Science.gov

Sample records for la5ca9cu24o41 thin films

  1. Comment on ``Frustrating interactions and broadened magnetic interactions in the edge-sharing CuO2 chains in La5Ca9Cu24O41''

    NASA Astrophysics Data System (ADS)

    Leidl, R.; Selke, W.

    2004-02-01

    Using Monte Carlo techniques, we show that the two-dimensional anisotropic Heisenberg model reproducing nicely inelastic neutron scattering measurements on La5Ca9Cu24O41 [M. Matsuda et al., Phys. Rev. B 68, 060406(R) (2003)] seems to be insufficient to describe correctly measurements on thermodynamic quantities like the magnetization or the susceptibility. Possible reasons for the discrepancy are suggested.

  2. Thin Film?

    NASA Astrophysics Data System (ADS)

    Kariper, İ. Afşin

    2014-09-01

    This study focuses on the critical surface tension of lead sulfite (PbSO3) crystalline thin film produced with chemical bath deposition on substrates (commercial glass).The PbSO3 thin films were deposited at room temperature at different deposition times. The structural properties of the films were defined and examined according to X-ray diffraction (XRD) and the XRD results such as dislocation density, average grain size, and no. of crystallites per unit area. Atomic force microscopy was used to measure the film thickness and the surface properties. The critical surface tension of the PbSO3 thin films was measured with an optical tensiometer instrument and calculated using the Zisman method. The results indicated that the critical surface tension of films changed in accordance with the average grain size and film thickness. The film thickness increased with deposition time and was inversely correlated with surface tension. The average grain size increased according to deposition time and was inversely correlated with surface tension.

  3. Thin Films

    NASA Astrophysics Data System (ADS)

    Khorshidi, Zahra; Bahari, Ali; Gholipur, Reza

    2014-11-01

    Effect of annealing temperature on the characteristics of sol-gel-driven Ta ax La(1- a) x O y thin film spin-coated on Si substrate as a high- k gate dielectric was studied. Ta ax La(1- a) x O y thin films with different amounts of a were prepared (as-prepared samples). X-ray diffraction measurements of the as-prepared samples indicated that Ta0.3 x La0.7 x Oy film had an amorphous structure. Therefore, Ta0.3 x La0.7 x O y film was chosen to continue the present studies. The morphology of Ta0.3 x La0.7 x O y films was studied using scanning electron microscopy and atomic force microscopy techniques. The obtained results showed that the size of grain boundaries on Ta0.3 x La0.7 x O y film surfaces was increased with increasing annealing temperature. Electrical and optical characterizations of the as-prepared and annealed films were investigated as a function of annealing temperature using capacitance-voltage ( C- V) and current density-voltage ( J- V) measurements and the Tauc method. The obtained results demonstrated that Ta0.3 x La0.7 x O y films had high dielectric constant (≈27), wide band gap (≈4.5 eV), and low leakage current density (≈10-6 A/cm2 at 1 V).

  4. Thin Films

    NASA Astrophysics Data System (ADS)

    Naffouti, Wafa; Nasr, Tarek Ben; Mehdi, Ahmed; Kamoun-Turki, Najoua

    2014-11-01

    Titanium dioxide (TiO2) thin films were synthesized on glass substrates by spray pyrolysis. The effect of solution flow rate on the physical properties of the films was investigated by use of x-ray diffraction (XRD), scanning electron microscopy, atomic force microscopy (AFM), and spectrophotometry techniques. XRD analysis revealed the tetragonal anatase phase of TiO2 with highly preferred (101) orientation. AFM images showed that grain size on top of TiO2 thin films depended on solution flow rate. An indirect band gap energy of 3.46 eV was determined by means of transmission and reflection measurements. The envelope method, based on the optical transmission spectrum, was used to determine film thickness and optical constants, for example real and imaginary parts of the dielectric constant, refractive index, and extinction coefficient. Ultraviolet and visible photoluminescence emission peaks were observed at room temperature. These peaks were attributed to the intrinsic emission and to the surface defect states, respectively.

  5. Pyrolyzed thin film carbon

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  6. Thin film metrology.

    PubMed

    Nitsch, Gerald; Flinn, Gregory

    2007-10-01

    Thin film metrology is suitable for characterising and performing quality control of a variety of coatings and films used in medical applications. The capabilities of today's systems are described. PMID:18078184

  7. Ceramic Composite Thin Films

    NASA Technical Reports Server (NTRS)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  8. Carbon thin film thermometry

    NASA Technical Reports Server (NTRS)

    Collier, R. S.; Sparks, L. L.; Strobridge, T. R.

    1973-01-01

    The work concerning carbon thin film thermometry is reported. Optimum film deposition parameters were sought on an empirical basis for maximum stability of the films. One hundred films were fabricated for use at the Marshall Space Flight Center; 10 of these films were given a precise quasi-continuous calibration of temperature vs. resistance with 22 intervals between 5 and 80 K using primary platinum and germanium thermometers. Sensitivity curves were established and the remaining 90 films were given a three point calibration and fitted to the established sensitivity curves. Hydrogen gas-liquid discrimination set points are given for each film.

  9. Thin film hydrogen sensor

    DOEpatents

    Cheng, Y.T.; Poli, A.A.; Meltser, M.A.

    1999-03-23

    A thin film hydrogen sensor includes a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end. 5 figs.

  10. Biomimetic thin film synthesis

    SciTech Connect

    Graff, G.L.; Campbell, A.A.; Gordon, N.R.

    1995-05-01

    The purpose of this program is to develop a new process for forming thin film coatings and to demonstrate that the biomimetic thin film technology developed at PNL is useful for industrial applications. In the biomimetic process, mineral deposition from aqueous solution is controlled by organic functional groups attached to the underlying substrate surface. The coatings process is simple, benign, inexpensive, energy efficient, and particularly suited for temperature sensitive substrate materials (such as polymers). In addition, biomimetic thin films can be deposited uniformly on complex shaped and porous substrates providing a unique capability over more traditional line-of-sight methods.

  11. Thin film hydrogen sensor

    DOEpatents

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  12. Multifunctional thin film surface

    SciTech Connect

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  13. Thin film tritium dosimetry

    DOEpatents

    Moran, Paul R.

    1976-01-01

    The present invention provides a method for tritium dosimetry. A dosimeter comprising a thin film of a material having relatively sensitive RITAC-RITAP dosimetry properties is exposed to radiation from tritium, and after the dosimeter has been removed from the source of the radiation, the low energy electron dose deposited in the thin film is determined by radiation-induced, thermally-activated polarization dosimetry techniques.

  14. Evaporated VOx Thin Films

    NASA Astrophysics Data System (ADS)

    Stapinski, Tomasz; Leja, E.

    1989-03-01

    VOx thin films on glass were obtained by thermal evaporation of V205, powder. The structural investigations were carried out with the use of X-ray diffractometer. The electrical properties of the film were examined by means of temperature measurements of resistivity for the samples heat-treated in various conditions. Optical transmission and reflection spectra of VOX films of various composition showed the influence of the heat treatment.

  15. Thin film temperature sensor

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.

    1980-01-01

    Thin film surface temperature sensors were developed. The sensors were made of platinum-platinum/10 percent rhodium thermocouples with associated thin film-to-lead wire connections and sputtered on aluminum oxide coated simulated turbine blades for testing. Tests included exposure to vibration, low velocity hydrocarbon hot gas flow to 1250 K, and furnace calibrations. Thermal electromotive force was typically two percent below standard type S thermocouples. Mean time to failure was 42 hours at a hot gas flow temperature of 1250 K and an average of 15 cycles to room temperature. Failures were mainly due to separation of the platinum thin film from the aluminum oxide surface. Several techniques to improve the adhesion of the platinum are discussed.

  16. Thin film photovoltaics

    SciTech Connect

    Zweibel, K; Ullal, H S

    1989-05-01

    Thin films are considered a potentially attractive technological approach to making cost-effective electricity by photovoltaics. Over the last twenty years, many have been investigated and some (cadmium telluride, copper indium diselenide, amorphous silicon) have become leading candidates for future large-scale commercialization. This paper surveys the past development of these key thin films and gives their status and future prospects. In all cases, significant progress toward cost-effective PV electricity has been made. If this progress continues, it appears that thin film PV could provide electricity that is competitive for summer daytime peaking power requirements by the middle of the 1990s; and electricity in a range that is competitive with fossil fuel costs (i.e., 6 cents/kilowatt-hour) should be available from PV around the turn of the century. 22 refs., 9 figs.

  17. Thin film ceramic thermocouples

    NASA Technical Reports Server (NTRS)

    Gregory, Otto (Inventor); Fralick, Gustave (Inventor); Wrbanek, John (Inventor); You, Tao (Inventor)

    2011-01-01

    A thin film ceramic thermocouple (10) having two ceramic thermocouple (12, 14) that are in contact with each other in at least on point to form a junction, and wherein each element was prepared in a different oxygen/nitrogen/argon plasma. Since each element is prepared under different plasma conditions, they have different electrical conductivity and different charge carrier concentration. The thin film thermocouple (10) can be transparent. A versatile ceramic sensor system having an RTD heat flux sensor can be combined with a thermocouple and a strain sensor to yield a multifunctional ceramic sensor array. The transparent ceramic temperature sensor that could ultimately be used for calibration of optical sensors.

  18. Thin film photovoltaic device

    DOEpatents

    Catalano, Anthony W.; Bhushan, Manjul

    1982-01-01

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids.

  19. Thin film photovoltaic device

    DOEpatents

    Catalano, A.W.; Bhushan, M.

    1982-08-03

    A thin film photovoltaic solar cell which utilizes a zinc phosphide semiconductor is of the homojunction type comprising an n-type conductivity region forming an electrical junction with a p-type region, both regions consisting essentially of the same semiconductor material. The n-type region is formed by treating zinc phosphide with an extrinsic dopant such as magnesium. The semiconductor is formed on a multilayer substrate which acts as an opaque contact. Various transparent contacts may be used, including a thin metal film of the same chemical composition as the n-type dopant or conductive oxides or metal grids. 5 figs.

  20. Epitaxial thin films

    DOEpatents

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  1. Thin films for material engineering

    NASA Astrophysics Data System (ADS)

    Wasa, Kiyotaka

    2016-07-01

    Thin films are defined as two-dimensional materials formed by condensing one by one atomic/molecular/ionic species of matter in contrast to bulk three-dimensional sintered ceramics. They are grown through atomic collisional chemical reaction on a substrate surface. Thin film growth processes are fascinating for developing innovative exotic materials. On the basis of my long research on sputtering deposition, this paper firstly describes the kinetic energy effect of sputtered adatoms on thin film growth and discusses on a possibility of room-temperature growth of cubic diamond crystallites and the perovskite thin films of binary compound PbTiO3. Secondly, high-performance sputtered ferroelectric thin films with extraordinary excellent crystallinity compatible with MBE deposited thin films are described in relation to a possible application for thin-film MEMS. Finally, the present thin-film technologies are discussed in terms of a future material science and engineering.

  2. Thin film solar cell workshop

    NASA Technical Reports Server (NTRS)

    Armstrong, Joe; Jeffrey, Frank

    1993-01-01

    A summation of responses to questions posed to the thin-film solar cell workshop and the ensuing discussion is provided. Participants in the workshop included photovoltaic manufacturers (both thin film and crystalline), cell performance investigators, and consumers.

  3. Thin-film optical initiator

    DOEpatents

    Erickson, Kenneth L.

    2001-01-01

    A thin-film optical initiator having an inert, transparent substrate, a reactive thin film, which can be either an explosive or a pyrotechnic, and a reflective thin film. The resultant thin-film optical initiator system also comprises a fiber-optic cable connected to a low-energy laser source, an output charge, and an initiator housing. The reactive thin film, which may contain very thin embedded layers or be a co-deposit of a light-absorbing material such as carbon, absorbs the incident laser light, is volumetrically heated, and explodes against the output charge, imparting about 5 to 20 times more energy than in the incident laser pulse.

  4. NMR characterization of thin films

    DOEpatents

    Gerald II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2010-06-15

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  5. NMR characterization of thin films

    DOEpatents

    Gerald, II, Rex E.; Klingler, Robert J.; Rathke, Jerome W.; Diaz, Rocio; Vukovic, Lela

    2008-11-25

    A method, apparatus, and system for characterizing thin film materials. The method, apparatus, and system includes a container for receiving a starting material, applying a gravitational force, a magnetic force, and an electric force or combinations thereof to at least the starting material, forming a thin film material, sensing an NMR signal from the thin film material and analyzing the NMR signal to characterize the thin film of material.

  6. Selective inorganic thin films

    SciTech Connect

    Phillips, M.L.F.; Weisenbach, L.A.; Anderson, M.T.

    1995-05-01

    This project is developing inorganic thin films as membranes for gas separation applications, and as discriminating coatings for liquid-phase chemical sensors. Our goal is to synthesize these coatings with tailored porosity and surface chemistry on porous substrates and on acoustic and optical sensors. Molecular sieve films offer the possibility of performing separations involving hydrogen, air, and natural gas constituents at elevated temperatures with very high separation factors. We are focusing on improving permeability and molecular sieve properties of crystalline zeolitic membranes made by hydrothermally reacting layered multicomponent sol-gel films deposited on mesoporous substrates. We also used acoustic plate mode (APM) oscillator and surface plasmon resonance (SPR) sensor elements as substrates for sol-gel films, and have both used these modified sensors to determine physical properties of the films and have determined the sensitivity and selectivity of these sensors to aqueous chemical species.

  7. Thin film photovoltaic cell

    DOEpatents

    Meakin, John D.; Bragagnolo, Julio

    1982-01-01

    A thin film photovoltaic cell having a transparent electrical contact and an opaque electrical contact with a pair of semiconductors therebetween includes utilizing one of the electrical contacts as a substrate and wherein the inner surface thereof is modified by microroughening while being macro-planar.

  8. Thin film scintillators

    NASA Astrophysics Data System (ADS)

    McDonald, Warren; McKinney, George; Tzolov, Marian

    2015-03-01

    Scintillating materials convert energy flux (particles or electromagnetic waves) into light with spectral characteristic matching a subsequent light detector. Commercial scintillators such as yttrium aluminum garnet (YAG) and yttrium aluminum perovskite (YAP) are commonly used. These are inefficient at lower energies due to the conductive coating present on their top surface, which is needed to avoid charging. We hypothesize that nano-structured thin film scintillators will outperform the commercial scintillators at low electron energies. We have developed alternative thin film scintillators, zinc tungstate and zinc oxide, which show promise for higher sensitivity to lower energy electrons since they are inherently conductive. Zinc tungstate films exhibit photoluminescence quantum efficiency of 74%. Cathodoluminescence spectroscopy was applied in transmission and reflection geometries. The comparison between the thin films and the YAG and YAP commercial scintillators shows much higher light output from the zinc tungstate and zinc oxide at electron energies less than 5 keV. Our films were integrated in a backscattered electron detector. This detector delivers better images than an identical detector with commercial YAG scintillator at low electron energies. Dr. Nicholas Barbi from PulseTor LLC, Dr. Anura Goonewardene, NSF Grants: #0806660, #1058829, #0923047.

  9. Thin film superconductor magnetic bearings

    DOEpatents

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  10. Thin film superconductor magnetic bearings

    SciTech Connect

    Weinberger, B.R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft that is subject to a load (L) and rotatable around an axis of rotation, a magnet mounted to the shaft, and a stator in proximity to the shaft. The stator has a superconductor thin film assembly positioned to interact with the magnet to produce a levitation force on the shaft that supports the load (L). The thin film assembly includes at least two superconductor thin films and at least one substrate. Each thin film is positioned on a substrate and all the thin films are positioned such that an applied magnetic field from the magnet passes through all the thin films. A similar bearing in which the thin film assembly is mounted on the shaft and the magnet is part of the stator also can be constructed. 8 figs.

  11. Chiral atomically thin films

    NASA Astrophysics Data System (ADS)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm–1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  12. Chiral atomically thin films.

    PubMed

    Kim, Cheol-Joo; Sánchez-Castillo, A; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm(-1)) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra. PMID:26900756

  13. Advanced thin film thermocouples

    NASA Astrophysics Data System (ADS)

    Kreider, K. G.; Semancik, S.; Olson, C.

    1984-10-01

    The fabrication, materials characterization, and performance of thin film platinum rhodium thermocouples on gas turbine alloys was investigated. The materials chosen for the study were the turbine blade alloy systems MAR M200+Hf with NiCoCrAlY and FeCrAlY coatings, and vane alloy systems MAR M509 with FeCrAlY. Research was focussed on making improvements in the problem areas of coating substrate stability, adhesion, and insulation reliability and durability. Diffusion profiles between the substrate and coating with and without barrier coatings of Al2O3 are reported. The relationships between fabrication parameters of thermal oxidation and sputtering of the insulator and its characterization and performance are described. The best thin film thermocouples were fabricated with the NiCoCrAlY coatings which were thermally oxidized and sputter coated with Al2O3.

  14. Biomimetic thin film deposition

    SciTech Connect

    Rieke, P.R.; Graff, G.E.; Campbell, A.A.; Bunker, B.C.; Baskaran, S.; Song, L.; Tarasevich, B.J.; Fryxell, G.E.

    1995-09-01

    Biological mineral deposition for the formation of bone, mollusk shell and other hard tissues provides materials scientists with illustrative materials processing strategies. This presentation will review the key features of biomineralization and how these features can be of technical importance. We have adapted existing knowledge of biomineralization to develop a unique method of depositing inorganic thin films and coating. Our approach to thin film deposition is to modify substrate surfaces to imitate the proteins found in nature that are responsible for controlling mineral deposition. These biomimetic surfaces control the nucleation and growth of the mineral from a supersaturated aqueous solution. This has many processing advantages including simple processing equipment, environmentally benign reagents, uniform coating of highly complex shapes, and enhanced adherence of coating. Many different types of metal oxide, hydroxide, sulfide and phosphate materials with useful mechanical, optical, electronic and biomedical properties can be deposited.

  15. Advanced thin film thermocouples

    NASA Technical Reports Server (NTRS)

    Kreider, K. G.; Semancik, S.; Olson, C.

    1984-01-01

    The fabrication, materials characterization, and performance of thin film platinum rhodium thermocouples on gas turbine alloys was investigated. The materials chosen for the study were the turbine blade alloy systems MAR M200+Hf with NiCoCrAlY and FeCrAlY coatings, and vane alloy systems MAR M509 with FeCrAlY. Research was focussed on making improvements in the problem areas of coating substrate stability, adhesion, and insulation reliability and durability. Diffusion profiles between the substrate and coating with and without barrier coatings of Al2O3 are reported. The relationships between fabrication parameters of thermal oxidation and sputtering of the insulator and its characterization and performance are described. The best thin film thermocouples were fabricated with the NiCoCrAlY coatings which were thermally oxidized and sputter coated with Al2O3.

  16. thin films as absorber

    NASA Astrophysics Data System (ADS)

    González, J. O.; Shaji, S.; Avellaneda, D.; Castillo, G. A.; Das Roy, T. K.; Krishnan, B.

    2014-09-01

    Photovoltaic structures were prepared using AgSb(S x Se1- x )2 as absorber and CdS as window layer at various conditions via a hybrid technique of chemical bath deposition and thermal evaporation followed by heat treatments. Silver antimony sulfo selenide thin films [AgSb(S x Se1- x )2] were prepared by heating multilayers of sequentially deposited Sb2S3/Ag dipped in Na2SeSO3 solution, glass/Sb2S3/Ag/Se. For this, Sb2S3 thin films were deposited from a chemical bath containing SbCl3 and Na2S2O3. Then, Ag thin films were thermally evaporated on glass/Sb2S3, followed by selenization by dipping in an acidic solution of Na2SeSO3. The duration of dipping was varied as 3, 4 and 5 h. Two different heat treatments, one at 350 °C for 20 min in vacuum followed by a post-heat treatment at 325 °C for 2 h in Ar, and the other at 350 °C for 1 h in Ar, were applied to the multilayers of different configurations. X-ray diffraction results showed the formation of AgSb(S x Se1- x )2 thin films as the primary phase and AgSb(S,Se)2 and Sb2S3 as secondary phases. Morphology and elemental detection were done by scanning electron microscopy and energy dispersive X-ray analysis. X-ray photoelectron spectroscopic studies showed the depthwise composition of the films. Optical properties were determined by UV-vis-IR transmittance and reflection spectral analysis. AgSb(S x Se1- x )2 formed at different conditions was incorporated in PV structures glass/FTO/CdS/AgSb(S x Se1- x )2/C/Ag. Chemically deposited post-annealed CdS thin films of various thicknesses were used as window layer. J- V characteristics of the cells were measured under dark and AM1.5 illumination. Analysis of the J- V characteristics resulted in the best solar cell parameters of V oc = 520 mV, J sc = 9.70 mA cm-2, FF = 0.50 and η = 2.7 %.

  17. Polycrystalline thin film photovoltaics

    NASA Astrophysics Data System (ADS)

    Zweibel, K.; Ullal, H. S.; Mitchell, R. L.

    Significant progress has recently been made towards improving the efficiencies of polycrystalline thin-film solar cells and modules using CuInSe2 and CdTe. The history of using CuInSe2 and CdTe for solar cells is reviewed. Initial outdoor stability tests of modules are encouraging. Progress in semiconductor deposition techniques has also been substantial. Both CuInSe2 and CdTe are positioned for commercialization during the 1990s. The major participants in developing these materials are described. The US DOE/SERI (Solar Energy Research Institute) program recognizes the rapid progress and important potential of polycrystalline thin films to meet ambitious cost and performance goals. US DOE/SERI is in the process of funding an initiative in this area with the goal of ensuring US leadership in the development of these technologies. The polycrystalline thin-film module development initiative, the modeling and stability of the devices, and health and safety issues are discussed.

  18. Thin film mechanics

    NASA Astrophysics Data System (ADS)

    Cooper, Ryan C.

    This doctoral thesis details the methods of determining mechanical properties of two classes of novel thin films suspended two-dimensional crystals and electron beam irradiated microfilms of polydimethylsiloxane (PDMS). Thin films are used in a variety of surface coatings to alter the opto-electronic properties or increase the wear or corrosion resistance and are ideal for micro- and nanoelectromechanical system fabrication. One of the challenges in fabricating thin films is the introduction of strains which can arise due to application techniques, geometrical conformation, or other spurious conditions. Chapters 2-4 focus on two dimensional materials. This is the intrinsic limit of thin films-being constrained to one atomic or molecular unit of thickness. These materials have mechanical, electrical, and optical properties ideal for micro- and nanoelectromechanical systems with truly novel device functionality. As such, the breadth of applications that can benefit from a treatise on two dimensional film mechanics is reason enough for exploration. This study explores the anomylously high strength of two dimensional materials. Furthermore, this work also aims to bridge four main gaps in the understanding of material science: bridging the gap between ab initio calculations and finite element analysis, bridging the gap between ab initio calculations and experimental results, nanoscale to microscale, and microscale to mesoscale. A nonlinear elasticity model is used to determine the necessary elastic constants to define the strain-energy density function for finite strain. Then, ab initio calculations-density functional theory-is used to calculate the nonlinear elastic response. Chapter 2 focuses on validating this methodology with atomic force microscope nanoindentation on molybdenum disulfide. Chapter 3 explores the convergence criteria of three density functional theory solvers to further verify the numerical calculations. Chapter 4 then uses this model to investigate

  19. Polycrystalline thin film photovoltaic technology

    SciTech Connect

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L.; Noufi, R.

    1991-03-01

    Low-cost, high-efficiency thin-film modules are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. In this paper we review the significant technical progress made in the following thin films: copper indium diselenide, cadmium telluride, and polycrystalline thin silicon films. Also, the recent US DOE/SERI initiative to commercialize these emerging technologies is discussed. 6 refs., 9 figs.

  20. Center for thin film studies

    NASA Astrophysics Data System (ADS)

    Shannon, Robert P.; Gibson, Ursula J.

    1987-11-01

    This report covers the first year of operation of the URI Thin Film Center (TFC), and describes a diverse array of studies on thin-film materials, substrates, and their processing and analysis. Individual efforts are highlighted in sections on nucleation studies, ion-assisted deposition, Rutherford backscattering spectrometry, Brillouin scattering, a continuum theory of the evolution of structure in thin films, a study of polishing parameters relevant to the preparation of substrates, and the setup of a characterization facility for the Center.

  1. Polycrystalline thin-films

    NASA Astrophysics Data System (ADS)

    Zweibel, K.; Mitchell, R.

    1986-02-01

    This annual report summarizes the status, accomplishments, and projected future research directions of the Polycrystalline Thin Film Task in the Photovoltaic Program Branch of the Solar Energy Research Institute's Solar Electric Research Division. Major subcontracted work in this area has concentrated on development of CuInSe2 and CdTe technologies. During FY 1985, major progress was achieved by subcontractors in: (1) developing a new, low-cost method of fabricating CuInSe2, and (2) improving the efficiency of CuInSe2 devices by about 10% (relative). The report also lists research planned to meet the Department of Energy's goals in these technologies.

  2. Thin film hydrogen sensor

    DOEpatents

    Lauf, Robert J.; Hoffheins, Barbara S.; Fleming, Pamela H.

    1994-01-01

    A hydrogen sensor element comprises an essentially inert, electrically-insulating substrate having a thin-film metallization deposited thereon which forms at least two resistors on the substrate. The metallization comprises a layer of Pd or a Pd alloy for sensing hydrogen and an underlying intermediate metal layer for providing enhanced adhesion of the metallization to the substrate. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors, and at least one of the resistors is left uncovered. The difference in electrical resistances of the covered resistor and the uncovered resistor is related to hydrogen concentration in a gas to which the sensor element is exposed.

  3. Nonlinear optical thin films

    NASA Technical Reports Server (NTRS)

    Leslie, Thomas M.

    1993-01-01

    A focused approach to development and evaluation of organic polymer films for use in optoelectronics is presented. The issues and challenges that are addressed include: (1) material synthesis, purification, and the tailoring of the material properties; (2) deposition of uniform thin films by a variety of methods; (3) characterization of material physical properties (thermal, electrical, optical, and electro-optical); and (4) device fabrication and testing. Photonic materials, devices, and systems were identified as critical technology areas by the Department of Commerce and the Department of Defense. This approach offers strong integration of basic material issues through engineering applications by the development of materials that can be exploited as the active unit in a variety of polymeric thin film devices. Improved materials were developed with unprecedented purity and stability. The absorptive properties can be tailored and controlled to provide significant improvement in propagation losses and nonlinear performance. Furthermore, the materials were incorporated into polymers that are highly compatible with fabrication and patterning processes for integrated optical devices and circuits. By simultaneously addressing the issues of materials development and characterization, keeping device design and fabrication in mind, many obstacles were overcome for implementation of these polymeric materials and devices into systems. We intend to considerably improve the upper use temperature, poling stability, and compatibility with silicon based devices. The principal device application that was targeted is a linear electro-optic modulation etalon. Organic polymers need to be properly designed and coupled with existing integrated circuit technology to create new photonic devices for optical communication, image processing, other laser applications such as harmonic generation, and eventually optical computing. The progression from microscopic sample to a suitable film

  4. Host thin films incorporating nanoparticles

    NASA Astrophysics Data System (ADS)

    Qureshi, Uzma

    The focus of this research project was the investigation of the functional properties of thin films that incorporate a secondary nanoparticulate phase. In particular to assess if the secondary nanoparticulate material enhanced a functional property of the coating on glass. In order to achieve this, new thin film deposition methods were developed, namely use of nanopowder precursors, an aerosol assisted transport technique and an aerosol into atmospheric pressure chemical vapour deposition system. Aerosol assisted chemical vapour deposition (AACVD) was used to deposit 8 series of thin films on glass. Five different nanoparticles silver, gold, ceria, tungsten oxide and zinc oxide were tested and shown to successfully deposit thin films incorporating nanoparticles within a host matrix. Silver nanoparticles were synthesised and doped within a titania film by AACVD. This improved solar control properties. A unique aerosol assisted chemical vapour deposition (AACVD) into atmospheric pressure chemical vapour deposition (APCVD) system was used to deposit films of Au nanoparticles and thin films of gold nanoparticles incorporated within a host titania matrix. Incorporation of high refractive index contrast metal oxide particles within a host film altered the film colour. The key goal was to test the potential of nanopowder forms and transfer the suspended nanopowder via an aerosol to a substrate in order to deposit a thin film. Discrete tungsten oxide nanoparticles or ceria nanoparticles within a titanium dioxide thin film enhanced the self-cleaning and photo-induced super-hydrophilicity. The nanopowder precursor study was extended by deposition of zinc oxide thin films incorporating Au nanoparticles and also ZnO films deposited from a ZnO nanopowder precursor. Incorporation of Au nanoparticles within a VO: host matrix improved the thermochromic response, optical and colour properties. Composite VC/TiC and Au nanoparticle/V02/Ti02 thin films displayed three useful

  5. Thin film atomic hydrogen detectors

    NASA Technical Reports Server (NTRS)

    Gruber, C. L.

    1977-01-01

    Thin film and bead thermistor atomic surface recombination hydrogen detectors were investigated both experimentally and theoretically. Devices were constructed on a thin Mylar film substrate. Using suitable Wheatstone bridge techniques sensitivities of 80 microvolts/2x10 to the 13th power atoms/sec are attainable with response time constants on the order of 5 seconds.

  6. Polysilicon thin films and interfaces

    SciTech Connect

    Kamins, T. ); Raicu, B. ); Thompson, C.V. )

    1990-01-01

    This volume contains the proceedings of a symposium on polysilicon thin films and interfaces, held as part of the 1990 Materials Research Society Spring Meeting. Topics covered include: crystal grown fo silicon and germanium wafers for photovoltaic devices, microanalysis of tungsten silicide interface, thermal processing of polysilicon thin films, and electrical and optical properties of polysilicon sheets for photovoltaic devices.

  7. Thin film ion conducting coating

    DOEpatents

    Goldner, Ronald B.; Haas, Terry; Wong, Kwok-Keung; Seward, George

    1989-01-01

    Durable thin film ion conducting coatings are formed on a transparent glass substrate by the controlled deposition of the mixed oxides of lithium:tantalum or lithium:niobium. The coatings provide durable ion transport sources for thin film solid state storage batteries and electrochromic energy conservation devices.

  8. Polycrystalline thin films

    NASA Astrophysics Data System (ADS)

    Zweibel, K.; Mitchell, R.; Ullal, H.

    1987-02-01

    This annual report for fiscal year 1986 summarizes the status, accomplishments, and projected future research directions of the Polycrystalline Thin Film Task in the Photovoltaic Program Branch of the Solar Energy Research Institute's Solar Electric Research Division. Subcontracted work in this area has concentrated on the development of CuInSe2 and CdTe technologies. During FY 1986, major progress was achieved by subcontractors in (1) achieving 10.5% (SERI-verified) efficiency with CdTe, (2) improving the efficiency of selenized CuInSe2 solar cells to nearly 8%, and (3) developing a transparent contact to CdTe cells for potential use in the top cells of tandem structures.

  9. Polyimide Aerogel Thin Films

    NASA Technical Reports Server (NTRS)

    Meador, Mary Ann; Guo, Haiquan

    2012-01-01

    Polyimide aerogels have been crosslinked through multifunctional amines. This invention builds on "Polyimide Aerogels With Three-Dimensional Cross-Linked Structure," and may be considered as a continuation of that invention, which results in a polyimide aerogel with a flexible, formable form. Gels formed from polyamic acid solutions, end-capped with anhydrides, and cross-linked with the multifunctional amines, are chemically imidized and dried using supercritical CO2 extraction to give aerogels having density around 0.1 to 0.3 g/cubic cm. The aerogels are 80 to 95% porous, and have high surface areas (200 to 600 sq m/g) and low thermal conductivity (as low as 14 mW/m-K at room temperature). Notably, the cross-linked polyimide aerogels have higher modulus than polymer-reinforced silica aerogels of similar density, and can be fabricated as both monoliths and thin films.

  10. Ferromagnetic thin films

    DOEpatents

    Krishnan, Kannan M.

    1994-01-01

    A ferromagnetic .delta.-Mn.sub.1-x Ga.sub.x thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of .delta.-Mn.sub.1-x Ga.sub.x overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of .delta.-Mn.sub.1-x Ga.sub.x and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4 .+-.0.05.

  11. Ferromagnetic thin films

    DOEpatents

    Krishnan, K.M.

    1994-12-20

    A ferromagnetic [delta]-Mn[sub 1[minus]x]Ga[sub x] thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of [delta]-Mn[sub 1[minus]x]Ga[sub x] and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4[+-]0.05. 7 figures.

  12. Thin-film microextraction.

    PubMed

    Bruheim, Inge; Liu, Xiaochuan; Pawliszyn, Janusz

    2003-02-15

    The properties of a thin sheet of poly(dimethylsiloxane) (PDMS) membrane as an extraction phase were examined and compared to solid-phase microextraction (SPME) PDMS-coated fiber for application to semivolatile analytes in direct and headspace modes. This new PDMS extraction approach showed much higher extraction rates because of the larger surface area to extraction-phase volume ratio of the thin film. Unlike the coated rod formats of SPME using thick coatings, the high extraction rate of the membrane SPME technique allows larger amounts of analytes to be extracted within a short period of time. Therefore, higher extraction efficiency and sensitivity can be achieved without sacrificing analysis time. In direct membrane SPME extraction, a linear relationship was found between the initial rate of extraction and the surface area of the extraction phase. However, for headspace extraction, the rates were somewhat lower because of the resistance to analyte transport at the sample matrix/headspace barrier. It was found that the effect of this barrier could be reduced by increasing either agitation, temperature, or surface area of the sample matrix/headspace interface. A method for the determination of PAHs in spiked lake water samples was developed based on the membrane PDMS extraction coupled with GC/MS. A linearity of 0.9960 and detection limits in the low-ppt level were found. The reproducibility was found to vary from 2.8% to 10.7%. PMID:12622398

  13. Interference Colors in Thin Films.

    ERIC Educational Resources Information Center

    Armstrong, H. L.

    1979-01-01

    Explains interference colors in thin films as being due to the removal, or considerable reduction, of a certain color by destructive inteference that results in the complementary color being seen. (GA)

  14. Thin film cell development workshop report

    NASA Technical Reports Server (NTRS)

    Woodyard, James R.

    1991-01-01

    The Thin Film Development Workshop provided an opportunity for those interested in space applications of thin film cells to debate several topics. The unique characteristics of thin film cells as well as a number of other issues were covered during the discussions. The potential of thin film cells, key research and development issues, manufacturing issues, radiation damage, substrates, and space qualification of thin film cells were discussed.

  15. Thin-Film Power Transformers

    NASA Technical Reports Server (NTRS)

    Katti, Romney R.

    1995-01-01

    Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.

  16. Vapor deposition of thin films

    DOEpatents

    Smith, David C.; Pattillo, Stevan G.; Laia, Jr., Joseph R.; Sattelberger, Alfred P.

    1992-01-01

    A highly pure thin metal film having a nanocrystalline structure and a process of preparing such highly pure thin metal films of, e.g., rhodium, iridium, molybdenum, tungsten, rhenium, platinum, or palladium by plasma assisted chemical vapor deposition of, e.g., rhodium(allyl).sub.3, iridium(allyl).sub.3, molybdenum(allyl).sub.4, tungsten(allyl).sub.4, rhenium(allyl).sub.4, platinum(allyl).sub.2, or palladium(allyl).sub.2 are disclosed. Additionally, a general process of reducing the carbon content of a metallic film prepared from one or more organometallic precursor compounds by plasma assisted chemical vapor deposition is disclosed.

  17. Calorimetry of epitaxial thin films.

    PubMed

    Cooke, David W; Hellman, F; Groves, J R; Clemens, B M; Moyerman, S; Fullerton, E E

    2011-02-01

    Thin film growth allows for the manipulation of material on the nanoscale, making possible the creation of metastable phases not seen in the bulk. Heat capacity provides a direct way of measuring thermodynamic properties of these new materials, but traditional bulk calorimetric techniques are inappropriate for such a small amount of material. Microcalorimetry and nanocalorimetry techniques exist for the measurements of thin films but rely on an amorphous membrane platform, limiting the types of films which can be measured. In the current work, ion-beam-assisted deposition is used to provide a biaxially oriented MgO template on a suspended membrane microcalorimeter in order to measure the specific heat of epitaxial thin films. Synchrotron x-ray diffraction showed the biaxial order of the MgO template. X-ray diffraction was also used to prove the high quality of epitaxy of a film grown onto this MgO template. The contribution of the MgO layer to the total heat capacity was measured to be just 6.5% of the total addenda contribution. The heat capacity of a Fe(.49)Rh(.51) film grown epitaxially onto the device was measured, comparing favorably to literature data on bulk crystals. This shows the viability of the MgO∕SiN(x)-membrane-based microcalorimeter as a way of measuring the thermodynamic properties of epitaxial thin films. PMID:21361612

  18. The Thin Oil Film Equation

    NASA Technical Reports Server (NTRS)

    Brown, James L.; Naughton, Jonathan W.

    1999-01-01

    A thin film of oil on a surface responds primarily to the wall shear stress generated on that surface by a three-dimensional flow. The oil film is also subject to wall pressure gradients, surface tension effects and gravity. The partial differential equation governing the oil film flow is shown to be related to Burgers' equation. Analytical and numerical methods for solving the thin oil film equation are presented. A direct numerical solver is developed where the wall shear stress variation on the surface is known and which solves for the oil film thickness spatial and time variation on the surface. An inverse numerical solver is also developed where the oil film thickness spatial variation over the surface at two discrete times is known and which solves for the wall shear stress variation over the test surface. A One-Time-Level inverse solver is also demonstrated. The inverse numerical solver provides a mathematically rigorous basis for an improved form of a wall shear stress instrument suitable for application to complex three-dimensional flows. To demonstrate the complexity of flows for which these oil film methods are now suitable, extensive examination is accomplished for these analytical and numerical methods as applied to a thin oil film in the vicinity of a three-dimensional saddle of separation.

  19. Thin-film metal hydrides.

    PubMed

    Remhof, Arndt; Borgschulte, Andreas

    2008-12-01

    The goal of the medieval alchemist, the chemical transformation of common metals into nobel metals, will forever be a dream. However, key characteristics of metals, such as their electronic band structure and, consequently, their electric, magnetic and optical properties, can be tailored by controlled hydrogen doping. Due to their morphology and well-defined geometry with flat, coplanar surfaces/interfaces, novel phenomena may be observed in thin films. Prominent examples are the eye-catching hydrogen switchable mirror effect, the visualization of solid-state diffusion and the formation of complex surface morphologies. Thin films do not suffer as much from embrittlement and/or decrepitation as bulk materials, allowing the study of cyclic absorption and desorption. Therefore, thin-metal hydride films are used as model systems to study metal-insulator transitions, for high throughput combinatorial research or they may be used as indicator layers to study hydrogen diffusion. They can be found in technological applications as hydrogen sensors, in electrochromic and thermochromic devices. In this review, we discuss the effect of hydrogen loading of thin niobium and yttrium films as archetypical examples of a transition metal and a rare earth metal, respectively. Our focus thereby lies on the hydrogen induced changes of the electronic structure and the morphology of the thin films, their optical properties, the visualization and the control of hydrogen diffusion and on the study of surface phenomena and catalysis. PMID:18980236

  20. Thin film of biocompatible polysaccharides

    NASA Astrophysics Data System (ADS)

    Richert, Ludovic; Lavalle, Philippe; Schaaf, Pierre; Voegel, Jean-Claude; Picart, Catherine

    2003-03-01

    The layer-by-layer deposition method proposed by Decher et al. (1991) is a very simple and versatile method used to build thin films. These films are of interest for bioengineering because of their unique properties and of the possible insertion of bioactive molecules. We present here the peculiar properties of a new kind of film formed with natural biopolymers, namely hyaluronan (HA)and chitosan (CHI). The films may be used as biomimetic substrates to control bacterial and cell adhesion. These polysaccharides are of particular interest because they are biodegradable, non toxic, and can be found in various tissues. Hyaluronan is also a natural ligand for a numerous type of cells through the CD44 receptor. Chitosan has already largely been used for its biological and anti-microbial properties. (CHI/HA) films were built in acidic pH at different ionic strength. The buildup was followed in situ by optical waveguide lightmode spectroscopy (OWLS), quartz crystal microbalance, streaming potential measurements and atomic force microscopy. The kinetics of adsorption and desorption of the polyelectrolytes depended on the ionic strength. Small islands were initially present on the surface which grew by mutual coalescence until becoming a flat film. The films were around 200 nm in thickness. These results suggest that different types of thin films constituted of polysaccharides can be built on any type of surface. These films are currently investigated toward their cell adhesion and bacterial adhesion properties.

  1. (Thin films under chemical stress)

    SciTech Connect

    Not Available

    1990-01-01

    As stated above the purpose of this research is to enable workers in a variety of fields to understand the chemical and physical changes which take place when thin films (primarily organic films) are placed under chemical stress. This stress may occur because the film is being swelled by penetrant entrained in solvent, because interfacial reactions are occurring at one or more boundaries within the film structure, or because some component of the film is responding to an external stimulus (e.g. pH, temperature, electric field, or radiation). These questions are important within the context of our long-term goal of understanding the behavior of composite structures, composed of thin organic polymer films interspersed with Langmuir-Blodgett (LB) and self-assembled monolayers, which might have unique functional properties. In the past year we have concentrated on the following objectives: (1) understanding how the two possible diffusion mechanisms contribute to the swelling of thin films of organic polymers place in solution, (2) identifying systems which are appropriate polymer media for the construction of composite membranes for use in aqueous environments, and (3) understanding the self-assembly process for long chain fatty acids at model surfaces. Progress in meeting each of these objectives will be described in this report. 4 figs.

  2. Thin-film forces in pseudoemulsion films

    SciTech Connect

    Bergeron, V.; Radke, C.J. |

    1991-06-01

    Use of foam for enhanced oil recovery (EOR) has shown recent success in steam-flooding field applications. Foam can also provide an effective barrier against gas coning in thin oil zones. Both of these applications stem from the unique mobility-control properties a stable foam possesses when it exists in porous media. Unfortunately, oil has a major destabilizing effect on foam. Therefore, it is important for EOR applications to understand how oil destroys foam. Studies all indicate that stabilization of the pseudoemulsion film is critical to maintain foam stability in the presence of oil. Hence, to aid in design of surfactant formulations for foam insensitivity to oil the authors pursue direct measurement of the thin-film or disjoining forces that stabilize pseudoemulsion films. Experimental procedures and preliminary results are described.

