

    Boghaei, Davar M.; Gharagozlou, Mehrnaz

    2007-07-01

    A series of new ternary zinc(II) complexes [Zn(L 1-10)(phen)], where phen is 1,10-phenanthroline and H 2L 1-10 = tridentate Schiff base ligands derived from the condensation of amino acids (glycine, L-phenylalanine, L-valine, L-alanine, and L-leucine) and salicylaldehyde-5-sulfonates (sodium salicylaldehyde-5-sulfonate and sodium 3-methoxy-salicylaldehyde-5-sulfonate), have been synthesized. The complexes were characterized by elemental analysis, IR, UV-vis, 1H NMR, and 13C NMR spectra. The IR spectra of the complexes showed large differences between ?as(COO) and ?s(COO), ? ? ( ?as(COO) - ?s(COO)) of 191-225 cm -1, indicating a monodentate coordination of the carboxylate group. Spectral data showed that in these ternary complexes the zinc atom is coordinated with the Schiff base ligand acts as a tridentate ONO moiety, coordinating to the metal through its phenolic oxygen, imine nitrogen, and carboxyl oxygen, and also with the neutral planar chelating ligand, 1,10-phenanthroline, coordinating through nitrogens.

  14. Interaction of bovine serum albumin with N-acyl amino acid based anionic surfactants: Effect of head-group hydrophobicity.

    PubMed

    Ghosh, Subhajit; Dey, Joykrishna

    2015-11-15

    The function of a protein depends upon its structure and surfactant molecules are known to alter protein structure. For this reason protein-surfactant interaction is important in biological, pharmaceutical, and cosmetic industries. In the present work, interactions of a series of anionic surfactants having the same hydrocarbon chain length, but different amino acid head group, such as l-alanine, l-valine, l-leucine, and l-phenylalanine with the transport protein, bovine serum albumin (BSA), were studied at low surfactant concentrations using fluorescence and circular dichroism (CD) spectroscopy, and isothermal titration calorimetry (ITC). The results of fluorescence measurements suggest that the surfactant molecules bind simultaneously to the drug binding site I and II of the protein subdomain IIA and IIIA, respectively. The fluorescence as well as CD spectra suggest that the conformation of BSA goes to a more structured state upon surfactant binding at low concentrations. The binding constants of the surfactants were determined by the use of fluorescence as well as ITC measurements and were compared with that of the corresponding glycine-derived surfactant. The binding constant values clearly indicate a significant head-group effect on the BSA-surfactant interaction and the interaction is mainly hydrophobic in nature. PMID:26245717

  15. Raman spectra of amino acids and their aqueous solutions

    NASA Astrophysics Data System (ADS)

    Zhu, Guangyong; Zhu, Xian; Fan, Qi; Wan, Xueliang

    2011-03-01

    Amino acids are the basic "building blocks" that combine to form proteins and play an important physiological role in all life-forms. Amino acids can be used as models for the examination of the importance of intermolecular bonding in life processes. Raman spectra serve to obtain information regarding molecular conformation, giving valuable insights into the topology of more complex molecules (peptides and proteins). In this paper, amino acids and their aqueous solution have been studied by Raman spectroscopy. Comparisons of certain values for these frequencies in amino acids and their aqueous solutions are given. Spectra of solids when compared to those of the solute in solution are invariably much more complex and almost always sharper. We present a collection of Raman spectra of 18 kinds of amino acids ( L-alanine, L-arginine, L-aspartic acid, cystine, L-glutamic acid, L-glycine, L-histidine, L-isoluecine, L-leucine, L-lysine, L-phenylalanine, L-methionone, L-proline, L-serine, L-threonine, L-tryptophan, L-tyrosine, L-valine) and their aqueous solutions that can serve as references for the interpretation of Raman spectra of proteins and biological materials.

  16. Characterization and expression profile of two UDP-glucosyltransferases, UGT85K4 and UGT85K5, catalyzing the last step in cyanogenic glucoside biosynthesis in cassava.

    PubMed

    Kannangara, Rubini; Motawia, Mohammed S; Hansen, Natascha K K; Paquette, Suzanne M; Olsen, Carl E; Møller, Birger L; Jørgensen, Kirsten

    2011-10-01

    Manihot esculenta (cassava) contains two cyanogenic glucosides, linamarin and lotaustralin, biosynthesized from l-valine and l-isoleucine, respectively. In this study, cDNAs encoding two uridine diphosphate glycosyltransferase (UGT) paralogs, assigned the names UGT85K4 and UGT85K5, have been isolated from cassava. The paralogs display 96% amino acid identity, and belong to a family containing cyanogenic glucoside-specific UGTs from Sorghum bicolor and Prunus dulcis. Recombinant UGT85K4 and UGT85K5 produced in Escherichia coli were able to glucosylate acetone cyanohydrin and 2-hydroxy-2-methylbutyronitrile, forming linamarin and lotaustralin. UGT85K4 and UGT85K5 show broad in?vitro substrate specificity, as documented by their ability to glucosylate other hydroxynitriles, some flavonoids and simple alcohols. Immunolocalization studies indicated that UGT85K4 and UGT85K5 co-occur with CYP79D1/D2 and CYP71E7 paralogs, which catalyze earlier steps in cyanogenic glucoside synthesis in cassava. These enzymes are all found in mesophyll and xylem parenchyma cells in the first unfolded cassava leaf. In?situ PCR showed that UGT85K4 and UGT85K5 are co-expressed with CYP79D1 and both CYP71E7 paralogs in the cortex, xylem and phloem parenchyma, and in specific cells in the endodermis of the petiole of the first unfolded leaf. Based on the data obtained, UGT85K4 and UGT85K5 are concluded to be the UGTs catalyzing in?planta synthesis of cyanogenic glucosides. The localization of the biosynthetic enzymes suggests that cyanogenic glucosides may play a role in both defense reactions and in fine-tuning nitrogen assimilation in cassava. PMID:21736650

  17. Crystallization of Amino Acids on a 21-well Circular PMMA Platform using Metal-Assisted and Microwave-Accelerated Evaporative Crystallization.

    PubMed

    Alabanza, Anginelle M; Mohammed, Muzaffer; Aslan, Kadir

    2013-01-01

    We describe the design and the use of a circular poly(methyl methacrylate) (PMMA) crystallization platform capable of processing 21 samples in Metal-Assisted and Microwave-Accelerated Evaporative Crystallization (MA-MAEC). The PMMA platforms were modified with silver nanoparticle films (SNFs) to generate a microwave-induced temperature gradient between the solvent and the SNFs due to the marked differences in their physical properties. Since amino acids only chemisorb on to silver on the PMMA platform, SNFs served as selective and heterogeneous nucleation sites for amino acids. Theoretical simulations for electric field and temperature distributions inside a microwave cavity equipped with a PMMA platform were carried out to determine the optimum experimental conditions, i.e., temperature variations and placement of the PMMA platform inside a microwave cavity. In addition, the actual temperature profiles of the amino acid solutions were monitored for the duration of the crystallization experiments carried out at room temperature and during microwave heating. The crystallization of five amino acids (L-threonine, L-histidine, L-leucine, L-serine and L-valine HCl) at room temperature (control experiment) and using MA-MAEC were followed by optical microscopy. The induction time and crystal growth rates for all amino acids were determined. Using MA-MAEC, for all amino acids the induction times were significantly reduced (up to ~8-fold) and the crystal growth rates were increased (up to ~50-fold) as compared to room temperature crystallization, respectively. All crystals were characterized by Raman spectroscopy and powder x-ray diffraction, which demonstrated that the crystal structures of all amino acids grown at room temperature and using MA-MAEC were similar. PMID:24855565

  18. Crystallization of Amino Acids on a 21-well Circular PMMA Platform using Metal-Assisted and Microwave-Accelerated Evaporative Crystallization

    PubMed Central

    Alabanza, Anginelle M.; Mohammed, Muzaffer; Aslan, Kadir

    2014-01-01

    We describe the design and the use of a circular poly(methyl methacrylate) (PMMA) crystallization platform capable of processing 21 samples in Metal-Assisted and Microwave-Accelerated Evaporative Crystallization (MA-MAEC). The PMMA platforms were modified with silver nanoparticle films (SNFs) to generate a microwave-induced temperature gradient between the solvent and the SNFs due to the marked differences in their physical properties. Since amino acids only chemisorb on to silver on the PMMA platform, SNFs served as selective and heterogeneous nucleation sites for amino acids. Theoretical simulations for electric field and temperature distributions inside a microwave cavity equipped with a PMMA platform were carried out to determine the optimum experimental conditions, i.e., temperature variations and placement of the PMMA platform inside a microwave cavity. In addition, the actual temperature profiles of the amino acid solutions were monitored for the duration of the crystallization experiments carried out at room temperature and during microwave heating. The crystallization of five amino acids (L-threonine, L-histidine, L-leucine, L-serine and L-valine HCl) at room temperature (control experiment) and using MA-MAEC were followed by optical microscopy. The induction time and crystal growth rates for all amino acids were determined. Using MA-MAEC, for all amino acids the induction times were significantly reduced (up to ~8-fold) and the crystal growth rates were increased (up to ~50-fold) as compared to room temperature crystallization, respectively. All crystals were characterized by Raman spectroscopy and powder x-ray diffraction, which demonstrated that the crystal structures of all amino acids grown at room temperature and using MA-MAEC were similar. PMID:24855565

  19. Methyl 2-(methylthio)benzoate: A sex attractant for the June beetles, Phyllophaga tristis and P. apicata

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Male antennae of Phyllophaga tristis (Fabricius) (Coleoptera: Scarabaeidae: Melolonthinae) were tested using a coupled gas chromatograph-electroantennogram detector (GC-EAD) system for electrophysiological responses to five sex pheromones identified from other Phyllophaga species including L-valine ...

  20. Rheology of Block Copolypeptide Solutions: Hydrogels with Tunable Victor Breedveld,*,,, Andrew P. Nowak,,| Jun Sato, Timothy J. Deming,,| and

    E-print Network

    Breedveld, Victor

    Rheology of Block Copolypeptide Solutions: Hydrogels with Tunable Properties Victor Breedveld ABSTRACT: Amphiphilic block copolypeptides were prepared through transition-metal-mediated po- lymerization that the rodlike helical secondary structure of enantiomerically pure poly-L-leucine blocks was instrumental

  1. BACTERIOPLANKTON DYNAMICS IN A SUBTROPICAL ESTUARY: EVIDENCE FOR SUBSTRATE LIMITATION

    EPA Science Inventory

    Bacterioplankton abundance and metabolic characteristics were measured along a transect in Pensacola Bay, Florida, USA, to examine the factors that control microbial water column processes in this subtropical estuary. The microbial measures included 3 H-L-leucine incorporation, e...

  2. The N-hydroxymethyl group for stereoselective conjugate addition: application to the synthesis of (-)-statine.

    PubMed

    Yoo, Dongwon; Oh, Joon Seok; Kim, Young Gyu

    2002-04-01

    [reaction: see text] Efficient synthesis of enantiomerically pure (-)-statine was achieved with the stereoselective intramolecular conjugate addition of the hydroxyl group tethered to the amino group of a configurationally stable N-Boc-L-leucinal derivative. PMID:11922821

  3. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 0099-2240/99/$04.00 0

    E-print Network

    Sinskey, Anthony J.

    in Corynebacterium spp. (11, 14). L-Isoleucine belongs to the aspartate-derived family of amino acids, as do lysine of the Escherichia coli Catabolic Threonine Dehydratase in Corynebacterium glutamicum and Its Effect on Isoleucine of the isoleucine pathway. We cloned and expressed this enzyme in Corynebacterium glutamicum. We found that while

  4. Inconclusive Evidence for Non-Terrestrial Isoleucine Enantiomeric Excesses in CR Chondrites

    NASA Technical Reports Server (NTRS)

    Elsila, Jamie E.; Glavin, Daniel P.; Dworkin, Jason P.; Martins, Zita; Bada, Jeffrey L.

    2012-01-01

    Researchers recently described the soluble organic content of eight Antarctic CR carbonaceous chondrites and reported large enantiomeric excesses (ee) of L-isoleucine and Dalloisoleucine. The reported ee values decrease with inferred increases in aqueous alteration. We believe the conclusions presented in the manuscript are not fully justified and the data are potentially flawed.

  5. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Dietary and Nutritional Additives § 172.320 Amino acids. The food additive amino acids may be safely used as nutrients added to foods in accordance with the following conditions: (a) The food additive...-Threonine L-Tryptophan L-Tyrosine L-Valine (b) The food additive meets the following specifications: (1)...

  6. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Dietary and Nutritional Additives § 172.320 Amino acids. The food additive amino acids may be safely used as nutrients added to foods in accordance with the following conditions: (a) The food additive...-Threonine L-Tryptophan L-Tyrosine L-Valine (b) The food additive meets the following specifications: (1)...

  7. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Dietary and Nutritional Additives § 172.320 Amino acids. The food additive amino acids may be safely used as nutrients added to foods in accordance with the following conditions: (a) The food additive...-Threonine L-Tryptophan L-Tyrosine L-Valine (b) The food additive meets the following specifications: (1)...

  8. 21 CFR 172.320 - Amino acids.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Dietary and Nutritional Additives § 172.320 Amino acids. The food additive amino acids may be safely used as nutrients added to foods in accordance with the following conditions: (a) The food additive...-Threonine L-Tryptophan L-Tyrosine L-Valine (b) The food additive meets the following specifications: (1)...

  9. Growth of Esteya vermicola in media amended with nitrogen sources yields conidia with increased predacity and resistance to environmental stress.

    PubMed

    Wang, Zhen; Wang, Chun Yan; Gu, Li Juan; Wang, Yun Bo; Zhang, Yong An; Sung, Chang Keun

    2011-10-01

    Esteya vermicola , an endoparasitic fungus of pinewood nematode, exhibits great potential as a biological agent against nematodes. In this study to enhance the sporulation, predacity, and environmental resistance of E. vermicola, various nitrogen sources, such as glycine, L-leucine, and ammonium nitrate, were tested. The supplement of glycine and L-leucine had a significant influence on the growth rate of the colony, enhancing colony dry mass by 5-fold more than did ammonium nitrate or the control. Of the nitrogen sources tested, ammonium nitrate and L-leucine promoted sporulation, yielding more than 6 × 10(6) CFU/g, while glycine enhanced the proportion of lunate spores. Meanwhile, the supplement of nitrogen sources had a significant influence on adhesive rate and mortality rate against Bursaphelenchus xylophilus . Moreover, the supplement of glycine enhanced the survival rate against heat stress by more than 3-fold that of L-leucine, ammonium nitrate, and control. The spores produced in media amended with glycine, L-leucine, and ammonium nitrate had slightly but not significantly higher UV resistance and drought resistance than spores produced without nitrogen sources. These results suggested that the addition of glycine resulted in the production of E. vermicola conidia with increased predacity and resistance to environmental stress that may be more suitable for control of pine wilt disease. PMID:21942397

  10. 4-Hydroxyisoleucine production of recombinant Corynebacterium glutamicum ssp. lactofermentum under optimal corn steep liquor limitation.

    PubMed

    Shi, Feng; Niu, Tengfei; Fang, Huimin

    2015-05-01

    4-Hydroxyisoleucine (4-HIL) is a nonproteinogenic amino acid that exhibits insulinotropic biological activity. Here, L-isoleucine dioxygenase gene (ido) derived from Bacillus thuringiensis YBT-1520 was cloned and expressed in an L-isoleucine-producing strain, Corynebacterium glutamicum ssp. lactofermentum SN01, in order to directly convert its endogenous L-isoleucine (Ile) into 4-HIL through single-step fermentation. The effects of corn steep liquor limitation as well as ido and truncated ido?6 overexpression on 4-HIL production were researched. 4-HIL production by ido-overexpressing strain was improved to 65.44?±?2.27 mM after fermented for 144 h under corn steep liquor-subsufficient condition, obviously higher than that under corn steep liquor-rich and insufficient conditions. The conversion ratio of Ile to 4-HIL increased to 0.85 mol/mol. In addition, 4-HIL production by ido-overexpressing strain was higher than that by ido?6-overexpressing strain, in accord with the relatively higher affinity of Ido as compared to Ido?6. This research generated a novel system for 4-HIL de novo biosynthesis and demonstrated corn steep liquor limitation as a useful strategy for improving 4-HIL production in recombinant C. glutamicum ssp. lactofermentum. PMID:25725632

  11. [Biosynthesis of enniatin by washed cells of Fusarium sambucinum].

    PubMed

    Minasian, A E; Chermensk?, D N; Bezborodov, A M

    1979-01-01

    Biosynthesis of the depsipeptide membrane ionophore--enniatin B by the washed mycelium Fusarium sambucinum Fuck 52 377 was studied. Metabolic precursors of enniatin B, alpha-ketovaleric acid, 14C-L-valine, and 14CH3-methionine, were added to the system after starvation. The amino acid content in the metabolic pool increased 1.5 times after addition of alpha-ketovaleric acid, 2.2 times after that of valine, and 2.5 times after addition of methionine. 14C-L-valine and 14CH3-methionine were incorporated into the molecule of enniatin B. Valine methylation in the molecule occurred at the level of synthesized depsipeptide. Amino acids of the metabolic pool performed the regulatory function in the synthesis. PMID:583180

  12. Supporting Information Files in this Data Supplement

    E-print Network

    KK223-3) and the L-valine concentration in the fermentation medium. Filled triangles, the growthR plasmid containing an FRT-aph-FRT cassette 3 pKD46 ApR,Red recombinase expression plasmid, temperature-sensitive ori 3 pCP20 ApR, CmR, repA(Ts), pSC101 based vector expressing the yeast Flp recombinase 3 pACYC184 Tc

  13. Ion-pair liquid chromatographic assay of angiotensin-converting enzyme activity.

    PubMed

    Maurich, V; Pitotti, A; Vio, L; Mamolo, M G

    1985-01-01

    A rapid and specific high-performance liquid chromatographic assay for the quantitative determination of angiotensin-converting enzyme activity is described. Hippuryl-L-histidyl-L-leucine (Hip-His-Leu) is used as substrate and the released hippuric acid is measured. The procedure is accurate and precise and no extraction is required. PMID:16867654

  14. Acetone Formation in the Vibrio Family: a New Pathway for Bacterial Leucine Catabolism

    PubMed Central

    Nemecek-Marshall, Michele; Wojciechowski, Cheryl; Wagner, William P.; Fall, Ray

    1999-01-01

    There is current interest in biological sources of acetone, a volatile organic compound that impacts atmospheric chemistry. Here, we determined that leucine-dependent acetone formation is widespread in the Vibrionaceae. Sixteen Vibrio isolates, two Listonella species, and two Photobacterium angustum isolates produced acetone in the presence of l-leucine. Shewanella isolates produced much less acetone. Growth of Vibrio splendidus and P. angustum in a fermentor with controlled aeration revealed that acetone was produced after a lag in late logarithmic or stationary phase of growth, depending on the medium, and was not derived from acetoacetate by nonenzymatic decarboxylation in the medium. l-Leucine, but not d-leucine, was converted to acetone with a stoichiometry of approximately 0.61 mol of acetone per mol of l-leucine. Testing various potential leucine catabolites as precursors of acetone showed that only ?-ketoisocaproate was efficiently converted by whole cells to acetone. Acetone production was blocked by a nitrogen atmosphere but not by electron transport inhibitors, suggesting that an oxygen-dependent reaction is required for leucine catabolism. Metabolic labeling with deuterated (isopropyl-d7)-l-leucine revealed that the isopropyl carbons give rise to acetone with full retention of deuterium in each methyl group. These results suggest the operation of a new catabolic pathway for leucine in vibrios that is distinct from the 3-hydroxy-3-methylglutaryl-coenzyme A pathway seen in pseudomonads. PMID:10601206

  15. Potent anti-seizure effects of D-leucine.

    PubMed

    Hartman, Adam L; Santos, Polan; O'Riordan, Kenneth J; Stafstrom, Carl E; Marie Hardwick, J

    2015-10-01

    There are no effective treatments for millions of patients with intractable epilepsy. High-fat ketogenic diets may provide significant clinical benefit but are challenging to implement. Low carbohydrate levels appear to be essential for the ketogenic diet to work, but the active ingredients in dietary interventions remain elusive, and a role for ketogenesis has been challenged. A potential antiseizure role of dietary protein or of individual amino acids in the ketogenic diet is understudied. We investigated the two exclusively ketogenic amino acids, L-leucine and L-lysine, and found that only L-leucine potently protects mice when administered prior to the onset of seizures induced by kainic acid injection, but not by inducing ketosis. Unexpectedly, the D-enantiomer of leucine, which is found in trace amounts in the brain, worked as well or better than L-leucine against both kainic acid and 6Hz electroshock-induced seizures. However, unlike L-leucine, D-leucine potently terminated seizures even after the onset of seizure activity. Furthermore, D-leucine, but not L-leucine, reduced long-term potentiation but had no effect on basal synaptic transmission in vitro. In a screen of candidate neuronal receptors, D-leucine failed to compete for binding by cognate ligands, potentially suggesting a novel target. Even at low doses, D-leucine suppressed ongoing seizures at least as effectively as diazepam but without sedative effects. These studies raise the possibility that D-leucine may represent a new class of anti-seizure agents, and that D-leucine may have a previously unknown function in eukaryotes. PMID:26054437

  16. Identification, Purification, and Characterization of a Novel Amino Acid Racemase, Isoleucine 2-Epimerase, from Lactobacillus Species

    PubMed Central

    Mutaguchi, Yuta; Ohmori, Taketo; Wakamatsu, Taisuke; Doi, Katsumi

    2013-01-01

    Accumulation of d-leucine, d-allo-isoleucine, and d-valine was observed in the growth medium of a lactic acid bacterium, Lactobacillus otakiensis JCM 15040, and the racemase responsible was purified from the cells and identified. The N-terminal amino acid sequence of the purified enzyme was GKLDKASKLI, which is consistent with that of a putative ?-aminobutyrate aminotransferase from Lactobacillus buchneri. The putative ?-aminobutyrate aminotransferase gene from L. buchneri JCM 1115 was expressed in recombinant Escherichia coli and then purified to homogeneity. The enzyme catalyzed the racemization of a broad spectrum of nonpolar amino acids. In particular, it catalyzed at high rates the epimerization of l-isoleucine to d-allo-isoleucine and d-allo-isoleucine to l-isoleucine. In contrast, the enzyme showed no ?-aminobutyrate aminotransferase activity. The relative molecular masses of the subunit and native enzyme were estimated to be about 49 kDa and 200 kDa, respectively, indicating that the enzyme was composed of four subunits of equal molecular masses. The Km and Vmax values of the enzyme for l-isoleucine were 5.00 mM and 153 ?mol·min?1·mg?1, respectively, and those for d-allo-isoleucine were 13.2 mM and 286 ?mol·min?1·mg?1, respectively. Hydroxylamine and other inhibitors of pyridoxal 5?-phosphate-dependent enzymes completely blocked the enzyme activity, indicating the enzyme requires pyridoxal 5?-phosphate as a coenzyme. This is the first evidence of an amino acid racemase that specifically catalyzes racemization of nonpolar amino acids at the C-2 position. PMID:24039265

  17. Amino acid biogeochemistry and dating of offshore Peru/Chile phosphorites

    NASA Astrophysics Data System (ADS)

    Cunningham, Robert; Burnett, William C.

    1985-06-01

    Amino acid biogeochemical results for a suite of indurated sea-floor phosphate nodules from the Peru/Chile margin confirm the youthful nature of these deposits as previously indicated by uranium-series disequilibrium dating. Isoleucine epimerization is significant in the hydrolyzed acid soluble fraction of the nodules with a range in the D-alloisoleucine/L-isoleucine ratio from 0.06 to 0.32. Amino acid compositional patterns are uniform for all nodules and are similar to unlithified surface sediments from the region suggesting that the nodules and sediments constitute a single genetic series.

  18. L-delta-(alpha-Aminoadipoyl)-L-cysteinyl-D-valine synthetase: thioesterification of valine is not obligatory for peptide bond formation.

    PubMed

    Shiau, C Y; Byford, M F; Aplin, R T; Baldwin, J E; Schofield, C J

    1997-07-22

    L-delta-(alpha-Aminoadipoyl)-L-cysteinyl-D-valine (ACV) synthetase is probably the simplest known peptide synthetase in terms of the number of reactions catalyzed. In the "thiol-template" proposal for nonribosomal peptide synthesis, a key step is transfer of aminoacyl groups derived from the substrates to enzyme-bound thiols prior to peptide bond formation. No incorporation of 18O was seen in AMP isolated from the reaction mixture when di[18O]valine was incubated with relatively large amounts of active synthetase and MgATP. We therefore utilized di[18O]valine as a substrate for the biosynthesis of the diastereomeric dipeptides L-O-(methylserinyl)-L-valine and L-O-(methylserinyl)-D-valine [Shiau, C.-Y., Baldwin, J. E., Byford, M. F., Sobey, W. J., & Schofield, C. J. (1995) FEBS Lett. 358, 97-100]. In the L-O-(methylserinyl)-L-valine product, no significant loss of 18O was observed. However, in the L-O-(methylserinyl)-D-valine product, a significant loss of one or both 18O labels was observed. Thus, both peptide bond formation and the epimerization of the valine residue can both occur before formation of any thioester bond to the valine carboxylate in the biosynthesis of these dipeptides. The usual qualitative test for thioesterification of substrates to the synthetase, lability of enzyme-bound radiolabeled amino acid to performic acid, proved inconclusive in our hands. These results require a new mechanism for the enzymic synthesis of L-O-(methylserinyl)-L-valine and L-O-(methylserinyl)-D-valine and imply that a revised mechanism for ACV synthesis is also required. PMID:9220966

  19. Drimane Sesquiterpene-Conjugated Amino Acids from a Marine Isolate of the Fungus Talaromyces minioluteus (Penicillium Minioluteum)

    PubMed Central

    Ngokpol, Suthatip; Suwakulsiri, Wittaya; Sureram, Sanya; Lirdprapamongkol, Kriengsak; Aree, Thammarat; Wiyakrutta, Suthep; Mahidol, Chulabhorn; Ruchirawat, Somsak; Kittakoop, Prasat

    2015-01-01

    Four new sesquiterpene lactones (3, 4, 6 and 7) and three known compounds, purpuride (1), berkedrimane B (2) and purpuride B (5), were isolated from the marine fungus, Talaromyces minioluteus (Penicillium minioluteum). New compounds were drimane sesquiterpenes conjugated with N-acetyl-l-valine, and their structures were elucidated by analysis of spectroscopic data, as well as by single crystal X-ray analysis. The isolated compounds could not inhibit the apoptosis-regulating enzyme, caspase-3, while three of the compounds (2, 3 and 7) exhibited weak cytotoxic activity. PMID:26058010

  20. The pyruvate dehydrogenase complex of Corynebacterium glutamicum: an attractive target for metabolic engineering.

    PubMed

    Eikmanns, Bernhard J; Blombach, Bastian

    2014-12-20

    The pyruvate dehydrogenase complex (PDHC) catalyzes the oxidative thiamine pyrophosphate-dependent decarboxylation of pyruvate to acetyl-CoA and CO2. Since pyruvate is a key metabolite of the central metabolism and also the precursor for several relevant biotechnological products, metabolic engineering of this multienzyme complex is a promising strategy to improve microbial production processes. This review summarizes the current knowledge and achievements on metabolic engineering approaches to tailor the PDHC of Corynebacterium glutamicum for the bio-based production of l-valine, 2-ketosiovalerate, pyruvate, succinate and isobutanol and to improve l-lysine production. PMID:24486441

  1. Drimane Sesquiterpene-Conjugated Amino Acids from a Marine Isolate of the Fungus Talaromyces minioluteus (Penicillium Minioluteum).

    PubMed

    Ngokpol, Suthatip; Suwakulsiri, Wittaya; Sureram, Sanya; Lirdprapamongkol, Kriengsak; Aree, Thammarat; Wiyakrutta, Suthep; Mahidol, Chulabhorn; Ruchirawat, Somsak; Kittakoop, Prasat

    2015-06-01

    Four new sesquiterpene lactones (3, 4, 6 and 7) and three known compounds, purpuride (1), berkedrimane B (2) and purpuride B (5), were isolated from the marine fungus, Talaromyces minioluteus (Penicillium minioluteum). New compounds were drimane sesquiterpenes conjugated with N-acetyl-l-valine, and their structures were elucidated by analysis of spectroscopic data, as well as by single crystal X-ray analysis. The isolated compounds could not inhibit the apoptosis-regulating enzyme, caspase-3, while three of the compounds (2, 3 and 7) exhibited weak cytotoxic activity. PMID:26058010

  2. Effect of amino acid dopants on the spectral, optical, mechanical and thermal properties of potassium acid phthalate crystals for possible optoelectronic and frequency doubling applications

    NASA Astrophysics Data System (ADS)

    Prakash, J. Thomas Joseph; Gnanaraj, J. Martin Sam; Dhavud, S. Shek; Ekadevasena, S.

    2015-09-01

    Undoped and amino acid (L-Arginine and L-Valine) doped KAP crystals were grown by slow evaporation solution growth technique. The changes in the structural, spectral, optical, mechanical and thermal properties were observed. The sharp prominent peaks in the indexed powder XRD pattern confirms the crystalline nature of the sample. Optical studies reveal that the crystal is transparent in the entire visible light region. Thermal stability was checked by TG/DTA analysis. The mechanical stability was evaluated from Vicker's microhardness test. The SHG efficiency for the title materials was tested with different particle sizes by the Kurtz and Perry powder method, which established the existence of phase matching.

  3. Polypeptide Grafted Hyaluronan: Synthesis and Characterization

    SciTech Connect

    Wang, Xiaojun; Messman, Jamie M; Mays, Jimmy; Baskaran, Durairaj

    2010-01-01

    Poly(L-leucine) grafted hyaluronan (HA-g-PLeu) has been synthesized via a Michael addition reaction between primary amine terminated poly(L-leucine) and acrylate-functionalized HA (TBAHA-acrylate). The precursor hyaluronan was first functionalized with acrylate groups by reaction with acryloyl chloride in the presence of triethylamine in N,N-dimethylformamide. 1H NMR analysis of the resulting product indicated that an increase in the concentration of acryloylchoride with respect to hydroxyl groups on HA has only a moderate effect on functionalization efficiency, f. A precise control of stoichiometry was not achieved, which could be attributed to partial solubility of intermolecular aggregates and the hygroscopic nature of HA. Michael addition at high [PLeu- NH2]/[acrylate]TBAHA ratios gave a molar grafting ratio of only 0.20 with respect to the repeat unit of HA, indicating grafting limitation due to insolubility of the grafted HA-g-PLeu. Soluble HA-g-PLeu graft copolymers were obtained for low grafting ratios (<0.039) with <8.6% by mass of PLeu and were characterized thoroughly using light scattering, 1H NMR, FT-IR, and AFM techniques. Light scattering experiments showed a strong hydrophobic interaction between PLeu chains, resulting in aggregates with segregated nongrafted HA segments. This yields local networks of aggregates, as demonstrated by atomic force microscopy. Circular dichroism spectroscopy showed a -sheet conformation for aggregates of poly(L-leucine).

  4. Experiments on the origin of molecular chirality by parity non-conservation during beta-decay

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.

    1973-01-01

    Experiments are described to test a theory for the origin of optical activity wherein the longitudinally polarized electrons resulting from parity violation during radioactive beta decay, and their resulting circularly polarized Bremsstrahlung, might interact asymmetrically with organic matter to yield optically active products. Experiments involve subjecting a number of racemic and optically active amino acid samples to irradiation in a 61700 Ci90SR-90Y beta radiation source for a period of 1.34 years, then examining them for any asymmetric effects by means of optical rotatory dispersion and analytical gas chromatography. In the cases of D,L-leucine, norleucine, norvaline and proline as solids, of D,L-leucine in solution and of D,L-tyrosine in alkaline solution no optical rotation was observed during CRD measurements in the 250-630 nm spectral region. While slight differences were noted in the percent radiolysis of solid D- (12.7%) and L-leucine (16.2%) as determined by GC, no enrichment of either enantiomer was found.

  5. Metabolic annotation of 2-ethylhydracrylic acid.

    PubMed

    Ryan, Robert O

    2015-08-25

    Increased levels of the organic acid, 2-ethylhydracrylic acid (2-EHA) occur in urine of subjects with impaired L(+)-isoleucine metabolism. Chiral intermediates formed during isoleucine degradation are (S) enantiomers. Blockage of (S) pathway flux drives racemization of (2S, 3S) L(+)-isoleucine and its (2S, 3R) stereoisomer, L(+)-alloisoleucine. This non-protein amino acid is metabolized to (R)-2-methylbutyryl CoA via enzymes common to branched chain amino acid degradation. Subsequently, (R) intermediates serve as alternate substrates for three valine metabolic enzymes, generating 2-EHA. Once formed, 2-EHA accumulates because it is poorly recognized by distal valine pathway enzymes. Thus, urinary 2-EHA represents a biomarker of isoleucine pathway defects. 2-EHA levels are also increased in rats exposed to the industrial solvent, ethylene glycol monomethyl ether or the neurotoxin precursor, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. In these cases, a block in (S) pathway isoleucine catabolism occurs at the level of (S)-2-methylbutyryl CoA conversion to tiglyl CoA via inhibition of electron transferring flavoprotein/ubiquinone oxidoreductase dependent reactions. Elevated urinary 2-EHA in propionyl CoA carboxylase deficiency and methylmalonic aciduria results from a buildup of distal intermediates in the (S) pathway of isoleucine degradation. In Barth syndrome and dilated cardiomyopathy with ataxia syndrome, 2-EHA is a byproduct of impeded propionyl CoA entry into the Krebs cycle. PMID:26115894

  6. Characterization of the Coronatine-Like Phytotoxins Produced by the Common Scab Pathogen Streptomyces scabies.

    PubMed

    Fyans, Joanna K; Altowairish, Mead S; Li, Yuting; Bignell, Dawn R D

    2015-04-01

    Streptomyces scabies is an important causative agent of common scab disease of potato tubers and other root crops. The primary virulence factor produced by this pathogen is a phytotoxic secondary metabolite called thaxtomin A, which is essential for disease development. In addition, the genome of S. scabies harbors a virulence-associated biosynthetic gene cluster called the coronafacic acid (CFA)-like gene cluster, which was previously predicted to produce metabolites that resemble the Pseudomonas syringae coronatine (COR) phytotoxin. COR consists of CFA linked to an ethylcyclopropyl amino acid called coronamic acid, which is derived from L-allo-isoleucine. Using a combination of genetic and chemical analyses, we show that the S. scabies CFA-like gene cluster is responsible for producing CFA-L-isoleucine as the major product as well as other minor COR-like metabolites. Production of the metabolites was shown to require the cfl gene, which is located within the CFA-like gene cluster and encodes an enzyme involved in ligating CFA to its amino acid partner. CFA-L-isoleucine purified from S. scabies cultures was shown to exhibit bioactivity similar to that of COR, though it was found to be less toxic than COR. This is the first report demonstrating the production of coronafacoyl phytotoxins by S. scabies, which is the most prevalent scab-causing pathogen in North America. PMID:25423263

  7. Amino acids as natural inhibitors for hydrate formation in CO2 sequestration.

    PubMed

    Sa, Jeong-Hoon; Lee, Bo Ram; Park, Da-Hye; Han, Kunwoo; Chun, Hee Dong; Lee, Kun-Hong

    2011-07-01

    The motivation for this work was the potential of hydrophobic amino acids such as glycine, l-alanine, and l-valine to be applied as thermodynamic hydrate inhibitors (THIs). To confirm their capabilities in inhibiting the formation of gas hydrates, three-phase (liquid-hydrate-vapor) equilibrium conditions for carbon dioxide hydrate formation in the presence of 0.1-3.0 mol % amino acid solutions were determined in the range of 273.05-281.45 K and 14.1-35.2 bar. From quantitative analyses, the inhibiting effects of the amino acids (on a mole concentration basis) decreased in the following order: l-valine > l-alanine > glycine. The application of amino acids as THIs has several potential advantages over conventional methods. First, the environmentally friendly nature of amino acids as compared to conventional inhibitors means that damage to ecological systems and the environment could be minimized. Second, the loss of amino acids in recovery process would be considerably reduced because amino acids are nonvolatile. Third, amino acids have great potential as a model system in which to investigate the inhibition mechanism on the molecular level, since the structure and chemical properties of amino acids are well understood. PMID:21663046

  8. Cooperativity Between Different Nutrient Receptors in Germination of Spores of Bacillus subtilis and Reduction of This Cooperativity by Alterations in the GerB Receptor

    PubMed Central

    Atluri, Swaroopa; Ragkousi, Katerina; Cortezzo, Donna E.; Setlow, Peter

    2006-01-01

    The GerA nutrient receptor alone triggers germination of Bacillus subtilis spores with l-alanine or l-valine, and these germinations were stimulated by glucose and K+ plus the GerK nutrient receptor. The GerB nutrient receptor alone did not trigger spore germination with any nutrients but required glucose, fructose, and K+ (GFK) (termed cogerminants) plus GerK for triggering of germination with a number of l-amino acids. GerB and GerA also triggered spore germination cooperatively with l-asparagine, fructose, and K+ and either l-alanine or l-valine. Two GerB variants (termed GerB*s) that were previously isolated by their ability to trigger spore germination in response to d-alanine do not respond to d-alanine but respond to the same l-amino acids that stimulate germination via GerB plus GerK and GFK. GerB*s alone triggered spore germination with these l-amino acids, although GerK plus GFK stimulated the rates of these germinations. In contrast to l-alanine germination via GerA, spore germination via l-alanine and GerB or GerB* was not inhibited by d-alanine. These data support the following conclusions. (i) Interaction with GerK, glucose, and K+ somehow stimulates spore germination via GerA. (ii) GerB can bind and respond to l-amino acids, although normally either the binding site is inaccessible or its occupation is not sufficient to trigger spore germination. (iii) Interaction of GerB with GerK and GFK allows GerB to bind or respond to amino acids. (iv) In addition to spore germination due to the interaction between GerA and GerK, and GerB and GerK, GerB can interact with GerA to trigger spore germination in response to appropriate nutrients. (v) The amino acid sequence changes in GerB*s reduce these receptor variants' requirement for GerK and cogerminants in their response to l-amino acids. (vi) GerK binds glucose, GerB interacts with fructose in addition to l-amino acids, and GerA interacts only with l-valine, l-alanine, and its analogs. (vii) The amino acid binding sites in GerA and GerB are different, even though both respond to l-alanine. These new conclusions are integrated into models for the signal transduction pathways that initiate spore germination. PMID:16352818

  9. The Novel Dipeptide Translocator Protein Ligand, Referred to As GD-23, Exerts Anxiolytic and Nootropic Activities.

    PubMed

    Povarnina, P Yu; Yarkov, S A; Gudasheva, T A; Yarkova, M A; Seredenin, S B

    2015-01-01

    The translocator protein (TSPO) promotes the translocation of cholesterol to the inner mitochondrial membrane and mediates steroid formation. In this study, we first report on a biological evaluation of the dipeptide GD-23 (N-carbobenzoxy-L tryptophanyl-L isoleucine amide), a structural analogue of Alpidem, the principal TSPO ligand. We show that GD-23 in a dose range of 0.05 to 0.5 mg/kg (i.p.) exhibits anxiolytic activity in the elevated plus maze test and nootropic activity in the object recognition test in scopolamine-induced amnesia in rodents. It was shown that GD-23 did not affect spontaneous locomotor activity, holding promise as a nonsedative anxiolytic agent. The anxiolytic and nootropic activities of GD-23 were abrogated by the TSPO specific ligand PK11195, which thus suggests a role for TSPO in mediating the pharmacological activity of GD-23. PMID:26483966

  10. Whole cell biotransformation for reductive amination reactions

    PubMed Central

    Klatte, Stephanie; Lorenz, Elisabeth; Wendisch, Volker F

    2014-01-01

    Whole cell biotransformation systems with enzyme cascading increasingly find application in biocatalysis to complement or replace established chemical synthetic routes for production of, e.g., fine chemicals. Recently, we established an Escherichia coli whole cell biotransformation system for reductive amination by coupling a transaminase and an amino acid dehydrogenase with glucose catabolism for cofactor recycling. Transformation of 2-keto-3-methylvalerate to l-isoleucine by E. coli cells was improved by genetic engineering of glucose metabolism for improved cofactor regeneration. Here, we compare this system with different strategies for cofactor regeneration such as cascading with alcohol dehydrogenases, with alternative production hosts such as Pseudomonas species or Corynebacterium glutamicum, and with improving whole cell biotransformation systems by metabolic engineering of NADPH regeneration. PMID:24406456

  11. Whole cell biotransformation for reductive amination reactions.

    PubMed

    Klatte, Stephanie; Lorenz, Elisabeth; Wendisch, Volker F

    2014-01-01

    Whole cell biotransformation systems with enzyme cascading increasingly find application in biocatalysis to complement or replace established chemical synthetic routes for production of, e.g., fine chemicals. Recently, we established an Escherichia coli whole cell biotransformation system for reductive amination by coupling a transaminase and an amino acid dehydrogenase with glucose catabolism for cofactor recycling. Transformation of 2-keto-3-methylvalerate to l-isoleucine by E. coli cells was improved by genetic engineering of glucose metabolism for improved cofactor regeneration. Here, we compare this system with different strategies for cofactor regeneration such as cascading with alcohol dehydrogenases, with alternative production hosts such as Pseudomonas species or Corynebacterium glutamicum, and with improving whole cell biotransformation systems by metabolic engineering of NADPH regeneration. PMID:24406456

  12. Experimental evidence for a metallohydrolase mechanism in which the nucleophile is not delivered by a metal ion: EPR spectrokinetic and structural studies of aminopeptidase from Vibrio proteolyticus

    PubMed Central

    Kumar, Amit; Periyannan, Gopal Raj; Narayanan, Beena; Kittell, Aaron W.; Kim, Jung-Ja; Bennett, Brian

    2007-01-01

    Metallohydrolases catalyse some of the most important reactions in biology and are targets for numerous chemotherapeutic agents designed to combat bacterial infectivity, antibiotic resistance, HIV infectivity, tumour growth, angiogenesis and immune disorders. Rational design of inhibitors of these enzymes with chemotherapeutic potential relies on detailed knowledge of the catalytic mechanism. The roles of the catalytic transition ions in these enzymes have long been assumed to include the activation and delivery of a nucleophilic hydroxy moiety. In the present study, catalytic intermediates in the hydrolysis of L-leucyl-L-leucyl-L-leucine by Vibrio proteolyticus aminopeptidase were characterized in spectrokinetic and structural studies. Rapid-freeze-quench EPR studies of reaction products of L-leucyl-L-leucyl-L-leucine and Co(II)-substituted aminopeptidase, and comparison of the EPR data with those from structurally characterized complexes of aminopeptidase with inhibitors, indicated the formation of a catalytically competent post-Michaelis pre-transition state intermediate with a structure analogous to that of the inhibited complex with bestatin. The X-ray crystal structure of an aminopeptidase–L-leucyl-L-leucyl-L-leucine complex was also analogous to that of the bestatin complex. In these structures, no water/hydroxy group was observed bound to the essential metal ion. However, a water/hydroxy group was clearly identified that was bound to the metal-ligating oxygen atom of Glu152. This water/hydroxy group is proposed as a candidate for the active nucleophile in a novel metallohydrolase mechanism that shares features of the catalytic mechanisms of aspartic proteases and of B2 metallo-?-lactamases. Preliminary studies on site-directed variants are consistent with the proposal. Other features of the structure suggest roles for the dinuclear centre in geometrically and electrophilically activating the substrate. PMID:17238863

  13. Polymer/organosilica nanocomposites based on polyimide with benzimidazole linkages and reactive organoclay containing isoleucine amino acid: Synthesis, characterization and morphology properties

    SciTech Connect

    Mallakpour, Shadpour; Nanotechnology and Advanced Materials Institute, Isfahan University of Technology, Isfahan 84156-83111, Islamic Republic of Iran ; Dinari, Mohammad

    2012-09-15

    Highlights: ? A reactive organoclay was formed using L-isoleucine amino acid as a swelling agent. ? Polyimide was synthesized from benzimidazole diamine and pyromellitic dianhydride. ? Imide and benzimidazole groups assured the thermal stability of the nanocomposites. ? Nanocomposite films were prepared by an in situ polymerization reaction. ? The TEM micrographs of nanocomposites revealed well-exfoliated structures. -- Abstract: Polyimide–silica nanocomposites are attractive hybrid architectures that possess excellent mechanical, thermal and chemical properties. But, the dispersion of inorganic domains in the polymer matrix and the compatibility between the organic and inorganic phases are critical factors in these hybrid systems. In this investigation, a reactive organoclay was prepared via ion exchange reaction between protonated form of difunctional L-isoleucine amino acid as a swelling agent and Cloisite Na{sup +} montmorillonite. Amine functional groups of this swelling agent formed an ionic bond with the negatively charged silicates, whereas the remaining acid functional groups were available for further interaction with polymer chains. Then organo-soluble polyimide (PI) have been successfully synthesized from the reaction of 2-(3,5-diaminophenyl)-benzimidazole and pyromellitic dianhydride in N,N-dimethylacetamide. Finally, PI/organoclay nanocomposite films enclosing 1%, 3%, 5%, 7% and 10% of synthesized organoclay were successfully prepared by an in situ polymerization reaction through thermal imidization. The synthesized hybrid materials were subsequently characterized by Fourier transform infrared spectroscopy, X-ray diffraction, electron microscopy, and thermogravimetric analysis techniques. The PI/organoclay nanocomposite films have good optical transparencies and the mechanical properties were substantially improved by the incorporation of the reactive organoclay.

  14. Extraction processes for bioproduct separation

    SciTech Connect

    Hartl, J.; Marr, R.

    1993-01-01

    The three-phase extraction process, a modification of reactive extraction, was investigated for its applicability in the separation of organic acids from fermentation broth. It was compared with reactive extraction, liquid membrane permeation, and supercritical fluid extraction. These processes are based on the use of amine extractants, which have to be dissolved in nonpolar solvents, for the extraction of carboxylic acids, hydroxycarboxylic acids, and aminocarboxylic acids. This paper considers the comparison of the above-mentioned processes. Furthermore, the extractability of acids from synthetic aqueous solutions and fermented broths was compared. Principal consideration was paid to the extraction of lactic acid, gluconic acid, citric acid, and L-leucine.

  15. Crystallographic analysis of transition-state mimics bound to penicillopepsin: phosphorus-containing peptide analogues.

    PubMed

    Fraser, M E; Strynadka, N C; Bartlett, P A; Hanson, J E; James, M N

    1992-06-01

    The molecular structures of three phosphorus-based peptide inhibitors of aspartyl proteinases complexed with penicillopepsin [1, Iva-L-Val-L-Val-StaPOEt [Iva = isovaleryl, StaP = the phosphinic acid analogue of statine [(S)-4-amino-(S)-3-hydroxy-6-methylheptanoic acid] (IvaVVStaPOEt)]; 2, Iva-L-Val-L-Val-L-LeuP-(O)Phe-OMe [LeuP = the phosphinic acid analogue of L-leucine; (O)Phe = L-3-phenyllactic acid; OMe = methyl ester] [Iva VVLP(O)FOMe]; and 3, Cbz-L-Ala-L-Ala-L-LeuP-(O)-Phe-OMe (Cbz = benzyloxycarbonyl) [CbzAALP(O)FOMe

  16. Alpha-helical hydrophobic polypeptides form proton-selective channels in lipid bilayers

    NASA Technical Reports Server (NTRS)

    Oliver, A. E.; Deamer, D. W.

    1994-01-01

    Proton translocation is important in membrane-mediated processes such as ATP-dependent proton pumps, ATP synthesis, bacteriorhodopsin, and cytochrome oxidase function. The fundamental mechanism, however, is poorly understood. To test the theoretical possibility that bundles of hydrophobic alpha-helices could provide a low energy pathway for ion translocation through the lipid bilayer, polyamino acids were incorporated into extruded liposomes and planar lipid membranes, and proton translocation was measured. Liposomes with incorporated long-chain poly-L-alanine or poly-L-leucine were found to have proton permeability coefficients 5 to 7 times greater than control liposomes, whereas short-chain polyamino acids had relatively little effect. Potassium permeability was not increased markedly by any of the polyamino acids tested. Analytical thin layer chromatography measurements of lipid content and a fluorescamine assay for amino acids showed that there were approximately 135 polyleucine or 65 polyalanine molecules associated with each liposome. Fourier transform infrared spectroscopy indicated that a major fraction of the long-chain hydrophobic peptides existed in an alpha-helical conformation. Single-channel recording in both 0.1 N HCl and 0.1 M KCl was also used to determine whether proton-conducting channels formed in planar lipid membranes (phosphatidylcholine/phosphatidylethanolamine, 1:1). Poly-L-leucine and poly-L-alanine in HCl caused a 10- to 30-fold increase in frequency of conductive events compared to that seen in KCl or by the other polyamino acids in either solution. This finding correlates well with the liposome observations in which these two polyamino acids caused the largest increase in membrane proton permeability but had little effect on potassium permeability. Poly-L-leucine was considerably more conductive than poly-L-alanine due primarily to larger event amplitudes and, to a lesser extent, a higher event frequency. Poly-L-leucine caused two populations of conductive events, one in the 0.1-0.5 pA range, and one in the 1.0-5.0 pA range, whereas nearly all events caused by poly-L-alanine were in the 0.1-0.5 pA range at an applied voltage of +60 mV. The channel-like activity appeared to switch between conductive and nonconductive states, with most open-times in the range of 50-200 ms. We conclude that hydrophobic polyamino acids produce proton-conducting defects in lipid bilayers that may be used to model functional proton channels in biological membranes.

  17. Thermostabilization of Bacterial Fructosyl-Amino Acid Oxidase by Directed Evolution

    PubMed Central

    Sakaue, Ryoichi; Kajiyama, Naoki

    2003-01-01

    We succeeded in isolating several thermostable mutant fructosyl-amino acid oxidase (FAOX; EC 1.5.3) without reduction of productivity by directed evolution that combined an in vivo mutagenesis and membrane assay screening system. Five amino acid substitutions (T60A, A188G, M244L, N257S, and L261M) occurred in the most thermostable mutant obtained by a fourth round of directed evolution. This altered enzyme, FAOX-TE, was stable at 45°C, whereas the wild-type enzyme was not stable above 37°C. The Km values of FAOX-TE for d-fructosyl-l-valine and d-fructosyl-glycine were 1.50 and 0.58 mM, respectively, in contrast with corresponding values of 1.61 and 0.74 mM for the wild-type enzyme. This altered FAOX-TE will be useful in the diagnosis of diabetes. PMID:12513988

  18. Identification of the Scopularide Biosynthetic Gene Cluster in Scopulariopsis brevicaulis

    PubMed Central

    Lukassen, Mie Bech; Saei, Wagma; Sondergaard, Teis Esben; Tamminen, Anu; Kumar, Abhishek; Kempken, Frank; Wiebe, Marilyn G.; Sørensen, Jens Laurids

    2015-01-01

    Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl) attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine). Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus nidulans and W493-B from Fusarium pseudograminearum. The scopularide A gene cluster includes a nonribosomal peptide synthetase (NRPS1), a polyketide synthase (PKS2), a CoA ligase, an acyltransferase, and a transcription factor. Homologous recombination was low in S. brevicaulis so the local transcription factor was integrated randomly under a constitutive promoter, which led to a three to four-fold increase in scopularide A production. This indirectly verifies the identity of the proposed biosynthetic gene cluster. PMID:26184239

  19. Growth of L-Valinium Aluminium Chloride single crystal for OLED and super-capacitor applications

    NASA Astrophysics Data System (ADS)

    Kalaivani, D.; Vijayalakshmi, S.; Theras, J. Elberin Mary; Jayaraman, D.; Joseph, V.

    2015-12-01

    L-Valinium Aluminium Chloride (LVAC), a novel semi-organic material, was grown using slow evaporation under isothermal condition. The single crystal data reveal that the grown crystal belongs to monoclinic system. The SEM micrographs give clear picture about the surface morphology. Further, they confirm the inclusion of aluminium chloride into atomic sites of L-Valine. The compositional elements present in the crystal were identified through EDAX analysis. The mass spectral analysis was carried out to determine the molecular weight of the grown crystal. The optical transparency of the grown crystal was investigated by UV-vis-NIR spectrum. FTIR spectral study was used to identify the functional groups present in the grown material. The luminescence characteristics of grown material were analysed to confirm the effect of metal ion on the ligand. This property makes the material suitable for OLED application. The supercapacitive performance of the grown crystal was finally studied using cyclic voltammetry.

  20. Identification of the Scopularide Biosynthetic Gene Cluster in Scopulariopsis brevicaulis.

    PubMed

    Lukassen, Mie Bech; Saei, Wagma; Sondergaard, Teis Esben; Tamminen, Anu; Kumar, Abhishek; Kempken, Frank; Wiebe, Marilyn G; Sørensen, Jens Laurids

    2015-07-01

    Scopularide A is a promising potent anticancer lipopeptide isolated from a marine derived Scopulariopsis brevicaulis strain. The compound consists of a reduced carbon chain (3-hydroxy-methyldecanoyl) attached to five amino acids (glycine, l-valine, d-leucine, l-alanine, and l-phenylalanine). Using the newly sequenced S. brevicaulis genome we were able to identify the putative biosynthetic gene cluster using genetic information from the structurally related emericellamide A from Aspergillus nidulans and W493-B from Fusarium pseudograminearum. The scopularide A gene cluster includes a nonribosomal peptide synthetase (NRPS1), a polyketide synthase (PKS2), a CoA ligase, an acyltransferase, and a transcription factor. Homologous recombination was low in S. brevicaulis so the local transcription factor was integrated randomly under a constitutive promoter, which led to a three to four-fold increase in scopularide A production. This indirectly verifies the identity of the proposed biosynthetic gene cluster. PMID:26184239

  1. Crystal growth, structural and thermal studies of amino acids admixtured L-arginine phosphate monohydrate single crystals

    NASA Astrophysics Data System (ADS)

    Anandan, P.; Saravanan, T.; Parthipan, G.; Kumar, R. Mohan; Bhagavannarayana, G.; Ravi, G.; Jayavel, R.

    2011-05-01

    To study the improved characteristics of L-arginine phosphate monohydrate (LAP) crystals, amino acids mixed LAP crystals have been grown by slow cooling method. Amino acids like glycine, L-alanine, and L-valine have been selected for doping. Optical quality bulk crystals have been harvested after a typical growth period of about twenty days. The effect of amino acids in the crystal lattice and molecular vibrational frequencies of various functional groups in the crystals have been studied using X-ray powder diffraction and Fourier Transform infrared (FTIR) analyses respectively. Thermal behavior of the amino acids mixed LAP crystals have been studied from the TG and DTG analyses. High-resolution X-ray diffraction studies have been carried out to find the crystalline nature. Optical transmission studies have been carried out by UV-vis spectrophotometer. The cut off wavelength is below 240 nm for the grown crystals.

  2. Design of a new DNA-polyintercalating drug, a bisacridinyl peptidic analogue of Triostin A.

    PubMed Central

    Helbecque, N; Bernier, J L; Hénichart, J P

    1985-01-01

    The synthesis of a new bifunctional compound in which two aminoacridine chromophores are linked by the bicyclic depsipeptidic backbone of des-N-tetramethylTriostin A is described. The molecule, bis-[(9-acridinyl)-D-seryl-L-alanyl-L-cysteinyl-L-valine] dilactone disulphide, structurally analogous to the antibiotic anti-tumour drug Triostin A, is shown to possess a high affinity to DNA and to act as a bis-intercalator on the basis of spectroscopic, viscosimetric and thermal-denaturation studies. This model constitutes the first attempt of a synergic association between a peptidic moiety that mimics a naturally occurring drug and aminoacridine, the two parts themselves each exhibiting a high affinity for the DNA target. PMID:3838469

  3. The radiolysis and radioracemization of amino acids on clays

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Hall, H.; Chow, G.; Yi, L.; Lemmon, R. M.

    1985-01-01

    The effects of the surfaces of kaolinite and bentonite clays on the radiolysis and radioracemization of L-leucine and its hydrochloride salt have been investigated experimentally. L-leucine and its hydrochloride salt were deposited on the clays and the amino acid/clay preparations were irradiated by a Co-60 gamma-ray source which induced 2-89 percent radiolysis. The efficiency of radiolysis and radioracemization were measured using gas chromatography. Results were obtained for leucine in 0.1 M aqueous solution for comparison with the clay-deposted leucine and leucine hydrochloride. It is found that radiolysis and radioracemization in the samples occurred according to a pseudo-first-order rate law. Comparison of the specific rate constants showed that leucine and its hydrochloride salt were the most resistant to both radiolysis and radioracemization, followed by leucine and its hydrochloride salt on kaolin. Leucine and its HCl salt on bentonite, and leucine in aqueous solution were found to be the least resistant to radiolysis and radioracemization. The experimental results are intepreted with respect to the Vester-Ulbricht mechanism for the origin of optical activity.

  4. Radioactive contamination of the marine environment: Uptake and distribution of3H in Dunaliella bioculata

    NASA Astrophysics Data System (ADS)

    Strack, S.; Bonotto, S.; Kirchmann, R.

    1980-03-01

    The marine flagellate Dunaliella bioculata, which is easily cultivated under laboratory conditions, is a suitable organism for assessing the importance of the radioactive contamination by3H bound to organic molecules. We have studied the uptake of the following tritiated precursors: thymidine-methyl-3H, adenine-2-3H, uridine-5-3H, l-leucine-4-3H, glycine-2-3H, l-arginine-3.4-3H, 1-aspartic acid-2. 3-3H, 1-phenylalanine-2.3-3H, D-glucose-2-3H and D-glucose-6-3H. Under the experimental conditions (2000 lux; incubation time 30 min), all tritiated molecules are taken up by D. bioculata. Their intracellular concentration may reach that of the external medium. However, leucine and adenine accumulate in the algae: their respective concentrations are 10 and 100 times higher than in the culture medium. The molecular distribution of3H has been studied by various biochemical techniques and by sieve chromatography on sepharose 4B. It has been found that more l-leucine-4-3H is incorporated into acid and acetone soluble substances than into proteins. Adenine-2-3H is mainly incorporated into macromolecules of biological significance (RNA, DNA). CsCl gradient centrifugation has shown that the total DNA of Dunaliella is constituted by a major (?=1.707 g/cm3) and by a minor (?=1.693 g/cm3) component.

  5. [Formation Mechanism of the Disinfection By-product 1, 1-Dichloroacetone in Drinking Water].

    PubMed

    Ding, Chun-sheng; Meng, Zhuang; Xu, Yang-yang; Miao, Jia

    2015-05-01

    A novel method using methyl tertiary butyl ether (MTBE) as extractant and 1,2-dibromopropane as internal standard for the determination of the disinfection by-producs 1,1-dichloroacetone (DCAce) by gas chromatography mass spectrometry (GC-MS) was described. The formation process of DCAce and its influencing factors were discussed with L-leucine as the precursor during the chloramination process. The results indicated that the DCAce production increased with the increase of chloramine dosage when the chloramine addition was in the range of 5-30 mg · L(-1). The DCAce amount produced under alkaline condition was higher than those produced under the neutral and acidic conditions, and the DCAce amount reduced with the increase of pH value. Temperature was another important factor that affected the DCAce formation from methylamine especially in the range of 15-35°C , and the higher the temperature, the more the DCAce produced. The formation process of DCAce from L-leucine by chloramine consisted of a series of complicated reactions, including substitution, oxidation, bond breaking, amino diazotization, reduction and so on, and eventually DCAce was formed. PMID:26314113

  6. Influence of coating material on the flowability and dissolution of dry-coated fine ibuprofen powders.

    PubMed

    Qu, Li; Zhou, Qi Tony; Denman, John A; Stewart, Peter J; Hapgood, Karen P; Morton, David A V

    2015-10-12

    This study investigates the effects of a variety of coating materials on the flowability and dissolution of dry-coated cohesive ibuprofen powders, with the ultimate aim to use these in oral dosage forms. A mechanofusion approach was employed to apply a 1% (w/w) dry coating onto ibuprofen powder with coating materials including magnesium stearate (MgSt), L-leucine, sodium stearyl fumarate (SSF) and silica-R972. No significant difference in particle size or shape was measured following mechanofusion with any material. Powder flow behaviours characterised by the Freeman FT4 system indicated coatings of MgSt, L-leucine and silica-R972 produced a notable surface modification and substantially improved flow compared to the unprocessed and SSF-mechanofused powders. ToF-SIMS provided a qualitative measure of coating extent, and indicated a near-complete layer on the drug particle surface after dry coating with MgSt or silica-R972. Of particular note, the dissolution rates of all mechanofused powders were enhanced even with a coating of a highly hydrophobic material such as magnesium stearate. This surprising increase in dissolution rate of the mechanofused powders was attributed to the lower cohesion and the reduced agglomeration after mechanical coating. PMID:26215464

  7. Modification of Microbial Polymalic Acid With Hydrophobic Amino Acids for Drug-Releasing Nanoparticles

    PubMed Central

    Lanz-Landázuri, Alberto; Portilla-Arias, José; de Ilarduya, Antxon Martínez; Holler, Eggehard; Ljubimova, Julia; Muñoz-Guerra, Sebastián

    2014-01-01

    Microbial poly(?, l-malic acid) was modified with either l-leucine ethyl ester (L) or l-phenylalanine methyl ester (F) to produce amphiphylic copolymers. The degradation of these copolymers in aqueous buffer took place under physiological conditions in a few weeks by hydrolysis of the side chain ester group followed by cleavage of the main chain. Spherical nanoparticles with diameters ranging between 70 and 230 nm were prepared from these copolymers by the dialysis-precipitation method. No alteration of the cell viability was observed after incubation of these nanoparticles in different cell lines. Anticancer drugs temozolomide and doxorubicin were encapsulated in the nanoparticles. Temozolomide was released within several hours whereas doxorubicin took several weeks to be completely liberated. PMID:24954994

  8. Thermodynamic Approach to Enhanced Dispersion and Physical Properties in a Carbon Nanotube/Polypeptide Nanocomposite

    NASA Technical Reports Server (NTRS)

    Lovell, Conrad S.; Wise, Kristopher E.; Kim, Jae-Woo; Lillehei, Peter T.; Harrison, Joycelyn S.; Park, Cheol

    2009-01-01

    A high molecular weight synthetic polypeptide has been designed which exhibits favorable interactions with single wall carbon nanotubes (SWCNTs). The enthalpic and entropic penalties of mixing between these two molecules are reduced due to the polypeptide's aromatic sidechains and helical secondary structure, respectively. These enhanced interactions result in a well dispersed SWCNT/Poly (L-Leucine-ran-L-Phenylalanine) nanocomposite with enhanced mechanical and electrical properties using only shear mixing and sonication. At 0.5 wt% loading of SWCNT filler, the nanocomposite exhibits simultaneous increases in the Young's modulus, failure strain, and toughness of 8%, 120%, and 144%, respectively. At one kHz, the same nanotube loading level also enhances the dielectric constant from 2.95 to 22.81, while increasing the conductivity by four orders of magnitude.

  9. Descending pathways to the cutaneus trunci muscle motoneuronal cell group in the cat

    NASA Technical Reports Server (NTRS)

    Holstege, Gert; Blok, Bertil F.

    1989-01-01

    Pathways involved in the cutaneous trunci muscle (CTM) reflex in the cat were investigated. Experimental animals were injected with tritium-labeled L-leucine into their spinal cord, brain stem, or diencephalon and, after six weeks, perfused with 10-percent formalin. The brains and spinal cords were postfixed in formalin and were cut into transverse 25-micron-thick frozen sections for autoradiography. Results based on injections in the C1, C2, C6, and C8 segments suggest that propriospinal pathways to the CTM motor nucleus originating in the cervical cord do no exist, although these propriospinal projections are very strong to all other motoneuronal cell groups surrounding the CTM motor nucleus. The results also demonstrate presence of specific supraspinal projections to the CTM motor nucleus, originating in the contralateral nucleus retroambiguous and the ipsilateral dorsolateral pontine tegmentum.

  10. Specific degradation of CRABP-II via cIAP1-mediated ubiquitylation induced by hybrid molecules that crosslink cIAP1 and the target protein.

    PubMed

    Okuhira, Keiichiro; Ohoka, Nobumichi; Sai, Kimie; Nishimaki-Mogami, Tomoko; Itoh, Yukihiro; Ishikawa, Minoru; Hashimoto, Yuichi; Naito, Mikihiko

    2011-04-20

    Manipulation of protein stability with small molecules is a challenge in the field of drug discovery. Here we show that cellular retinoic acid binding protein-II (CRABP-II) can be specifically degraded by a novel compound, SNIPER-4, consisting of (--)-N-[(2S,3R)-3-amino-2-hydroxy-4-phenyl-butyryl]-L-leucine methyl ester and all-trans retinoic acid that are ligands for cellular inhibitor of apoptosis protein 1 (cIAP1) and CRABP-II, respectively. Mechanistic analysis revealed that SNIPER-4 induces cIAP1-mediated ubiquitylation of CRABP-II, resulting in the proteasomal degradation. The protein knockdown strategy employing the structure of SNIPER-4 could be applicable to other target proteins. PMID:21414315

  11. High-yield production of lipoglycopeptide antibiotic A40926 using a mutant strain Nonomuraea sp. DP-13 in optimized medium.

    PubMed

    Chen, Ming; Xu, Tao; Zhang, Guanghao; Zhao, Jing; Gao, Ziqing; Zhang, Chunzhi

    2016-02-17

    The lipoglycopeptide antibiotic A40926 produced by Nonomuraea sp. is a complex of structurally related components differing in the fatty acid moiety. Besides showing an intrinsic antibacterial activity, A40926 is the precursor of the semisynthetic antibiotic Dalvance. In this work, A40926 production by a mutant strain Nonomuraea sp. DP-13 was investigated. It was found that A40926 production was markedly promoted by using poorly assimilated carbon source maltodextrin and nitrogen source soybean meal. Addition of Cu(2+) resulted in a stimulation of A40926 production, but Co(2+) had an inhibitory effect. L-Leucine addition greatly improved total A40926 production and modified the complex composition toward factor B0. An optimized production medium IM-3 was developed and a maximum A40926 production of 1096 mg/L was obtained in the 10-L fermenter. This was the highest A40926 productivity so far reported. PMID:25831044

  12. Isolation, Structure Elucidation and Total Synthesis of Lajollamide A from the Marine Fungus Asteromyces cruciatus

    PubMed Central

    Gulder, Tobias A. M.; Hong, Hanna; Correa, Jhonny; Egereva, Ekaterina; Wiese, Jutta; Imhoff, Johannes F.; Gross, Harald

    2012-01-01

    The marine-derived filamentous fungus Asteromyces cruciatus 763, obtained off the coast of La Jolla, San Diego, USA, yielded the new pentapeptide lajollamide A (1), along with the known compounds regiolone (2), hyalodendrin (3), gliovictin (4), 1N-norgliovicitin (5), and bis-N-norgliovictin (6). The planar structure of lajollamide A (1) was determined by Nuclear Magnetic Resonance (NMR) spectroscopy in combination with mass spectrometry. The absolute configuration of lajollamide A (1) was unambiguously solved by total synthesis which provided three additional diastereomers of 1 and also revealed that an unexpected acid-mediated partial racemization (2:1) of the L-leucine and L-N-Me-leucine residues occurred during the chemical degradation process. The biological activities of the isolated metabolites, in particular their antimicrobial properties, were investigated in a series of assay systems. PMID:23342379

  13. Marine Vibrio Species Produce the Volatile Organic Compound Acetone

    PubMed Central

    Nemecek-Marshall, M.; Wojciechowski, C.; Kuzma, J.; Silver, G. M.; Fall, R.

    1995-01-01

    While screening aerobic, heterotrophic marine bacteria for production of volatile organic compounds, we found that a group of isolates produced substantial amounts of acetone. Acetone production was confirmed by gas chromatography, gas chromatography-mass spectrometry, and high-performance liquid chromatography. The major acetone producers were identified as nonclinical Vibrio species. Acetone production was maximal in the stationary phase of growth and was stimulated by addition of l-leucine but not the other common amino acids, suggesting that leucine degradation leads to acetone formation. Acetone production by marine vibrios may contribute to the dissolved organic carbon associated with phytoplankton, and some of the acetone produced may be volatilized to the atmosphere. PMID:16534920

  14. Anti-AIDS agents 49. Synthesis, anti-HIV, and anti-fusion activities of IC9564 analogues based on betulinic acid.

    PubMed

    Sun, I-Chen; Chen, Chin-Ho; Kashiwada, Yoshiki; Wu, Jiu-Hong; Wang, Hui-Kang; Lee, Kuo-Hsiung

    2002-09-12

    The betulinic acid derivative IC9564 inhibits human immunodeficiency virus (HIV)-1 entry. Among a series of IC9564 derivatives, 5 and 20 were the most promising compounds against HIV infection with EC(50) values of 0.33 and 0.46 microM, respectively. Both compounds inhibited syncytium formation with EC(50) values of 0.40 and 0.33 microM, respectively. The comparable EC(50) values in the two assays suggested that these compounds are fusion inhibitors. The structure-activity relationship data also indicated that a double bond in IC9564 can be eliminated and the statine moiety can be replaced with L-leucine while retaining anti-HIV activity. PMID:12213068

  15. Purification and Characterization of Leu-Proteinase, the Leucine Specific Serine Proteinase from Spinach (Spinacia oleracea L.) Leaves 1

    PubMed Central

    Aducci, Patrizia; Ascenzi, Paolo; Pierini, Marco; Ballio, Alessandro

    1986-01-01

    The leucine specific serine proteinase present in the soluble fraction of leaves from Spinacia oleracea L. (called Leu-proteinase) has been purified by acetone precipitation and a combination of gel-filtration, ion exchange, and adsorption chromatography. This enzyme shows a molecular weight of 60,000 ± 3,000 daltons, an isoelectric point of 4.8 ± 0.1, and a relative electrophoretic mobility of 0.58 ± 0.03. The Leu-proteinase catalyzed hydrolysis of p-nitroanilides of N-?-substituted(-l-)amino acids as well as of chromogenic macromolecular substrates has been investigated between pH 5 and 10 at 23 ± 0.5°C and I = 0.1 molar. The enzyme activity is characterized by a bell-shaped profile with an optimum pH value around 7.5, reflecting the acid-base equilibrium of groups with pKa values of 6.8 ± 0.1 and 8.2 ± 0.1 (possibly the histidyl residue present at the active site of the enzyme and the N-terminus group). Among the substrates considered, N-?-benzoyl-l-leucine p-nitroanilide shows the most favorable catalytic parameters and allows to determine an enzyme concentration as low as 1 × 10?9 molar. In agreement with the enzyme specificity, only N-?-tosyl-l-leucine chloromethyl ketone, di-isopropyl fluorophosphate and phenylmethylsulfonyl fluoride, among compounds considered specific for serine enzymes, strongly inhibit the Leu-proteinase. Accordingly, the enzyme activity is insensitive to cations, chelating agents, sulfydryl group reagents, and activators. PMID:16664908

  16. Different EDC/NHS activation mechanisms between PAA and PMAA brushes and the following amidation reactions.

    PubMed

    Wang, Cuie; Yan, Qin; Liu, Hong-Bo; Zhou, Xiao-Hui; Xiao, Shou-Jun

    2011-10-01

    Infrared spectroscopy was applied to investigate the well-known EDC/NHS (N-ethyl-N'-(3-(dimethylamino)propyl)carbodiimide/N-hydroxysuccinimide) activation details of poly(acrylic acid) (PAA) and poly(methacrylic acid) (PMAA) brushes grafted on porous silicon. Succinimidyl ester (NHS-ester) is generally believed to be the dominant intermediate product, conveniently used to immobilize biomolecules containing free primary amino groups via amide linkage. To our surprise, the infrared spectral details revealed that the EDC/NHS activation of PMAA generated anhydride (estimated at around 76% yield and 70% composition), but not NHS-ester (around 5% yield and 11% composition) under the well-documented reaction conditions, as the predominant intermediate product. In contrast, EDC/NHS activation of PAA still follows the general rule, i.e., the expected NHS-ester is the dominant intermediate product (around 45% yield and 57% composition), anhydride the side product (40% yield and 28% composition), under the optimum reaction conditions. The following amidation on PAA-based NHS-esters with a model amine-containing compound, L-leucine methyl ester, generated approximately 70% amides and 30% carboxylates. In contrast, amidation of PAA- or PMAA-based anhydrides with L-leucine methyl ester only produced less than 30% amides but more than 70% carboxylates. The above reaction yields and percentage compositions were estimated by fitting the carbonyl stretching region with 5 possible species, NHS-ester, anhydride, N-acylurea, unreacted acid, unhydrolyzed tert-butyl ester, and using the Beer-Lambert law. The different surface chemistry mechanisms will bring significant effects on the performance of surface chemistry-derived devices such as biochips, biosensors, and biomaterials. PMID:21853994

  17. Dihydromorphine-peptide hybrids with delta receptor agonistic and mu receptor antagonistic actions

    SciTech Connect

    Smith, C.B.; Medzihradsky, F.; Woods, J.H.

    1986-03-05

    The actions of two morphine derivatives with short peptide side chains were evaluated upon the contraction of the isolated mouse vas deferens and upon displacement of /sup 3/H-etorphine from rat brain membranes. NIH-9833 (N-(6,14-endoetheno-7,8-dihydromorphine-7-alpha-carbonyl)-L-phenylalanyl-L-leucine ethyl ester HCl) was a potent agonist upon the vas deferens. Its EC50 for inhibition of the twitch was 1.2 +/- 0.1 nM. Both naltrexone (10/sup -7/ M) a relatively nonselective opioid antagonist, and ICI-174864 (10/sup -/' M) a highly selective delta receptor antagonist, blocked the actions of NIH-9833 which indicates that this drug is a delta receptor agonist. In contrast, NIH-9835 (N-(6,14-endoetheno-7,8-dihydromorphine-7-alpha-carbonyl)-L-glycyl-L-phenylalanyl-L-leucine ethyl ester HCl), which differs from NIH-9835 by the presence of a single amino acid residue, was devoid of opioid agonistic activity but was a potent antagonist of the inhibitory actions on the vas deferens of morphine and sufentanil. NIH-9833 and NIH-9835 were potent displacers of /sup 3/H-etorphine from rat cerebral membranes with EC50's of 0.58 nM and 1.7 nM, respectively. The observation that addition of a single glycyl group changes a dihydromorphine-peptide analog from a potent delta receptor agonist to an equally potent mu receptor antagonist suggests that the two receptor sites might be structurally quite similar.

  18. Extrusion decreases the negative effects of kidney bean on enzyme and transport activities of the rat small intestine.

    PubMed

    Marzo, F; Milagro, F I; Urdaneta, E; Barrenetxe, J; Ibañez, F C

    2011-10-01

    The objective of the present study was to evaluate the influence of raw and extruded kidney bean (Phaseolus vulgaris L. var. Pinto) consumption on the gut physiology of young growing rats. The intestinal enzyme activity (sucrase, maltase, Na(+) /K(+) ATPase, aminopeptidase N, dipeptidylpeptidase IV, alkaline phosphatase) and the uptake of sugar (d-galactose) and amino acids (l-leucine) were measured in brush border membrane vesicles. Five groups of growing male Wistar rats were fed ad libitum for 15 days on five different 10% protein diets: one containing casein as the main source of protein (Control, C), and four containing raw (RKB1, RKB6) or extruded kidney bean (EKB1, EKB6) at 1% and 6% of total protein content respectively. Extrusion treatment significantly reduced the content of bioactive factors (phytates, tannins) and abolished lectins, trypsin, chymotrypsin, and ?-amylase inhibitory activities. Rats fed raw beans (especially RKB6) showed lower growth rate and food intake as compared to those fed extruded legumes, probably due to the high levels of lectins and other anti-nutritive factors in the raw beans. Gut enzymatic activities and uptake of d-galactose and l-leucine were lower in RKB6 and RKB1-fed animals, although they significantly improved in the groups fed extruded beans. Enzymatic activity and uptake in EKB1 were similar to those of casein-fed rats, whereas the uptake and growth rate of EKB6 were different to the control. This is attributable to the higher non-thermolabile biofactor content in the EKB6 diet, especially phytates and tannins, than in EKB1. This article shows the dose-dependent toxicological effects of bioactive factors contained in kidney beans on gut function. The extrusion process reduced their adverse impact on gut physiology and growth rate. PMID:21114542

  19. Biosynthesis of the defensive alkaloid cicindeloine in Stenus solutus beetles

    NASA Astrophysics Data System (ADS)

    Schierling, Andreas; Dettner, Konrad; Schmidt, Jürgen; Seifert, Karlheinz

    2012-08-01

    To protect themselves from predation and microorganismic infestation, rove beetles of the genus Stenus produce and store bioactive alkaloids like stenusine, 3-(2-methyl-1-butenyl)pyridine, and cicindeloine in their pygidial glands. The biosynthesis of stenusine and 3-(2-methyl-1-butenyl)pyridine was previously investigated in Stenus bimaculatus and Stenus similis, respectively. Both molecules follow the same biosynthetic pathway, where the N-heterocyclic ring is derived from l-lysine and the side chain from l-isoleucine. The different alkaloids are finally obtained by slight modifications of shared precursor molecules. The piperideine alkaloid cicindeloine occurs as a main compound additionally to ( E)-3-(2-methyl-1-butenyl)pyridine and traces of stenusine in the pygidial gland secretion of Stenus cicindeloides and Stenus solutus. Feeding of S. solutus beetles with [D,15N]-labeled amino acids followed by GC/MS analysis techniques showed that cicindeloine is synthesized via the identical pathway and precursor molecules as the other two defensive alkaloids.

  20. Accurate measurements of {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled proteins using multi-dimensional four-oscillating field solid-state NMR spectroscopy

    SciTech Connect

    Straasø, Lasse Arnt; Nielsen, Jakob Toudahl; Bjerring, Morten; Nielsen, Niels Chr.; Khaneja, Navin

    2014-09-21

    Application of sets of {sup 13}C-{sup 13}C internuclear distance restraints constitutes a typical key element in determining the structure of peptides and proteins by magic-angle-spinning solid-state NMR spectroscopy. Accurate measurements of the structurally highly important {sup 13}C-{sup 13}C distances in uniformly {sup 13}C-labeled peptides and proteins, however, pose a big challenge due to the problem of dipolar truncation. Here, we present novel two-dimensional (2D) solid-state NMR experiments capable of extracting distances between carbonyl ({sup 13}C?) and aliphatic ({sup 13}C{sub aliphatic}) spins with high accuracy. The method is based on an improved version of the four-oscillating field (FOLD) technique [L. A. Straasø, M. Bjerring, N. Khaneja, and N. C. Nielsen, J. Chem. Phys. 130, 225103 (2009)] which circumvents the problem of dipolar truncation, thereby offering a base for accurate extraction of internuclear distances in many-spin systems. The ability to extract reliable accurate distances is demonstrated using one- and two-dimensional variants of the FOLD experiment on uniformly {sup 13}C,{sup 15}N-labeled-L-isoleucine. In a more challenging biological application, FOLD 2D experiments are used to determine a large number of {sup 13}C?-{sup 13}C{sub aliphatic} distances in amyloid fibrils formed by the SNNFGAILSS fibrillating core of the human islet amyloid polypeptide with uniform {sup 13}C,{sup 15}N-labeling on the FGAIL fragment.

  1. The use of land snail shells in paleoenvironmental reconstruction

    NASA Astrophysics Data System (ADS)

    Goodfriend, Glenn A.

    Fossil land snail shells constitute a valuable source of paleoenvironmental information for the Quaternary. They can be dated by a variety of methods, including radiocarbon, amino acid racemization and epimerization, and perhaps also {Th}/{U} and ESR. The vast majority of paleoenvironmental studies based on land snail shells have examined the faunal composition of fossil assemblages, from which a variety of paleoenvironmental characteristics such as biome, temperature, and moisture conditions have been reconstructed. Still, there are a number of problems involved in using this approach and these are discussed. Shell morphology has occasionally been used to reconstruct such factors as rainfall and temperature. Stable isotope studies on Quaternary land snails include: analysis of ?18O values of organic matter in the shells, to reconstruct C 4 plant distributions from which rainfall amounts can be inferred, and analysis of ?18O values of shell carbonate, from which trends in the oxygen isotope composition of rainfall can be reconstructed. Stable carbon isotopes of shell carbonate have also been studied but their interpretation is not clear. Amino acid epimerization analysis ( {dalloisoleucine }/{l-isoleucine } ratios) of land snail shells has been used for estimation of paleotemperatures. Some potential uses of land snail shells for paleoenvironmental reconstruction include the study of stable isotopes of H and N, periodic growth lines, and deposits of pedogenic carbonates on the shells.

  2. Variation in amino acid epimerization rates and amino acid composition among shell layers in the bivalve Chione from the Gulf of California

    NASA Astrophysics Data System (ADS)

    Goodfriend, Glenn A.; Flessa, Karl W.; Hare, P. E.

    1997-04-01

    Variation in the isoleucine epimerization rate and amino acid composition and concentration among and within the three layers comprising the shell of the marine bivalve Chione fuctifraga from the northern Gulf of California was determined in a time series of ten shells, from modern back to 900 yr BP (reservoir-age-corrected radiocarbon age). Differences in epimerization rates of up to 30% were found between various portions of the shells. In samples taken from the middle layer of the shell (two different positions) and the hinge area of the inner layer, D-alloisoleucine/L-isoleucine (A/I) values showed excellent age prediction ability, whereas in samples from the outer layer and the central part of the inner layer, A/I values showed greater variability. Isoleucine epimerization rates were found to differ between sampling positions within both the inner and outer layers of the shell. Average rate differences were also found among layers. The amino acid composition of the three layers is rather similar (with Asp, Glu, and Gly the most abundant amino acids) but variable. Significant differences in amounts of amino acids were found, with the middle layer showing the lowest amounts and the inner layer the highest amounts. Careful choice of sampling position may improve the accuracy of age estimates from amino acid racemization.

  3. Comparison of isoleucine epimerization and leaching potential in the molluskan genera Astarte, Macoma, and Mya

    NASA Astrophysics Data System (ADS)

    Roof, Steven

    1997-12-01

    Amino acid racemization geochronology is widely applied to provide relative age control for carbonate fossils, however, there are significant chemical differences between genera which affect diagenetic reactions in proteins such as hydrolysis and racemization. In order to evaluate intergeneric influences on isoleucine epimerization, laboratory heating experiments were undertaken to compare the rate of epimerization of L-isoleucine to D-alloisoleucine and the potential for leaching of amino acids in three molluskan genera: Astarte, Macoma, and Mya. Shell fragments from these genera were heated for up to 816 h at 100°C to simulate aging. After 96 h of heating, the three genera experienced similar degrees of epimerization in the total acid hydrolysate, but with additional heating, Astarte and Macoma epimerized more extensively than Mya. In the free amino acid fraction, the relative rates of epimerization were reversed: Mya shows the fastest apparent rate and Astarte the slowest. All three genera lost amino acids from both the free and bound fractions by leaching, but more significantly, alloisoleucine leached proportionately much faster than isoleucine. If leaching of amino acids under natural conditions continues after significant alloisoleucine is produced, then the preferential loss of alloisoleucine over isoleucine will result in lowering of the alloisoleucine/isoleucine ratio and, therefore, lead to significant underestimation of ages. An important implication for all studies utilizing amino acid racemization geochronology is that even coeval shells of the same genus may give different alle/Ile values if different individual shells experienced different burial conditions and degrees of leaching.

  4. Land-sea correlations in the Pleistocene based on isoleucine epimerization in non-marine molluscs

    NASA Astrophysics Data System (ADS)

    Bowen, D. Q.; Hughes, S.; Sykes, G. A.; Miller, G. H.

    1989-07-01

    THE correlation between the oxygen isotope stratigraphy of the oceans and continental stratigraphic records is one of the main challenges for Quaternary research. Most continental classifications, however, are based on techniques and hypotheses that predate recent advances. Nevertheless, the deep-sea oxygen isotope global stratigraphic framework has been extended to the continents by means of some long sequences1; but these are exceptional and regional geology is unsatisfactorily classified for correlation with the oxygen isotope signal. Because successive geological events produced similar evidence (homotaxis), geochronometric dating is essential for correlation, but available methods are highly site-, regional- or sample-specific. Fortunately non-marine molluscs are ubiquitous in time and space, and here we use the time-dependent epimerization of L-isoleucine in these fossils to subdivide the Pleistocene of the British Isles, and to identify more events than recognized by the existing classification2. By calibrating the relative aminostratigraphic scale with independent dating methods we have set up a geochronology which is the basis for land-sea correlations back to oxygen isotope stage 15.

  5. Amino acid chronostratigraphy of late Quaternary coral reefs: Huon Peninsula, New Guinea, and the Great Barrier Reef, Australia

    NASA Astrophysics Data System (ADS)

    Hearty, Paul J.; Aharon, Paul

    1988-07-01

    D-alloisoleucine/L-isoleucine (D/L) ratios were measured in Tridacna gigas (the giant clam) whose ages were calibrated against radiometrically dated coral reef terraces from New Guinea and storm ridges on coral islands from the Great Barrier Reef. The results of 52 samples show several distinct intervals encompassing a fast epimerization phase at a rate of 0.077/ka for the first 8 ka, a transitional interval for the next 60 ka during which epimerization evolves at the rate of 0.006/ka, and the final phase between 60 and 185 ka when D/L ratios attain quasi-equilibrium (˜1.30) at an average rate of 0.003/ka. The demonstrated relation between the D/L ratios and the radiometric ages is useful for estimating ages of undated or insufficiently dated terraces. A comparison of the "New Guinea curve" and other less completely dated curves from elsewhere demonstrates the effect of sedimentary temperature on the rate of epimerization through time. Refinements of the D/L reaction among coral reef terraces, coupled with a better definition of the kinetic model presented here, would improve our knowledge of the temperature history and the chrono-stratigraphy of Quaternary coral reefs.

  6. Amino acid geochronology of raised beaches in south west Britain

    NASA Astrophysics Data System (ADS)

    Bowen, D. Q.; Sykes, G. A.; Reeves (nee Henry), Alayne; Miller, G. H.; Andrews, J. T.; Brew, J. S.; Hare, P. E.

    Based on (1) the epimerization of L:isoleucine to D:alloisoleucine ( {D}/{L} ratios) in Patella vulgata, Littorina littorea, L. littoralis, L. saxatilis, Littorina species and Nucella lapillus from raised beaches in south west Britain, (2) statistical analysis of the {D}/{L} ratios, and (3) lithostratigraphic and geomorphic evaluation, three ( {D}/{L}) Stages are proposed. The {D}/{L} ratios for all the species measured are converted to a Patella vulgata standard. The three ( {D}/{L}) Stages are: (1) The Minchin Hole ( {D}/{L}) Stage, {D}/{L} ratios 0.175 ± 0.014, defined at a stratotype in Minchin Hole Cave, Gower, Wales. (2) A provisionally defined, but as yet, unamed ( {D}/{L}) Stage, because of the current unavailability of a suitable stratotype, with {D}/{L} ratios of 0.135 ± 0.014 (3) The Pennard ( {D}/{L}) Stage, {D}/{L} ratios 0.105 ± 0.016, defined at a stratotype in Minchin Hole Cave, Gower, Wales. Two geochronological models of the three high sea-level events representing the {D}/{L} Stages are constrained by uranium-series age determinations on stalagmite interbedded with marine beds in Minchin Hole and Bacon Hole Caves, Gower, Wales. A potential 'fixed point' in model evaluation is an age determination which is equivalent to Oxygen Isotope Sub-stage 5e (122 ka). The two models are:

  7. Intrashell variations in amino acid concentrations and isoleucine epimerization ratios in fossil Hiatella arctica

    NASA Astrophysics Data System (ADS)

    Brigham, Julie K.