  3. Thin films under chemical stress

    SciTech Connect

    Not Available

    1991-01-01

    The goal of work on this project has been develop a set of experimental tools to allow investigators interested in transport, binding, and segregation phenomena in composite thin film structures to study these phenomena in situ. Work to-date has focuses on combining novel spatially-directed optical excitation phenomena, e.g. waveguide eigenmodes in thin dielectric slabs, surface plasmon excitations at metal-dielectric interfaces, with standard spectroscopies to understand dynamic processes in thin films and at interfaces. There have been two main scientific thrusts in the work and an additional technical project. In one thrust we have sought to develop experimental tools which will allow us to understand the chemical and physical changes which take place when thin polymer films are placed under chemical stress. In principle this stress may occur because the film is being swelled by a penetrant entrained in solvent, because interfacial reactions are occurring at one or more boundaries within the film structure, or because some component of the film is responding to an external stimulus (e.g. pH, temperature, electric field, or radiation). However all work to-date has focused on obtaining a clearer understanding penetrant transport phenomena. The other thrust has addressed the kinetics of adsorption of model n-alkanoic acids from organic solvents. Both of these thrusts are important within the context of our long-term goal of understanding the behavior of composite structures, composed of thin organic polymer films interspersed with Langmuir-Blodgett (LB) and self-assembled monolayers. In addition there has been a good deal of work to develop the local technical capability to fabricate grating couplers for optical waveguide excitation. This work, which is subsidiary to the main scientific goals of the project, has been successfully completed and will be detailed as well. 41 refs., 10 figs.

  4. Beryllium thin films for resistor applications

    NASA Technical Reports Server (NTRS)

    Fiet, O.

    1972-01-01

    Beryllium thin films have a protective oxidation resistant property at high temperature and high recrystallization temperature. However, the experimental film has very low temperature coefficient of resistance.

  5. Semiconductor-nanocrystal/conjugated polymer thin films

    DOEpatents

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2014-06-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  6. Thin film-coated polymer webs

    DOEpatents

    Wenz, Robert P.; Weber, Michael F.; Arudi, Ravindra L.

    1992-02-04

    The present invention relates to thin film-coated polymer webs, and more particularly to thin film electronic devices supported upon a polymer web, wherein the polymer web is treated with a purifying amount of electron beam radiation.

  7. Semiconductor-nanocrystal/conjugated polymer thin films

    DOEpatents

    Alivisatos, A. Paul; Dittmer, Janke J.; Huynh, Wendy U.; Milliron, Delia

    2010-08-17

    The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.

  8. Low work function, stable thin films

    DOEpatents

    Dinh, Long N.; McLean, II, William; Balooch, Mehdi; Fehring, Jr., Edward J.; Schildbach, Marcus A.

    2000-01-01

    Generation of low work function, stable compound thin films by laser ablation. Compound thin films with low work function can be synthesized by simultaneously laser ablating silicon, for example, and thermal evaporating an alkali metal into an oxygen environment. For example, the compound thin film may be composed of Si/Cs/O. The work functions of the thin films can be varied by changing the silicon/alkali metal/oxygen ratio. Low work functions of the compound thin films deposited on silicon substrates were confirmed by ultraviolet photoelectron spectroscopy (UPS). The compound thin films are stable up to 500.degree. C. as measured by x-ray photoelectron spectroscopy (XPS). Tests have established that for certain chemical compositions and annealing temperatures of the compound thin films, negative electron affinity (NEA) was detected. The low work function, stable compound thin films can be utilized in solar cells, field emission flat panel displays, electron guns, and cold cathode electron guns.

  9. Thin film polymeric gel electrolytes

    DOEpatents

    Derzon, D.K.; Arnold, C. Jr.; Delnick, F.M.

    1996-12-31

    Novel hybrid thin film electrolytes, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities {approx_equal}10{sup {minus}3}{Omega}{sup {minus}1} cm{sup {minus}1} are useful as electrolytes for rechargeable lithium batteries. 1 fig.

  10. Thin Film Solid Lubricant Development

    NASA Technical Reports Server (NTRS)

    Benoy, Patricia A.

    1997-01-01

    Tribological coatings for high temperature sliding applications are addressed. A sputter-deposited bilayer coating of gold and chromium is investigated as a potential solid lubricant for protection of alumina substrates during sliding at high temperature. Evaluation of the tribological properties of alumina pins sliding against thin sputtered gold films on alumina substrates is presented.

  11. Hybrid thin-film amplifier

    NASA Technical Reports Server (NTRS)

    Cleveland, G.

    1977-01-01

    Miniature amplifier for bioelectronic instrumentation consumes only about 100 mW and has frequency response flat to within 0.5 dB from 0.14 to 450 Hz. Device consists of five thin film substrates, which contain eight operational amplifiers and seven field-effect transistor dice.

  12. Thin film polymeric gel electrolytes

    DOEpatents

    Derzon, Dora K.; Arnold, Jr., Charles; Delnick, Frank M.

    1996-01-01

    Novel hybrid thin film electrolyte, based on an organonitrile solvent system, which are compositionally stable, environmentally safe, can be produced efficiently in large quantity and which, because of their high conductivities .apprxeq.10.sup.-3 .OMEGA..sup.-1 cm.sup.-1 are useful as electrolytes for rechargeable lithium batteries.

  13. Thin films and uses

    DOEpatents

    Baskaran, Suresh; Graff, Gordon L.; Song, Lin

    1998-01-01

    The invention provides a method for synthesizing a titanium oxide-containing film comprising the following steps: (a) preparing an aqueous solution of a titanium chelate with a titanium molarity in the range of 0.01M to 0.6M. (b) immersing a substrate in the prepared solution, (c) decomposing the titanium chelate to deposit a film on the substrate. The titanium chelate maybe decomposed acid, base, temperature or other means. A preferred method provides for the deposit of adherent titanium oxide films from C2 to C5 hydroxy carboxylic acids. In another aspect the invention is a novel article of manufacture having a titanium coating which protects the substrate against ultraviolet damage. In another aspect the invention provides novel semipermeable gas separation membranes, and a method for producing them.

  14. Polyimide thin-film dielectrics on ferroelectrics

    NASA Technical Reports Server (NTRS)

    Galiardi, R. V.

    1977-01-01

    Conducting layers of multi-layered thin-film ferroelectric device, such as is used in liquid crystal/ferroelectric display, can be electrically isolated using thin-film layer of polyimide. Ease of application and high electrical-breakdown strength allow dependable and economical means of providing dielectric for other thin-film microelectronic devices.

  15. Phase Coarsening in Thin Films

    NASA Astrophysics Data System (ADS)

    Wang, K. G.; Glicksman, M. E.

    2015-08-01

    Phase coarsening (Ostwald ripening) phenomena are ubiquitous in materials growth processes such as thin film formation. The classical theory explaining late-stage phase coarsening phenomena was developed by Lifshitz and Slyozov, and by Wagner in the 1960s. Their theory is valid only for a vanishing volume fraction of the second phase in three dimensions. However, phase coarsening in two-dimensional systems is qualitatively different from that in three dimensions. In this paper, the many-body concept of screening length is reviewed, from which we derive the growth law for a `screened' phase island, and develop diffusion screening theory for phase coarsening in thin films. The coarsening rate constant, maximum size of phase islands in films, and their size distribution function will be derived from diffusion screening theory. A critical comparison will be provided of prior coarsening concepts and improvements derived from screening approaches.

  16. Selective inorganic thin films

    SciTech Connect

    Phillips, M.L.F.; Pohl, P.I.; Brinker, C.J.

    1997-04-01

    Separating light gases using membranes is a technology area for which there exists opportunities for significant energy savings. Examples of industrial needs for gas separation include hydrogen recovery, natural gas purification, and dehydration. A membrane capable of separating H{sub 2} from other gases at high temperatures could recover hydrogen from refinery waste streams, and facilitate catalytic dehydrogenation and the water gas shift (CO + H{sub 2}O {yields} H{sub 2} + CO{sub 2}) reaction. Natural gas purification requires separating CH{sub 4} from mixtures with CO{sub 2}, H{sub 2}S, H{sub 2}O, and higher alkanes. A dehydrating membrane would remove water vapor from gas streams in which water is a byproduct or a contaminant, such as refrigeration systems. Molecular sieve films offer the possibility of performing separations involving hydrogen, natural gas constituents, and water vapor at elevated temperatures with very high separation factors. It is in applications such as these that the authors expect inorganic molecular sieve membranes to compete most effectively with current gas separation technologies. Cryogenic separations are very energy intensive. Polymer membranes do not have the thermal stability appropriate for high temperature hydrogen recovery, and tend to swell in the presence of hydrocarbon natural gas constituents. The authors goal is to develop a family of microporous oxide films that offer permeability and selectivity exceeding those of polymer membranes, allowing gas membranes to compete with cryogenic and adsorption technologies for large-scale gas separation applications.

  17. Thin film buried anode battery

    DOEpatents

    Lee, Se-Hee; Tracy, C. Edwin; Liu, Ping

    2009-12-15

    A reverse configuration, lithium thin film battery (300) having a buried lithium anode layer (305) and process for making the same. The present invention is formed from a precursor composite structure (200) made by depositing electrolyte layer (204) onto substrate (201), followed by sequential depositions of cathode layer (203) and current collector (202) on the electrolyte layer. The precursor is subjected to an activation step, wherein a buried lithium anode layer (305) is formed via electroplating a lithium anode layer at the interface of substrate (201) and electrolyte film (204). The electroplating is accomplished by applying a current between anode current collector (201) and cathode current collector (202).

  18. Thin film concentrator panel development

    NASA Astrophysics Data System (ADS)

    Zimmerman, D. K.

    1982-07-01

    The development and testing of a rigid panel concept that utilizes a thin film reflective surface for application to a low-cost point-focusing solar concentrator is discussed. It is shown that a thin film reflective surface is acceptable for use on solar concentrators, including 1500 F applications. Additionally, it is shown that a formed steel sheet substrate is a good choice for concentrator panels. The panel has good optical properties, acceptable forming tolerances, environmentally resistant substrate and stiffeners, and adaptability to low to mass production rates. Computer simulations of the concentrator optics were run using the selected reflector panel design. Experimentally determined values for reflector surface specularity and reflectivity along with dimensional data were used in the analysis. The simulations provided intercept factor and net energy into the aperture as a function of aperture size for different surface errors and pointing errors. Point source and Sun source optical tests were also performed.

  19. Superconducting UBe 13 thin films

    NASA Astrophysics Data System (ADS)

    Quateman, J. H.; Tedrow, P. M.

    1985-12-01

    Of the known heavy fermion superconductors only UBe 13 can have a low resistivity ratio and still go superconducting. In addition, it is a line compound with a melting temperature of nearly twice that of the constituents. These facts make UBe 13 a promising choice for fabrication in thin film form. We have successfully made 2000 Å UBe 13 films by coevaporation of uranium and beryllium on 700°C substrates which were then heated in situ to 1100°C. These films were polycrystalline as shown by X-ray diffraction and have Tc's of 0.85 K, that of the bulk. The resistivity rise at approximately 2 K and the strong negative magnetoresistance were also of the same magnitude as that of the bulk, as were both the perpendicular and parallel critical fields. Thin films of UBe 13 will make more accessible tunneling and proximity effect experiments which can help elucidate the nature of the superconductivity of this compound.

  20. Zinc oxide thin film acoustic sensor

    SciTech Connect

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah; Mansour, Hazim Louis

    2013-12-16

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  1. Zinc oxide thin film acoustic sensor

    NASA Astrophysics Data System (ADS)

    Mohammed, Ali Jasim; Salih, Wafaa Mahdi; Hassan, Marwa Abdul Muhsien; Mansour, Hazim Louis; Nusseif, Asmaa Deiaa; Kadhum, Haider Abdullah

    2013-12-01

    This paper reports the implementation of (750 nm) thickness of Zinc Oxide (ZnO) thin film for the piezoelectric pressure sensors. The film was prepared and deposited employing the spray pyrolysis technique. XRD results show that the growth preferred orientation is the (002) plane. A polycrystalline thin film (close to mono crystallite like) was obtained. Depending on the Scanning Electron Microscopy photogram, the film homogeneity and thickness were shown. The resonance frequency measured (about 19 kHz) and the damping coefficient was calculated and its value was found to be about (2.5538), the thin film be haves as homogeneous for under and over damped. The thin film pressure sensing was approximately exponentially related with frequency, the thin film was observed to has a good response for mechanical stresses also it is a good material for the piezoelectric properties.

  2. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  3. Analysis of Hard Thin Film Coating

    NASA Technical Reports Server (NTRS)

    Shen, Dashen

    1998-01-01

    Marshall Space Flight Center (MSFC) is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using Electron Cyclotron Resonance Chemical Vapor Deposition (ECRCVD) to deposit hard thin film on stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  4. Thin film solar energy collector

    DOEpatents

    Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  5. Thin film based plasmon nanorulers

    NASA Astrophysics Data System (ADS)

    Taylor, Alexander D.; Lu, Chang; Geyer, Scott; Carroll, D. L.

    2016-07-01

    In this work, isolated metal nanoparticles are supported on a dielectric thin film that is placed on a conducting plane. The optical scattering characteristics of these metal nanoparticles are directly correlated with the localized surface plasmon states of the nanoparticle—image particle dimer, formed in the conducting plane below. Quantification of plasmon resonance shifts can be directly correlated with the application of the plasmon nanoruler equation. This simple geometry shows that direct optical techniques can be used to resolve thickness variations in dielectrics of only a few nanometers.

  6. New devices using ferroelectric thin films

    SciTech Connect

    Land, C.E.; Butler, M.A.; Martin, S.J.

    1989-01-01

    Recent developments in the fabrication technologies of ferroelectric thin films in general and of PZT (lead zirconate titanate) and PLZT (lead lanthanum zirconate titanate) thin films in particular have suggested the feasibility of several new devices. Integrated optical devices for information processing and high-speed switching, high-density optical information processing and storage devices and spatial light modulators are some of the applications currently being investigated for these films. Ongoing studies of the longitudinal electrooptic effects and the photosensitivities of PZT and PLZT thin films have established the feasibility of erasable/rewritable optical memories with fast switching and potentially long lifetimes compared to current magneto-optic thin film devices. Some properties of PZT thin films and of new devices based on those properties are described in this paper. 15 refs., 5 figs., 1 tab.

  7. Electrostatic thin film chemical and biological sensor

    DOEpatents

    Prelas, Mark A.; Ghosh, Tushar K.; Tompson, Jr., Robert V.; Viswanath, Dabir; Loyalka, Sudarshan K.

    2010-01-19

    A chemical and biological agent sensor includes an electrostatic thin film supported by a substrate. The film includes an electrostatic charged surface to attract predetermined biological and chemical agents of interest. A charge collector associated with said electrostatic thin film collects charge associated with surface defects in the electrostatic film induced by the predetermined biological and chemical agents of interest. A preferred sensing system includes a charge based deep level transient spectroscopy system to read out charges from the film and match responses to data sets regarding the agents of interest. A method for sensing biological and chemical agents includes providing a thin sensing film having a predetermined electrostatic charge. The film is exposed to an environment suspected of containing the biological and chemical agents. Quantum surface effects on the film are measured. Biological and/or chemical agents can be detected, identified and quantified based on the measured quantum surface effects.

  8. Thin films of mixed metal compounds

    DOEpatents

    Mickelsen, Reid A.; Chen, Wen S.

    1985-01-01

    A compositionally uniform thin film of a mixed metal compound is formed by simultaneously evaporating a first metal compound and a second metal compound from independent sources. The mean free path between the vapor particles is reduced by a gas and the mixed vapors are deposited uniformly. The invention finds particular utility in forming thin film heterojunction solar cells.

  9. Characteristics Of Vacuum Deposited Sucrose Thin Films

    NASA Astrophysics Data System (ADS)

    Ungureanu, F.; Predoi, D.; Ghita, R. V.; Vatasescu-Balcan, R. A.; Costache, M.

    Thin films of sucrose (C12H22O11) were deposited on thin cut glass substrates by thermal evaporation technique (p ~ 10-5 torr). The surface morphology was putted into evidence by FT-IR and SEM analysis. The experimental results confirm a uniform deposition of an adherent sucrose layer. The biological tests (e.g., cell morphology and cell viability evaluated by measuring mitochondrial dehydrogenise activity with MTT assay) confirm the properties of sucrose thin films as bioactive material. The human fetal osteoblast system grown on thin sucrose film was used for the determination of cell proliferation, cell viability and cell morphology studies.

  10. Cellulose triacetate, thin film dielectric capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1995-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  11. Cellulose triacetate, thin film dielectric capacitor

    NASA Technical Reports Server (NTRS)

    Yen, Shiao-Ping S. (Inventor); Jow, T. Richard (Inventor)

    1993-01-01

    Very thin films of cellulose triacetate are cast from a solution containing a small amount of high boiling temperature, non-solvent which evaporates last and lifts the film from the casting surface. Stretched, oriented, crystallized films have high electrical breakdown properties. Metallized films less than about 2 microns in thickness form self-healing electrodes for high energy density, pulsed power capacitors. Thicker films can be utilized as a dielectric for a capacitor.

  12. Preparation and Characterization of PZT Thin Films

    SciTech Connect

    Bose, A.; Sreemany, M.; Bhattacharyya, D. K.; Sen, Suchitra; Halder, S. K.

    2008-07-29

    In analogy with Piezoelectric Wafer Active Sensors (PWAS), Lead Zirconate Titanate (PZT) thin films also seem to be promising for Structural Health Monitoring (SHM) due to a number of reasons. Firstly, PZT thin films with well oriented domains show enhanced piezoelectric response. Secondly, PWAS requires comparatively large voltage leading to a demand for thin PZT films (<< {mu}m in thickness) for low voltage operation at {<=}10 V. This work focuses on two different aspects: (a) growing oriented PZT thin films in ferroelectric perovskite phase in the range of (80-150) nm thickness on epitaxial Si/Pt without a seed layer and (b) synthesizing perovskite phase in PZT thin films on Corning glass 1737 using a seed layer of TiO{sub x} (TiO{sub x} thickness ranging between 30 nm to 500 nm)

  13. A monolithic thin film electrochromic window

    SciTech Connect

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K. . Electro-Optics Technology Center); Wei, G. ); Yu, P.C. )

    1991-01-01

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors' institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  14. A monolithic thin film electrochromic window

    SciTech Connect

    Goldner, R.B.; Arntz, F.O.; Berera, G.; Haas, T.E.; Wong, K.K.; Wei, G.; Yu, P.C.

    1991-12-31

    Three closely related thin film solid state ionic devices that are potentially important for applications are: electrochromic smart windows, high energy density thin film rechargeable batteries, and thin film electrochemical sensors. Each usually has at least on mixed ion/electron conductor, an electron-blocking ion conductor, and an ion-blocking electron conductor, and many of the technical issues associated with thin film solid state ionics are common to all three devices. Since the electrochromic window has the added technical requirement of electrically-controlled optical modulation, (over the solar spectrum), and since research at the authors` institution has focused primarily on the window structure, this paper will address the electrochromic window, and particularly a monolithic variable reflectivity electrochromic window, as an illustrative example of some of the challenges and opportunities that are confronting the thin film solid state ionics community. 33 refs.

  15. Thin-film optical shutter

    NASA Astrophysics Data System (ADS)

    Matlow, S. L.

    1981-02-01

    The ideal solution to the excessive solar gain problem is an optical shutter, a device which switches from being highly transmissive to solar radiation to being highly reflective to solar radiation when a critical temperature is reached in the enclosure. The switching occurs because one or more materials in the device undergo a phase transition at the critical temperature. A specific embodiment of macroconjugated macromolecules, the poly (p-phenylene)'s, was chosen as the one most likely to meet all of the requirements of the thin film optical shutter project (TFOS). The reason for this choice is explored. In order to be able to make meaningful calculations of the thermodynamic and optical properties of the poly (p-phenylene)'s a quantum mechanical method, the equilibrium bond length (EBL) theory, was developed. Some results of EBL theory are included.

  16. Thin film bioreactors in space

    NASA Technical Reports Server (NTRS)

    Hughes-Fulford, M.; Scheld, H. W.

    1989-01-01

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization, and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers an opportunity to learn more about basic biological systems with one inmportant variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would make it possible to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  17. Wrinkle motifs in thin films

    PubMed Central

    Budrikis, Zoe; Sellerio, Alessandro L.; Bertalan, Zsolt; Zapperi, Stefano

    2015-01-01

    On length scales from nanometres to metres, partial adhesion of thin films with substrates generates a fascinating variety of patterns, such as ‘telephone cord’ buckles, wrinkles, and labyrinth domains. Although these patterns are part of everyday experience and are important in industry, they are not completely understood. Here, we report simulation studies of a previously-overlooked phenomenon in which pairs of wrinkles form avoiding pairs, focusing on the case of graphene over patterned substrates. By nucleating and growing wrinkles in a controlled way, we characterize how their morphology is determined by stress fields in the sheet and friction with the substrate. Our simulations uncover the generic behaviour of avoiding wrinkle pairs that should be valid at all scales. PMID:25758174

  18. BDS thin film damage competition

    SciTech Connect

    Stolz, C J; Thomas, M D; Griffin, A J

    2008-10-24

    A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

  19. Dynamic delamination of patterned thin films

    NASA Astrophysics Data System (ADS)

    Kandula, Soma S. V.; Tran, Phuong; Geubelle, Philippe H.; Sottos, Nancy R.

    2008-12-01

    We investigate laser-induced dynamic delamination of a patterned thin film on a substrate. Controlled delamination results from our insertion of a weak adhesion region beneath the film. The inertial forces acting on the weakly bonded portion of the film lead to stable propagation of a crack along the film/substrate interface. Through a simple energy balance, we extract the critical energy for interfacial failure, a quantity that is difficult and sometimes impossible to characterize by more conventional methods for many thin film/substrate combinations.

  20. AES analysis of barium fluoride thin films

    NASA Astrophysics Data System (ADS)

    Kashin, G. N.; Makhnjuk, V. I.; Rumjantseva, S. M.; Shchekochihin, Ju. M.

    1993-06-01

    AES analysis of thin films of metal fluorides is a difficult problem due to charging and decomposition of such films under electron bombardment. We have developed a simple algorithm for a reliable quantitative AES analysis of metal fluoride thin films (BaF 2 in our work). The relative AES sensitivity factors for barium and fluorine were determined from BaF 2 single-crystal samples. We have investigated the dependence of composition and stability of barium fluoride films on the substrate temperature during film growth. We found that the instability of BaF 2 films grown on GaAs substrates at high temperatures (> 525°C) is due to a loss of fluorine. Our results show that, under the optimal electron exposure conditions, AES can be used for a quantitative analysis of metal fluoride thin films.

  1. Infrared radiation of thin plastic films.

    NASA Technical Reports Server (NTRS)

    Tien, C. L.; Chan, C. K.; Cunnington, G. R.

    1972-01-01

    A combined analytical and experimental study is presented for infrared radiation characteristics of thin plastic films with and without a metal substrate. On the basis of the thin-film analysis, a simple analytical technique is developed for determining band-averaged optical constants of thin plastic films from spectral normal transmittance data for two different film thicknesses. Specifically, the band-averaged optical constants of polyethylene terephthalate and polyimide were obtained from transmittance measurements of films with thicknesses in the range of 0.25 to 3 mil. The spectral normal reflectance and total normal emittance of the film side of singly aluminized films are calculated by use of optical constants; the results compare favorably with measured values.

  2. Thin film nitinol microstent for aneurysm occlusion.

    PubMed

    Chun, Youngjae; Levi, Daniel S; Mohanchandra, K P; Vinuela, Fernando; Vinuela, Fernando; Carman, Gregory P

    2009-05-01

    Thin film nitinol produced by sputter deposition was used in the design of microstents intended to treat small vessel aneurysms. Thin film microstents were fabricated by "hot-target" dc sputter deposition. Both stress-strain curves and differential scanning calorimetry curves were generated for the film used to fabricate stents. The films used for stents had an A(f) temperature of approximately 36 degrees C allowing for body activated response from a microcatheter. The 10 microm film was only slightly radio-opaque; thus, a Td marker was attached to the stents to guide fluoroscopic delivery. Thin film microstents were tested in a flow loop with and without nitinol support skeletons to give additional radial support. Stents could be compressed into and easily delivered with <3 Fr catheters. Theoretical frictional and wall drag forces on a thin film nitinol small vessel vascular stent were calculated, and the radial force exerted by thin film stents was evaluated theoretically and experimentally. In vivo studies in swine confirmed that thin film nitinol microstents could be deployed accurately and consistently in the swine cranial vasculature. PMID:19388784

  3. Method of producing thin cellulose nitrate film

    DOEpatents

    Lupica, S.B.

    1975-12-23

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent.

  4. Optical information storage in PLZT thin films

    SciTech Connect

    Land, C.E.

    1989-01-01

    The feasibility of storing and reading high density optical information in lead zirconate titanate (PZT) and in lead lanthanum zirconate titanate (PLZT) thin films depends on both the longitudinal electrooptic coefficients and the photosensitivities of the films. This paper describes the methods used to measure both the longitudinal electrooptic effects and the photosensitivities of the thin films. The results of these measurements were used to evaluate a longitudinal quadratic electrooptic R coefficient, a linear electrooptic r/sub c/ coefficient and the wavelength dependence of the photosensitivity of a composition of PZT polycrystalline thin film. The longitudinal electrooptic R and r/sub c/ coefficients are about an order of magnitude less than the transverse R and R/sub c/ coefficients of the bulk ceramics of similar compositions. This is attributed to clamping of the film by the rigid substrate. The large birefringence after poling (>10/sup /minus/2/) suggests that the optic axes of the films are preferentially oriented normal to the film surface. The techniques used for evaluating the photosensitivities of the thin films are based on measuring the photocurrent generated rather than the reduction in coercive voltage (used previously for bulk ceramics) when the film is exposed to light. The thin film photosensitivities appear to be about three orders of magnitude higher than those of bulk ceramics of similar compositions. 14 refs., 12 figs., 1 tab.

  5. Thin film solar cell module

    SciTech Connect

    Gay, R.R.

    1987-01-20

    A thin film solar cell module is described comprising a first solar cell panel containing an array of solar cells consisting of a TFS semiconductor sandwiched between a transparent conductive zinc oxide layer and a transparent conductive layer selected from the group consisting of tin oxide, indium tin oxide, and zinc oxide deposited upon a transparent superstrate, and a second solar cell panel containing an array of solar cells consisting of a CIS semiconductor layer sandwiched between a zinc oxide semiconductor layer and a conductive metal layer deposited upon an insulating substrate. The zinc oxide semiconductor layer contains a first relatively thin layer of high resistivity zinc oxide adjacent the CIS semiconductor and a second relatively thick layer of low resistivity zinc oxide overlying the high resistivity zinc oxide layer. The transparent conductive zinc oxide layer of the first panel faces the low resistivity zinc oxide layer of the second panel, the first and second panels being positioned optically in series and separated by a transparent insulating layer.

  6. VUV thin films, chapter 7

    NASA Technical Reports Server (NTRS)

    Zukic, Muamer; Torr, Douglas G.

    1993-01-01

    The application of thin film technology to the vacuum ultraviolet (VUV) wavelength region from 120 nm to 230 nm has not been fully exploited in the past because of absorption effects which complicate the accurate determination of the optical functions of dielectric materials. The problem therefore reduces to that of determining the real and imaginary parts of a complex optical function, namely the frequency dependent refractive index n and extinction coefficient k. We discuss techniques for the inverse retrieval of n and k for dielectric materials at VUV wavelengths from measurements of their reflectance and transmittance. Suitable substrate and film materials are identified for application in the VUV. Such applications include coatings for the fabrication of narrow and broadband filters and beamsplitters. The availability of such devices open the VUV regime to high resolution photometry, interferometry and polarimetry both for space based and laboratory applications. This chapter deals with the optics of absorbing multilayers, the determination of the optical functions for several useful materials, and the design of VUV multilayer stacks as applied to the design of narrow and broadband reflection and transmission filters and beamsplitters. Experimental techniques are discussed briefly, and several examples of the optical functions derived for selected materials are presented.

  7. Synthesis of periodic mesoporous silica thin films

    SciTech Connect

    Anderson, M.T.; Martin, J.E.; Odinek, J.G.; Newcomer, P.

    1996-06-01

    We have synthesized periodic mesoporous silica thin films from homogeneous solutions. To synthesize the films, a thin layer of a pH 7 micellar coating solution that contains TMOS (tetramethoxysilane) is dip or spin-coated onto Si wafers, borosilicate glass, or quartz substrates. NH3 gas is diffused into the solution and causes rapid hydrolysis and condensation of the TMOS and the formation of periodic mesoporous thin films within 10 seconds. Combination of homogenous solutions and rapid product formation maximizes the concentration of the desired product and provides a controlled, predictable microstructure. The films have been made continuous and crack-free by optimizing initial silica concentration and film thickness. The films are being evaluated as high surface area, size-selective coatings for surface acoustic wave (SAW) sensors.

  8. Flexible thin metal film thermal sensing system

    NASA Technical Reports Server (NTRS)

    Thomsen, Donald L. (Inventor)

    2010-01-01

    A flexible thin metal film thermal sensing system is provided. A self-metallized polymeric film has a polymeric film region and a metal surface disposed thereon. A layer of electrically-conductive metal is deposited directly onto the self-metallized polymeric film's metal surface. Coupled to at least one of the metal surface and the layer of electrically-conductive metal is a device/system for measuring an electrical characteristic associated therewith as an indication of temperature.

  9. Surface roughness evolution of nanocomposite thin films

    SciTech Connect

    Turkin, A. A.; Pei, Y. T.; Shaha, K. P.; Chen, C. Q.; Vainshtein, D. I.; Hosson, J. Th. M. de

    2009-01-01

    An analysis of dynamic roughening and smoothening mechanisms of thin films grown with pulsed-dc magnetron sputtering is presented. The roughness evolution has been described by a linear stochastic equation, which contains the second- and fourth-order gradient terms. Dynamic smoothening of the growing interface is explained by ballistic effects resulting from impingements of ions to the growing thin film. These ballistic effects are sensitive to the flux and energy of impinging ions. The predictions of the model are compared with experimental data, and it is concluded that the thin film roughness can be further controlled by adjusting waveform, frequency, and width of dc pulses.

  10. Macro stress mapping on thin film buckling

    SciTech Connect

    Goudeau, P.; Villain, P.; Renault, P.-O.; Tamura, N.; Celestre, R.S.; Padmore, H.A.

    2002-11-06

    Thin films deposited by Physical Vapour Deposition techniques on substrates generally exhibit large residual stresses which may be responsible of thin film buckling in the case of compressive stresses. Since the 80's, a lot of theoretical work has been done to develop mechanical models but only a few experimental work has been done on this subject to support these theoretical approaches and nothing concerning local stress measurement mainly because of the small dimension of the buckling (few 10th mm). This paper deals with the application of micro beam X-ray diffraction available on synchrotron radiation sources for stress mapping analysis of gold thin film buckling.

  11. Photonics applications of nanostructured thin films

    NASA Astrophysics Data System (ADS)

    Kennedy, Scott Ronald

    Using an advanced thin film fabrication technique known as Glancing Angle Deposition (GLAD), it is possible to fabricate unique thin film nanostructures with characteristic dimensions on the order of a wavelength of light. By tailoring the morphologies of the films, they can be designed to exhibit particular optical properties that can be customized through advanced substrate motion and highly oblique flux incidence angles. In applications to photonics, controlling the flow of light for a specified task, GLAD thin films can be fabricated to provide the ability to manipulate incident light through controlled interactions of optical frequency electromagnetic radiation with the thin film nanostructures. Tetragonal square spiral photonic band gap crystals, a new class of periodic dielectric material that is characterized by the elimination of the density of states for frequencies lying in the stop gap of the crystal, can be fabricated using GLAD in a virtual single step process. The design and fabrication of these unique devices has been performed and the resultant crystals characterized in terms of optical response with respect to forbidden propagation modes, material properties, and advanced deposition techniques used to improve the overall structure. Chiral or helical thin films deposited using GLAD were also investigated, and have been shown to exhibit optical activity and circular birefringence due to their inherent structural anisotropy. It has been shown that the addition of nematic liquid crystals (LCs) to chiral thin films enhances the overall device performance due to order induced in the LCs by the film structure. This effect was investigated for a variety of materials and film structures. Finally, by developing a modified GLAD technique whereby the deposited film porosity is controlled through the angle of flux incidence, porous broadband antireflection coatings were produced. Using an appropriate effective medium theory to describe the index of refraction

  12. Passivation Effects in Copper Thin Films

    SciTech Connect

    Wiederhirn, G.; Nucci, J.; Richter, G.; Arzt, E.; Balk, T. J.; Dehm, G.

    2006-02-07

    We studied the influence of a 10 nm AlxOy passivation on the stress-temperature behavior of 100 nm and 1 {mu}m thick Cu films. At low temperatures, the passivation induces a large tensile stress increase in the 100 nm film; however, its effect on the 1 {mu}m film is negligible. At high temperatures, the opposite behavior is observed; while the passivation does not change the 100 nm film behavior, it strengthens the 1 {mu}m film by driving it deeper into compression. These observations are explained in light of a combination of constrained diffusional creep and dislocation dynamics unique to ultra-thin films.

  13. Research on Advanced Thin Film Batteries

    SciTech Connect

    Goldner, Ronald B.

    2003-11-24

    During the past 7 years, the Tufts group has been carrying out research on advanced thin film batteries composed of a thin film LiCo02 cathode (positive electrode), a thin film LiPON (lithium phosphorous oxynitride) solid electrolyte, and a thin film graphitic carbon anode (negative electrode), under grant DE FG02-95ER14578. Prior to 1997, the research had been using an rfsputter deposition process for LiCoOi and LiPON and an electron beam evaporation or a controlled anode arc evaporation method for depositing the carbon layer. The pre-1997 work led to the deposition of a single layer cell that was successfully cycled for more than 400 times [1,2] and the research also led to the deposition of a monolithic double-cell 7 volt battery that was cycled for more than 15 times [3]. Since 1997, the research has been concerned primarily with developing a research-worthy and, possibly, a production-worthy, thin film deposition process, termed IBAD (ion beam assisted deposition) for depositing each ofthe electrodes and the electrolyte of a completely inorganic solid thin film battery. The main focus has been on depositing three materials - graphitic carbon as the negative electrode (anode), lithium cobalt oxide (nominally LiCoCb) as the positive electrode (cathode), and lithium phosphorus oxynitride (LiPON) as the electrolyte. Since 1998, carbon, LiCoOa, and LiPON films have been deposited using the IBAD process with the following results.

  14. Performance Characterization of Monolithic Thin Film Resistors

    NASA Astrophysics Data System (ADS)

    Yin, Rong

    Thin film resistors have a large resistance range and stable performance under high temperature operating condition. Thin film resistors trimmed by laser beam are able to achieve very high precision on resistance value. As a result, thin film resistors have been widely used to improve the performance of integrated circuits such as operational amplifier, analog-to-digital (A/D) and digital -to-analog (D/A) converters, etc. In this dissertation, a new class of thin film resistors, silicon chrome (SiCr) thin film resistors, has been investigated at length. From thin film characterization to aging behavior modelling, we have carried out a series of engineering activities. The characteristics of the SiCr thin film incorporated into three bipolar processes were first determined. After laser trimming, we have measured a couple of physical parameters of the SiCr film in the heat affected zone (HAZ). This is the first time the sheet resistance and the temperature coefficient of resistance (TCR) of thin film in the HAZ have been characterized. Both thermal and d.c. load accelerated aging tests were performed. The test structures were subjected to the aging for 1000 hours. Based on the test data, we not only evaluated the classical thermal aging model for untrimmed thin film resistors, but also established several empirical thermal aging models for trimmed resistors and d.c. load aging models for both trimmed and untrimmed thin film resistors. All the experiments were carried out for both conventional bar resistors and our new Swiss Cheese (SC) resistors. For the first time, the performance of laser trimmed SC resistors, which was experimentally evaluated, shown a clear superiority over that of trimmed bar resistors. Besides these experiments, we have examined different die attach techniques and their effects on thin film resistors. Also, we have developed a number of hardware systems and software tools, such as a temperature controller, d.c. current source, temperature

  15. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C. Robert; Kozlowski, Mark R.; Campbell, John H.; Staggs, Michael; Rainer, Frank

    1995-01-01

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold.

  16. Permanent laser conditioning of thin film optical materials

    DOEpatents

    Wolfe, C.R.; Kozlowski, M.R.; Campbell, J.H.; Staggs, M.; Rainer, F.

    1995-12-05

    The invention comprises a method for producing optical thin films with a high laser damage threshold and the resulting thin films. The laser damage threshold of the thin films is permanently increased by irradiating the thin films with a fluence below an unconditioned laser damage threshold. 9 figs.

  17. Ferromagnetic properties of fcc Gd thin films

    SciTech Connect

    Bertelli, T. P. Passamani, E. C.; Larica, C.; Nascimento, V. P.; Takeuchi, A. Y.

    2015-05-28

    Magnetic properties of sputtered Gd thin films grown on Si (100) substrates kept at two different temperatures were investigated using X-ray diffraction, ac magnetic susceptibility, and dc magnetization measurements. The obtained Gd thin films have a mixture of hcp and fcc structures, but with their fractions depending on the substrate temperature T{sub S} and film thickness x. Gd fcc samples were obtained when T{sub S} = 763 K and x = 10 nm, while the hcp structure was stabilized for lower T{sub S} (300 K) and thicker film (20 nm). The fcc structure is formed on the Ta buffer layer, while the hcp phase grows on the fcc Gd layer as a consequence of the lattice relaxation process. Spin reorientation phenomenon, commonly found in bulk Gd species, was also observed in the hcp Gd thin film. This phenomenon is assumed to cause the magnetization anomalous increase observed below 50 K in stressed Gd films. Magnetic properties of fcc Gd thin films are: Curie temperature above 300 K, saturation magnetization value of about 175 emu/cm{sup 3}, and coercive field of about 100 Oe at 300 K; features that allow us to classify Gd thin films, with fcc structure, as a soft ferromagnetic material.

  18. Thermally tunable ferroelectric thin film photonic crystals.

    SciTech Connect

    Lin, P. T.; Wessels, B. W.; Imre, A.; Ocola, L. E.; Northwestern Univ.

    2008-01-01

    Thermally tunable PhCs are fabricated from ferroelectric thin films. Photonic band structure and temperature dependent diffraction are calculated by FDTD. 50% intensity modulation is demonstrated experimentally. This device has potential in active ultra-compact optical circuits.

  19. Recent developments in thin film solar cells

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.

    The present status of the development of thin film solar cells is reviewed, with emphasis on important areas for further research. The following aperture-area efficiencies were measured for thin film modules: a-Si:H, 9.8 percent, 933 sq cm; CuIn(Ga)Se2, 11.1 percent, 938 sq cm; and CdTe, 7.3 percent, 838 sq cm. CuIn(Ga)Se2 cells and modules demonstrated excellent efficiencies and stability. The cost advantage of thin film modules and the higher efficiency and improved stability resulting from multijunctions are shown. Engineering solutions are found to minimize light-induced degradation of a-Si:H solar cells. CdTe cells and modules, and cleaved epitaxial thin film III-V compound cells showed remarkable efficiencies.

  20. Thin film production method and apparatus

    DOEpatents

    Loutfy, Raouf O.; Moravsky, Alexander P.; Hassen, Charles N.

    2010-08-10

    A method for forming a thin film material which comprises depositing solid particles from a flowing suspension or aerosol onto a filter and next adhering the solid particles to a second substrate using an adhesive.

  1. Highly stretchable wrinkled gold thin film wires

    NASA Astrophysics Data System (ADS)

    Kim, Joshua; Park, Sun-Jun; Nguyen, Thao; Chu, Michael; Pegan, Jonathan D.; Khine, Michelle

    2016-02-01

    With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. The wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications.

  2. Mechanical Properties of Silicon Carbonitride Thin Films

    NASA Astrophysics Data System (ADS)

    Peng, Xiaofeng; Hu, Xingfang; Wang, Wei; Song, Lixin

    2003-02-01

    Silicon carbonitride thin films were synthesized by reactive rf sputtering a silicon carbide target in nitrogen and argon atmosphere, or sputtering a silicon nitride target in methane and argon atmosphere, respectively. The Nanoindentation technique (Nanoindenter XP system with a continuous stiffness measurement technique) was employed to measure the hardness and elastic modulus of thin films. The effects of sputtering power on the mechanical properties are different for the two SiCN thin films. With increasing sputtering power, the hardness and the elastic modulus decrease for the former but increase for the latter. The tendency is similar to the evolution trend of Si-C bonds in SiCN materials. This reflects that Si-C bonds provide greater hardness for SiCN thin films than Si-N and C-N bonds.

  3. Microstructure Related Properties of Optical Thin Films.

    NASA Astrophysics Data System (ADS)

    Wharton, John James, Jr.

    Both the optical and physical properties of thin film optical interference coatings depend upon the microstructure of the deposited films. This microstructure is strongly columnar with voids between the columns. Computer simulations of the film growth process indicate that the two most important factors responsible for this columnar growth are a limited mobility of the condensing molecules and self-shadowing by molecules already deposited. During the vacuum deposition of thin films, the microstructure can be influenced by many parameters, such as substrate temperature and vacuum pressure. By controlling these parameters and introducing additional ones, thin film coatings can be improved. In this research, ultraviolet irradiation and ion bombardment were examined as additional parameters. Past studies have shown that post-deposition ultraviolet irradiation can be used to relieve stress and reduce absorption in the far ultraviolet of silicon dioxide films. Ion bombardment has been used to reduce stress, improve packing density, and increase resistance to moisture penetration. Three refractory oxide materials commonly used in thin film coatings were studied; they are silicon dioxide, titanium dioxide, and zirconium dioxide. Both single-layer films and narrowband filters made of these materials were examined. A 1000-watt mercury-xenon lamp was used to provide ultraviolet irradiation. An inverted magnetron ion source was used to produce argon and oxygen ions. Ultraviolet irradiation was found to reduce the absorption and slightly increase the index of refraction in zirconium oxide films. X-ray diffraction analysis revealed that ultraviolet irradiation caused titanium oxide films to become more amorphous; their absorption in the ultraviolet was slightly reduced. No changes were noted in film durability. Ion bombardment enhanced the tetragonal (lll) peak of zirconium oxide but increased the absorption of both zirconium oxide and titanium oxide films. The titanium oxide

  4. Thin-film reliability and engineering overview

    NASA Technical Reports Server (NTRS)

    Ross, R. G., Jr.