    1983-09-01

    Twenty-four valves of fossil Hiatella arctica were analyzed to determine if amino acid ratios varied from one region of a shell to another. The ratio of D-alloisoleucine/L-isoleucine, routinely used as a stratigraphic correlation tool and an indicator of relative age, did not vary significantly between five anatomically different shell parts in Hiatella arctica. Sampling only the hinge or central part of all valves, however, resulted in less variation about the average value. Analyses of only this part of the shell should improve the resolution of stratigraphic units by amino acid geochronology. The absolute concentrations of aspartic acid, threonine, serine, glutamic acid, glycine, alanine, valine, alloisoleucine, isoleucine, and leucine (in picomoles/milligram of shell) are significantly higher in the hinge and central part of the shell, whereas the outer growth edge appears to have lower levels of amino acids. This is true in both the FREE and TOTAL hydrolysate fractions. The reasons are not clear; however, the high value may be caused by a thin, protein-rich inner layer lining the valve out to the pallial line and/or differences in the proportion of inorganic carbonate to protein produced in different areas during shell growth. Alternatively, it may suggest leaching of the thinner, more vulnerable part of the shell growth edge.

  8. Jasmonate perception by inositol-phosphate-potentiated COI1?JAZ co-receptor

    SciTech Connect

    Sheard, Laura B.; Tan, Xu; Mao, Haibin; Withers, John; Ben-Nissan, Gili; Hinds, Thomas R.; Kobayashi, Yuichi; Hsu, Fong-Fu; Sharon, Michal; Browse, John; He, Sheng Yang; Rizo, Josep; Howe, Gregg A.; Zheng, Ning

    2011-11-07

    Jasmonates are a family of plant hormones that regulate plant growth, development and responses to stress. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of transcriptional repressor JAZ proteins. Despite its importance, the mechanism of jasmonate perception remains unclear. Here we present structural and pharmacological data to show that the true Arabidopsis jasmonate receptor is a complex of both COI1 and JAZ. COI1 contains an open pocket that recognizes the bioactive hormone (3R,7S)-jasmonoyl-l-isoleucine (JA-Ile) with high specificity. High-affinity hormone binding requires a bipartite JAZ degron sequence consisting of a conserved {alpha}-helix for COI1 docking and a loop region to trap the hormone in its binding pocket. In addition, we identify a third critical component of the jasmonate co-receptor complex, inositol pentakisphosphate, which interacts with both COI1 and JAZ adjacent to the ligand. Our results unravel the mechanism of jasmonate perception and highlight the ability of F-box proteins to evolve as multi-component signalling hubs.

  9. Separation of Ofloxacin and Its Six Related Substances Enantiomers by Chiral Ligand-Exchange Chromatography.

    PubMed

    Liang, Xinlei; Zhao, Longshan; Deng, Miaoduo; Liu, Lijie; Ma, Yongfu; Guo, Xingjie

    2015-11-01

    A chiral ligand-exchange high-performance liquid chromatography method was developed for the enantioseparation of ofloxacin and its six related substances termed impurities A, B, C, D, E, and F. The separation was performed on a conventional C18 column. Different organic modifiers, copper salts, amino acids, the ratio of Cu(2+) to amino acid, pH of aqueous phase, and column temperature were optimized. The optimal mobile phase conditions were methanol-water systems consisting of 5?mmol/L copper sulfate and 10?mmol/L?L-isoleucine (L-Ile). Under such conditions, good enantioseparation of ofloxacin and impurities A, C, E, and F could be observed with resolutions (RS ) of 3.54, 1.97, 3.21, 3.50, and 2.12, respectively. On the relationship between the thermodynamic parameters and structures of analytes, the mechanism of chiral recognition was investigated. It was concluded that ofloxacin and impurities A, C, E, and F were all enthalpically driven enantioseparation and that low column temperature was beneficial to enantioseparation. Furthermore, the structure-separation relationship of these analytes is also discussed. Chirality 27:843-849, 2015. © 2015 Wiley Periodicals, Inc. PMID:26382212

  10. The SARP Family Regulator Txn9 and Two-Component Response Regulator Txn11 are Key Activators for Trioxacarcin Biosynthesis in Streptomyces bottropensis.

    PubMed

    Yang, Kui; Qi, Li-Hua; Zhang, Mei; Hou, Xian-Feng; Pan, Hai-Xue; Tang, Gong-Li; Wang, Wei; Yuan, Hua

    2015-10-01

    Trioxacarcin A is a polyoxygenated, structurally complex antibiotic produced by Streptomyces spp., which possesses high anti-bacterial, anti-malaria, and anti-tumor activities. The trioxacarcin biosynthetic pathway involves type II polyketide synthases (PKSs) with L-isoleucine as a unique starter unit, as well as many complex post-PKS tailoring enzymes and resistance and regulatory proteins. In this work, two regulatory genes, txn9 coding for a Streptomyces antibiotic regulatory protein family regulator and txn11 for a two-component response regulator, were revealed to be absolutely required for trioxacarcin production by individually inactivating all the six annotated regulatory genes in the txn cluster. Complementation assay suggested that these two activators do not have a regulatory cascade relationship. Moreover, transcriptional analysis showed that they activate 15 of the 28 txn operons, indicating that a complicated regulatory network is involved in the trioxacarcin production. Information gained from this study may be useful for improving the production of the highly potent trioxacarcin A. PMID:26178900

  11. Low uplift rates and terrace reoccupation inferred from mollusk aminostratigraphy, Coquimbo Bay area, Chile

    NASA Astrophysics Data System (ADS)

    Leonard, Eric M.; Wehmiller, John F.

    1992-09-01

    Mollusk aminostratigraphy of Quaternary marine terrace sediments at Coquimbo Bay, Chile, combined with recently available electron spin resonance (ESR) ages, necessitates revision of the northern Chilean relative sea-level and terrace chronology. Protothaca and MuliniaD-alloisoleucine/ L-isoleucine values define four aminozones which are consistent with available ESR ages. Terrace reoccupation during successive high sea-level stands is inferred on the basis of litho- and aminostratigraphically defined unconformities in terrace sediments. ESR data and a nonlinear kinetic racemization model give approximate numerical ages for the aminozones and thus yield estimates of net uplift rates. These rates, averaged over intervals of one to several hundred thousand years, have ranged from less than 0.1 m/1000 yr to no more than 0.2 m/1000 yr. Such slow uplift is the cause of terrace reoccupation, as the amount of uplift between successive glacioeustatic high sea-level stands is frequently not sufficient to isolate an earlier-formed abrasion platform from rising sea level during a subsequent high stand.

  12. Ozone-Induced Rice Grain Yield Loss Is Triggered via a Change in Panicle Morphology That Is Controlled by ABERRANT PANICLE ORGANIZATION 1 Gene

    PubMed Central

    Tsukahara, Keita; Sawada, Hiroko; Kohno, Yoshihisa; Matsuura, Takakazu; Mori, Izumi C.; Terao, Tomio; Ioki, Motohide; Tamaoki, Masanori

    2015-01-01

    Rice grain yield is predicted to decrease in the future because of an increase in tropospheric ozone concentration. However, the underlying mechanisms are unclear. Here, we investigated the responses to ozone of two rice (Oryza Sativa L.) cultivars, Sasanishiki and Habataki. Sasanishiki showed ozone-induced leaf injury, but no grain yield loss. By contrast, Habataki showed grain yield loss with minimal leaf injury. A QTL associated with grain yield loss caused by ozone was identified in Sasanishiki/Habataki chromosome segment substitution lines and included the ABERRANT PANICLE ORGANIZATION 1 (APO1) gene. The Habataki allele of the APO1 locus in a near-isogenic line also resulted in grain yield loss upon ozone exposure, suggesting APO1 involvement in ozone-induced yield loss. Only a few differences in the APO1 amino acid sequences were detected between the cultivars, but the APO1 transcript level was oppositely regulated by ozone exposure: i.e., it increased in Sasanishiki and decreased in Habataki. Interestingly, the levels of some phytohormones (jasmonic acid, jasmonoyl-L-isoleucine, and abscisic acid) known to be involved in attenuation of ozone-induced leaf injury tended to decrease in Sasanishiki but to increase in Habataki upon ozone exposure. These data indicate that ozone-induced grain yield loss in Habataki is caused by a reduction in the APO1 transcript level through an increase in the levels of phytohormones that reduce leaf damage. PMID:25923431

  13. Synthesis, structural characterization and biological activity of two diastereomeric JA-Ile macrolactones.

    PubMed

    Jimenez-Aleman, Guillermo H; Machado, Ricardo A R; Görls, Helmar; Baldwin, Ian T; Boland, Wilhelm

    2015-06-01

    Jasmonates are phytohormones involved in a wide range of plant processes, including growth, development, senescence, and defense. Jasmonoyl-L-isoleucine (JA-Ile, 2), an amino acid conjugate of jasmonic acid (JA, 1), has been identified as a bioactive endogenous jasmonate. However, JA-Ile (2) analogues trigger different responses in the plant. ?-Hydroxylation of the pentenyl side chain leads to the inactive 12-OH-JA-Ile (3) acting as a “stop” signal. On the other hand, a lactone derivative of 12-OH-JA (5) (jasmine ketolactone, JKL) occurs in nature, although with no known biological function. Inspired by the chemical structure of JKL (6) and in order to further explore the potential biological activities of 12-modified JA-Ile derivatives, we synthesized two macrolactones (JA-Ile-lactones (4a) and (4b)) derived from 12-OH-JA-Ile (3). The biological activity of (4a) and (4b) was tested for their ability to elicit nicotine production, a well-known jasmonate dependent secondary metabolite. Both macrolactones showed strong biological activity, inducing nicotine accumulation to a similar extent as methyl jasmonate does in Nicotiana attenuata leaves. Surprisingly, the highest nicotine contents were found in plants treated with the JA-Ile-lactone (4b), which has (3S,7S) configuration at the cyclopentanone not known from natural jasmonates. Macrolactone (4a) is a valuable standard to explore for its occurrence in nature. PMID:25806705

  14. Metabonomic Profiling of TASTPM Transgenic Alzheimer's Disease Mouse Model

    SciTech Connect

    Hu, Zeping; Browne, Edward R.; Liu, Tao; Angel, Thomas E.; Ho, Paul C.; Chun Yong Chan, Eric

    2012-12-07

    Identification of molecular mechanisms underlying early stage Alzheimer’s disease (AD) is important for the development of new therapies against and diagnosis of AD. In this study, non-targeted metabotyping of TASTPM transgenic AD mice was performed. The metabolic profiles of both brain and plasma of TASTPM mice were characterized using gas chromatography-mass spectrometry and compared to those of wild type C57BL/6J mice. TASTPM mice were metabolically distinct compared to wild type mice (Q28 Y = 0.587 and 0.766 for PLS-DA models derived from brain and plasma, respectively). A number of metabolites were found to be perturbed in TASTPM mice in both brain (D11 fructose, L-valine, L-serine, L-threonine, zymosterol) and plasma (D-glucose, D12 galactose, linoleic acid, arachidonic acid, palmitic acid and D-gluconic acid). In addition, enzyme immunoassay confirmed that selected endogenous steroids were significantly perturbed in brain (androstenedione and 17-OH-progesterone) and plasma (cortisol and testosterone) of TASTPM mice. Ingenuity pathway analysis revealed that perturbations related to amino acid metabolism (brain), steroid biosynthesis (brain), linoleic acid metabolism (plasma) and energy metabolism (plasma) accounted for the differentiation of TASTPM and wild-type

  15. Investigation of the synergistic effect with amino acid-derived chiral ionic liquids as additives for enantiomeric separation in capillary electrophoresis.

    PubMed

    Zhang, Jinjing; Du, Yingxiang; Zhang, Qi; Chen, Jiaquan; Xu, Guangfu; Yu, Tao; Hua, Xiaoyi

    2013-11-01

    Recently, chiral ionic liquids (ILs) have drawn more and more attention in chiral separation by capillary electrophoresis (CE). In this paper, two chiral ILs based on amino acid derivatives, L-alanine and L-valine tert butyl ester bis (trifluoromethane) sulfonimide, were applied for the first time in CE to evaluate their potential synergistic effects with classical chiral selectors (?-cyclodextrin derivatives) for enantiomeric separation. As observed, improved separation of tested drug enantiomers was obtained with the presence of chiral ILs compared to the conventional ?-cyclodextrin derivatives separation system. Parameters such as type and proportion of organic modifier, type and concentration of chiral ILs, concentration of chiral selector, buffer pH and applied voltage were systematically investigated with Me-?-CD/chiral ILs as model system to optimize the novel synergistic system, and the best results were obtained when 15 mM chiral ILs were introduced into the 30 mM sodium citrate/citric acid (20% organic modifier included) buffer solution containing 20 mM Me-?-CD at pH 5.0 with a 20 kV applied voltage for naproxen, pranoprofen and warfarin. PMID:24119759

  16. Systems strategies for developing industrial microbial strains.

    PubMed

    Lee, Sang Yup; Kim, Hyun Uk

    2015-10-01

    Industrial strain development requires system-wide engineering and optimization of cellular metabolism while considering industrially relevant fermentation and recovery processes. It can be conceptualized as several strategies, which may be implemented in an iterative fashion and in different orders. The key challenges have been the time-, cost- and labor-intensive processes of strain development owing to the difficulties in understanding complex interactions among the metabolic, gene regulatory and signaling networks at the cell level, which are collectively represented as overall system performance under industrial fermentation conditions. These challenges can be overcome by taking systems approaches through the use of state-of-the-art tools of systems biology, synthetic biology and evolutionary engineering in the context of industrial bioprocess. Major systems metabolic engineering achievements in recent years include microbial production of amino acids (L-valine, L-threonine, L-lysine and L-arginine), bulk chemicals (1,4-butanediol, 1,4-diaminobutane, 1,5-diaminopentane, 1,3-propanediol, butanol, isobutanol and succinic acid) and drugs (artemisinin). PMID:26448090

  17. The Origin of Amino Acids in Lunar Regolith Samples

    NASA Technical Reports Server (NTRS)

    Cook, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K., Jr.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5 ppb to 651.1 ppb in 6M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: -aminoisobutyric acid (AIB), D-and L-amino-n-butyric acid (-ABA), DL-amino-n-butyric acid, -amino-n-butyric acid, -alanine, and -amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic -ABA were present in some samples.

  18. Organometallic complexes of bulky, optically active, C3-symmetric tris(4S-isopropyl-5,5-dimethyl-2-oxazolinyl)phenylborate (ToP *)

    DOE PAGESBeta

    Xu, Songchen; Magoon, Yitzhak; Reinig, Regina R.; Schmidt, Bradley M.; Ellern, Arkady; Sadow, Aaron D.

    2015-07-16

    A bulky, optically active monoanionic scorpionate ligand, tris(4S-isopropyl-5,5-dimethyl-2-oxazolinyl)phenylborate (ToP*), is synthesized from the naturally occurring amino acid l-valine as its lithium salt, Li[ToP*] (1). That compound is readily converted to the thallium complex Tl[ToP*] (2) and to the acid derivative H[ToP*] (3). Group 7 tricarbonyl complexes ToP*M(CO)3 (M = Mn (4), Re (5)) are synthesized by the reaction of MBr(CO)5 and Li[ToP*] and are crystallographically characterized. The ?CO bands in their infrared spectra indicate that ? back-donation in the rhenium compounds is greater with ToP* than with non-methylated tris(4S-isopropyl-2-oxazolinyl)phenylborate (ToP). The reaction of H[ToP*] and ZnEt2 gives ToP*ZnEt (6), whilemore »ToP*ZnCl (7) is synthesized from Li[ToP*] and ZnCl2. The reaction of ToP*ZnCl and KOtBu followed by addition of PhSiH3 provides the zinc hydride complex ToP*ZnH (8). In this study, compound 8 is the first example of a crystallographically characterized optically active zinc hydride. We tested its catalytic reactivity in the cross-dehydrocoupling of silanes and alcohols, which provided Si-chiral silanes with moderate enantioselectivity.« less

  19. Penicillin biosynthesis: energy requirement for tripeptide precursor formation by delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase from Acremonium chrysogenum.

    PubMed

    Kallow, W; von Döhren, H; Kleinkauf, H

    1998-04-28

    In nonribosomal peptide formation by multifunctional enzymes, peptide synthetases catalyze the activation and directed condensation of amino acids. The peptide synthetase involved in penicillin biosynthesis (ACV synthetase) forms the tripeptide delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine from the respective L-amino acids and ATP. So far, the energy requirements for the nonribosomal process have not been clearly established. For ACV synthetase we show that ATP consumption depends on the reaction conditions employed. By simultaneously estimating peptide and AMP production by employing fluorescence detection and UV spectroscopy, respectively, we have determined the energy consumption with high accuracy. Under unfavorable reaction conditions more than 20 mol of ATP are consumed/mol of tripeptide formed, while optimal conditions permit the expected energy requirement of one ATP for each carboxyl group activation, corresponding to three ATP for tripeptide formation. The third ATP is required for the activation of L-valine to maintain the valyl-thioester stage for epimerization and peptide bond formation, and this high-energy bond is sacrificed by hydrolytic removal of the product. No extra energy is required for the directed transport in peptide elongation. Additional energy consumed has been traced to hydrolytic loss of activated intermediates, as has been shown by the analysis of incomplete reaction mixtures. PMID:9558329

  20. Production of valine by a Bacillus sp.

    PubMed

    Chattopadhyay, S P; Banerjee, A K

    1978-01-01

    A bacterium isolated from Burdwan (India) soil was found to accumulate L-valine in the growth medium and identified to be a strain of Bacillus subtilis. The strain is able to grow and accumulate valine in a purely synthetic medium, but supplementation of the synthetic medium with either Casamino acids or yeast extract or with both, significantly improves the yield. The entire fermentation period can be divided into a growth phase and a production phase, which can be prolonged by adjustment of pH to the neutral range. Among the different carbon and nitrogen sources tested glucose at 8.5% and L-glutamic acid at 0.8%, respectively, were found most suitable. Cane sugar molasses tested as a substitute for glucose significantly stimulated growth but valine production was less. Different vitamins tested stimulated growth and valine yield and an inoculum level of 10% (v/v) of the medium was found to be optimal. The yield of valine under optimal conditions was found to be 4.53 g per litre of the medium. Valine has been isolated in crystalline form from the fermented broth by ion exchange resin chromatography and found to be a pure sample of the L-isomer. PMID:27903

  1. Dissociative electron attachment to gas phase valine: a combined experimental and theoretical study.

    PubMed

    Papp, Peter; Urban, Jan; Matejcík, Stefan; Stano, Michal; Ingolfsson, Oddur

    2006-11-28

    Using a crossed electron/molecule beam technique the dissociative electron attachment (DEA) to gas phase L-valine, (CH(3))(2)CHCH(NH(2))COOH, is studied by means of mass spectrometric detection of the product anions. Additionally, ab initio calculations of the structures and energies of the anions and neutral fragments have been carried out at G2MP2 and B3LYP levels. Valine and the previously studied aliphatic amino acids glycine and alanine exhibit several common features due to the fact that at low electron energies the formation of the precursor ion can be characterized by occupation of the pi* orbital of the carboxyl group. The dominant negative ion (M-H)(-) (m/Z=116) is observed at electron energies of 1.12 eV. This ion is the dominant reaction product at electron energies below 5 eV. Additional fragment ions with m/Z=100, 72, 56, 45, 26, and 17 are observed both through the low lying pi* and through higher lying resonances at about 5.5 and 8.0-9.0 eV, which are characterized as core excited resonances. According to the threshold energies calculated here, rearrangements play a significant role in the formation of DEA fragments observed from valine at subexcitation energies. PMID:17144694

  2. Resolution and isolation of enantiomers of (±)-isoxsuprine using thin silica gel layers impregnated with L-glutamic acid, comparison of separation of its diastereomers prepared with chiral derivatizing reagents having L-amino acids as chiral auxiliaries.

    PubMed

    Bhushan, Ravi; Nagar, Hariom

    2015-03-01

    Thin silica gel layers impregnated with optically pure l-glutamic acid were used for direct resolution of enantiomers of (±)-isoxsuprine in their native form. Three chiral derivatizing reagents, based on DFDNB moiety, were synthesized having l-alanine, l-valine and S-benzyl-l-cysteine as chiral auxiliaries. These were used to prepare diastereomers under microwave irradiation and conventional heating. The diastereomers were separated by reversed-phase high-performance liquid chromatography on a C18 column with detection at 340 nm using gradient elution with mobile phase containing aqueous trifluoroacetic acid and acetonitrile in different compositions and by thin-layer chromatography (TLC) on reversed phase (RP) C18 plates. Diastereomers prepared with enantiomerically pure (+)-isoxsuprine were used as standards for the determination of the elution order of diastereomers of (±)-isoxsuprine. The elution order in the experimental study of RP-TLC and RP-HPLC supported the developed optimized structures of diastereomers based on density functional theory. The limit of detection was 0.1-0.09 µg/mL in TLC while it was in the range of 22-23 pg/mL in HPLC and 11-13 ng/mL in RP-TLC for each enantiomer. The conditions of derivatization and chromatographic separation were optimized. The method was validated for accuracy, precision, limit of detection and limit of quantification. PMID:25044026

  3. Structures and reactions of compounds involved in pink discolouration of onion.

    PubMed

    Kato, Masahiro; Kamoi, Takahiro; Sasaki, Ryosuke; Sakurai, Nozomu; Aoki, Koh; Shibata, Daisuke; Imai, Shinsuke

    2013-08-15

    In "pinking" of onion, E-(+)-S-(1-propenyl)-L-cysteine sulfoxide is first cleaved by alliinase to yield colour developers (CDs), which react with amino acids, such as valine, to form pigment precursors (PPs). The PPs react with naturally occurring carbonyls (NOCs) to form pigments. By inducing a PP from previously isolated cepathiolanes and L-valine, it was confirmed that cepathiolanes constitute at least a part of the CDs. From the PP and formaldehyde as a NOC, two colourless and two pink compounds were derived. The structure of one of the colourless compounds was established as 2-(2-(1-(1-carboxy-2-methylpropyl)-3,4-dimethyl-1H-pyrrol-2-yl)methyl-3,4-dimethyl-1H-pyrrol-1-yl)-3-methylbutanoic acid. The structures of the other colourless compound and the pink pigments were predicted based on their molecular formula and the MS(n) spectral data. A trimeric pigment structure was predicted for one of the pink pigments, which was believed to be the first to be reported in the literature. With these, a new reaction scheme for "pinking" of onion is proposed. PMID:23561186

  4. Enhancement of ascomycin production in Streptomyces hygroscopicus var. ascomyceticus by combining resin HP20 addition and metabolic profiling analysis.

    PubMed

    Qi, Haishan; Zhao, Sumin; Fu, Hong; Wen, Jianping; Jia, Xiaoqiang

    2014-09-01

    Combinatorial approach of adsorbent resin HP20 addition and metabolic profiling analysis were carried out to enhance ascomycin production. Under the optimal condition of 5 % m/v HP20 added at 24 h, ascomycin production was increased to 380 from 300 mg/L. To further rationally guide the improvement of ascomycin production, metabolic profiling analysis was employed to investigate the intracellular metabolite changes of Streptomyces hygroscopicus var. ascomyceticus FS35 in response to HP20 addition. A correlation between the metabolic profiles and ascomycin accumulation was revealed by partial least-squares to latent structures discriminant analysis, and 11 key metabolites that most contributed to metabolism differences and ascomycin biosynthesis were identified. Based on the analysis of metabolite changes together with their pathways, the potential key factors associated with ascomycin overproduction were determined. Finally, rationally designed fermentation strategies based on HP20 addition were performed as follows: 2 % v/v n-hexadecane was added at 24 h; 1.0 g/L valine was supplemented at 48 h; 1.0 g/L lysine was added at 72 h. The ascomycin production was ultimately improved to 460 mg/L, a 53.3 % enhancement compared with that obtained in initial condition. These results demonstrated that the combination of HP20 addition and metabolic profiling analysis could be successfully applied to the rational guidance of production improvement of ascomycin, as well as other clinically important compounds. PMID:24965502

  5. Biochemical characterization of Santalum album (Chandan) leaf peroxidase.

    PubMed

    Kumar, Pradeep; Kamle, Madhu; Singh, Jagtar

    2011-04-01

    The Santalum peroxidase was extracted from the leaves and precipitated with double volume of chilled acetone. The optimum percent relative activity for the Santalum peroxidase was observed at pH 5.0 and 50 °C temperature. The Santalum peroxidase per cent relative activity was stimulated in the presence of phenolic compounds like ferrulic acid and caffeic acids; however, indole-3-acetic acid (IAA) and protocatechuic acid act as inhibitors. All divalent cations Fe(2+), Mn(2+), Mg(2+), Cu(2+) and Zn(2+) stimulate the relative activity of the Santalum peroxidase at concentration of 2.0 ?M. Amino acids like L-alanine and L-valine activate the per cent relative activity, while L-proline and DL-methionine showed moderate inhibition for the Santalum peroxidase. However, a very low a concentration of cysteine acts as a strong inhibitor of Santalum peroxidase at the concentration of 0.4 mM. Native polyacrylamide gel electrophoresis (Native-PAGE) was performed for isoenzyme determination and two bands were observed. Km and Vmax values were calculated from Lineweaver-Burk graph. The apparent Vmax/Km value for O-dianisidine and H2O2 were 400 and 5.0?×?105 Units/min/mL respectively. PMID:23573005

  6. Synthesis, structural elucidation, biological, antioxidant and nuclease activities of some 5-Fluorouracil-amino acid mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Shobana, Sutha; Subramaniam, Perumal; Mitu, Liviu; Dharmaraja, Jeyaprakash; Arvind Narayan, Sundaram

    2015-01-01

    Some biologically active mixed ligand complexes (1-9) have been synthesized from 5-Fluorouracil (5-FU; A) and amino acids (B) such as glycine (gly), L-alanine (ala) and L-valine (val) with Ni(II), Cu(II) and Zn(II) ions. The synthesized mixed ligand complexes (1-9) were characterized by various physico-chemical, spectral, thermal and morphological studies. 5-Fluorouracil and its mixed ligand complexes have been tested for their in vitro biological activities against some pathogenic bacterial and fungal species by the agar well diffusion method. The in vitro antioxidant activities of 5-Fluorouracil and its complexes have also been investigated by using the DPPH assay method. The results demonstrate that Cu(II) mixed ligand complexes (4-6) exhibit potent biological as well as antioxidant activities compared to 5-Fluorouracil and Ni(II) (1-3) and Zn(II) (7-9) mixed ligand complexes. Further, the cleaving activities of CT DNA under aerobic conditions show moderate activity with the synthesized Cu(II) and Ni(II) mixed ligand complexes (1-6) while no activity is seen with Zn(II) complexes (7-9). Binding studies of CT DNA with these complexes show a decrease in intensity of the charge transfer band to the extent of 5-15% along with a minor red shift. The free energy change values (?‡G) calculated from intrinsic binding constants indicate that the interaction between mixed ligand complex and DNA is spontaneous.

  7. Crystallization of l-alanine in the presence of additives on a circular PMMA platform designed for metal-assisted and microwave-accelerated evaporative crystallization.

    PubMed

    Alabanza, Anginelle M; Mohammed, Muzaffer; Aslan, Kadir

    2012-12-21

    Crystallization of l-alanine in the presence of l-valine and l-tryptophan additives on a circular poly(methyl) methacrylate (PMMA) platform designed for Metal-Assisted and Microwave-Accelerated Evaporative Crystallization (MA-MAEC) technique was investigated. Theoretical simulations predicted homogeneous temperature and electric field distributions across the circular PMMA platforms during microwave heating. Crystallization of l-alanine with and without additives on the blank and silver nanoparticle films (SNFs) modified sides of the circular PMMA platform occurred within 32-50 min using MA-MAEC technique, while the identical solutions crystallized within 161-194 min at room temperature. Optical microscopy studies revealed that l-alanine crystals without additives were found to be smaller in size and had several well-developed faces, whereas l-alanine crystals grown with additives appeared to be larger and had only one dominant highly-developed face. Raman spectroscopy and powder X-ray diffraction (XRD) measurements showed that all l-alanine crystals had identical peaks, despite the morphological differences between the l-alanine crystals with and without additives observed by optical microscope images. PMID:23378822

  8. Crystallization of l-alanine in the presence of additives on a circular PMMA platform designed for metal-assisted and microwave-accelerated evaporative crystallization†

    PubMed Central

    Alabanza, Anginelle M.; Mohammed, Muzaffer

    2013-01-01

    Crystallization of l-alanine in the presence of l-valine and l-tryptophan additives on a circular poly(methyl) methacrylate (PMMA) platform designed for Metal-Assisted and Microwave-Accelerated Evaporative Crystallization (MA-MAEC) technique was investigated. Theoretical simulations predicted homogeneous temperature and electric field distributions across the circular PMMA platforms during microwave heating. Crystallization of l-alanine with and without additives on the blank and silver nanoparticle films (SNFs) modified sides of the circular PMMA platform occurred within 32–50 min using MA-MAEC technique, while the identical solutions crystallized within 161–194 min at room temperature. Optical microscopy studies revealed that l-alanine crystals without additives were found to be smaller in size and had several well-developed faces, whereas l-alanine crystals grown with additives appeared to be larger and had only one dominant highly-developed face. Raman spectroscopy and powder X-ray diffraction (XRD) measurements showed that all l-alanine crystals had identical peaks, despite the morphological differences between the l-alanine crystals with and without additives observed by optical microscope images. PMID:23378822

  9. Thioesterase domain of delta-(l-alpha-Aminoadipyl)-l-cysteinyl-d-valine synthetase: alteration of stereospecificity by site-directed mutagenesis.

    PubMed

    Kallow, W; Kennedy, J; Arezi, B; Turner, G; von Döhren, H

    2000-03-24

    The carboxy-terminal thioesterase domain of delta-(l-alpha-aminoadipyl)-l-cysteinyl-d-valine synthetase catalyzes the hydrolytic release of the tripeptide product (LLD-ACV). By site-directed mutagenesis an S3599A change was introduced into the highly conserved GXSXG motif, resulting in a more than 95 % decrease of penicillin production. Purification of the modified multienzyme showed surprisingly only a 50 % reduction of the peptide formation rate, with the stereoisomer delta-(l-alpha-aminoadipyl)-l-cysteinyl-l-valine (LLL-ACV) as the dominating product. Thioesterases of ACV synthetases differ from other thioesterases integrated in non-ribosomal peptide synthetases in their direct association with an epimerase domain, and their respective GXSXG-seryl residue is apparently not essential in acyl transfer leading to peptide release. Instead, this motif may be involved in the control of tripeptide epimerization by selection of the isomer to be released, and the construct supports the presence of LLL-ACV as an intermediate in penicillin biosynthesis. PMID:10715209

  10. Dynamic Peptide Library for the Discovery of Charge Transfer Hydrogels.

    PubMed

    Berdugo, Cristina; Nalluri, Siva Krishna Mohan; Javid, Nadeem; Escuder, Beatriu; Miravet, Juan F; Ulijn, Rein V

    2015-11-25

    Coupling of peptide self-assembly to dynamic sequence exchange provides a useful approach for the discovery of self-assembling materials. In here, we demonstrate the discovery and optimization of aqueous, gel-phase nanostructures based on dynamically exchanging peptide sequences that self-select to maximize charge transfer of n-type semiconducting naphthalenediimide (NDI)-dipeptide bioconjugates with various ?-electron-rich donors (dialkoxy/hydroxy/amino-naphthalene or pyrene derivatives). These gel-phase peptide libraries are characterized by spectroscopy (UV-vis and fluorescence), microscopy (TEM), HPLC, and oscillatory rheology and it is found that, of the various peptide sequences explored (tyrosine Y-NDI with tyrosine Y, phenylalanine F, leucine L, valine V, alanine A or glycine G-NH2), the optimum sequence is tyrosine-phenylalanine in each case; however, both its absolute and relative yield amplification is dictated by the properties of the donor component, indicating cooperativity of peptide sequence and donor/acceptor pairs in assembly. The methodology provides an in situ discovery tool for nanostructures that enable dynamic interfacing of supramolecular electronics with aqueous (biological) systems. PMID:26540455

  11. Thermospray liquid chromatography/mass spectrometry study of diastereomeric isoindole derivatives of amino acids and amino acid amides.

    PubMed

    van Leuken, R G; Duchateau, A L; Kwakkenbos, G T

    1995-11-01

    A thermospray liquid chromatography/mass spectrometry (TSP-LC/MS) method is described for determination of the enantiomeric excess of alpha-amino acids and alpha-amino acid amides as their o-phthalaldehyde/N-acetyl-L-cysteine (OPA/NAC) derivatives. The source temperature is an important factor in optimizing the sensitivity of the TSP-LC/MS analysis, whereas the repeller voltage is of minor importance. On-column mass spectra were acquired for the OPA/NAC derivatives of several alpha-amino acids and alpha-amino acid amides. For the main fragment ions, mass spectra fragmentation pathways are proposed. The applicability of the method is demonstrated by means of the enantiomeric excess determination of valine in a sample from an enzymatic hydrolysis experiment. Using single ion monitoring, the detection limit of D-valine in the presence of excess L-valine is 10 pmol. The present TSP-LC/MS method is useful for validating the results obtained from LC/UV or LC/fluorescence methods for the enantiomeric excess determination of alpha-amino acids and alpha-amino acid amides. PMID:8788130

  12. Regulation of Coronafacoyl Phytotoxin Production by the PAS-LuxR Family Regulator CfaR in the Common Scab Pathogen Streptomyces scabies

    PubMed Central

    Cheng, Zhenlong; Bown, Luke; Tahlan, Kapil; Bignell, Dawn R. D.

    2015-01-01

    Potato common scab is an economically important crop disease that is characterized by the formation of superficial, raised or pitted lesions on the potato tuber surface. The most widely distributed causative agent of the disease is Streptomyces scabies, which produces the phytotoxic secondary metabolite thaxtomin A that serves as a key virulence factor for the organism. Recently, it was demonstrated that S. scabies can also produce the phytotoxic secondary metabolite coronafacoyl-L-isoleucine (CFA-L-Ile) as well as other related metabolites in minor amounts. The expression of the biosynthetic genes for CFA-L-Ile production is dependent on a PAS-LuxR family transcriptional regulator, CfaR, which is encoded within the phytotoxin biosynthetic gene cluster in S. scabies. In this study, we show that CfaR activates coronafacoyl phytotoxin production by binding to a single site located immediately upstream of the putative -35 hexanucleotide box within the promoter region for the biosynthetic genes. The binding activity of CfaR was shown to require both the LuxR and PAS domains, the latter of which is involved in protein homodimer formation. We also show that CFA-L-Ile production is greatly enhanced in S. scabies by overexpression of both cfaR and a downstream co-transcribed gene, orf1. Our results provide important insight into the regulation of coronafacoyl phytotoxin production, which is thought to contribute to the virulence phenotype of S. scabies. Furthermore, we provide evidence that CfaR is a novel member of the PAS-LuxR family of regulators, members of which are widely distributed among actinomycete bacteria. PMID:25826255

  13. Species Specificity in the Biosynthesis of Branched Paraffins in Leaves

    PubMed Central

    Kolattukudy, P. E.

    1968-01-01

    Isobutyrate-1-14C and l-isoleucine-U-14C fed through the petiole labeled the surface lipids of broccoli leaves, but the incorporation was much less than from straight chain precursors. Not more than one-third of the 14C incorporated into the surface lipids was found in the C29 paraffin and derivatives, whereas more than two-thirds of the 14C from straight chain precursors are usually found in these compounds. The small amount of 14C incorporated into the paraffin fraction was found in the n-C29 paraffin rather than branched paraffins showing that the 14C in the paraffin must have come from degradation products. Radio gas-liquid chromatography of the saturated fatty acids showed that, in addition to the n-C16 acid which was formed from both branched precursors, isoleucine-U-14C gave rise to branched C15, C17, and C19 fatty acids, and isobutyrate-1-14C gave rise to branched C16 and C18 acids. Thus the reason for the failure of broccoli leaf to incorporate branched precursors into branched paraffins is not the unavailability of branched fatty acids, but the absolute specificity of the system that synthesizes paraffins, probably the elongation-decar-boxylation enzyme complex. Consistent with this view, no labeled branched fatty acids longer than C19 could be found in the broccoli leaf. The branched fatty acids were also found in the surface lipids indicating that the epidermal layer of cells did have access to branched chains. Thus the paraffin synthesizing enzyme system is specific for straight chains in broccoli, but the fatty acid synthetase is not. PMID:16656932

  14. Regulation of coronafacoyl phytotoxin production by the PAS-LuxR family regulator CfaR in the common scab pathogen Streptomyces scabies.

    PubMed

    Cheng, Zhenlong; Bown, Luke; Tahlan, Kapil; Bignell, Dawn R D

    2015-01-01

    Potato common scab is an economically important crop disease that is characterized by the formation of superficial, raised or pitted lesions on the potato tuber surface. The most widely distributed causative agent of the disease is Streptomyces scabies, which produces the phytotoxic secondary metabolite thaxtomin A that serves as a key virulence factor for the organism. Recently, it was demonstrated that S. scabies can also produce the phytotoxic secondary metabolite coronafacoyl-L-isoleucine (CFA-L-Ile) as well as other related metabolites in minor amounts. The expression of the biosynthetic genes for CFA-L-Ile production is dependent on a PAS-LuxR family transcriptional regulator, CfaR, which is encoded within the phytotoxin biosynthetic gene cluster in S. scabies. In this study, we show that CfaR activates coronafacoyl phytotoxin production by binding to a single site located immediately upstream of the putative -35 hexanucleotide box within the promoter region for the biosynthetic genes. The binding activity of CfaR was shown to require both the LuxR and PAS domains, the latter of which is involved in protein homodimer formation. We also show that CFA-L-Ile production is greatly enhanced in S. scabies by overexpression of both cfaR and a downstream co-transcribed gene, orf1. Our results provide important insight into the regulation of coronafacoyl phytotoxin production, which is thought to contribute to the virulence phenotype of S. scabies. Furthermore, we provide evidence that CfaR is a novel member of the PAS-LuxR family of regulators, members of which are widely distributed among actinomycete bacteria. PMID:25826255

  15. Stratigraphy and geochronology of pitfall accumulations in caves and fissures, Bermuda

    NASA Astrophysics Data System (ADS)

    Hearty, Paul J.; Olson, Storrs L.; Kaufman, Darrell S.; Edwards, R. Lawrence; Cheng, Hai

    2004-05-01

    Deep fractures ("fissures") and avens ("skylights") in limestone cave roofs create natural traps for sediments and biota. Fissures fill quickly with surface sediment and organisms soon after opening. Debris cones are formed as materials fall, wash, or drift on air through openings in cave skylights. Such deposits in Admiral's and Grand Canyon Cave, Bermuda contain distinct beds and are composed of mixtures of sediment and charcoal, together with fossils of land snails, crabs, birds, reptiles, and bats. The "pitfall" accumulations were periodically sealed over by calcite flowstone. A stratigraphic record of surface activity and fauna through both glacial and interglacial periods has been preserved. The succession also provides an ideal setting in which to compare several geochronological methods. Calibrated 14C ages on charcoal and shells provide dated horizons at 1600, 12,800, and about 35,000 14C yr BP. Thermal ionization mass spectrometric (TIMS) ages on several flowstone layers constrain the entire sequence in the Admiral's Cave sequence between 126,300±900 yr (Termination II) and historical times. A continuous relative-age record generated by amino acid epimerization (AAE) geochronology ( D-alloisoleucine/ L-isoleucine or aIle/Ile) on the pulmonate land gastropod Poecilozonites verifies the biostratigraphy, reveals a minimal degree of mixing between stratigraphic units, and establishes an independent temporal link between the subterranean and subaerial deposits of Bermuda. This convergence between stratigraphy and geochronology yields a precisely dated succession from the oceanic island of Bermuda, and thus presents a unique opportunity to assess the rates and processes of evolutionary and climate change during that interval.

  16. A cross-polarization based rotating-frame separated-local-field NMR experiment under ultrafast MAS conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Rongchun; Damron, Joshua; Vosegaard, Thomas; Ramamoorthy, Ayyalusamy

    2015-01-01

    Rotating-frame separated-local-field solid-state NMR experiments measure highly resolved heteronuclear dipolar couplings which, in turn, provide valuable interatomic distances for structural and dynamic studies of molecules in the solid-state. Though many different rotating-frame SLF sequences have been put forth, recent advances in ultrafast MAS technology have considerably simplified pulse sequence requirements due to the suppression of proton-proton dipolar interactions. In this study we revisit a simple two-dimensional 1H-13C dipolar coupling/chemical shift correlation experiment using 13C detected cross-polarization with a variable contact time (CPVC) and systematically study the conditions for its optimal performance at 60 kHz MAS. In addition, we demonstrate the feasibility of a proton-detected version of the CPVC experiment. The theoretical analysis of the CPVC pulse sequence under different Hartmann-Hahn matching conditions confirms that it performs optimally under the ZQ (w1H - w1C = ±wr) condition for polarization transfer. The limits of the cross polarization process are explored and precisely defined as a function of offset and Hartmann-Hahn mismatch via spin dynamics simulation and experiments on a powder sample of uniformly 13C-labeled L-isoleucine. Our results show that the performance of the CPVC sequence and subsequent determination of 1H-13C dipolar couplings are insensitive to 1H/13C frequency offset frequency when high RF fields are used on both RF channels. Conversely, the CPVC sequence is quite sensitive to the Hartmann-Hahn mismatch, particularly for systems with weak heteronuclear dipolar couplings. We demonstrate the use of the CPVC based SLF experiment as a tool to identify different carbon groups, and hope to motivate the exploration of more sophisticated 1H detected avenues for ultrafast MAS.

  17. Emerged quaternary marine terraces in southern Peru: Sea level changes and continental margin tectonics over the subducting Nazca Ridge

    SciTech Connect

    Hsu, J.T.J.

    1988-01-01

    Because of the arid climate, mollusk shells in the marine cover strata are exceptionally well preserved and provide datable samples for a terrace and sea level chronology. Amino acid racemization was the most extensively used dating method, with three other numerical dating methods, electron spin resonance (ESR), Uranium-series, and radiocarbon ages used to calibrate the amino acid ages. D-alloisoleucine/L-isoleucine (A/I) ratios of >200 mollusks shells belong to six statistically and geomorphically defined aminozones. Aminozone IIa correlates with the last Interglacial (deep-sea oxygen isotope Stage 5e) based on 12 ESR ages and the similarity of the IIa ratios to those determined from calibrated last Interglacial sites on the Pacific Coast, U.S. Calibrated amino acid ages for the other aminozones are; I = >45,000 yr B.P. and {le} 87,000; IIb = 211,000 yr B.P.; III = 297,000 yr B.P.; IV = 496,000 yr B.P.; and V {ge} 945,000 yr B.P. The calibrated ages agree with ESR, Uranium series, and radioactive ages. The pattern of terrace deformation can be approximated by a simple geometric model in which the subconducting Nazca Ridge migrates obliquely southeastward as a rigid trapezoid beneath the forearc. The model correctly predicts a pattern of marine terrace deformation with the highest elevations located above the southern flank of the Nazca Ridge and subsidence above the northern flank. The topography, pattern of marine terrace deformation, and Quaternary rates of uplift of the Paracas Block are determined by oblique subduction of the aseismic Nazca Ridge.

  18. Crystallization and preliminary X-ray crystallographic analysis of biodegradative threonine deaminase (TdcB) from Salmonella typhimurium

    SciTech Connect

    Simanshu, Dhirendra K.; Chittori, Sagar; Savithri, H. S.; Murthy, M. R. N.

    2006-03-01

    S. typhimurium biodegradative threonine deaminase (TdcB), a member of the ?-family of PLP-dependent enzymes, has been overexpressed, purified and crystallized in three different crystal forms using the hanging-drop vapour-diffusion method. Biodegradative threonine deaminase (TdcB) catalyzes the deamination of l-threonine to ?-ketobutyrate, the first reaction in the anaerobic breakdown of l-threonine to propionate. Unlike the biosynthetic threonine deaminase, TdcB is insensitive to l-isoleucine and is activated by AMP. Here, the cloning of TdcB (molecular weight 36 kDa) from Salmonella typhimurium with an N-terminal hexahistidine affinity tag and its overexpression in Escherichia coli is reported. TdcB was purified to homogeneity using Ni–NTA affinity column chromatography and crystallized using the hanging-drop vapour-diffusion technique in three different crystal forms. Crystal forms I (unit-cell parameters a = 46.32, b = 55.30, c = 67.24 Å, ? = 103.09, ? = 94.70, ? = 112.94°) and II (a = 56.68, b = 76.83, c = 78.50 Å, ? = 66.12, ? = 89.16, ? = 77.08°) belong to space group P1 and contain two and four molecules of TdcB, respectively, in the asymmetric unit. Poorly diffracting form III crystals were obtained in space group C2 and based on the unit-cell volume are most likely to contain one molecule per asymmetric unit. Two complete data sets of resolutions 2.2 Å (crystal form I) and 1.7 Å (crystal form II) were collected at 100 K using an in-house X-ray source.

  19. Zero-quantum stochastic dipolar recoupling in solid state nuclear magnetic resonance

    PubMed Central

    Qiang, Wei; Tycko, Robert

    2012-01-01

    We present the theoretical description and experimental demonstration of a zero-quantum stochastic dipolar recoupling (ZQ-SDR) technique for solid state nuclear magnetic resonance (NMR) studies of 13C-labeled molecules, including proteins, under magic-angle spinning (MAS). The ZQ-SDR technique combines zero-quantum recoupling pulse sequence blocks with randomly varying chemical shift precession periods to create randomly amplitude- and phase-modulated effective homonuclear magnetic dipole-dipole couplings. To a good approximation, couplings between different 13C spin pairs become uncorrelated under ZQ-SDR, leading to spin dynamics (averaged over many repetitions of the ZQ-SDR sequence) that are fully described by an orientation-dependent N × N polarization transfer rate matrix for an N-spin system, with rates that are inversely proportional to the sixth power of internuclear distances. Suppression of polarization transfers due to non-commutivity of pairwise couplings (i.e., dipolar truncation) does not occur under ZQ-SDR, as we show both analytically and numerically. Experimental demonstrations are reported for uniformly 13C-labeled L-valine powder (at 14.1 T and 28.00 kHz MAS), uniformly 13C-labeled protein GB1 in microcrystalline form (at 17.6 T and 40.00 kHz MAS), and partially labeled 13C-labeled protein GB1 (at 14.1 T and 40.00 kHz MAS). The experimental results verify that spin dynamics under ZQ-SDR are described accurately by rate matrices and suggest the utility of ZQ-SDR in structural studies of 13C-labeled solids. PMID:22979851

  20. Purification and characterization of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase from Penicillium chrysogenum.

    PubMed Central

    Theilgaard, H B; Kristiansen, K N; Henriksen, C M; Nielsen, J

    1997-01-01

    delta-(L-alpha-Aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS) from Penicillium chrysogenum was purified to homogeneity by a combination of (NH4)2SO4 precipitation, protamine sulphate treatment, ion-exchange chromatography, gel filtration and hydrophobic interaction chromatography. The molecular mass of ACVS was estimated with native gradient gel electrophoresis and SDS/PAGE. The native enzyme consisted of a single polymer chain with an estimated molecular mass of 470 kDa. The denatured enzyme had an estimated molecular mass of 440 kDa. The influence of different reaction parameters such as substrates, cofactors and pH on the activity of the purified ACVS was investigated. The Km values for the three precursor substrates L-alpha-aminoadipic acid, L-cysteine and L-valine were determined as 45, 80 and 80 microM respectively, and the optimal assay concentration of ATP was found to be 5 mM (with 20 mM MgCl2). The dimer of the reaction product bis-delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (bisACV) gave feedback inhibition of the purified ACVS; the inhibition parameter KbisACV was determined as 1.4 mM. Furthermore dithiothreitol was shown to inhibit the purified ACVS. From the addition of a glucose pulse to a steady-state glucose-limited continuous culture of P. chrysogenum it was found that there is glucose repression of the synthesis of ACVS and that there must be a constant turnover of ACVS owing to synthesis and degradation. PMID:9355751

  1. Purification and characterization of delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase from Penicillium chrysogenum.

    PubMed

    Theilgaard, H B; Kristiansen, K N; Henriksen, C M; Nielsen, J

    1997-10-01

    delta-(L-alpha-Aminoadipyl)-L-cysteinyl-D-valine synthetase (ACVS) from Penicillium chrysogenum was purified to homogeneity by a combination of (NH4)2SO4 precipitation, protamine sulphate treatment, ion-exchange chromatography, gel filtration and hydrophobic interaction chromatography. The molecular mass of ACVS was estimated with native gradient gel electrophoresis and SDS/PAGE. The native enzyme consisted of a single polymer chain with an estimated molecular mass of 470 kDa. The denatured enzyme had an estimated molecular mass of 440 kDa. The influence of different reaction parameters such as substrates, cofactors and pH on the activity of the purified ACVS was investigated. The Km values for the three precursor substrates L-alpha-aminoadipic acid, L-cysteine and L-valine were determined as 45, 80 and 80 microM respectively, and the optimal assay concentration of ATP was found to be 5 mM (with 20 mM MgCl2). The dimer of the reaction product bis-delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (bisACV) gave feedback inhibition of the purified ACVS; the inhibition parameter KbisACV was determined as 1.4 mM. Furthermore dithiothreitol was shown to inhibit the purified ACVS. From the addition of a glucose pulse to a steady-state glucose-limited continuous culture of P. chrysogenum it was found that there is glucose repression of the synthesis of ACVS and that there must be a constant turnover of ACVS owing to synthesis and degradation. PMID:9355751

  2. Polycefin, a New Prototype of a Multifunctional Nanoconjugate Based on Poly(?-l-malic acid) for Drug Delivery

    PubMed Central

    Lee, Bong-Seop; Fujita, Manabu; Khazenzon, Natalya M.; Wawrowsky, Kolja A.; Wachsmann-Hogiu, Sebastian; Farkas, Daniel L.; Black, Keith L.; Ljubimova, Julia Y.; Holler, Eggehard

    2012-01-01

    A new prototype of nanoconjugate, Polycefin, was synthesized for targeted delivery of antisense oligonucleotides and monoclonal antibodies to brain tumors. The macromolecular carrier contains: 1. biodegradable, nonimmunogenic, nontoxic ?-poly(l-malic acid) of microbial origin; 2. Morpholino antisense oligonucleotides targeting laminin ?4 and ?1 chains of laminin-8, which is specifically overexpressed in glial brain tumors; 3. monoclonal anti-transferrin receptor antibody for specific tissue targeting; 4. oligonucleotide releasing disulfide units; 5. l-valine containing, pH-sensitive membrane disrupting unit(s), 6. protective poly(ethylene glycol); 7. a fluorescent dye (optional). Highly purified modules were conjugated directly with N-hydroxysuccinimidyl ester-activated ?-poly-(l-malic acid) at pendant carboxyl groups or at thiol containing spacers via thioether and disulfide bonds. Products were chemically validated by physical, chemical, and functional tests. In vitro experiments using two human glioma cell lines U87MG and T98G demonstrated that Polycefin was delivered into the tumor cells by a receptor-mediated endocytosis mechanism and was able to inhibit the synthesis of laminin-8 ?4 and ?1 chains at the same time. Inhibition of laminin-8 expression was in agreement with the designed endosomal membrane disruption and drug releasing activity. In vivo imaging showed the accumulation of intravenously injected Polycefin in brain tumor tissue via the antibody-targeted transferrin receptor-mediated endosomal pathway in addition to a less efficient mechanism known for high molecular mass biopolymers as enhanced permeability and retention effect. Polycefin was nontoxic to normal and tumor astrocytes in a wide range of concentrations, accumulated in brain tumor, and could be used for specific targeting of several biomarkers simultaneously. PMID:16536461

  3. Characterization of CeO{sub 2} crystals synthesized with different amino acids

    SciTech Connect

    Atla, Shashi B.; Wu, Min-Nan; Pan, Wei; Hsiao, Yu Tang; Sun, An-Cheng; Tseng, Min-Jen; Chen, Yen-Ju; Chen, Chien-Yen

    2014-12-15

    We investigated the relationship between the structures of the CeO{sub 2} products (particle size, morphology and their characteristics) prepared using different amino acids. Cerium hydroxide carbonate precursors were initially prepared by a hydrothermal method and were subsequently converted to CeO{sub 2} by its thermal decomposition. Various amino acids were used as structure-directing agents in the presence of cerium nitrate and urea as precursors. The results indicate morphology selectivity using different amino acids; CeO{sub 2} structures, such as quasi-prism-sphere, straw-bundle, urchin-flower like and polyhedron prisms, indeed could be produced. Raman and photoluminescence studies indicate the presence of oxygen vacancies in the CeO{sub 2} samples. Photoluminescence spectra of CeO{sub 2} with L-Valine exhibit stronger emission compared with other amino acids utilized under this study, indicating the higher degree of defects in these particles. This study clearly indicates that the degree of defects varied in the presence of different amino acids. Improved precision to control the crystal morphology is important in various material applications and our study provides a novel method to achieve this specificity. - Highlights: • We used urea hydrolysis of process for synthesis of CeO{sub 2}. • Structures have been directed using various amino acids. • We obtained straw bundle-like, quasi prism-sphere, polyhedron prisms and urchin flower-like based on amino acids. • We have found that amino acids could achieve the specificity of different degrees of defects. • This could provide the “tailor-make” of cerium crystals.

  4. Investigation of Isovaline Enantiomeric Excesses and Other C5 Amino Acids in Carbonaceous Meteorites

    NASA Technical Reports Server (NTRS)

    Dworkin, Jason P.; Glavin, Daniel P.

    2009-01-01

    The origin of biological homochirality is one of the most perplexing puzzles to understanding the emergence of life on Earth. While many models have been proposed, the only reported non-biologically generated. compounds that show a significant enantiomeric excess are a few amino acids in the CM2 Murchison and Murray meteorites (e.g. Pizzarello and Cronin 2000; Pizzarello et al, 2008). Of these isovaline (alpha-ethyl-alanine) is of particular interest since it is typically abundant in CM2 meteorites, is exceedingly rare in biology, and due to its chemical structure is likely to maintain its primordial D/L ratio. Instead of the gas chromatography-mass spectrometry (GC-MS) technique employed by Pizzarello et al., we have used liquid chromatography-fluorescence detection/time of flight-mass spectrometry (LC-FD/ToF-MS) to study the enantiomeric ratio of isovaline in the CM2 meteorites Murchison and LEW90500 and the CR2 QUE99177. We have placed particular emphasis on understanding the suite of C5 amino acids in these meteorites. In doing so, we have determined that D and L 3-aminopentanoic acid co-elutes with Lisovaline and L-valine under common chromatographic conditions (Glavin and Dworkin 2006) for omicron-phthaldialdehyde/N-acetyl-L-cysteine (OPA/NAC). We have devised a method to separate these compounds and we will report the actual D/ L ratios of isovaline in these meteorites and how they compare to the GC-MS measurements of Pizzarello and co-workers.

  5. The Effects of Heat Activation on Bacillus Spore Germination, with Nutrients or under High Pressure, with or without Various Germination Proteins

    PubMed Central

    Luu, Stephanie; Cruz-Mora, Jose; Setlow, Barbara; Feeherry, Florence E.; Doona, Christopher J.

    2015-01-01

    Nutrient germination of spores of Bacillus species occurs through germinant receptors (GRs) in spores' inner membrane (IM) in a process stimulated by sublethal heat activation. Bacillus subtilis spores maximum germination rates via different GRs required different 75°C heat activation times: 15 min for l-valine germination via the GerA GR and 4 h for germination with the l-asparagine–glucose–fructose–K+ mixture via the GerB and GerK GRs, with GerK requiring the most heat activation. In some cases, optimal heat activation decreased nutrient concentrations for half-maximal germination rates. Germination of spores via various GRs by high pressure (HP) of 150 MPa exhibited heat activation requirements similar to those of nutrient germination, and the loss of the GerD protein, required for optimal GR function, did not eliminate heat activation requirements for maximal germination rates. These results are consistent with heat activation acting primarily on GRs. However, (i) heat activation had no effects on GR or GerD protein conformation, as probed by biotinylation by an external reagent; (ii) spores prepared at low and high temperatures that affect spores' IM properties exhibited large differences in heat activation requirements for nutrient germination; and (iii) spore germination by 550 MPa of HP was also affected by heat activation, but the effects were relatively GR independent. The last results are consistent with heat activation affecting spores' IM and only indirectly affecting GRs. The 150- and 550-MPa HP germinations of Bacillus amyloliquefaciens spores, a potential surrogate for Clostridium botulinum spores in HP treatments of foods, were also stimulated by heat activation. PMID:25681191

  6. Organometallic complexes of bulky, optically active, C3-symmetric tris(4S-isopropyl-5,5-dimethyl-2-oxazolinyl)phenylborate (ToP *)

    SciTech Connect

    Xu, Songchen; Magoon, Yitzhak; Reinig, Regina R.; Schmidt, Bradley M.; Ellern, Arkady; Sadow, Aaron D.

    2015-07-16

    A bulky, optically active monoanionic scorpionate ligand, tris(4S-isopropyl-5,5-dimethyl-2-oxazolinyl)phenylborate (ToP*), is synthesized from the naturally occurring amino acid l-valine as its lithium salt, Li[ToP*] (1). That compound is readily converted to the thallium complex Tl[ToP*] (2) and to the acid derivative H[ToP*] (3). Group 7 tricarbonyl complexes ToP*M(CO)3 (M = Mn (4), Re (5)) are synthesized by the reaction of MBr(CO)5 and Li[ToP*] and are crystallographically characterized. The ?CO bands in their infrared spectra indicate that ? back-donation in the rhenium compounds is greater with ToP* than with non-methylated tris(4S-isopropyl-2-oxazolinyl)phenylborate (ToP). The reaction of H[ToP*] and ZnEt2 gives ToP*ZnEt (6), while ToP*ZnCl (7) is synthesized from Li[ToP*] and ZnCl2. The reaction of ToP*ZnCl and KOtBu followed by addition of PhSiH3 provides the zinc hydride complex ToP*ZnH (8). In this study, compound 8 is the first example of a crystallographically characterized optically active zinc hydride. We tested its catalytic reactivity in the cross-dehydrocoupling of silanes and alcohols, which provided Si-chiral silanes with moderate enantioselectivity.

  7. D-cycloserine transport in human intestinal epithelial (Caco-2) cells: mediation by a H(+)-coupled amino acid transporter.

    PubMed Central

    Thwaites, D. T.; Armstrong, G.; Hirst, B. H.; Simmons, N. L.

    1995-01-01

    1. The ability of D-cycloserine to act as a substrate for H+/amino acid symport has been tested in epithelial layers of Caco-2 human intestinal cells. 2. In Na(+)-free media with the apical bathing media held at pH 6.0, D-cycloserine (20 mM) is an effective inhibitor of net transepithelial transport (Jnet) of L-alanine (100 microM) and its accumulation (across the apical membrane) in a similar manner to amino acid substrates (L-alanine, beta-alanine, L-proline and glycine). In contrast L-valine was ineffective as an inhibitor for H+/amino acid symport. Both inhibition of L-alanine Jnet and its accumulation by D-cycloserine were dose-dependent, maximal inhibition being achieved by 5-10 mM. 3. Both D-cycloserine and known substrates for H+/amino acid symport stimulated an inward short circuit current (Isc) when voltage-clamped monolayers of Caco-2 epithelia, mounted in Ussing chambers, were exposed to apical substrate in Na(+)-free media, with apical pH held at 6.0. The D-cycloserine dependent increase in Isc was dose-dependent with an apparent Km = 15.8 +/- 2.0 (mean +/- s.e. mean) mM, and Vmax = 373 +/- 21 nmol cm-2h-1. 4. D-Cycloserine (20 mM) induced a prompt acidification of Caco-2 cell cytosol when superfused at the apical surface in both Na+ and Na(+)-free conditions. Cytosolic acidification in response to D-cycloserine was dependent upon superfusate pH, being attenuated at pH 8 and enhanced in acidic media. 5. The increment in Isc with 20 mM D-cycloserine was non-additive with other amino acid substrates for H+/amino acid symport. PMID:8548174

  8. Integrative analysis of transcriptomic and metabolomic profiling of ascites syndrome in broiler chickens induced by low temperature.

    PubMed

    Shi, Shourong; Shen, Yiru; Zhao, Zhenhua; Hou, Zhuocheng; Yang, Ying; Zhou, Huaijun; Zou, Jianmin; Guo, Yuming

    2014-11-01

    Ascites syndrome (AS) still has an unacceptably high incidence rate in both humans and animals although there have been many studies on AS. To continue our previous pathological and biochemical investigation on the underlying mechanisms of AS incidence in broiler chickens, cutting-edge technologies including RNA-seq and metabolimics were used by directly comparing AS chickens and healthy controls. The RNA-seq analysis in the liver identified 390 differentially expressed genes (DEGs), among which 212 genes were up-regulated and 178 genes were down-regulated in the AS group compared to the control. For the down-regulated DEGs, further gene ontology (GO) analysis suggested that lipid metabolism, cell differentiation, enzyme linked receptor protein signaling pathway and steroid biosynthesis pathway were significantly enriched. For up-regulated DEGs, the cholesterol metabolic process has the lowest p value (0.000966) of fold enrichment while the cholesterol biosynthetic process has the highest fold enrichment (46.67). The metabolomic analysis of serum revealed statistically significant changes in the concentrations of LysoPC(20?:?4), LysoPC(16?:?0), LysoPC(18?:?0), LysoPC(18?:?1), LysoPC(18?:?2), PC(14?:?1/20?:?1), PC(20?:?4/18?:?0), PC(14?:?1/22?:?1), dihydroxyacetone, indoleacrylic acid, ursodeoxycholic acid, l-valine, and l-tryptophan. The integrative analysis of transcriptome and metabolome indicated that two biological pathways of tryptophan biosynthesis and metabolism, and glycerophospholipid metabolism may contribute to the induction of AS in broilers. These findings have provided novel insights into our understanding of molecular mechanisms of AS incidence in broilers. PMID:25178933

  9. Motifs in the C-terminal region of the Penicillium chrysogenum ACV synthetase are essential for valine epimerization and processivity of tripeptide formation.

    PubMed

    Wu, Xiaobin; García-Estrada, Carlos; Vaca, Inmaculada; Martín, Juan-Francisco

    2012-02-01

    The first step in the penicillin biosynthetic pathway is the non-ribosomal condensation of L-?-aminoadipic acid, L-cysteine and L-valine into the tripeptide ?-(L-?-aminoadipyl)-L-cysteinyl-D-valine (ACV). This reaction is catalysed by the multienzyme ACV synthetase (ACVS), which is encoded in the filamentous fungus Penicillium chrysogenum by the pcbAB gene. This enzyme contains at least ten catalytic domains. The precise role of the C-terminal domain of this multidomain NRPS still remains obscure. The C-terminal region of ACVS bears the epimerase and the thioesterase domains and may be involved in the epimerization of LLL-ACV to LLD-ACV and in the hydrolysis of the thioester bond. In this work, the conserved motifs (3371)EGHGRE(3376) (located in the putative epimerase domain) and (3629)GWSFG(3633) (located in the thioesterase domain) were changed by site-directed-mutagenesis to LGFGLL and GWAFG, respectively. In addition, the whole thioesterase domain (230 amino acids) and the different parts of this domain were deleted. The activity of these mutant enzymes was assessed in vivo by two different procedures: i) through the quantification of bisACV produced by the fungus and ii) by quantifying the benzylpenicillin production using tailored strains of P. chrysogenum, which lack the pcbAB gene, as host strains. All indicated mutant enzymes showed lower or null activity than the control strain confirming that E3371, H3373, R3375 and E3376 belong to the epimerase active centre. Different fragments included in the C-terminal region of ACVS control thioester hydrolysis. Overexpression of the sequence encoding the ACVS integrated thioesterase domain as a separate (stand-alone) transcriptional unit complemented mutants lacking the integrated thioesterase domain, although with low ACV releasing activity, suggesting that the stand-alone thioesterease interacts with the other ACVS domains. PMID:21889568

  10. The GerW Protein Is Not Involved in the Germination of Spores of Bacillus Species

    PubMed Central

    Cruz-Mora, Jose; Pérez-Valdespino, Abigail; Gupta, Srishti; Withange, Nilumi; Kuwana, Ritsuko; Takamatsu, Hiromu; Christie, Graham; Setlow, Peter

    2015-01-01

    Germination of dormant spores of Bacillus species is initiated when nutrient germinants bind to germinant receptors in spores’ inner membrane and this interaction triggers the release of dipicolinic acid and cations from the spore core and their replacement by water. Bacillus subtilis spores contain three functional germinant receptors encoded by the gerA, gerB, and gerK operons. The GerA germinant receptor alone triggers germination with L-valine or L-alanine, and the GerB and GerK germinant receptors together trigger germination with a mixture of L-asparagine, D-glucose, D-fructose and KCl (AGFK). Recently, it was reported that the B. subtilis gerW gene is expressed only during sporulation in developing spores, and that GerW is essential for L-alanine germination of B. subtilis spores but not for germination with AGFK. However, we now find that loss of the B. subtilis gerW gene had no significant effects on: i) rates of spore germination with L-alanine; ii) spores’ levels of germination proteins including GerA germinant receptor subunits; iii) AGFK germination; iv) spore germination by germinant receptor-independent pathways; and v) outgrowth of germinated spores. Studies in Bacillus megaterium did find that gerW was expressed in the developing spore during sporulation, and in a temperature-dependent manner. However, disruption of gerW again had no effect on the germination of B. megaterium spores, whether germination was triggered via germinant receptor-dependent or germinant receptor-independent pathways. PMID:25790435

  11. Construction of a novel expression system for use in Corynebacterium glutamicum.

    PubMed

    Hu, Jinyu; Li, Yanyan; Zhang, Hailing; Tan, Yanzhen; Wang, Xiaoyuan

    2014-09-01

    Corynebacterium glutamicum is an important microorganism for production of amino acids in industrial fermentation. Suitable vectors are needed for metabolic engineering in C. glutamicum. Most available vectors used in C. glutamicum carry antibiotic resistant genes as a genetic labeling for rapid identification of recombinant strains, and antibiotics have to be added to maintain the vector when growing the cells. These vectors, though excellent for laboratory use, are not preferable choices for industry-scale fermentation. In this work, we developed a novel expression system for use in C. glutamicum, which do not require antibiotics when used for industrial fermentation. This system includes two vectors: the shuttle vector pJYW-4 for expression of genes and the vector pJYW-6 for deletion of the essential gene alr in C. glutamicum. The vector pJYW-4 contains a large multiple cloning site for cloning multiple genes and two selective markers: one is the kanamycin-resistant gene kan and the other is an essential gene alr. The selective marker kan facilitates molecular manipulation or fermentations in the laboratory, and the selection marker alr is good for use in industry-scale fermentation, allowing in vivo maintenance of the expression vector through auxotrophic complementation; therefore, the two selection markers in pJYW-4 make it useful for both laboratory research and industrial fermentation, and convenient to transfer valuable laboratory-developed strains into industrial production. This newly-constructed expression system was successfully used to increase L-valine production in C. glutamicum ATCC 14067, indicating its potential on developing amino acid-producing C. glutamicum strains. PMID:25108235

  12. Metabolic engineering Corynebacterium glutamicum for the L-lysine production by increasing the flux into L-lysine biosynthetic pathway.

    PubMed

    Xu, Jianzhong; Han, Mei; Zhang, Junlan; Guo, Yanfeng; Zhang, Weiguo

    2014-09-01

    The experiments presented here were based on the conclusions of our previous results. In order to avoid introduction of expression plasmid and to balance the NADH/NAD ratio, the NADH biosynthetic enzyme, i.e., NAD-dependent glyceraldehyde-3-phosphate dehydrogenase (GADPH), was replaced by NADP-dependent GADPH, which was used to biosynthesize NADPH rather than NADH. The results indicated that the NADH/NAD ratio significantly decreased, and glucose consumption and L-lysine production drastically improved. Moreover, increasing the flux through L-lysine biosynthetic pathway and disruption of ilvN and hom, which involve in the branched amino acid and L-methionine biosynthesis, further improved L-lysine production by Corynebacterium glutamicum. Compared to the original strain C. glutamicum Lys5, the L-lysine production and glucose conversion efficiency (?) were enhanced to 81.0 ± 6.59 mM and 36.45% by the resulting strain C. glutamicum Lys5-8 in shake flask. In addition, the by-products (i.e., L-threonine, L-methionine and L-valine) were significantly decreased as results of genetic modification in homoserine dehydrogenase (HSD) and acetohydroxyacid synthase (AHAS). In fed-batch fermentation, C. glutamicum Lys5-8 began to produce L-lysine at post-exponential growth phase and continuously increased over 36 h to a final titer of 896 ± 33.41 mM. The L-lysine productivity was 2.73 g l(-1) h(-1) and the ? was 47.06% after 48 h. However, the attenuation of MurE was not beneficial to increase the L-lysine production because of decreasing the cell growth. Based on the above-mentioned results, we get the following conclusions: cofactor NADPH, precursor, the flux through L-lysine biosynthetic pathway and DCW are beneficial to improve L-lysine production in C. glutamicum. PMID:24879631

  13. L-Serine overproduction with minimization of by-product synthesis by engineered Corynebacterium glutamicum.

    PubMed

    Zhu, Qinjian; Zhang, Xiaomei; Luo, Yuchang; Guo, Wen; Xu, Guoqiang; Shi, Jinsong; Xu, Zhenghong

    2015-02-01

    The direct fermentative production of L-serine by Corynebacterium glutamicum from sugars is attractive. However, superfluous by-product accumulation and low L-serine productivity limit its industrial production on large scale. This study aimed to investigate metabolic and bioprocess engineering strategies towards eliminating by-products as well as increasing L-serine productivity. Deletion of alaT and avtA encoding the transaminases and introduction of an attenuated mutant of acetohydroxyacid synthase (AHAS) increased both L-serine production level (26.23 g/L) and its productivity (0.27 g/L/h). Compared to the parent strain, the by-products L-alanine and L-valine accumulation in the resulting strain were reduced by 87 % (from 9.80 to 1.23 g/L) and 60 % (from 6.54 to 2.63 g/L), respectively. The modification decreased the metabolic flow towards the branched-chain amino acids (BCAAs) and induced to shift it towards L-serine production. Meanwhile, it was found that corn steep liquor (CSL) could stimulate cell growth and increase sucrose consumption rate as well as L-serine productivity. With addition of 2 g/L CSL, the resulting strain showed a significant improvement in the sucrose consumption rate (72 %) and the L-serine productivity (67 %). In fed-batch fermentation, 42.62 g/L of L-serine accumulation was achieved with a productivity of 0.44 g/L/h and yield of 0.21 g/g sucrose, which was the highest production of L-serine from sugars to date. The results demonstrated that combined metabolic and bioprocess engineering strategies could minimize by-product accumulation and improve L-serine productivity. PMID:25434811

  14. Deficiency of ECHS1 causes mitochondrial encephalopathy with cardiac involvement

    PubMed Central

    Haack, Tobias B; Jackson, Christopher B; Murayama, Kei; Kremer, Laura S; Schaller, André; Kotzaeridou, Urania; de Vries, Maaike C; Schottmann, Gudrun; Santra, Saikat; Büchner, Boriana; Wieland, Thomas; Graf, Elisabeth; Freisinger, Peter; Eggimann, Sandra; Ohtake, Akira; Okazaki, Yasushi; Kohda, Masakazu; Kishita, Yoshihito; Tokuzawa, Yoshimi; Sauer, Sascha; Memari, Yasin; Kolb-Kokocinski, Anja; Durbin, Richard; Hasselmann, Oswald; Cremer, Kirsten; Albrecht, Beate; Wieczorek, Dagmar; Engels, Hartmut; Hahn, Dagmar; Zink, Alexander M; Alston, Charlotte L; Taylor, Robert W; Rodenburg, Richard J; Trollmann, Regina; Sperl, Wolfgang; Strom, Tim M; Hoffmann, Georg F; Mayr, Johannes A; Meitinger, Thomas; Bolognini, Ramona; Schuelke, Markus; Nuoffer, Jean-Marc; Kölker, Stefan; Prokisch, Holger; Klopstock, Thomas

    2015-01-01

    Objective Short-chain enoyl-CoA hydratase (ECHS1) is a multifunctional mitochondrial matrix enzyme that is involved in the oxidation of fatty acids and essential amino acids such as valine. Here, we describe the broad phenotypic spectrum and pathobiochemistry of individuals with autosomal-recessive ECHS1 deficiency. Methods Using exome sequencing, we identified ten unrelated individuals carrying compound heterozygous or homozygous mutations in ECHS1. Functional investigations in patient-derived fibroblast cell lines included immunoblotting, enzyme activity measurement, and a palmitate loading assay. Results Patients showed a heterogeneous phenotype with disease onset in the first year of life and course ranging from neonatal death to survival into adulthood. The most prominent clinical features were encephalopathy (10/10), deafness (9/9), epilepsy (6/9), optic atrophy (6/10), and cardiomyopathy (4/10). Serum lactate was elevated and brain magnetic resonance imaging showed white matter changes or a Leigh-like pattern resembling disorders of mitochondrial energy metabolism. Analysis of patients’ fibroblast cell lines (6/10) provided further evidence for the pathogenicity of the respective mutations by showing reduced ECHS1 protein levels and reduced 2-enoyl-CoA hydratase activity. While serum acylcarnitine profiles were largely normal, in vitro palmitate loading of patient fibroblasts revealed increased butyrylcarnitine, unmasking the functional defect in mitochondrial ?-oxidation of short-chain fatty acids. Urinary excretion of 2-methyl-2,3-dihydroxybutyrate – a potential derivative of acryloyl-CoA in the valine catabolic pathway – was significantly increased, indicating impaired valine oxidation. Interpretation In conclusion, we define the phenotypic spectrum of a new syndrome caused by ECHS1 deficiency. We speculate that both the ?-oxidation defect and the block in l-valine metabolism, with accumulation of toxic methacrylyl-CoA and acryloyl-CoA, contribute to the disorder that may be amenable to metabolic treatment approaches. PMID:26000322

  15. Microstructure, electronic structure and optical properties of combustion synthesized Co doped ZnO nanoparticles

    NASA Astrophysics Data System (ADS)

    Srinatha, N.; Nair, K. G. M.; Angadi, Basavaraj

    2015-10-01

    We report on the microstructure, electronic structure and optical properties of nanocrystalline Zn1-xCoxO (x=0, 0.01, 0.03, 0.05 and 0.07) particles prepared by solution combustion technique using L-Valine as fuel. The detailed structural and micro-structural studies were carried out by XRD, HRTEM and TEM-SAED respectively, which confirms the formation of single phased, nano-sized particles. The electronic structure was determined through NEXAFS and atomic multiplet calculations/simulations performed for various symmetries and valence states of 'Co' to determine the valance state, symmetry and crystal field splitting. The correlations between the experimental NEXAFS spectra and atomic multiplet simulations, confirms that, 'Co' present is in the 2+ valence state and substituted at the 'Zn' site in tetrahedral symmetry with crystal field splitting, 10Dq =-0.6 eV. The optical properties and 'Co' induced defect formation of as-synthesized materials were examined by using diffuse reflectance and Photoluminescence spectroscopy, respectively. Red-shift of band gap energy (Eg) was observed in Zn1-xCoxO samples due to Co (0.58 Å) substitution at Zn (0.60 Å) site of the host ZnO. Also, in PL spectra, a prominent pre-edge peak corresponds to ultraviolet (UV) emission around 360-370 nm was observed with Co concentration along with near band edge emission (NBE) of the wide band gap ZnO and all samples show emission in the blue region.

  16. The effects of heat activation on Bacillus spore germination, with nutrients or under high pressure, with or without various germination proteins.

    PubMed

    Luu, Stephanie; Cruz-Mora, Jose; Setlow, Barbara; Feeherry, Florence E; Doona, Christopher J; Setlow, Peter

    2015-04-01

    Nutrient germination of spores of Bacillus species occurs through germinant receptors (GRs) in spores' inner membrane (IM) in a process stimulated by sublethal heat activation. Bacillus subtilis spores maximum germination rates via different GRs required different 75 °C heat activation times: 15 min for l-valine germination via the GerA GR and 4 h for germination with the L-asparagine-glucose-fructose-K(+) mixture via the GerB and GerK GRs, with GerK requiring the most heat activation. In some cases, optimal heat activation decreased nutrient concentrations for half-maximal germination rates. Germination of spores via various GRs by high pressure (HP) of 150 MPa exhibited heat activation requirements similar to those of nutrient germination, and the loss of the GerD protein, required for optimal GR function, did not eliminate heat activation requirements for maximal germination rates. These results are consistent with heat activation acting primarily on GRs. However, (i) heat activation had no effects on GR or GerD protein conformation, as probed by biotinylation by an external reagent; (ii) spores prepared at low and high temperatures that affect spores' IM properties exhibited large differences in heat activation requirements for nutrient germination; and (iii) spore germination by 550 MPa of HP was also affected by heat activation, but the effects were relatively GR independent. The last results are consistent with heat activation affecting spores' IM and only indirectly affecting GRs. The 150- and 550-MPa HP germinations of Bacillus amyloliquefaciens spores, a potential surrogate for Clostridium botulinum spores in HP treatments of foods, were also stimulated by heat activation. PMID:25681191

  17. Uptake of and Resistance to the Antibiotic Berberine by Individual Dormant, Germinating and Outgrowing Bacillus Spores as Monitored by Laser Tweezers Raman Spectroscopy

    PubMed Central

    Wang, Shiwei; Yu, Jing; Suvira, Milomir; Setlow, Peter; Li, Yong-qing

    2015-01-01

    Berberine, an alkaloid originally extracted from the plant Coptis chinensis and other herb plants, has been used as a pharmacological substance for many years. The therapeutic effect of berberine has been attributed to its interaction with nucleic acids and blocking cell division. However, levels of berberine entering individual microbial cells minimal for growth inhibition and its effects on bacterial spores have not been determined. In this work the kinetics and levels of berberine accumulation by individual dormant and germinated spores were measured by laser tweezers Raman spectroscopy and differential interference and fluorescence microscopy, and effects of berberine on spore germination and outgrowth and spore and growing cell viability were determined. The major conclusions from this work are that: (1) colony formation from B. subtilis spores was blocked ~ 99% by 25 ?g/mL berberine plus 20 ?g/mL INF55 (a multidrug resistance pump inhibitor); (2) 200 ?g/mL berberine had no effect on B. subtilis spore germination with L-valine, but spore outgrowth was completely blocked; (3) berberine levels accumulated in single spores germinating with ? 25 ?g/mL berberine were > 10 mg/mL; (4) fluorescence microscopy showed that germinated spores accumulated high-levels of berberine primarily in the spore core, while dormant spores accumulated very low berberine levels primarily in spore coats; and (5) during germination, uptake of berberine began at the time of commitment (T1) and reached a maximum after the completion of CaDPA release (Trelease) and spore cortex lysis (Tlysis). PMID:26636757

  18. Nanoparticle agglomerates of indomethacin: The role of poloxamers and matrix former on their dissolution and aerosolisation efficiency.

    PubMed

    Malamatari, Maria; Somavarapu, Satyanarayana; Bloxham, Mark; Buckton, Graham

    2015-11-10

    Nanoparticles (NPs) were prepared and assembled to microsized agglomerates with and without matrix formers (mannitol and l-leucine) by coupling wet milling and spray drying to harmonise the advantages of NPs with handling and aerodynamics of microparticles without induction of amorphisation. Indomethacin was selected as poorly water-soluble drug and poloxamers with different ratios of hydrophilic to hydrophobic domains were evaluated as stabilisers comparatively to D-?-Tocopherol polyethylene-glycol succinate (TPGS). Particle size of nanosuspensions and morphology, size, crystal form, drug loading, redispersibility, in vitro dissolution, and in vitro aerosolisation of NP-agglomerates were determined. Molecular weight of stabilisers affected the rate but not the limit of NP size reduction and the length of hydrophilic segment in poloxamers was found important for the nanosuspension stabilisation. SEM revealed the structure of agglomerates consisting of nanocrystal assemblies. XRPD with DSC proved that NP agglomerates retained their crystallinity. NP-agglomerates exhibited enhanced dissolution compared to physical mixtures of drug and stabilisers while incorporation of matrix formers enabled redispersibility upon hydration and further increased the drug dissolution. Also, matrix formers resulted in significantly improved aerosolisation with higher fine particle fractions (49-62%) and smaller mass median aerodynamic diameters (<3.5?m), compared to cases without matrix formers (34-43% and <4.5?m). PMID:26364709

  19. Purification, characterization and antibacterial activity of L-amino acid oxidase from Cerastes cerastes.

    PubMed

    Hanane-Fadila, Ziad-Meziane; Fatima, Laraba-Djebari

    2014-08-01

    Antibiotic resistance presents a real problem in which new antibacterial molecules from natural secretions could be beneficial in the development of new drugs. In this study, Cerastes cerastes venom was investigated for its antibacterial activity against Gram-positive and Gram-negative bacteria. The antibacterial activity was evaluated by measuring the halo inhibition and minimum inhibitory concentration (MIC). An L-amino acid oxidase (CcLAAO) was purified from this venom using three chromatographic steps; its homogeneity (60 kDa) was confirmed by SDS-PAGE. LC-MS/MS analysis of CcLAAO showed similarities with other LAAO enzymes from Echis ocellatus and Viridovipera stejnegeri venoms. CcLAAO presents an antibacterial activity against three bacterial strains (Staphylococcus aureus, Methicillin-resistant S. aureus, and Pseudomonas aeruginosa) with MIC values of 10, 10, and 20 ?g/mL, respectively. However, no effect was observed against Escherichia coli and yeast strains. Kinetic parameters of CcLAAO evaluated on L-leucine at pH 8.0 and 20°C were Km = 0.06 mmol and Vmax = 164 mmol/min. PMID:24817275

  20. Development of Biodegradable Polycation-Based Inhalable Dry Gene Powders by Spray Freeze Drying

    PubMed Central

    Okuda, Tomoyuki; Suzuki, Yumiko; Kobayashi, Yuko; Ishii, Takehiko; Uchida, Satoshi; Itaka, Keiji; Kataoka, Kazunori; Okamoto, Hirokazu

    2015-01-01

    In this study, two types of biodegradable polycation (PAsp(DET) homopolymer and PEG-PAsp(DET) copolymer) were applied as vectors for inhalable dry gene powders prepared by spray freeze drying (SFD). The prepared dry gene powders had spherical and porous structures with a 5~10-?m diameter, and the integrity of plasmid DNA could be maintained during powder production. Furthermore, it was clarified that PEG-PAsp(DET)-based dry gene powder could more sufficiently maintain both the physicochemical properties and in vitro gene transfection efficiencies of polyplexes reconstituted after powder production than PAsp(DET)-based dry gene powder. From an in vitro inhalation study using an Andersen cascade impactor, it was demonstrated that the addition of l-leucine could markedly improve the inhalation performance of dry powders prepared by SFD. Following pulmonary delivery to mice, both PAsp(DET)- and PEG-PAsp(DET)-based dry gene powders could achieve higher gene transfection efficiencies in the lungs compared with a chitosan-based dry gene powder previously reported by us. PMID:26343708

  1. Biochemical characterization of the soluble alkaline phosphatase isolated from the venomous snake W. aegyptia.

    PubMed

    Al-Saleh, Saad S M

    2002-12-01

    A soluble form of alkaline phosphatase (ALP) has been identified and purified from Walterinnesia aegyptia venom using an HPLC system Gold 126/1667 equipped with Protein PAK 125 and Protein PAK 60 columns. The enzyme was purified 3.4 fold over crude venom with a yield of 37.3%. On SDS-PAGE under non-reduced conditions the purified enzyme showed three bands of 212 kD, 80 kD, and 55 kD. However, under reducing conditions, the enzyme showed two bands of 80 kD and 55 kD. The specific activity of ALP was 24 U/mg with p-nitrophenylephosphate as the substrate. During isoelectric focusing experiments the ALP exhibited two bands focused at pH 6.2 and 6.8, which suggests that either the enzyme exists as two different isoforms or the two bands in IEF may be two subunits of 80 kD and 55 kD. The kinetic parameters (Km and Vmax) and IC50 of ALP inhibition by L-phenylalanine, L-leucine, imidazole, caffeine, orthophosphate and permanganate were also investigated in the present study. Zinc and cyanide ions at a concentration of 15 mM and 10 mM, respectively, completely inhibited the activity of W. aegyptia ALP. PMID:12503880

  2. Myocardial Reloading after Extracorporeal Membrane Oxygenation Alters Substrate Metabolism While Promoting Protein Synthesis

    SciTech Connect

    Kajimoto, Masaki; Priddy, Colleen M.; Ledee, Dolena; Xu, Chun; Isern, Nancy G.; Olson, Aaron; Des Rosiers, Christine; Portman, Michael A.

    2013-08-19

    Extracorporeal membrane oxygenation (ECMO) unloads the heart providing a bridge to recovery in children after myocardial stunning. Mortality after ECMO remains high.Cardiac substrate and amino acid requirements upon weaning are unknown and may impact recovery. We assessed the hypothesis that ventricular reloading modulates both substrate entry into the citric acid cycle (CAC) and myocardial protein synthesis. Fourteen immature piglets (7.8-15.6 kg) were separated into 2 groups based on ventricular loading status: 8 hour-ECMO (UNLOAD) and post-wean from ECMO (RELOAD). We infused [2-13C]-pyruvate as an oxidative substrate and [13C6]-L-leucine, as a tracer of amino acid oxidation and protein synthesis into the coronary artery. RELOAD showed marked elevations in myocardial oxygen consumption above baseline and UNLOAD. Pyruvate uptake was markedly increased though RELOAD decreased pyruvate contribution to oxidative CAC metabolism.RELOAD also increased absolute concentrations of all CAC intermediates, while maintaining or increasing 13C-molar percent enrichment. RELOAD also significantly increased cardiac fractional protein synthesis rates by >70% over UNLOAD. Conclusions: RELOAD produced high energy metabolic requirement and rebound protein synthesis. Relative pyruvate decarboxylation decreased with RELOAD while promoting anaplerotic pyruvate carboxylation and amino acid incorporation into protein rather than to the CAC for oxidation. These perturbations may serve as therapeutic targets to improve contractile function after ECMO.

  3. Specific counterion repercussions on the thermal, pH-response, and electrochemical properties of side-chain leucine based chiral polyelectrolytes.