    1984-01-01

    The reliability and engineering technology base required for thin film solar energy conversions modules is discussed. The emphasis is on the integration of amorphous silicon cells into power modules. The effort is being coordinated with SERI's thin film cell research activities as part of DOE's Amorphous Silicon Program. Program concentration is on temperature humidity reliability research, glass breaking strength research, point defect system analysis, hot spot heating assessment, and electrical measurements technology.

  5. Epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultravacuum component of space for thin-film epitaxial growth. The unique LEO space environment is expected to yield 10-ftorr or better pressures, semiinfinite pumping speeds, and large ultravacuum volume (about 100 cu m) without walls. These space ultravacuum properties promise major improvement in the quality, unique nature, and throughput of epitaxially grown materials, including semiconductors, magnetic materials, and thin-film high-temperature superconductors.

  6. Review of CdO thin films

    NASA Astrophysics Data System (ADS)

    Chandiramouli, R.; Jeyaprakash, B. G.

    2013-02-01

    Cadmium Oxide (CdO) thin film is one of the first transparent conducting oxide semiconductors. Its excellent optical and electronic properties have made CdO a promising material for flat panel displays. In this article, we provide a comprehensive review of the state-of-the-art research activities related to the 'preparation-property-application' triangle of CdO thin films.

  7. Advances in CZTS thin films and nanostructured

    NASA Astrophysics Data System (ADS)

    Ali, N.; Ahmed, R.; Bakhtiar-Ul-Haq; Shaari, A.

    2015-06-01

    Already published data for the optical band gap (Eg) of thin films and nanostructured copper zinc tin sulphide (CZTS) have been reviewed and combined. The vacuum (physical) and non-vacuum (chemical) processes are focused in the study for band gap comparison. The results are accumulated for thin films and nanostructured in different tables. It is inferred from the re- view that the nanostructured material has plenty of worth by engineering the band gap for capturing the maximum photons from solar spectrum.

  8. Thin wetting film lensless imaging

    NASA Astrophysics Data System (ADS)

    Allier, C. P.; Poher, V.; Coutard, J. G.; Hiernard, G.; Dinten, J. M.

    2011-03-01

    Lensless imaging has recently attracted a lot of attention as a compact, easy-to-use method to image or detect biological objects like cells, but failed at detecting micron size objects like bacteria that often do not scatter enough light. In order to detect single bacterium, we have developed a method based on a thin wetting film that produces a micro-lens effect. Compared with previously reported results, a large improvement in signal to noise ratio is obtained due to the presence of a micro-lens on top of each bacterium. In these conditions, standard CMOS sensors are able to detect single bacterium, e.g. E.coli, Bacillus subtilis and Bacillus thuringiensis, with a large signal to noise ratio. This paper presents our sensor optimization to enhance the SNR; improve the detection of sub-micron objects; and increase the imaging FOV, from 4.3 mm2 to 12 mm2 to 24 mm2, which allows the detection of bacteria contained in 0.5μl to 4μl to 10μl, respectively.

  9. Microstructural evolution of tungsten oxide thin films

    NASA Astrophysics Data System (ADS)

    Hembram, K. P. S. S.; Thomas, Rajesh; Rao, G. Mohan

    2009-10-01

    Tungsten oxide thin films are of great interest due to their promising applications in various optoelectronic thin film devices. We have investigated the microstructural evolution of tungsten oxide thin films grown by DC magnetron sputtering on silicon substrate. The structural characterization and surface morphology were carried out using X-ray diffraction and Scanning Electron Microscopy (SEM). The as deposited films were amorphous, where as, the films annealed above 400 °C were crystalline. In order to explain the microstructural changes due to annealing, we have proposed a "instability wheel" model for the evolution of the microstructure. This model explains the transformation of mater into various geometries within them selves, followed by external perturbation.

  10. Printable CIGS thin film solar cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan

    2014-03-01

    Among the various thin film solar cells in the market, CuInGaSe thin film cells have been considered as the most promising alternatives to silicon solar cells because of their high photo-electricity efficiency, reliability, and stability. However, many fabrication of CIGS thin film are based on vacuum processes such as evaporation sputtering techniques which are not cost efficient. This work develops a method using paste or ink liquid spin-coated on glass that would be to conventional ways in terms of cost effective, non-vacuum needed, quick processing. A mixture precursor was prepared by dissolving appropriate amounts of chemicals. After the mixture solution was cooled, a viscous paste prepared and ready for spin-coating process. A slight bluish CIG thin film substrate was then put in a tube furnace with evaporation of metal Se by depositing CdS layer and ZnO nanoparticle thin film coating to a solar cell fabrication. Structure, absorption spectrum, and photo-conversion efficiency for the as-grown CIGS thin film solar cell under study.

  11. Printable CIGS thin film solar cells

    NASA Astrophysics Data System (ADS)

    Fan, Xiaojuan

    2013-03-01

    Among the various thin film solar cells in the market, CuInGaSe thin film solar cells have been considered as the most promising alternatives to crystalline silicon solar cells because of their high photo-electricity conversion efficiency, reliability, and stability. However, many fabrication methods of CIGS thin film are based on vacuum processes such as evaporation and sputtering techniques which are not cost efficient. This work develops a solution method using paste or ink liquid spin-coated on glass that would be competitive to conventional ways in terms of cost effective, non-vacuum needed, and quick processing. A mixture precursor was prepared by dissolving appropriate amounts of composition chemicals. After the mixture solution was cooled, a viscous paste was prepared and ready for spin-coating process. A slight bluish CIG thin film on substrate was then put in a tube furnace with evaporation of metal Se followed by depositing CdS layer and ZnO nanoparticle thin film coating to complete a solar cell fabrication. Structure, absorption spectrum, and photo-electricity conversion efficiency for the as-grown CIGS thin film solar cell are under study.

  12. Carbon Nanotube Thin-Film Antennas.

    PubMed

    Puchades, Ivan; Rossi, Jamie E; Cress, Cory D; Naglich, Eric; Landi, Brian J

    2016-08-17

    Multiwalled carbon nanotube (MWCNT) and single-walled carbon nanotube (SWCNT) dipole antennas have been successfully designed, fabricated, and tested. Antennas of varying lengths were fabricated using flexible bulk MWCNT sheet material and evaluated to confirm the validity of a full-wave antenna design equation. The ∼20× improvement in electrical conductivity provided by chemically doped SWCNT thin films over MWCNT sheets presents an opportunity for the fabrication of thin-film antennas, leading to potentially simplified system integration and optical transparency. The resonance characteristics of a fabricated chlorosulfonic acid-doped SWCNT thin-film antenna demonstrate the feasibility of the technology and indicate that when the sheet resistance of the thin film is >40 ohm/sq no power is absorbed by the antenna and that a sheet resistance of <10 ohm/sq is needed to achieve a 10 dB return loss in the unbalanced antenna. The dependence of the return loss performance on the SWCNT sheet resistance is consistent with unbalanced metal, metal oxide, and other CNT-based thin-film antennas, and it provides a framework for which other thin-film antennas can be designed. PMID:27454334

  13. Laser processing for thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Compaan, Alvin D.

    1995-04-01

    Over the past decade major advances have occurred in the field of thin- film photovoltaics (PV) with many of them a direct consequence of the application of laser processing. Improved cell efficiencies have been achieved in crystalline and polycrystalline Si, in hydrogenated amorphous silicon, and in two polycrystalline thin-film materials. The use of lasers in photovoltaics includes laser hole drilling for emitter wrap-through, laser trenching for buried bus lines, and laser texturing of crystalline and polycrystalline Si cells. In thin-film devices, laser scribing is gaining increased importance for module interconnects. Pulsed laser recrystallization of boron-doped hydrogenated amorphous silicon is used to form highly conductive p-layers in p-i-n amorphous silicon cells and in thin-film transistors. Optical beam melting appears to be an attractive method for forming metal semiconductor alloys for contact formation. Finally, pulsed lasers are used for deposition of the entire semiconductor absorber layer in two types of polycrystalline thin-film cells-those based on copper indium diselenide and those based on cadmium telluride. In our lab we have prepared and studied heavily doped polycrystalline silicon thin films and also have used laser physical vapor deposition (LPVD) to prepare 'all-LPVD' CdS/CdTe solar cells on glass with efficiencies tested at NREL at 10.5%. LPVD is highly flexible and ideally suited for prototyping PV cells using ternary or quaternary alloys and for exploring new dopant combinations.

  14. Thin-Film Nanocapacitor and Its Characterization

    ERIC Educational Resources Information Center

    Hunter, David N.; Pickering, Shawn L.; Jia, Dongdong

    2007-01-01

    An undergraduate thin-film nanotechnology laboratory was designed. Nanocapacitors were fabricated on silicon substrates by sputter deposition. A mask was designed to form the shape of the capacitor and its electrodes. Thin metal layers of Au with a 80 nm thickness were deposited and used as two infinitely large parallel plates for a capacitor.…

  15. An Extension of Thin Film Optics

    NASA Astrophysics Data System (ADS)

    Apell, P.

    1985-10-01

    The classical McIntyre formula for p-polarized light incident on a thin film on a substrate is extended in general terms to include a realistic description of the interfaces and the possible excitation of plasma waves in the film. An earlier extension is critized and criteria are given for when the classical result is applicable.

  16. Thin films, asphaltenes, and reservoir wettability

    SciTech Connect

    Kaminsky, R.; Bergeron, V.; Radke, C.J. |

    1993-04-01

    Reservoir wettability impacts the success of oil recovery by waterflooding and other methods. To understand wettability and its alteration, thin-film forces in solid-aqueous-oil systems must be elucidated. Upon rupture of thick aqueous films separating the oil and rock phases, asphaltene components in the crude oil adsorb irreversibly on the solid surface, changing it from water-wet to oil-wet. Conditions of wettability alteration can be found by performing adhesion tests, in which an oil droplet is brought into contact with a solid surface. Exceeding a critical capillary pressure destabilizes the film, causing spontaneous film rupture to a molecularly adsorbed layer and oil adhesion accompanied by pinning at the three-phase contact line. The authors conduct adhesion experiments similar to those of Buckley and Morrow and simultaneously examine the state of the underlying thin film using optical microscopy and microinterferometry. Aqueous thin films between an asphaltic Orcutt crude oil and glass surfaces are studied as a function of aqueous pH and salinity. For the first time, they prove experimentally that strongly water-wet to strongly oil-wet wettability alteration and contact-angle pinning occur when thick aqueous films thin to molecularly adsorbed films and when the oil phase contains asphaltene molecules.

  17. Thin transparent films formed from powdered glass

    NASA Technical Reports Server (NTRS)

    1965-01-01

    Glass film less than five mils thick is formed from powdered glass dispersed in an organic liquid, deposited on a substrate, and fused into place. The thin films can be cut and shaped for contact lenses, optical filters and insulating layers.

  18. Liquid phase deposition of electrochromic thin films

    SciTech Connect

    Richardson, Thomas J.; Rubin, Michael D.

    2000-08-18

    Thin films of titanium, zirconium and nickel oxides were deposited on conductive SnO2:F glass substrates by immersion in aqueous solutions. The films are transparent, conformal, of uniform thickness and appearance, and adhere strongly to the substrates. On electrochemical cycling, TiO2, mixed TiO2-ZrO2, and NiOx films exhibited stable electrochromism with high coloration efficiencies. These nickel oxide films were particularly stable compared with films prepared by other non-vacuum techniques. The method is simple, inexpensive, energy efficient, and readily scalable to larger substrates.

  19. Adhesion and friction of thin metal films

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1976-01-01

    Sliding friction experiments were conducted in vacuum with thin films of titanium, chromium, iron, and platinum sputter deposited on quartz or mica substrates. A single crystal hemispherically tipped gold slider was used in contact with the films at loads of 1.0 to 30.0 and at a sliding velocity of 0.7 mm/min at 23 C. Test results indicate that the friction coefficient is dependent on the adhesion of two interfaces, that between the film and its substrate and the slider and the film. There exists a relationship between the percent d bond character of metals in bulk and in thin film form and the friction coefficient. Oxygen can increase adhesive bonding of a metal film (platinum) to a substrate.

  20. Induced electronic anisotropy in bismuth thin films

    SciTech Connect

    Liao, Albert D.; Yao, Mengliang; Opeil, Cyril; Katmis, Ferhat; Moodera, Jagadeesh S.; Li, Mingda; Tang, Shuang; Dresselhaus, Mildred S.

    2014-08-11

    We use magneto-resistance measurements to investigate the effect of texturing in polycrystalline bismuth thin films. Electrical current in bismuth films with texturing such that all grains are oriented with the trigonal axis normal to the film plane is found to flow in an isotropic manner. By contrast, bismuth films with no texture such that not all grains have the same crystallographic orientation exhibit anisotropic current flow, giving rise to preferential current flow pathways in each grain depending on its orientation. Extraction of the mobility and the phase coherence length in both types of films indicates that carrier scattering is not responsible for the observed anisotropic conduction. Evidence from control experiments on antimony thin films suggests that the anisotropy is a result of bismuth's large electron effective mass anisotropy.

  1. Flexible Thin Metal Film Thermal Sensing System

    NASA Technical Reports Server (NTRS)

    Thomsen, Donald Laurence (Inventor)

    2012-01-01

    A flexible thin metal film thermal sensing system is provided. A thermally-conductive film made from a thermally-insulating material is doped with thermally-conductive material. At least one layer of electrically-conductive metal is deposited directly onto a surface of the thermally-conductive film. One or more devices are coupled to the layer(s) to measure an electrical characteristic associated therewith as an indication of temperature.

  2. Microcrystalline organic thin-film solar cells.

    PubMed

    Verreet, Bregt; Heremans, Paul; Stesmans, Andre; Rand, Barry P

    2013-10-11

    Microcrystalline organic films with tunable thickness are produced directly on an indium-tin-oxide substrate, by crystallizing a thin amorphous rubrene film followed by its use as a template for subsequent homoepitaxial growth. These films, with exciton diffusion lengths exceeding 200 nm, produce solar cells with increasing photocurrents at thicknesses up to 400 nm with a fill factor >65%, demonstrating significant potential for microcrystalline organic electronic devices. PMID:23939936

  3. Process for making thin film solar cell

    SciTech Connect

    Eberspacher, C.; Ermer, J.H.; Mitchell, K.W.

    1991-09-03

    This paper describes a semiconducting thin film forced on a substrate by the method. It comprises: depositing a composite film of copper and indium on a substrate, the film having an atomic copper to indium ratio of about one, depositing a film of selenium on the composite copper indium film, the selenium film thickness selected to provide an atomic ratio of selenium to copper and indium of less than one, and heating the substrate with the composite copper indium film and the selenium film in the presence of H{sub 2}S gas for a time and at a temperature sufficient to cause interdiffusion of copper, indium, selenium and sulfur to form a semiconductor of the class CuInSe{sub 2{minus}x}S{sub x} where x is less than two.

  4. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments Database

    Dudney, N. J.; Bates, J. B.; Lubben, D.

    1995-06-01

    Thin film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin film battery.

  5. Thin-film rechargeable lithium batteries

    SciTech Connect

    Dudney, N.J.; Bates, J.B.; Lubben, D.

    1995-06-01

    Thin-film rechargeable lithium batteries using ceramic electrolyte and cathode materials have been fabricated by physical deposition techniques. The lithium phosphorous oxynitride electrolyte has exceptional electrochemical stability and a good lithium conductivity. The lithium insertion reaction of several different intercalation materials, amorphous V{sub 2}O{sub 5}, amorphous LiMn{sub 2}O{sub 4}, and crystalline LiMn{sub 2}O{sub 4} films, have been investigated using the completed cathode/electrolyte/lithium thin-film battery.

  6. Thin Ice Films at Mineral Surfaces.

    PubMed

    Yeşilbaş, Merve; Boily, Jean-François

    2016-07-21

    Ice films formed at mineral surfaces are of widespread occurrence in nature and are involved in numerous atmospheric and terrestrial processes. In this study, we studied thin ice films at surfaces of 19 synthetic and natural mineral samples of varied structure and composition. These thin films were formed by sublimation of thicker hexagonal ice overlayers mostly produced by freezing wet pastes of mineral particles at -10 and -50 °C. Vibration spectroscopy revealed that thin ice films contained smaller populations of strongly hydrogen-bonded water molecules than in hexagonal ice and liquid water. Thin ice films at the surfaces of the majority of minerals considered in this work [i.e., metal (oxy)(hydr)oxides, phyllosilicates, silicates, volcanic ash, Arizona Test Dust] produced intense O-H stretching bands at ∼3400 cm(-1), attenuated bands at ∼3200 cm(-1), and liquid-water-like bending band at ∼1640 cm(-1) irrespective of structure and composition. Illite, a nonexpandable phyllosilicate, is the only mineral that stabilized a form of ice that was strongly resilient to sublimation in temperatures as low as -50 °C. As mineral-bound thin ice films are the substrates upon which ice grows from water vapor or aqueous solutions, this study provides new constraints from which their natural occurrences can be understood. PMID:27377606

  7. The preparation of ACEL thin films

    NASA Astrophysics Data System (ADS)

    Vecht, Aron

    1990-05-01

    Although thin film ACEL devices have become commercially available, the number of companies producing these displays has continued to diminish. The cause of their demise was not display performance, as both sufficient brightness and efficiency has been achieved, but the low return on the heavy capital investment due to the poor yields obtained in production. In order to make ACEL thin film devices more viable, the capital investment needs to be low and/or the production yields high. Opting for relatively expensive sputtering or ALE techniques as the sole methods of fabricating EL structures, is both commercially and scientifically ill-advised. Considerable effort was spent in developing cheaper alternative techniques for thin film deposition. The main objectives of the contract can be summarized as follows: (1) to deposit high quality ZnS thin films by MOCVD, (2) to dope the ZnS thin film with Mn, (3) to deposit high quality dielectric films using a novel spray pyrolysis process, (4) to evaluate optimized insulator/ZnS-Mn/insulator structures, and (5) the fabrication of large area XY matrix ACEL structures.

  8. Thin film absorber for a solar collector

    DOEpatents

    Wilhelm, William G.

    1985-01-01

    This invention pertains to energy absorbers for solar collectors, and more particularly to high performance thin film absorbers. The solar collectors comprising the absorber of this invention overcome several problems seen in current systems, such as excessive hardware, high cost and unreliability. In the preferred form, the apparatus features a substantially rigid planar frame with a thin film window bonded to one planar side of the frame. An absorber in accordance with the present invention is comprised of two thin film layers that are sealed perimetrically. In a preferred embodiment, thin film layers are formed from a metal/plastic laminate. The layers define a fluid-tight planar envelope of large surface area to volume through which a heat transfer fluid flows. The absorber is bonded to the other planar side of the frame. The thin film construction of the absorber assures substantially full envelope wetting and thus good efficiency. The window and absorber films stress the frame adding to the overall strength of the collector.

  9. Carrier lifetimes in thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Baek, Dohyun

    2015-09-01

    The carrier lifetimes in thin-film solar cells are reviewed and discussed. Shockley-Read-Hall recombination is dominant at low carrier density, Auger recombination is dominant under a high injection condition and high carrier density, and surface recombination is dominant under any conditions. Because the surface photovoltage technique is insensitive to the surface condition, it is useful for bulk lifetime measurements. The photoconductance decay technique measures the effective recombination lifetime. The time-resolved photoluminescence technique is very useful for measuring thin-film semiconductor or solar-cell materials lifetime, because the sample is thin, other techniques are not suitable for measuring the lifetime. Many papers have provided time-resolved photoluminescence (TRPL) lifetimes for copper-indium-gallium-selenide (CIGS) and CdTe thin-film solar cell. The TRPL lifetime strongly depends on open-circuit voltage and conversion efficiency; however, the TRPL life time is insensitive to the short-circuit current.

  10. Adhesive transfer of thin viscoelastic films.

    PubMed

    Shull, Kenneth R; Martin, Elizabeth F; Drzal, Peter L; Hersam, Mark C; Markowitz, Alison R; McSwain, Rachel L

    2005-01-01

    Micellar suspensions of acrylic diblock copolymers are excellent model materials for studying the adhesive transfer of viscoelastic solids. The micellar structure is maintained in films with a variety of thicknesses, giving films with a well-defined structure and viscoelastic character. Thin films were cast onto elastomeric silicone substrates from micellar suspensions in butanol, and the adhesive interactions between these coated elastomeric substrates and a rigid indenter were quantified. By controlling the adhesive properties of the film/indenter and film/substrate interfaces we were able to obtain very clean transfer of the film from the substrate to the portion of the glass indenter with which the film was in contact. Adhesive failure at the film/substrate interface occurs when the film/indenter interface is able to support an applied energy release rate that is sufficient to result in cavity nucleation at the film/substrate interface. Cavity formation is rapidly followed by delamination of the entire region under the indenter. The final stage in the transfer process involves the failure of the film that bridges the indenter and the elastomeric substrate. This film is remarkably robust and is extended to three times its original width prior to failure. Failure of this film occurs at the periphery of the indenter, giving a transferred film that conforms to the original contact area between the indenter and the coated substrate. PMID:15620300

  11. Method for making thin polypropylene film

    DOEpatents

    Behymer, R.D.; Scholten, J.A.

    1985-11-21

    An economical method is provided for making uniform thickness polypropylene film as thin as 100 Angstroms. A solution of polypropylene dissolved in xylene is formed by mixing granular polypropylene and xylene together in a flask at an elevated temperature. A substrate, such as a glass plate or microscope slide is immersed in the solution. When the glass plate is withdrawn from the solution at a uniform rate, a thin polypropylene film forms on a flat surface area of the glass plate as the result of xylene evaporation. The actual thickness of the polypropylene film is functional of the polypropylene in xylene solution concentration, and the particular withdrawal rate of the glass plate from the solution. After formation, the thin polypropylene film is floated from the glass plate onto the surface of water, from which it is picked up with a wire hoop.

  12. Simulated Thin-Film Growth and Imaging

    NASA Astrophysics Data System (ADS)

    Schillaci, Michael

    2001-06-01

    Thin-films have become the cornerstone of the electronics, telecommunications, and broadband markets. A list of potential products includes: computer boards and chips, satellites, cell phones, fuel cells, superconductors, flat panel displays, optical waveguides, building and automotive windows, food and beverage plastic containers, metal foils, pipe plating, vision ware, manufacturing equipment and turbine engines. For all of these reasons a basic understanding of the physical processes involved in both growing and imaging thin-films can provide a wonderful research project for advanced undergraduate and first-year graduate students. After producing rudimentary two- and three-dimensional thin-film models incorporating ballsitic deposition and nearest neighbor Coulomb-type interactions, the QM tunneling equations are used to produce simulated scanning tunneling microscope (SSTM) images of the films. A discussion of computational platforms, languages, and software packages that may be used to accomplish similar results is also given.

  13. Coalescence and percolation in thin metal films

    SciTech Connect

    Yu, X.; Duxbury, P.M.; Jeffers, G.; Dubson, M.A. Center for Fundamental Materials Research, Michigan State University, East Lansing, Michigan 48824-1116 )

    1991-12-15

    Metals thermally evaporated onto warm insulating substrates evolve to the thin-film state via the morphological sequence: compact islands, elongated islands, percolation, hole filling, and finally the thin-film state. The coverage at which the metal percolates ({ital p}{sub {ital c}}) is often considerably higher than that predicted by percolation models, such as inverse swiss cheese or lattice percolation. Using a simple continuum model, we show that high-{ital p}{sub {ital c}}'s arise naturally in thin films that exhibit a crossover from full coalescence of islands at early stages of growth to partial coalescence at later stages. In this interrupted-coalescence model, full coalescence of islands occurs up to a critical island radius {ital R}{sub {ital c}}, after which islands overlap, but do not fully coalesce. We present the morphology of films and the critical area coverages generated by this model.

  14. Tungsten-doped thin film materials

    DOEpatents

    Xiang, Xiao-Dong; Chang, Hauyee; Gao, Chen; Takeuchi, Ichiro; Schultz, Peter G.

    2003-12-09

    A dielectric thin film material for high frequency use, including use as a capacitor, and having a low dielectric loss factor is provided, the film comprising a composition of tungsten-doped barium strontium titanate of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3, where X is between about 0.5 and about 1.0. Also provided is a method for making a dielectric thin film of the general formula (Ba.sub.x Sr.sub.1-x)TiO.sub.3 and doped with W, where X is between about 0.5 and about 1.0, a substrate is provided, TiO.sub.2, the W dopant, Ba, and optionally Sr are deposited on the substrate, and the substrate containing TiO.sub.2, the W dopant, Ba, and optionally Sr is heated to form a low loss dielectric thin film.

  15. Ambient pressure process for preparing aerogel thin films reliquified sols useful in preparing aerogel thin films

    DOEpatents

    Brinker, Charles Jeffrey; Prakash, Sai Sivasankaran

    1999-01-01

    A method for preparing aerogel thin films by an ambient-pressure, continuous process. The method of this invention obviates the use of an autoclave and is amenable to the formation of thin films by operations such as dip coating. The method is less energy intensive and less dangerous than conventional supercritical aerogel processing techniques.

  16. Niobium Thin Film Characterization for Thin Film Technology Used in Superconducting Radiofrequency Cavities

    NASA Astrophysics Data System (ADS)

    Dai, Yishu; Valente-Feliciano, Anne-Marie

    2015-10-01

    Superconducting RadioFrequency (SRF) penetrates about 40-100 nm of the top surface, making thin film technology possible in producing superconducting cavities. Thin film is based on the deposition of a thin Nb layer on top of a good thermal conducting material such as Al or Cu. Thin film allows for better control of the surface and has negligible response to the Earth's magnetic field, eliminating the need for magnetic shielding of the cavities. Thin film superconductivity depends heavily on coating process conditions, involving controllable parameters such as crystal plane orientation, coating temperature, and ion energy. MgO and Al2O3 substrates are used because they offer very smooth surfaces, ideal for studying film growth. Atomic Force Microscopy is used to characterize surface's morphology. It is evident that a lower nucleation energy and a long coating time increases the film quality in the r-plane sapphire crystal orientation. The quality of the film increases with thickness. Nb films coated on r-plane, grow along the (001) plane and yield a much higher RRR compared to the films grown on a- and c-planes. This information allows for further improvement on the research process for thin film technology used in superconducting cavities for the particle accelerators. National Science Foundation, Department of Energy, Jefferson Lab, Old Dominion University.

  17. Mirrorlike pulsed laser deposited tungsten thin film

    SciTech Connect

    Mostako, A. T. T.; Khare, Alika; Rao, C. V. S.

    2011-01-15

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10{sup -5} Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness {approx}782 nm.

  18. Mirrorlike pulsed laser deposited tungsten thin film.

    PubMed

    Mostako, A T T; Rao, C V S; Khare, Alika

    2011-01-01

    Mirrorlike tungsten thin films on stainless steel substrate deposited via pulsed laser deposition technique in vacuum (10(-5) Torr) is reported, which may find direct application as first mirror in fusion devices. The crystal structure of tungsten film is analyzed using x-ray diffraction pattern, surface morphology of the tungsten films is studied with scanning electron microscope and atomic force microscope. The film composition is identified using energy dispersive x-ray. The specular and diffuse reflectivities with respect to stainless steel substrate of the tungsten films are recorded with FTIR spectra. The thickness and the optical quality of pulsed laser deposition deposited films are tested via interferometric technique. The reflectivity is approaching about that of the bulk for the tungsten film of thickness ∼782 nm. PMID:21280810

  19. Corrosion Behaviour of Sputtered Alumina Thin Films

    NASA Astrophysics Data System (ADS)

    Reddy, I. Neelakanta; Dey, Arjun; Sridhara, N.; Anoop, S.; Bera, Parthasarathi; Rani, R. Uma; Anandan, Chinnasamy; Sharma, Anand Kumar

    2015-10-01

    Corrosion studies of sputtered alumina thin films grown on stainless steel (SS) 304 were carried out by linear polarization and electrochemical impedance spectroscopy. Noticeable changes were not observed in morphology and surface roughness of films after carrying out the corrosion test. Corrosion current density (icorr) of alumina coated SS decreased up to 10-10 A cm-2 while icorr value in the range of 10-5-10-6 A cm-2 was observed for bare SS. The direct sputtered film showed superior corrosion resistance behaviour than the reactive sputtered film. This might be attributed to the difference in thickness of the films sputtered by direct and reactive methods. The electronic structure of deposited alumina films was studied both before and after corrosion test by X-ray photoelectron spectroscopy technique which also confirmed no structural changes of alumina film after exposing it to corrosive environment.

  20. A high performance thin film thermoelectric cooler

    SciTech Connect

    Rowe, D.M.; Min, G.; Volklein, F.

    1998-07-01

    Thin film thermoelectric devices with small dimensions have been fabricated using microelectronics technology and operated successfully in the Seebeck mode as sensors or generators. However, they do not operate successfully in the Peltier mode as coolers, because of the thermal bypass provided by the relatively thick substrate upon which the thermoelectric device is fabricated. In this paper a processing sequence is described which dramatically reduces this thermal bypass and facilitates the fabrication of high performance integrated thin film thermoelectric coolers. In the processing sequence a very thin amorphous SiC (or SiO{sub 2}SiN{sub 4}) film is deposited on a silicon substrate using conventional thin film deposition and a membrane formed by removing the silicon substrate over a desired region using chemical etching or micro-machining. Thermoelements are deposited on the membrane using conventional thin film deposition and patterning techniques and configured so that the region which is to be cooled is abutted to the cold junctions of the Peltier thermoelements while the hot junctions are located at the outer peripheral area which rests on the silicon substrate rim. Heat is pumped laterally from the cooled region to the silicon substrate rim and then dissipated vertically through it to an external heat sink. Theoretical calculations of the performance of a cooler described above indicate that a maximum temperature difference of about 40--50K can be achieved with a maximum heat pumping capacity of around 10 milliwatts.

  1. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    SciTech Connect

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-11-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 {Angstrom}), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 {Angstrom} of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films.

  2. Thin film dielectric composite materials

    DOEpatents

    Jia, Quanxi; Gibbons, Brady J.; Findikoglu, Alp T.; Park, Bae Ho

    2002-01-01

    A dielectric composite material comprising at least two crystal phases of different components with TiO.sub.2 as a first component and a material selected from the group consisting of Ba.sub.1-x Sr.sub.x TiO.sub.3 where x is from 0.3 to 0.7, Pb.sub.1-x Ca.sub.x TiO.sub.3 where x is from 0.4 to 0.7, Sr.sub.1-x Pb.sub.x TiO.sub.3 where x is from 0.2 to 0.4, Ba.sub.1-x Cd.sub.x TiO.sub.3 where x is from 0.02 to 0.1, BaTi.sub.1-x Zr.sub.x O.sub.3 where x is from 0.2 to 0.3, BaTi.sub.1-x Sn.sub.x O.sub.3 where x is from 0.15 to 0.3, BaTi.sub.1-x Hf.sub.x O.sub.3 where x is from 0.24 to 0.3, Pb.sub.1-1.3x La.sub.x TiO.sub.3+0.2x where x is from 0.23 to 0.3, (BaTiO.sub.3).sub.x (PbFeo.sub.0.5 Nb.sub.0.5 O.sub.3).sub.1-x where x is from 0.75 to 0.9, (PbTiO.sub.3).sub.- (PbCo.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.1 to 0.45, (PbTiO.sub.3).sub.x (PbMg.sub.0.5 W.sub.0.5 O.sub.3).sub.1-x where x is from 0.2 to 0.4, and (PbTiO.sub.3).sub.x (PbFe.sub.0.5 Ta.sub.0.5 O.sub.3).sub.1-x where x is from 0 to 0.2, as the second component is described. The dielectric composite material can be formed as a thin film upon suitable substrates.

  3. Crystallization of zirconia based thin films.

    PubMed

    Stender, D; Frison, R; Conder, K; Rupp, J L M; Scherrer, B; Martynczuk, J M; Gauckler, L J; Schneider, C W; Lippert, T; Wokaun, A

    2015-07-28

    The crystallization kinetics of amorphous 3 and 8 mol% yttria stabilized zirconia (3YSZ and 8YSZ) thin films grown by pulsed laser deposition (PLD), spray pyrolysis and dc-magnetron sputtering are explored. The deposited films were heat treated up to 1000 °C ex situ and in situ in an X-ray diffractometer. A minimum temperature of 275 °C was determined at which as-deposited amorphous PLD grown 3YSZ films fully crystallize within five hours. Above 325 °C these films transform nearly instantaneously with a high degree of micro-strain when crystallized below 500 °C. In these films the t'' phase crystallizes which transforms at T > 600 °C to the t' phase upon relaxation of the micro-strain. Furthermore, the crystallization of 8YSZ thin films grown by PLD, spray pyrolysis and dc-sputtering are characterized by in situ XRD measurements. At a constant heating rate of 2.4 K min(-1) crystallization is accomplished after reaching 800 °C, while PLD grown thin films were completely crystallized already at ca. 300 °C. PMID:26119755

  4. Capillary stress in microporous thin films

    SciTech Connect

    Samuel, J.; Hurd, A.J.; Frink, L.J.D.; Swol, F. van; Brinker, C.J. |; Raman, N.K.

    1996-06-01

    Development of capillary stress in porous xerogels, although ubiquitous, has not been systematically studied. The authors have used the beam bending technique to measure stress isotherms of microporous thin films prepared by a sol-gel route. The thin films were prepared on deformable silicon substrates which were then placed in a vacuum system. The automated measurement was carried out by monitoring the deflection of a laser reflected off the substrate while changing the overlying relative pressure of various solvents. The magnitude of the macroscopic bending stress was found to reach a value of 180 MPa at a relative pressure of methanol, P/Po = 0.001. The observed stress is determined by the pore size distribution and is an order of magnitude smaller in mesoporous thin films. Density Functional Theory (DFT) indicates that for the microporous materials, the stress at saturation is compressive and drops as the relative pressure is reduced.

  5. Vibration welding system with thin film sensor

    DOEpatents

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  6. Thin film ferroelectric electro-optic memory

    NASA Technical Reports Server (NTRS)

    Thakoor, Sarita (Inventor); Thakoor, Anilkumar P. (Inventor)

    1993-01-01

    An electrically programmable, optically readable data or memory cell is configured from a thin film of ferroelectric material, such as PZT, sandwiched between a transparent top electrode and a bottom electrode. The output photoresponse, which may be a photocurrent or photo-emf, is a function of the product of the remanent polarization from a previously applied polarization voltage and the incident light intensity. The cell is useful for analog and digital data storage as well as opto-electric computing. The optical read operation is non-destructive of the remanent polarization. The cell provides a method for computing the product of stored data and incident optical data by applying an electrical signal to store data by polarizing the thin film ferroelectric material, and then applying an intensity modulated optical signal incident onto the thin film material to generate a photoresponse therein related to the product of the electrical and optical signals.

  7. Mesoscale morphologies in polymer thin films.

    SciTech Connect

    Ramanathan, M.; Darling, S. B.

    2011-06-01

    In the midst of an exciting era of polymer nanoscience, where the development of materials and understanding of properties at the nanoscale remain a major R&D endeavor, there are several exciting phenomena that have been reported at the mesoscale (approximately an order of magnitude larger than the nanoscale). In this review article, we focus on mesoscale morphologies in polymer thin films from the viewpoint of origination of structure formation, structure development and the interaction forces that govern these morphologies. Mesoscale morphologies, including dendrites, holes, spherulites, fractals and honeycomb structures have been observed in thin films of homopolymer, copolymer, blends and composites. Following a largely phenomenological level of description, we review the kinetic and thermodynamic aspects of mesostructure formation outlining some of the key mechanisms at play. We also discuss various strategies to direct, limit, or inhibit the appearance of mesostructures in polymer thin films as well as an outlook toward potential areas of growth in this field of research.

  8. Thin Film Transistors On Plastic Substrates

    DOEpatents

    Carey, Paul G.; Smith, Patrick M.; Sigmon, Thomas W.; Aceves, Randy C.

    2004-01-20

    A process for formation of thin film transistors (TFTs) on plastic substrates replaces standard thin film transistor fabrication techniques, and uses sufficiently lower processing temperatures so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The silicon based thin film transistor produced by the process includes a low temperature substrate incapable of withstanding sustained processing temperatures greater than about 250.degree. C., an insulating layer on the substrate, a layer of silicon on the insulating layer having sections of doped silicon, undoped silicon, and poly-silicon, a gate dielectric layer on the layer of silicon, a layer of gate metal on the dielectric layer, a layer of oxide on sections of the layer of silicon and the layer of gate metal, and metal contacts on sections of the layer of silicon and layer of gate metal defining source, gate, and drain contacts, and interconnects.

  9. Method for synthesizing thin film electrodes

    DOEpatents

    Boyle, Timothy J.

    2007-03-13

    A method for making a thin-film electrode, either an anode or a cathode, by preparing a precursor solution using an alkoxide reactant, depositing multiple thin film layers with each layer approximately 500 1000 .ANG. in thickness, and heating the layers to above 600.degree. C. to achieve a material with electrochemical properties suitable for use in a thin film battery. The preparation of the anode precursor solution uses Sn(OCH.sub.2C(CH.sub.3).sub.3).sub.2 dissolved in a solvent in the presence of HO.sub.2CCH.sub.3 and the cathode precursor solution is formed by dissolving a mixture of (Li(OCH.sub.2C(CH.sub.3).sub.3)).sub.8 and Co(O.sub.2CCH.sub.3).H.sub.2O in at least one polar solvent.

  10. Thin film oxygen partial pressure sensor

    NASA Technical Reports Server (NTRS)

    Wortman, J. J.; Harrison, J. W.; Honbarrier, H. L.; Yen, J.

    1972-01-01

    The development is described of a laboratory model oxygen partial pressure sensor using a sputtered zinc oxide thin film. The film is operated at about 400 C through the use of a miniature silicon bar. Because of the unique resistance versus temperature relation of the silicon bar, control of the operational temperature is achieved by controlling the resistance. A circuit for accomplishing this is described. The response of sputtered zinc oxide films of various thicknesses to oxygen, nitrogen, argon, carbon dioxide, and water vapor caused a change in the film resistance. Over a large range, film conductance varied approximately as the square root of the oxygen partial pressure. The presence of water vapor in the gas stream caused a shift in the film conductance at a given oxygen partial pressure. A theoretical model is presented to explain the characteristic features of the zinc oxide response to oxygen.

  11. Solid-state thin-film supercapacitor with ruthenium oxide and solid electrolyte thin films

    NASA Astrophysics Data System (ADS)

    Yoon, Y. S.; Cho, W. I.; Lim, J. H.; Choi, D. J.

    Direct current reactive sputtering deposition of ruthenium oxide thin films (bottom and top electrodes) at 400°C are performed to produce a solid-state thin-film supercapacitor (TFSC). The supercapacitor has a cell structure of RuO 2/Li 2.94PO 2.37N 0.75 (Lipon)/RuO 2/Pt. Radio frequency, reactive sputtering deposition of an Li 2.94PO 2.37N 0.75 electrolyte film is performed on the bottom RuO 2 film at room temperature to separate the bottom and top RuO 2 electrodes electrically. The stoichiometry of the RuO 2 thin film is investigated by Rutherford back-scattering spectrometry (RBS). X-ray diffraction (XRD) shows that the as-deposited RuO 2 thin film is an amorphous phase. Scanning electron microscopy (SEM) measurements reveal that the RuO 2/Lipon/RuO 2 hetero-interfaces have no inter-diffusion problems. Charge-discharge measurements with constant current at room temperature clearly reveal typical supercapacitor behaviour for a RuO 2/Lipon/RuO 2/Pt cell structure. Since the electrolyte thin film has low ionic mobility, the capacity and cycle performance are inferior to those of a bulk type of supercapacitor. These results indicate that a high performance, TFSC can be fabricated by a solid electrolyte thin film with high ionic conductivity.

  12. Feasibility Study of Thin Film Thermocouple Piles

    NASA Technical Reports Server (NTRS)

    Sisk, R. C.

    2001-01-01

    Historically, thermopile detectors, generators, and refrigerators based on bulk materials have been used to measure temperature, generate power for spacecraft, and cool sensors for scientific investigations. New potential uses of small, low-power, thin film thermopiles are in the area of microelectromechanical systems since power requirements decrease as electrical and mechanical machines shrink in size. In this research activity, thin film thermopile devices are fabricated utilizing radio frequency sputter coating and photoresist lift-off techniques. Electrical characterizations are performed on two designs in order to investigate the feasibility of generating small amounts of power, utilizing any available waste heat as the energy source.

  13. Borocarbide thin films and tunneling measurements.

    SciTech Connect

    Iavarone, M.; Andreone, A.; Cassinese, A.; Dicapual, R.; giannil, L.; Vagliol, R.; DeWilde, Y.; Crabtree, G. W.

    2000-06-15

    The results obtained by their group in thin film fabrication and STM tunneling on superconducting borocarbides YNi{sub 2}B{sub 2}C have been be briefly reviewed. Results concerning the microwave surface impedance and the S/N planar junctions on LuNi{sub 2}B{sub 2}C thin films have been also presented and analyzed. These new data unambiguously confirm the full BCS nature of the superconducting gap in borocarbides and the absence of significant pair-breaking effects in LuNi{sub 2}B{sub 2}C.

  14. Emittance Theory for Thin Film Selective Emitter

    NASA Technical Reports Server (NTRS)

    Chubb, Donald L.; Lowe, Roland A.; Good, Brian S.