    PubMed

    Narayanan, Amal; Bauri, Kamal; Ruidas, Bhuban; Pradhan, Goutam; Banerjee, Sanjib; De, Priyadarsi

    2014-11-11

    Effects of counterions of side chain amino acid based polyelectrolytes (PEs) on the solubility in aqueous medium, pH responsiveness, thermal properties, and ionic conductivities have been appraised. Deprotection of the tert-butyl carbamate (Boc) group from poly(Boc-l-leucine methacryloyloxyethyl ester) [P(Boc-l-Leu-HEMA)] was carried out to produce PE with trifluoroacetate as an associative counteranion (1a). PEs with bis(trifluoromethylsulfonyl)imide and hexafluorophosphate counteranion were prepared through anion exchange reactions of 1a. Protonation of the neutralized polymer (2) obtained from 1a, followed by anion exchange, leads to the production of miscellaneous PEs bearing different counteranions, such as tetrafluoroborate, trifluoromethanesulfonate, chloride, and nitrate. Differential scanning calorimetry traces of the PEs reveal that the comparatively larger and weakly coordinated counteranions require less thermal energy to dissociate, and thus, the glass transition temperature (Tg) of the PEs fall off with an increase in the size of the counteranion. A remarkable conductivity of 2.1 mS/cm was obtained in deionized water when Cl(-) acted as the counteranion. Steric and electronic factors of the counteranion induce a change of transition pH in different PEs, although the chiroptical nature was retained, as confirmed by circular dichroism spectroscopy. PMID:25333268

  4. Dynamic proteome analysis of Cyanothece sp. ATCC 51142 under constant light

    SciTech Connect

    Aryal, Uma K.; Stockel, Jana; Welsh, Eric A.; Gritsenko, Marina A.; Nicora, Carrie D.; Koppenaal, David W.; Smith, Richard D.; Pakrasi, Himadri B.; Jacobs, Jon M.

    2012-02-03

    Understanding the dynamic nature of protein abundances provides insights into protein turnover not readily apparent from conventional, static mass spectrometry measurements. This level of data is particularly informative when surveying protein abundances in biological systems subjected to large perturbations or alterations in environment such as cyanobacteria. Our current analysis expands upon conventional proteomic approaches in cyanobacteria by measuring dynamic changes of the proteome using a 13C15N-L-leucine metabolic labeling in Cyanothece ATCC51142. Metabolically labeled Cyanothece ATCC51142 cells grown under nitrogen sufficient conditions in continuous light were monitored longitudinally for isotope incorporation over a 48 h period, revealing 422 proteins with dynamic changes in abundances. In particular, proteins involved in carbon fixation, pentose phosphate pathway, cellular protection, redox regulation, protein folding, assembly and degradation showed higher levels of isotope incorporation suggesting that these biochemical pathways are important for growth under non-diazotrophic conditions. Calculation of relative isotope abundances (RIA) values allowed to measure actual active protein synthesis over time for different biochemical pathways under non-diazotrophic conditions. Overall results demonstrated the utility of 'non-steady state' pulsed metabolic labeling for systems-wide dynamic quantification of the proteome in Cyanothece ATCC51142 that can also be applied to other cyanobacteria.

  5. Effects of lead on viability and intracellular metal content of C6 rat glioma cells

    SciTech Connect

    Tiffany-Castiglioni, E.; Garcia, D.M.; Wu, J.N.; Zmudzki, J.; Bratton, G.R.

    1988-01-01

    Cultured C6 rat glioma cells were exposed to lead (Pb) acetate (0, 1, 10, or 100 ..mu..M) for 3-4 d. Cells were analyzed for changes in viability and intracellular lead, iron, and copper concentrations after Pb treatment was discontinued. The results were compared with previous findings on astroglia and oligodendroglia in culture in order to evaluate C6 cultures as a model for Pb toxicity in glia. Viability was measured by three methods on the day Pb was removed from the cells (designated d 0), and 2 and 9 d after Pb treatment was discontinued (designated d 2 and 9). The methods used were trypan blue dye exclusion, total cell counts, and incorporation of (/sup 3/H)-L-leucine into proteins. With respect to Pb and Fe uptake, C6 cells closely resembled immature astroglia in culture. Unlike C6 cells, however, astroglia showed elevations of intracellular Fe and Cu after treatment. Thus, Pb effects on C6 cells resembled those on cultured oligodendroglia and astroglia in some respects but not in others. C6 cells appear to be an adequate model for selected events in glial toxicosis, such as PB-stimulated protein synthesis in oligodendroglia and Pb uptake in astroglia, but not Pb-induced alterations of intracellular Cu and Fe in astroglia. Their use as a model for glial progenitor cells in Pb toxicity studies remains to be determined.

  6. Beta-decay, Bremsstrahlen, and the origin of molecular chirality

    NASA Technical Reports Server (NTRS)

    Bonner, W. A.; Yi, L.

    1984-01-01

    A brief review is presented of the Vester-Ulbricht beta-decay Bremsstrahlen hypothesis for the origin of optical activity, and of subsequent experiments designed to test it. Certain experiments along these lines, begun in 1974 and involving the irradiation of racemic and optically active amino acids in a 61.7 KCi Sr-90-Y-90 Bremsstrahlen source, have now been completed and are described. After 10.89 years of irradiation with a total Bremsstrahlen dose of 2.5 x 10 to the 9th rads, crystalline DL-leucine, norleucine, and norvaline suffered 47.2, 33.6, and 27.4 percent radiolysis, respectively, but showed no evidence whatsoever of asymmetric degradation. Dand L-Leucine underwent about 48 percent radiolysis and showed 2.4-2.9 percent radioracemization. Other samples in solution were too severely degraded to analyze. Probable intrinsic reasons for the failure of the Vester-Ulbricht mechanism to afford asymmetric radiolysis in the present and related experiments involving beta-decay Bremsstrahlen are enumerated.

  7. Delivery of DNAzyme targeting aurora kinase A to inhibit the proliferation and migration of human prostate cancer.

    PubMed

    Xing, Zhen; Gao, Sai; Duan, Yan; Han, Haobo; Li, Li; Yang, Yan; Li, Quanshun

    2015-01-01

    Herein, a polyethylenimine derivative N-acetyl-l-leucine-polyethylenimine (N-Ac-l-Leu-PEI) was employed as a carrier to achieve the delivery of DNAzyme targeting aurora kinase A using PC-3 cell as a model. Flow cytometry and confocal laser scanning microscopy demonstrated that the derivative could realize the cellular uptake of nanoparticles in an energy-dependent and clathrin-mediated pathway and obtain a high DNAzyme concentration in the cytoplasm through further endosomal escape. After DNAzyme transfection, expression level of aurora kinase A would be downregulated at the protein level. Meanwhile, the inhibition of cell proliferation was observed through 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and cell colony formation assay, attributing to the activation of apoptosis and cell cycle arrest. Through flow cytometric analysis, an early apoptotic ratio of 25.93% and G2 phase of 22.58% has been detected after N-Ac-l-Leu-PEI-mediated DNAzyme transfection. Finally, wound healing and Transwell migration assay showed that DNAzyme transfection could efficiently inhibit the cell migration. These results demonstrated that N-Ac-l-Leu-PEI could successfully mediate the DNAzyme delivery and downregulate the expression level of aurora kinase A, triggering a significant inhibitory effect of excessive proliferation and migration of tumor cells. PMID:26425080

  8. Structure of the Mycobacterium tuberculosis proteasome and mechanism of inhibition by a peptidyl boronate

    SciTech Connect

    Hu,G.; Lin, G.; Wang, M.; Dick, L.; Xu, R.; Nathan, C.; Li, H.

    2006-01-01

    Mycobacterium tuberculosis (Mtb) has the remarkable ability to resist killing by human macrophages. The 750 kDa proteasome, not available in most eubacteria except Actinomycetes, appears to contribute to Mtb's resistance. The crystal structure of the Mtb proteasome at 3.0 Angstroms resolution reveals a substrate-binding pocket with composite features of the distinct {beta}1, {beta}2 and {beta}5 substrate binding sites of eukaryotic proteasomes, accounting for the broad specificity of the Mtb proteasome towards oligopeptides described in the companion article [Lin et al. (2006), Mol Microbiol doi:10.1111/j.1365-2958.2005.05035.x]. The substrate entrance at the end of the cylindrical proteasome appears open in the crystal structure due to partial disorder of the a-subunit N-terminal residues. However, cryo-electron microscopy of the core particle reveals a closed end, compatible with the density observed in negative-staining electron microscopy that depended on the presence of the N-terminal octapeptides of the a-subunits in the companion article, suggesting that the Mtb proteasome has a gated structure. We determine for the first time the proteasomal inhibition mechanism of the dipeptidyl boronate N-(4-morpholine)carbonyl-{beta}-(1-naphthyl)-l-alanine-l-leucine boronic acid (MLN-273), an analogue of the antimyeloma drug bortezomib. The structure improves prospects for designing Mtb-specific proteasomal inhibitors as a novel approach to chemotherapy of tuberculosis.

  9. Variations in amino acids and sugars in different tissues of broad bean (Vicia faba L.) during the pathogenesis of Uromyces fabae (Pers.) de Bary.

    PubMed

    Srivastava, K K; Sinha, R K; Pandey, P K; Prasad, M

    1980-01-01

    In response to infection by the rust pathogen Uromyces fabae the different tissues of broad bean (Vicia faba L.) showed varied pattern of amino acid metabolism; some of them being exclusively present in a particular region only. In the inflorescence tissue, for example, tryptophan, glycine, aspartic acid, serine, proline, and arginine were present. In the stem, however, the amino acids, present during and after infection, were tryptophan, serine, glutamine, homoserine, and dl-alanine. Post-infectionally induced amino compounds, lysine, histidine, vomoserine, proline, tyrosine and dl-threonine, were found in the leaves; in the petiole serine and histidine were the only two such amino acids. Out of these amino acids only histidine and proline, with their specific presence and activity, encouraged uredospore differentiation. L-cysteine, too, by being actively utilized, served as promoter of uredosporulation. Asparagine and methionine showed moderate to heavy depletion during bean tissue infection. On the other hand, l-leucine/isoleucine, beta-alanine, valine, and glutamic acid showed moderate to pronounced increase during pathogenic establishment. Concomitant to uredospore differentiation there was a drastic lowering in the amount of sucrose in leaf and petiole tissue. The amount of glucose also declined during pathogenesis. PMID:7424231

  10. Evidence that synaptosomal high-affinity carriers for amino acid neurotransmitters are glycosylated

    SciTech Connect

    Zaleska, M.M.; Erecinska, M.

    1987-05-01

    The effect of removal of surface sialic acid from synaptosomes on the high-affinity, Na/sup +/-dependent uptake systems for amino acid neurotransmitters was evaluated. Synaptosomes from rat forebrain were preincubated with neuraminidase from Vibrio cholerae for 20 min at 34/sup 0/. After washing and resuspension, their ability to transport /sup 14/C-GABA and the acidic amino acid, /sup 3/H-aspartate was studied. Pretreatment with neuraminidase resulted in a concentration-dependent inhibition of the uptake of both amino acids while the influx of /sup 3/H-L-leucine was unaffected. Inhibition was a function of the amount of sialic acid released from membranes. The analysis of the kinetic parameters of amino acid uptake revealed that inhibition resulted from a decrease of Vmax without any change in the Km. Neither the synaptosomal energy levels nor the internal concentration of potassium ions was affected by the pretreatment with neuraminidase. The maximum accumulation ratios for both amino acids remained largely unaltered. It is concluded that the GABA and acidic amino acid transporters are glycosylated and that sialic acid is involved in the operation of carrier proteins directly and not through modification of the driving forces responsible for amino acid transport.

  11. Electrochemical Imprinted Polycrystalline Nickel-Nickel Oxide Half-Nanotube-Modified Boron-Doped Diamond Electrode for the Detection of l-Serine.

    PubMed

    Dai, Wei; Li, Hongji; Li, Mingji; Li, Cuiping; Wu, Xiaoguo; Yang, Baohe

    2015-10-21

    This paper presents a novel and versatile method for the fabrication of half nanotubes (HNTs) using a flexible template-based nanofabrication method denoted as electrochemical imprinting. With use of this method, polycrystalline nickel and nickel(II) oxide (Ni-NiO) HNTs were synthesized using pulsed electrodeposition to transfer Ni, deposited by radio frequency magnetron sputtering on a porous polytetrafluoroethylene template, onto a boron-doped diamond (BDD) film. The Ni-NiO HNTs exhibited semicircular profiles along their entire lengths, with outer diameters of 50-120 nm and inner diameters of 20-50 nm. The HNT walls were formed of Ni and NiO nanoparticles. A biosensor for the detection of L-serine was fabricated using a BDD electrode modified with Ni-NiO HNTs, and the device demonstrated satisfactory analytical performance with high sensitivity (0.33 ?A ?M(-1)) and a low limit of detection (0.1 ?M). The biosensor also exhibited very good reproducibility and stability, as well as a high anti-interference ability against amino acids such as L-leucine, L-tryptophan, L-cysteine, L-phenylalanine, L-arginine, and L-lysine. PMID:26421883

  12. BETAview: a digital /?-imaging system for dynamic studies of biological phenomena

    NASA Astrophysics Data System (ADS)

    Bertolucci, E.; Conti, M.; Mettivier, G.; Montesi, M. C.; Russo, P.

    2002-02-01

    We present a digital autoradiography (DAR) system, named BETA view, based on semiconductor pixel detectors and a single particle counting chip, for quantitative analysis of ?-emitting radioactive tracers in biological samples. The system is able to perform a real time monitoring of time-dependent biological phenomena. BETA view could be equipped either with GaAs or with Si semiconductor pixellated detectors. In this paper, we describe the results obtained with an assembly based on a Si detector, 300 ?m thick, segmented into 64×64 170 ?m size square pixels. The detector is bump-bonded to the low threshold, single particle counting chip named Medipix1, developed by a CERN-based European collaboration. The sensitive area is about 1 cm 2. Studies of background noise and detection efficiency have been performed. Moreover, time-resolved cellular uptake studies with radiolabelled molecules have been monitored. Specifically, we have followed in vivo and in real time, the [ 14C] L-leucine amino acid uptake by eggs of Octopus vulgaris confirming the preliminary results of a previous paper. This opens the field of biomolecular kynetic studies with this new class of semiconductor DAR systems, whose evolution (using the Medipix2 chip, 256×256 pixels, 55 ?m pixel size) is soon to come.

  13. Synthesis and biological activities of some new (N?-dinicotinoyl)-bis-L-leucyl linear and macrocyclic peptides.

    PubMed

    Khayyat, Suzan; Amr, Abd El-Galil

    2014-01-01

    A series of linear and macrocyclic peptides 3-12 were synthesized using 3,5-pyridinedicarboxylic acid (1) as starting material and screened for their antimicrobial, anti-inflammatory and anticancer activities. Bis-ester 3 was prepared from 1 and L-leucine methyl ester. Hydrazinolysis and hydrolysis of dipeptide methyl ester 3 with hydrazine hydrate or 1 N sodium hydroxide afforded compounds 4 and 5, respectively. Cyclization of the dipeptide 5 with L-lysine methyl ester afforded cyclic pentapeptide ester 6. Compounds 7-9 were synthesized by reacting hydrazide 4 with phthalic anhydride, 1,8-naphthalene anhydride or acetophenone derivatives. Treatment of acid hydrazide 4 with aromatic aldehydes or tetraacid dianhydrides afforded the corresponding bis-dipeptide hydrazones 10a-e and macrocyclic peptides 11 and 12, respectively. The structures of newly synthesized compounds were confirmed by IR, 1H-NMR, MS spectral data and elemental analysis. The detailed synthesis, spectroscopic data, biological and pharmacological activities of the synthesized compounds was reported. PMID:25061721

  14. Nutritional and regulatory roles of leucine in muscle growth and fat reduction.

    PubMed

    Duan, Yehui; Li, Fengna; Liu, Hongnan; Li, Yinghui; Liu, Yingying; Kong, Xiangfeng; Zhang, Yuzhe; Deng, Dun; Tang, Yulong; Feng, Zemeng; Wu, Guoyao; Yin, Yulong

    2015-01-01

    The metabolic roles for L-leucine, an essential branched-chain amino acid (BCAA), go far beyond serving exclusively as a building block for de novo protein synthesis. Growing evidence shows that leucine regulates protein and lipid metabolism in animals. Specifically, leucine activates the mammalian target of rapamycin (mTOR) signaling pathway, including the 70 kDa ribosomal protein S6 kinase 1 (S6K1) and eukaryotic initiation factor (eIF) 4E-binding protein 1 (4EBP1) to stimulate protein synthesis in skeletal muscle and adipose tissue and to promote mitochondrial biogenesis, resulting in enhanced cellular respiration and energy partitioning. Activation of cellular energy metabolism favors fatty acid oxidation to CO2 and water in adipocytes, lean tissue gain in young animals, and alleviation of muscle protein loss in aging adults, lactating mammals, and food-deprived subjects. As a functional amino acid, leucine holds great promise to enhance the growth, efficiency of food utilization, and health of animals and humans.  PMID:25553480

  15. The targeted delivery of doxorubicin with transferrin-conjugated block copolypeptide vesicles.

    PubMed

    Lee, Brian S; Yip, Allison T; Thach, Alison V; Rodriguez, April R; Deming, Timothy J; Kamei, Daniel T

    2015-12-30

    We previously investigated the intracellular trafficking properties of our novel poly(l-glutamate)60-b-poly(l-leucine)20 (E60L20) vesicles (EL vesicles) conjugated to transferrin (Tf). In this study, we expand upon our previous work by investigating the drug encapsulation, release, and efficacy properties of our novel EL vesicles for the first time. After polyethylene glycol (PEG) was conjugated to the vesicles for steric stability, doxorubicin (DOX) was successfully encapsulated in the vesicles using a modified pH-ammonium sulfate gradient method. Tf was subsequently conjugated to the vesicles to provide active targeting to cancer cells and a mode of internalization into the cells. These Tf-conjugated, DOX-loaded, PEGylated EL (Tf-DPEL) vesicles exhibited colloidal stability and were within the allowable size range for passive and active targeting. A mathematical model was then derived to predict drug release from the Tf-DPEL vesicles by considering diffusive and convective mass transfer of DOX. Our mathematical model reasonably predicted our experimentally measured release profile with no fitted parameters, suggesting that the model could be used in the future to manipulate drug carrier properties to alter drug release profiles. Finally, an in vitro cytotoxicity assay was used to demonstrate that the Tf-DPEL vesicles exhibited enhanced drug carrier efficacy in comparison to its non-targeted counterpart. PMID:26456252

  16. Fabrication of chiral amino acid ionic liquid modified magnetic multifunctional nanospheres for centrifugal chiral chromatography separation of racemates.

    PubMed

    Liu, Yating; Tian, Ailin; Wang, Xiong; Qi, Jing; Wang, Fengkang; Ma, Ying; Ito, Yoichiro; Wei, Yun

    2015-06-26

    As the rapid development of nanotechnology, the magnetic nanospheres modified with special chiral selective ligands show a great potentiality in enantiomeric separation. In this study, magnetic nanospheres modified with task-specific chiral ionic liquid were designed for the separation of chiral amino acids. These modified magnetic nanospheres were effective in a direct chiral separation of five racemic amino acids (D- and L-cysteine, D- and L-arginine, D- and L-leucine, D- and L-glutamine and D- and L-tryptophan). Furthermore, a new online method for complete separation of the enantiomers via the magnetic nanospheres was established with centrifugal chiral chromatography using a spiral tube assembly mounted on a type-J coil planet centrifuge. One kind of chiral compounds, D- and L-tryptophan was resolved well using this method. These results demonstrated that the modified nanospheres display a good chiral recognition ability, and can be used as a potential material for chiral separation of various racemates. PMID:25976126

  17. Pulmonary dry powder vaccine of pneumococcal antigen loaded nanoparticles.

    PubMed

    Kunda, Nitesh K; Alfagih, Iman M; Miyaji, Eliane N; Figueiredo, Douglas B; Gonçalves, Viviane M; Ferreira, Daniela M; Dennison, Sarah R; Somavarapu, Satyanarayana; Hutcheon, Gillian A; Saleem, Imran Y

    2015-11-30

    Pneumonia, caused by Streptococcus pneumoniae, mainly affects the immunocompromised, the very young and the old, and remains one of the leading causes of death. A steady rise in disease numbers from non-vaccine serotypes necessitates a new vaccine formulation that ideally has better antigen stability and integrity, does not require cold-chain and can be delivered non-invasively. In this study, a dry powder vaccine containing an important antigen of S. pneumoniae, pneumococcal surface protein A (PspA) that has shown cross-reactivity amongst serotypes to be delivered via the pulmonary route has been formulated. The formulation contains the antigen PspA adsorbed onto the surface of polymeric nanoparticles encapsulated in l-leucine microparticles that can be loaded into capsules and delivered via an inhaler. We have successfully synthesized particles of ?150nm and achieved ?20?g of PspA adsorption per mg of NPs. In addition, the spray-dried powders displayed a FPF of 74.31±1.32% and MMAD of 1.70±0.03?m suggesting a broncho-alveolar lung deposition facilitating the uptake of the nanoparticles by dendritic cells. Also, the PspA released from the dry powders maintained antigen stability (SDS-PAGE), integrity (Circular dichroism) and activity (lactoferrin binding assay). Moreover, the released antigen also maintained its antigenicity as determined by ELISA. PMID:26387622

  18. Combination Chemotherapeutic Dry Powder Aerosols via Controlled Nanoparticle Agglomeration

    PubMed Central

    El-Gendy, Nashwa; Berkland, Cory

    2014-01-01

    Purpose To develop an aerosol system for efficient local lung delivery of chemotherapeutics where nanotechnology holds tremendous potential for developing more valuable cancer therapies. Concurrently, aerosolized chemotherapy is generating interest as a means to treat certain types of lung cancer more effectively with less systemic exposure to the compound. Methods Nanoparticles of the potent anticancer drug, paclitaxel, were controllably assembled to form low density microparticles directly after preparation of the nanoparticle suspension. The amino acid, L-leucine, was used as a colloid destabilizer to drive the assembly of paclitaxel nanoparticles. A combination chemotherapy aerosol was formed by assembling the paclitaxel nanoparticles in the presence of cisplatin in solution. Results Freeze-dried powders of the combination chemotherapy possessed desirable aerodynamic properties for inhalation. In addition, the dissolution rates of dried nanoparticle agglomerate formulations (~60% to 66% after 8 h) were significantly faster than that of micronized paclitaxel powder as received (~18% after 8 h). Interestingly, the presence of the water soluble cisplatin accelerated the dissolution of paclitaxel. Conclusions Nanoparticle agglomerates of paclitaxel alone or in combination with cisplatin may serve as effective chemotherapeutic dry powder aerosols to enable regional treatment of certain lung cancers. PMID:19415471

  19. Molecular Dynamics of Peptide Folding at Aqueous Interfaces

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Chipot, Christophe; Chang, Sherwood (Technical Monitor)

    1997-01-01

    Even though most monomeric peptides are disordered in water they can adopt sequence-dependent, ordered structures, such as a-helices, at aqueous interfaces. This property is relevant to cellular signaling, membrane fusion, and the action of toxins and antibiotics. The mechanism of folding nonpolar peptides at the water-hexane interface was studied in the example of an 11-mer, of poly-L-leucine. Initially placed as a random coil on the water side of the interface, the peptide folded into an a-helix in 36 ns. Simultaneously, the peptide translocated into the hexane side of the interface. Folding was not sequential and involved a 3/10-helix as an intermediate. The folded peptide was either parallel to the interface or had its C-terminus exposed to water. An 11-mer, LQQLLQQLLQL, composed of leucine (L) and glutamine (G), was taken as a model amphiphilic peptide. It rapidly adopted an amphiphilic, disordered structure at the interface. Further folding proceeded through a series of amphiphilic intermediates.

  20. Triiodothyronine binding sites in the rat erythrocyte membrane: involvement in triiodothyronine transport and relation to the tryptophan transport System T.

    PubMed

    Samson, M; Osty, J; Francon, J; Blondeau, J P

    1992-07-01

    The binding of L-triiodothyronine (T3) to rat erythrocyte membranes (ghosts and peripheral protein-depleted vesicles) was studied under equilibrium conditions. Ghosts contained high-affinity T3 binding sites whose dissociation constant (21 nM) was similar to the equilibrium-exchange Michaelis constant of T3 transport measured in ghosts. Each ghost contained about 8.10(3) high-affinity binding sites. The high-affinity T3 binding was stereospecific and was inhibited by L-tryptophan (Trp) but not by L-leucine. The iodothyronine and amino acid specificity of binding is therefore similar to that of System T, the erythrocyte T3/Trp transporter. These Trp-inhibitable high-affinity T3-binding sites were also present in peripheral protein-depleted membrane vesicles, indicating that they are integral part of the membrane. Ghosts prepared from human erythrocytes, which have very low System T transport activities, contained no detectable Trp-inhibitable high-affinity T3-binding sites. In rat erythrocyte ghosts, N-ethylmaleimide inactivated both the binding and the transport of T3. This inactivation was blocked by T3 and Trp with similar efficiencies. Phenylglyoxal, an arginine residue modifier, also inhibited both high-affinity T3 binding and System T transport activity. It is concluded that the Trp-inhibitable high-affinity T3-binding sites in the rat erythrocyte membrane are likely to be associated with System T. PMID:1643084

  1. Delivery of DNAzyme targeting aurora kinase A to inhibit the proliferation and migration of human prostate cancer

    PubMed Central

    Xing, Zhen; Gao, Sai; Duan, Yan; Han, Haobo; Li, Li; Yang, Yan; Li, Quanshun

    2015-01-01

    Herein, a polyethylenimine derivative N-acetyl-l-leucine-polyethylenimine (N-Ac-l-Leu-PEI) was employed as a carrier to achieve the delivery of DNAzyme targeting aurora kinase A using PC-3 cell as a model. Flow cytometry and confocal laser scanning microscopy demonstrated that the derivative could realize the cellular uptake of nanoparticles in an energy-dependent and clathrin-mediated pathway and obtain a high DNAzyme concentration in the cytoplasm through further endosomal escape. After DNAzyme transfection, expression level of aurora kinase A would be downregulated at the protein level. Meanwhile, the inhibition of cell proliferation was observed through 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and cell colony formation assay, attributing to the activation of apoptosis and cell cycle arrest. Through flow cytometric analysis, an early apoptotic ratio of 25.93% and G2 phase of 22.58% has been detected after N-Ac-l-Leu-PEI-mediated DNAzyme transfection. Finally, wound healing and Transwell migration assay showed that DNAzyme transfection could efficiently inhibit the cell migration. These results demonstrated that N-Ac-l-Leu-PEI could successfully mediate the DNAzyme delivery and downregulate the expression level of aurora kinase A, triggering a significant inhibitory effect of excessive proliferation and migration of tumor cells. PMID:26425080

  2. Synthesis of new poly(ether-urethane-urea)s based on amino acid cyclopeptide and PEG: study of their environmental degradation.

    PubMed

    Rafiemanzelat, Fatemeh; Fathollahi Zonouz, Abolfazl; Emtiazi, Giti

    2013-02-01

    Conventional polyurethanes (PUs) are among biomaterials not intended to degrade but are susceptible to hydrolytic, oxidative and enzymatic degradation in vivo. Biodegradable PUs are typically prepared from polyester polyols, aliphatic diisocyanates and chain extenders. In this work we have developed a degradable monomer based on ?-amino acid to accelerate hard segment degradation. Thus a new class of degradable poly(ether-urethane-urea)s (PEUUs) was synthesized via direct reaction of 4,4'-methylene-bis(4-phenylisocyanate) (MDI), L-leucine anhydride (LA) and polyethylene glycol with molecular weight of 1,000 (PEG-1000) as polyether soft segment. The resulting polymers are environmentally biodegradable and thermally stable. Decomposition temperatures for 5 % weight loss occurred above 300 °C by TGA in nitrogen atmospheres. Some structural characterization and physical properties of these polymers before and after degradation in soil, river water and sludge are reported. The environmental degradation of the polymer films was investigated by SEM, FTIR, TGA, DSC, GPC and XRD techniques. A significant rate of degradation occurred in PEUU samples under river water and sludge condition. The polymeric films were not toxic to E. coli (Gram negative), Staphylococcus aureus and Micrococcus (Gram positive) bacteria and showed good biofilm formation on polymer surface. Our results show that hard segment degraded selectively as much as soft segment and these polymers are susceptible to degradation in soil and water. Thus our study shows that new environment-friendly polyurethane, which can degrade in soil, river water and sludge, is synthesized. PMID:22833157

  3. Impact of epiphytic and endogenous enzyme activities of senescent maize leaves and roots on the soil biodegradation process.

    PubMed

    Zafar Amin, Bilal Ahmad; Beaugrand, Johnny; Debeire, Philippe; Chabbert, Brigitte; Bertrand, Isabelle

    2011-11-01

    This study was focused on investigating the role of the initial residue community, i.e. microorganisms and enzymes from the epiphytic and endophytic compartments, in soil decomposition processes. Aerial and underground parts (leaves and roots) of maize (Zea mays L.) plants were ?-irradiated, surface-sterilized with sodium hypochlorite (NaOCl)/ethanol or non-sterilized (controls), while the outer surface morphology of maize leaves and roots was examined by scanning electron microscopy (SEM). Non-sterilized and sterilized maize leaves and roots were incubated in soil to study carbon (C) mineralization kinetics and enzyme dynamics (L-leucine aminopeptidase, CBH-1, xylanase, cellulase and laccase). SEM results showed that initial microbial colonization was more pronounced on non-sterilized leaf and root surfaces than on sterilized samples. The hypochlorite treatment removed a part of the soluble components of leaves by washing and no specific effect of any type of colonizing microorganisms was observed on C mineralization. In contrast, ? irradiation and hypochlorite treatments did not affect root chemical characteristics and the quantitative effect of initial residue-colonizing microorganisms on C mineralization was demonstrated. The variations in C mineralization and enzyme dynamics between non-sterilized and sterilized roots suggested that activities of epiphytic and endogenic microorganisms were of the same order of magnitude. PMID:22078739

  4. AFRRI (Armed Forces Radiobiology Research Institute) reports, July, August, September 1989. Technical report

    SciTech Connect

    Not Available

    1989-11-01

    This volume contains AFRRI Scientific Reports SR 89-26 through SR89-39 and Technical Report TR89-1 for Jul-Sep 1989. Partial contents include: Induction of marrow hypoxia by radioprotective agents; Cell-cycle radiation response: Role of intracellular factors; Characteristics of radiation-induced performance changes in bar-press avoidance with and without a preshock warning cue; Norepinephrine-induced phosphorylation of a 25 kd phosphoprotein in rat aorta is altered in intraperitoneal sepsis; Quantitative measurement of radiation-induced base products in DNA using gas chromatography-mass spectrometry; Tropism of canine neutrophils to xanthine oxidase; Effects of acute sublethal gamma radiation exposure on aggressive behavior in male mice: A dose-response study; Progressive behavioral changes during the maturation of rats with early radiation-induced hypoplasia of fascia dentata granule cells; Stomach nodules in pigeons; An assessment of the behavioral toxicity of high-energy iron particles compared to other qualities of radiation; L-leucyl-L-leucine methyl ester treatment of canine marrow and peripheral blood cells; Localization of cyclo-oxygenase and prostaglandin E2 in the secretory granule of the mast cell; Radioprotection of mice with interleukin-1: Relationship to the number of spleen colony-forming units; Survival after total-body irradiation. I. Effects of partial small-bowel shielding; Laboratory x-ray irradiator for cellular radiobiology research studies: Dosimetry report.

  5. Engineering of Glarea lozoyensis for exclusive production of the pneumocandin B0 precursor of the antifungal drug caspofungin acetate.

    PubMed

    Chen, Li; Yue, Qun; Li, Yan; Niu, Xuemei; Xiang, Meichun; Wang, Wenzhao; Bills, Gerald F; Liu, Xingzhong; An, Zhiqiang

    2015-03-01

    Pneumocandins produced by the fungus Glarea lozoyensis are acylated cyclic hexapeptides of the echinocandin family. Pneumocandin B0 is the starting molecule for the first semisynthetic echinocandin antifungal drug, caspofungin acetate. In the wild-type strain, pneumocandin B0 is a minor fermentation product, and its industrial production was achieved by a combination of extensive mutation and medium optimization. The pneumocandin biosynthetic gene cluster was previously elucidated by a whole-genome sequencing approach. Knowledge of the biosynthetic cluster suggested an alternative way to produce exclusively pneumocandin B0. Disruption of GLOXY4, encoding a nonheme, ?-ketoglutarate-dependent oxygenase, confirmed its involvement in l-leucine cyclization to form 4S-methyl-l-proline. The absence of 4S-methyl-l-proline abolishes pneumocandin A0 production, and 3S-hydroxyl-l-proline occupies the hexapeptide core's position 6, resulting in exclusive production of pneumocandin B0. Retrospective analysis of the GLOXY4 gene in a previously isolated pneumocandin B0-exclusive mutant (ATCC 74030) indicated that chemical mutagenesis disrupted the GLOXY4 gene function by introducing two amino acid mutations in GLOXY4. This one-step genetic manipulation can rationally engineer a high-yield production strain. PMID:25527531

  6. Physiological characterization of the human EndoC-?H1 ?-cell line.

    PubMed

    Gurgul-Convey, Ewa; Kaminski, Martin T; Lenzen, Sigurd

    2015-08-14

    In the new human EndoC-?H1 ?-cell line, a detailed analysis of the physiological characteristics was performed. This new human ?-cell line expressed all target structures on the gene and protein level, which are crucial for physiological function and insulin secretion induced by glucose and other secretagogues. Glucose influx measurements revealed an excellent uptake capacity of EndoC-?H1 ?-cells by the Glut1 and Glut2 glucose transporters. A high expression level of glucokinase enabled efficient glucose phosphorylation, increasing the ATP/ADP ratio along with stimulation of insulin secretion in the physiological glucose concentration range. The EC50 value of glucose for insulin secretion was 10.3 mM. Mannoheptulose, a specific glucokinase inhibitor, blocked glucose-induced insulin secretion (GSIS). The nutrient insulin secretagogues l-leucine and 2-ketoisocaproate also stimulated insulin secretion, with a potentiating effect of l-glutamine. The Kir 6.2 potassium channel blocker glibenclamide and Bay K 8644, an opener of the voltage-sensitive Ca(2+) channel significantly potentiated GSIS. Potentiation of GSIS by IBMX and forskolin went along with a strong stimulation of cAMP generation. In conclusion, the new human EndoC-?H1 ?-cell line fully mirrors the analogous physiological characteristics of primary mouse, rat and human ?-cells. Thus, this new human EndoC-?H1 ?-cell line is very well suited for physiological ?-cell studies. PMID:26028562

  7. New inhibitors of renin that contain novel phosphostatine Leu-Val replacements.

    PubMed

    Dellaria, J F; Maki, R G; Stein, H H; Cohen, J; Whittern, D; Marsh, K; Hoffman, D J; Plattner, J J; Perun, T J

    1990-02-01

    A novel series of renin inhibitors based on the Phe8-His9-Leu10-Val11 substructure of renin's natural substrate, angiotensinogen, is reported. These inhibitors retain the Phe8-His9 portion of the native substructure and employ novel phosphostatine Leu10-Val11 replacements (LVRs). The phosphostatine LVRs were prepared by condensing a dialkyl phosphonate ester stabilized anion with either N-t-Boc-amino aldehydes or N-tritylamino aldehydes (derived from the corresponding amino acid). Structure-activity relationships at the Leu10 side chain revealed that the LVR derived from L-cyclohexylalanine provided a 130-fold boost in potency over the LVR derived from L-leucine. The dialkyl ester moiety was varied and a loss in potency was incurred when the alkyl ester was chain extended or alpha-branched; dimethyl esters provided optimum potency. The phosphonate moiety was replaced by a half-acid half-ester phosphonate and dimethylphosphinate; both replacements lead to a loss in potency. The more potent inhibitors (IC50 = 20-50 nM) were found to be selective inhibitors for renin over porcine pepsin and bovine cathepsin D (little or no inhibition was observed at 10(-5) M). PMID:2105396

  8. Serum metabolomics in rats models of ketamine abuse by gas chromatography-mass spectrometry.

    PubMed

    Zhang, Meiling; Wen, Congcong; Zhang, Yuan; Sun, Fa; Wang, Shuanghu; Ma, Jianshe; Lin, Kezhi; Wang, Xianqin; Lin, Guanyang; Hu, Lufeng

    2015-12-01

    This study aims to evaluate the effect of ketamine on rats by examining the differences in serum metabolites between ketamine abuse group (Ket-group) and control group (Con-group). Compared to the Con-group, the level of phosphate, propanoic acid, ribitol and d-fructose of the Ket-group increased after continuous intraperitoneal administration of ketamine for 7 days, while the level of alanine, glycine, butanoic acid, valine, l-serine, l-proline, mannonic acid, octadecanoic acid and cholesterol decreased. After 14 days' administration, the level of alanine, butanoic acid, valine, l-leucine, phosphate, l-serine, l-threonine, propanetricarboxylic acid, hexadecanoic acid and oleic acid of the ketamine group increased while the level of mannonic acid, octadecanoic acid and cholesterol decreased. After stopping ketamine administration for 2 days, the level of butanoic acid, phosphate, aminomalonic acid, gluconic acid, hexadecanoic acid, oleic acid and arachidonic acid of Ket-group increased, while the level of glycine, l-lysine and cholesterol decreased. This study can provide invaluable information for the metabolites changes due to ketamine abuse. PMID:26540436

  9. Inhibition of Sporulation and Ultrastructural Alterations of Grapevine Downy Mildew by the Endophytic Fungus Alternaria alternata.

    PubMed

    Musetti, R; Vecchione, A; Stringher, L; Borselli, S; Zulini, L; Marzani, C; D'Ambrosio, M; di Toppi, L Sanità; Pertot, I

    2006-07-01

    ABSTRACT One hundred twenty-six endophytic microorganisms isolated from grapevine leaves showing anomalous symptoms of downy mildew were tested on grapevine leaf disks as biocontrol agents against Plasmopara viticola. Among the 126 microorganisms, only five fungal isolates completely inhibited the sporulation of P. viticola; all of them were identified as Alternaria alternata. Ultrastructural analyses were carried out by transmission electron microscopy to observe cellular interactions between P. viticola and A. alternata in the grapevine leaf tissue. Cytological observations indicated that, even without close contact with A. alternata, the P. viticola mycelium showed severe ultrastructural alterations, such as the presence of enlarged vacuoles or vacuoles containing electron-dense precipitates. Haustoria appeared necrotic and irregularly shaped or were enclosed in callose-like substances. Therefore, a toxic action of A. alternata against P. viticola was hypothesized. To examine the production of toxic low-molecular-weight metabolites by A. alternata, we analyzed the fungal liquid culture by thin layer chromatography and proton magnetic resonance spectroscopy. The main low-molecular-weight metabolites produced by the endophyte were three diketopiperazines: cyclo(l-phenylalanine-trans-4-hydroxy-l-proline), cyclo(l-leucine-trans-4-hydroxy-l-proline), and cyclo(l-alanine-trans-4-hydroxy-l-proline). When applied at different concentrations to both grapevine leaf disks and greenhouse plants, a mixture of the three diketopiperazines was very efficacious in limiting P. viticola sporulation. PMID:18943142

  10. Synergistic effects of resistance training and protein intake: practical aspects.

    PubMed

    Guimarães-Ferreira, Lucas; Cholewa, Jason Michael; Naimo, Marshall Alan; Zhi, X I A; Magagnin, Daiane; de Sá, Rafaele Bis Dal Ponte; Streck, Emilio Luiz; Teixeira, Tamiris da Silva; Zanchi, Nelo Eidy

    2014-10-01

    Resistance training is a potent stimulus to increase skeletal muscle mass. The muscle protein accretion process depends on a robust synergistic action between protein intake and overload. The intake of protein after resistance training increases plasma amino acids, which results in the activation of signaling molecules leading to increased muscle protein synthesis (MPS) and muscle hypertrophy. Although both essential and non-essential amino acids are necessary for hypertrophy, the intake of free L-leucine or high-leucine whole proteins has been specifically shown to increase the initiation of translation that is essential for elevated MPS. The literature supports the use of protein intake following resistance-training sessions to enhance MPS; however, less understood are the effects of different protein sources and timing protocols on MPS. The sum of the adaptions from each individual training session is essential to muscle hypertrophy, and thus highlights the importance of an optimal supplementation protocol. The aim of this review is to present recent findings reported in the literature and to discuss the practical application of these results. In that light, new speculations and questions will arise that may direct future investigations. The information and recommendations generated in this review should be of benefit to clinical dietitians as well as those engaged in sports. PMID:24751198

  11. Studies on mass attenuation coefficient, effective atomic number and electron density of some amino acids in the energy range 0.122-1.330 MeV

    NASA Astrophysics Data System (ADS)

    Pawar, Pravina P.; Bichile, Govind K.

    2013-11-01

    The total mass attenuation coefficients of some amino acids, such as Glycine (C2H5NO2), DL-Alanine (C3H7NO2), Proline (C5H9NO2), L-Leucine (C6H13NO2 ), L-Arginine (C6H14N4O2) and L-Arginine Monohydrochloride (C6H15ClN4O2), were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies using a well-collimated narrow beam good geometry set-up. The gamma rays were detected using NaI (Tl) scintillation detection system with a resolution of 10.2% at 662 keV. The attenuation coefficient data were then used to obtain the effective atomic numbers (Zeff) and effective electron densities (Neff) of amino acids. It was observed that the effective atomic number (Zeff) and effective electron densities (Neff) tend to be almost constant as a function of gamma-ray energy. The results show that, the experimental values of mass attenuation coefficients, effective atomic numbers and effective electron densities are in good agreement with the theoretical values with less than 1% error.

  12. Study of Biological Degradation of New Poly(Ether-Urethane-Urea)s Containing Cyclopeptide Moiety and PEG by Bacillus amyloliquefaciens Isolated from Soil.

    PubMed

    Rafiemanzelat, Fatemeh; Jafari, Mahboobeh; Emtiazi, Giti

    2015-10-01

    The present work for the first time investigates the effect of Bacillus amyloliquefaciens, M3, on a new poly(ether-urethane-urea) (PEUU). PEUU was synthesized via reaction of 4,4'-methylenebis(4-phenylisocyanate) (MDI), L-leucine anhydride cyclopeptide (LACP) as a degradable monomer and polyethylene glycol with molecular weight of 1000 (PEG-1000). Biodegradation of the synthesized PEUU as the only source for carbon and nitrogen for M3 was studied. The co-metabolism biodegradation of the polymer by this organism was also investigated by adding mannitol or nutrient broth to the basic media. Biodegradation of the synthesized polymer was followed by SEM, FT-IR, TGA, and XRD techniques. It was shown that incubation of PEUU with M3 resulted in a 30-44 % reduction in polymer's weight after 1 month. This study indicates that the chemical structure of PEUU significantly changes after exposure to M3 due to hydrolytic and enzymatic degradation of polymer chains. The results of this work supports the idea that this poly(ether-urethane) is used as a sole carbon source by M3 and this bacterium has a good capability for degradation of poly(ether-urethane)s. PMID:26242387

  13. Effects of Hydrogen Peroxide and Ultrasound on Biomass Reduction and Toxin Release in the Cyanobacterium, Microcystis aeruginosa

    PubMed Central

    Lürling, Miquel; Meng, Debin; Faassen, Elisabeth J.

    2014-01-01

    Cyanobacterial blooms are expected to increase, and the toxins they produce threaten human health and impair ecosystem services. The reduction of the nutrient load of surface waters is the preferred way to prevent these blooms; however, this is not always feasible. Quick curative measures are therefore preferred in some cases. Two of these proposed measures, peroxide and ultrasound, were tested for their efficiency in reducing cyanobacterial biomass and potential release of cyanotoxins. Hereto, laboratory assays with a microcystin (MC)-producing cyanobacterium (Microcystis aeruginosa) were conducted. Peroxide effectively reduced M. aeruginosa biomass when dosed at 4 or 8 mg L?1, but not at 1 and 2 mg L?1. Peroxide dosed at 4 or 8 mg L?1 lowered total MC concentrations by 23%, yet led to a significant release of MCs into the water. Dissolved MC concentrations were nine-times (4 mg L?1) and 12-times (8 mg L?1 H2O2) higher than in the control. Cell lysis moreover increased the proportion of the dissolved hydrophobic variants, MC-LW and MC-LF (where L = Leucine, W = tryptophan, F = phenylalanine). Ultrasound treatment with commercial transducers sold for clearing ponds and lakes only caused minimal growth inhibition and some release of MCs into the water. Commercial ultrasound transducers are therefore ineffective at controlling cyanobacteria. PMID:25513892

  14. Geochemical gradients within modern and fossil shells of Concholepas concholepas from northern Chile: an insight into U-Th systematics and diagenetic/authigenic isotopic imprints in mollusk shells

    NASA Astrophysics Data System (ADS)

    Labonne, Maylis; Hillaire-Marcel, Claude

    2000-05-01

    Seriate geochemical measurements through shells of one modern, one Holocene, and two Sangamonian Concholepas concholepas, from marine terraces of Northern Chile, were performed to document diagenetic vs. authigenic geochemical signatures, and to better interpret U-series ages on such material. Subsamples were recovered by drilling from the outer calcitic layer to the inner aragonitic layer of each of the studied shells. Unfortunately, this sampling procedure induces artifacts, notably the convertion of up to ˜20% of calcite into aragonite, and of up to ˜6% of aragonite into calcite, as well as in the epimerization of a few percent of isoleucine into D-alloisoleucine/ L-isoleucine. Negligible sampling artifacts were noticed for stable isotope and total amino acid contents. Diagenetic effects on the geochemical properties of the shells are particularly pronounced in the inner aragonitic layer and more discrete in the outer calcitic layer. The time-dependent decay of the organic matrix of the shell is illustrated by a one order of magnitude lower total amino acid content in the Sangamonian specimens by comparison with the modern shell. Conversely, the Sangamonian shells U contents increase by a similar factor and 13C- 18O enrichments as high as 2 to 3‰ seem also to occur through the same time interval possibly due to partial replacement of aragonite by gypsum. The decay of the organic matrix of the aragonitic layer of the shell is thought to play a major role with respect to U-uptake processes and stable isotope shifts. Nevertheless, asymptotic 230Th-ages (˜100 ka) in the inner U-rich layers of the Sangamonian shells, and 234U/ 238U ratios compatible with a marine origin for U, suggest U-uptake within a short diagenetic interval, when marine waters were still bathing the embedding sediment. Thus, U-series ages on fossil mollusks from such a hyper-arid environment should not differ much from the age of the corresponding marine unit deposition. However, the diagenetic enrichments in stable isotopes raise concerns about their use for paleoenvironmental reconstructions under such climate conditions.

  15. Stratigraphy and timing of eolianite deposition on Rottnest Island, Western Australia

    NASA Astrophysics Data System (ADS)

    Hearty, Paul J.

    2003-09-01

    Over 100 whole-rock amino acid racemization (AAR) ratios from outcrops around Rottnest Island (32.0° S Latitude near Perth) indicate distinct pulses of eolian deposition during the late Quaternary. Whole-rock D-alloisoleucine/ L-isoleucine (A/I) ratios from bioclastic carbonate deposits fall into three distinct modal classes or "aminozones." The oldest, Aminozone E, averages 0.33 ± 0.04 ( n = 21). Red palaeosol and thick calcrete generally cap the Aminozone E deposits. A younger Aminozone C averages 0.22 ± 0.03 ( n = 63); comprising two submodes at 0.26 ± 0.01 ( n = 14) and 0.21 ± 0.02 ( n = 49). Multiple dune sets of this interval are interrupted by relatively weak, brown to tan "protosols." A dense, dark brown rendzina palaeosol caps the Aminozone C succession. Ratios from Holocene dune and marine deposits ("Aminozone A") center on 0.11 ± 0.02 ( n = 15), comprising submodes of 0.13 ± 0.01 (9) and 0.09 ± 0.01 (6). Calibration of A/ I averages from Aminozones E and A are provided by U/Th and 14C radiometric ages of 125,000 yr (marine oxygen isotope stage (MIS) 5e and 2000-6000 14C yr B.P. (MIS 1), respectively. The whole-rock A/I results support periodic deposition initiated during MIS 5e, continuing through MIS 5c, and then peaking at the end of MIS 5a, about 70,000-80,000 yr ago. Oceanographic evidence indicates the area was subjected to much colder conditions during MIS 2-4 (10,000 to 70,000 yr ago), greatly slowing the epimerization rate. Eolianite deposition resumed in the mid Holocene (˜6000 yr ago) up to the present. The A/I epimerization pathway constructed from Rottnest Island shows remarkable similarity to that of Bermuda in the North Atlantic (32° N Latitude). These findings suggest that, like Bermuda, the eolian activity on Rottnest occurred primarily during or shortly after interglacial highstands when the shoreline was near the present datum, rather than during glacial lowstands when the coastline was positioned 10-20 km to the west.

  16. Quaternary stratigraphy of Bermuda: A high-resolution pre-Sangamonian rock record

    NASA Astrophysics Data System (ADS)

    Hearty, Paul J.; Vacher, H. Leonard

    Carbonate islands such as Bermuda are created by climatic change. Warm climates and high sea levels stimulate carbonate sediment production that may ultimately result in island growth, while cold glacials expose the platforms to weathering, dissolution and soil formation. Of great importance in Quaternary studies is the ability to decipher this climatic history. Mapping and geochronologic studies have established that Bermuda may have one of the most continuous and detailed Quaternary interglacial depositional records on a carbonate platform. Advances in racemization dating (AAR) have offered a means of deciphering this climatic history and generating a high-resolution stratigraphic and age framework for the Quaternary. Bermudian interglacial units consist predominantly of eolianites, with less voluminous occurrences of beach deposits and calcarenite protosols (Entisols). Glacial or stadial-age terra rossa (aluminous laterite) paleosols, whose degree of development is a function of time of exposure, form boundaries between interglacial units. D-alloiso-leucine/ L-isoleucine ( {A}/{I}) ratios have been determined on marine pelecypods, land snails and whole-rock samples from mapped sections; aminozones have been defined for two Sangamonian and at least five pre-Sangamonian depositional intervals. From kinetic models based on calibration with previously published U-series coral dates, estimated ages of middle Pleistocene and older aminozones are: F = 190,000-265,000 years; G = 300,000-400,000 years; H = 400,000-500,000 years; J = >700,000 years; and K = > 900,000 years. Aminozone G, which is correlated with the upper Town Hill Formation and Isotope Stage 9, is volumetrically the most important depositional event of the middle Pleistocene. The great mass of sediment deposited during this period suggests an interglacial of significant duration and prolonged shelf submergence, during which the island grew to over half its present size. Only the Sangamonian ( sensu lato) rivals Stage 9 in volume of eolianite deposited on the island. Sea-level amplitude, as determined from dated outcrops, appears to correlate well with amplitudinal variations in the oxygen isotope record.

  17. Anaerosolibacter carboniphilus gen. nov., sp. nov., a strictly anaerobic iron-reducing bacterium isolated from coal-contaminated soil.

    PubMed

    Hong, Heeji; Kim, So-Jeong; Min, Ui-Gi; Lee, Yong-Jae; Kim, Song-Gun; Roh, Seong Woon; Kim, Jong-Geol; Na, Jeong-Geol; Rhee, Sung-Keun

    2015-05-01

    A strictly anaerobic, mesophilic, iron-reducing bacterial strain, IRF19(T), was isolated from coal-contaminated soil in the Republic of Korea. IRF19(T) cells were straight, rod-shaped, Gram-staining-negative and motile by means of flagella. The optimum pH and temperature for their growth were determined to be pH 7.5-8.0 and 40 °C, while the optimum range was pH 6.5-10.0 and 20-45 °C, respectively. Strain IRF19(T) did not require NaCl for growth but it tolerated up to 2% (w/v). Growth was observed with yeast extract, D-glucose, D-fructose, D-ribose, D-mannitol, D-mannose, L-serine, L-alanine and L-isoleucine. Fe(III), elemental sulfur, thiosulfate and sulfate were used as electron acceptors. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain IRF19(T) is affiliated to the family Clostridiaceae and is most closely related to Salimesophilobacter vulgaris Zn2(T) (93.5% similarity), Geosporobacter subterraneus VNs68(T) (93.2%) and Thermotalea metallivorans B2-1(T) (92.3%). The major cellular fatty acids of strain IRF19(T) were C14 : 0, iso-C15 : 0 and C16?:?0, and the profile was distinct from those of the closely related species. The major respiratory quinone of strain IRF19(T) was menaquinone MK-5 (V-H2). The main polar lipids were diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unknown phospholipid and two unknown polar lipids. The G+C content of the genomic DNA of strain IRF19(T) was determined to be 37.4 mol%. On the basis of phenotypic, chemotaxonomic and phylogenetic results, strain IRF19(T) is considered to represent a novel species of a novel genus of the family Clostridiaceae , for which we propose the name Anaerosolibacter carboniphilus gen. nov., sp. nov., with the type strain IRF19(T) (?=KCTC 15396(T)?=JCM 19988(T)). PMID:25701849

  18. Global Regulation of Food Supply by Pseudomonas putida DOT-T1E? †

    PubMed Central

    Daniels, Craig; Godoy, Patricia; Duque, Estrella; Molina-Henares, M. Antonia; de la Torre, Jesús; del Arco, José María; Herrera, Carmen; Segura, Ana; Guazzaroni, M. Eugenia; Ferrer, Manuel; Ramos, Juan Luis

    2010-01-01

    Pseudomonas putida DOT-T1E was used as a model to develop a “phenomics” platform to investigate the ability of P. putida to grow using different carbon, nitrogen, and sulfur sources and in the presence of stress molecules. Results for growth of wild-type DOT-T1E on 90 different carbon sources revealed the existence of a number of previously uncharted catabolic pathways for compounds such as salicylate, quinate, phenylethanol, gallate, and hexanoate, among others. Subsequent screening on the subset of compounds on which wild-type DOT-TIE could grow with four knockout strains in the global regulatory genes ?crc, ?crp, ?cyoB, and ?ptsN allowed analysis of the global response to nutrient supply and stress. The data revealed that most global regulator mutants could grow in a wide variety of substrates, indicating that metabolic fluxes are physiologically balanced. It was found that the Crc mutant did not differ much from the wild-type regarding the use of carbon sources. However, certain pathways are under the preferential control of one global regulator, i.e., metabolism of succinate and d-fructose is influenced by CyoB, and l-arginine is influenced by PtsN. Other pathways can be influenced by more than one global regulator; i.e., l-valine catabolism can be influenced by CyoB and Crp (cyclic AMP receptor protein) while phenylethylamine is affected by Crp, CyoB, and PtsN. These results emphasize the cross talk required in order to ensure proper growth and survival. With respect to N sources, DOT-T1E can use a wide variety of inorganic and organic nitrogen sources. As with the carbon sources, more than one global regulator affected growth with some nitrogen sources; for instance, growth with nucleotides, dipeptides, d-amino acids, and ethanolamine is influenced by Crp, CyoB, and PtsN. A surprising finding was that the Crp mutant was unable to flourish on ammonium. Results for assayed sulfur sources revealed that CyoB controls multiple points in methionine/cysteine catabolism while PtsN and Crc are needed for N-acetyl-l-cysteamine utilization. Growth of global regulator mutants was also influenced by stressors of different types (antibiotics, oxidative agents, and metals). Overall and in combination with results for growth in the presence of various stressors, these phenomics assays provide multifaceted insights into the complex decision-making process involved in nutrient supply, optimization, and survival. PMID:20139187

  19. Mixed ligand complex formation of 2-aminobenzamide with Cu(II) in the presence of some amino acids: synthesis, structural, biological, pH-metric, spectrophotometric and thermodynamic studies.

    PubMed

    Dharmaraja, Jeyaprakash; Esakkidurai, Thirugnanasamy; Subbaraj, Paramasivam; Shobana, Sutha

    2013-10-01

    Mixed ligand Cu(II) complexes of 2-aminobenzamide (2AB) and amino acids viz., glycine (gly), L-alanine (ala), L-valine (val) and L-phenylalanine (phe) have been synthesised and characterized by various physico-chemical and spectral techniques. The calculated g-tensor values for Cu(II) complexes at 77 K and 300 K, show the distorted octahedral geometry which has been confirmed from the absorption studies. Consequently, the thermal studies illustrate that the loss of water and acetate molecules in the initial stage which are followed by the decomposition of organic residues. The powder X-ray diffraction and SEM analysis reflect that all the complexes have well-defined crystallinity nature with homogeneous morphology. The binding activities of CT DNA with CuAB complexes have been examined by absorption studies. Further, the oxidative cleavage interactions of 2-aminobenzamide and CuAB complexes with DNA were studied by gel electrophoresis method in H2O2 medium. Also, the complex formation of Cu(II) involving 2-aminobenzamide and amino acids were carried out by a combined pH-metric and spectrophotometric techniques in 50% (v/v) water-ethanol mixture at 300, 310, 320 and 330±0.1 K with I=0.15 mol dm(-3) (NaClO4). In solution, CuAB and CuAB2 species has been detected and the binding modes of 2-aminobenzamide and amino acids in both binary and mixed ligand complexes are same. The calculated stabilization value of ?logK, log X and log X' indicates higher stabilities for the mixed ligand complexes rather than their binary species. The thermodynamic parameters like ?G, ?H and ?S have been determined from temperature dependence of the stability constant. In vitro biological activities of 2-aminobenzamide, CuA and CuAB complexes show remarkable activities against some bacterial and fungal strains. The percentage distribution of various binary and mixed ligand species in solution at dissimilar pH intervals were also evaluated. PMID:23811147

  20. Characterization of a Hemoglobin Adduct from Ethyl Vinyl Ketone Detected in Human Blood Samples.

    PubMed

    Carlsson, Henrik; Motwani, Hitesh V; Osterman Golkar, Siv; Törnqvist, Margareta

    2015-11-16

    Electrophiles have the ability to form adducts to nucleophilic sites in proteins and DNA. Internal exposure to such compounds thus constitutes a risk for toxic effects. Screening of adducts using mass spectrometric methods by adductomic approaches offers possibilities to detect unknown electrophiles present in tissues. Previously, we employed untargeted adductomics to detect 19 unknown adducts to N-terminal valine in hemoglobin (Hb) in human blood. This article describes the characterization of one of these adducts, which was identified as the adduct from ethyl vinyl ketone (EVK). The mean adduct level was 40 ± 12 pmol/g Hb in 12 human blood samples; adduct levels from acrylamide (AA) and methyl vinyl ketone (MVK) were quantified for comparison. Using l-valine p-nitroanilide (Val-pNA), introduced as a model of the N-terminal valine, the rate of formation of the EVK adduct was studied, and the rate constant determined to 200 M(-1)h(-1) at 37 °C. In blood, the reaction rate was too fast to be feasibly measured, EVK showing a half-life <1 min. Parallel experiments with AA and MVK showed that the two vinyl ketones react approximately 2 × 10(3) times faster than AA. The EVK-Hb adduct was found to be unstable, with a half-life of 7.6 h. From the mean adduct level measured in human blood, a daily dose (area under the concentration-time-curve, AUC) of 7 nMh EVK was estimated. The AUC of AA from intake via food is about 20 times higher. EVK is naturally present in a wide range of foods and is also used as a food additive. Most probably, naturally formed EVK is a major source to observed adducts. Evaluation of available toxicological data and information on occurrence of EVK indicate that further studies of EVK are motivated. This study illustrates a quantitative strategy in the initial evaluation of the significance of an adduct detected through adduct screening. PMID:26447499

  1. New Insights into Amino Acid Preservation in the Early Oceans Using Modern Analytical Techniques

    NASA Technical Reports Server (NTRS)

    Parker, Eric T.; Brinton, Karen L.; Burton, Aaron S.; Glavin, Daniel P.; Dworkin, Jason P.; Bada, Jeffrey L.

    2015-01-01

    Protein- and non-protein-amino acids likely occupied the oceans at the time of the origin and evolution of life. Primordial soup-, hydrothermal vent-, and meteoritic-processes likely contributed to this early chemical inventory. Prebiotic synthesis and carbonaceous meteorite studies suggest that non-protein amino acids were likely more abundant than their protein-counterparts. Amino acid preservation before abiotic and biotic destruction is key to biomarker availability in paleoenvironments and remains an important uncertainty. To constrain primitive amino acid lifetimes, a 1992 archived seawater/beach sand mixture was spiked with D,L-alanine, D,L-valine (Val), alpha-aminoisobutyric acid (alpha-AIB), D,L-isovaline (Iva), and glycine (Gly). Analysis by high performance liquid chromatography with fluorescence detection (HPLC-FD) showed that only D-Val and non-protein amino acids were abundant after 2250 days. The mixture was re-analyzed in 2012 using HPLC-FD and a triple quadrupole mass spectrometer (QqQ-MS). The analytical results 20 years after the inception of the experiment were strikingly similar to those after 2250 days. To confirm that viable microorganisms were still present, the mixture was re-spiked with Gly in 2012. Aliquots were collected immediately after spiking, and at 5- and 9-month intervals thereafter. Final HPLC-FD/QqQ-MS analyses were performed in 2014. The 2014 analyses revealed that only alpha-AIB, D,L-Iva, and D-Val remained abundant. The disappearance of Gly indicated that microorganisms still lived in the mixture and were capable of consuming protein amino acids. These findings demonstrate that non-protein amino acids are minimally impacted by biological degradation and thus have very long lifetimes under these conditions. Primitive non-protein amino acids from terrestrial synthesis, or meteorite in-fall, likely experienced great-er preservation than protein amino acids in paleo-oceanic environments. Such robust molecules may have reached a steady state concentration dependent on ocean circulation through hydrothermal systems and synthetic input processes. We are presently trying to estimate this concentration.

  2. Subdomain II of ?-Isopropylmalate Synthase Is Essential for Activity

    PubMed Central

    Zhang, Zilong; Wu, Jian; Lin, Wei; Wang, Jin; Yan, Han; Zhao, Wei; Ma, Jun; Ding, Jianping; Zhang, Peng; Zhao, Guo-Ping

    2014-01-01

    The committed step of leucine biosynthesis, converting acetyl-CoA and ?-ketoisovalerate into ?-isopropylmalate, is catalyzed by ?-isopropylmalate synthase (IPMS), an allosteric enzyme subjected to feedback inhibition by the end product l-leucine. We characterized the short form IPMS from Leptospira biflexa (LbIPMS2), which exhibits a catalytic activity comparable with that of the long form IPMS (LbIPMS1) and has a similar N-terminal domain followed by subdomain I and subdomain II but lacks the whole C-terminal regulatory domain. We found that partial deletion of the regulatory domain of LbIPMS1 resulted in a loss of about 50% of the catalytic activity; however, when the regulatory domain was deleted up to Arg-385, producing a protein that is almost equivalent to the intact LbIPMS2, about 90% of the activity was maintained. Moreover, in LbIPMS2 or LbIPMS1, further deletion of several residues from the C terminus of subdomain II significantly impaired or completely abolished the catalytic activity, respectively. These results define a complete and independently functional catalytic module of IPMS consisting of both the N-terminal domain and the two subdomains. Structural comparison of LbIPMS2 and the Mycobacterium tuberculosis IPMS revealed two different conformations of subdomain II that likely represent two substrate-binding states related to cooperative catalysis. The biochemical and structural analyses together with the previously published hydrogen-deuterium exchange data led us to propose a conformation transition mechanism for feedback inhibition mediated by subdomains I and II that might associated with alteration of the binding affinity toward acetyl-CoA. PMID:25128527

  3. Dry powder pulmonary delivery of cationic PGA-co-PDL nanoparticles with surface adsorbed model protein.

    PubMed

    Kunda, Nitesh K; Alfagih, Iman M; Dennison, Sarah R; Somavarapu, Satyanarayana; Merchant, Zahra; Hutcheon, Gillian A; Saleem, Imran Y

    2015-08-15

    Pulmonary delivery of macromolecules has been the focus of attention as an alternate route of delivery with benefits such as; large surface area, thin alveolar epithelium, rapid absorption and extensive vasculature. In this study, a model protein, bovine serum albumin (BSA) was adsorbed onto cationic PGA-co-PDL polymeric nanoparticles (NPs) prepared by a single emulsion solvent evaporation method using a cationic surfactant didodecyldimethylammonium bromide (DMAB) at 2% w/w (particle size: 128.64±06.01 nm and zeta-potential: +42.32±02.70 mV). The optimum cationic NPs were then surface adsorbed with BSA, NP:BSA (100:4) ratio yielded 10.01±1.19 ?g of BSA per mg of NPs. The BSA adsorbed NPs (5 mg/ml) were then spray-dried in an aqueous suspension of L-leucine (7.5 mg/ml, corresponding to a ratio of 1:1.5/NP:L-leu) using a Büchi-290 mini-spray dryer to produce nanocomposite microparticles (NCMPs) containing cationic NPs. The aerosol properties showed a fine particle fraction (FPF, dae<4.46 ?m) of 70.67±4.07% and mass median aerodynamic diameter (MMAD) of 2.80±0.21 ?m suggesting a deposition in the respiratory bronchiolar region of the lungs.The cell viability was 75.76±03.55% (A549 cell line) at 156.25 ?g/ml concentration after 24 h exposure. SDS-PAGE and circular dichroism (CD) confirmed that the primary and secondary structure of the released BSA was maintained. Moreover, the released BSA showed 78.76±1.54% relative esterolytic activity compared to standard BSA. PMID:26169146

  4. Dietary Leucine Supplementation Improves the Mucin Production in the Jejunal Mucosa of the Weaned Pigs Challenged by Porcine Rotavirus

    PubMed Central

    Mao, Xiangbing; Liu, Minghui; Tang, Jun; Chen, Hao; Chen, Daiwen; Yu, Bing; He, Jun; Yu, Jie; Zheng, Ping

    2015-01-01

    The present study was mainly conducted to determine whether dietary leucine supplementation could attenuate the decrease of the mucin production in the jejunal mucosa of weaned pigs infected by porcine rotavirus (PRV). A total of 24 crossbred barrows weaned at 21 d of age were assigned randomly to 1 of 2 diets supplemented with 1.00% L-leucine or 0.68% L-alanine (isonitrogenous control) for 17 d. On day 11, all pigs were orally infused PRV or the sterile essential medium. During the first 10 d of trial, dietary leucine supplementation could improve the feed efficiency (P = 0.09). The ADG and feed efficiency were impaired by PRV infusion (P<0.05). PRV infusion also increased mean cumulative score of diarrhea, serum rotavirus antibody concentration and crypt depth of the jejunal mucosa (P<0.05), and decreased villus height: crypt depth (P = 0.07), goblet cell numbers (P<0.05), mucin 1 and 2 concentrations (P<0.05) and phosphorylated mTOR level (P<0.05) of the jejunal mucosa in weaned pigs. Dietary leucine supplementation could attenuate the effects of PRV infusion on feed efficiency (P = 0.09) and mean cumulative score of diarrhea (P = 0.09), and improve the effects of PRV infusion on villus height: crypt depth (P = 0.06), goblet cell numbers (P<0.05), mucin 1 (P = 0.08) and 2 (P = 0.07) concentrations and phosphorylated mTOR level (P = 0.08) of the jejunal mucosa in weaned pigs. These results suggest that dietary 1% leucine supplementation alleviated the decrease of mucin production and goblet cell numbers in the jejunal mucosa of weaned pigs challenged by PRV possibly via activation of the mTOR signaling. PMID:26336074

  5. Discovery of new angiotensin converting enzyme (ACE) inhibitors from medicinal plants to treat hypertension using an in vitro assay

    PubMed Central

    2013-01-01

    Background and purpose of the study Angiotensin converting enzyme (ACE) inhibitors plays a critical role in treating hypertension. The purpose of the present investigation was to evaluate ACE inhibition activity of 50 Iranian medicinal plants using an in vitro assay. Methods The ACE activity was evaluated by determining the hydrolysis rate of substrate, hippuryl-L-histidyl-L-leucine (HHL), using reverse phase high performance liquid chromatography (RP-HPLC). Total phenolic content and antioxidant activity were determined by Folin-Ciocalteu colorimetric method and DPPH radical scavenging assay respectively. Results Six extracts revealed?>?50% ACE inhibition activity at 330 ?g/ml concentration. They were Berberis integerrima Bunge. (Berberidaceae) (88.2?±?1.7%), Crataegus microphylla C. Koch (Rosaceae) (80.9?±?1.3%), Nymphaea alba L. (Nymphaeaceae) (66.3?±?1.2%), Onopordon acanthium L. (Asteraceae) (80.2?±?2.0%), Quercus infectoria G. Olivier. (Fagaceae) (93.9?±?2.5%) and Rubus sp. (Rosaceae) (51.3?±?1.0%). Q. infectoria possessed the highest total phenolic content with 7410?±?101 mg gallic acid/100 g dry plant. Antioxidant activity of Q. infectoria (IC50 value 1.7?±?0.03 ?g/ml) was more than that of BHT (IC50 value of 10.3?±?0.15 ?g/ml) and Trolox (IC50 value of 3.2?±?0.06 ?g/ml) as the positive controls. Conclusions In this study, we introduced six medicinal plants with ACE inhibition activity. Despite the high ACE inhibition and antioxidant activity of Q. infectoria, due to its tannin content (tannins interfere in ACE activity), another plant, O. acanthium, which also had high ACE inhibition and antioxidant activity, but contained no tannin, could be utilized in further studies for isolation of active compounds. PMID:24359711

  6. Operon for Biosynthesis of Lipstatin, the Beta-Lactone Inhibitor of Human Pancreatic Lipase

    PubMed Central

    Bai, Tingli; Zhang, Daozhong; Lin, Shuangjun; Long, Qingshan; Wang, Yemin; Ou, Hongyu; Kang, Qianjin; Deng, Zixin; Liu, Wen

    2014-01-01

    Lipstatin, isolated from Streptomyces toxytricini as a potent and selective inhibitor of human pancreatic lipase, is a precursor for tetrahydrolipstatin (also known as orlistat, Xenical, and Alli), the only FDA-approved antiobesity medication for long-term use. Lipstatin features a 2-hexyl-3,5-dihydroxy-7,10-hexadecadienoic-?-lactone structure with an N-formyl-l-leucine group attached as an ester to the 5-hydroxy group. It has been suggested that the ?-branched 3,5-dihydroxy fatty acid ?-lactone moiety of lipstatin in S. toxytricini is derived from Claisen condensation between two fatty acid substrates, which are derived from incomplete oxidative degradation of linoleic acid based on feeding experiments. In this study, we identified a six-gene operon (lst) that was essential for the biosynthesis of lipstatin by large-deletion, complementation, and single-gene knockout experiments. lstA, lstB, and lstC, which encode two ?-ketoacyl–acyl carrier protein synthase III homologues and an acyl coenzyme A (acyl-CoA) synthetase homologue, were indicated to be responsible for the generation of the ?-branched 3,5-dihydroxy fatty acid backbone. Subsequently, the nonribosomal peptide synthetase (NRPS) gene lstE and the putative formyltransferase gene lstF were involved in decoration of the ?-branched 3,5-dihydroxy fatty acid chain with an N-formylated leucine residue. Finally, the 3?-hydroxysteroid dehydrogenase-homologous gene lstD might be responsible for the reduction of the ?-keto group of the biosynthetic intermediate, thereby facilitating the formation of the unique ?-lactone ring. PMID:25239907

  7. Cyanobacterial toxins: removal during drinking water treatment, and human risk assessment.

    PubMed Central

    Hitzfeld, B C; Höger, S J; Dietrich, D R

    2000-01-01

    Cyanobacteria (blue-green algae) produce toxins that may present a hazard for drinking water safety. These toxins (microcystins, nodularins, saxitoxins, anatoxin-a, anatoxin-a(s), cylindrospermopsin) are structurally diverse and their effects range from liver damage, including liver cancer, to neurotoxicity. The occurrence of cyanobacteria and their toxins in water bodies used for the production of drinking water poses a technical challenge for water utility managers. With respect to their removal in water treatment procedures, of the more than 60 microcystin congeners, microcystin-LR (L, L-leucine; R, L-arginine) is the best studied cyanobacterial toxin, whereas information for the other toxins is largely lacking. In response to the growing concern about nonlethal acute and chronic effects of microcystins, the World Health Organization has recently set a new provisional guideline value for microcystin-LR of 1.0 microg/L drinking water. This will lead to further efforts by water suppliers to develop effective treatment procedures to remove these toxins. Of the water treatment procedures discussed in this review, chlorination, possibly micro-/ultrafiltration, but especially ozonation are the most effective in destroying cyanobacteria and in removing microcystins. However, these treatments may not be sufficient during bloom situations or when a high organic load is present, and toxin levels should therefore be monitored during the water treatment process. In order to perform an adequate human risk assessment of microcystin exposure via drinking water, the issue of water treatment byproducts will have to be addressed in the future. PMID:10698727

  8. Metabolomics analysis and biomarker identification for brains of rats exposed subchronically to the mixtures of low-dose cadmium and chlorpyrifos.

    PubMed

    Xu, Ming-Yuan; Sun, Ying-Jian; Wang, Pan; Xu, Hai-Yang; Chen, Li-Ping; Zhu, Li; Wu, Yi-Jun

    2015-06-15

    Cadmium (Cd) and chlorpyrifos (CPF) are widespread harmful environmental pollutants with neurotoxicity to mammals. Although the exposure to Cd and CPF at the same time may pose a significant risk to human health, the subchronic combined neurotoxicity of these two chemicals at low levels in the brain is poorly understood. In this study, we treated rats with three doses (low, middle, and high) of Cd, CPF, or their mixture for 90 days. No obvious symptom was observed in the treated animals except those treated with high-dose CPF. Histological results showed that middle and high doses of the chemicals caused neuronal cell damage in brains. GC-MS-based metabonomics analysis revealed that energy and amino acid metabolism were disturbed in the brains of rats exposed to the two chemicals and their combinations even at low doses. We further identified the unique brain metabolite biomarkers for rats treated with Cd, CPF, or both. Two amino acids, tyrosine and l-leucine, were identified as the biomarkers for Cd and CPF treatment, respectively. In addition, a set of five unique biomarkers (1,2-propanediol-1-phosphate, d-gluconic acid, 9H-purine, serine, and 2-ketoisovaleric acid) was identified for the mixtures of Cd and CPF. Therefore, the metabolomics analysis is more sensitive than regular clinical observation and pathological examination for detecting the neurotoxicity of the individual and combined Cd and CPF at low levels. Overall, these results identified the unique biomarkers for Cd and CPF exposure, which provide new insights into the mechanism of their joint toxicity. PMID:25856237

  9. Synergic action of insulin and genistein on Na+/K+/2Cl- cotransporter in renal epithelium.

    PubMed

    Ueda-Nishimura, Tomoko; Niisato, Naomi; Miyazaki, Hiroaki; Naito, Yuji; Yoshida, Norimasa; Yoshikawa, Toshikazu; Nishino, Hoyoku; Marunaka, Yoshinori

    2005-07-15

    Transepithelial Cl(-) secretion in polarized renal A6 cells is composed of two steps: (1) Cl(-) entry step across the basolateral membrane mediated by Na(+)/K(+)/2Cl(-) cotransporter (NKCC) and (2) Cl(-) releasing step across the apical membrane via cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel. We estimated CFTR Cl(-) channel activity and transcellular Cl(-) secretion by measuring 5-nitro 2-(3-phenylpropylamino)benzoate (NPPB, a blocker of CFTR Cl(-) channel)-sensitive transepithelial conductance (Gt) and short-circuit current (Isc), respectively. Pretreatment with 1 microM insulin for 24 h had no effects on NPPB-sensitive Gt or Isc. On the other hand, in A6 cells treated with carbobenzoxy-L-leucyl-leucyl-L-leucinal (MG132; 100 microM for 2 h) that inhibits endocytosis of proteins at the plasma membrane into the cytosolic space, insulin pretreatment increased the NPPB-sensitive Isc with no effects on NPPB-sensitive Gt. Genistein (100 microM) induced sustained increases in NPPB-sensitive Gt and Isc, which were diminished by brefeldin A (a blocker of protein translocation to Golgi apparatus from endoplasmic reticulum). Co-application of insulin and genistein synergically stimulated the NPPB-sensitive Isc without any effects on NPPB-sensitive Gt. These observations suggest that: (1) insertion and endocytosis of NKCC are stimulated by insulin, (2) the insulin-induced stimulation of NKCC insertion into the basolateral membrane is offset by the stimulatory action on NKCC endocytosis from the basolateral membrane, (3) genistein stimulates insertion of both CFTR Cl(-) channel into the apical membrane and NKCC into the basolateral membrane, and (4) insulin and genistein synergically stimulated NKCC insertion into the basolateral membrane. PMID:15925323

  10. Molecular Imaging of Urogenital Diseases

    PubMed Central

    Cho, Steve Y.; Szabo, Zsolt; Morgan, Russell H.

    2013-01-01

    There is an expanding and exciting repertoire of PET imaging radiotracers for urogenital diseases, particularly in prostate cancer, renal cell cancer, and renal function. Prostate cancer is the most commonly diagnosed cancer in men. With growing therapeutics options for the treatment of metastatic and advanced prostate cancer, improved functional imaging of prostate cancer beyond the limitations of conventional computed tomography (CT) and bone scan (BS) is becoming increasingly important for both clinical management and drug development. PET radiotracers beyond 18F-Fluorodeoxyglucose (FDG) for prostate cancer include 18F-Sodium Fluoride, 11C-Choline and 18F-Fluorocholine and 11C-Acetate. Other emerging and promising PET radiotracers include a synthetic L-leucine amino acid analog (anti-18F-FACBC), dihydrotestosterone analog (18F-FDHT) and prostate specific membrane antigen (PSMA) based PET radiotracers (ex. 18F-DCFBC, 89Zr-DFO-J591, 68Ga(HBED-CC)). Larger prospective and comparison trials of these PET radiotracers are needed to establish the role of PET/CT in prostate cancer. Renal cell cancer imaging with FDG PET/CT although available can be limited, especially for detection of the primary tumor. Improved renal cell cancer detection with carbonic anhydrase IX (CAIX) based antibody (124I-girentuximab) and radioimmunotherapy targeting with 177Lu-cG250 appear promising. Evaluation of renal injury by imaging renal perfusion and function with novel PET radiotracers include p-18F-fluorohippurate (18F-PFH) and hippurate m-cyano-p-18F-fluorohippurate (18F-CNPFH) and Rubidium-82 chloride (typically used for myocardial perfusion imaging). Renal receptor imaging of the renal renin angiotensin system with a variety of selective PET radioligands are also becoming available for clinical translation. PMID:24484747

  11. Molecular events involved in up-regulating human Na+-independent neutral amino acid transporter LAT1 during T-cell activation.

    PubMed Central

    Nii, T; Segawa, H; Taketani, Y; Tani, Y; Ohkido, M; Kishida, S; Ito, M; Endou, H; Kanai, Y; Takeda, E; Miyamoto Ki

    2001-01-01

    We investigated the regulation of system-L amino acid transporter (LAT1) during T-cell activation. In quiescent T-cells, L-leucine transport is mediated mainly by the system-L amino acid transport system and is increased significantly during T-cell activation by PMA and ionomycin. In quiescent T-cells, the LAT1 protein was heterocomplexed with 4F2 heavy chain (4F2hc) in the plasma membrane. During T-cell activation, the amounts of 4F2hc and LAT1 heterocomplex were significantly elevated compared with those in quiescent T-cells. In addition, by Northern-blot analysis, these increments were found to be due to elevated levels of LAT1 and 4F2hc mRNA. Transient expression of constructs comprising various LAT1 gene promoter fragments, which contained all three of the GC boxes, was sufficient for promoting luciferase expression in Jurkat T-cells, but the promoter of the LAT1 gene did not respond to PMA and ionomycin. Similar observations were observed in the human 4F2hc gene promoter. In nuclear run-on assay, the LAT1 and 4F2hc genes were actively transcribed even in quiescent T-cells, but the low levels of both transcripts were shown to be the result of a block to transcription elongation within the exon 1 intron 1 regions. These findings indicated that a removal of the block to mRNA elongation stimulates the induction of system-L amino acid transporter gene transcripts (LAT1 and 4F2hc) in activated T-cells. PMID:11535130

  12. Estradiol potentiation of gonadotropin-releasing hormone responsiveness in the anterior pituitary is mediated by an increase in gonadotropin-releasing hormone receptors

    SciTech Connect

    Menon, M.; Peegel, H.; Katta, V.

    1985-02-15

    In order to investigate the mechanism by which 17 beta-estradiol potentiates the action of gonadotropin-releasing hormone on the anterior pituitary in vitro, cultured pituitary cells from immature female rats were used as the model system. Cultures exposed to estradiol at concentrations ranging from 10(-10) to 10(-6) mol/L exhibited a significant augmentation of luteinizing hormone release in response to a 4-hour gonadotropin-releasing hormone (10 mumol/L) challenge at a dose of 10(-9) mol/L compared to that of control cultures. The estradiol augmentation of luteinizing hormone release was also dependent on the duration of estradiol exposure. When these cultures were incubated with tritium-labeled L-leucine, an increase in incorporation of radiolabeled amino acid into total proteins greater than that in controls was observed. A parallel stimulatory effect of estradiol on iodine 125-labeled D-Ala6 gonadotropin-releasing hormone binding was observed. Cultures incubated with estradiol at different concentrations and various lengths of time showed a significant increase in gonadotropin-releasing hormone binding capacity and this increase was abrogated by cycloheximide. Analysis of the binding data showed that the increase in gonadotropin-releasing hormone binding activity was due to a change in the number of gonadotropin-releasing hormone binding sites rather than a change in the affinity. These results suggest that (1) estradiol treatment increases the number of pituitary receptors for gonadotropin-releasing hormone, (2) the augmentary effect of estradiol on luteinizing hormone release at the pituitary level might be mediated, at least in part, by the increase in the number of binding sites of gonadotropin-releasing hormone, and (3) new protein synthesis may be involved in estradiol-mediated gonadotropin-releasing hormone receptor induction.

  13. Myocardial Oxidative Metabolism and Protein Synthesis during Mechanical Circulatory Support by Extracorporeal Membrane Oxygenation

    SciTech Connect

    Priddy, MD, Colleen M.; Kajimoto, Masaki; Ledee, Dolena; Bouchard, Bertrand; Isern, Nancy G.; Olson, Aaron; Des Rosiers, Christine; Portman, Michael A.

    2013-02-01

    Extracorporeal membrane oxygenation (ECMO) provides mechanical circulatory support essential for survival in infants and children with acute cardiac decompensation. However, ECMO also causes metabolic disturbances, which contribute to total body wasting and protein loss. Cardiac stunning can also occur which prevents ECMO weaning, and contributes to high mortality. The heart may specifically undergo metabolic impairments, which influence functional recovery. We tested the hypothesis that ECMO alters oxidative. We focused on the amino acid leucine, and integration with myocardial protein synthesis. We used a translational immature swine model in which we assessed in heart (i) the fractional contribution of leucine (FcLeucine) and pyruvate (FCpyruvate) to mitochondrial acetyl-CoA formation by nuclear magnetic resonance and (ii) global protein fractional synthesis (FSR) by gas chromatography-mass spectrometry. Immature mixed breed Yorkshire male piglets (n = 22) were divided into four groups based on loading status (8 hours of normal circulation or ECMO) and intracoronary infusion [13C6,15N]-L-leucine (3.7 mM) alone or with [2-13C]-pyruvate (7.4 mM). ECMO decreased pulse pressure and correspondingly lowered myocardial oxygen consumption (~ 40%, n = 5), indicating decreased overall mitochondrial oxidative metabolism. However, FcLeucine was maintained and myocardial protein FSR was marginally increased. Pyruvate addition decreased tissue leucine enrichment, FcLeucine, and Fc for endogenous substrates as well as protein FSR. Conclusion: The heart under ECMO shows reduced oxidative metabolism of substrates, including amino acids, while maintaining (i) metabolic flexibility indicated by ability to respond to pyruvate, and (ii) a normal or increased capacity for global protein synthesis, suggesting an improved protein balance.

  14. Synthesis and biological activity of peptides equivalent to the IP22 repeat motif found in proteins from Dictyostelium and Mimivirus.

    PubMed

    Catalano, Andrew; Luo, Wei; Wang, Yali; O'Day, Danton H

    2010-10-01

    A novel IP22 repeat motif of unknown function was discovered previously that comprises almost the entire structure of cmbB, a calmodulin-binding protein from Dictyostelium discoideum. An analysis of over 2000 IP22 repeats across 130 different proteins from different species allowed us to define a prototypical IP22 repeat: I/LPxxhxxhxhxxxhxxxhxxxx (where L=leucine, I=isoleucine, h=any hydrophobic amino acid, x=any amino acid). Here we describe the synthesis of three peptide variants of the IP22 motif: IP22-1 (IPNSVTSLKFGDGFNQPLTPGT; 22aa); IP22-2 (LPSTLKTISLSNSTDKKIFKNS; 22aa); and, IP22-3 (IPKSLRSLFLGKGYNQPLEF; 20aa) plus a control peptide from the N-term of cmbB (HNMNPFSPQLDEKKNSHIVEY; 21aa). The structure and purity of synthesized peptides were verified by HPLC and mass spectrometry. The peptides all dose-dependently enhanced random cell motility and cAMP-mediated chemotaxis in Dictyostelium but IP22-3 was most effective peaking in activity around 50 ?M. Fluorescein isothiocyanate (FITC)-conjugated IP22 peptides did not penetrate cells suggesting these peptides affect cell motility via cell surface interactions. Treatment of cells with FITC-IP22 peptides also led to enhanced cell motility equivalent to the non-conjugated peptides. Treatment of IP22-3-stimulated cells with 50 ?M LY294002, 20 ?M quinacrine or both suggests that IP22-3 requires both phosphoinositol 3-kinase and phospholipase A2 signaling to elicit its effects, a mechanism unique from EGFL motility enhancing peptides. The mechanism of action and potential uses of IP22 repeat peptides are discussed. PMID:20624437

  15. Characterization of angiotensin converting enzyme by [3H]captopril binding.

    PubMed

    Strittmatter, S M; Snyder, S H

    1986-02-01

    We demonstrate that [3H]captopril selectively labels angiotensin converting enzyme (EC 3.14.15.1) (ACE) and employ this technique to probe enzyme-inhibitor interactions. [3H]Captopril binding sites copurify with ACE activity from rat lung or rat brain. At each stage of the purification the Vmax/Bmax ratio, or kcat is 17,000 min-1 with hippuryl-L-histidyl-L-leucine as substrate. The specificity of [3H]captopril binding is apparent in the similar pharmacologic profile of inhibition in crude and pure enzyme preparations. Furthermore, binding sites and enzyme activity comigrate in gel filtration and sucrose gradient sedimentation experiments. Equilibrium analysis of [3H]captopril binding to purified ACE reveals a Bmax of 6 nmol/mg of protein (KD = 2 nM), demonstrating the presence of one inhibitor binding site per polypeptide chain. The kinetics of [3H]captopril binding are characterized by monophasic association and dissociation rate constants of 0.026 nM-1 min-1 and 0.034 min-1, respectively. The affinity of ACE for both [3H] captopril and enalaprilat is greater at 37 degrees than at 0 degree, demonstrating that these interactions are entropically driven, perhaps by an isomerization of the enzyme molecule. The ionic requirements for [3H]captopril binding and substrate catalysis differ. Chloride and bromide ion, but not fluoride, are about 100-fold more potent stimulators of binding than catalysis. When the active site Zn2+ ion is replaced by Co2+, catalysis was stimulated 2-fold, whereas binding activity was decreased by 70%. PMID:3005826

  16. Myocardial Reloading After Extracorporeal Membrane Oxygenation Alters Substrate Metabolism While Promoting Protein Synthesis

    PubMed Central

    Kajimoto, Masaki; O'Kelly Priddy, Colleen M.; Ledee, Dolena R.; Xu, Chun; Isern, Nancy; Olson, Aaron K.; Rosiers, Christine Des; Portman, Michael A.