    1994-01-01

    Thin films of high temperature garnet materials such as yttrium aluminum garnet (YAG) doped with rare earths are currently being investigated as selective emitters. This paper presents a radiative transfer analysis of the thin film emitter. From this analysis the emitter efficiency and power density are calculated. Results based on measured extinction coefficients for erbium-YAG and holmium-YAG are presented. These results indicated that emitter efficiencies of 50 percent and power densities of several watts/sq cm are attainable at moderate temperatures (less than 1750 K).

  15. Annealed CVD molybdenum thin film surface

    DOEpatents

    Carver, Gary E.; Seraphin, Bernhard O.

    1984-01-01

    Molybdenum thin films deposited by pyrolytic decomposition of Mo(CO).sub.6 attain, after anneal in a reducing atmosphere at temperatures greater than 700.degree. C., infrared reflectance values greater than reflectance of supersmooth bulk molybdenum. Black molybdenum films deposited under oxidizing conditions and annealed, when covered with an anti-reflecting coating, approach the ideal solar collector characteristic of visible light absorber and infrared energy reflector.

  16. Dynamics of liquid films and thin jets

    NASA Technical Reports Server (NTRS)

    Zak, M.

    1979-01-01

    The theory of liquid films and thin jets as one- and two-dimensional continuums is examined. The equations of motion have led to solutions for the characteristic speeds of wave propagation for the parameters characterizing the shape. The formal analogy with a compressible fluid indicates the possibility of shock wave generation in films and jets and the formal analogy to the theory of threads and membranes leads to the discovery of some new dynamic effects. The theory is illustrated by examples.

  17. Superconducting thin films on potassium tantalate substrates

    DOEpatents

    Feenstra, Roeland; Boatner, Lynn A.

    1992-01-01

    A superconductive system for the lossless transmission of electrical current comprising a thin film of superconducting material Y.sub.1 Ba.sub.2 Cu.sub.3 O.sub.7-x epitaxially deposited upon a KTaO.sub.3 substrate. The KTaO.sub.3 is an improved substrate over those of the prior art since the it exhibits small lattice constant mismatch and does not chemically react with the superconducting film.

  18. Hydrogenated nanocrystalline silicon germanium thin films

    NASA Astrophysics Data System (ADS)

    Yusoff, A. R. M.; Syahrul, M. N.; Henkel, K.

    2007-08-01

    Hydrogenated nanocrystalline silicon germanium thin films (nc-SiGe:H) is an interesting alternative material to replace hydrogenated nanocrystalline silicon (nc-Si:H) as the narrow bandgap absorber in an a-Si/a-SiGe/nc-SiGe(nc-Si) triple-junction solar cell due to its higher optical absorption in the wavelength range of interest. In this paper, we present results of optical, structural investigations and electrical characterization of nc-SiGe:H thin films made by hot-wire chemical vapor deposition (HWCVD) with a coil-shaped tungsten filament and with a disilane/germane/hydrogen gas mixture. The optical band gaps of a-SiGe:H and nc-SiGe:H thin-films, which are deposited with the same disilane/germane/hydrogen gas mixture ratio of 3.4:1.7:7, are about 1.58 eV and 2.1 eV, respectively. The nc-SiGe:H thin film exhibits a larger optical absorption coefficient of about 2-4 in the 600-900 nm range when compared to nc-Si:H thin film. Therefore, a thinner nc-SiGe:H layer of sim500 nm thickness may be sufficient for the narrow bandgap absorber in an a-Si based multiple-junction solar cell. We enhanced the transport properties as measured by the photoconductivity frequency mixing technique. These improved alloys do not necessarily show an improvement in the degree of structural heterogeneity on the nanometer scale as measured by small-angle X-ray scattering. Decreasing both the filament temperature and substrate temperature produced a film with relatively low structural heterogeneity while photoluminescence showed an order of magnitude increase in defect density for a similar change in the process.

  19. Oriented thin films of perylenetetracarboxylic diimide on frictiontransferred polymer films

    NASA Astrophysics Data System (ADS)

    Tanigaki, Nobutaka; Heck, Claire; Mizokuro, Toshiko

    Perylenetetracarboxylic diimide (PTCDI) is a promising material for application in organic electronics. In this study we report on the preparation of oriented thin films of PTCDI on the surface of oriented polymer substrates, which were prepared by friction transfer method. Two polymers, poly(tetrafluoroethylene) (PTFE) and poly(p-phenylene) (PPP) were used as the orienting substrate for PTCDI for comparison studies. Characterization by polarized UV-vis absorption shows that the orienting ability of PPP is larger than that of PTFE substrate. Furthermore, polarization-sensitive photoelectric conversion devices were fabricated by using the oriented PTCDI thin film on the PPP substrate.

  20. Gas adsorption on microporous carbon thin films

    SciTech Connect

    O'Shea, S.; Pailthorpe, B.A.; Collins, R.E.; Furlong, D.N. )

    1992-05-01

    A gas adsorption study was performed on amorphous hydrogenated carbon thin films which are deposited by reactive magnetron sputtering using acetylene gas. It is found that the films are highly microporous. Annealing significantly increases the adsorption capacity of the films and decreases the effects of low-pressure hysteresis in the adsorption isotherms. The general gas adsorption behavior closely resembles that of powdered activated carbons. The Dubinin-Radushkevich equation can be used to model the submonolayer adsorption isotherm for a variety of gases. 38 refs., 9 figs., 3 tabs.

  1. Study of iron mononitride thin films

    SciTech Connect

    Tayal, Akhil Gupta, Mukul Phase, D. M. Reddy, V. R. Gupta, Ajay

    2014-04-24

    In this work we have studied the crystal structural and local ordering of iron and nitrogen in iron mononitride thin films prepared using dc magnetron sputtering at sputtering power of 100W and 500W. The films were sputtered using pure nitrogen to enhance the reactivity of nitrogen with iron. The x-ray diffraction (XRD), conversion electron Mössbauer spectroscopy (CEMS) and soft x-ray absorption spectroscopy (SXAS) studies shows that the film crystallizes in ZnS-type crystal structure.

  2. Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films

    SciTech Connect

    Hellman, Frances

    1998-10-03

    OAK B204 Growth Induced Magnetic Anisotropy in Crystalline and Amorphous Thin Films. The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and hTi-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials.

  3. Microstructural characterization in nanocrystalline ceramic thin films

    NASA Astrophysics Data System (ADS)

    Kim, Hakkwan

    The primary objective of this research is to investigate the effects of process variables on microstructure in several fluoride and oxide thin films prepared by vapor deposition, in order to predict the properties and behaviors of nanocrystalline thin film materials. There are three distinct stages of this research. The first stage focuses on measuring of the porosity in polycrystalline thin films of a variety of fluorides as a function of the substrate temperature during deposition, and discussing the mechanism by which the porosity varies as a function of the process variables. We have measured the porosity in thin films of lithium fluoride (LiF), magnesium fluoride (MgF2), barium fluoride (BaF 2) and calcium fluoride (CaF2) using an atomic force microscope (AFM) and a quartz crystal thickness monitor. The porosity is very sensitive to the substrate temperature and decreases as the substrate temperature increases. Consistent behavior is observed among all of the materials in this study. The second stage is to understand the film microstructure including grain growth and texture development, because these factors are known to influence the behavior and stability of polycrystalline thin films. This study focuses on grain growth and texture development in polycrystalline lithium fluoride thin films using dark field (DF) transmission electron microscopy (TEM). It is demonstrated that we can isolate the size distribution of <111> surface normal grains from the overall size distribution, based on simple and plausible assumptions about the texture. The {111} texture formation and surface morphology were also observed by x-ray diffraction (XRD) and AFM, respectively. The grain size distributions become clearly bimodal as the annealing time increases, and we deduce that the short-time size distributions are also a sum of two overlapping peaks. The smaller grain-size peak in the distribution corresponds to the {111}-oriented grains which do not grow significantly, while

  4. Rim instability of bursting thin smectic films

    NASA Astrophysics Data System (ADS)

    Trittel, Torsten; John, Thomas; Tsuji, Kinko; Stannarius, Ralf

    2013-05-01

    The rupture of thin smectic bubbles is studied by means of high speed video imaging. Bubbles of centimeter diameter and film thicknesses in the nanometer range are pierced, and the instabilities of the moving rim around the opening hole are described. Scaling laws describe the relation between film thickness and features of the filamentation process of the rim. A flapping motion of the retracting smectic film is assumed as the origin of the observed filamentation instability. A comparison with similar phenomena in soap bubbles is made. The present experiments extend studies on soap films [H. Lhuissier and E. Villermaux, Phys. Rev. Lett. 103, 054501 (2009), 10.1103/PhysRevLett.103.054501] to much thinner, uniform films of thermotropic liquid crystals.

  5. Residual stress measurement in YBCO thin films.

    SciTech Connect

    Cheon, J. H.; Singh, J. P.

    2002-05-13

    Residual stress in YBCO films on Ag and Hastelloy C substrates was determined by using 3-D optical interferometry and laser scanning to measure the change in curvature radius before and after film deposition. The residual stress was obtained by appropriate analysis of curvature measurements. Consistent with residual thermal stress calculations based on the thermal expansion coefficient mismatch between the substrates and YBCO film, the measured residual stress in the YBCO film on Hastelloy C substrate was tensile, while it was compressive on the Ag substrate. The stress values measured by the two techniques were generally in good agreement, suggesting that optical interferometry and laser scanning have promise for measuring residual stresses in thin films.

  6. Thin film thermocouples for high temperature measurement

    NASA Astrophysics Data System (ADS)

    Kreider, Kenneth G.

    1989-05-01

    Thin film thermocouples have unique capabilities for measuring surface temperatures at high temperatures (above 800 K) under harsh conditions. Their low mass, approximately 2 x 10(-5) g/mm permits very rapid response and very little disturbance of heat transfer to the surface being measured. This has led to applications inside gas turbine engines and diesel engines measuring the surface temperature of first stage turbine blades and vanes and ceramic liners in diesel cylinders. The most successful high temperature (up to 1300 K) thin film thermocouples are sputter deposited from platinum and platinum-10 percent rhodium targets although results using base metal alloys, gold, and platinel will also be presented. The fabrication techniques used to form the thermocouples, approaches used to solve the high temperature insulation and adherence problems, current applications, and test results using the thin film thermocouples are reviewed. In addition a discussion will be presented on the current problems and future trends related to applications of thin film thermocouples at higher temperatures up to 1900 K.

  7. US polycrystalline thin film solar cells program

    SciTech Connect

    Ullal, H.S.; Zweibel, K.; Mitchell, R.L. )

    1989-11-01

    The Polycrystalline Thin Film Solar Cells Program, part of the United States National Photovoltaic Program, performs R D on copper indium diselenide and cadmium telluride thin films. The objective of the Program is to support research to develop cells and modules that meet the US Department of Energy's long-term goals by achieving high efficiencies (15%-20%), low-cost ($50/m{sup 2}), and long-time reliability (30 years). The importance of work in this area is due to the fact that the polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules have made rapid advances. They have become the leading thin films for PV in terms of efficiency and stability. The US Department of Energy has increased its funding through an initiative through the Solar Energy Research Institute in CuInSe{sub 2} and CdTe with subcontracts to start in Spring 1990. 23 refs., 5 figs.

  8. New techniques for producing thin boron films

    SciTech Connect

    Thomas, G.E.

    1988-01-01

    A review will be presented of methods for producing thin boron films using an electron gun. Previous papers have had the problem of spattering of the boron source during the evaporation. Methods for reducing this problem will also be presented. 12 refs., 4 figs.

  9. Microwave-enhanced thin-film deposition

    NASA Technical Reports Server (NTRS)

    Chitre, S.

    1984-01-01

    The deposition of semiconducting and insulating thin films at low temperatures using microwave technology was explored. The method of plasma formations, selection of a power source, the design of the microwave plasma cavity, the microwave circuitry, impedance matching, plasma diagnostics, the deposition chamber and the vacuum system were studied.

  10. Semiconductor cooling by thin-film thermocouples

    NASA Technical Reports Server (NTRS)

    Tick, P. A.; Vilcans, J.

    1970-01-01

    Thin-film, metal alloy thermocouple junctions do not rectify, change circuit impedance only slightly, and require very little increase in space. Although they are less efficient cooling devices than semiconductor junctions, they may be applied to assist conventional cooling techniques for electronic devices.

  11. Refracting boundaries in thin film glass lightguides

    NASA Astrophysics Data System (ADS)

    Turner, A. F.; Browning, S. D.

    1980-02-01

    The paper describes experimental studies of refraction at a straightline boundary between evaporated glass lightguides and evaporated thin film overlays of SbO3 with index 2.10. Attention is given to sample preparation, measurement procedures, and computations. It is noted that Snell's law gives the total change of mode indices on each side of the boundary are used.

  12. US Polycrystalline Thin Film Solar Cells Program

    NASA Astrophysics Data System (ADS)

    Ullal, Harin S.; Zweibel, Kenneth; Mitchell, Richard L.

    1989-11-01

    The Polycrystalline Thin Film Solar Cells Program, part of the United States National Photovoltaic Program, performs R and D on copper indium diselenide and cadmium telluride thin films. The objective of the program is to support research to develop cells and modules that meet the U.S. Department of Energy's long-term goals by achieving high efficiencies (15 to 20 percent), low-cost ($50/m(sup 2)), and long-time reliability (30 years). The importance of work in this area is due to the fact that the polycrystalline thin-film CuInSe2 and CdTe solar cells and modules have made rapid advances. They have become the leading thin films for PV in terms of efficiency and stability. The U.S. Department of Energy has increased its funding through an initiative through the Solar Energy Research Institute in CuInSe2 and CdTe with subcontracts to start in spring 1990.

  13. Thin film hydrous metal oxide catalysts

    DOEpatents

    Dosch, Robert G.; Stephens, Howard P.

    1995-01-01

    Thin film (<100 nm) hydrous metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  14. Flexoelectricity in barium strontium titanate thin film

    SciTech Connect

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning; Shu, Longlong; Maria, Jon-Paul

    2014-10-06

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  15. UV absorption control of thin film growth

    DOEpatents

    Biefeld, Robert M.; Hebner, Gregory A.; Killeen, Kevin P.; Zuhoski, Steven P.

    1991-01-01

    A system for monitoring and controlling the rate of growth of thin films in an atmosphere of reactant gases measures the UV absorbance of the atmosphere and calculates the partial pressure of the gases. The flow of reactant gases is controlled in response to the partial pressure.

  16. Thin-Film Solid Oxide Fuel Cells

    NASA Technical Reports Server (NTRS)

    Chen, Xin; Wu, Nai-Juan; Ignatiev, Alex

    2009-01-01

    The development of thin-film solid oxide fuel cells (TFSOFCs) and a method of fabricating them have progressed to the prototype stage. This can result in the reduction of mass, volume, and the cost of materials for a given power level.

  17. Rechargeable Thin-film Lithium Batteries

    DOE R&D Accomplishments Database

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, Xiaohua

    1993-08-01

    Rechargeable thin film batteries consisting of lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have recently been developed. The batteries, which are typically less than 6 {mu}m thick, can be fabricated to any specified size, large or small, onto a variety of substrates including ceramics, semiconductors, and plastics. The cells that have been investigated include Li TiS{sub 2}, Li V{sub 2}O{sub 5}, and Li Li{sub x}Mn{sub 2}O{sub 4}, with open circuit voltages at full charge of about 2.5, 3.6, and 4.2, respectively. The development of these batteries would not have been possible without the discovery of a new thin film lithium electrolyte, lithium phosphorus oxynitride, that is stable in contact with metallic lithium at these potentials. Deposited by rf magnetron sputtering of Li{sub 3}PO{sub 4} in N{sub 2}, this material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25{degrees}C of 2 {mu}S/cm. The maximum practical current density obtained from the thin film cells is limited to about 100 {mu}A/cm{sup 2} due to a low diffusivity of Li{sup +} ions in the cathodes. In this work, the authors present a short review of their work on rechargeable thin film lithium batteries.

  18. Growth induced magnetic anisotropy in crystalline and amorphous thin films

    SciTech Connect

    Hellman, F.

    1998-07-20

    The work in the past 6 months has involved three areas of magnetic thin films: (1) amorphous rare earth-transition metal alloys, (2) epitaxial Co-Pt and Ni-Pt alloy thin films, and (3) collaborative work on heat capacity measurements of magnetic thin films, including nanoparticles and CMR materials. A brief summary of work done in each area is given.

  19. Deuterium storage in nanocrystalline magnesium thin films

    NASA Astrophysics Data System (ADS)

    Checchetto, R.; Bazzanella, N.; Miotello, A.; Brusa, R. S.; Zecca, A.; Mengucci, A.

    2004-02-01

    Nanocrystalline magnesium deuteride thin films with the β-MgD2 structure were prepared by vacuum evaporation of hexagonal magnesium (h-Mg) samples and thermal annealing in 0.15 MPa D2 atmosphere at 373 K. Thermal desorption spectroscopy analysis indicated that the rate-limiting step in the deuterium desorption was given by the thermal decomposition of the deuteride phase. The activation energy Δg of the β-MgD2→h-Mg+D2 reaction scaled from 1.13±0.03 eV in 650-nm-thick films to 1.01±0.02 eV in 75-nm-thick films most likely as consequence of different stress and defect level. Positron annihilation spectroscopy analysis of the thin-film samples submitted to deuterium absorption and desorption cycles reveal the presence of a high concentration of void-like defects in the h-Mg layers after the very first decomposition of the β-MgD2 phase, the presence of these open volume defects reduces the D2 absorption capacity of the h-Mg thin film.

  20. Surface photovoltage spectroscopy of thin films

    NASA Astrophysics Data System (ADS)

    Leibovitch, M.; Kronik, L.; Fefer, E.; Burstein, L.; Korobov, V.; Shapira, Yoram

    1996-06-01

    The surface photovoltage (SPV) spectrum due to subband-gap illumination of thin films is theoretically studied. It is shown that this SPV is inherently sensitive to buried interfaces just as it is sensitive to the external semiconductor surface. The different contributions to the SPV from all the optically active gap states present within a sample, consisting of a bulk substrate covered by a thin film, are analyzed. Analytical expressions are obtained in the low illumination intensity and the depletion approximation regime. The evolution of the SPV spectrum with film thickness is examined and is found to depend on both site and population of the gap states. Three modes of evolution are found, according to the relative importance of gap state population changes with film thickness. These modes are confirmed by a numerical simulation of a thin film of pseudomorphic InAlAs on InP substrates and by experiments conducted on the same system. The approach is also applied to the InP/In2O3 system, revealing gap state formation, followed by filling with electrons, thereby explaining previous observations of nearly ideal I-V behavior at this junction.

  1. MISSE 5 Thin Films Space Exposure Experiment

    NASA Technical Reports Server (NTRS)

    Harvey, Gale A.; Kinard, William H.; Jones, James L.

    2007-01-01

    The Materials International Space Station Experiment (MISSE) is a set of space exposure experiments using the International Space Station (ISS) as the flight platform. MISSE 5 is a co-operative endeavor by NASA-LaRC, United Stated Naval Academy, Naval Center for Space Technology (NCST), NASA-GRC, NASA-MSFC, Boeing, AZ Technology, MURE, and Team Cooperative. The primary experiment is performance measurement and monitoring of high performance solar cells for U.S. Navy research and development. A secondary experiment is the telemetry of this data to ground stations. A third experiment is the measurement of low-Earth-orbit (LEO) low-Sun-exposure space effects on thin film materials. Thin films can provide extremely efficacious thermal control, designation, and propulsion functions in space to name a few applications. Solar ultraviolet radiation and atomic oxygen are major degradation mechanisms in LEO. This paper is an engineering report of the MISSE 5 thm films 13 months space exposure experiment.

  2. Hematite thin films: growth and characterization

    NASA Astrophysics Data System (ADS)

    Uribe, J. D.; Osorio, J.; Barrero, C. A.; Giratá, D.; Morales, A. L.; Devia, A.; Gómez, M. E.; Ramirez, J. G.; Gancedo, J. R.

    2006-04-01

    We have grown hematite (α Fe 2 O 3) thin films on stainless steel and (001)-silicon single-crystal substrates by RF magnetron sputtering process in argon atmosphere at substrate temperatures from 400 to 800°C. Conversion Electron Mössbauer (CEM) spectra of the sample grown on stainless steel at 400°C exhibit values for hyperfine parameter characteristic of bulk hematite phase in the weak ferromagnetic state. Also, the relative line intensity ratio suggests that the magnetization vector of the polycrystalline film is aligned preferentially parallel to the surface. The X-ray diffraction (XRD) pattern of the polycrystalline thin film grown on steel substrates also corresponds to α Fe 2 O 3. The samples were also analyzed by Atomic Force Microscopy (AFM), those grown on stainless steel reveal a morphology consisting of columnar grains with random orientation, given the inhomogeneity of the substrate surface.

  3. Hematite thin films: growth and characterization

    NASA Astrophysics Data System (ADS)

    Uribe, J. D.; Osorio, J.; Barrero, C. A.; Giratá, D.; Morales, A. L.; Devia, A.; Gómez, M. E.; Ramirez, J. G.; Gancedo, J. R.

    We have grown hematite (α - Fe 2 O 3) thin films on stainless steel and (001)-silicon single-crystal substrates by RF magnetron sputtering process in argon atmosphere at substrate temperatures from 400 to 800°C. Conversion Electron Mössbauer (CEM) spectra of the sample grown on stainless steel at 400°C exhibit values for hyperfine parameter characteristic of bulk hematite phase in the weak ferromagnetic state. Also, the relative line intensity ratio suggests that the magnetization vector of the polycrystalline film is aligned preferentially parallel to the surface. The X-ray diffraction (XRD) pattern of the polycrystalline thin film grown on steel substrates also corresponds to α - Fe 2O3. The samples were also analyzed by Atomic Force Microscopy (AFM), those grown on stainless steel reveal a morphology consisting of columnar grains with random orientation, given the inhomogeneity of the substrate surface.

  4. A magnetron sputtering system for the preparation of patterned thin films and in situ thin film electrical resistance measurements

    SciTech Connect

    Arnalds, U. B.; Agustsson, J. S.; Ingason, A. S.; Eriksson, A. K.; Gylfason, K. B.; Gudmundsson, J. T.; Olafsson, S.

    2007-10-15

    We describe a versatile three gun magnetron sputtering system with a custom made sample holder for in situ electrical resistance measurements, both during film growth and ambient changes on film electrical properties. The sample holder allows for the preparation of patterned thin film structures, using up to five different shadow masks without breaking vacuum. We show how the system is used to monitor the electrical resistance of thin metallic films during growth and to study the thermodynamics of hydrogen uptake in metallic thin films. Furthermore, we demonstrate the growth of thin film capacitors, where patterned films are created using shadow masks.

  5. A magnetron sputtering system for the preparation of patterned thin films and in situ thin film electrical resistance measurements.

    PubMed

    Arnalds, U B; Agustsson, J S; Ingason, A S; Eriksson, A K; Gylfason, K B; Gudmundsson, J T; Olafsson, S

    2007-10-01

    We describe a versatile three gun magnetron sputtering system with a custom made sample holder for in situ electrical resistance measurements, both during film growth and ambient changes on film electrical properties. The sample holder allows for the preparation of patterned thin film structures, using up to five different shadow masks without breaking vacuum. We show how the system is used to monitor the electrical resistance of thin metallic films during growth and to study the thermodynamics of hydrogen uptake in metallic thin films. Furthermore, we demonstrate the growth of thin film capacitors, where patterned films are created using shadow masks. PMID:17979429

  6. Thin blend films of cellulose and polyacrylonitrile

    NASA Astrophysics Data System (ADS)

    Lu, Rui; Zhang, Xin; Mao, Yimin; Briber, Robert; Wang, Howard

    Cellulose is the most abundant renewable, biocompatible and biodegradable natural polymer. Cellulose exhibits excellent chemical and mechanical stability, which makes it useful for applications such as construction, filtration, bio-scaffolding and packaging. To further expand the potential applications of cellulose materials, their alloying with synthetic polymers has been investigated. In this study, thin films of cotton linter cellulose (CLC) and polyacrylonitrile (PAN) blends with various compositions spanning the entire range from neat CLC to neat PAN were spun cast on silicon wafers from common solutions in dimethyl sulfoxide / ionic liquid mixtures. The morphologies of thin films were characterized using optical microscopy, atomic force microscopy, scanning electron microscopy and X-ray reflectivity. Morphologies of as-cast films are highly sensitive to the film preparation conditions; they vary from featureless smooth films to self-organized ordered nano-patterns to hierarchical structures spanning over multiple length scales from nanometers to tens of microns. By selectively removing the PAN-rich phase, the structures of blend films were studied to gain insights in their very high stability in hot water, acid and salt solutions.

  7. Electrochromism in oxyfluoride thin films

    SciTech Connect

    Azens, A.; Gutarra, A.; Stjerna, B.; Granqvist, C.G.; Gabrusenoks, J.; Lusis, A.

    1994-12-31

    Oxyfluoride films based on W and Ti were prepared by reactive sputtering in plasmas containing O{sub 2} + CF{sub 4}. The deposition rate was large, particularly when chemical sputtering was promoted by heating the target. The films could show large charge insertion/extraction, high coloration efficiency, and good cycling durability. Electrochromic devices have several potential and practical applications in contemporary technology. Among the foremost of these one notes smart windows with variable throughput of radiant energy, anti-dazzling rear-view mirrors for cars and trucks, elements for non-emissive information display, and surfaces for variable thermal emittance. Smart windows technology, that is presently emerging, may have a pervasive and benign influence on building design and management.

  8. Borides in Thin Film Technology

    NASA Astrophysics Data System (ADS)

    Mitterer, Christian

    1997-10-01

    The borides of transition and rare-earth metals are considered for application as wear- and corrosion-resistant, decorative or thermionic coatings. After a review of physical vapor deposition (PVD) techniques used for the deposition of these coatings, a survey of investigations to apply these coatings is given. As a result of the strong directionality of covalent boron-boron bonds, boride coatings show an increasing tendency to amorphous film growth with increasing B/Meatomic ratio and, for rare-earth hexaborides, with decreasing metallic radius of the rare-earth metal. Mechanical and optical properties are strongly influenced by the crystallographic structure of the boride phase. Because of their high hardness combined with good adhesion, crystalline films based on the diborides of transition metals seem to be promising candidates for wear resistant coatings on cutting tools. Alloying of these films with nitrogen by reactive PVD processes results in the formation of extremely fine-grained multiphase hard coatings with excellent tribological and corrosion behavior, thus offering new applications in the coating of engineering components. Because of their distinct colorations, some of the hexaborides of rare-earth elements may be used as decorative coatings on consumer products like wristwatch casings or eyeglass frames. Another promising field is the development of thermionic coatings based on rare-earth hexaborides, which may offer the possibility of the production of inexpensive and simple high emission filaments.

  9. Thin film bismuth iron oxides useful for piezoelectric devices

    DOEpatents

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  10. Thin film phase transition materials development program

    NASA Astrophysics Data System (ADS)

    Case, W. E.

    1985-04-01

    A number of application concepts have emerged based on the idea that a phase transition thin film such as vanadium dioxide provides a high resolution, two-dimensional format for switching, recording, and processing optical signals. These applications range from high density optical disk recording systems and optical data processing to laser protection devices, infrared FLIRS and seekers, laser radar systems and IR scene simulators. All application candidates have a potential for providing either a totally new capability, an improved performance, a lower cost, or combinations of the three. Probably of greatest significance is the emergence of agile sensor concepts arising out of some of the film's special properties. These are represented by the above FLIRs, seekers and laser radar systems. A three year research program has been completed to advance the state-of-the-art in the preparation and characterization of selected thin film phase transition materials. The objectives of the program were: (1) to expand the data base and improve operational characteristics of Vought prepared vanadium dioxide thin films, (2) to evolve process chemistry and subsequently characterize several new program materials, including rare-earth chalcogenides, organic semiconductor charge complexes, alloys of transition metal oxides, and metal-insulator cermets, and (3) to spin-off new applications and concepts.

  11. Polycrystalline thin film materials and devices

    SciTech Connect

    Baron, B.N.; Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Hegedus, S.S.; McCandless, B.E. . Inst. of Energy Conversion)

    1992-10-01

    Results of Phase II of a research program on polycrystalline thin film heterojunction solar cells are presented. Relations between processing, materials properties and device performance were studied. The analysis of these solar cells explains how minority carrier recombination at the interface and at grain boundaries can be reduced by doping of windows and absorber layers, such as in high efficiency CdTe and CuInSe{sub 2} based solar cells. The additional geometric dimension introduced by the polycrystallinity must be taken into consideration. The solar cells are limited by the diode current, caused by recombination in the space charge region. J-V characteristics of CuInSe{sub 2}/(CdZn)S cells were analyzed. Current-voltage and spectral response measurements were also made on high efficiency CdTe/CdS thin film solar cells prepared by vacuum evaporation. Cu-In bilayers were reacted with Se and H{sub 2}Se gas to form CuInSe{sub 2} films; the reaction pathways and the precursor were studied. Several approaches to fabrication of these thin film solar cells in a superstrate configuration were explored. A self-consistent picture of the effects of processing on the evolution of CdTe cells was developed.

  12. Thin-film cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    Chu, T. L.

    1987-10-01

    Cadmium telluride, with a room-temperature band-gap energy of 1.5 eV, is a promising thin-film photovoltaic material. The major objective of this research has been to demonstrate thin-film CdTe heterojunction solar cells with a total area greater than 1 sq cm and photovoltaic efficiencies of 13 percent or more. Thin-film p-CdTe/CdS/SnO2:F/glass solar cells with an AM1.5 efficiency of 10.5 percent have been reported previously. This report contains results of work done on: (1) the deposition, resistivity control, and characterization of p-CdTe films by the close-spaced sublimation process; (2) the deposition of large-band-gap window materials; (3) the electrical properties of CdS/CdTe heterojunctions; (4) the formation of stable, reproducible, ohmic contacts (such as p-HgTe) to p-CdTe; and (5) the preparation and evaluation of heterojunction solar cells.

  13. Thin-film cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    1986-09-01

    This is the final technical progress report of a research program entitled Thin-Film Cadmium Telluride Solar Cells. The major objective was to demonstrate chemical vapor deposition (CVD)-grown CdTe devices with a photovoltaic efficiency of at least 10%. The work included: (1) CVD and characterization of p-CdTe films of controlled resistivity; (2) deposition and characterization of heterojunction partners; (3) surface passivation of CdTe; and (4) preparation and characterization of thin-film solar cells. The CVD of p-CdTe was optimized with emphasis on resistivity control through nonstoichiometry and extrinsic doping. Both carbon and oxygen were identified as acceptors. The use of thermal oxidation for surface passivation of CdTe was investigated using capacitance-voltage measurement. Device-quality thermal oxide can be prepared by hydrogen annealing of CdTe before oxidation. Deposition and characterization of CdS, CdO, and ZnO:In were also carried out. The best thin-film cell to date had a conversion efficiency near 9%.

  14. Deformation behavior of metallic glass thin films

    NASA Astrophysics Data System (ADS)

    Liu, Y. H.; Zhao, F.; Li, Y. L.; Chen, M. W.

    2012-09-01

    We report room-temperature deformation behavior of damage-free metallic glass films characterized by nanoindentation and atomic force microscopy. The glass films with thicknesses ranging from 5 μm down to ˜60 nm plastically deform by shear bands when subjected to both spherical and sharp Berkovich indenters. Importantly, we found that gallium contamination from focus ion beam (FIB) milling significantly suppresses shear band formation, indicating that the absence of shear bands in FIB milled samples may be caused by gallium irradiation damage, rather than sample size effect. Finite element simulation reveals that a high stress gradient at the film/substrate interface promotes the plastic deformation of the thin films but does not give rise to significant strain inhomogeneity.

  15. Dynamics of polymer thin films and surfaces

    NASA Astrophysics Data System (ADS)

    Fakhraai, Zahra

    2007-12-01

    The dynamics of thin polymer films display many differences from the bulk dynamics. Different modes of motions in polymers are affected by confinement in different ways. The enhancement in the dynamics of some modes of motion can cause anomalies in the glass transition temperature (Tg) of thin films, while other modes of motion such as diffusion can be substantially slowed down due to the confinement effects. In this thesis, different modes of dynamics are probed using different techniques. The interface healing of two identical polymer surfaces is used as a probe of segmental motion in the direction normal to the plane of the films and it is shown that this mode of motion is slowed down at temperatures above bulk glass transition, while the glass transition itself is decreased indicating that the type of motion responsible for the glass transition is enhanced. The glass transition measurements at different cooling rates indicate that this enhancement only happens at temperatures close to or below bulk glass transition temperature and it is not expected to be detected at higher temperatures where the system is in the melt state. It is shown that the sample preparation technique is not a factor in observing this enhanced dynamics, while the existence of the free surface can be important in observed reductions in the glass transition temperature. The dynamics near the free surface is further studied using a novel nano-deformation technique, and it is shown that the dynamics near the free surface is in fact enhanced compared to the bulk dynamics and this enhancement is increased as the temperature is decreased further below Tg. It is also shown that this mode of relaxation is much different from the bulk modes of relaxations, and a direct relationship between this enhanced motion and Tg reduction in thin films can be established. The results presented in this thesis can lead to a possible universal picture that can resolve the behavior of different modes of motions in

  16. Thin Film...Large Payoff

    NASA Technical Reports Server (NTRS)

    1998-01-01

    SRS Technologies is currently the only company licensed by Langley Research Center to produce colorless polyimides. They currently produce two polyimides, the LaRC-CP1 and LaRC-CP2 developed by Langley Research Center. These polyimides offer many advantages over other commercially available materials including excellent thermal stability, radiation resistance, solubility, and transparency. The SRS polyimides can be used in laminates, films, molded parts, and stock shapes. The polyimide technology has also helped the company further their development of solar arrays.

  17. Temperature dependence of LRE-HRE-TM thin films

    NASA Astrophysics Data System (ADS)

    Li, Zuoyi; Cheng, Xiaomin; Lin, Gengqi; Li, Zhen; Huang, Zhixin; Jin, Fang; Wang, Xianran; Yang, Xiaofei

    2003-04-01

    Temperature dependence of the properties of RE-TM thin films is very important for MO recording. In this paper, we studied the temperature dependence of the magnetic and magneto-optical properties of the amorphous LRE-HRE-TM single layer thin films and LRE-HRE-TM/HRE-TM couple-bilayered thin films. For LRE-HRE-TM single layer thin films, the temperature dependence of the magnetization was investigated by using the mean field theory. The experimental and theoretical results matched very well. With the LRE substitution in HRE-TM thin film, the compensation temperature Tcomp decreased and the curie temperature Tc remained unchanged. Kerr rotation angle became larger and the saturation magnetization Ms at room temperature increased. For LRE-HRE-TM/HRE-TM couple-bilayered thin films, comparisons of the temperature dependences of the coercivities and Kerr rotation angles were made between isolated sublayers and couple-bilayered thin film.

  18. Thermal conductivities of thin, sputtered optical films

    SciTech Connect

    Henager, C.H. Jr.; Pawlewicz, W.T.

    1991-05-01

    The normal component of the thin film thermal conductivity has been measured for the first time for several advanced sputtered optical materials. Included are data for single layers of boron nitride (BN), aluminum nitride (AIN), silicon aluminum nitride (Si-Al-N), silicon aluminum oxynitride (Si-Al-O-N), silicon carbide (SiC), and for dielectric-enhanced metal reflectors of the form Al(SiO{sub 2}/Si{sub 3}N{sub 4}){sup n} and Al(Al{sub 2}O{sub 3}/AIN){sup n}. Sputtered films of more conventional materials like SiO{sub 2}, Al{sub 2}O{sub 3}, Ta{sub 2}O{sub 5}, Ti, and Si have also been measured. The data show that thin film thermal conductivities are typically 10 to 100 times lower than conductivities for the same materials in bulk form. Structural disorder in the amorphous or very fine-grained films appears to account for most of the conductivity difference. Conclusive evidence for a film/substrate interface contribution is presented.

  19. Electrohydrodynamic instabilities in thin liquid trilayer films

    SciTech Connect

    Roberts, Scott A.; Kumar, Satish

    2010-12-09

    Experiments by Dickey and Leach show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DC field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.

  20. Electrohydrodynamic instabilities in thin liquid trilayer films

    DOE PAGESBeta

    Roberts, Scott A.; Kumar, Satish

    2010-12-09

    Experiments by Dickey and Leach show that novel pillar shapes can be generated from electrohydrodynamic instabilities at the interfaces of thin polymer/polymer/air trilayer films. In this paper, we use linear stability analysis to investigate the effect of free charge and ac electric fields on the stability of trilayer systems. Our work is also motivated by our recent theoretical study which demonstrates how ac electric fields can be used to increase control over the pillar formation process in thin liquid bilayer films. For perfect dielectric films, the effect of an AC electric field can be understood by considering an equivalent DCmore » field. Leaky dielectric films yield pillar configurations that are drastically different from perfect dielectric films, and AC fields can be used to control the location of free charge within the trilayer system. This can alter the pillar instability modes and generate smaller diameter pillars when conductivities are mismatched. The results presented may be of interest for the creation of complex topographical patterns on polymer coatings and in microelectronics.« less

  1. Nonlinear viscoelastic characterization of thin polyethylene film

    NASA Technical Reports Server (NTRS)

    Wilbeck, J. S.

    1981-01-01

    In order to understand the state of stress and strain in a typical balloon fabricated from thin polyethylene film, experiment data in the literature reviewed. It was determined that the film behaves as a nonlinear viscoelasticity material and should be characterized accordingly. A simple uniaxial, nonlinear viscoelastic model was developed for predicting stress given a certain strain history. The simple model showed good qualitative agreement with results of constant rate, uniaxial accurately predicting stresses for cyclic strain histories typical of balloon flights. A program was outlined which will result in the development of a more complex nonlinear viscoelastic model.

  2. Electrochromism in copper oxide thin films

    SciTech Connect

    Richardson, T.J.; Slack, J.L.; Rubin, M.D.

    2000-08-15

    Transparent thin films of copper(I) oxide prepared on conductive SnO2:F glass substrates by anodic oxidation of sputtered copper films or by direct electrodeposition of Cu2O transformed reversibly to opaque metallic copper films when reduced in alkaline electrolyte. In addition, the same Cu2O films transform reversibly to black copper(II) oxide when cycled at more anodic potentials. Copper oxide-to-copper switching covered a large dynamic range, from 85% and 10% photopic transmittance, with a coloration efficiency of about 32 cm2/C. Gradual deterioration of the switching range occurred over 20 to 100 cycles. This is tentatively ascribed to coarsening of the film and contact degradation caused by the 65% volume change on conversion of Cu to Cu2O. Switching between the two copper oxides (which have similar volumes) was more stable and more efficient (CE = 60 cm2/C), but covered a smaller transmittance range (60% to 44% T). Due to their large electrochemical storage capacity and tolerance for alkaline electrolytes, these cathodically coloring films may be useful as counter electrodes for anodically coloring electrode films such as nickel oxide or metal hydrides.

  3. Thin film cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    Chu, T. L.; Chu, Shirley S.; Ang, S. T.; Mantravadi, M. K.

    1987-08-01

    Thin-film p-CdTe/CdS/SnO2:F/glass solar cells of the inverted configuration were prepared by the deposition of p-type CdTe films onto CdS/SnO2:F/glass substrates using CVD or close-spaced sublimation (CSS) techniques based on the procedures of Chu et al. (1983) and Nicholl (1963), respectively. The deposition rates of p-CdTe films deposited by CSS were higher than those deposited by the CVD technique (4-5 min were sufficient), and the efficiencies higher than 10 percent were obtained. However, the resistivity of films prepared by CSS was not as readily controlled as that of the CVD films. The simplest technique to reduce the resistivity of the CSS p-CdTe films was to incorporate a dopant, such as As or Sb, into the reaction mixture during the preparation of the source material. The films with resistivities in the range of 500-1000 ohm cm were deposited in this manner.

  4. Nitrogen doped zinc oxide thin film

    SciTech Connect

    Li, Sonny X.

    2003-12-15

    To summarize, polycrystalline ZnO thin films were grown by reactive sputtering. Nitrogen was introduced into the films by reactive sputtering in an NO{sub 2} plasma or by N{sup +} implantation. All ZnO films grown show n-type conductivity. In unintentionally doped ZnO films, the n-type conductivities are attributed to Zn{sub i}, a native shallow donor. In NO{sub 2}-grown ZnO films, the n-type conductivity is attributed to (N{sub 2}){sub O}, a shallow double donor. In NO{sub 2}-grown ZnO films, 0.3 atomic % nitrogen was found to exist in the form of N{sub 2}O and N{sub 2}. Upon annealing, N{sub 2}O decomposes into N{sub 2} and O{sub 2}. In furnace-annealed samples N{sub 2} redistributes diffusively and forms gaseous N{sub 2} bubbles in the films. Unintentionally doped ZnO films were grown at different oxygen partial pressures. Zni was found to form even at oxygen-rich condition and led to n-type conductivity. N{sup +} implantation into unintentionally doped ZnO film deteriorates the crystallinity and optical properties and leads to higher electron concentration. The free electrons in the implanted films are attributed to the defects introduced by implantation and formation of (N{sub 2}){sub O} and Zni. Although today there is still no reliable means to produce good quality, stable p-type ZnO material, ZnO remains an attractive material with potential for high performance short wavelength optoelectronic devices. One may argue that gallium nitride was in a similar situation a decade ago. Although we did not obtain any p-type conductivity, we hope our research will provide a valuable reference to the literature.

  5. Study of microstructure and electroluminescence of zinc sulfide thin film

    NASA Astrophysics Data System (ADS)

    Zhao-hong, Liu; Yu-jiang, Wang; Mou-zhi, Chen; Zhen-xiang, Chen; Shu-nong, Sun; Mei-chun, Huang

    1998-03-01

    The electroluminscent zinc sulfide thin film doped with erbium, fabricated by thermal evaporation with two boats, are examined. The surface and internal electronic states of ZnS thin film are measured by means of x-ray diffraction and x-ray photoemission spectroscopy. The information on the relations between electroluminescent characteristics and internal electronic states of the film is obtained. And the effects of the microstructure of thin film doped with rare earth erbium on electroluminescence are discussed as well.