    2013-01-01

    Background Extracorporeal membrane oxygenation (ECMO) unloads the heart, providing a bridge to recovery in children after myocardial stunning. ECMO also induces stress which can adversely affect the ability to reload or wean the heart from the circuit. Metabolic impairments induced by altered loading and/or stress conditions may impact weaning. However, cardiac substrate and amino acid requirements upon weaning are unknown. We assessed the hypothesis that ventricular reloading with ECMO modulates both substrate entry into the citric acid cycle (CAC) and myocardial protein synthesis. Methods and Results Sixteen immature piglets (7.8 to 15.6 kg) were separated into 2 groups based on ventricular loading status: 8?hour ECMO (UNLOAD) and postwean from ECMO (RELOAD). We infused into the coronary artery [2?13C]?pyruvate as an oxidative substrate and [13C6]?L?leucine as an indicator for amino acid oxidation and protein synthesis. Upon RELOAD, each functional parameter, which were decreased substantially by ECMO, recovered to near?baseline level with the exclusion of minimum dP/dt. Accordingly, myocardial oxygen consumption was also increased, indicating that overall mitochondrial metabolism was reestablished. At the metabolic level, when compared to UNLOAD, RELOAD altered the contribution of various substrates/pathways to tissue pyruvate formation, favoring exogenous pyruvate versus glycolysis, and acetyl?CoA formation, shifting away from pyruvate decarboxylation to endogenous substrate, presumably fatty acids. Furthermore, there was also a significant increase of tissue concentrations for all CAC intermediates (?80%), suggesting enhanced anaplerosis, and of fractional protein synthesis rates (>70%). Conclusions RELOAD alters both cytosolic and mitochondrial energy substrate metabolism, while favoring leucine incorporation into protein synthesis rather than oxidation in the CAC. Improved understanding of factors governing these metabolic perturbations may serve as a basis for interventions and thereby improve success rate from weaning from ECMO. PMID:23959443

  17. The Ribosome Biogenesis Protein Nol9 Is Essential for Definitive Hematopoiesis and Pancreas Morphogenesis in Zebrafish

    PubMed Central

    Ferreira, Lauren; Fleischmann, Tobias; Weis, Félix; Fernández-Pevida, Antonio; Harvey, Steven A.; Wali, Neha; Warren, Alan J.; Barroso, Inês; Stemple, Derek L.; Cvejic, Ana

    2015-01-01

    Ribosome biogenesis is a ubiquitous and essential process in cells. Defects in ribosome biogenesis and function result in a group of human disorders, collectively known as ribosomopathies. In this study, we describe a zebrafish mutant with a loss-of-function mutation in nol9, a gene that encodes a non-ribosomal protein involved in rRNA processing. nol9sa1022/sa1022 mutants have a defect in 28S rRNA processing. The nol9sa1022/sa1022 larvae display hypoplastic pancreas, liver and intestine and have decreased numbers of hematopoietic stem and progenitor cells (HSPCs), as well as definitive erythrocytes and lymphocytes. In addition, ultrastructural analysis revealed signs of pathological processes occurring in endothelial cells of the caudal vein, emphasizing the complexity of the phenotype observed in nol9sa1022/sa1022 larvae. We further show that both the pancreatic and hematopoietic deficiencies in nol9sa1022/sa1022 embryos were due to impaired cell proliferation of respective progenitor cells. Interestingly, genetic loss of Tp53 rescued the HSPCs but not the pancreatic defects. In contrast, activation of mRNA translation via the mTOR pathway by L-Leucine treatment did not revert the erythroid or pancreatic defects. Together, we present the nol9sa1022/sa1022 mutant, a novel zebrafish ribosomopathy model, which recapitulates key human disease characteristics. The use of this genetically tractable model will enhance our understanding of the tissue-specific mechanisms following impaired ribosome biogenesis in the context of an intact vertebrate. PMID:26624285

  18. Poly(ester amide) co-polymers promote blood and tissue compatibility.

    PubMed

    DeFife, Kristin M; Grako, Kathy; Cruz-Aranda, Gina; Price, Sharon; Chantung, Ron; Macpherson, Kassie; Khoshabeh, Ramina; Gopalan, Sindhu; Turnell, William G

    2009-01-01

    A family of biodegradable poly(ester amide) (PEA) co-polymers based on naturally occurring alpha-amino acids has been developed for applications ranging from biomedical device coatings to delivery of therapeutic biologics. An important feature of PEA co-polymer coatings may be their ability to promote a natural healing response. To gain insight into this process, representative elastomeric PEAs designed for a cardiovascular stent coating were compared to non-degradable and biodegradable polymers in a series of in vitro assays to examine blood and cellular responses. Each PEA contained L-leucine and L-lysine with the latter derivatized by either benzyl alcohol or the nitroxide radical 4-amino TEMPO as a pendant group. Monocytes adherent to PEA secreted reduced levels of the pro-inflammatory interleukins (IL)-6 and IL-1 beta into the culture supernatant compared to those on comparison polymers but secreted significantly higher amounts of the anti-inflammatory mediator, IL-1 receptor antagonist. As a measure of pro-healing tissue compatibility for cardiovascular applications, endothelial cells adhered, spread, and proliferated on PEA. PEA was also determined to be non-hemolytic and did not deplete platelets or leukocytes from whole blood. ATP release from freshly isolated human platelets on PEA, a measure of their activation, was comparable to the well-known and compatible comparison polymers poly(lactic-co-glycolic acid) and n-poly(butyl methacrylate). Taken together, these in vitro studies of the blood and tissue compatibility of these biodegradable, alpha-amino-acid-based PEAs suggest that they may support a more natural healing response by attenuating the pro-inflammatory reaction to the implant and promoting growth of appropriate cells for repair of the tissue architecture. PMID:19619393

  19. Defects of protein production in erythroid cells revealed in a zebrafish Diamond-Blackfan anemia model for mutation in RPS19.

    PubMed

    Zhang, Y; Ear, J; Yang, Z; Morimoto, K; Zhang, B; Lin, S

    2014-01-01

    Diamond-Blackfan anemia (DBA) is a rare congenital red cell aplasia that classically presents during early infancy in DBA patients. Approximately, 25% of patients carry a mutation in the ribosomal protein (RP) S19 gene; mutations in RPS24, RPS17, RPL35A, RPL11, and RPL5 have been reported. How ribosome protein deficiency causes defects specifically to red blood cells in DBA has not been well elucidated. To genetically model the predominant ribosome defect in DBA, we generated an rps19 null mutant through the use of TALEN-mediated gene targeting in zebrafish. Molecular characterization of this mutant line demonstrated that rps19 deficiency reproduced the erythroid defects of DBA, including a lack of mature red blood cells and p53 activation. Notably, we found that rps19 mutants' production of globin proteins was significantly inhibited; however, globin transcript level was either increased or unaffected in rps19 mutant embryos. This dissociation of RNA/protein levels of globin genes was confirmed in another zebrafish DBA model with defects in rpl11. Using transgenic zebrafish with specific expression of mCherry in erythroid cells, we showed that protein production in erythroid cells was decreased when either rps19 or rpl11 was mutated. L-Leucine treatment alleviated the defects of protein production in erythroid cells and partially rescued the anemic phenotype in both rps19 and rpl11 mutants. Analysis of this model suggests that the decreased protein production in erythroid cells likely contributes to the blood-specific phenotype of DBA. Furthermore, the newly generated rps19 zebrafish mutant should serve as a useful animal model to study DBA. Our in vivo findings may provide clues for the future therapy strategy for DBA. PMID:25058426

  20. Formation of Isobutene from 3-Hydroxy-3-Methylbutyrate by Diphosphomevalonate Decarboxylase?

    PubMed Central

    Gogerty, David S.; Bobik, Thomas A.

    2010-01-01

    Isobutene is an important commercial chemical used for the synthesis of butyl rubber, terephthalic acid, specialty chemicals, and a gasoline performance additive known as alkylate. Currently, isobutene is produced from petroleum and hence is nonrenewable. Here, we report that the Saccharomyces cerevisiae mevalonate diphosphate decarboxylase (ScMDD) can convert 3-hydroxy-3-methylbutyrate (3-HMB) to isobutene. Whole cells of Escherichia coli producing ScMDD with an N-terminal 6×His tag (His6-ScMDD) formed isobutene from 3-HMB at a rate of 154 pmol h?1 g cells?1. In contrast, no isobutene was detected from control cells lacking ScMDD. His6-ScMDD was purified by nickel affinity chromatography and shown to produce isobutene from 3-HMB at a rate of 1.33 pmol min?1 mg?1 protein. Controls showed that both His6-ScMDD and 3-HMB were required for detectable isobutene formation. Isobutene was identified by gas chromatography (GC) with flame ionization detection as well as by GC-mass spectrometry (MS). ScMDD was subjected to error-prone PCR, and two improved variants were characterized, ScMDD1 (I145F) and ScMDD2 (R74H). Whole cells of E. coli producing ScMDD1 and ScMDD2 produced isobutene from 3-HMB at rates of 3,000 and 5,888 pmol h?1 g cells?1, which are 19- and 38-fold increases compared to rates for cells producing His6-ScMDD. This showed that genetic modifications can be used to increase the rate at which ScMDD converts 3-HMB to isobutene. Because 3-HMB can be produced from l-leucine, ScMDD has a potential application for the production of renewable isobutene. Moreover, isobutene is a gas, which might simplify its purification from a fermentation medium, substantially reducing production costs. PMID:20971863

  1. Evaluation and Modification of Commercial Dry Powder Inhalers for the Aerosolization of a Submicrometer Excipient Enhanced Growth (EEG) Formulation

    PubMed Central

    Son, Yoen-Ju; Longest, P. Worth; Tian, Geng; Hindle, Michael

    2013-01-01

    The aim of this study was to evaluate and modify commercial dry powder inhalers (DPIs) for the aerosolization of a submicrometer excipient enhanced growth (EEG) formulation. The optimized device and formulation combination was then tested in a realistic in vitro mouth-throat - tracheobronchial (MT-TB) model. An optimized EEG submicrometer powder formulation, consisting of albuterol sulfate (drug), mannitol (hygroscopic excipient), L-leucine (dispersion enhancer) and poloxamer 188 (surfactant) in a ratio of 30:48:20:2 was prepared using a Büchi Nano spray dryer. The aerosolization performance of the EEG formulation was evaluated with 5 conventional DPIs: Aerolizer, Novolizer, HandiHaler, Exubera and Spiros. To improve powder dispersion, the HandiHaler was modified with novel mouth piece (MP) designs. The aerosol performance of each device was assessed using a next generation impactor (NGI) at airflow rates generating a pressure drop of 4 kPa across the DPI. In silico and in vitro deposition and hygroscopic growth of formulations was studied using a MT-TB airway geometry model. Both Handihaler and Aerolizer produced high emitted doses (ED) together with a significant submicrometer aerosol fraction. A modified HandiHaler with a MP including a three-dimensional (3D) array of rods (HH-3D) produced a submicrometer particle fraction of 38.8% with a conventional fine particle fraction (% <5µm) of 97.3%. The mass median diameter (MMD) of the aerosol was reduced below 1 µm using this HH-3D DPI. The aerosol generated from the modified HandiHaler increased to micrometer size (2.8 µm) suitable for pulmonary deposition, when exposed to simulated respiratory conditions, with negligible mouth-throat (MT) deposition (2.6 %). PMID:23608613

  2. Regulation of Bud Rest in Tubers of Potato, Solanum tuberosum L

    PubMed Central

    Clegg, M. D.; Rappaport, Lawrence

    1970-01-01

    The rest period of the potato tuber was studied in relation to certain biochemical changes that are induced by gibberellic acid (GA3). The concentration of reducing sugars in excised plugs with buds treated with 10?4m GA3 decreased in the first 4 hours after treatment and then rapidly increased up to 70 hours. The pattern in control buds was similar, but the changes occurred more slowly. The response to GA3 is temperature-dependent and is not limited to any particular tissue of the tuber. The concentration of reducing sugars in excised buds increased proportionally to the log of the concentration of GA3 in a range from 10?8 to 10?4m. At 10?3m, GA3 slightly inhibited production of reducing sugars. Malonate inhibits the initial decrease and the subsequent increase in reducing sugars in control buds, but not the increase induced by GA3. Total protein in buds was not influenced by 10?4m GA3 over a period of 40 hours, nor did activity of ?-amylase increase significantly until 20 hours after beginning of treatment. Invertase activity was present initially and, in the presence of GA3, increased after 20 hours. GA3 had no effect on starch phosphorylase activity, which was always present and remained steady over the 20-hour test period. In short term experiments the rate of protein synthesis and synthesis of specific protein fractions were not affected by 10?4m GA3, as measured by the incorporation of l-phenylalanine-U-14C or by experiments with 14C- and 3H- labeled l-phenylalanine or l-leucine. PMID:16657283

  3. Effects of CETP inhibition on triglyceride-rich lipoprotein composition and apoB-48 metabolism

    PubMed Central

    Diffenderfer, Margaret R.; Brousseau, Margaret E.; Millar, John S.; Barrett, P. Hugh R.; Nartsupha, Chorthip; Schaefer, Peter M.; Wolfe, Megan L.; Dolnikowski, Gregory G.; Rader, Daniel J.; Schaefer, Ernst J.

    2012-01-01

    Cholesteryl ester transfer protein (CETP) facilitates the transfer of HDL cholesteryl ester to triglyceride-rich lipoproteins (TRL). This study aimed to determine the effects of CETP inhibition with torcetrapib on TRL composition and apoB-48 metabolism. Study subjects with low HDL cholesterol (<40 mg/dl), either untreated (n = 9) or receiving atorvastatin 20 mg daily (n = 9), received placebo for 4 weeks, followed by torcetrapib 120 mg once daily for the next 4 weeks. A subset of the subjects not treated with atorvastatin participated in a third phase (n = 6), in which they received torcetrapib 120 mg twice daily for an additional 4 weeks. At the end of each phase, all subjects received a primed-constant infusion of [5,5,5-2H3]L-leucine, while in the constantly fed state, to determine the kinetics of TRL apoB-48 and TRL composition. Relative to placebo, torcetrapib markedly reduced TRL CE levels in all groups (??69%; P < 0.005). ApoB-48 pool size (PS) and production rate (PR) decreased in the nonatorvastatin once daily (PS: ?49%, P = 0.007; PR: ?49%, P = 0.005) and twice daily (PS: ?30%, P = 0.01; PR: ?27%, P = 0.13) cohorts. In the atorvastatin cohort, apoB-48 PS and PR, which were already lowered by atorvastatin, did not change with torcetrapib. Our findings indicate that CETP inhibition reduced plasma apoB-48 concentrations by reducing apoB-48 production but did not have this effect in subjects already treated with atorvastatin. PMID:22474066

  4. Pyruvate modifies metabolic flux and nutrient sensing during extracorporeal membrane oxygenation in an immature swine model

    SciTech Connect

    Ledee, Dolena R.; Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Olson, Aaron; Isern, Nancy G.; Robillard Frayne, Isabelle; Des Rosiers, Christine; Portman, Michael A.

    2015-07-01

    Extracorporeal membrane oxygenation (ECMO) provides mechanical circulatory support for infants and children with postoperative cardiopulmonary failure. Nutritional support is mandatory during ECMO, although specific actions for substrates on the heart have not been delineated. Prior work shows that enhancing pyruvate oxidation promotes successful weaning from ECMO. Accordingly, we closely examined the role of prolonged systemic pyruvate supplementation in modifying metabolic parameters during the unique conditions of ventricular unloading provided by ECMO. Twelve male mixed breed Yorkshire piglets (age 30-49 days) received systemic infusion of either normal saline (Group C) or pyruvate (Group P) during ECMO for 8 hours. Over the final hour piglets received [2-13C] pyruvate, and [13C6]-L-leucine, as an indicator for oxidation and protein synthesis. A significant increase in lactate and pyruvate concentrations occurred, along with an increase in the absolute concentration of all measured CAC intermediates. Group P showed greater anaplerotic flux through pyruvate carboxylation although pyruvate oxidation relative to citrate synthase flux was similar to Group C. The groups demonstrated similar leucine fractional contributions to acetyl-CoA and fractional protein synthesis rates. Pyruvate also promoted an increase in the phosphorylation state of several nutrient sensitive enzymes, such as AMPK and ACC, and promoted O-GlcNAcylation through the hexosamine biosynthetic pathway (HBP). In conclusion, prolonged pyruvate supplementation during ECMO modified anaplerotic pyruvate flux and elicited changes in important nutrient and energy sensitive pathways, while preserving protein synthesis. Therefore, the observed results support the further study of nutritional supplementation and its downstream effects on cardiac adaptation during ventricular unloading.

  5. Influence of the polydispersity of polymeric surfactants on the enantioselectivity of chiral compounds in micellar electrokinetic chromatography.

    PubMed

    Tarus, Jepkoech; Agbaria, Rezik A; Morris, Kevin; Mwongela, Simon; Numan, Abdulqawi; Simuli, Lindah; Fletcher, Kristin A; Warner, Isiah M

    2004-08-01

    Poly(sodium undecenoyl-L-leucinate) (poly-L-SUL) was fractionated by the use of different molecular weight cutoff (MWCO) filters to narrow the polydispersity of the macromolecular sizes of the polymeric surfactant. The resulting polymeric surfactant fractions were characterized by the use of three techniques: (1) pulsed field gradient nuclear magnetic resonance (PFG-NMR) was used to determine the hydrodynamic radii, (2) analytical ultracentrifugation (AUC) was used to determine the molecular weights, and (3) steady-state fluorescence was used to determine the polarity of the nonfractionated and fractionated polymeric surfactants. From the data acquired from PFG-NMR, AUC, and fluorescence, it was noted that the hydrodynamic radii and molecular weight of the fractionated poly-L-SUL increased, while the polarity decreased with the increase in the size of the MWCO filter. However, a similarity in physical properties was observed between the nonfractionated and 10-30K fractionated poly-L-SUL except for the hydrodynamic radius and diffusion coefficients. The influence of different macromolecular sizes of poly-L-SUL on the chiral separation of phenylthiohydantion (PTH)-amino acids and coumarinic derivatives, as test analytes, was elucidated by the use of micellar electrokinetic chromatography (MEKC). The size of polymeric surfactants as a prerequisite for chiral separation was demonstrated by comparing the separation properties of fractionated versus nonfractionated polymeric surfactants. Fractionated poly-L-SUL resulted in enhanced resolution and separation efficiency of the test analytes as compared to the case of the nonfractionated poly-L-SUL. This observation indicates that minimizing polydispersity of polymeric surfactants may be important for some chiral separation applications. PMID:15274600

  6. The effect of eicosapentaenoic and docosahexaenoic acid on protein synthesis and breakdown in murine C2C12 myotubes

    SciTech Connect

    Kamolrat, Torkamol; Gray, Stuart R.

    2013-03-22

    Highlights: ? EPA can enhance protein synthesis and retard protein breakdown in muscle cells. ? These effects were concurrent with increases in p70s6k and FOXO3a phosphorylation. ? EPA may be a useful tool in the treatment of muscle wasting conditions. -- Abstract: Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have been found to stimulate protein synthesis with little information regarding their effects on protein breakdown. Furthermore whether there are distinct effects of EPA and DHA remains to be established. The aim of the current study was to determine the distinct effects of EPA and DHA on protein synthesis, protein breakdown and signalling pathways in C2C12 myotubes. Fully differentiated C2C12 cells were incubated for 24 h with 0.1% ethanol (control), 50 ?M EPA or 50 ?M DHA prior to experimentation. After serum (4 h) and amino acid (1 h) starvation cells were stimulated with 2 mM L-leucine and protein synthesis measured using {sup 3}H-labelled phenylalanine. Protein breakdown was measured using {sup 3}H-labelled phenylalanine and signalling pathways (Akt, mTOR, p70S6k, 4EBP1, rps6 and FOXO3a) via Western blots. Data revealed that after incubation with EPA protein synthesis was 25% greater (P < 0.05) compared to control cells, with no effect of DHA. Protein breakdown was 22% (P < 0.05) lower, compared to control cells, after incubation with EPA, with no effect of DHA. Analysis of signalling pathways revealed that both EPA and DHA incubation increased (P < 0.05) p70s6k phosphorylation, EPA increased (P < 0.05) FOXO3a phosphorylation, with no alteration in other signalling proteins. The current study has demonstrated distinct effects of EPA and DHA on protein metabolism with EPA showing a greater ability to result in skeletal muscle protein accretion.

  7. Human metabolism of the proteasome inhibitor bortezomib: identification of circulating metabolites.

    PubMed

    Pekol, Teresa; Daniels, J Scott; Labutti, Jason; Parsons, Ian; Nix, Darrell; Baronas, Elizabeth; Hsieh, Frank; Gan, Liang-Shang; Miwa, Gerald

    2005-06-01

    Bortezomib [N-(2,3-pyrazine)carbonyl-L-phenylalanine-L-leucine boronic acid] is a potent first-in-class dipeptidyl boronic acid proteasome inhibitor that was approved in May 2003 in the United States for the treatment of patients with relapsed multiple myeloma where the disease is refractory to conventional lines of therapy. Bortezomib binds the proteasome via the boronic acid moiety, and therefore, the presence of this moiety is necessary to achieve proteasome inhibition. Metabolites in plasma obtained from patients receiving a single intravenous dose of bortezomib were identified and characterized by liquid chromatography/mass spectrometry (LC/MS) and liquid chromatography/tandem mass spectrometry (LC/MS/MS). Metabolite standards that were synthesized and characterized by LC/MS/MS and high field nuclear magnetic resonance spectroscopy (NMR) were used to confirm metabolite structures. The principal biotransformation pathway observed was oxidative deboronation, most notably to a pair of diastereomeric carbinolamide metabolites. Further metabolism of the leucine and phenylalanine moieties produced tertiary hydroxylated metabolites and a metabolite hydroxylated at the benzylic position, respectively. Conversion of the carbinolamides to the corresponding amide and carboxylic acid was also observed. Human liver microsomes adequately modeled the in vivo metabolism of bortezomib, as the principal circulating metabolites were observed in vitro. Using cDNA-expressed cytochrome P450 isoenzymes, it was determined that several isoforms contributed to the metabolism of bortezomib, including CYP3A4, CYP2C19, CYP1A2, CYP2D6, and CYP2C9. The development of bortezomib has provided an opportunity to describe the metabolism of a novel boronic acid pharmacophore. PMID:15764713

  8. The TonB3 system in the human pathogen Vibrio vulnificus is under the control of the global regulators Lrp and cyclic AMP receptor protein.

    PubMed

    Alice, Alejandro F; Crosa, Jorge H

    2012-04-01

    TonB systems transduce the proton motive force of the cytoplasmic membrane to energize substrate transport through a specific TonB-dependent transporter across the outer membrane. Vibrio vulnificus, an opportunistic marine pathogen that can cause a fatal septicemic disease in humans and eels, possesses three TonB systems. While the TonB1 and TonB2 systems are iron regulated, the TonB3 system is induced when the bacterium grows in human serum. In this work we have determined the essential roles of the leucine-responsive protein (Lrp) and cyclic AMP (cAMP) receptor protein (CRP) in the transcriptional activation of this system. Whereas Lrp shows at least four very distinctive DNA binding regions spread out from position -59 to -509, cAMP-CRP binds exclusively in a region centered at position -122.5 from the start point of the transcription. Our results suggest that both proteins bind simultaneously to the region closer to the RNA polymerase binding site. Importantly, we report that the TonB3 system is induced not only by serum but also during growth in minimal medium with glycerol as the sole carbon source and low concentrations of Casamino Acids. In addition to catabolite repression by glucose, l-leucine acts by inhibiting the binding of Lrp to the promoter region, hence preventing transcription of the TonB3 operon. Thus, this TonB system is under the direct control of two global regulators that can integrate different environmental signals (i.e., glucose starvation and the transition between "feast" and "famine"). These results shed light on new mechanisms of regulation for a TonB system that could be widespread in other organisms. PMID:22307757

  9. Effects of meal size on postprandial responses in juvenile Burmese pythons (Python molurus).

    PubMed

    Secor, S M; Diamond, J

    1997-03-01

    Pythons were reported previously to exhibit large changes in intestinal mass and transporter activities on consuming meals equal to 25% of the snake's body mass. This paper examines how those and other adaptive responses to feeding vary with meal size (5, 25, or 65% of body mass). Larger meals took longer to pass through the stomach and small intestine. After ingestion of a meal, O2 consumption rates rose to up to 32 times fasting levels and remained significantly elevated for up to 13 days. This specific dynamic action equaled 29-36% of ingested energy. After 25 and 65% size meals, plasma Cl- significantly dropped, whereas plasma CO2, glucose, creatinine, and urea nitrogen increased as much as a factor of 2.3-4.2. Within 1 day the intestinal mucosal mass more than doubled, and masses of the intestinal serosa, liver, stomach, pancreas, and kidneys also increased. Intestinal uptake rates of amino acids and of D-glucose increased by up to 43 times fasting levels, whereas uptake capacities increased by up to 59 times fasting levels. Magnitudes of many of these responses (O2 consumption rate, kidney hypertrophy, and D-glucose and L-lysine uptake) increased with meal size up to the largest meals studied; other responses (Na+-independent L-leucine uptake, plasma Cl-, and organ masses) plateaued at meals equal to 25% of the snake's body mass; and still other responses (nutrient uptake at day 1, passive glucose uptake, and plasma protein and alkaline phosphatase) were all-or-nothing, being independent of meal size between 5 and 65% of body mass. Pythons undergo a wide array of postprandial responses, many of which differ in their sensitivity to meal size. PMID:9087654

  10. L-Citrulline Protects Skeletal Muscle Cells from Cachectic Stimuli through an iNOS-Dependent Mechanism

    PubMed Central

    Ham, Daniel J.; Gleeson, Benjamin G.; Chee, Annabel; Baum, Dale M.; Caldow, Marissa K.; Lynch, Gordon S.; Koopman, René

    2015-01-01

    Dietary L-citrulline is thought to modulate muscle protein turnover by increasing L-arginine availability. To date, the direct effects of increased L-citrulline concentrations in muscle have been completely neglected. Therefore, we determined the role of L-citrulline in regulating cell size during catabolic conditions by depriving mature C2C12 myotubes of growth factors (serum free; SF) or growth factors and nutrients (HEPES buffered saline; HBS). Cells were treated with L-citrulline or equimolar concentrations of L-arginine (positive control) or L-alanine (negative control) and changes in cell size and protein turnover were assessed. In myotubes incubated in HBS or SF media, L-citrulline improved rates of protein synthesis (HBS: +63%, SF: +37%) and myotube diameter (HBS: +18%, SF: +29%). L-citrulline treatment substantially increased iNOS mRNA expression (SF: 350%, HBS: 750%). The general NOS inhibitor L-NAME and the iNOS specific inhibitor aminoguanidine prevented these effects in both models. Depriving myotubes in SF media of L-arginine or L-leucine, exacerbated wasting which was not attenuated by L-citrulline. The increased iNOS mRNA expression was temporally associated with increases in mRNA of the endogenous antioxidants SOD1, SOD3 and catalase. Furthermore, L-citrulline prevented inflammation (LPS) and oxidative stress (H2O2) induced muscle cell wasting. In conclusion, we demonstrate a novel direct protective effect of L-citrulline on skeletal muscle cell size independent of L-arginine that is mediated through induction of the inducible NOS (iNOS) isoform. This discovery of a nutritional modulator of iNOS mRNA expression in skeletal muscle cells could have substantial implications for the treatment of muscle wasting conditions. PMID:26513461

  11. Atomic Force Microscopy of Physical and Chemical Processes at the Solid-Liquid Interface

    NASA Astrophysics Data System (ADS)

    Manne, Srinivas

    This thesis describes research using atomic force microscopy (AFM) to study dynamics of solid surfaces in contact with liquids. Specifically, three applications are described: electrochemistry (Chapters 1-3), crystal growth (Chapters 4 and 5), and biomineralization (Chapter 6). Chapter 1 shows the feasibility of using AFM to image metal atoms in liquid, which sets the stage for high -resolution electrochemistry. Chapter 2 describes methods to convert the standard AFM liquid cell into an electrochemical cell and shows images of a gold electrode during oxidation/reduction cycling. Chapter 3 follows an electroplating cycle, wherein copper is deposited from electrolyte onto a gold electrode and then stripped off. The surface lattice is shown to change from that of bulk gold to bulk copper during plating, and back to bulk gold after stripping. Moreover, the first monolayer of copper--which deposits at an "underpotential", before the bulk deposition--is shown to have a lattice which differs from the bulk and is electrolyte dependent. Like electrochemistry, the study of crystal growth is also perfectly suited to a surface technique such as AFM. AFM makes it possible to image "elemental steps" (i.e., steps one unit cell thick) on a single crystal and quantify their motion during growth and dissolution. This is illustrated for the inorganic crystal calcite (Chapter 4) and the more fragile organic crystal L-leucine (Chapter 5). In both cases it is shown that step speed is independent of spacing between steps, indicating that motion occurs by direct interaction of the step-site molecules with the solvent. Chapter 5 also describes techniques for growing and imaging organic crystals. Living organisms also use crystal growth, modified by inorganic and organic additives, to grow mineralized structures such as bones, teeth and seashells. In Chapter 6, AFM reveals the three-dimensional structure of the nacreous or pearly layer of mollusc shells by slowly etching away successive mineral layers (in weak acid) while imaging. Etch figures on the mineral (aragonite) are correlated with crystallographic directions, revealing overall crystalline order on large scans. In bivalves, this order is observed both laterally across the layer and vertically between layers, whereas gastropod nacre is observed to be ordered only vertically.

  12. The estimation of antistress properties of peat degradation products

    NASA Astrophysics Data System (ADS)

    Chorna, V. I.; Lyanna, O. L.

    2009-04-01

    Introduction. It is known that polyphenol preparations, produced from peat, represent adaptogens, immunomodulators and can participate in regulation of genetic informational realization as triggers of nonspecific nature. These compounds promote launching of protein-synthesizing system that is very important under unfavorable influence on organism. The experimental data of last years confirmed doth therapeutic value of humic acids as adaptogenes and their antioxidant, anti-inflammatory, antimutogenic, radioprotective and other properties. Lysosomes take the key positions in many physiological and pathological processes of organism owing to their unique structural-functional properties, reactivity and plasticity. These organelles take especial meaning in increased functional activity under stress factors influence. In this way lysosomes become modulators of intracellular processes. It is known that under chronic stress, the systems of neurohumoral regulation and adaptation gradually run out, the function of brain cellular membrane structures disturbs. Understanding of stress developing mechanisms is necessary condition for means development of operative avoiding of the harmful consequences. Purpose. The aim of the work was to investigate corrective influence of hydrohumates on compartmentalization changing of lysosomal cysteine cathepsin H (EC 3.4.22.16) in different rat brain structures. The experiment was held on Wistar's rats (160-200 g weight) which were divided into 4 groups: 1 - the control group; 2 - the animals which were received the hydrohumate with water (10 mg hydrohumate (0,1% solution) per 1 kg of weight) during 3 weeks; 3 - the group of stressed rats (test "forced swimming" for 2 hours); 4 - the stressed rats which received the hydrohumate. The activity of lysosomal cysteine cathepsin H was determined spectrophotometerically by hydrolysis of 2-naphthyl-amid L-leucine (Koch-Light Lab., England). It was found out that intracellular compartmentalization changes of lysosomal cysteine protease (cathepsin H) occur as a result of increasing its free activity in 1,6 times in neocortex and 1,8 times in cerebellum, which testify to stress-induced disruption of architectonics and stability of brain cellular lysosomal membranes. These changes could be considered as important biochemical indicators of chronic stress severity. Besides, they could be interpreted as trigger switching over to another functional condition, when power of system reparation becomes not enough for effective removal of disorders. Conclusions. The hydrohumates make corrective action on activity indices of researched enzymes by decreasing it on 45%. Such influence testifies to its membranotrophic properties. It could be suggested that hydrohumates stimulate the reparative processes because of its high antioxidant activity and levels sharp fluctuation of physiological state.

  13. Nutritional profile of phytococktail from trans-Himalayan plants.

    PubMed

    Dhar, Priyanka; Tayade, Amol B; Kumar, Jatinder; Chaurasia, Om P; Srivastava, Ravi B; Singh, Shashi B

    2013-01-01

    We estimated the nutritive value, vitamin content, amino acid composition, fatty acid content, and mineral profile of a phytococktail comprising sea buckthorn (Hippophae rhamnoides), apricot (Prunus armeniaca), and roseroot (Rhodiola imbricata) from trans-Himalaya. The free vitamin forms in the phytococktail were determined by rapid resolution liquid chromatography/tandem mass spectrometry (RRLC-MS/MS). Vitamin E and B-complex vitamins were detected as the principle vitamins. Reversed-phase high performance liquid chromatography (RP-HPLC) with pre-column derivatization was used for identification and quantification of amino acids. Eight essential and eleven non-essential amino acids were quantified, and the content ranged between 76.33 and 9485.67 µg/g. Among the essential amino acids, L-methionine, L-phenylalanine, L-lysine, L-leucine, and L-histidine were found to be the dominant contributors. We also quantified the fatty acids in the phytococktail by using gas chromatography coupled with a flame ionization detector (GC-FID) with fatty acid methyl esters (FAMEs) derivatization. The analysis revealed the presence of 4 major fatty acids contributing to the total lipid content. Palmitic acid was found to be the rich source of saturated fatty acid (SFA) and constituted ?31% of the total lipid content. Among the unsaturated fatty acids (UFAs), palmitoleic acid (43.47%), oleic acid (20.89%), and linoleic acid (4.31%) were prominent. The mineral profiling was carried out by inductively coupled plasma optical emission spectrometer (ICP-OES), and it was found to contain a number of important dietary mineral elements. The harsh climatic conditions, difficult terrain, and logistic constraints at high altitude regions of Indian trans-Himalayan cold desert lead to the scarcity of fresh fruits and vegetables. Therefore, the source of multiple vitamins, essential amino acids, fatty acids, and dietary minerals from the phytococktail would provide great health benefit in the stressful environment and could be used as a high value nutritional supplement. PMID:24376624

  14. Effect of gibberellic acid on growth and indole metabolism of dwarf-pea plants

    SciTech Connect

    Husain, Z.

    1987-01-01

    A study was conducted to describe the pathway of biosynthesis of indole-3-acetic acid (IAA) from tryptophan (TPP) and determine the effect of gibberellic acid (GA/sub 3/) on this system. Treatment of dwarf peas (Pisum sativum L. var Little Marvel) with 0.8 ..mu..g GA/sub 3//plant resulted in increase in plant height along with increased auxin level. A cell-free preparation of pea shoot tissue was able to convert D,L-tryptophan-3-/sup 14/C into different indole metabolites. The acidic and neutral fractions obtained after TPP incubation were subjected to thin-layer chromatography. In the neutral fraction, two peaks of radioactivity were found and these matched the Rfs for indole-acetaldehyde (IAAId) and indole-3-ethanol (IEt). One major peak of radioactivity was observed in the radiochromatograms of the acidic fraction and it corresponded with a authentic IAA. The enzymes involved in the conversion of TPP to IAA involved, in the first step, a transaminase (tryptophan aminotransferase, EC 2 x 6 x 1) reaction. The aminotransferase was purified about 82-fold by acetone precipitation and Sephadex G-200 filtration. It had a pH optimum of 8.5 and a temperature optimum of 40/sup 0/C. With ..cap alpha..-ketoglutarate a co-substrate, the enzyme transaminated aromatic as well as aliphatic amino acids including D,L-tryptophan, D,L-alanine and D,L leucine. D-TPP was found to be more effective than L-TPP as a substrate. GA/sub 3/ treatment to dwarf pea plants results in increase in the specific activity of the enzyme over the observation period. In the second step of TPP conversion, IPyA is decarboxylated by an enzyme to IAAId. In plants treated with GA/sub 3/, the enzyme activity was significantly higher three days after treatment but remained unaffected at all other stages when observations were made. The final step enzyme is a dehydrogenase that can convert IAAId to IAA in the presence of MAD as a co-factor.

  15. Effect of a Herbal-Leucine mix on the IL-1?-induced cartilage degradation and inflammatory gene expression in human chondrocytes

    PubMed Central

    2011-01-01

    Background Conventional treatments for the articular diseases are often effective for symptom relief, but can also cause significant side effects and do not slow the progression of the disease. Several natural substances have been shown to be effective at relieving the symptoms of osteoarthritis (OA), and preliminary evidence suggests that some of these compounds may exert a favorable influence on the course of the disease. The objective of this study was to investigate the anti-inflammatory/chondroprotective potential of a Herbal and amino acid mixture containing extract of the Uncaria tomentosa, Boswellia spp., Lepidium meyenii and L-Leucine on the IL-1?-induced production of nitric oxide (NO), glycosaminoglycan (GAG), matrix metalloproteinases (MMPs), aggrecan (ACAN) and type II collagen (COL2A1) in human OA chondrocytes and OA cartilage explants. Methods Primary OA chondrocytes or OA cartilage explants were pretreated with Herbal-Leucine mixture (HLM, 1-10 ?g/ml) and then stimulated with IL-1? (5 ng/ml). Effect of HLM on IL-1?-induced gene expression of iNOS, MMP-9, MMP-13, ACAN and COL2A1 was verified by real time-PCR. Estimation of NO and GAG release in culture supernatant was done using commercially available kits. Results HLM tested in these in vitro studies was found to be an effective anti-inflammatory agent, as evidenced by strong inhibition of iNOS, MMP-9 and MMP-13 expression and NO production in IL-1?-stimulated OA chondrocytes (p < 0.05). Supporting these gene expression results, IL-1?-induced cartilage matrix breakdown, as evidenced by GAG release from cartilage explants, was also significantly blocked (p < 0.05). Moreover, in the presence of herbal-Leucine mixture (HLM) up-regulation of ACAN and COL2A1 expression in IL-1?-stimulated OA chondrocytes was also noted (p < 0.05). The inhibitory effects of HLM were mediated by inhibiting the activation of nuclear factor (NF)-kB in human OA chondrocytes in presence of IL-1?. Conclusion Our data suggests that HLM could be chondroprotective and anti-inflammatory agent in arthritis, switching chondrocyte gene expression from catabolic direction towards anabolic and regenerative, and consequently this approach may be potentially useful as a new adjunct therapeutic/preventive agent for OA or injury recovery. PMID:21854562

  16. Finite-pulse radio frequency driven recoupling with phase cycling for 2D 1H/1H correlation at ultrafast MAS frequencies

    NASA Astrophysics Data System (ADS)

    Nishiyama, Yusuke; Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2014-06-01

    The first-order recoupling sequence radio frequency driven dipolar recoupling (RFDR) is commonly used in single-quantum/single-quantum homonuclear correlation 2D experiments under magic angle spinning (MAS) to determine homonuclear proximities. From previously reported analysis of the use of XY-based super-cycling schemes to enhance the efficiency of the finite-pulse-RFDR (fp-RFDR) pulse sequence, XY814 phase cycling was found to provide the optimum performance for 2D correlation experiments on low-? nuclei. In this study, we analyze the efficiency of different phase cycling schemes for proton-based fp-RFDR experiments. We demonstrate the advantages of using a short phase cycle, XY4, and its super-cycle XY414 that only recouples the zero-quantum homonuclear dipolar coupling, for the fp-RFDR sequence in 2D 1H/1H correlation experiments at ultrafast MAS frequencies. The dipolar recoupling efficiencies of XY4, XY414 and XY814 phase cycling schemes are compared based on results obtained from 2D 1H/1H correlation experiments, utilizing the fp-RFDR pulse sequence, on powder samples of U-13C,15N-L-alanine, N-acetyl-15N-L-valyl-15N-L-leucine, and glycine. Experimental results and spin dynamics simulations show that XY414 performs the best when a high RF power is used for the 180° pulse, whereas XY4 renders the best performance when a low RF power is used. The effects of RF field inhomogeneity and chemical shift offsets are also examined. Overall, our results suggest that a combination of fp-RFDR-XY414 employed in the recycle delay with a large RF-field to decrease the recycle delay, and fp-RFDR-XY4 in the mixing period with a moderate RF-field, is a robust and efficient method for 2D single-quantum/single-quantum 1H/1H correlation experiments at ultrafast MAS frequencies.

  17. Nutritional Profile of Phytococktail from Trans-Himalayan Plants

    PubMed Central

    Dhar, Priyanka; Tayade, Amol B.; Kumar, Jatinder; Chaurasia, Om P.; Srivastava, Ravi B.; Singh, Shashi B.

    2013-01-01

    We estimated the nutritive value, vitamin content, amino acid composition, fatty acid content, and mineral profile of a phytococktail comprising sea buckthorn (Hippophae rhamnoides), apricot (Prunus armeniaca), and roseroot (Rhodiola imbricata) from trans-Himalaya. The free vitamin forms in the phytococktail were determined by rapid resolution liquid chromatography/tandem mass spectrometry (RRLC-MS/MS). Vitamin E and B-complex vitamins were detected as the principle vitamins. Reversed-phase high performance liquid chromatography (RP-HPLC) with pre-column derivatization was used for identification and quantification of amino acids. Eight essential and eleven non-essential amino acids were quantified, and the content ranged between 76.33 and 9485.67 µg/g. Among the essential amino acids, L-methionine, L-phenylalanine, L-lysine, L-leucine, and L-histidine were found to be the dominant contributors. We also quantified the fatty acids in the phytococktail by using gas chromatography coupled with a flame ionization detector (GC-FID) with fatty acid methyl esters (FAMEs) derivatization. The analysis revealed the presence of 4 major fatty acids contributing to the total lipid content. Palmitic acid was found to be the rich source of saturated fatty acid (SFA) and constituted ?31% of the total lipid content. Among the unsaturated fatty acids (UFAs), palmitoleic acid (43.47%), oleic acid (20.89%), and linoleic acid (4.31%) were prominent. The mineral profiling was carried out by inductively coupled plasma optical emission spectrometer (ICP-OES), and it was found to contain a number of important dietary mineral elements. The harsh climatic conditions, difficult terrain, and logistic constraints at high altitude regions of Indian trans-Himalayan cold desert lead to the scarcity of fresh fruits and vegetables. Therefore, the source of multiple vitamins, essential amino acids, fatty acids, and dietary minerals from the phytococktail would provide great health benefit in the stressful environment and could be used as a high value nutritional supplement. PMID:24376624

  18. Effects of Different Organic Manures on the Biochemical and Microbial Characteristics of Albic Paddy Soil in a Short-Term Experiment

    PubMed Central

    Zhang, Qian; Zhou, Wei; Liang, Guoqing; Wang, Xiubin; Sun, Jingwen; He, Ping; Li, Lujiu

    2015-01-01

    This study aimed to evaluate the effects of chemical fertilizer (NPK), NPK with livestock manure (NPK+M), NPK with straw (NPK+S), and NPK with green manure (NPK+G) on soil enzyme activities and microbial characteristics of albic paddy soil, which is a typical soil with low productivity in China. The responses of extracellular enzyme activities and the microbial community diversity (determined by phospholipid fatty acid analysis [PLFA] and denaturing gradient gel electrophoresis [DGGE]) were measured. The results showed that NPK+M and NPK+S significantly increased rice yield, with NPK+M being approximately 24% greater than NPK. The NPK+M significantly increased soil organic carbon (SOC) and available phosphate (P) and enhanced phosphatase, ?-cellobiosidase, L-leucine aminopeptidase and urease activities. The NPK+S significantly increased SOC and available potassium (K) and significantly enhanced N-acetyl-glucosamidase, ?-xylosidase, urease, and phenol oxidase activities. The NPK+G significantly improved total nitrogen (N), ammonium N, available P, and N-acetyl-glucosamidase activity. The PLFA biomass was highest under NPK+S, followed by NPK+M and NPK+G treatments. Principal component analysis (PCA) of the PLFA indicated that soils with NPK+M and NPK+S contained higher proportions of unsaturated and cyclopropane fatty acids (biomarkers of fungi and gram-negative bacteria) and soil under NPK+G contained more straight chain saturated fatty acids (representing gram-positive bacteria). PCA of the DGGE patterns showed that organic amendments had a greater influence on fungal community. Cluster analysis of fungal DGGE patterns revealed that NPK+G was clearly separated. Meanwhile, the bacterial community of NPK+M treatment was the most distinct. RDA analysis revealed changes of microbial community composition mostly depended on ?-xylosidase, ?-cellobiosidase activities, total N and available K contents. The abundances of gram-negative bacterial and fungal PLFAs probably effective in improving fertility of low-yield albic paddy soil because of their significant influence on DGGE profile. PMID:25879759

  19. Acute effects of a commercially-available pre-workout supplement on markers of training: a double-blind study

    PubMed Central

    2014-01-01

    Background Pre-workout supplements containing numerous ingredients claim to increase performance and strength. Product-specific research is important for identifying efficacy of combined ingredients. The purpose of this study was to evaluate the effects of a proprietary pre-workout dietary supplement containing creatine monohydrate, beta-alanine, L-Tarurine, L-Leucine, and caffeine, on anaerobic power, muscular strength, body composition, and mood states. Methods In a double-blind, randomized, matched-pair design, twenty male subjects (mean?±?SD; 22.4?±?9.5 yrs, 76.9?±?11.2 kg, 22.7?±?9.5% body fat), consumed either 30 g of a pre-workout supplement (SUP) or maltodextrin placebo (PLC) 30 minutes before a resistance training workout, after completing baseline testing. Body composition was determined via dual-energy x-ray absorptiometry (DEXA). Subjects completed 12 vertical jumps for height (VJ) and one repetition maximum (1RM) and repetitions to failure lifts on bench (BPM) and leg press (LPM). Finally, subjects completed a Wingate power test on a cycle ergometer [mean power (WMP) and peak power (WPP)]. After baseline testing, participants completed eight days of supplementation and four split-body resistance-training bouts. Side effect questionnaires were completed daily 30 minutes after consuming the supplement. Subjects completed post-supplement testing on Day 8. Data were analyzed utilizing a 2?×?2 repeated measures ANOVA [treatment (PLC vs SUP)?×?time (T1 vs T2)] and ninety-five percent confidence intervals. Results There were no significant treatment?×?time interactions (p?>?0.05). There were no significant changes in %body fat (%BF; ?-0.43?±?0.58; p?=?0.920), fat mass (?-2.45?±?5.72; p?=?0.988), or lean body mass (LBM; 10.9?±?12.2; p?=?0.848). 95% CI demonstrated significant LBM increases for both groups. There was a main effect for time for WPP (?100.5?±?42.7W; p?=?0.001), BPM (?8.0?±?12.9 lbs; p?=?0.001), and LPM (?80.0?±?28.8 lbs; p?=?0.001), with no significant differences between treatments. There was no significant difference in mood states between groups or over time. Conclusion The proprietary pre-workout blend combined with eight days of training did not significantly (ANOVA) improve body composition or performance. While not significant, greater gains in LPM were demonstrated in the SUP group for lean body mass and lower body strength. Future studies should evaluate more chronic effects of proprietary pre-workout blends on total training volume and performance outcomes. PMID:25302053

  20. Binding of Short Cationic Peptides (KX)4K to Negatively Charged DPPG Monolayers: Competition between Electrostatic and Hydrophobic Interactions.

    PubMed

    Hädicke, André; Blume, Alfred

    2015-11-10

    The influence of the peptide sequence on the binding of short cationic peptides composed of five lysines alternating with uncharged amino acids within the series (KX)4K to negatively charged monolayers of 1,2-dipalmitoyl-sn-glycero-3-phosphoglycerol (DPPG) was investigated by adsorption experiments in combination with epifluorescence microscopy. To evaluate the impact of electrostatic and hydrophobic contributions, different uncharged amino acids X with increasing hydrophobicity, where X = G (glycine), A (alanine), Abu (?-aminobutyric acid), V (valine), or L (leucine) were introduced into the peptide sequence to tune the peptide hydrophobicity. The adsorption kinetics of these peptides to a DPPG monolayer always showed two superimposed processes, one leading to an increase and another to a decrease of the surface pressure ?. Thus, the plots of the change in ? after peptide binding vs initial surface pressure of the monolayer showed an unusual behavior with maxima and negative changes in ? at high initial ? values. Epifluorescence microscopy confirmed that electrostatic binding of the peptides with a concomitant decrease in ? leads to a condensation of the lipid monolayer and the formation of liquid-condensed (LC) domains even at ? values where the monolayer is supposedly in the liquid-expanded (LE) state. An increase in hydrophobicity of the amino acid X was found to counteract the condensation and an increase in ? upon peptide binding is observed at low ? values, also concomitant with the formation of LC-domains. Compression of monolayers after peptide adsorption at low surface pressure for 4 h leads to a change of the isotherms compared to pure DPPG isotherms. The phase transition of DPPG from LE to LC state is smeared out or is shifted to higher surface pressure. Considerable changes in the shapes of LC-domains were observed after peptide binding. Growth of the LC-domains was hindered in most cases and regular domain patterns were formed. Binding of (KL)4K leads to a decrease in line tension and the formation of extended filaments protruding from initially circular domains. PMID:26479457

  1. Finite-pulse radio frequency driven recoupling with phase cycling for 2D (1)H/(1)H correlation at ultrafast MAS frequencies.

    PubMed

    Nishiyama, Yusuke; Zhang, Rongchun; Ramamoorthy, Ayyalusamy

    2014-06-01

    The first-order recoupling sequence radio frequency driven dipolar recoupling (RFDR) is commonly used in single-quantum/single-quantum homonuclear correlation 2D experiments under magic angle spinning (MAS) to determine homonuclear proximities. From previously reported analysis of the use of XY-based super-cycling schemes to enhance the efficiency of the finite-pulse-RFDR (fp-RFDR) pulse sequence, XY8(1)4 phase cycling was found to provide the optimum performance for 2D correlation experiments on low-? nuclei. In this study, we analyze the efficiency of different phase cycling schemes for proton-based fp-RFDR experiments. We demonstrate the advantages of using a short phase cycle, XY4, and its super-cycle XY4(1)4 that only recouples the zero-quantum homonuclear dipolar coupling, for the fp-RFDR sequence in 2D (1)H/(1)H correlation experiments at ultrafast MAS frequencies. The dipolar recoupling efficiencies of XY4, XY4(1)4 and XY8(1)4 phase cycling schemes are compared based on results obtained from 2D (1)H/(1)H correlation experiments, utilizing the fp-RFDR pulse sequence, on powder samples of U-(13)C,(15)N-l-alanine, N-acetyl-(15)N-l-valyl-(15)N-l-leucine, and glycine. Experimental results and spin dynamics simulations show that XY4(1)4 performs the best when a high RF power is used for the 180° pulse, whereas XY4 renders the best performance when a low RF power is used. The effects of RF field inhomogeneity and chemical shift offsets are also examined. Overall, our results suggest that a combination of fp-RFDR-XY4(1)4 employed in the recycle delay with a large RF-field to decrease the recycle delay, and fp-RFDR-XY4 in the mixing period with a moderate RF-field, is a robust and efficient method for 2D single-quantum/single-quantum (1)H/(1)H correlation experiments at ultrafast MAS frequencies. PMID:24713171

  2. A new treatment for human malignant melanoma targeting L-type amino acid transporter 1 (LAT1): A pilot study in a canine model

    SciTech Connect

    Fukumoto, Shinya; Hanazono, Kiwamu; Fu, Dah-Renn; Endo, Yoshifumi; Kadosawa, Tsuyoshi; Iwano, Hidetomo; Uchide, Tsuyoshi

    2013-09-13

    Highlights: •LAT1 is highly expressed in tumors but at low levels in normal tissues. •We examine LAT1 expression and function in malignant melanoma (MM). •LAT1 expression in MM tissues and cell lines is higher than those in normal tissues. •LAT1 selective inhibitors inhibit amino acid uptake and cell growth in MM cells. •New chemotherapeutic protocols including LAT1 inhibitors are effective for treatment. -- Abstract: L-type amino acid transporter 1 (LAT1), an isoform of amino acid transport system L, transports branched or aromatic amino acids essential for fundamental cellular activities such as cellular growth, proliferation and maintenance. This amino acid transporter recently has received attention because of its preferential and up-regulated expression in a variety of human tumors in contrast to its limited distribution and low-level expression in normal tissues. In this study, we explored the feasibility of using LAT1 inhibitor as a new therapeutic agent for human malignant melanomas (MM) using canine spontaneous MM as a model for human MM. A comparative study of LAT expression was performed in 48 normal tissues, 25 MM tissues and five cell lines established from MM. The study observed LAT1 mRNA levels from MM tissues and cell lines that were significantly (P < 0.01) higher than in normal tissues. Additionally, MM with distant metastasis showed a higher expression than those without distant metastasis. Functional analysis of LAT1 was performed on one of the five cell lines, CMeC-1. [{sup 3}H]L-Leucine uptake and cellular growth activities in CMeC-1 were inhibited in a dose-dependent manner by selective LAT1 inhibitors (2-amino-2-norbornane-carboxylic acid, BCH and melphalan, LPM). Inhibitory growth activities of various conventional anti-cancer drugs, including carboplatin, cyclophosphamide, dacarbazine, doxorubicin, mitoxantrone, nimustine, vinblastine and vincristine, were significantly (P < 0.05) enhanced by combination use with BCH or LPM. These findings suggest that LAT1 could be a new therapeutic target for MM.

  3. Immunization with DISC1 protein in an animal model of ADHD influences behavior and excitatory amino acids in prefrontal cortex and striatum.

    PubMed

    Ruocco, L A; Treno, C; Gironi Carnevale, U A; Arra, C; Boatto, G; Pagano, C; Tino, A; Nieddu, M; Michel, M; Prikulis, I; Carboni, E; de Souza Silva, M A; Huston, J P; Sadile, A G; Korth, C

    2015-03-01

    The Disrupted-in-schizophrenia 1 (DISC1) gene is involved in vulnerability to neuropsychiatric disorders. Naples high-excitability (NHE) rat model neuropsychiatric problems characterized by an unbalanced mesocortical dopamine system. Here, we assessed behavioral and neurochemical effects of immunization against multimeric rat DISC1 protein in adult NHE rats, an animal model of attention-deficit hyperactivity disorder and their Random-Bred (NRB) controls. Males of both lines received subcutaneous injections of vehicle (PB), adjuvant only (AD) or recombinant rat DISC1 protein purified from E. coli, suspended in AD (anti-DISC1) at age of 30, 45 and 60 postnatal days (pnd). At 75 pnd, the rats were exposed to a Làt maze and 2 days later to an Olton eight-arm radial maze, and horizontal (HA) and vertical activities (VA) were monitored. Non-selective (NSA) and selective spatial attention (SSA) were monitored in the Làt and in the Olton maze by duration of rearings and working memory, respectively. Post mortem neurochemistry in the prefrontal cortex (PFc), dorsal (DS) and ventral (VS) striatum of L-Glutamate, L-Aspartate and L-Leucine was performed. All immunized rats showed a clear humoral IgM (but not IgG) immune response against the immunogen, indicating that immunological self-tolerance to DISC1 can be overcome by immunization. NHE rats exhibited a higher unspecific IgM response to adjuvant, indicating an immunological abnormality. The sole anti-DISC1 immunization-specific behavioral in the NHE rats was an increased horizontal activity in the Làt maze. Adjuvant treatment increased vertical activity in both lines, but in the NRB controls it increased rearing and decreased horizontal activity. Liquid chromatography/tandem mass spectrometry analysis of soluble or membrane-trapped neurotransmitters aspartate, glutamate and leucine revealed increased soluble aspartate levels in the ventral striatum of NRB controls after anti-DISC1 immunization. Immune activation by adjuvant independent of simultaneous DISC1 immunization led to other specific changes in NHE and control NRB rats. In DISC1-immunized NHE rats, horizontal activity in Lat maze correlated with membrane-trapped glutamate in PFc and in the NRB rats, duration of rearing in Olton maze correlated with membrane-trapped glutamate in PFc and aspartate in dorsal striatum. In addition to non-specific immune activation (by AD), the postnatal anti-DISC1 immune treatment led to behavioral changes related to mechanisms of activity and attention and had influenced amino acids and synaptic markers in striatum and neocortex in the adult NHE as well as control animals. PMID:25595600

  4. Prepuberal stimulation of 5-HT7-R by LP-211 in a rat model of hyper-activity and attention-deficit: permanent effects on attention, brain amino acids and synaptic markers in the fronto-striatal interface.

    PubMed

    Ruocco, Lucia A; Treno, Concetta; Gironi Carnevale, Ugo A; Arra, Claudio; Boatto, Gianpiero; Nieddu, Maria; Pagano, Cristina; Illiano, Placido; Barbato, Fabiana; Tino, Angela; Carboni, Ezio; Laviola, Giovanni; Lacivita, Enza; Leopoldo, Marcello; Adriani, Walter; Sadile, Adolfo G

    2014-01-01

    The cross-talk at the prefronto-striatal interface involves excitatory amino acids, different receptors, transducers and modulators. We investigated long-term effects of a prepuberal, subchronic 5-HT7-R agonist (LP-211) on adult behaviour, amino acids and synaptic markers in a model for Attention-Deficit/Hyperactivity Disorder (ADHD). Naples High Excitability rats (NHE) and their Random Bred controls (NRB) were daily treated with LP-211 in the 5th and 6th postnatal week. One month after treatment, these rats were tested for indices of activity, non selective (NSA), selective spatial attention (SSA) and emotionality. The quantity of L-Glutamate (L-Glu), L-Aspartate (L-Asp) and L-Leucine (L-Leu), dopamine transporter (DAT), NMDAR1 subunit and CAMKII?, were assessed in prefrontal cortex (PFC), dorsal (DS) and ventral striatum (VS), for their role in synaptic transmission, neural plasticity and information processing. Prepuberal LP-211 (at lower dose) reduced horizontal activity and (at higher dose) increased SSA, only for NHE but not in NRB rats. Prepuberal LP-211 increased, in NHE rats, L-Glu in the PFC and L-Asp in the VS (at 0.250 mg/kg dose), whereas (at 0.125 mg/kg dose) it decreased L-Glu and L-Asp in the DS. The L-Glu was decreased, at 0.125 mg/kg, only in the VS of NRB rats. The DAT levels were decreased with the 0.125 mg/kg dose (in the PFC), and increased with the 0.250 mg/kg dose (in the VS), significantly for NHE rats. The basal NMDAR1 level was higher in the PFC of NHE than NRB rats; LP-211 treatment (at 0.125 mg/kg dose) decreased NMDAR1 in the VS of NRB rats. This study represents a starting point about the impact of developmental 5-HT7-R activation on neuro-physiology of attentive processes, executive functions and their neural substrates. PMID:24709857

  5. Kinetic, Spectroscopic, and X-ray Crystallographic Characterization of the Functional E151H Aminopeptidase from Aeromonas proteolytica.

    SciTech Connect

    Bzymek,K.; Moulin, A.; Swierczek, S.; Ringe, D.; Petsko, G.; Holz, R.

    2005-01-01

    Glutamate151 (E151) has been shown to be catalytically essential for the aminopeptidase from Vibrio proteolyticus (AAP). E151 acts as the general acid/base during the catalytic mechanism of peptide hydrolysis. However, a glutamate residue is not the only residue capable of functioning as a general acid/base during catalysis for dinuclear metallohydrolases. Recent crystallographic characterization of the D-aminopeptidase from Bacillus subtilis (DppA) revealed a histidine residue that resides in an identical position to E151 in AAP. Because the active-site ligands for DppA and AAP are identical, AAP has been used as a model enzyme to understand the mechanistic role of H115 in DppA. Substitution of E151 with histidine resulted in an active AAP enzyme exhibiting a k{sub cat} value of 2.0 min{sup -1}, which is over 2000 times slower than r AAP (4380 min{sup -1}). ITC experiments revealed that Zn{sup II} binds 330 and 3 times more weakly to E151H-AAP compared to r-AAP. UV-vis and EPR spectra of Co{sup II}-loaded E151H-AAP indicated that the first metal ion resides in a hexacoordinate/pentacoordinate equilibrium environment, whereas the second metal ion is six-coordinate. pH dependence of the kinetic parameters k{sub cat} and K{sub m} for the hydrolysis of L-leucine p-nitroanilide (L-pNA) revealed a change in an ionization constant in the enzyme-substrate complex from 5.3 in r-AAP to 6.4 in E151H-AAP, consistent with E151 in AAP being the active-site general acid/base. Proton inventory studies at pH 8.50 indicate the transfer of one proton in the rate-limiting step of the reaction. Moreover, the X-ray crystal structure of [ZnZn(E151H-AAP)] has been solved to 1.9 {angstrom} resolution, and alteration of E151 to histidine does not introduce any major conformational changes to the overall protein structure or the dinuclear Zn{sup II} active site. Therefore, a histidine residue can function as the general acid/base in hydrolysis reactions of peptides and, through analogy of the role of E151 in AAP, H115 in DppA likely shuttles a proton to the leaving group of the substrate.

  6. Raltegravir Permeability across Blood-Tissue Barriers and the Potential Role of Drug Efflux Transporters

    PubMed Central

    Hoque, M. Tozammel; Kis, Olena; De Rosa, María F.

    2015-01-01

    The objectives of this study were to investigate raltegravir transport across several blood-tissue barrier models and the potential interactions with drug efflux transporters. Raltegravir uptake, accumulation, and permeability were evaluated in vitro in (i) P-glycoprotein (P-gp), breast cancer resistance protein (BCRP), multidrug resistance-associated protein 1 (MRP1), or MRP4-overexpressing MDA-MDR1 (P-gp), HEK-ABCG2, HeLa-MRP1, or HEK-MRP4 cells, respectively; (ii) cell culture systems of the human blood-brain (hCMEC/D3), mouse blood-testicular (TM4), and human blood-intestinal (Caco-2) barriers; and (iii) rat jejunum and ileum segments using an in situ single-pass intestinal perfusion model. [3H]Raltegravir accumulation by MDA-MDR1 (P-gp) and HEK-ABCG2-overexpressing cells was significantly enhanced in the presence of PSC833 {6-[(2S,4R,6E)-4-methyl-2-(methylamino)-3-oxo-6-octenoic acid]-7-l-valine-cyclosporine}, a P-gp inhibitor, or Ko143 [(3S,6S,12aS)-1,2,3,4,6,7,12,12a-octahydro-9-methoxy-6-(2-methylpropyl)-1,4-dioxopyrazino[1?,2?:1,6]pyrido[3,4-b]indole-3-propanoic acid 1,1-dimethylethyl ester], a BCRP inhibitor, suggesting the inhibition of a P-gp- or BCRP-mediated efflux process, respectively. Furthermore, [3H]raltegravir accumulation by human cerebral microvessel endothelial hCMEC/D3 and mouse Sertoli TM4 cells was significantly increased by PSC833 and Ko143. In human intestinal Caco-2 cells grown on Transwell filters, PSC833, but not Ko143, significantly decreased the [3H]raltegravir efflux ratios. In rat intestinal segments, [3H]raltegravir in situ permeability was significantly enhanced by the concurrent administration of PSC833 and Ko143. In contrast, in the transporter inhibition assays, raltegravir (10 to 500 ?M) did not increase the accumulation of substrate for P-gp (rhodamine-6G), BCRP ([3H]mitoxantrone), or MRP1 [2?,7?-bis(2-carboxyethyl)-5(6)-carboxyfluorescein (BCECF)] by MDA-MDR1 (P-gp)-, HEK-ABCG2-, or HeLa-MRP1-overexpressing cells, respectively. Our data suggest that raltegravir is a substrate but not an inhibitor of the drug efflux transporters P-gp and BCRP. These transporters might play a role in the restriction of raltegravir permeability across the blood-brain, blood-testicular, and blood-intestinal barriers, potentially contributing to its low tissue concentrations and/or low oral bioavailability observed in the clinic setting. PMID:25691630

  7. New Organic Stable Isotope Reference Materials for Distribution through the USGS and the IAEA

    NASA Astrophysics Data System (ADS)

    Schimmelmann, Arndt; Qi, Haiping

    2014-05-01

    The widespread adoption of relative stable isotope-ratio measurements in organic matter by diverse scientific disciplines is at odds with the dearth of international organic stable isotopic reference materials (RMs). Only two of the few carbon (C) and nitrogen (N) organic RMs, namely L-glutamic acids USGS40 and USGS41 [1], both available from the U.S. Geological Survey (USGS) and the International Atomic Energy Agency (IAEA), provide an isotopically contrasting pair of organic RMs to enable essential 2-point calibrations for ?-scale normalization [2, 3]. The supply of hydrogen (H) organic RMs is even more limited. Numerous stable isotope laboratories have resorted to questionable practices, for example by using 'CO2, N2, and H2 reference gas pulses' for isotopic calibrations, which violates the principle of identical treatment of sample and standard (i.e., organic unknowns should be calibrated directly against chemically similar organic RMs) [4], or by using only 1 anchor instead of 2 for scale calibration. The absence of international organic RMs frequently serves as an excuse for indefensible calibrations. In 2011, the U.S. National Science Foundation (NSF) funded an initiative of 10 laboratories from 7 countries to jointly develop much needed new organic RMs for future distribution by the USGS and the IAEA. The selection of targeted RMs attempts to cover various common compound classes of broad technical and scientific interest. We had to accept compromises to approach the ideal of high chemical stability, lack of toxicity, and low price of raw materials. Hazardous gases and flammable liquids were avoided in order to facilitate international shipping of future RMs. With the exception of polyethylene and vacuum pump oil, all organic RMs are individual, chemically-pure substances, which can be used for compound-specific isotopic measurements in conjunction with liquid and gas chromatographic interfaces. The compounds listed below are under isotopic calibration by the 10 laboratories. Successfully calibrated organic RMs could become available as early as 2015. - n-Hexadecane (C16 n-alkane), three H, C-isotopic varieties; - Glycine (amino acid), three H, C, N-isotopic varieties; - L-valine (amino acid), three H, C, N-isotopic varieties; - Methyl n-heptadecanoate (methyl ester of C17 n-alkanoic fatty acid); - Methyl icosanoate (methyl ester of C20 n-alkanoic fatty acid), three H, C-isotopic varieties; - Caffeine, three H, C, N-isotopic varieties; - Hydrocarbon vacuum pump oils, two H-isotopic varieties; - Polyethylene powder, and possibly a 2H and 13C-enriched polyethylene string. [1] Qi H., Coplen T.B., Geilmann H., Brand W.A., Böhlke J.K. (2003) Two new organic reference materials for ?13C and ?15N measurements and a new value for the ?13C of NBS 22 oil. Rapid Communications in Mass Spectrometry 17, 2483-2487. [2] Coplen T.B. (1996) New guidelines for reporting stable hydrogen, carbon, and oxygen isotope-ratio data. Geochimica et Cosmochimica Acta 60, 3359-3360. [3] Coplen T.B., Brand W.A., Gehre M., Gröning M., Meijer H.A.J., Toman B., Verkouteren R.M. (2006) New guidelines for ?13C measurements. Analytical Chemistry 78 (7), 2439-2441. [4] Werner R.A., Brand W.A. (2001) Referencing strategies and techniques in stable isotope ratio analysis. Rapid Communications in Mass Spectrometry 15, 501-519.

  8. The origin of amino acids in lunar regolith samples

    NASA Astrophysics Data System (ADS)

    Elsila, Jamie E.; Callahan, Michael P.; Dworkin, Jason P.; Glavin, Daniel P.; McLain, Hannah L.; Noble, Sarah K.; Gibson, Everett K.

    2016-01-01

    We analyzed the amino acid content of seven lunar regolith samples returned by the Apollo 16 and Apollo 17 missions and stored under NASA curation since collection using ultrahigh-performance liquid chromatography with fluorescence detection and time-of-flight mass spectrometry. Consistent with results from initial analyses shortly after collection in the 1970s, we observed amino acids at low concentrations in all of the curated samples, ranging from 0.2 parts-per-billion (ppb) to 42.7 ppb in hot-water extracts and 14.5-651.1 ppb in 6 M HCl acid-vapor-hydrolyzed, hot-water extracts. Amino acids identified in the Apollo soil extracts include glycine, D- and L-alanine, D- and L-aspartic acid, D- and L-glutamic acid, D- and L-serine, L-threonine, and L-valine, all of which had previously been detected in lunar samples, as well as several compounds not previously identified in lunar regoliths: ?-aminoisobutyric acid (AIB), D- and L-?-amino-n-butyric acid (?-ABA), DL-?-amino-n-butyric acid, ?-amino-n-butyric acid, ?-alanine, and ?-amino-n-caproic acid. We observed an excess of the L enantiomer in most of the detected proteinogenic amino acids, but racemic alanine and racemic ?-ABA were present in some samples. We also examined seven samples from Apollo 15, 16, and 17 that had been previously allocated to a non-curation laboratory, as well as two samples of terrestrial dunite from studies of lunar module engine exhaust that had been stored in the same laboratory. The amino acid content of these samples suggested that contamination had occurred during non-curatorial storage. We measured the compound-specific carbon isotopic ratios of glycine, ?-alanine, and L-alanine in Apollo regolith sample 70011 and found values of -21‰ to -33‰. These values are consistent with those seen in terrestrial biology and, together with the enantiomeric compositions of the proteinogenic amino acids, suggest that terrestrial biological contamination is a primary source of the amino acids in these samples. However, the presence of the non-proteinogenic amino acids such as AIB and ?-ABA suggests the possibility of some contribution from exogenous sources. We did not observe a correlation of amino acid content with proximity to the Apollo 17 lunar module, implying that lunar module exhaust was not a primary source of amino acid precursors. Solar-wind-implanted precursors such as HCN also appear to be at most a minor contributor, given a lack of correlation between amino acid content and soil maturity (as measured by Is/FeO ratio) and the differences between the ?13C values of the amino acids and the solar wind.

  9. Optimization and validation of a chiral GC-MS method for the determination of free D-amino acids ratio in human urine: application to a gestational diabetes mellitus study.

    PubMed

    Lorenzo, Ma Paz; Dudzik, Danuta; Varas, Elena; Gibellini, Manuel; Skotnicki, Mariusz; Zorawski, Marcin; Zarzycki, Wieslaw; Pellati, Federica; García, Antonia

    2015-03-25

    Gestational Diabetes Mellitus (GDM) is defined as glucose intolerance with onset or first recognition during pregnancy. It is affecting approximately up to 14% of all pregnancies with an increasing tendency. GDM has been related to relevant short-term and long-term health complications for both mother and offspring. Recent studies strongly emphasized the role of several essential amino acids in the pathogenesis of obesity and highlighted their strong correlation with insulin resistance, but there are no references related to modifications in D-AAs in biological fluids. As D-AA elimination proceeds mainly by renal excretion, urine was the selected sample to evaluate the alterations in free D-AAs ratio in a GDM study. Only 1 mL of first void urine or standard solution was required for purification, by using a Discovery DSC-SCX SPE cartridge (500 mg/3 mL) and derivatization into their N(O)-pentafluoropropionyl amino acid 2-propyl esters. Enantiomeric separation was carried out by GC-MS on a Chirasil-L-Val N-propionyl-L-valine-tert-butylamide polysiloxane fused-silica capillary column (25 m×0.25 mm I.D., 0.12 ?m film thickness, Agilent Technologies, Waldbronn, Germany), under programmed temperature elution. Detection was performed with an ion trap mass analyzer, operating in the full scan mode in the m/z 50-350 range. 14 pairs of derivatives of D-and L-AAs were separated. The steps of sample preparation, derivatization and GC-MS conditions were optimized for both urine and standards. Several conditions affecting the SPE procedure, such as sorbent mass/volume ratio of the cartridge, sample dilution and pH, were optimized. Volume of reagents and solvents and reaction temperature and time were also tested for the derivatization. Regarding the GC-MS parameters, split ratio, temperature program and mass range were optimized. The final method was validated in terms of linearity, sensitivity, accuracy and precision for D-Ala, D-Pro, D-Ser, D-Met, D-Phe, D-Glu, D-Orn and D-Lys. Identification of AAs in urine samples was based on retention time and mass spectra. Urine from 20 women with GDM and 20 pregnant women with normal glucose tolerance (after 2-h 75-g oral glucose tolerance test), matched according to the week of gestation and age (22-28 week of gestation and age 24-37 years), were enrolled into the study. %D-Relative amounts were determined for Ala, Val, Thr, Ser, Leu, Asx (Asp+Asn), Glx (Glu+Gln), Met, Phe, Tyr, Orn and Lys. Statistically significant differences (p<0.05) were observed only for D-Phe and higher values were found in the GDM group. It is possible that D-Phe could be involved in metabolic/signaling pathways to compensate early stages of insulin resistance, although further work is necessary to confirm this hypothesis. PMID:25679092

  10. Cyclooctadepsipeptides--an anthelmintically active class of compounds exhibiting a novel mode of action.

    PubMed

    Harder, Achim; Schmitt-Wrede, Hans-Peter; Krücken, Jürgen; Marinovski, Predrag; Wunderlich, Frank; Willson, James; Amliwala, Kiran; Holden-Dye, Lindy; Walker, Robert

    2003-09-01

    There are three major classes of anthelmintics for veterinary use: the benzimidazoles/prebenzimidazoles, the tetrahydropyrimidines/imidazothiazoles, and the macrocyclic lactones. In nematodes, there are five targets for the existing anthelmintics: the nicotinergic acetylcholine receptor which is the target of tetrahydropyrimidines/imidazothiazoles and indirectly that of the acetylcholineesterase inhibitors; the GABA receptor which is the target of piperazine, the glutamate-gated chloride channel as the target of the macrocyclic lactones, and beta-tubulin as the target of prebenzimidazoles/benzimidazoles. All these anthelmintics are now in serious danger because of the worldwide spread of resistant nematodes in sheep, cattle, horses and pigs. The class of cyclooctadepsipeptides has entered the scene of anthelmintic research in the early 1990s. PF1022A, the first anthelmintically active member, is a natural compound from the fungus Mycelia sterilia that belongs to the microflora of the leaves of the Camellia japonica. PF1022A contains 4 N-Methyl-L-leucines, 2 D-lactic acids and 2-D-phenyllactic acids arranged as a cyclic octadepsipeptide with an alternating L-D-L-configuration. Emodepside is a semisynthetic derivative of PF1022A with a morpholine ring at each of the two D-phenyllactic acids in para position. The anthelmintic activity is directed against gastrointestinal nematodes in chicken, mice, rats, meriones, dogs, cats, sheep, cattle and horses. Moreover, emodepside is active against Trichinella spiralis larvae in muscles, microfilariae and preadult filariae and Dictyocaulus viviparus. PF1022A and emodepside are fully effective against benzimidazole-, levamisole or ivermectin-resistant nematodes in sheep and cattle. In Ascaris suum both cyclooctadepsipeptides lead to paralysis indicating a neuropharmacological action of these compounds. Using a PF1022A-ligand immunoscreening of a cDNA library from Haemonchus contortus a cDNA clone of 3569 base pairs could be identified. This clone codes for a novel 110 kDa heptahelical transmembrane receptor, named HC110R. Database- and phylogenetic analysis reveals that this receptor is a homolog to B0457.1 from Caenorhabditis elegans and has significant similarity to latrophilins from human, cattle and rat. HC110R is located in the plasma membrane and in lysosomes and endosomes. Alpha-latrotoxin, the poison of the black widow spider, binds at a 54 kDa aminoterminal fragment of HC110R. After binding a Ca2+-influx into HEK293 cells is induced which can be blocked by EGTA, Cd2+ or nifedipin. PF1022A or emodepside also bind to this 54 kDa aminoterminal region of HC110R and interact with the functional responses of alpha-latrotoxin. In C. elegans antibodies against the C-or N-terminus of HC110R bind to the B0457.1 protein located in the pharynx. Electrophysiological studies reveal that emodepside inhibits pharyngeal pumping of the nematodes in a concentration dependent way with an IC(50) value of about 4 nM. Thus, it is tempting to speculate that emodepside exerts its action on nematodes via a latrophilin-like receptor which might have an important regulatory function on pharyngeal pumping. PMID:13678839

  11. Effect of an isoenergetic traditional Mediterranean diet on apolipoprotein A-I kinetic in men with metabolic syndrome

    PubMed Central

    2013-01-01

    Background The impact of the Mediterranean diet (MedDiet) on high-density lipoprotein (HDL) kinetics has not been studied to date. The objective of this study was therefore to investigate the effect of the MedDiet in the absence of changes in body weight on apolipoprotein (apo) A-I kinetic in men with metabolic syndrome (MetS). Methods Twenty-six men with MetS (NCEP-ATP III) were recruited from the general community. In this fixed sequence study, participants’ diet was first standardized to a control diet reflecting current averages in macronutrient intake in North American men, with all foods and beverages provided under isoenergetic conditions for 5 weeks. Participants were then fed an isoenergetic MedDiet over a subsequent period of 5 weeks to maintain their weight constant. During the last week of each diet, participants received a single bolus dose of [5,5,5-2H3] L-leucine and fasting blood samples were collected at predetermined time points. ApoA-I kinetic was determined by multicompartmental modeling using isotopic enrichment data over time. Data were analyses using MIXED models. Results The response of HDL-cholesterol (C) to MedDiet was heterogeneous, such that there was no mean change compared with the control diet. Plasma apoA-I concentration (?3.9%) and pool size (?5.3%, both P?

  12. Pharmacokinetics of Inhaled Rifampicin Porous Particles for Tuberculosis Treatment: Insight into Rifampicin Absorption from the Lungs of Guinea Pigs.

    PubMed

    Garcia Contreras, Lucila; Sung, Jean; Ibrahim, Mariam; Elbert, Katharina; Edwards, David; Hickey, Anthony

    2015-08-01

    Tuberculosis (TB) is a life-threatening infection that requires a lengthy treatment process that is often associated with adverse effects. Pulmonary delivery of anti-TB drugs has the potential to increase efficacy of treatment by increasing drug concentrations at the lungs, the primary site of infection. The aim of the present study is to evaluate the disposition of rifampicin (RIF) after its pulmonary administration as porous particles (PPs) to guinea pigs and contrast it to that after oral administration. RIF microparticles were prepared by spray drying a solution of RIF and L-leucine (9:1), and the resulting particles were characterized for their physicochemical properties. Animals received RIF either as intravenous solution (iv), as oral suspension of micronized RIF (ORS) and RIF-PPs (ORPP), or by insufflation of the PPs (IRPP). Plasma samples were collected at preselected time points, and bronchoalveolar lavage (BAL) was performed at the end of the study. RIF concentrations in biological samples were analyzed by HPLC. Plasma concentration versus time data was analyzed by compartmental and noncompartmental methods. RIF PPs were thin walled porous particles with mass median aerodynamic diameter (MMAD) of 4.8±0.1 ?m, GSD=1.29±0.03, and fine particle fraction below 5.8 ?m of 52.9±2.0%. RIF content in the resulting particles was 91.8±0.1%. Plasma concentration vs time profiles revealed that the terminal slope of the iv group was different from that of the oral or pulmonary groups, indicating the possibility of flip-flop kinetics. RIF from IRPP appeared to be absorbed faster than that of ORPP or ORS as evidenced by higher RIF plasma concentrations up until 2 h. Notably, similar AUC (when corrected by dose), similar CL, ?, and half-life were obtained after oral administration of RIF at 40 mg/kg and pulmonary administration of RIF at 20 mg/kg. However, RIF in the IRPP group had a shorter Tmax and higher bioavailability than orally dosed groups. In addition, RIF concentrations in the BAL of animals in the IRPP group were 3-4-fold larger than those in the orally dosed groups. The disposition in ORS and ORPP were best described by a model with two sequential compartments, whereas the disposition of IRPP was best described by a two parallel compartment model. The advantages of delivering RIF by the pulmonary route are demonstrated in the present study. These include achieving higher RIF concentrations in the lungs and similar systemic levels after pulmonary delivery of one-half of the oral nominal dose. This is expected to result in a more effective treatment of pulmonary TB, as shown previously in published efficacy studies. PMID:25942002

  13. Derivatives of melphalan designed to enhance drug accumulation in cancer cells.

    PubMed

    Kupczyk-Subotkowska, L; Tamura, K; Pal, D; Sakaeda, T; Siahaan, T J; Stella, V J; Borchardt, R T

    1997-01-01

    The objective of this study was to develop chemical strategies to improve the uptake and accumulation of melphalan (L-Mel and D-Mel), a cytotoxic agent, into cancer cells. Dipeptides synthesized from L- (or D-) Mel and L-glutamic acid (L-Glu) or L-valine (L-Val) and their methyl or ethyl esters (all compounds were trifluoroacetic acid salts) were evaluated for cytotoxicity and cellular uptake using Caco-2 cells, a human colon carcinoma cell line, and RT-2 cells, a rat brain glioma cell line. Treatment of Caco-2 cells with L-Mel or D-Mel (0.5 mg/ml equivalent of melphalan) for 48 h resulted in approximately 50% cell survival. Treatment of the Caco-2 cells with dipeptide derivatives of L-Mel (or D-Mel) (11c-d, 12c-d and 13) caused similar cytotoxicity effects (approximately 50-70% of cell survival). When the cytotoxicities of the esters of L-Mel, D-Mel and their dipeptide derivatives (11a-b, 12a-b and 14) in Caco-2 cells were determined, less than 10% cell survival was observed. Similar results were observed in RT-2 cells. When the cellular uptake properties of these compounds were determined in Caco-2 cell monolayers, L-Glu-L-Mel (12c), L-Glu-D-Mel (12d), and L-Mel-L-Glu (11c) generated slightly lower intracellular levels of L-Mel or D-Mel than when the cell monolayer was treated with the amino acids (L-Mel or D-Mel). In Caco-2 cells treated with 11c, 12c or 12d, low levels of the dipeptides were also detected. Caco-2 cell monolayers treated with D-Mel-L-Glu (11d) or D-Mel-L-Val (13) showed very low levels of the amino acids (L-Mel or D-Mel), but generally higher levels of the dipeptides. In contrast to the amino acids (L-Mel, D-Mel) or the dipeptide derivatives (11c-d, 12c-d and 13), the ester derivatives of the amino acids [L-Mel(OEt), D-Mel(OEt)] or the dipeptides (11a-b, 12a-b and 14) produced 5-20 times higher intracellular concentrations of potentially cytotoxic metabolites (e.g., L-Mel, D-Mel, Mel-containing dipeptides or Mel-containing dipeptide monoesters). L-Mel(OEt), D-Mel(OEt), L-Glu(OEt)-L-Mel(OEt) (12a), L-Glu(OEt)-D-Mel(OEt) (12b), and L-Mel-L-Glu(OEt)2 (11a) accumulated mainly as either L-Mel or D-Mel, and the percentages of L-Mel or D-Mel were 99%, 99%, 90%, 75% and 98% of the total intracellular concentration of potentially cytotoxic agents, respectively. D-Mel-L-Glu(OEt)2 (11b) accumulated as its monoester (> 95%) and D-Mel-L-Val(OMe) (14) accumulated as its dipeptide metabolite (> 98%). Inclusion of Gly-Pro, carnosine, L-Phe or L-Glu did not inhibit uptake of the dipeptide derivatives of L-Mel (or D-Mel) or their esters. These results suggest that the cellular uptake of the dipeptide derivatives of melphalan and their esters is probably via passive diffusion rather than being facilitated by an amino acid transporter or a di/tripeptide transporter. The higher intracellular levels of cytotoxic agents generated from the ester derivatives of the amino acids and the dipeptides are probably due to their higher lipophilicity and the overall neutral charge of the esters and subsequent intracellular formation of the more polar amino acids (L- or D-Mel) and/or Mel-containing dipeptides. Finally, these studies suggest that dipeptides of D-Mel [11b, 11d, 13] have inherent cytotoxicity properties. PMID:9239576

  14. Microbial functional diversity in a mediterranean forest soil: impact of soil nitrogen availability

    NASA Astrophysics Data System (ADS)

    Dalmonech, D.; Lagomarsino, A.; Moscatelli, M. C.

    2009-04-01

    Beneficial or negative effects of N deposition on forest soil are strongly linked to the activity of microbial biomass and enzyme activities because they regulate soil quality and functioning due to their involvement in organic matter dynamics, nutrient cycling and decomposition processes. Moreover, because the ability of an ecosystem to withstand serious disturbances may depend in part on the microbial component of the system, by characterizing microbial functional diversity we may be able to better understand and manipulate ecosystem processes. Changes in the biodiversity of the soil microbial community are likely to be important in relation to maintenance of soil ecosystem function because the microbial communities influence the potential of soils for enzyme-mediated substrate catalysis. Objective of this study was to evaluate how soil N availability affected microbial functional diversity in a 4 months laboratory experiment. The incubation experiment was carried out with an organo-mineral soil collected in a Quercus cerris forest at the Roccarespampani site (Central Italy, Viterbo). All samples were incubated at 28°C and were kept to a water content between 55 and 65% of the water holding capacity. Different amount of N (NH4NO3) were added as solution once a week in order to mimic the N wet deposition and to let microbial community deal with a slow increase in time of inorganic N content. The amount of nutrient solutions was chosen depending on the average soil-water loss due to evaporation in one week. The total amount of N-NH4NO3 was chosen to be comparable with the range of N depositions currently reported in European forests, i.e. between 1 and 75 kg N ha-1 y-1. The total amount added at the end of incubation varied from 0, 10, 25, 50 and 75 kg N ha-1. Distilled water was added in the control soil in order to provide the same amount of solution as the treated soils. In order to discriminate the effect of N, the NH4NO3 solutions were adjusted to soil pH and phosphorus was added in order to prevent any nutrient limitation effect. In this experiment microbial functional diversity was assessed at the community level with two independent approaches: the first one uses soil hydrolytic and oxidative enzymes and the second one C substrates utilization rates with the MicroResp system. The activities of important soil enzymes involved in organic matter and nutrient transformations were determined using a fluorimetric approach: beta-glucosidase, alfa-glucosidase, beta-xylosidase and beta-cellobiohydrolase activities are key enzymes in the cellulose and starch degradation; N-acetyl-?-glucosaminidase and leucine-aminopeptidase activities are involved in N cycling through chitin degradation, a major source of mineralizable N in soil and peptides release; acid phosphatase is crucial in organic P transformation; butyric esterase is an indicator of the physiological performance of microbial biomass in soil. (Poly)phenol oxidative activity was determined spectrophotometrically as an indicator of lignin and lignin-like substances polymerization and depolymerization. All enzymes were assessed at the beginning of the incubation and after 6, 13, 26, 42, 55, 83 and 118 days. For the MicroResp method C substrates for the analysis of Community Level Physiological Profile (CLPP) were selected depending on their ecological relevance and the objective of the experiment. C sources include four carbohydrates (Alpha-D-glucose, N-acetyl-Glucosamine, D-Galactose, D-fructose), four amino acids (L-arabionose, L-leucine, L-arginine, Glycine), five carboxylic acid (Malic acid, citric acid, Oxalic acid, L-aspartic acid and gamma-amino-butyric acid) and two phenolic acids (vanillic acid and syringic acid). MicroResp analysis was performed at the beginning and at the end of the incubation. Discriminant function analysis and Shannon diversity index were used to determine microbial functional diversity with the two different approaches.