  6. Domain switching of fatigued ferroelectric thin films

    SciTech Connect

    Tak Lim, Yun; Yeog Son, Jong E-mail: hoponpop@ulsan.ac.kr; Shin, Young-Han E-mail: hoponpop@ulsan.ac.kr

    2014-05-12

    We investigate the domain wall speed of a ferroelectric PbZr{sub 0.48}Ti{sub 0.52}O{sub 3} (PZT) thin film using an atomic force microscope incorporated with a mercury-probe system to control the degree of electrical fatigue. The depolarization field in the PZT thin film decreases with increasing the degree of electrical fatigue. We find that the wide-range activation field previously reported in ferroelectric domains result from the change of the depolarization field caused by the electrical fatigue. Domain wall speed exhibits universal behavior to the effective electric field (defined by an applied electric field minus the depolarization field), regardless of the degree of the electrical fatigue.

  7. Techniques for Connecting Superconducting Thin Films

    NASA Technical Reports Server (NTRS)

    Mester, John; Gwo, Dz-Hung

    2006-01-01

    Several improved techniques for connecting superconducting thin films on substrates have been developed. The techniques afford some versatility for tailoring the electronic and mechanical characteristics of junctions between superconductors in experimental electronic devices. The techniques are particularly useful for making superconducting or alternatively normally conductive junctions (e.g., Josephson junctions) between patterned superconducting thin films in order to exploit electron quantum-tunneling effects. The techniques are applicable to both low-Tc and high-Tc superconductors (where Tc represents the superconducting- transition temperature of a given material), offering different advantages for each. Most low-Tc superconductors are metallic, and heretofore, connections among them have been made by spot welding. Most high-Tc superconductors are nonmetallic and cannot be spot welded. These techniques offer alternatives to spot welding of most low-Tc superconductors and additional solutions to problems of connecting most high-Tc superconductors.

  8. Polycrystalline thin films FY 1992 project report

    SciTech Connect

    Zweibel, K.

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting next-generation'' options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called government/industry partnerships'') that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  9. Nanoporous piezo- and ferroelectric thin films.

    PubMed

    Ferreira, Paula; Hou, Ru Z; Wu, Aiying; Willinger, Marc-Georg; Vilarinho, Paula M; Mosa, Jadra; Laberty-Robert, Christel; Boissière, Cédric; Grosso, David; Sanchez, Clément

    2012-02-01

    Nanoporous barium titanate and lead titanate thin films (∼100 nm calculated from ellipsometric data) are prepared starting from sol-gel solutions modified with a commercially available block-copolymer and evaporation-induced self-assembly methodology. The tuning of the thermal treatment followed by in situ ellipsometry allows the decomposition of the organic components and of the structuring agent leading to the formation of porous tetragonal crystalline perovskite structures as observed by XRD, HRTEM, SEM, and ellipsoporosimetry. Both nanoporous barium titanate and lead titanate thin films present local piezoelectric and ferroelectric behavior measured by piezoresponse force microscopy (PFM), being promising platforms for the preparation of the generation of new multifunctional systems. PMID:22206407

  10. Thin film strain gage development program

    NASA Technical Reports Server (NTRS)

    Grant, H. P.; Przybyszewski, J. S.; Anderson, W. L.; Claing, R. G.

    1983-01-01

    Sputtered thin-film dynamic strain gages of 2 millimeter (0.08 in) gage length and 10 micrometer (0.0004 in) thickness were fabricated on turbojet engine blades and tested in a simulated compressor environment. Four designs were developed, two for service to 600 K (600 F) and two for service to 900 K (1200 F). The program included a detailed study of guidelines for formulating strain-gage alloys to achieve superior dynamic and static gage performance. The tests included gage factor, fatigue, temperature cycling, spin to 100,000 G, and erosion. Since the installations are 30 times thinner than conventional wire strain gage installations, and any alteration of the aerodynamic, thermal, or structural performance of the blade is correspondingly reduced, dynamic strain measurement accuracy higher than that attained with conventional gages is expected. The low profile and good adherence of the thin film elements is expected to result in improved durability over conventional gage elements in engine tests.

  11. Multiferroic oxide thin films and heterostructures

    SciTech Connect

    Lu, Chengliang E-mail: Tao.Wu@kaust.edu.sa; Hu, Weijin; Wu, Tom E-mail: Tao.Wu@kaust.edu.sa; Tian, Yufeng

    2015-06-15

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  12. Polycrystalline thin films FY 1992 project report

    SciTech Connect

    Zweibel, K.

    1993-01-01

    This report summarizes the activities and results of the Polycrystalline Thin Film Project during FY 1992. The purpose of the DOE/NREL PV (photovoltaic) Program is to facilitate the development of PV that can be used on a large enough scale to produce a significant amount of energy in the US and worldwide. The PV technologies under the Polycrystalline Thin Film project are among the most exciting ``next-generation`` options for achieving this goal. Over the last 15 years, cell-level progress has been steady, with laboratory cell efficiencies reaching levels of 15 to 16%. This progress, combined with potentially inexpensive manufacturing methods, has attracted significant commercial interest from US and international companies. The NREL/DOE program is designed to support the efforts of US companies through cost-shared subcontracts (called ``government/industry partnerships``) that we manage and fund and through collaborative technology development work among industry, universities, and our laboratory.

  13. Substrate heater for thin film deposition

    DOEpatents

    Foltyn, Steve R.

    1996-01-01

    A substrate heater for thin film deposition of metallic oxides upon a target substrate configured as a disk including means for supporting in a predetermined location a target substrate configured as a disk, means for rotating the target substrate within the support means, means for heating the target substrate within the support means, the heating means about the support means and including a pair of heating elements with one heater element situated on each side of the predetermined location for the target substrate, with one heater element defining an opening through which desired coating material can enter for thin film deposition and with the heating means including an opening slot through which the target substrate can be entered into the support means, and, optionally a means for thermal shielding of the heating means from surrounding environment is disclosed.

  14. Superconducting thin films on potassium tantalate substrates

    SciTech Connect

    Feenstra, R.; Boatner, L.A.

    1992-05-05

    This patent describes a composition for the lossless transmission of electrical current, it comprises: a superconducting thin film epitaxially deposited on a oriented surface of a single crystal KTa{sub 1{minus}z}Nb{sub 2}O{sub 3} substrate, where z is 0 to 1, wherein the superconducting thin film is selected from the group consisting of YBa{sub 2{minus}}Cu{sub 3}O{sub 7}, Y{sub 2}Ba{sub 4}Cu{sub 8}O{sub 20}, a compound wherein a trivalent rare earth element replaces yttrium in compound YBa{sub 2}Cu{sub 3}O{sub 7}, and a compound wherein scandium replaces yttrium in the compound YBa{sub 2}Cu{sub 3}O{sub 7}.

  15. Radiation effects on thin film solar cells

    SciTech Connect

    Gay, C.F.; Anspaugh, B.E.; Potter, R.R.; Tanner, D.P.

    1984-05-01

    A study has been undertaken to assess the effects of 1 MeV electron radiation on two types of thin film solar cells, thin-film silicon:hydrogen alloy (TFS) and copper indium diselenide (CIS). Using TFS devices with efficiencies between 8-9% AM 0 (9-10% AM 1.5), and CIS devices with efficiencies between 7-8% AM 0 (8-9% AM 1.5), the results show the devices are more stable to electron radiation than the typical crystalline silicon aerospace cells. In fact the CIS showed no degradation at all and with low temperature annealing the TFS could be restored to within 97% of initial power output.

  16. Generalized Ellipsometry on Ferromagnetic Sculptured Thin Films.

    NASA Astrophysics Data System (ADS)

    Schmidt, Daniel; Hofmann, Tino; Mok, Kah; Schmidt, Heidemarie; Skomski, Ralf; Schubert, Eva; Schubert, Mathias

    2011-03-01

    We present and discuss generalized ellipsometry and generalized vector-magneto-optic ellipsometry investigations on cobalt nanostructured thin films with slanted, highly-spatially coherent, columnar arrangement. The samples were prepared by glancing angle deposition. The thin films are highly transparent and reveal strong form-induced birefringence. We observe giant Kerr rotation in the visible spectral region, tunable by choice of the nanostructure geometry. Spatial magnetization orientation hysteresis and magnetization magnitude hysteresis properties are studied using a 3-dimensional Helmholtz coil arrangement allowing for arbitrary magnetic field direction at the sample position for field strengths up to 0.4 Tesla. Analysis of data obtained within this novel vector-magneto-optic setup reveals magnetization anisotropy of the Co slanted nanocolumns supported by mean-field theory modeling.

  17. Electrostatic Discharge Effects on Thin Film Resistors

    NASA Technical Reports Server (NTRS)

    Sampson, Michael J.; Hull, Scott M.

    1999-01-01

    Recently, open circuit failures of individual elements in thin film resistor networks have been attributed to electrostatic discharge (ESD) effects. This paper will discuss the investigation that came to this conclusion and subsequent experimentation intended to characterize design factors that affect the sensitivity of resistor elements to ESD. The ESD testing was performed using the standard human body model simulation. Some of the design elements to be evaluated were: trace width, trace length (and thus width to length ratio), specific resistivity of the trace (ohms per square) and resistance value. However, once the experiments were in progress, it was realized that the ESD sensitivity of most of the complex patterns under evaluation was determined by other design and process factors such as trace shape and termination pad spacing. This paper includes pictorial examples of representative ESD failure sites, and provides some options for designing thin film resistors that are ESD resistant. The risks of ESD damage are assessed and handling precautions suggested.

  18. Thin film photovoltaic panel and method

    DOEpatents

    Ackerman, Bruce; Albright, Scot P.; Jordan, John F.

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  19. Silver nanowire composite thin films as transparent electrodes for Cu(In,Ga)Se₂/ZnS thin film solar cells.

    PubMed

    Tan, Xiao-Hui; Chen, Yu; Liu, Ye-Xiang

    2014-05-20

    Solution processed silver nanowire indium-tin oxide nanoparticle (AgNW-ITONP) composite thin films were successfully applied as the transparent electrodes for Cu(In,Ga)Se₂ (CIGS) thin film solar cells with ZnS buffer layers. Properties of the AgNW-ITONP thin film and its effects on performance of CIGS/ZnS thin film solar cells were studied. Compared with the traditional sputtered ITO electrodes, the AgNW-ITONP thin films show comparable optical transmittance and electrical conductivity. Furthermore, the AgNW-ITONP thin film causes no physical damage to the adjacent surface layer and does not need high temperature annealing, which makes it very suitable to use as transparent conductive layers for heat or sputtering damage-sensitive optoelectronic devices. By using AgNW-ITONP electrodes, the required thickness of the ZnS buffer layers for CIGS thin film solar cells was greatly decreased. PMID:24922214

  20. Thin-film optical shutter. Final report

    SciTech Connect

    Matlow, S.L.

    1981-02-01

    A specific embodiment of macroconjugated macromolecules, the poly (p-phenylene)'s, has been chosen as the one most likely to meet all of the requirements of the Thin Film Optical Shutter project (TFOS). The reason for this choice is included. In order to be able to make meaningful calculations of the thermodynamic and optical properties of the poly (p-phenylene)'s a new quantum mechanical method was developed - Equilibrium Bond Length (EBL) Theory. Some results of EBL Theory are included.

  1. Large-area thin-film modules

    NASA Technical Reports Server (NTRS)

    Tyan, Y. S.; Perez-Albuerne, E. A.

    1985-01-01

    The low cost potential of thin film solar cells can only be fully realized if large area modules can be made economically with good production yields. This paper deals with two of the critical challenges. A scheme is presented which allows the simple, economical realization of the long recognized, preferred module structure of monolithic integration. Another scheme reduces the impact of shorting defects and, as a result, increases the production yields. Analytical results demonstrating the utilization and advantages of such schemes are discussed.

  2. Packaging material for thin film lithium batteries

    DOEpatents

    Bates, John B.; Dudney, Nancy J.; Weatherspoon, Kim A.

    1996-01-01

    A thin film battery including components which are capable of reacting upon exposure to air and water vapor incorporates a packaging system which provides a barrier against the penetration of air and water vapor. The packaging system includes a protective sheath overlying and coating the battery components and can be comprised of an overlayer including metal, ceramic, a ceramic-metal combination, a parylene-metal combination, a parylene-ceramic combination or a parylene-metal-ceramic combination.

  3. Structures for dense, crack free thin films

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; De Jonghe, Lutgard C.

    2011-03-08

    The process described herein provides a simple and cost effective method for making crack free, high density thin ceramic film. The steps involve depositing a layer of a ceramic material on a porous or dense substrate. The deposited layer is compacted and then the resultant laminate is sintered to achieve a higher density than would have been possible without the pre-firing compaction step.

  4. Thin Film Sensors for Surface Measurements

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.; Wrbanek, John D.; Fralick, Gustave C.

    2001-01-01

    Advanced thin film sensors that can provide accurate surface temperature, strain, and heat flux measurements have been developed at NASA Glenn Research Center. These sensors provide minimally intrusive characterization of advanced propulsion materials and components in hostile, high-temperature environments as well as validation of propulsion system design codes. The sensors are designed for applications on different material systems and engine components for testing in engine simulation facilities. Thin film thermocouples and strain gauges for the measurement of surface temperature and strain have been demonstrated on metals, ceramics and advanced ceramic-based composites of various component configurations. Test environments have included both air-breathing and space propulsion-based engine and burner rig environments at surface temperatures up to 1100 C and under high gas flow and pressure conditions. The technologies developed for these sensors as well as for a thin film heat flux gauge have been integrated into a single multifunctional gauge for the simultaneous real-time measurement of surface temperature, strain, and heat flux. This is the first step toward the development of smart sensors with integrated signal conditioning and high temperature electronics that would have the capability to provide feedback to the operating system in real-time. A description of the fabrication process for the thin film sensors and multifunctional gauge will be provided. In addition, the material systems on which the sensors have been demonstrated, the test facilities and the results of the tests to-date will be described. Finally, the results will be provided of the current effort to demonstrate the capabilities of the multifunctional gauge.

  5. Stable localized patterns in thin liquid films

    NASA Technical Reports Server (NTRS)

    Deissler, Robert J.; Oron, Alexander

    1991-01-01

    We study a 2-D nonlinear evolution equation which describes the 3-D spatiotemporal behavior of the air-liquid interface of a thin liquid film lying on the underside of a cooled horizontal plate. We show that the Marangoni effect can stabilize the destabilizing effect of gravity (the Rayleigh-Taylor instability) allowing for the existence of stable localized axisymmetric solutions for a wide range of parameter values. Various properties of these structures are discussed.

  6. Molecular theory of liquid crystal thin films

    NASA Astrophysics Data System (ADS)

    Meng, Shihong

    A molecular theory has been developed to describe the isotropic-nematic transitoon of model nematogens in bulk and in thin films. The surfaces of thin films can be hard surfaces or coated with surfactant monolayers. The theory only includes hard body interactions between all molecule species: solvent, nematogens and surfactants. We have studied the influence of the separation between confining walls, concentration of nematogens, as well as the surface anchoring and areal density of surfactant at the interface upon the phases of nematogens. We have explained the possible existence of planar degenerate phase through entropic pictures and have confirmed close to the bulk isotropic-nematic transition point, the order of the phases of nematogens from isotropic to nematic then back to isotropic when varying the areal density of surfactant monolayers at interfaces. From the results obtained, we believe that we have captured the main competing interactions between surfactants and nematogens and our molecular level theory is capable of describing these two interactions of different natures. Our results can provide a guideline for molecular design of biosensors. We have modeled the molecular systems with as much simplification as possible while retaining the main features. The thesis is arranged into introduction, results on bulk, thin films confined between hard walls and between surfactant monolayers.

  7. Hydrothermal epitaxy of perovskite thin films

    NASA Astrophysics Data System (ADS)

    Chien, Allen T.

    1998-12-01

    This work details the discovery and study of a new process for the growth of epitaxial single crystal thin films which we call hydrothermal epitaxy. Hydrothermal epitaxy is a low temperature solution route for producing heteroepitaxial thin films through the use of solution chemistry and structurally similar substrates. The application of this synthesis route has led to the growth of a variety of epitaxial perovskite (BaTiOsb3, SrTiOsb3, and Pb(Zr,Ti)Osb3 (PZT)) thin films which provides a simple processing pathway for the formation of other materials of technological interest. BaTiOsb3 and PZT heteroepitaxial thin films and powders were produced by the hydrothermal method at 90-200sp°C using various alkali bases. XRD and TEM analysis shows that, in each case, the films and powders form epitaxially with a composition nearly identical to that of the starting precursors. Sequential growth experiments show that film formation initiates by the nucleation of submicron faceted islands at the step edges of the SrTiOsb3 substrates followed by coalescence after longer growth periods. A Ba-rich interfacial layer between the BaTiOsb3 islands and the SrTiOsb3 surface is seen by cross-section TEM during early growth periods. Electrophoretic and Basp{2+} adsorption data provide a chemical basis for the existence of the interfacial layer. Homoepitaxial growth of SrTiOsb3 on SrTiOsb3 also occurs by island growth, suggesting that the growth mode may be a consequence of the aqueous surface chemistry inherent in the process. Film formation is shown to be affected by any number of factors including type of base, pH, temperature, and substrate pretreatments. Different cation bases (Na-, K-, Rb-, Cs-, TMA-OH) demonstrated pronounced changes in powder and film morphology. For example, smaller cation bases (e.g., NaOH, KOH and RbOH) resulted the formation of 1.5 mum \\{100\\} faceted perovskite PbTiOsb3 blocks while larger cation bases (e.g., CsOH and TMA-OH) produced 500 nm sized

  8. Oriented lead zirconate titanate thin films: Characterization of film crystallization

    SciTech Connect

    Voigt, J.A.; Tuttle, B.A.; Headley, T.J.; Eatough, M.O.; Lamppa, D.L.; Goodnow, D.

    1993-11-01

    Film processing temperature and time was varied to characterize the pyrochlore-to-perovskite crystallization of solution-derived PZT 20/80 thin films. 3000 {Angstrom} thick films were prepared by spin deposition using <100> single crystal MgO as substrate. By controlled rapid thermal processing, films at different stages in the perovskite crystallization process were prepared with the tetragonal PZT 20/80 phase being <100>/<001> oriented relative to the MgO surface. An activation energy for the conversion process of 326 kJ/mole was determined by use of an Arrhenius expression using rate constants found by application of the method of Avrami. Activation energy for formation of the PZT 20/80 perovskite phase of the solution-derived films compared favorably with that calculated from data by Kwok and Desu for sputter-deposited 3500 {Angstrom} thick PZT 55/45 films. Similarity in activation energies indicates that the energetics of the conversion process are not strongly dependent on the method used for film deposition.

  9. Thin Dielectric Films Containing Tb{sup 3+} Ions For Application In Thin Film Solar Cells

    SciTech Connect

    Sendova-Vassileva, M.; Angelov, O.; Dimova-Malmovska, D.; Baumgartner, K.; Carius, R.; Hollaender, B.

    2010-01-21

    Thin transparent dielectric films containing Tb{sup 3+} are developed for application as spectral converters of the solar spectrum in thin film silicon solar cells. The results on the deposition and characterization of thin SiO{sub 2} and Al{sub 2}O{sub 3} films containing Tb{sup 3+} ions are presented. The films are prepared by RF magnetron co-sputtering, a well established technique for large area coatings. Photoluminescence (PL) is measured at room temperature, using the 488 nm line of an Ar laser and a nitrogen-cooled CCD camera attached to a monochromator. The dependence of the PL intensity on the concentration of Tb in the film is studied. It is found that the intensity exhibits a maximum at about 1 at.%. Annealing studies are performed on SiO{sub 2}:Tb with two different methods to improve the PL intensity. In both regimes of annealing, the best results for thin SiO{sub 2}:Tb films are obtained in the temperature range of 650-700 deg. C. After treatment at this temperature the Tb PL increases 2.5-3 times.

  10. Thin Dielectric Films Containing Tb3+ Ions For Application In Thin Film Solar Cells

    NASA Astrophysics Data System (ADS)

    Sendova-Vassileva, M.; Baumgartner, K.; Angelov, O.; Holländer, B.; Dimova-Malmovska, D.; Carius, R.

    2010-01-01

    Thin transparent dielectric films containing Tb3+ are developed for application as spectral converters of the solar spectrum in thin film silicon solar cells. The results on the deposition and characterization of thin SiO2 and Al2O3 films containing Tb3+ ions are presented. The films are prepared by RF magnetron co-sputtering, a well established technique for large area coatings. Photoluminescence (PL) is measured at room temperature, using the 488 nm line of an Ar laser and a nitrogen-cooled CCD camera attached to a monochromator. The dependence of the PL intensity on the concentration of Tb in the film is studied. It is found that the intensity exhibits a maximum at about 1 at.%. Annealing studies are performed on SiO2:Tb with two different methods to improve the PL intensity. In both regimes of annealing, the best results for thin SiO2:Tb films are obtained in the temperature range of 650-700° C. After treatment at this temperature the Tb PL increases 2.5-3 times.

  11. Bauschinger effect in unpassivated freestanding thin films

    NASA Astrophysics Data System (ADS)

    Shishvan, Siamak Soleymani; Nicola, Lucia; Van der Giessen, Erik

    2010-05-01

    Two-dimensional (2D) discrete dislocation plasticity simulations are carried out to investigate the Bauschinger effect (BE) in freestanding thin films. The BE in plastic flow of polycrystalline materials is generally understood to be caused by inhomogeneous deformation during loading, leading to residual stress upon unloading. This inhomogeneity can be caused by dislocation pile-ups, variations in texture, grain orientations, and grain size. To study the BE, columnar-grained films as well as films with multiple grains across the thickness are considered. The film is modeled in a 2D framework by a unit cell consisting of an array of grains with different orientation. In order to capture the interaction among grains, we motivate and explore the use of an affine deformation assumption on the grain level to mimic the three-dimensional geometry in this framework. It is shown that the dispersion of grain size in a film together with the size-dependence of yield strength leads to significant BEs in bare films. Quantitative comparison of simulations with experimental data is provided.

  12. Evaporated CaS thin films for AC electroluminescence devices

    NASA Astrophysics Data System (ADS)

    Kobayashi, H.; Tanaka, S.; Shanker, V.; Shiiki, M.; Deguchi, H.

    1985-08-01

    The growth behavior of evaporated CaS thin films has been investigated to achieve bright electroluminescence. The crystallinity of CaS films is improved with substrate temperature and for temperatures higher than 300°C, the films orient to the (200) plane. Sulfur coevaporation further helps to form a more perfect film even at lower temperatures. A CaS: Ce,Cl electroluminescent thin film device has been fabricated with a brightness of 650 cd/m 2.

  13. Thin film cadmium telluride photovoltaic cells

    SciTech Connect

    Compaan, A.; Bohn, R. )

    1992-04-01

    This report describes research to develop to vacuum-based growth techniques for CdTe thin-film solar cells: (1) laser-driven physical vapor deposition (LDPVD) and (2) radio-frequency (rf) sputtering. The LDPVD process was successfully used to deposit thin films of CdS, CdTe, and CdCl{sub 2}, as well as related alloys and doped semiconductor materials. The laser-driven deposition process readily permits the use of several target materials in the same vacuum chamber and, thus, complete solar cell structures were fabricated on SnO{sub 2}-coated glass using LDPVD. The rf sputtering process for film growth became operational, and progress was made in implementing it. Time was also devoted to enhancing or implementing a variety of film characterization systems and device testing facilities. A new system for transient spectroscopy on the ablation plume provided important new information on the physical mechanisms of LDPVD. The measurements show that, e.g., Cd is predominantly in the neutral atomic state in the plume but with a fraction that is highly excited internally ({ge} 6 eV), and that the typical neutral Cd translational kinetic energies perpendicular to the target are 20 eV and greater. 19 refs.

  14. Active superconducting devices formed of thin films

    DOEpatents

    Martens, Jon S.; Beyer, James B.; Nordman, James E.; Hohenwarter, Gert K. G.

    1991-05-28

    Active superconducting devices are formed of thin films of superconductor which include a main conduction channel which has an active weak link region. The weak link region is composed of an array of links of thin film superconductor spaced from one another by voids and selected in size and thickness such that magnetic flux can propagate across the weak link region when it is superconducting. Magnetic flux applied to the weak link region will propagate across the array of links causing localized loss of superconductivity in the links and changing the effective resistance across the links. The magnetic flux can be applied from a control line formed of a superconducting film deposited coplanar with the main conduction channel and weak link region on a substrate. The devices can be formed of any type to superconductor but are particularly well suited to the high temperature superconductors since the devices can be entirely formed from coplanar films with no overlying regions. The devices can be utilized for a variety of electrical components, including switching circuits, amplifiers, oscillators and modulators, and are well suited to microwave frequency applications.

  15. Dynamic Characterization of Thin Film Magnetic Materials

    NASA Astrophysics Data System (ADS)

    Gu, Wei

    A broadband dynamic method for characterizing thin film magnetic material is presented. The method is designed to extract the permeability and linewidth of thin magnetic films from measuring the reflection coefficient (S11) of a house-made and short-circuited strip line testing fixture with or without samples loaded. An adaptive de-embedding method is applied to remove the parasitic noise of the housing. The measurements were carried out with frequency up to 10GHz and biasing magnetic fields up to 600 Gauss. Particular measurement setup and 3-step experimental procedures are described in detail. The complex permeability of a 330nm thick continuous FeGaB, 435nm thick laminated FeGaB film and a 100nm thick NiFe film will be induced dynamically in frequency-biasing magnetic field spectra and compared with a theoretical model based on Landau-Lifshitz-Gilbert (LLG) equations and eddy current theories. The ferromagnetic resonance (FMR) phenomenon can be observed among these three magnetic materials investigated in this thesis.

  16. Nanocrystalline silicon based thin film solar cells

    NASA Astrophysics Data System (ADS)

    Ray, Swati

    2012-06-01

    Amorphous silicon solar cells and panels on glass and flexible substrate are commercially available. Since last few years nanocrystalline silicon thin film has attracted remarkable attention due to its stability under light and ability to absorb longer wavelength portion of solar spectrum. For amorphous silicon/ nanocrystalline silicon double junction solar cell 14.7% efficiency has been achieved in small area and 13.5% for large area modules internationally. The device quality nanocrystalline silicon films have been fabricated by RF and VHF PECVD methods at IACS. Detailed characterizations of the materials have been done. Nanocrystalline films with low defect density and high stability have been developed and used as absorber layer of solar cells.

  17. Supramolecular structure of electroactive polymer thin films

    NASA Astrophysics Data System (ADS)

    Kornilov, V. M.; Lachinov, A. N.; Karamov, D. D.; Nabiullin, I. R.; Kul'velis, Yu. V.

    2016-05-01

    This paper presents the results of an experimental investigation of the supramolecular structure of polydiphenylenephthalide thin films that exhibit effects of resistive switching. The supramolecular structure of the polymer has been investigated using small-angle neutron scattering in conjunction with atomic force microscopy. It has been found that the internal structure of polymer films consists of structural elements in the form of spheroids. The sizes of the structural elements, which were obtained from the neutron scattering data and analysis of the atomic force microscopy images, correlate well with each other. A model of the formation of polymer layers has been proposed. The observed structural elements in polymer films are formed due to the association of macromolecules in the initial polymer solution.

  18. Electrohydrodynamic instabilities in thin trilayer liquid films.

    SciTech Connect

    Roberts, Scott A.; Kumar, Satish

    2010-11-01

    When DC or AC electric fields are applied to a thin liquid film, the interface may become unstable and form a series of pillars. We examine how the presence of a second liquid interface influences pillar dynamics and morphologies. For perfect dielectric films, linear stability analysis of a lubrication-approximation-based model shows that the root mean square voltage governs the pillar behavior. For leaky dielectric films, Floquet theory is applied to carry out the linear stability analysis, and reveals that the accumulation of free charge at each interface depends on the conductivities in the adjoining phases and that high frequencies of the AC electric field may be used to control this accumulation at each interface independently. The results presented here may of interest for the controlled creation of surface topographical features in applications such as patterned coatings and microelectronics.

  19. Magnetization relaxation in sputtered thin permalloy films

    NASA Astrophysics Data System (ADS)

    Oliveira, R. C.; Rodríguez-Suárez, R. L.; Aguiar, F. M. De; Rezende, S. M.; Fermin, J. R.; Azevedo, A.

    2004-05-01

    In order to understand the underlying phenomena of magnetization damping in metallic thin films, samples of permalloy films were grown by magnetron sputtering, and their 8.6-GHz ferromagnetic resonance linewidth ΔH has been measured as a function of the Permalloy (Py) film thickness t, at room temperature. We made samples of Py(t)/Si(001) and X/Py(t)/X/Si(001), with X=Pd (40Å), and Cr (25Å), with 20Å < t < 200Å. While ΔH scales with t-2 in the bare Py/Si series, it is shown that the damping behavior strongly depends on X in the sandwich samples.

  20. Preface: Thin films of molecular organic materials

    NASA Astrophysics Data System (ADS)

    Fraxedas, J.

    2008-03-01

    This special issue is devoted to thin films of molecular organic materials and its aim is to assemble numerous different aspects of this topic in order to reach a wide scientific audience. Under the term 'thin films', structures with thicknesses spanning from one monolayer or less up to several micrometers are included. In order to narrow down this relaxed definition (how thin is thin?) I suggest joining the stream that makes a distinction according to the length scale involved, separating nanometer-thick films from micrometer-thick films. While the physical properties of micrometer-thick films tend to mimic those of bulk materials, in the low nanometer regime new structures (e.g., crystallographic and substrate-induced phases) and properties are found. However, one has to bear in mind that some properties of micrometer-thick films are really confined to the film/substrate interface (e.g. charge injection), and are thus of nanometer nature. Supported in this dimensionality framework, this issue covers the most ideal and model 0D case, a single molecule on a surface, through to the more application-oriented 3D case, placing special emphasis on the fascinating 2D domain that is monolayer assembly. Thus, many aspects will be reviewed, such as single molecules, self-organization, monolayer regime, chirality, growth, physical properties and applications. This issue has been intentionally restricted to small molecules, thus leaving out polymers and biomolecules, because for small molecules it is easier to establish structure--property relationships. Traditionally, the preparation of thin films of molecular organic materials has been considered as a secondary, lower-ranked part of the more general field of this class of materials. The coating of diverse surfaces such as silicon, inorganic and organic single crystals, chemically modified substrates, polymers, etc., with interesting molecules was driven by the potential applications of such molecular materials

  1. The formation and analysis of thin film high temperature superconductors

    SciTech Connect

    Nastasi, M.; Muenchausen, R.E.; Arendt, P.N.

    1989-01-01

    Thin films of high temperature superconductors have been fabricated using a variety of physical vapor deposition techniques. Recent results of HTS thin films produced by coevaporation, sputtering and laser deposition will be briefly reviewed. In addition some examples of the utility of high energy ion backscattering for the analysis of film stoichiometry will be given. 34 refs., 6 figs.

  2. The formation and analysis of thin film high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Nastasi, Michael; Muenchausen, Ross E.; Arendt, Paul N.

    Thin films of high temperature superconductors have been fabricated using a variety of physical vapor deposition techniques. Recent results of HTS thin films produced by coevaporation, sputtering and laser deposition will be briefly reviewed. In addition some examples of the utility of high energy ion backscattering for the analysis of film stoichiometry will be given.

  3. Dynamics of Bimodal Growth in Pentacene Thin Films

    SciTech Connect

    Mayer, Alex C.; Malliaras, George G.; Kazimirov, Alexander

    2006-09-08

    Previous studies have established that pentacene films deposited on silicon oxide consist of a substrate-induced 'thin-film' phase, with the bulk phase of pentacene detected in thicker films only. We show that the bulk phase nucleates as early as the first monolayer, and continues to nucleate as film growth progresses, shadowing the growth of the thin-film phase. Moreover, we find that the transition between the 'thin-film' and the bulk phase is not a continuous one, as observed in heteroepitaxial systems, but rather the two phases nucleate and grow independently.

  4. LiMn2O4-based cathode thin films for Li thin-film batteries

    NASA Astrophysics Data System (ADS)

    Yim, Haena; Shin, Dong-Wook; Choi, Ji-Won

    2016-01-01

    Substitution methods for Mn3+ in a spinel lithium manganese oxide with other cations have been used to prevent capacity degradation during the electrochemical charge and discharge of Li-batteries by increasing the average valence of Mn. In particular, in this review we outlin the effects of Sn substitution on the cycling performance of LiMn2O4 thin films that can be used as positive electrode in Li-batteries. The thin films were prepared by using pulsed laser deposition and solution deposition with regard to the structural and the electro-chemical characteristics.

  5. Metallic Thin-Film Bonding and Alloy Generation

    NASA Technical Reports Server (NTRS)

    Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Peotter, Brian S. (Inventor); Droppers, Lloyd (Inventor)

    2016-01-01

    Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.

  6. Low-Cost Detection of Thin Film Stress during Fabrication

    NASA Technical Reports Server (NTRS)

    Nabors, Sammy A.

    2015-01-01

    NASA's Marshall Space Flight Center has developed a simple, cost-effective optical method for thin film stress measurements during growth and/or subsequent annealing processes. Stress arising in thin film fabrication presents production challenges for electronic devices, sensors, and optical coatings; it can lead to substrate distortion and deformation, impacting the performance of thin film products. NASA's technique measures in-situ stress using a simple, noncontact fiber optic probe in the thin film vacuum deposition chamber. This enables real-time monitoring of stress during the fabrication process and allows for efficient control of deposition process parameters. By modifying process parameters in real time during fabrication, thin film stress can be optimized or controlled, improving thin film product performance.

  7. Investigating the interfacial dynamics of thin films

    NASA Astrophysics Data System (ADS)

    Rosenbaum, Aaron W.

    This thesis probes the interfacial dynamics and associated phenomena of thin films. Surface specific tools were used to study the self-assembly of alkanethiols, the mono- and bilayer dynamics of SF6, and the surface motion of poly(methyl methacrylate). Non-pertubative helium atom scattering was the principal technique used to investigate these systems. A variety of other complementary tools, including scanning tunneling microscopy, electron diffraction, Auger spectroscopy, atomic force microscopy, and ellipsometry were used in tandem with the neutral atom scattering studies. Controlling the spontaneous assembly of alkanethiols on Au(111) requires a better fundamental understanding of the adsorbate-adsorbate and substrate-adsorbate interactions. Our characterization focused on two key components, the surface structure and adsorbate vibrations. The study indicates that the Au(111) reconstruction plays a larger role than anticipated in the low-density phase of alkanethiol monolayers. A new structure is proposed for the 1-decanethiol monolayer that impacts the low-energy vibrational mode. Varying the alkane chain lengths imparts insight into the assembly process via characterization of a dispersionless phonon mode. Studies of SF6 physisorbed on Au(111) bridge surface research on rare gas adsorbates with complicated dynamical organic thin films. Mono- and bilayer coverages of SF6/Au(111) were studied at cryogenic temperatures. Our experiments probed the surface properties of SF6 yielding insights into substrate and coverage effects. The study discovered a dispersionless Einstein oscillation with multiple harmonic overtones. A second layer of SF6 softened the mode, but did not show any indications of bulk or cooperative interactions. The vibrational properties of SF 6 showed both striking similarities and differences when compared with physisorbed rare gases. Lastly, this thesis will discuss studies of thin film poly(methyl methacrylate) on Si. The non-pertubative and

  8. Pulsed laser deposition of pepsin thin films

    NASA Astrophysics Data System (ADS)

    Kecskeméti, G.; Kresz, N.; Smausz, T.; Hopp, B.; Nógrádi, A.

    2005-07-01

    Pulsed laser deposition (PLD) of organic and biological thin films has been extensively studied due to its importance in medical applications among others. Our investigations and results on PLD of a digestion catalyzing enzyme, pepsin, are presented. Targets pressed from pepsin powder were ablated with pulses of an ArF excimer laser ( λ = 193 nm, FWHM = 30 ns), the applied fluence was varied between 0.24 and 5.1 J/cm 2. The pressure in the PLD chamber was 2.7 × 10 -3 Pa. The thin layers were deposited onto glass and KBr substrates. Our IR spectroscopic measurements proved that the chemical composition of deposited thin films is similar to that of the target material deposited at 0.5 and 1.3 J/cm 2. The protein digesting capacity of the transferred pepsin was tested by adapting a modified "protein cube" method. Dissolution of the ovalbumin sections proved that the deposited layers consisted of catalytically active pepsin.

  9. Physical Properties of Thin Film Semiconducting Materials

    NASA Astrophysics Data System (ADS)

    Bouras, N.; Djebbouri, M.; Outemzabet, R.; Sali, S.; Zerrouki, H.; Zouaoui, A.; Kesri, N.

    2005-10-01

    The physics and chemistry of semiconducting materials is a continuous question of debate. We can find a large stock of well-known properties but at the same time, many things are not understood. In recent years, porous silicon (PS-Si), diselenide of copper and indium (CuInSe2 or CIS) and metal oxide semiconductors like tin oxide (SnO2) and zinc oxide (ZnO) have been subjected to extensive studies because of the rising interest their potential applications in fields such as electronic components, solar panels, catalysis, gas sensors, in biocompatible materials, in Li-based batteries, in new generation of MOSFETS. Bulk structure and surface and interface properties play important roles in all of these applications. A deeper understanding of these fundamental properties would impact largely on technological application performances. In our laboratory, thin films of undoped and antimony-doped films of tin oxide have been deposited by chemical vapor deposition. Spray pyrolysis was used for ZnO. CIS was prepared by flash evaporation or close-space vapor transport. Some of the deposition parameters have been varied, such as substrate temperature, time of deposition (or anodization), and molar concentration of bath preparation. For some samples, thermal annealing was carried out under oxygen (or air), under nitrogen gas and under vacuum. Deposition and post-deposition parameters are known to strongly influence film structure and electrical resistivity. We investigated the influence of film thickness and thermal annealing on structural optical and electrical properties of the films. Examination of SnO2 by x-ray diffraction showed that the main films are polycrystalline with rutile structure. The x-ray spectra of ZnO indicated a hexagonal wurtzite structure. Characterizations of CIS films with compositional analysis, x-ray diffraction, scanning microscopy, spectrophotometry, and photoluminescence were carried out.

  10. High- Tc thin-film magnetometer

    SciTech Connect

    Miklich, A.H.; Wellstood, F.C.; Kingston, J.J.; Clarke, J. ); Colclough, M.S. ); Cardona, A.H.; Bourne, L.C.; Olson, W.L.; Eddy, M.M. )

    1990-09-01

    We have constructed and tested high-{Tc} magnetometers by coupling a high-{Tc} thin-film Superconducting QUantum Interference Device (SQUID) to two different high-{Tc} thin-film flux transformers. The SQUID was made from Tl{sub 2}CaBa{sub 2}Cu{sub 2}O{sub 8+y} films grown on MgO, with junctions consisting of native grain boundaries. The flux transformers were made from YBa{sub 2}Cu{sub 3}O{sub 7-x}, and each had 10-turn input coils and a single-turn pickup loop. The first transformer, which was patterned with a combination of shadow masks and photolithography, yielded a magnetic field gain of about {minus}7.5, functioned up to 79 K, and gave a magnetic field sensitivity B{sub N} (10 Hz) {approx} 3.1 pT Hz{sup {minus}1/2}at 38 K. The second transformer, which was patterned entirely by photolithography, yielded a gain of about {minus}8.7, functioned up to 25 K, and had a sensitivity B{sub N} (10 Hz) {approx} 3.5 pT Hz{sup {minus}1/2} at 4.2 K. In both cases, the limiting noise arose in the SQUID. 10 refs., 5 figs., 1 tab.

  11. Strain Tuning of Ferroelectric Thin Films *

    NASA Astrophysics Data System (ADS)

    Schlom, Darrell G.; Chen, Long-Qing; Eom, Chang-Beom; Rabe, Karin M.; Streiffer, Stephen K.; Triscone, Jean-Marc

    2007-08-01

    Predictions and measurements of the effect of biaxial strain on the properties of epitaxial ferroelectric thin films and superlattices are reviewed. Results for single-layer ferroelectric films of biaxially strained SrTiO3, BaTiO3, and PbTiO3 as well as PbTiO3/SrTiO3 and BaTiO3/SrTiO3 superlattices are described. Theoretical approaches, including first principles, thermodynamic analysis, and phase-field models, are applied to these biaxially strained materials, the assumptions and limitations of each technique are explained, and the predictions are compared. Measurements of the effect of biaxial strain on the paraelectric-to-ferroelectric transition temperature (TC) are shown, demonstrating the ability of percent-level strains to shift TC by hundreds of degrees in agreement with the predictions that predated such experiments. Along the way, important experimental techniques for characterizing the properties of strained ferroelectric thin films and superlattices, as well as appropriate substrates on which to grow them, are mentioned.

  12. Thin-film cadmium telluride solar cells

    NASA Astrophysics Data System (ADS)

    Chu, T. L.

    1986-08-01

    The major objective of this work was to demonstrate CdTe devices grown by chemical vapor deposition (CVD) with a total area greater than 1 cm2 and photovoltic efficiencies of at least 13%. During the period covered, various processing steps were investigated for the preparation of thin-film CdTe heterojunction solar cells of the inverted configuration. Glass coated with fluorine-doped tin oxide was used as the substrate. Thin-film heterojunction solar cells were prepared by depositing p-CdTe films on substrates using CVD and close-spaced sublimation (CSS). Cells prepared from CSS CdTe usually have a higher conversion efficiency than those prepared from CVD CdTe, presumably due to the chemical interaction between CdS and CdTe at the interface during the CVD process. The best cell, about 1.2 sq cm in area, had an AM 1.5 (global) efficiency of 10.5%, and further improvements are expected by optimizing the process parameters.

  13. PZT Thin Film Piezoelectric Traveling Wave Motor

    NASA Technical Reports Server (NTRS)

    Shen, Dexin; Zhang, Baoan; Yang, Genqing; Jiao, Jiwei; Lu, Jianguo; Wang, Weiyuan

    1995-01-01

    With the development of micro-electro-mechanical systems (MEMS), its various applications are attracting more and more attention. Among MEMS, micro motors, electrostatic and electromagnetic, are the typical and important ones. As an alternative approach, the piezoelectric traveling wave micro motor, based on thin film material and integrated circuit technologies, circumvents many of the drawbacks of the above mentioned two types of motors and displays distinct advantages. In this paper we report on a lead-zirconate-titanate (PZT) piezoelectric thin film traveling wave motor. The PZT film with a thickness of 150 micrometers and a diameter of 8 mm was first deposited onto a metal substrate as the stator material. Then, eight sections were patterned to form the stator electrodes. The rotor had an 8 kHz frequency power supply. The rotation speed of the motor is 100 rpm. The relationship of the friction between the stator and the rotor and the structure of the rotor on rotation were also studied.

  14. Orthogonal Thin Film Photovoltaics on Vertical Nanostructures.

    PubMed

    Ahnood, Arman; Zhou, H; Suzuki, Y; Sliz, R; Fabritius, T; Nathan, Arokia; Amaratunga, G A J

    2015-12-01

    Decoupling paths of carrier collection and illumination within photovoltaic devices is one promising approach for improving their efficiency by simultaneously increasing light absorption and carrier collection efficiency. Orthogonal photovoltaic devices are core-shell type structures consisting of thin film photovoltaic stack on vertical nanopillar scaffolds. These types of devices allow charge collection to take place in the radial direction, perpendicular to the path of light in the vertical direction. This approach addresses the inherently high recombination rate of disordered thin films, by allowing semiconductor films with minimal thicknesses to be used in photovoltaic devices, without performance degradation associated with incomplete light absorption. This work considers effects which influence the performance of orthogonal photovoltaic devices. Illumination non-uniformity as light travels across the depth of the pillars, electric field enhancement due to the nanoscale size and shape of the pillars, and series resistance due to the additional surface structure created through the use of pillars are considered. All of these effects influence the operation of orthogonal solar cells and should be considered in the design of vertically nanostructured orthogonal photovoltaics. PMID:26676997

  15. Orthogonal Thin Film Photovoltaics on Vertical Nanostructures

    NASA Astrophysics Data System (ADS)

    Ahnood, Arman; Zhou, H.; Suzuki, Y.; Sliz, R.; Fabritius, T.; Nathan, Arokia; Amaratunga, G. A. J.

    2015-12-01

    Decoupling paths of carrier collection and illumination within photovoltaic devices is one promising approach for improving their efficiency by simultaneously increasing light absorption and carrier collection efficiency. Orthogonal photovoltaic devices are core-shell type structures consisting of thin film photovoltaic stack on vertical nanopillar scaffolds. These types of devices allow charge collection to take place in the radial direction, perpendicular to the path of light in the vertical direction. This approach addresses the inherently high recombination rate of disordered thin films, by allowing semiconductor films with minimal thicknesses to be used in photovoltaic devices, without performance degradation associated with incomplete light absorption. This work considers effects which influence the performance of orthogonal photovoltaic devices. Illumination non-uniformity as light travels across the depth of the pillars, electric field enhancement due to the nanoscale size and shape of the pillars, and series resistance due to the additional surface structure created through the use of pillars are considered. All of these effects influence the operation of orthogonal solar cells and should be considered in the design of vertically nanostructured orthogonal photovoltaics.

  16. Porous Organic Cage Thin Films and Molecular-Sieving Membranes.

    PubMed

    Song, Qilei; Jiang, Shan; Hasell, Tom; Liu, Ming; Sun, Shijing; Cheetham, Anthony K; Sivaniah, Easan; Cooper, Andrew I

    2016-04-01

    Porous organic cage molecules are fabricated into thin films and molecular-sieving membranes. Cage molecules are solution cast on various substrates to form amorphous thin films, with the structures tuned by tailoring the cage chemistry and processing conditions. For the first time, uniform and pinhole-free microporous cage thin films are formed and demonstrated as molecular-sieving membranes for selective gas separation. PMID:26800019

  17. Overview and Challenges of Thin Film Solar Electric Technologies

    SciTech Connect

    Ullal, H. S.

    2008-12-01

    In this paper, we report on the significant progress made worldwide by thin-film solar cells, namely, amorphous silicon (a-Si), cadmium telluride (CdTe), and copper indium gallium diselenide (CIGS). Thin-film photovoltaic (PV) technology status is also discussed in detail. In addition, R&D and technology challenges in all three areas are elucidated. The worldwide estimated projection for thin-film PV technology production capacity announcements are estimated at more than 5000 MW by 2010.

  18. Form Birefringence in Thin Films with Oblique Columnar Structures

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Guo; Shao, Jian-Da; Wang, Su-Mei; He, Hong-Bo; Fan, Zheng-Xiu

    2005-08-01

    Effective medium theory is useful for designing optical elements with form birefringent subwavelength structures. Thin films fabricated by oblique deposition are similar to the two-dimensional surface relief subwavelength gratings. We use the effective medium theory to calculate the anisotropic optical properties of the thin films with oblique columnar structures. The effective refractive indices and the directions are calculated from effective medium theory. It is shown that optical thin films with predetermined refractive indices and birefringence may be engineered.

  19. Polycrystalline-thin-film thermophotovoltaic cells

    NASA Astrophysics Data System (ADS)

    Dhere, Neelkanth G.

    1996-02-01

    Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity, portability, silent operation, absence of moving parts, reduced air pollution, rapid start-up, high power densities, potentially high conversion efficiencies, choice of a wide range of heat sources employing fossil fuels, biomass, and even solar radiation are key advantages of TPV cells in comparison with fuel cells, thermionic and thermoelectric convertors, and heat engines. The potential applications of TPV systems include: remote electricity supplies, transportation, co-generation, electric-grid independent appliances, and space, aerospace, and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000-2000 K) black-body or selective radiators is in the 0.5-0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1-xGaxAs, GaSb, and Ga1-xInxSb. Several polycrystalline thin films such as Hg1-xCdxTe, Sn1-xCd2xTe2, and Pb1-xCdxTe, etc., have great potential for economic large-scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells, e.g., 17.1% for CuIn1-xGaxSe2 and 15.8% for CdTe. The best recombination-state density Nt is in the range of 10-15-10-16 cm-3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences, possibility of bandgap tailoring, and use of selective emitters such as rare earth oxides (erbia, holmia, yttria) and rare earth-yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe, it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto

  20. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, R.B.

    1987-05-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  1. Fluorination of amorphous thin-film materials with xenon fluoride

    DOEpatents

    Weil, Raoul B.

    1988-01-01

    A method is disclosed for producing fluorine-containing amorphous semiconductor material, preferably comprising amorphous silicon. The method includes depositing amorphous thin-film material onto a substrate while introducing xenon fluoride during the film deposition process.

  2. Dye-Sensitization Of Nanocrystalline ZnO Thin Films

    NASA Astrophysics Data System (ADS)

    Ajimsha, R. S.; Tyagi, M.; Das, A. K.; Misra, P.; Kukreja, L. M.

    2010-12-01

    Nannocrystalline and nanoporus thin films of ZnO were synthesized on glass substrates by using wet chemical drop casting method. X-ray diffraction measurements on these samples confirmed the formation of ZnO nanocrystallites in hexagonal wurtzite phase with mean size of ˜20 nm. Photo sensitization of these nanostructured ZnO thin films was carried out using three types of dyes Rhodamine 6 G, Chlorophyll and cocktail of Rhodamine 6 G and Chlorophyll in 1:1 ratio. Dye sensitized ZnO thin films showed enhanced optical absorption in visible spectral region compared to the pristine ZnO thin films.

  3. Uncooled thin film pyroelectric IR detector with aerogel thermal isolation

    DOEpatents

    Ruffner, Judith A.; Bullington, Jeff A.; Clem, Paul G.; Warren, William L.; Brinker, C. Jeffrey; Tuttle, Bruce A.; Schwartz, Robert W.

    1999-01-01

    A monolithic infrared detector structure which allows integration of pyroelectric thin films atop low thermal conductivity aerogel thin films. The structure comprises, from bottom to top, a substrate, an aerogel insulating layer, a lower electrode, a pyroelectric layer, and an upper electrode layer capped by a blacking layer. The aerogel can offer thermal conductivity less than that of air, while providing a much stronger monolithic alternative to cantilevered or suspended air-gap structures for pyroelectric thin film pixel arrays. Pb(Zr.sub.0.4 Ti.sub.0.6)O.sub.3 thin films deposited on these structures displayed viable pyroelectric properties, while processed at 550.degree. C.

  4. Applications of thin-film photovoltaics for space

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Hepp, Aloysius F.

    1991-01-01

    The authors discuss the potential applications of thin-film polycrystalline and amorphous cells for space. There have been great advances in thin-film solar cells for terrestrial applications. Transfer of this technology to space applications could result in ultra low-weight solar arrays with potentially large gains in specific power. Recent advances in thin-film solar cells are reviewed, including polycrystalline copper indium selenide and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon arrays. The possibility of using thin-film multi-bandgap cascade solar cells is discussed.

  5. Thin-Film Photovoltaics: Status and Applications to Space Power

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey A.; Hepp, Aloysius F.

    1991-01-01

    The potential applications of thin film polycrystalline and amorphous cells for space are discussed. There have been great advances in thin film solar cells for terrestrial applications; transfer of this technology to space applications could result in ultra low weight solar arrays with potentially large gains in specific power. Recent advances in thin film solar cells are reviewed, including polycrystalline copper iridium selenide and related I-III-VI2 compounds, polycrystalline cadmium telluride and related II-VI compounds, and amorphous silicon alloys. The possibility of thin film multi bandgap cascade solar cells is discussed.

  6. Structural characterization of impurified zinc oxide thin films

    SciTech Connect

    Trinca, L. M.; Galca, A. C. Stancu, V. Chirila, C. Pintilie, L.

    2014-11-05

    Europium doped zinc oxide (Eu:ZnO) thin films have been obtained by pulsed laser deposition (PLD). 002 textured thin films were achieved on glass and silicon substrates, while hetero-epilayers and homo-epilayers have been attained on single crystal SrTiO{sub 3} and ZnO, respectively. X-ray Diffraction (XRD) was employed to characterize the Eu:ZnO thin films. Extended XRD studies confirmed the different thin film structural properties as function of chosen substrates.

  7. Piezoelectric thin films and their applications for electronics

    NASA Astrophysics Data System (ADS)

    Yoshino, Yukio

    2009-03-01

    ZnO and AlN piezoelectric thin films have been studied for applications in bulk acoustic wave (BAW) resonator. This article introduces methods of forming ZnO and AlN piezoelectric thin films by radio frequency sputtering and applications of BAW resonators considering the relationship between the crystallinity of piezoelectric thin films and the characteristics of the BAW resonators. Using ZnO thin films, BAW resonators were fabricated for a contour mode at 3.58 MHz and thickness modes from 200 MHz to 5 GHz. The ZnO thin films were combined with various materials, substrates, and thin films to minimize the temperature coefficient of frequency (TCF). The minimum TCF of BAW resonators was approximately 2 ppm/°C in the range -20 to 80 °C. The electromechanical coupling coefficient (k2) in a 1.9 GHz BAW resonator was 6.9%. Using AlN thin films, 5-20 GHz BAW resonators with an ultrathin membrane were realized. The membrane thickness of a 20 GHz BAW resonator was about 200 nm, k2 was 6.1%, and the quality factor (Q) was about 280. Q decreased with increasing resonant frequency. The value of k2 is almost the same for 5-20 GHz resonators. This result could be obtained by improving the thickness uniformity, by controlling internal stress of thin films, and by controlling the crystallinity of AlN piezoelectric thin film.

  8. Dye-Sensitization Of Nanocrystalline ZnO Thin Films

    SciTech Connect

    Ajimsha, R. S.; Tyagi, M.; Das, A. K.; Misra, P.; Kukreja, L. M.

    2010-12-01

    Nannocrystalline and nanoporus thin films of ZnO were synthesized on glass substrates by using wet chemical drop casting method. X-ray diffraction measurements on these samples confirmed the formation of ZnO nanocrystallites in hexagonal wurtzite phase with mean size of {approx}20 nm. Photo sensitization of these nanostructured ZnO thin films was carried out using three types of dyes Rhodamine 6 G, Chlorophyll and cocktail of Rhodamine 6 G and Chlorophyll in 1:1 ratio. Dye sensitized ZnO thin films showed enhanced optical absorption in visible spectral region compared to the pristine ZnO thin films.

  9. Rechargeable thin film battery and method for making the same

    DOEpatents

    Goldner, Ronald B.; Liu, Te-Yang; Goldner, Mark A.; Gerouki, Alexandra; Haas, Terry E.

    2006-01-03

    A rechargeable, stackable, thin film, solid-state lithium electrochemical cell, thin film lithium battery and method for making the same is disclosed. The cell and battery provide for a variety configurations, voltage and current capacities. An innovative low temperature ion beam assisted deposition method for fabricating thin film, solid-state anodes, cathodes and electrolytes is disclosed wherein a source of energetic ions and evaporants combine to form thin film cell components having preferred crystallinity, structure and orientation. The disclosed batteries are particularly useful as power sources for portable electronic devices and electric vehicle applications where high energy density, high reversible charge capacity, high discharge current and long battery lifetimes are required.

  10. Role of asphaltenes in stabilizing thin liquid emulsion films.

    PubMed

    Tchoukov, Plamen; Yang, Fan; Xu, Zhenghe; Dabros, Tadeusz; Czarnecki, Jan; Sjöblom, Johan

    2014-03-25

    Drainage kinetics, thickness, and stability of water-in-oil thin liquid emulsion films obtained from asphaltenes, heavy oil (bitumen), and deasphalted heavy oil (maltenes) diluted in toluene are studied. The results show that asphaltenes stabilize thin organic liquid films at much lower concentrations than maltenes and bitumen. The drainage of thin organic liquid films containing asphaltenes is significantly slower than the drainage of the films containing maltenes and bitumen. The films stabilized by asphaltenes are much thicker (40-90 nm) than those stabilized by maltenes (∼10 nm). Such significant variation in the film properties points to different stabilization mechanisms of thin organic liquid films. Apparent aging effects, including gradual increase of film thickness, rigidity of oil/water interface, and formation of submicrometer size aggregates, were observed for thin organic liquid films containing asphaltenes. No aging effects were observed for films containing maltenes and bitumen in toluene. The increasing stability and lower drainage dynamics of asphaltene-containing thin liquid films are attributed to specific ability of asphaltenes to self-assemble and form 3D network in the film. The characteristic length of stable films is well beyond the size of single asphaltene molecules, nanoaggregates, or even clusters of nanoaggregates reported in the literature. Buildup of such 3D structure modifies the rheological properties of the liquid film to be non-Newtonian with yield stress (gel like). Formation of such network structure appears to be responsible for the slower drainage of thin asphaltenes in toluene liquid films. The yield stress of liquid film as small as ∼10(-2) Pa is sufficient to stop the drainage before the film reaches the critical thickness at which film rupture occurs. PMID:24564447

  11. Rechargeable thin-film electrochemical generator

    DOEpatents

    Rouillard, Roger; Domroese, Michael K.; Hoffman, Joseph A.; Lindeman, David D.; Noel, Joseph-Robert-Gaetan; Radewald, Vern E.; Ranger, Michel; Sudano, Anthony; Trice, Jennifer L.; Turgeon, Thomas A.

    2000-09-15

    An improved electrochemical generator is disclosed. The electrochemical generator includes a thin-film electrochemical cell which is maintained in a state of compression through use of an internal or an external pressure apparatus. A thermal conductor, which is connected to at least one of the positive or negative contacts of the cell, conducts current into and out of the cell and also conducts thermal energy between the cell and thermally conductive, electrically resistive material disposed on a vessel wall adjacent the conductor. The thermally conductive, electrically resistive material may include an anodized coating or a thin sheet of a plastic, mineral-based material or conductive polymer material. The thermal conductor is fabricated to include a resilient portion which expands and contracts to maintain mechanical contact between the cell and the thermally conductive material in the presence of relative movement between the cell and the wall structure. The electrochemical generator may be disposed in a hermetically sealed housing.

  12. Levan nanostructured thin films by MAPLE assembling.

    PubMed

    Sima, Felix; Mutlu, Esra Cansever; Eroglu, Mehmet S; Sima, Livia E; Serban, Natalia; Ristoscu, Carmen; Petrescu, Stefana M; Oner, Ebru Toksoy; Mihailescu, Ion N

    2011-06-13

    Synthesis of nanostructured thin films of pure and oxidized levan exopolysaccharide by matrix-assisted pulsed laser evaporation is reported. Solutions of pure exopolysaccharides in dimethyl sulfoxide were frozen in liquid nitrogen to obtain solid cryogenic pellets that have been used as targets in pulsed laser evaporation experiments with a KrF* excimer source. The expulsed material was collected and assembled onto glass slides and Si wafers. The contact angle studies evidenced a higher hydrophilic behavior in the case of oxidized levan structures because of the presence of acidic aldehyde-hydrogen bonds of the coating formed after oxidation. The obtained films preserved the base material composition as confirmed by Fourier transform infrared spectroscopy. They were compact with high specific surface areas, as demonstrated by scanning electron and atomic force microscopy investigations. In vitro colorimetric assays revealed a high potential for cell proliferation for all coatings with certain predominance for oxidized levan. PMID:21520921

  13. Galvanostatic Ion Detrapping Rejuvenates Oxide Thin Films.

    PubMed

    Arvizu, Miguel A; Wen, Rui-Tao; Primetzhofer, Daniel; Klemberg-Sapieha, Jolanta E; Martinu, Ludvik; Niklasson, Gunnar A; Granqvist, Claes G

    2015-12-01

    Ion trapping under charge insertion-extraction is well-known to degrade the electrochemical performance of oxides. Galvanostatic treatment was recently shown capable to rejuvenate the oxide, but the detailed mechanism remained uncertain. Here we report on amorphous electrochromic (EC) WO3 thin films prepared by sputtering and electrochemically cycled in a lithium-containing electrolyte under conditions leading to severe loss of charge exchange capacity and optical modulation span. Time-of-flight elastic recoil detection analysis (ToF-ERDA) documented pronounced Li(+) trapping associated with the degradation of the EC properties and, importantly, that Li(+) detrapping, caused by a weak constant current drawn through the film for some time, could recover the original EC performance. Thus, ToF-ERDA provided direct and unambiguous evidence for Li(+) detrapping. PMID:26599729

  14. Electron impinging on metallic thin film targets

    NASA Astrophysics Data System (ADS)

    Rouabah, Z.; Bouarissa, N.; Champion, C.

    2010-03-01

    Based on the Vicanek and Urbassek theory [M. Vicanek, H.M. Urbassek, Phys. Rev. B 44 (1991) 7234] combined to a home-made Monte Carlo simulation, the present work deals with backscattering coefficients, mean penetration depths and stopping profiles for 1-4 keV electrons normally incident impinging on Al and Cu thin film targets. The cross-sections used to describe the electron transport are calculated via the appropriate analytical expression given by Jablonski [A. Jablonski, Phys. Rev. B 58 (1998) 16470] whose new improved version has been recently given [Z. Rouabah, N. Bouarissa, C. Champion, N. Bouaouadja, Appl. Surf. Sci. 255 (2009) 6217]. The behavior of the backscattering coefficient, mean penetration depth and stopping profiles versus the metallic film thickness at the nanometric scale and beyond is here analyzed and discussed.

  15. Exchange stiffness in thin film Co alloys

    NASA Astrophysics Data System (ADS)

    Eyrich, C.; Huttema, W.; Arora, M.; Montoya, E.; Rashidi, F.; Burrowes, C.; Kardasz, B.; Girt, E.; Heinrich, B.; Mryasov, O. N.; From, M.; Karis, O.

    2012-04-01

    The exchange stiffness (Aex) is one of the key parameters controlling magnetization reversal in magnetic materials. We used a method based on the spin spiral formation in two ferromagnetic films antiferromagnetically coupled across a non-magnetic spacer layer and Brillouin scattering to measure Aex for a series of Co1-δXδ (X = Cr, Ni, Ru, Pd, Pt) thin film alloys. The results show that Aex of Co alloys does not necessarily scale with Ms; Aex approximately decreases at the rate of 1.1%, 1.5%, 2.1%, 3.5%, and 5.6%, while Ms decreases at the rate of 1.1%, 0.5%, 1.1%, 3.7%, and 2.5% per addition of 1 at % of Pt, Ni, Pd, Cr, and Ru, respectively.

  16. Thermoviscoelastic models for polyethylene thin films

    NASA Astrophysics Data System (ADS)

    Li, Jun; Kwok, Kawai; Pellegrino, Sergio

    2016-02-01

    This paper presents a constitutive thermoviscoelastic model for thin films of linear low-density polyethylene subject to strains up to yielding. The model is based on the free volume theory of nonlinear thermoviscoelasticity, extended to orthotropic membranes. An ingredient of the present approach is that the experimentally inaccessible out-of-plane material properties are determined by fitting the model predictions to the measured nonlinear behavior of the film. Creep tests, uniaxial tension tests, and biaxial bubble tests are used to determine the material parameters. The model has been validated experimentally, against data obtained from uniaxial tension tests and biaxial cylindrical tests at a wide range of temperatures and strain rates spanning two orders of magnitude.

  17. Process for making dense thin films

    DOEpatents

    Jacobson, Craig P.; Visco, Steven J.; DeJonghe, Lutgard C.

    2005-07-26

    Provided are low-cost, mechanically strong, highly electronically conductive porous substrates and associated structures for solid-state electrochemical devices, techniques for forming these structures, and devices incorporating the structures. The invention provides solid state electrochemical device substrates of novel composition and techniques for forming thin electrode/membrane/electrolyte coatings on the novel or more conventional substrates. In particular, in one embodiment the invention provides techniques for firing of device substrate to form densified electrolyte/membrane films 5 to 20 microns thick. In another embodiment, densified electrolyte/membrane films 5 to 20 microns thick may be formed on a pre-sintered substrate by a constrained sintering process. In some cases, the substrate may be a porous metal, alloy, or non-nickel cermet incorporating one or more of the transition metals Cr, Fe, Cu and Ag, or alloys thereof.

  18. High Performance Airbrushed Organic Thin Film Transistors

    SciTech Connect

    Chan, C.; Richter, L; Dinardo, B; Jaye, C; Conrad, B; Ro, H; Germack, D; Fischer, D; DeLongchamp, D; Gunlach, D

    2010-01-01

    Spray-deposited poly-3-hexylthiophene (P3HT) transistors were characterized using electrical and structural methods. Thin-film transistors with octyltrichlorosilane treated gate dielectrics and spray-deposited P3HT active layers exhibited a saturation regime mobility as high as 0.1 cm{sup 2} V{sup -1} s{sup -1}, which is comparable to the best mobilities observed in high molecular mass P3HT transistors prepared using other methods. Optical and atomic force microscopy showed the presence of individual droplets with an average diameter of 20 {micro}m and appreciable large-scale film inhomogeneities. Despite these inhomogeneities, near-edge x-ray absorption fine structure spectroscopy of the device-relevant channel interface indicated excellent orientation of the P3HT.

  19. Interface Effects in Perovskite Thin Films

    NASA Astrophysics Data System (ADS)

    Lepetit, Marie-Bernadette; Mercey, Bernard; Simon, Charles

    2012-02-01

    The control of matter properties (transport, magnetic, dielectric,…) using synthesis as thin films is strongly hindered by the lack of reliable theories, able to guide the design of new systems, through the understanding of the interface effects and of the way the substrate constraints are imposed on the material. The present Letter analyzes the energetic contributions at the interfaces, and proposes a model describing the microscopic mechanisms governing the interactions at an epitaxial interface between a manganite and another transition metal oxide in perovskite structure (as for instance SrTiO3). The model is checked against experimental results and literature analysis.

  20. Nanostructured thin films and their macrobehaviors

    NASA Astrophysics Data System (ADS)

    Lo, Mei-Ling; Liao, Shih-Fang; Lee, Cheng-Chung

    2014-08-01

    The iridescence green band and cyan tail of the wing on Papilio blumei butterfly were investigated. The bi-color phenomenon on the scales of butterfly wings was found and analyzed. The spectral change with thickness of chitin-air layers, width of air hole, total layer numbers and incident angle of light were simulated by FDTD method. 2D photonic-crystal model was applied to explain the change of reflectance spectra and color with angle. The replica of structural color and nanostructured thin films for Papilio blumei butterflies was fabricated successfully by three main techniques, PS spheres bedding, electron-beam gun evaporation and ICP etching.

  1. Robust, Thin Optical Films for Extreme Environments

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The environment of space presents scientists and engineers with the challenges of a harsh, unforgiving laboratory in which to conduct their scientific research. Solar astronomy and X-ray astronomy are two of the more challenging areas into which NASA scientists delve, as the optics for this high-tech work must be extremely sensitive and accurate, yet also be able to withstand the battering dished out by radiation, extreme temperature swings, and flying debris. Recent NASA work on this rugged equipment has led to the development of a strong, thin film for both space and laboratory use.

  2. Thin film photovoltaic device with multilayer substrate

    DOEpatents

    Catalano, Anthony W.; Bhushan, Manjul

    1984-01-01

    A thin film photovoltaic device which utilizes at least one compound semiconductor layer chosen from Groups IIB and VA of the Periodic Table is formed on a multilayer substrate The substrate includes a lowermost support layer on which all of the other layers of the device are formed. Additionally, an uppermost carbide or silicon layer is adjacent to the semiconductor layer. Below the carbide or silicon layer is a metal layer of high conductivity and expansion coefficient equal to or slightly greater than that of the semiconductor layer.

  3. Polydiacetylene thin films for nonlinear optical applications

    NASA Technical Reports Server (NTRS)

    Paley, Mark S.

    1993-01-01

    One very promising class of organic compounds for nonlinear optical (NLO) applications are polydiacetylenes, which are novel in that they are highly conjugated polymers which can also be crystalline. Polydiacetylenes offer several advantages over other organic materials: because of their highly conjugated electronic structures, they are capable of possessing large optical nonlinearities with fast response times; because they are crystalline, they can be highly ordered, which is essential for optimizing their NLO properties; and, last, because they are polymeric, they can be formed as thin films, which are useful for device fabrication. We have actively been carrying out ground-based research on several compounds of interest.

  4. Articles including thin film monolayers and multilayers

    SciTech Connect

    Li, DeQuan; Swanson, B.I.

    1992-12-31

    This invention pertains to thin film assemblies or devices useful as sensors, nonlinear optical materials, and trace material scavengers. It claims a base substrate having an oxide surface layer, and a multidentate ligand, capable of binding a metal ion, attached to the oxide surface layer of the base substrate. A metal species may be provided attached to the ligand, and a multifunctional organic ligand may be provided attached to the metal species. A second metal species may be provided attached to the multifunctional ligand.

  5. Thin film dielectric microstrip kinetic inductance detectors

    NASA Astrophysics Data System (ADS)

    Mazin, Benjamin A.; Sank, Daniel; McHugh, Sean; Lucero, Erik A.; Merrill, Andrew; Gao, Jiansong; Pappas, David; Moore, David; Zmuidzinas, Jonas

    2010-03-01

    Microwave kinetic inductance detectors, or MKIDs, are a type of low temperature detector that exhibit intrinsic frequency domain multiplexing at microwave frequencies. We present the first theory and measurements on a MKID based on a microstrip transmission line resonator. A complete characterization of the dielectric loss and noise properties of these resonators is performed, and agrees well with the derived theory. A competitive noise equivalent power of 5×10-17 W Hz-1/2 at 10 Hz has been demonstrated. The resonators exhibit the highest quality factors known in a microstrip resonator with a deposited thin film dielectric.

  6. Thin-Film Photovoltaic Device Fabrication

    NASA Technical Reports Server (NTRS)

    Scofield, John H.

    2003-01-01

    This project will primarily involve the fabrication and characterization of thin films and devices for photovoltaic applications. The materials involved include Il-VI materials such as zinc oxide, cadmium sulfide, and doped analogs. The equipment ot be used will be sputtering and physical evaporations. The types of characterization includes electrical, XRD, SEM and CV and related measurements to establish the efficiency of the devices. The faculty fellow will be involved in a research team composed of NASA and University researchers as well as students and other junior researchers.

  7. Effective dynamics for ferromagnetic thin films

    SciTech Connect

    Garcia-Cervera, Carlos J.; E, Weinan

    2001-07-01

    In a ferromagnetic material, the dynamics of the relaxation process are affected by the presence of a strong shape or material anisotropy. In this article, we systematically explore this fact to derive the effective dynamical equation for a soft ferromagnetic thin film. We show that, as a consequence of the interplay between shape anisotropy and damping, the gyromagnetic term is effectively also a damping term for the in-plane components of the magnetization distribution. We validate our result through numerical simulation of the original Landau{endash}Lifshitz equation and our effective equation. {copyright} 2001 American Institute of Physics.

  8. Sensitive detection of NMR for thin films.

    PubMed

    Lee, Soonchil

    2015-10-01

    NMR can provide valuable information about thin films, but its relatively low sensitivity allows data acquisition only from bulk samples. The sensitivity problem is circumvented by detection schemes with higher sensitivity and/or enhanced polarization. In most of these ingenious techniques, electrons play a central role through hyperfine interactions with the nuclei of interest or the conversion of the spin orientation to an electric charge. The state of the art in NMR is the control of a single nuclear spin state, the complete form of which is one of the ultimate goals of nanotechnology. PMID:26549846

  9. Stable localized patterns in thin liquid films

    NASA Technical Reports Server (NTRS)

    Deissler, Robert J.; Oron, Alexander

    1992-01-01

    A two-dimensional nonlinear evolution equation is studied which describes the three-dimensional spatiotemporal behavior of the air-liquid interface of a thin liquid film lying on the underside of a cooled horizontal plate. It is shown that the equation has a Liapunov functional, and this fact is exploited to demonstrate that the Marangoni effect can stabilize the destabilizing effect of gravity (the Rayleigh-Taylor instability), allowing for the existence of stable localized axisymmetric solutions for a wide range of parameter values. Various properties of these structures are discussed.

  10. Directed Assembly of Nanofilled Polymer Thin Films

    NASA Astrophysics Data System (ADS)

    Karim, Alamgir

    Facile directed self-assembly (DSA) of multicomponent thin films is important for potential technological applications. This requires a fine control of a complex interplay of processing parameters that need to be properly optimized for different organized structures. This talk will discuss some of our recent success towards realizing tunable DSA of soft matter multicomponent systems involving a dispersion of polymer-grafted nanoparticles in block copolymer or homopolymer matrices. DSA methods for such multicomponent films will be discussed. These include the use of zone-annealing with soft-shear to create highly anisotropic nanoparticle arrays, while direct immersion annealing (DIA) has been used to order nanoparticle filled films by dipping the films into controlled solvent quality solvent mixtures. A recently observed phenomena of confinement driven entropic order and phase segregation of polymer grafted nanoparticles in similar and dissimilar polymer matrices in melt state will be discussed. A high density of nano particles of different types ranging from metallic to inorganic to organic were patterned almost exclusively into channels via topographical soft confinement using entropic forces. Enthalpic interactions between the nanoparticle grafted layer and the polymer matrix could be used as a further handle to tune the directed assembly of the nanoparticles. The phenomena will be discussed in terms of confinement parameters, partition coefficient, free energy gain and entropic versus enthalpic interactions.

  11. Organic thin films. Rational synthesis of organic thin films with exceptional long-range structural integrity.

    PubMed

    Seiki, Noriya; Shoji, Yoshiaki; Kajitani, Takashi; Ishiwari, Fumitaka; Kosaka, Atsuko; Hikima, Takaaki; Takata, Masaki; Someya, Takao; Fukushima, Takanori

    2015-06-01

    Highly oriented, domain-boundary-free organic thin films could find use in various high-performance organic materials and devices. However, even with state-of-the-art supramolecular chemistry, it is difficult to construct organic thin films with structural integrity in a size regime beyond the micrometer length scale. We show that a space-filling design, relying on the two-dimensional (2D) nested hexagonal packing of a particular type of triptycene, enables the formation of large-area molecular films with long-range 2D structural integrity up to the centimeter length scale by vacuum evaporation, spin-coating, and cooling from the isotropic liquid of the triptycene. X-ray diffraction analysis and microscopic observations reveal that triptycene molecules form a completely oriented 2D (hexagonal triptycene array) + 1D (layer stacking) structure, which is key for the long-range propagation of structural order. PMID:26045433

  12. Electrodeposited CulnSe2 Thin Film Junctions

    NASA Technical Reports Server (NTRS)

    Raffaelle, R. P.; Mantovani, J. G.; Bailey, S. G.; Hepp, A. F.; Gordon, E. M.; Haraway, R.

    1998-01-01

    We have investigated thin films and junctions based on copper indium diselenide (CIS) which have been grown by electrochemical deposition. CIS is a leading candidate for use in polycrystalline thin film photovoltaic solar cells. Electrodeposition is a cost-effective method for producing thin-film CIS. We have produced both p and n type CIS thin films from the same aqueous solution by simply varying the deposition potential. A CIS pn junction was deposited using a step-function potential. Stoichiometry of the single layer films was determined by energy dispersive spectroscopy. Carrier densities of these films increased with deviation from stoichiometry, as determined by the capacitance versus voltage dependence of Schottky contacts. Optical bandgaps for the single layer films as determined by transmission spectroscopy were also found to increase with deviation from stoichiometry. Rectifying current versus voltage characteristics were demonstrated for the Schottky barriers and for the pn junction.

  13. Electrodeposited CuInSe2 Thin Film Junctions

    NASA Technical Reports Server (NTRS)

    Raffaelle, R. P.; Mantovani, J. G.; Bailey, S. G.; Hepp, A. F.; Gordon, E. M.; Haraway, R.

    1997-01-01

    We have investigated thin films and junctions based on copper indium diselenide (CIS) which have been grown by electrochemical deposition. CIS is a leading candidate for use in polycrystalline thin film photovoltaic solar cells. Electrodeposition is a cost-effective method for producing thin-film CIS. We have produced both p and n type CIS thin films from the same aqueous solution by simply varying the deposition potential. A CIS pn junction was deposited using a step-function potential. Stoichiometry of the single layer films was determined by energy dispersive spectroscopy. Carrier densities of these films increased with deviation from stoichiometry, as determined by the capacitance versus voltage dependence of Schottky contacts. Optical bandgaps for the single layer films as determined by transmission spectroscopy were also found to increase with deviation from stoichiometry. Rectifying current versus voltage characteristics were demonstrated for the Schottky barriers and for the pn junction.

  14. Studies of Niobium Thin Film Produced by Energetic Vacuum Deposition

    SciTech Connect

    Genfa Wu; Anne-Marie Valente; H. Phillips; Haipeng Wang; Andy Wu; T. J. Renk; P Provencio

    2004-05-01

    An energetic vacuum deposition system has been used to study deposition energy effects on the properties of niobium thin films on copper and sapphire substrates. The absence of working gas avoids the gaseous inclusions commonly seen with sputtering deposition. A biased substrate holder controls the deposition energy. Transition temperature and residual resistivity ratio of the niobium thin films at several deposition energies are obtained together with surface morphology and crystal orientation measurements by AFM inspection, XRD and TEM analysis. The results show that niobium thin films on sapphire substrate exhibit the best cryogenic properties at deposition energy around 123 eV. The TEM analysis revealed that epitaxial growth of film was evident when deposition energy reaches 163 eV for sapphire substrate. Similarly, niobium thin film on copper substrate shows that film grows more oriented with higher deposition energy and grain size reaches the scale of the film thickness at the deposition energy around 153 eV.

  15. Antimony selenide thin-film solar cells

    NASA Astrophysics Data System (ADS)

    Zeng, Kai; Xue, Ding-Jiang; Tang, Jiang

    2016-06-01

    Due to their promising applications in low-cost, flexible and high-efficiency photovoltaics, there has been a booming exploration of thin-film solar cells using new absorber materials such as Sb2Se3, SnS, FeS2, CuSbS2 and CuSbSe2. Among them, Sb2Se3-based solar cells are a viable prospect because of their suitable band gap, high absorption coefficient, excellent electronic properties, non-toxicity, low cost, earth-abundant constituents, and intrinsically benign grain boundaries, if suitably oriented. This review surveys the recent development of Sb2Se3-based solar cells with special emphasis on the material and optoelectronic properties of Sb2Se3, the solution-based and vacuum-based fabrication process and the recent progress of Sb2Se3-sensitized and Sb2Se3 thin-film solar cells. A brief overview further addresses some of the future challenges to achieve low-cost, environmentally-friendly and high-efficiency Sb2Se3 solar cells.

  16. Micromagnetic studies of thin metallic films (invited)

    NASA Astrophysics Data System (ADS)

    Zhu, Jian-Gang; Bertram, H. Neal

    1988-04-01

    A computer simulation model has been developed to conduct micromagnetic studies of thin magnetic films. Thin-film media are modeled as a planar hexagonal array of hexagonally shaped grains. Each grain is a single domain particle whose magnetization reverses by coherent rotation. The computation utilizes coupled gyromagnetic dynamic equations with phenomenological Landau-Lifshitz damping. In particular, the effects of particle interactions are investigated. The effect of media microstructure on magnetic hysteresis is examined as well as the effect of intergranular exchange coupling. The difference between planar and completely random orientation of the crystalline anisotropy axes is discussed. Recorded transitions are simulated by allowing a pair of perfect transitions to relax. With no intergranular exchange coupling, the transitions show profound irregularity and zig-zag structure. Intergranular exchange coupling produces more uniform transitions with increased zig-zag structure amplitude. For a closely spaced transition pair, the equilibrium configuration yields percolated transition boundaries with stable reverse island domains. The effect of gyromagnetic precession also has been examined.

  17. thin films toward less leakage currents

    NASA Astrophysics Data System (ADS)

    Yao, Zhao; Wang, Cong; Li, Yang; Kim, Hong-Ki; Kim, Nam-Young

    2014-08-01

    To prepare high-density integrated capacitors with low leakage currents, 0.2-μm-thick BaTiO3 thin films were successfully deposited on integrated semiconductor substrates at room temperature by the aerosol deposition (AD) method. In this study, the effects of starting powder size were considered in an effort to remove macroscopic defects. A surface morphology of 25.3 nm and an interface roughness of less than 50 nm were obtained using BT-03B starting powder. The nano-crystalline thin films achieved after deposition were annealed at various temperatures to promote crystallization and densification. Moreover, the influence of rapid thermal annealing process on the surface morphology and crystal growth was evaluated. As the annealing temperature increased from room temperature to 650°C, the root mean square (RMS) roughness decreased from 25.3 to 14.3 nm. However, the surface was transformed into rough performance at 750°C, which agreed well with the surface microstructure trend. Moreover, the crystal growth also reveals the changes in surface morphology via surface energy analysis.

  18. Thin-film Rechargeable Lithium Batteries

    DOE R&D Accomplishments Database

    Bates, J. B.; Gruzalski, G. R.; Dudney, N. J.; Luck, C. F.; Yu, X.

    1993-11-01

    Rechargeable thin films batteries with lithium metal anodes, an amorphous inorganic electrolyte, and cathodes of lithium intercalation compounds have been fabricated and characterized. The cathodes include TiS{sub 2}, the {omega} phase of V{sub 2}O{sub 5}, and the cubic spinel Li{sub x}Mn{sub 2}O{sub 4} with open circuit voltages at full charge of about 2.5 V, 3.7 V, and 4.2 V, respectively. The development of these robust cells, which can be cycled thousands of times, was possible because of the stability of the amorphous lithium electrolyte, lithium phosphorus oxynitride. This material has a typical composition of Li{sub 2.9}PO{sub 3.3}N{sub 0.46} and a conductivity at 25 C of 2 {mu}S/cm. Thin film cells have been cycled at 100% depth of discharge using current densities of 2 to 100 {mu}A/cm{sup 2}. The polarization resistance of the cells is due to the slow insertion rate of Li{sup +} ions into the cathode. Chemical diffusion coefficients for Li{sup +} ions in the three types of cathodes have been estimated from the analysis of ac impedance measurements.

  19. Dynamic interfaces in an organic thin film

    PubMed Central

    Tao, Chenggang; Liu, Qiang; Riddick, Blake C.; Cullen, William G.; Reutt-Robey, Janice; Weeks, John D.; Williams, Ellen D.

    2008-01-01

    Low-dimensional boundaries between phases and domains in organic thin films are important in charge transport and recombination. Here, fluctuations of interfacial boundaries in an organic thin film, acridine-9-carboxylic acid on Ag(111), have been visualized in real time and measured quantitatively using scanning tunneling microscopy. The boundaries fluctuate via molecular exchange with exchange time constants of 10–30 ms at room temperature, with length-mode fluctuations that should yield characteristic f−1/2 signatures for frequencies less than ≈100 Hz. Although acridine-9-carboxylic acid has highly anisotropic intermolecular interactions, it forms islands that are compact in shape with crystallographically distinct boundaries that have essentially identical thermodynamic and kinetic properties. The physical basis of the modified symmetry is shown to arise from significantly different substrate interactions induced by alternating orientations of successive molecules in the condensed phase. Incorporating this additional set of interactions in a lattice–gas model leads to effective multicomponent behavior, as in the Blume–Emery–Griffiths model, and can straightforwardly reproduce the experimentally observed isotropic behavior. The general multicomponent description allows the domain shapes and boundary fluctuations to be tuned from isotropic to highly anisotropic in terms of the balance between intermolecular interactions and molecule–substrate interactions. PMID:18765797

  20. Optical thin film metrology for optoelectronics

    NASA Astrophysics Data System (ADS)

    Petrik, Peter

    2012-12-01

    The manufacturing of optoelectronic thin films is of key importance, because it underpins a significant number of industries. The aim of the European joint research project for optoelectronic thin film characterization (IND07) in the European Metrology Research Programme of EURAMET is to develop optical and X-ray metrologies for the assessment of quality as well as key parameters of relevant materials and layer systems. This work is intended to be a step towards the establishment of validated reference metrologies for the reliable characterization, and the development of calibrated reference samples with well-defined and controlled parameters. In a recent comprehensive study (including XPS, AES, GD-OES, GD-MS, SNMS, SIMS, Raman, SE, RBS, ERDA, GIXRD), Abou-Ras et al. (Microscopy and Microanalysis 17 [2011] 728) demonstrated that most characterization techniques have limitations and bottle-necks, and the agreement of the measurement results in terms of accurate, absolute values is not as perfect as one would expect. This paper focuses on optical characterization techniques, laying emphasis on hardware and model development, which determine the kind and number of parameters that can be measured, as well as their accuracy. Some examples will be discussed including optical techniques and materials for photovoltaics, biosensors and waveguides.

  1. Apparatus for laser assisted thin film deposition

    DOEpatents

    Warner, Bruce E.; McLean, II, William

    1996-01-01

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus.

  2. Apparatus for laser assisted thin film deposition

    DOEpatents

    Warner, B.E.; McLean, W. II

    1996-02-13

    A pulsed laser deposition apparatus uses fiber optics to deliver visible output beams. One or more optical fibers are coupled to one or more laser sources, and delivers visible output beams to a single chamber, to multiple targets in the chamber or to multiple chambers. The laser can run uninterrupted if one of the deposition chambers ceases to operate because other chambers can continue their laser deposition processes. The laser source can be positioned at a remote location relative to the deposition chamber. The use of fiber optics permits multi-plexing. A pulsed visible laser beam is directed at a generally non-perpendicular angle upon the target in the chamber, generating a plume of ions and energetic neutral species. A portion of the plume is deposited on a substrate as a thin film. A pulsed visible output beam with a high pulse repetition frequency is used. The high pulse repetition frequency is greater than 500 Hz, and more preferably, greater than about 1000 Hz. Diamond-like-carbon (DLC) is one of the thin films produced using the apparatus. 9 figs.

  3. ``Verso'' laser cleaning of mechanically thin films

    NASA Astrophysics Data System (ADS)

    Barone, Alberto; Bloisi, Francesco; Vicari, Luciano

    2003-03-01

    In usual dry laser cleaning of opaque samples, short laser pulses are projected onto the sample surface to be cleaned. Energy transferred from light ejects extraneous particles away from the surface. Laser beam fluence is limited by the damage reached by high temperature that the sample surface can produce. We have experimentally shown that for thin samples, the thermo-elastic wave propagates within the whole sample thickness, thus also the rear surface, while temperature effects are limited to the front surface. Therefore, the proposed "verso" laser cleaning technique (the pulsed laser beam impinges on rear sample surface) can be applied to any opaque "mechanically thin" film and is useful for samples having delicate treatments on the surface to be cleaned (e.g. written paper, painted tiles, magnetic films). We have applied our technique to paper sheets showing that it is possible to efficiently clean the surface without damaging ink marks on it. Using a probe beam deflection (PBD) technique in both direct and reverse configuration we have shown that the "verso" cleaning effect is due to the higher penetration depth of the thermo-elastic wave with respect to the temperature profile propagation.

  4. Ti-Cr-Al-O Thin Film Resistors

    SciTech Connect

    Jankowski, A F; Hayes, J P

    2002-03-21

    Thin films of Ti-Cr-Al-O are produced for use as an electrical resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O{sub 2}. Vertical resistivity values from 10{sup 4} to 10{sup 10} Ohm-cm are measured for Ti-Cr-Al-O films. The film resistivity can be design selected through control of the target composition and the deposition parameters. The Ti-Cr-Al-O thin film resistor is found to be thermally stable unlike other metal-oxide films.

  5. Method of improving field emission characteristics of diamond thin films

    DOEpatents

    Krauss, Alan R.; Gruen, Dieter M.

    1999-01-01

    A method of preparing diamond thin films with improved field emission properties. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display.

  6. The role of microstructural phenomena in magnetic thin films

    SciTech Connect

    Laughlin, D.E.; Lambeth, D.N.

    1992-12-31

    The subject is germane to magnetic recording media. Results during the first 2 years are presented under the following headings: atomic resolution TEM of CoNiCr films; CoNiCr and CoCrTa thin films; development of texture; and CoSm/Cr thin films. The HREM results showed that defects in Co-based films may be responsible for higher coercivity. Findings are presented on the effects of Cr interlayers on the microstructure of the second Co-based film in Co/Cr/Co/Cr multilayer films. Proposed research plans are outlined.

  7. The role of microstructural phenomena in magnetic thin films

    SciTech Connect

    Laughlin, D.E.; Lambeth, D.N.

    1992-01-01

    The subject is germane to magnetic recording media. Results during the first 2 years are presented under the following headings: atomic resolution TEM of CoNiCr films; CoNiCr and CoCrTa thin films; development of texture; and CoSm/Cr thin films. The HREM results showed that defects in Co-based films may be responsible for higher coercivity. Findings are presented on the effects of Cr interlayers on the microstructure of the second Co-based film in Co/Cr/Co/Cr multilayer films. Proposed research plans are outlined.

  8. Method of improving field emission characteristics of diamond thin films

    DOEpatents

    Krauss, A.R.; Gruen, D.M.

    1999-05-11

    A method of preparing diamond thin films with improved field emission properties is disclosed. The method includes preparing a diamond thin film on a substrate, such as Mo, W, Si and Ni. An atmosphere of hydrogen (molecular or atomic) can be provided above the already deposited film to form absorbed hydrogen to reduce the work function and enhance field emission properties of the diamond film. In addition, hydrogen can be absorbed on intergranular surfaces to enhance electrical conductivity of the diamond film. The treated diamond film can be part of a microtip array in a flat panel display. 3 figs.

  9. The role of microstructural phenomena in magnetic thin films

    NASA Astrophysics Data System (ADS)

    Laughlin, D. E.; Lambeth, D. N.

    Magnetic recording media is studied. Results during the first 2 years are presented under the following headings: atomic resolution transmission electron microscopy (TEM) of CoNiCr films; CoNiCr and CoCrTa thin films; development of texture; and CoSm/Cr thin films. The high resolution electron microscopy (HREM) results showed that defects in Co-based films may be responsible for higher coercivity. Findings are presented on the effects of Cr interlayers on the microstructure of the second Co-based film in Co/Cr/Co/Cr multilayer films. Proposed research plans are outlined.

  10. Microstructural and mechanical characteristics of Ni–Cr thin films

    SciTech Connect

    Petley, Vijay; Sathishkumar, S.; Thulasi Raman, K.H.; Rao, G.Mohan; Chandrasekhar, U.

    2015-06-15

    Highlights: • Ni–Cr thin films of varied composition deposited by DC magnetron co-sputtering. • Thin film with Ni–Cr: 80–20 at% composition exhibits most distinct behavior. • The films were tensile tested and exhibited no cracking till the substrate yielding. - Abstract: Ni–Cr alloy thin films have been deposited using magnetron co-sputtering technique at room temperature. Crystal structure was evaluated using GIXRD. Ni–Cr solid solution upto 40 at% of Cr exhibited fcc solid solution of Cr in Ni and beyond that it exhibited bcc solid solution of Ni in Cr. X-ray diffraction analysis shows formation of (1 1 1) fiber texture in fcc and (2 2 0) fiber texture in bcc Ni–Cr thin films. Electron microscopy in both in-plane and transverse direction of the film surface revealed the presence of columnar microstructure for films having Cr upto 40 at%. Mechanical properties of the films are evaluated using nanoindentation. The modulus values increased with increase of Cr at% till the film is fcc. With further increase in Cr at% the modulus values decreased. Ni–Cr film with 20 at% Ni exhibits reduction in modulus and is correlated to the poor crystallization of the film as reflected in XRD analysis. The Ni–Cr thin film with 80 at% Ni and 20 at% Cr exhibited the most distinct columnar structure with highest electrical resistivity, indentation hardness and elastic modulus.

  11. Use of thin films in high-temperature superconducting bearings.

    SciTech Connect

    Hull, J. R.; Cansiz, A.

    1999-09-30

    In a PM/HTS bearing, locating a thin-film HTS above a bulk HTS was expected to maintain the large levitation force provided by the bulk with a lower rotational drag provided by the very high current density of the film. For low drag to be achieved, the thin film must shield the bulk from inhomogeneous magnetic fields. Measurement of rotational drag of a PM/HTS bearing that used a combination of bulk and film HTS showed that the thin film is not effective in reducing the rotational drag. Subsequent experiments, in which an AC coil was placed above the thin-film HTS and the magnetic field on the other side of the film was measured, showed that the thin film provides good shielding when the coil axis is perpendicular to the film surface but poor shielding when the coil axis is parallel to the surface. This is consistent with the lack of reduction in rotational drag being due to a horizontal magnetic moment of the permanent magnet. The poor shielding with the coil axis parallel to the film surface is attributed to the aspect ratio of the film and the three-dimensional nature of the current flow in the film for this coil orientation.

  12. Reactive thin film flows over spinning discs

    NASA Astrophysics Data System (ADS)

    Zhao, Kun; Wray, Alex; Yang, Junfeng; Matar, Omar

    2015-11-01

    We consider the dynamics of a thin film flowing over a spinning disc in the presence of a chemical reaction, and associated heat and mass transfer. We use a boundary-layer approximation in conjunction with the Karman-Polhausen approximation for the velocity distribution in the film to derive a set of coupled one-dimensional evolution equations for the film thickness, radial and azimuthal flow rates, concentration of the reagents and products, and temperature. These highly nonlinear partial differential equations are solved numerically to reveal the formation of large-amplitude waves that travel from the disc inlet to its periphery. The influence of these waves on the concentration and temperature profiles is analysed for a wide range of system parameters: the Damkohler and Schmidt numbers, the thermal Peclet numbers, and the dimensionless disc radius (a surrogate for the Eckman number). It is shown that these waves lead to significant enhancement of the rates of heat and mass transfer associated with the reactive flow; these are measured by tracking the temporal evolution of local and spatially-averaged Nusselt and Sherwood numbers, respectively. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  13. Controlled nanostructuration of polycrystalline tungsten thin films

    SciTech Connect

    Girault, B.; Eyidi, D.; Goudeau, P.; Guerin, P.; Bourhis, E. Le; Renault, P.-O.; Sauvage, T.

    2013-05-07

    Nanostructured tungsten thin films have been obtained by ion beam sputtering technique stopping periodically the growing. The total thickness was maintained constant while nanostructure control was obtained using different stopping periods in order to induce film stratification. The effect of tungsten sublayers' thicknesses on film composition, residual stresses, and crystalline texture evolution has been established. Our study reveals that tungsten crystallizes in both stable {alpha}- and metastable {beta}-phases and that volume proportions evolve with deposited sublayers' thicknesses. {alpha}-W phase shows original fiber texture development with two major preferential crystallographic orientations, namely, {alpha}-W<110> and unexpectedly {alpha}-W<111> texture components. The partial pressure of oxygen and presence of carbon have been identified as critical parameters for the growth of metastable {beta}-W phase. Moreover, the texture development of {alpha}-W phase with two texture components is shown to be the result of a competition between crystallographic planes energy minimization and crystallographic orientation channeling effect maximization. Controlled grain size can be achieved for the {alpha}-W phase structure over 3 nm stratification step. Below, the {beta}-W phase structure becomes predominant.

  14. Vertically aligned biaxially textured molybdenum thin films

    SciTech Connect

    Krishnan, Rahul; Riley, Michael; Lee, Sabrina; Lu, Toh-Ming

    2011-09-15

    Vertically aligned, biaxially textured molybdenum nanorods were deposited using dc magnetron sputtering with glancing flux incidence (alpha = 85 degrees with respect to the substrate normal) and a two-step substrate-rotation mode. These nanorods were identified with a body-centered cubic crystal structure. The formation of a vertically aligned biaxial texture with a [110] out-of-plane orientation was combined with a [-110] in-plane orientation. The kinetics of the growth process was found to be highly sensitive to an optimum rest time of 35 seconds for the two-step substrate rotation mode. At all other rest times, the nanorods possessed two separate biaxial textures each tilted toward one flux direction. While the in-plane texture for the vertical nanorods maintains maximum flux capture area, inclined Mo nanorods deposited at alpha = 85 degrees without substrate rotation display a [-1-1-4] in-plane texture that does not comply with the maximum flux capture area argument. Finally, an in situ capping film was deposited with normal flux incidence over the biaxially textured vertical nanorods resulting in a thin film over the porous nanorods. This capping film possessed the same biaxial texture as the nanorods and could serve as an effective substrate for the epitaxial growth of other functional materials.

  15. Amorphous molybdenum silicon superconducting thin films

    SciTech Connect

    Bosworth, D. Sahonta, S.-L.; Barber, Z. H.; Hadfield, R. H.

    2015-08-15

    Amorphous superconductors have become attractive candidate materials for superconducting nanowire single-photon detectors due to their ease of growth, homogeneity and competitive superconducting properties. To date the majority of devices have been fabricated using W{sub x}Si{sub 1−x}, though other amorphous superconductors such as molybdenum silicide (Mo{sub x}Si{sub 1−x}) offer increased transition temperature. This study focuses on the properties of MoSi thin films grown by magnetron sputtering. We examine how the composition and growth conditions affect film properties. For 100 nm film thickness, we report that the superconducting transition temperature (Tc) reaches a maximum of 7.6 K at a composition of Mo{sub 83}Si{sub 17}. The transition temperature and amorphous character can be improved by cooling of the substrate during growth which inhibits formation of a crystalline phase. X-ray diffraction and transmission electron microscopy studies confirm the absence of long range order. We observe that for a range of 6 common substrates (silicon, thermally oxidized silicon, R- and C-plane sapphire, x-plane lithium niobate and quartz), there is no variation in superconducting transition temperature, making MoSi an excellent candidate material for SNSPDs.

  16. Oxynitride Thin Film Barriers for PV Packaging

    SciTech Connect

    Glick, S. H.; delCueto, J. A.; Terwilliger, K. M.; Jorgensen, G. J.; Pankow, J. W.; Keyes, B. M.; Gedvilas, L. M.; Pern, F. J.

    2005-11-01

    Dielectric thin-film barrier and adhesion-promoting layers consisting of silicon oxynitride materials (SiOxNy, with various stoichiometry) were investigated. For process development, films were applied to glass (TCO, conductive SnO2:F; or soda-lime), polymer (PET, polyethylene terephthalate), aluminized soda-lime glass, or PV cell (a-Si, CIGS) substrates. Design strategy employed de-minimus hazard criteria to facilitate industrial adoption and reduce implementation costs for PV manufacturers or suppliers. A restricted process window was explored using dilute compressed gases (3% silane, 14% nitrous oxide, 23% oxygen) in nitrogen (or former mixtures, and 11.45% oxygen mix in helium and/or 99.999% helium dilution) with a worst-case flammable and non-corrosive hazard classification. Method employed low radio frequency (RF) power, less than or equal to 3 milliwatts per cm2, and low substrate temperatures, less than or equal to 100 deg C, over deposition areas less than or equal to 1000 cm2. Select material properties for barrier film thickness (profilometer), composition (XPS/FTIR), optical (refractive index, %T and %R), mechanical peel strength and WVTR barrier performance are presented.

  17. Pressureless Bonding Using Sputtered Ag Thin Films

    NASA Astrophysics Data System (ADS)

    Oh, Chulmin; Nagao, Shijo; Suganuma, Katsuaki

    2014-12-01

    To improve the performance and reliability of power electronic devices, particularly those built around next-generation wide-bandgap semiconductors such as SiC and GaN, the bonding method used for packaging must change from soldering to solderless technology. Because traditional solders are problematic in the harsh operating conditions expected for emerging high-temperature power devices, we propose a new bonding method in this paper, namely a pressureless, low-temperature bonding process in air, using abnormal grain growth on sputtered Ag thin films to realize extremely high temperature resistance. To investigate the mechanisms of this bonding process, we characterized the microstructural changes in the Ag films over various bonding temperatures and times. We measured the bonding properties of the specimens by a die-shear strength test, as well as by x-ray diffraction measurements of the residual stress in the Ag films to show how the microstructural developments were essential to the bonding technology. Sound bonds with high die strength can be achieved only with abnormal grain growth at optimum bonding temperature and time. Pressureless bonding allows for production of reliable high-temperature power devices for a wide variety of industrial, energy, and environmental applications.

  18. Eutectic bonds on wafer scale by thin film multilayers

    NASA Astrophysics Data System (ADS)

    Christensen, Carsten; Bouwstra, Siebe

    1996-09-01

    The use of gold based thin film multilayer systems for forming eutectic bonds on wafer scale is investigated and preliminary results will be presented. On polished 4 inch wafers different multilayer systems are developed using thin film techniques and bonded afterwards under reactive atmospheres and different bonding temperatures and forces. Pull tests are performed to extract the bonding strengths.

  19. Applications of Thin Film Thermocouples for Surface Temperature Measurement

    NASA Technical Reports Server (NTRS)

    Martin, Lisa C.; Holanda, Raymond

    1994-01-01

    Thin film thermocouples provide a minimally intrusive means of measuring surface temperature in hostile, high temperature environments. Unlike wire thermocouples, thin films do not necessitate any machining of the surface, therefore leaving intact its structural integrity. Thin films are many orders of magnitude thinner than wire, resulting in less disruption to the gas flow and thermal patterns that exist in the operating environment. Thin film thermocouples have been developed for surface temperature measurement on a variety of engine materials. The sensors are fabricated in the NASA Lewis Research Center's Thin Film Sensor Lab, which is a class 1000 clean room. The thermocouples are platinum-13 percent rhodium versus platinum and are fabricated by the sputtering process. Thin film-to-leadwire connections are made using the parallel-gap welding process. Thermocouples have been developed for use on superalloys, ceramics and ceramic composites, and intermetallics. Some applications of thin film thermocouples are: temperature measurement of space shuttle main engine turbine blade materials, temperature measurement in gas turbine engine testing of advanced materials, and temperature and heat flux measurements in a diesel engine. Fabrication of thin film thermocouples is described. Sensor durability, drift rate, and maximum temperature capabilities are addressed.

  20. Tools to Synthesize the Learning of Thin Films

    ERIC Educational Resources Information Center

    Rojas, Roberto; Fuster, Gonzalo; Slusarenko, Viktor

    2011-01-01

    After a review of textbooks written for undergraduate courses in physics, we have found that discussions on thin films are mostly incomplete. They consider the reflected and not the transmitted light for two instead of the four types of thin films. In this work, we complement the discussion in elementary textbooks, by analysing the phase…

  1. Progress in polycrystalline thin-film solar cells

    SciTech Connect

    Zweibel, K; Hermann, A; Mitchell, R

    1983-07-01

    Photovoltaic devices based on several polycrystalline thin-film materials have reached near and above 10% sunlight-to-electricity conversion efficiencies. This paper examines the various polycrystalline thin-film PV materials including CuInSe/sub 2/ and CdTe in terms of their material properties, fabrication techniques, problems, and potentials.

  2. Fracture of nanoporous organosilicate thin films

    NASA Astrophysics Data System (ADS)

    Gage, David Maxwell

    Nanoporous organosilicate thin films are attractive candidates for a number of emerging technologies, ranging from biotechnology to optics and microelectronics. However, integration of these materials is challenged by their fragile nature and susceptibility to mechanical failure. Debonding and cohesive cracking of the organosilicate film are principal concerns that threaten the reliability and yield of device structures. Despite the intense interest in these materials, there is currently a need for greater understanding of the relationship between glass structure and thermomechanical integrity. The objective of this research was to investigate strategies for improving mechanical performance through variations in film chemistry, process conditions, and pore morphology. Several approaches to effecting improvements in elastic and fracture properties were examined in depth, including post-deposition curing, molecular reinforcement using hydrocarbon network groups, and manipulation of pore size and architecture. Detailed structural characterization was employed along with quantitative fracture mechanics based testing methods. It was shown that ultra-violet irradiation and electron bombardment post-deposition treatments can significantly impact glass structure in ways that cannot be achieved through thermal activation alone. Both techniques demonstrated high porogen removal efficiency and enhanced the glass matrix through increased network connectivity and local bond rearrangements. The increases in network connectivity were achieved predominantly through the replacement of terminal groups, particularly methyl and silanol groups, with Si-O network bonds. Nuclear magnetic resonance spectroscopy was shown to be a powerful and quantitative method for gaining new insight into the underlying cure reactions and mechanisms. It was demonstrated that curing leads to significant progressive enhancement of elastic modulus and adhesive fracture energies due to increased network bond

  3. Effect of film thickness and texture morphology on the physical properties of lead sulfide thin films

    NASA Astrophysics Data System (ADS)

    Azadi Motlagh, Z.; Azim Araghi, M. E.

    2016-02-01

    Lead sulfide (PbS) thin films were prepared onto ultra-clean quartz substrate by the electron beam gun (EBG) evaporation method. The thicknesses of the thin films were 50, 100, 150 and 200 nm. They were annealed at 423 K for 2 h. Field emission scanning electron microscopy (FESEM) images of the thin films showed their texture morphology at the surface of the quartz substrate. X-ray diffraction (XRD) patterns of the thin films showed that they have a cubic phase and rock-salt structure after annealing. The average crystallite size for the thin films was in the range of 32-100 nm. Optical measurements confirmed that crystalline thin films have a direct band gap that increases by decreasing the film thickness. This blue shift of the band gap of thin films compared to the bulk structure can be attributed to the quantum confinement effects in the nanoparticles. A decrease in conductivity by increasing the temperature confirmed the positive temperature coefficient of resistance in the thin films that showed the dominant conduction mechanism is via a band-like transition. The density of localized states at the Fermi level increases by increasing the film thickness. Current-voltage behavior of the thin films showed an increase in both dark current and photocurrent by increasing the crystallite size which is discussed, based on the presence of trap states and barriers in nanostructures.

  4. A Model for Tear Film Thinning With Osmolarity and Fluorescein

    PubMed Central

    Braun, Richard J.; Gewecke, Nicholas R.; Begley, Carolyn G.; King-Smith, P. Ewen; Siddique, Javed I.

    2014-01-01

    Purpose. We developed a mathematical model predicting dynamic changes in fluorescent intensity during tear film thinning in either dilute or quenching regimes and we model concomitant changes in tear film osmolarity. Methods. We solved a mathematical model for the thickness, osmolarity, fluorescein concentration, and fluorescent intensity as a function of time, assuming a flat and spatially uniform tear film. Results. The tear film thins to a steady-state value that depends on the relative importance of the rates of evaporation and osmotic supply, and the resulting increase of osmolarity and fluorescein concentrations are calculated. Depending on the initial thickness, the rate of osmotic supply and the tear film thinning rate, the osmolarity increase may be modest or it may increase by as much as a factor of eight or more from isosmotic levels. Regarding fluorescent intensity, the quenching regime occurs for initial concentrations at or above the critical fluorescein concentration where efficiency dominates, while lower concentrations show little change in fluorescence with tear film thinning. Conclusions. Our model underscores the importance of using fluorescein concentrations at or near the critical concentration clinically so that quenching reflects tear film thinning and breakup. In addition, the model predicts that, depending on tear film and osmotic factors, the osmolarity within the corneal compartment of the tear film may increase markedly during tear film thinning, well above levels that cause marked discomfort. PMID:24458153

  5. Tailoring Thin Film-Lacquer Coatings for Space Application

    NASA Technical Reports Server (NTRS)

    Peters, Wanda C.; Harris, George; Miller, Grace; Petro, John

    1998-01-01

    Thin film coatings have the capability of obtaining a wide range of thermal radiative properties, but the development of thin film coatings can sometimes be difficult and costly when trying to achieve highly specular surfaces. Given any space mission's thermal control requirements, there is often a need for a variation of solar absorptance (Alpha(s)), emittance (epsilon) and/or highly specular surfaces. The utilization of thin film coatings is one process of choice for meeting challenging thermal control requirements because of its ability to provide a wide variety of Alpha(s)/epsilon ratios. Thin film coatings' radiative properties can be tailored to meet specific thermal control requirements through the use of different metals and the variation of dielectric layer thickness. Surface coatings can be spectrally selective to enhance radiative coupling and decoupling. The application of lacquer to a surface can also provide suitable specularity for thin film application without the cost and difficulty associated with polishing.

  6. Physical properties in thin films of iron oxides.

    SciTech Connect

    Uribe, J. D.; Osorio, J.; Barrero, C. A.; Girata, D.; Morales, A. L.; Hoffmann, A.; Materials Science Division; Univ. de Antioquia

    2008-01-01

    We have grown hematite ({alpha}-Fe{sub 2}O{sub 3}) thin films on stainless steel substrates and magnetite (Fe{sub 3}O{sub 4}) thin films on (0 0 1)-Si single crystal substrates by a RF magnetron sputtering process. {alpha}-Fe{sub 2}O{sub 3} thin films were grown in an Ar atmosphere at substrate temperatures around 400 C, and Fe{sub 3}O{sub 4} thin films in an Ar/O{sub 2} reactive atmosphere at substrate temperatures around 500 C. Conversion electron Moessbauer (CEM) spectra of {alpha}-Fe{sub 2}O{sub 3} thin films exhibit values for hyperfine parameter characteristic of the hematite stoichiometric phase in the weak ferromagnetic state [R.E. Vandenberghe, in: Moessbauer Spectroscopy and Applications in Geology, University Gent, Belgium, 1990. [1

  7. Microstructural evolution during stress relaxation of gold thin films

    NASA Astrophysics Data System (ADS)

    Syarbaini, Luthfia Amra

    Microstructure evolution in metal thin films for use in microelectronic devices was studied due to the formation of defects such as whiskers and hillocks that may cause problems in electrical circuits. Thin film stress relaxation can occur through a variety of processes. Understanding such mechanisms and the conditions under which certain mechanism dominate can potentially lead to the improved control of thin film stability. Studies of the 3D microstructural changes in Au thin films on silicon and other substrates with different thermal expansion coefficients aid us in understanding thin film relaxation phenomena such as hillock/whisker formation. Techniques such as in-situ scanning electron microscopy (SEM) heating and cooling experiments, electron backscattered diffraction (EBSD), focus ion beam (FIB) cross sections and atomic force microscopy (AFM) enabled us to quantify the kinetic relationships between relaxation mechanisms and local morphological changes.

  8. Development of Thin-Film Battery Powered Transdermal Medical Devices

    SciTech Connect

    Bates, J.B.; Sein, T.

    1999-07-06

    Research carried out at ORNL has led to the development of solid state thin-film rechargeable lithium and lithium-ion batteries. These unique devices can be fabricated in a variety of shapes and to any required size, large or small, on virtually any type of substrate. Because they have high energies per unit of volume and mass and because they are rechargeable, thin-film lithium batteries have potentially many applications as small power supplies in consumer and special electronic products. Initially, the objective of this project was to develop thin-film battery powered products. Initially, the objective of this project was to develop thin-film battery powered transdermal electrodes for recording electrocardiograms and electroencephalograms. These ''active'' electrode would eliminate the effect of interference and improve the reliability in diagnosing heart or brain malfunctions. Work in the second phase of this project was directed at the development of thin-film battery powered implantable defibrillators.

  9. Nonlinear optical microscopy for imaging thin films and surfaces

    SciTech Connect

    Smilowitz, L.B.; McBranch, D.W.; Robinson, J.M.

    1995-03-01

    We have used the inherent surface sensitivity of second harmonic generation to develop an instrument for nonlinear optical microscopy of surfaces and interfaces. We have demonstrated the use of several nonlinear optical responses for imaging thin films. The second harmonic response of a thin film of C{sub 60} has been used to image patterned films. Two photon absorption light induced fluorescence has been used to image patterned thin films of Rhodamine 6G. Applications of nonlinear optical microscopy include the imaging of charge injection and photoinduced charge transfer between layers in semiconductor heterojunction devices as well as across membranes in biological systems.

  10. Method of producing solution-derived metal oxide thin films

    DOEpatents

    Boyle, Timothy J.; Ingersoll, David

    2000-01-01

    A method of preparing metal oxide thin films by a solution method. A .beta.-metal .beta.-diketonate or carboxylate compound, where the metal is selected from groups 8, 9, 10, 11, and 12 of the Periodic Table, is solubilized in a strong Lewis base to form a homogeneous solution. This precursor solution forms within minutes and can be deposited on a substrate in a single layer or a multiple layers to form a metal oxide thin film. The substrate with the deposited thin film is heated to change the film from an amorphous phase to a ceramic metal oxide and cooled.

  11. Porous thin films of functionalized mesoporous silica nanoparticles.

    PubMed

    Kobler, Johannes; Bein, Thomas

    2008-11-25

    The synthesis of extremely small mesoporous silica nanoparticles via a specific co-condensation process with phenyl groups is demonstrated. The suspensions are ideally suited for the production of nanoscale thin films by spin-coating. Thanks to the small particle size and the resulting low surface roughness, the films show excellent optical qualities and exhibit good diffusion properties and a highly accessible pore system. The availability of such homogeneous porous thin films made it possible to use ellipsometric porosimetry (EP) as a convenient method to determine the effective porosity of the films on their original support without destroying it. It was possible to record sorption isotherms of the thin films with ellipsometry and to correlate the data with nitrogen sorption data of dried powders of the same material. The thin films showed very low refractive indices of around 1.2. PMID:19206399

  12. Thermally induced optical nonlinearity during transient heating of thin films

    SciTech Connect

    Chen, G. ); Tien, C.L. )

    1994-05-01

    This work studies the temperature field and the optical response of weakly absorbing thin films with thermally induced optical nonlinearity during picosecond to nanosecond pulsed-laser heating. A one-dimensional model is presented that examines the effects of the temperature dependent optical constants and the nonuniform absorption caused by interference. The energy equation is solved numerically, coupled with the matrix method in optical multilayer theory. Both cadmium sulfide (CdS) thin films and a zinc selenide (ZnSe) interference filter are considered. The computational results compare favorably with available experimental data on the ZnSe interference filter. This study shows that the transient temperature distributions in the films are highly nonuniform. Such nonuniformity yields Airy's formulae for calculating the thin-film reflectance and transmittance inapplicable. Applications of the work include optical bistability, localized change of the film structure, and measurement of the thermal diffusivity of thin films. 31 refs., 7 figs., 1 tab.

  13. A versatile platform for magnetostriction measurements in thin films

    NASA Astrophysics Data System (ADS)

    Pernpeintner, M.; Holländer, R. B.; Seitner, M. J.; Weig, E. M.; Gross, R.; Goennenwein, S. T. B.; Huebl, H.

    2016-03-01

    We present a versatile nanomechanical sensing platform for the investigation of magnetostriction in thin films. It is based on a doubly clamped silicon nitride nanobeam resonator covered with a thin magnetostrictive film. Changing the magnetization direction within the film plane by an applied magnetic field generates a magnetoelastic stress and thus changes the resonance frequency of the nanobeam. A measurement of the resulting resonance frequency shift, e.g., by optical interferometry, allows to quantitatively determine the magnetostriction constants of the thin film. In a proof-of-principle experiment, we determine the magnetostriction constants of a 10 nm thick polycrystalline cobalt film, showing very good agreement with literature values. The presented technique aims, in particular, for the precise measurement of magnetostriction in a variety of (conducting and insulating) thin films, which can be deposited by, e.g., electron beam deposition, thermal evaporation, or sputtering.

  14. Electroless plating of thin gold films directly onto silicon nitride thin films and into micropores.

    PubMed

    Whelan, Julie C; Karawdeniya, Buddini Iroshika; Bandara, Y M Nuwan D Y; Velleco, Brian D; Masterson, Caitlin M; Dwyer, Jason R

    2014-07-23

    A method to directly electrolessly plate silicon-rich silicon nitride with thin gold films was developed and characterized. Films with thicknesses <100 nm were grown at 3 and 10 °C between 0.5 and 3 h, with mean grain sizes between ∼20 and 30 nm. The method is compatible with plating free-standing ultrathin silicon nitride membranes, and we successfully plated the interior walls of micropore arrays in 200 nm thick silicon nitride membranes. The method is thus amenable to coating planar, curved, and line-of-sight-obscured silicon nitride surfaces. PMID:24999923

  15. An overview of thin film nitinol endovascular devices.

    PubMed

    Shayan, Mahdis; Chun, Youngjae

    2015-07-01

    Thin film nitinol has unique mechanical properties (e.g., superelasticity), excellent biocompatibility, and ultra-smooth surface, as well as shape memory behavior. All these features along with its low-profile physical dimension (i.e., a few micrometers thick) make this material an ideal candidate in developing low-profile medical devices (e.g., endovascular devices). Thin film nitinol-based devices can be collapsed and inserted in remarkably smaller diameter catheters for a wide range of catheter-based procedures; therefore, it can be easily delivered through highly tortuous or narrow vascular system. A high-quality thin film nitinol can be fabricated by vacuum sputter deposition technique. Micromachining techniques were used to create micro patterns on the thin film nitinol to provide fenestrations for nutrition and oxygen transport and to increase the device's flexibility for the devices used as thin film nitinol covered stent. In addition, a new surface treatment method has been developed for improving the hemocompatibility of thin film nitinol when it is used as a graft material in endovascular devices. Both in vitro and in vivo test data demonstrated a superior hemocompatibility of the thin film nitinol when compared with commercially available endovascular graft materials such as ePTFE or Dacron polyester. Promising features like these have motivated the development of thin film nitinol as a novel biomaterial for creating endovascular devices such as stent grafts, neurovascular flow diverters, and heart valves. This review focuses on thin film nitinol fabrication processes, mechanical and biological properties of the material, as well as current and potential thin film nitinol medical applications. PMID:25839120

  16. Characterization of reliability of printed indium tin oxide thin films.

    PubMed

    Hong, Sung-Jei; Kim, Jong-Woong; Jung, Seung-Boo

    2013-11-01

    Recently, decreasing the amount of indium (In) element in the indium tin oxide (ITO) used for transparent conductive oxide (TCO) thin film has become necessary for cost reduction. One possible approach to this problem is using printed ITO thin film instead of sputtered. Previous studies showed potential for printed ITO thin films as the TCO layer. However, nothing has been reported on the reliability of printed ITO thin films. Therefore, in this study, the reliability of printed ITO thin films was characterized. ITO nanoparticle ink was fabricated and printed onto a glass substrate followed by heating at 400 degrees C. After measurement of the initial values of sheet resistance and optical transmittance of the printed ITO thin films, their reliabilities were characterized with an isothermal-isohumidity test for 500 hours at 85 degrees C and 85% RH, a thermal shock test for 1,000 cycles between 125 degrees C and -40 degrees C, and a high temperature storage test for 500 hours at 125 degrees C. The same properties were investigated after the tests. Printed ITO thin films showed stable properties despite extremely thermal and humid conditions. Sheet resistances of the printed ITO thin films changed slightly from 435 omega/square to 735 omega/square 507 omega/square and 442 omega/square after the tests, respectively. Optical transmittances of the printed ITO thin films were slightly changed from 84.74% to 81.86%, 88.03% and 88.26% after the tests, respectively. These test results suggest the stability of printed ITO thin film despite extreme environments. PMID:24245331

  17. Altering properties of cerium oxide thin films by Rh doping

    SciTech Connect

    Ševčíková, Klára; Nehasil, Václav; Vorokhta, Mykhailo; Haviar, Stanislav; Matolín, Vladimír; and others

    2015-07-15

    Highlights: • Thin films of ceria doped by rhodium deposited by RF magnetron sputtering. • Concentration of rhodium has great impact on properties of Rh–CeO{sub x} thin films. • Intensive oxygen migration in films with low concentration of rhodium. • Oxygen migration suppressed in films with high amount of Rh dopants. - Abstract: Ceria containing highly dispersed ions of rhodium is a promising material for catalytic applications. The Rh–CeO{sub x} thin films with different concentrations of rhodium were deposited by RF magnetron sputtering and were studied by soft and hard X-ray photoelectron spectroscopies, Temperature programmed reaction and X-ray powder diffraction techniques. The sputtered films consist of rhodium–cerium mixed oxide where cerium exhibits a mixed valency of Ce{sup 4+} and Ce{sup 3+} and rhodium occurs in two oxidation states, Rh{sup 3+} and Rh{sup n+}. We show that the concentration of rhodium has a great influence on the chemical composition, structure and reducibility of the Rh–CeO{sub x} thin films. The films with low concentrations of rhodium are polycrystalline, while the films with higher amount of Rh dopants are amorphous. The morphology of the films strongly influences the mobility of oxygen in the material. Therefore, varying the concentration of rhodium in Rh–CeO{sub x} thin films leads to preparing materials with different properties.

  18. Interconnected Si nanocrystals forming thin films with controlled bandgap values

    SciTech Connect

    Nychyporuk, T.; Zakharko, Yu.; Lysenko, V.; Lemiti, M.

    2009-08-24

    Interconnected Si nanocrystals forming homogeneous thin films with controlled bandgap values from 1.2 to 2.9 eV were formed by pulsed plasma enhanced chemical vapor deposition technique under dusty plasma conditions. The chosen values of plasma duration time correspond to specific phases of the dust nanoparticle growth. Structural and optical properties of the deposited nanostructured films are described in details. These nanocrystalline Si thin films seem to be promising candidates for all-Si tandem solar cell applications.

  19. Thin film coatings for space electrical power system applications

    NASA Technical Reports Server (NTRS)

    Gulino, Daniel A.

    1989-01-01

    This paper examines some of the ways in which thin film coatings can play a role in aerospace applications. Space systems discussed include photovoltaic and solar dynamic electric power generation systems, including applications in environmental protection, thermal energy storage, and radiator emittance enhancement. Potential applications of diamondlike films to both atmospheric and space based systems are examined. Also, potential uses of thin films of the recently discovered high-temperature superconductive materials are discussed.

  20. Thin film coatings for space electrical power system applications

    NASA Technical Reports Server (NTRS)

    Gulino, Daniel A.

    1988-01-01

    This paper examines some of the ways in which thin film coatings can play a role in aerospace applications. Space systems discussed include photovoltaic and solar dynamic electric power generation systems, including applications in environmental protection, thermal energy storage, and radiator emittance enhancement. Potential applications of diamondlike films to both atmospheric and space based systems are examined. Also, potential uses of thin films of the recently discovered high-temperature superconductive materials are discussed.

  1. Fabricating Thin-Film High-Temperature Thermoset Resins

    NASA Technical Reports Server (NTRS)

    Dickerson, G. E.; Long, E. R. J.; Kitts, R., G.

    1982-01-01

    To prepare an epoxy thin film, quantity of uncured epoxy to be cast placed in vacuum oven and heated to melting temperature. Vacuum of about 30 mm Hg is applied to deaerate epoxy charge. Pressure is cycled with each foaming until all air and excess volatiles are revoved. thermoset (cross-linked) resin is cast between thin, flexible, releasing substrate films. Films less than 0.025 mm in thickness are made routinely with this facility.

  2. Stress distribution in Si under patterned thin film structures

    SciTech Connect

    Wong, S.P.; Huang, L.; Guo, W.S.; Cheung, W.Y.; Zhao, S.

    1997-05-01

    The authors have employed the infrared photoelasticity (PE) method to study the stress distribution in Si substrates under patterned thin film structures such as thermal oxide layers partially covered by metal films and oxide layers with long trench openings. It is demonstrated that a lot of information on the two dimensional stress distribution in the substrate under patterned thin film structures can be obtained from PE experiments. The capability, limitation, and further development of the PE method for semiconductor applications are discussed.

  3. Phase-modulated beams technique for thin photorefractive films characterization

    NASA Astrophysics Data System (ADS)

    Barmenkov, Yu. O.; Kir'yanov, A. V.; Starodumov, A. N.; Kozhevnikov, N. M.; Lemmetyinen, H.

    2000-04-01

    The phase-modulated beams technique is developed for nonlinear thin photorefractive films characterization. In the Raman-Nath diffraction approximation, the formulas are deduced, allowing us to measure the amplitude of phase grating recorded in a film and its nonlinear refractive index n2. The method is applied for studying Langmuir-Blodgett multilayer thin (˜0.6 μm) films of Bacteriorhodopsin at wavelength 633 nm.

  4. Thin film adhesion by nanoindentation-induced superlayers. Final report

    SciTech Connect

    Gerberich, William W.; Volinsky, A.A.

    2001-06-01

    This work has analyzed the key variables of indentation tip radius, contact radius, delamination radius, residual stress and superlayer/film/interlayer properties on nanoindentation measurements of adhesion. The goal to connect practical works of adhesion for very thin films to true works of adhesion has been achieved. A review of this work titled ''Interfacial toughness measurements of thin metal films,'' which has been submitted to Acta Materialia, is included.

  5. Transferable and flexible thin film devices for engineering applications

    NASA Astrophysics Data System (ADS)

    Mutyala, Madhu Santosh K.; Zhou, Jingzhou; Li, Xiaochun

    2014-05-01

    Thin film devices can be of significance for manufacturing, energy conversion systems, solid state electronics, wireless applications, etc. However, these thin film sensors/devices are normally fabricated on rigid silicon substrates, thus neither flexible nor transferrable for engineering applications. This paper reports an innovative approach to transfer polyimide (PI) embedded thin film devices, which were fabricated on glass, to thin metal foils. Thin film thermocouples (TFTCs) were fabricated on a thin PI film, which was spin coated and cured on a glass substrate. Another layer of PI film was then spin coated again on TFTC/PI and cured to obtain the embedded TFTCs. Assisted by oxygen plasma surface coarsening of the PI film on the glass substrate, the PI embedded TFTC was successfully transferred from the glass substrate to a flexible copper foil. To demonstrate the functionality of the flexible embedded thin film sensors, they were transferred to the sonotrode tip of an ultrasonic metal welding machine for in situ process monitoring. The dynamic temperatures near the sonotrode tip were effectively measured under various ultrasonic vibration amplitudes. This technique of transferring polymer embedded electronic devices onto metal foils yield great potentials for numerous engineering applications.

  6. The Characterization of Thin Film Nickel Titanium Shape Memory Alloys

    NASA Astrophysics Data System (ADS)

    Harris Odum, Nicole Latrice

    Shape memory alloys (SMA) are able to recover their original shape through the appropriate heat or stress exposure after enduring mechanical deformation at a low temperature. Numerous alloy systems have been discovered which produce this unique feature like TiNb, AgCd, NiAl, NiTi, and CuZnAl. Since their discovery, bulk scale SMAs have undergone extensive material property investigations and are employed in real world applications. However, its thin film counterparts have been modestly investigated and applied. Researchers have introduced numerous theoretical microelectromechanical system (MEMS) devices; yet, the research community's overall unfamiliarity with the thin film properties has delayed growth in this area. In addition, it has been difficult to outline efficient thin film processing techniques. In this dissertation, NiTi thin film processing and characterization techniques will be outlined and discussed. NiTi thin films---1 mum thick---were produced using sputter deposition techniques. Substrate bound thin films were deposited to analysis the surface using Scanning Electron Microscopy; the film composition was obtained using Energy Dispersive Spectroscopy; the phases were identified using X-ray diffraction; and the transformation temperatures acquired using resistivity testing. Microfabrication processing and sputter deposition were employed to develop tensile membranes for membrane deflection experimentation to gain insight on the mechanical properties of the thin films. The incorporation of these findings will aid in the movement of SMA microactuation devices from theory to fruition and greatly benefit industries such as medicinal and aeronautical.

  7. Patterns and conformations in molecularly thin films

    NASA Astrophysics Data System (ADS)

    Basnet, Prem B.

    Molecularly thin films have been a subject of great interest for the last several years because of their large variety of industrial applications ranging from micro-electronics to bio-medicine. Additionally, molecularly thin films can be used as good models for biomembrane and other systems where surfaces are critical. Many different kinds of molecules can make stable films. My research has considered three such molecules: a polymerizable phospholipid, a bent-core molecules, and a polymer. One common theme of these three molecules is chirality. The phospolipid molecules studied here are strongly chiral, which can be due to intrinsically chiral centers on the molecules and also due to chiral conformations. We find that these molecules give rise to chiral patterns. Bent-core molecules are not intrinsically chiral, but individual molecules and groups of molecules can show chiral structures, which can be changed by surface interactions. One major, unconfirmed hypothesis for the polymer conformation at surface is that it forms helices, which would be chiral. Most experiments were carried out at the air/water interface, in what are called Langmuir films. Our major tools for studying these films are Brewster Angle Microscopy (BAM) coupled with the thermodynamic information that can be deduced from surface pressure isotherms. Phospholipids are one of the important constituents of liposomes -- a spherical vesicle com-posed of a bilayer membrane, typically composed of a phospholipid and cholesterol bilayer. The application of liposomes in drug delivery is well-known. Crumpling of vesicles of polymerizable phospholipids has been observed. With BAM, on Langmuir films of such phospholipids, we see novel spiral/target patterns during compression. We have found that both the patterns and the critical pressure at which they formed depend on temperature (below the transition to a i¬‘uid layer). Bent-core liquid crystals, sometimes knows as banana liquid crystals, have drawn

  8. Amperometric noise at thin film band electrodes.

    PubMed

    Larsen, Simon T; Heien, Michael L; Taboryski, Rafael

    2012-09-18

    Background current noise is often a significant limitation when using constant-potential amperometry for biosensor application such as amperometric recordings of transmitter release from single cells through exocytosis. In this paper, we fabricated thin-film electrodes of gold and conductive polymers and measured the current noise in physiological buffer solution for a wide range of different electrode areas. The noise measurements could be modeled by an analytical expression, representing the electrochemical cell as a resistor and capacitor in series. The studies revealed three domains; for electrodes with low capacitance, the amplifier noise dominated, for electrodes with large capacitances, the noise from the resistance of the electrochemical cell was dominant, while in the intermediate region, the current noise scaled with electrode capacitance. The experimental results and the model presented here can be used for choosing an electrode material and dimensions and when designing chip-based devices for low-noise current measurements. PMID:22928986

  9. In-situ thin films by MOCVD

    SciTech Connect

    Norris, P.E.; Orlando, G.W. )

    1990-01-01

    This paper reports on the growth of high quality yttrium barium copper oxide (YBCO) thin films by MOCVD. Three MOCVD processes have been studied: a two-step (growth/post anneal) process requiring O{sub 2} anneal at 950--980 C, an in-situ (one step, no post growth anneal) process at 800--850 C and a plasma-enhanced, in-situ process (PE-MOCVD), which is operable at still lower substrate temperatures. The in-situ PE-MOCVD process is of great interest since, to a substantial degree, the growth temperature determines the degree of compatibility of a process with substrate materials and existing device technologies, such as VLSI-SilicoVLSI-Silicon.

  10. Thin films of mixed metal compounds

    DOEpatents

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  11. Glow discharge plasma deposition of thin films

    DOEpatents

    Weakliem, Herbert A.; Vossen, Jr., John L.

    1984-05-29

    A glow discharge plasma reactor for deposition of thin films from a reactive RF glow discharge is provided with a screen positioned between the walls of the chamber and the cathode to confine the glow discharge region to within the region defined by the screen and the cathode. A substrate for receiving deposition material from a reactive gas is positioned outside the screened region. The screen is electrically connected to the system ground to thereby serve as the anode of the system. The energy of the reactive gas species is reduced as they diffuse through the screen to the substrate. Reactive gas is conducted directly into the glow discharge region through a centrally positioned distribution head to reduce contamination effects otherwise caused by secondary reaction products and impurities deposited on the reactor walls.

  12. Characterization of lithium phosphorous oxynitride thin films

    SciTech Connect

    Yu, Xiaohua; Bates, J.B.; Jellison, G.E. Jr.

    1996-01-01

    Electrical and electrochemical properties of an amorphous thin-film lithium electrolyte, lithium phosphorous oxynitride (Lipon), have been studied with emphasis on the stability window vs Li metal and the behavior of the Li/Lipon interface. Ion conductivity of Lipon exhibits Arrhenius behavior at {minus}26 to +140 C, with a conductivity of 1.7 {times} 10{sup {minus}6}S/cm at 25 C and an activity energy of 0.50 {plus_minus} 0.01 eV. A stability window of 5.5 V was observed with respect to a Li{sup +}/Li reference, and no detectable reaction or degradation was evident at the Li/Lipon interface upon lithium cycling.

  13. Electrochromism: from oxide thin films to devices

    NASA Astrophysics Data System (ADS)

    Rougier, A.; Danine, A.; Faure, C.; Buffière, S.

    2014-03-01

    In respect of their adaptability and performance, electrochromic devices, ECDs, which are able to change their optical properties under an applied voltage, have received significant attention. Target applications are multifold both in the visible region (automotive sunroofs, smart windows, ophthalmic lenses, and domestic appliances (oven, fridge…)) and in the infrared region (Satellites Thermal Control, IR furtivity). In our group, focusing on oxide thin films grown preferentially at room temperature, optimization of ECDs performances have been achieved by tuning the microstructure, the stoichiometry and the cationic composition of the various layers. Herein, our approach for optimized ECDs is illustrated through the example of WO3 electrochromic layer in the visible and in the IR domain as well as ZnO based transparent conducting oxide layer. Targeting the field of printed electronics, simplification of the device architecture for low power ECDs is also reported.

  14. Nanocrystalline silicon thin films for thermoelectric applications

    NASA Astrophysics Data System (ADS)

    Queen, Daniel; Jugdersuren, Battogtokh; Culberston, Jim; Wang, Qi; Nemeth, William; Metcalf, Tom; Liu, Xiao

    2014-03-01

    Recent advances in thermoelectric materials have come from reductions in thermal conductivity by manipulating both chemical composition and nanostructure to limit the phonon mean free path. However, wide spread applications for some of these materials may be limited due to high raw material and integration costs. In this talk we will discuss our recent results on nanocrystalline silicon thin films deposited by both hot-wire and plasma enhanced chemical vapor deposition where the nanocrystal size and crystalline volume fraction are varied by dilution of the silane precursor gas with hydrogen. Nanocyrstalline silicon is an established material technology used in multijunction amorphous silicon solar cells and has the potential to be a low cost and scalable material for use in thermoelectric devices. This work supported by the Office of Naval Research and the National Research Council.

  15. Mesoscopic thin-film magnetic rings (invited)

    NASA Astrophysics Data System (ADS)

    Ross, C. A.; Castaño, F. J.; Morecroft, D.; Jung, W.; Smith, Henry I.; Moore, T. A.; Hayward, T. J.; Bland, J. A. C.; Bromwich, T. J.; Petford-Long, A. K.

    2006-04-01

    The magnetic properties and magnetoresistance of thin-film circular and elliptical magnetic rings made from Co, NiFe, NiFe/FeMn, and Co/Cu/NiFe have been explored. Single-layer rings show stable onion and vortex states and metastable twisted states containing a 360° wall. For NiFe rings, four-point magnetotransport results can be explained quantitatively by anisotropic magnetoresistance. NiFe/FeMn exchange-biased rings show offset hysteresis loops, and the easy axis is determined by a combination of the ring ellipticity and the exchange coupling. In Co/Cu/NiFe multilayer rings the behavior is dominated by the magnetostatic coupling between the domain walls in the Co and NiFe. In the major loop the giant magnetoresistance varies between three distinct levels corresponding to combinations of onion and vortex states in the NiFe and Co layers.

  16. Transparent Conductive Oxides in Thin Film Photovoltaics

    NASA Astrophysics Data System (ADS)

    Hamelmann, Frank U.

    2014-11-01

    This paper show results from the development of transparent conductive oxides (TCO's) on large areas for the use as front electrode in thin film silicon solar modules. It is focused on two types of zinc oxide, which are cheap to produce and scalable to a substrate size up to 6 m2. Low pressure CVD with temperatures below 200°C can be used for the deposition of boron doped ZnO with a native surface texture for good light scattering, while sputtered aluminum doped ZnO needs a post deposition treatment in an acid bath for a rough surface. The paper presents optical and electrical characterization of large area samples, and also results about long term stability of the ZnO samples with respect to the so called TCO corrosion.

  17. Slip effects in polymer thin films.

    PubMed

    Bäumchen, O; Jacobs, K

    2010-01-27

    Probing the fluid dynamics of thin films is an excellent tool for studying the solid/liquid boundary condition. There is no need for external stimulation or pumping of the liquid, due to the fact that the dewetting process, an internal mechanism, acts as a driving force for liquid flow. Viscous dissipation, within the liquid, and slippage balance interfacial forces. Thus, friction at the solid/liquid interface plays a key role towards the flow dynamics of the liquid. Probing the temporal and spatial evolution of growing holes or retracting straight fronts gives, in combination with theoretical models, information on the liquid flow field and, especially, the boundary condition at the interface. We review the basic models and experimental results obtained during the last several years with exclusive regard to polymers as ideal model liquids for fluid flow. Moreover, concepts that aim to explain slippage on the molecular scale are summarized and discussed. PMID:21386275

  18. Surfactant Spreading on Thin Viscous Fluid Films

    NASA Astrophysics Data System (ADS)

    Bonilla, Caitlyn; Leslie, Nathaniel; Liu, Jeanette; Sinclair, Dina; Levy, Rachel

    2014-11-01

    We examine the spreading of insoluble lipids on a viscous Newtonian thin fluid film. This spreading can be modeled as two coupled nonlinear fourth-order partial differential equations, though inconsistencies between the timescale of experiments and simulations have been reported in recent research. In simulations, we replace traditional models for the equation of state relating surfactant concentration to surface tension with an empirical equation of state. Isotherms collected via a Langmuir-Pockels scale provide data for the equation of state. We compare the timescale of simulation results to measurements of the fluorescently tagged lipid (NBD-PC) spreading as well as the height profile, captured with laser profilometry. Research supported by NSF-DMS-FRG 9068154, RCSA-CCS-19788, HHMI.

  19. Thin Film Femtosecond Laser Damage Competition

    SciTech Connect

    Stolz, C J; Ristau, D; Turowski, M; Blaschke, H

    2009-11-14

    In order to determine the current status of thin film laser resistance within the private, academic, and government sectors, a damage competition was started at the 2008 Boulder Damage Symposium. This damage competition allows a direct comparison of the current state of the art of high laser resistance coatings since they are tested using the same damage test setup and the same protocol. In 2009 a high reflector coating was selected at a wavelength of 786 nm at normal incidence at a pulse length of 180 femtoseconds. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials and layer count, and spectral results will also be shared.

  20. Nonlinear optics of astaxanthin thin films

    NASA Astrophysics Data System (ADS)

    Esser, A.; Fisch, Herbert; Haas, Karl-Heinz; Haedicke, E.; Paust, J.; Schrof, Wolfgang; Ticktin, Anton

    1993-02-01

    Carotinoids exhibit large nonlinear optical properties due to their extended (pi) -electron system. Compared to other polyenes which show a broad distribution of conjugation lengths, carotinoids exhibit a well defined molecular structure, i.e. a well defined conjugation length. Therefore the carotinoid molecules can serve as model compounds to study the relationship between structure and nonlinear optical properties. In this paper the synthesis of four astaxanthins with C-numbers ranging from 30 to 60, their preparation into thin films, wavelength dispersive Third Harmonic Generation (THG) measurements and some molecular modelling calculations will be presented. Resonant (chi) (3) values reach 1.2(DOT)10-10 esu for C60 astaxanthin. In the nonresonant regime a figure of merit (chi) (3)/(alpha) of several 10-13 esu-cm is demonstrated.

  1. Effect of current injection into thin-film Josephson junctions

    DOE PAGESBeta

    Kogan, V. G.; Mints, R. G.

    2014-11-11

    New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. Our method of calculating the distribution of injected currents is also proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to Λ=2λ2/d;λ is the bulk London penetration depth of the film material and d is the film thickness.

  2. Effect of current injection into thin-film Josephson junctions

    SciTech Connect

    Kogan, V. G.; Mints, R. G.

    2014-11-11

    New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. Our method of calculating the distribution of injected currents is also proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to Λ=2λ2/d;λ is the bulk London penetration depth of the film material and d is the film thickness.

  3. Structural, electrical and thermoelectrical analysis of nickel sulphide thin films

    NASA Astrophysics Data System (ADS)

    Chate, P. A.; Sathe, D. J.

    2016-06-01

    A dip method is employed for the deposition of NiS2 thin film at room temperature. Nickel sulphate, succinic acid and thiourea were used as the source materials. The X-ray diffraction analysis shows that the film samples are cubic phase. The specific electrical conductivity of the film was found to be 3.16 × 10-6 (Ω cm)-1. The films show high absorption, and band gap energy value was found to be 1.37 eV. The temperature dependence of an electrical conductivity, thermoelectrical power, carrier density and carrier mobility for NiS2 thin films has been examined.

  4. Integrated thin film cadmium sulfide solar cell module

    NASA Technical Reports Server (NTRS)

    Mickelsen, R. A.; Abbott, D. D.

    1971-01-01

    The design, development, fabrication and tests of flexible integrated thin-film cadmium sulfide solar cells and modules are discussed. The development of low cost and high production rate methods for interconnecting cells into large solar arrays is described. Chromium thin films were applied extensively in the deposited cell structures as a means to: (1) achieve high adherence between the cadmium sulfide films and the vacuum-metallized copper substrates, (2) obtain an ohmic contact to the cadmium sulfide films, and (3) improve the adherence of gold films as grids or contact areas.

  5. Effect of current injection into thin-film Josephson junctions

    NASA Astrophysics Data System (ADS)

    Kogan, V. G.; Mints, R. G.

    2014-11-01

    New thin-film Josephson junctions have recently been tested in which the current injected into one of the junction banks governs Josephson phenomena. One thus can continuously manage the phase distribution at the junction by changing the injected current. A method of calculating the distribution of injected currents is proposed for a half-infinite thin-film strip with source-sink points at arbitrary positions at the film edges. The strip width W is assumed small relative to Λ =2 λ2/d ;λ is the bulk London penetration depth of the film material and d is the film thickness.

  6. Confinement for Thin Film on Substrates with Different Geometric Curvatures

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Chen, Jiao; Xue, Gi

    2014-03-01

    Molecular chain conformation in thin polymer film on substrates with different geometric curvature was examined using fluorescence non-radiative energy transfer (NRET) spectroscopy. We find that thin film on concave substrate exihibits significant differences in vitrification behavior, in both magnitude and thickness dependence, from the planar film. NRET measured a more compact morphology, while dynamical scanning calorimetry detected an increased glass transition temperature (Tg) for the concave thin film, with respect to bulk film. In contrast to planar film where properties are thickness dependent, polymer concave film shows that its conformation and Tg are solely dependent on curvature radius. Surprisingly, these properties converted back to the bulk values when the substrate was removed, indicating the crucial importance of interaction imposed by the concave hard wall. These spectroscopic data matched perfectly the calorimetric results and provided a new implication to understanding geometric confinement on dynamics.

  7. Plasma synthesis of photocatalytic TiO x thin films

    NASA Astrophysics Data System (ADS)

    Sirghi, L.

    2016-06-01

    The development of efficient photocatalytic materials is promising technology for sustainable and green energy production, fabrication of self-cleaning, bactericidal, and super hydrophilic surfaces, CO2 photoreduction, and decomposition of toxic pollutants in air and water. Semiconductors with good photocatalytic activity have been known for four decades and they are regarded as promising candidates for these new technologies. Low-pressure discharge plasma is one of the most versatile technologies being used for the deposition of photocatalytic semiconductor thin films. This article reviews the main results obtained by the author in using low-pressure plasma for synthesis of TiO x thin films with applications in photocatalysis. Titanium dioxide thin films were obtained by radio frequency magnetron sputtering deposition, plasma enhanced chemical vapour deposition, and high power impulse magnetron sputtering deposition. The effects of the plasma deposition method, plasma parameters, film thickness and substrate on the film structure, chemical composition and photocatalytic activity are investigated. The photocatalytic activity of plasma synthesised TiO x thin films was estimated by UV light induced hydrophilicity. Measurements of photocurrent decay in TiO x thin films in vacuum and air showed that the photocatalytic activity is closely connected to the production, recombination and availability for surface reactions of photo-generated charge carriers. The photocatalytic activity of TiO x thin films was investigated at nanoscale by atomic force microscopy. Microscopic regions of different hydrophilicity on UV light irradiated films are discriminated by AFM atomic force microscopy measurements of adhesion and friction force.

  8. Materials availability for thin film solar cells

    NASA Astrophysics Data System (ADS)

    Makita, Yunosuke

    1997-04-01

    Materials availability is one of the most important factors when we consider the mass-production of next generation photovoltaic devices. "In (indium)" is a vital element to produce high efficient thin film solar cells such as InP and CuIn(Ga)Se2 but its lifetime as a natural resource is suggested to be of order of 10˜15 years. The lifetime of a specific natural resource as an element to produce useful device substances is directly related with its abundance in the earth's crust, consumption rate and recycling rate (if recycling is economically meaningful). The chemical elements having long lifetime as a natural resource are those existing in the atmosphere such as N (nitrogen) and O (oxygen); the rich elements in the earth's crust such as Si, Ca, Sr and Ba; the mass-used metals such as Fe (iron), Al (aluminum) and Cu (copper) that reached the stage of large-scale recycling. We here propose a new paradigm of semiconductor material-science for the future generation thin film solar cells in which only abundant chemical elements are used. It is important to remark that these abundant chemical elements are normally not toxic and are fairly friendly to the environment. β-FeSi2 is composed of two most abundant and nontoxic chemical elements. This material is one of the most promising device materials for future generation energy devices (solar cells and thermoelectric device that is most efficient at temperature range of 700-900 °C). One should remind of the versatility of β-FeSi2 that this material can be used not only as energy devices but also as photodetector, light emitting diode and/or laser diode at the wavelength of 1.5 μm that can be monolithically integrated on Si substrates due to the relatively small lattice mismatch.

  9. Titanium nitride thin films for minimizing multipactoring

    DOEpatents

    Welch, Kimo M.

    1979-01-01

    Applying a thin film coating to the surface of a workpiece, in particular, applying a coating of titanium nitride to a klystron window by means of a crossed-field diode sputtering array. The array is comprised of a cohesive group of numerous small hollow electrically conducting cylinders and is mounted so that the open ends of the cylinders on one side of the group are adjacent a titanium cathode plate. The workpiece is mounted so as to face the open ends of the other side of the group. A magnetic field is applied to the array so as to be coaxial with the cylinders and a potential is applied across the cylinders and the cathode plate, the cylinders as an anode being positive with respect to the cathode plate. The cylinders, the cathode plate and the workpiece are situated in an atmosphere of nitrogen which becomes ionized such as by field emission because of the electric field between the cylinders and cathode plate, thereby establishing an anode-cathode discharge that results in sputtering of the titanium plate. The sputtered titanium coats the workpiece and chemically combines with the nitrogen to form a titanium nitride coating on the workpiece. Gas pressure, gas mixtures, cathode material composition, voltages applied to the cathode and anode, the magnetic field, cathode, anode and workpiece spacing, and the aspect ratio (ratio of length to inner diameter) of the anode cylinders, all may be controlled to provide consistent optimum thin film coatings of various compositions and thicknesses. Another facet of the disclosure is the coating of microwave components per se with titanium nitride to reduce multipactoring under operating conditions of the components.

  10. Sputtering deposition of aluminium molybdenum alloy thin film anodes for thin film microbatteries

    NASA Astrophysics Data System (ADS)

    Thirumoolam, Mani Chandran; Sivaramakrishnan, Balaji; Devarajan, Mutharasu

    2015-05-01

    Al5Mo thin film anodes for Li-ion batteries were prepared using DC sputtering under different conditions, the latter being specified as deposition at room temperature (S0), deposition at 300°C (S1), and deposition at room temperature followed by thermal annealing at 300°C (S2). The thin films were deposited using an aluminum target tiled with molybdenum discs at a ratio calculated based on the theoretical sputtering yields. The structural and compositional analyses performed with x-ray diffraction (XRD) and energy-dispersive x-ray spectroscopy (EDX) confirmed the Al5Mo compound formation and the Al/Mo elemental ratio, respectively. The compound formation was observed to be evident only for the thin films subjected to heat treatment during or after deposition. Scanning electron micrographs reveal a higher porosity of approximately 23% for sample S0 and a lower porosity of around 18% for sample S1. The chronopotentiometry results show a higher volumetric specific capacity of approximately 197 mAh/cm3 for sample S1. Capacity increments have been observed for all samples upon charge-discharge cycles, whose values after 25 cycles for samples S0, S1, and S2 were 41.2%, 20.4%, and 21.1%, respectively. [Figure not available: see fulltext.

  11. Straining graphene using thin film shrinkage methods.

    PubMed

    Shioya, Hiroki; Craciun, Monica F; Russo, Saverio; Yamamoto, Michihisa; Tarucha, Seigo

    2014-03-12

    Theoretical works suggest the possibility and usefulness of strain engineering of graphene by predicting remarkable properties, such as Dirac cone merging, bandgap opening and pseudo magnetic field generation. However, most of these predictions have not yet been confirmed because it is experimentally difficult to control the magnitude and type (e.g., uniaxial, biaxial, and so forth) of strain in graphene devices. Here we report two novel methods to apply strain without bending the substrate. We employ thin films of evaporated metal and organic insulator deposited on graphene, which shrink after electron beam irradiation or heat application. These methods make it possible to apply both biaxial strain and in-plane isotropic compressive strain in a well-controlled manner. Raman spectroscopy measurements show a clear splitting of the degenerate states of the G-band in the case of biaxial strain, and G-band blue shift without splitting in the case of in-plane isotropic compressive strain. In the case of biaxial strain application, we find out the ratio of the strain component perpendicular to the stretching direction is at least three times larger than what was previously observed, indicating that shrinkage of the metal or organic insulator deposited on graphene induces both tensile and compressive strain in this atomically thin material. Our studies present for the first time a viable way to apply strain to graphene without the need to bend the substrate. PMID:24490629

  12. Straining Graphene Using Thin Film Shrinkage Methods

    PubMed Central

    2014-01-01

    Theoretical works suggest the possibility and usefulness of strain engineering of graphene by predicting remarkable properties, such as Dirac cone merging, bandgap opening and pseudo magnetic field generation. However, most of these predictions have not yet been confirmed because it is experimentally difficult to control the magnitude and type (e.g., uniaxial, biaxial, and so forth) of strain in graphene devices. Here we report two novel methods to apply strain without bending the substrate. We employ thin films of evaporated metal and organic insulator deposited on graphene, which shrink after electron beam irradiation or heat application. These methods make it possible to apply both biaxial strain and in-plane isotropic compressive strain in a well-controlled manner. Raman spectroscopy measurements show a clear splitting of the degenerate states of the G-band in the case of biaxial strain, and G-band blue shift without splitting in the case of in-plane isotropic compressive strain. In the case of biaxial strain application, we find out the ratio of the strain component perpendicular to the stretching direction is at least three times larger than what was previously observed, indicating that shrinkage of the metal or organic insulator deposited on graphene induces both tensile and compressive strain in this atomically thin material. Our studies present for the first time a viable way to apply strain to graphene without the need to bend the substrate. PMID:24490629

  13. Fabrication of Thin Film Heat Flux Sensors

    NASA Technical Reports Server (NTRS)

    Will, Herbert A.

    1992-01-01

    Prototype thin film heat flux sensors have been constructed and tested. The sensors can be applied to propulsion system materials and components. The sensors can provide steady state and fast transient heat flux information. Fabrication of the sensor does not require any matching of the mounting surface. Heat flux is proportional to the temperature difference across the upper and lower surfaces of an insulation material. The sensor consists of an array of thermocouples on the upper and lower surfaces of a thin insulating layer. The thermocouples for the sensor are connected in a thermopile arrangement. A 100 thermocouple pair heat flux sensor has been fabricated on silicon wafers. The sensor produced an output voltage of 200-400 microvolts when exposed to a hot air heat gun. A 20 element thermocouple pair heat flux sensor has been fabricated on aluminum oxide sheet. Thermocouples are Pt-Pt/Rh with silicon dioxide as the insulating material. This sensor produced an output of 28 microvolts when exposed to the radiation of a furnace operating at 1000 C. Work is also underway to put this type of heat flux sensor on metal surfaces.

  14. Integration of thin film decoupling capacitors

    SciTech Connect

    Garino, T.; Dimos, D.; Lockwood, S.

    1994-10-01

    Thin film decoupling capacitors consisting of submicron thick, sol-gel Pb(Zr,Ti)O{sub 3} layers between Pt electrodes on a Si substrate have recently been developed. Because the capacitor structure needs to be only {approximately}3 {mu}m thick, these devices offer advantages such as decreased package volume and ability to integrate so that interconnect inductance is decreased, which allows faster IC processing rates. To fully utilize these devices, techniques of integrating them onto packages such as multi-chip modules and printed wiring boards or onto IC dies must be developed. The results of our efforts at developing integration processes for these capacitors are described here. Specifically, we have demonstrated a process for printing solder on the devices at the Si wafer level and reflowing it to form bumps and have developed a process for fabricating the devices on thin (25 to 75 {mu}m) substrates to facilitate integration onto ICs and printed wiring boards. Finally, we assessed the feasibility of fabricating the devices on rough surfaces to determine whether it would be possible to fabricate these capacitors directly on multi-layer ceramic substrates.

  15. Hafnia: Energetics of Thin Films and Nanoparticles

    SciTech Connect

    Zhou, W.; Ushakov, S; Wang, T; Ekerdt, J; Demkov, A; Navrotsky, A

    2010-01-01

    Crystallization energetics of amorphous hafnia powders and thin films on platinum substrates was studied by differential scanning calorimetry and time-resolved high temperature x-ray diffraction. For initially amorphous 25 and 20 nm films from atomic layer deposition, crystallization enthalpy decreases from -38 to -32 kJ/mol, and crystallization temperature increases from 388 to 417 C as thickness decreases. Enthalpy of water vapor adsorption on the surface of monoclinic hafnia was measured for both bulk powder and nanoparticles and was found to vary from -110 to -130 kJ/mol for coverage of -5 H{sub 2}O/nm{sup 2}. The enthalpies of monoclinic hafnia with various surface areas, prepared by crystallization and annealing of an amorphous hafnia precursor, were measured by high temperature oxide melt solution calorimetry. Under the previously used assumption that the interfacial enthalpy is 20% of the surface enthalpy, the surface enthalpy was calculated from experimental data as 2.8 {+-} 0.1 J/m{sup 2} for the hydrated surface and 3.7 {+-} 0.1 J/m{sup 2} for the anhydrous hafnia surface. These values are similar to those measured previously for monoclinic zirconia.

  16. Transparent conducting thin films for spacecraft applications

    NASA Technical Reports Server (NTRS)

    Perez-Davis, Marla E.; Malave-Sanabria, Tania; Hambourger, Paul; Rutledge, Sharon K.; Roig, David; Degroh, Kim K.; Hung, Ching-Cheh

    1994-01-01

    Transparent conductive thin films are required for a variety of optoelectronic applications: automotive and aircraft windows, and solar cells for space applications. Transparent conductive coatings of indium-tin-oxide (ITO)-magnesium fluoride (MgF2) and aluminum doped zinc oxide (AZO) at several dopant levels are investigated for electrical resistivity (sheet resistance), carrier concentration, optical properties, and atomic oxygen durability. The sheet resistance values of ITO-MgF2 range from 10(exp 2) to 10(exp 11) ohms/square, with transmittance of 75 to 86 percent. The AZO films sheet resistances range from 10(exp 7) to 10(exp 11) ohms/square with transmittances from 84 to 91 percent. It was found that in general, with respect to the optical properties, the zinc oxide (ZnO), AZO, and the high MgF2 content ITO-MgF2 samples, were all durable to atomic oxygen plasma, while the low MgF2 content of ITO-MgF2 samples were not durable to atomic oxygen plasma exposure.

  17. Picoseconds-Laser Modification of Thin Films

    SciTech Connect

    Gakovic, Biljana; Trtica, Milan; Batani, Dimitri; Desai, Tara; Redaelli, Renato

    2006-04-07

    The interaction of a Nd:YAG laser, pulse duration of 40 ps, with a titanium nitride (TiN) and tungsten-titanium (W-Ti) thin films deposited at silicon was studied. The peak intensity on targets was up to 1012 W/cm2. Results have shown that the TiN surface was modified, by the laser beam, with energy density of {>=}0.18 J/cm2 ({lambda}laser= 532 nm) as well as of 30.0 J/cm2 ({lambda}laser= 1064 nm). The W-Ti was surface modified with energy density of 5.0 J/cm2 ({lambda}laser= 532 nm). The energy absorbed from the Nd:YAG laser beam is partially converted to thermal energy, which generates a series of effects such as melting, vaporization of molten materials, dissociation and ionization of the vaporized material, appearance of plasma, etc. The following morphological changes of both targets were observed: (i) The appearance of periodic microstructures, in the central zone of the irradiated area, for laser irradiation at 532 nm. Accumulation of great number of laser pulses caused film ablation and silicon modification. (ii) Hole formation on the titanium nitride/silicon target was registered at 1064 nm. The process of the Nd:YAG laser interaction with both targets was accompanied by plasma formation above the target.

  18. Josephson junction in a thin film

    SciTech Connect

    Kogan, V. G.; Dobrovitski, V. V.; Clem, J. R.; Mawatari, Yasunori; Mints, R. G.

    2001-04-01

    The phase difference {phi}(y) for a vortex at a line Josephson junction in a thin film attenuates at large distances as a power law, unlike the case of a bulk junction where it approaches exponentially the constant values at infinities. The field of a Josephson vortex is a superposition of fields of standard Pearl vortices distributed along the junction with the line density {phi}'(y)/2{pi}. We study the integral equation for {phi}(y) and show that the phase is sensitive to the ratio l/{Lambda}, where l={lambda}{sub J}{sup 2}/{lambda}{sub L}, {Lambda}=2{lambda}{sub L}{sup 2}/d, {lambda}{sub L}, and {lambda}{sub J} are the London and Josephson penetration depths, and d is the film thickness. For l<<{Lambda}, the vortex ''core'' of the size l is nearly temperature independent, while the phase ''tail'' scales as l{Lambda}/y{sup 2}={lambda}{sub J}2{lambda}{sub L}/d/y{sup 2}; i.e., it diverges as T{yields}T{sub c}. For l>>{Lambda}, both the core and the tail have nearly the same characteristic length l{Lambda}.

  19. Mechanics of evolving thin film structures

    NASA Astrophysics Data System (ADS)

    Liang, Jim

    In the Stranski-Krastanov system, the lattice mismatch between the film and the substrate causes the film to break into islands. During annealing, both the surface energy and the elastic energy drive the islands to coarsen. Motivated by several related studies, we suggest that stable islands should form when a stiff ceiling is placed at a small gap above the film. We show that the role of elasticity is reversed: with the ceiling, the total elastic energy stored in the system increases as the islands coarsen laterally. Consequently, the islands select an equilibrium size to minimize the combined elastic energy and surface energy. In lithographically-induced self-assembly, when a two-phase fluid confined between parallel substrates is subjected to an electric field, one phase can self-assemble into a triangular lattice of islands in another phase. We describe a theory of the stability of the island lattice. The islands select the equilibrium diameter to minimize the combined interface energy and electrostatic energy. Furthermore, we study compressed SiGe thin film islands fabricated on a glass layer, which itself lies on a silicon wafer. Upon annealing, the glass flows, and the islands relax. A small island relaxes by in-plane expansion. A large island, however, wrinkles at the center before the in-plane relaxation arrives. The wrinkles may cause significant tensile stress in the island, leading to fracture. We model the island by the von Karman plate theory and the glass layer by the Reynolds lubrication theory. Numerical simulations evolve the in-plane expansion and the wrinkles simultaneously. We determine the critical island size, below which in-plane expansion prevails over wrinkling. Finally, in devices that integrate dissimilar materials in small dimensions, crack extension in one material often accompanies inelastic deformation in another. We analyze a channel crack advancing in an elastic film under tension, while an underlayer creeps. We use a two

  20. Pulsed Laser Deposition of Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Brodoceanu, D.; Scarisoreanu, N. D.; Filipescu, M. (Morar); Epurescu, G. N.; Matei, D. G.; Verardi, P.; Craciun, F.; Dinescu, M.

    2004-10-01

    Pulsed Laser Deposition (PLD) emerged as an attractive technique for growth of thin films with different properties as metals, semiconductors, ferroelectrics, biocompatibles, polymers, etc., due to its important advantages: (i) the stoichiometric transfer of a complex composition from target to film and film crystallization at lower substrate temperature respect to other techniques (due to the high energy of species in the laser plasma); (ii) single step process, synthesis and deposition; (iii) creation in plasma of species impossible to be obtained by other processes; (iv) possibility of "in situ" heterostructure deposition using a multi-target system, etc. Simple or complex oxides are between the materials widely studied for their applications. PMN is the most known relaxor ferroelectric material: it exhibits a high dielectric constant value around the (diffuse) maximum phase transition temperature, of more than 35 000 in bulk form. Other oxides as lead zirconate titanate, Pb(ZrxTi1-x)O3 simple or La doped exhibit exceptional properties as large remanent polarization, high dielectric permittivity, high piezoelectric coefficient. SrBi2Ta2O9 (SBT) is characterized by a high "fatigue resistance" (constant remanent polarization until 1012 switching cycles), low imprint, and low leakage current. The physical properties of zirconium oxide (or zirconia) -- high strength, stability at high temperatures -- make it useful for applications involving gas sensors, corrosion or heat resistant mechanical parts, high refractive index optical coatings. Of particular interest is its use as an alternative gate dielectric in metal-oxide-semiconductor (MOS) devices or capacitor in dynamic random access memory (DRAM) chips. All these oxides have been deposited by laser ablation in oxygen reactive atmosphere and some of their properties will be presented in this paper.

  1. Thin film nitinol covered stents: design and animal testing.

    PubMed

    Levi, Daniel S; Williams, Ryan J; Liu, Jasen; Danon, Saar; Stepan, Lenka L; Panduranga, Mohanchandra K; Fishbein, Michael C; Carman, Greg P

    2008-01-01

    Interventionalists in many specialties have the need for improved, low profile covered stents. Thin films of nitinol (<5-10 microns) could be used to improve current covered stent technology. A "hot target" sputter deposition technique was used to create thin films of nitinol for this study. Covered stents were created from commercially available balloon-inflatable and self-expanding stents. Stents were deployed in a laboratory flow loop and in four swine. Uncovered stent portions served as controls. Postmortem examinations were performed 2-6 weeks after implantation. In short-term testing, thin film nitinol covered stents deployed in the arterial circulation showed no intimal proliferation and were easily removed from the arterial wall postmortem. Scanning electron microscopy showed a thin layer of endothelial cells on the thin film, which covered the entire film by 3 weeks. By contrast, significant neointimal hyperplasia occurred on the luminal side of stents deployed in the venous circulation. Extremely low-profile covered stents can be manufactured using thin films of nitinol. Although long-term studies are needed, thin film nitinol may allow for the development of low-profile, nonthrombogenic covered stents. PMID:18496269

  2. thin films grown with additional NaF layers

    NASA Astrophysics Data System (ADS)

    Kim, Gee Yeong; Kim, Juran; Jo, William; Son, Dae-Ho; Kim, Dae-Hwan; Kang, Jin-Kyu

    2014-10-01

    CZTS precursors [SLG/Mo (300 nm)/ZnS (460 nm)/SnS (480 nm)/Cu (240 nm)] were deposited by RF/DC sputtering, and then NaF layers (0, 15, and 30 nm) were grown by electron beam evaporation. The precursors were annealed in a furnace with Se metals at 590°C for 20 minutes. The final composition of the CZTSSe thin-films was of Cu/(Zn + Sn) ~ 0.88 and Zn/Sn ~ 1.05, with a metal S/Se ratio estimated at ~0.05. The CZTSSe thin-films have different NaF layer thicknesses in the range from 0 to 30 nm, achieving a ~3% conversion efficiency, and the CZTSSe thin-films contain ~3% of Na. Kelvin probe force microscopy was used to identify the local potential difference that varied according to the thickness of the NaF layer on the CZTSSe thin-films. The potential values at the grain boundaries were observed to increase as the NaF thickness increased. Moreover, the ratio of the positively charged GBs in the CZTSSe thin-films with an NaF layer was higher than that of pure CZTSSe thin-films. A positively charged potential was observed around the grain boundaries of the CZTSSe thin-films, which is a beneficial characteristic that can improve the performance of a device.

  3. Method for making surfactant-templated thin films

    DOEpatents

    Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hong You

    2010-08-31

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  4. Method for making surfactant-templated thin films

    DOEpatents

    Brinker, C. Jeffrey; Lu, Yunfeng; Fan, Hongyou

    2002-01-01

    An evaporation-induced self-assembly method to prepare a porous, surfactant-templated, thin film by mixing a silica sol, a solvent, a surfactant, and an interstitial compound, evaporating a portion of the solvent to form a liquid, crystalline thin film mesophase material, and then removal of the surfactant template. Coating onto a substrate produces a thin film with the interstitial compound either covalently bonded to the internal surfaces of the ordered or disordered mesostructure framework or physically entrapped within the ordered or disordered mesostructured framework. Particles can be formed by aerosol processing or spray drying rather than coating onto a substrate. The selection of the interstitial compound provides a means for developing thin films for applications including membranes, sensors, low dielectric constant films, photonic materials and optical hosts.

  5. Electrochemical behavior of chemically synthesized selenium thin film.

    PubMed

    Patil, A M; Kumbhar, V S; Chodankar, N R; Lokhande, A C; Lokhande, C D

    2016-05-01

    The facile and low cost simple chemical bath deposition (CBD) method is employed to synthesize red colored selenium thin films. These selenium films are characterized for structural, morphological, topographical and wettability studies. The X-ray diffraction (XRD) pattern showed the crystalline nature of selenium thin film with hexagonal crystal structure. The scanning electron microscopy (SEM) study displays selenium nanoparticles ranging from 20 to 475nm. A specific surface area of 30.5m(2)g(-1) is observed for selenium nanoparticles. The selenium nanoparticles hold mesopores in the range of 1.39nm, taking benefits of the good physicochemical stability and excellent porosity. Subsequently, the electrochemical properties of selenium thin films are deliberated by cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy (EIS) techniques. The selenium thin film shows specific capacitance (Cs) of 21.98Fg(-1) with 91% electrochemical stability. PMID:26896773

  6. X-ray diffraction characterization of thin superconductive films

    SciTech Connect

    Kozaczek, K.J.; Watkins, T.R.; Book, G.W.; Carter, W.B.

    1995-12-31

    The physical and mechanical properties of thin films are often different from the properties of bulk material and are dictated by the film/substrate orientation relationship, crystal anisotropy and crystalgraphic texture of the film. X-ray diffraction texture analysis provides information about preferential film growth and can be used for optimization of deposition parameters and prediction of properties of thin films. An x-ray back reflection technique using the Braga-Brentano geometry with experimental corrections for absorption and defocusing was used to study thin ceramic films deposited by combustion chemical vapor deposition (CCVD). The film/substrate orientation relationships of YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) superconducting thin films deposited via CCVD on single crystal MgO and polycrystalline silver substrates were studied. The as-deposited films on single crystal (100) MgO substrates showed strong preferential growth with the basal plane parallel to the substrate surface (c-axis up growth). Texture analysis showed two in-plane alignment orientations of the film with respect to the substrate, with YBCO [100] and [110] aligned with the [100] MgO substrate. YBCO films deposited on cold-rolled polycrystalline silver displayed c-axis up growth indicating that the orientation of the polycrystalline substrate (brass type texture) did not induce detectable in-plane preferential growth of the YBCO.

  7. Multi-modal sensing using photoactive thin films

    NASA Astrophysics Data System (ADS)

    Ryu, Donghyeon; Loh, Kenneth J.

    2014-08-01

    The need for a reliable prognosis of the health of structural systems has promoted the development of sensing technologies capable of simultaneously detecting multiple types of damage. However, conventional sensors are designed to only measure a specific structural response (e.g., strain, displacement, or acceleration). This limitation forces one to use a wide variety of sensors densely instrumented on a given structure, which results in high overhead costs and requires extensive signal processing of raw sensor data. In this study, a photoactive thin film that has been engineered for multi-modal sensing to selectively detect strain and pH is proposed. In addition, the thin film is self-sensing in that it does not require external power to operate. Instead, light illumination causes the photoactive film to generate an electrical current, whose magnitude is directly related to applied strains (for deformations, impact or cracks) or pH (as a precursor of corrosion). First, the thin films were fabricated by spin-coating photoactive and conjugated polymers like poly(3-hexylthiophene) (P3HT). The thin film was also encoded with pH sensitivity by integrating polyaniline (PANI) as one component within the multilayered film architecture. Second, the optical response of the P3HT and PANI thin films subjected to applied strains or pH was characterized using absorption spectroscopy. Lastly, it was also verified that the thin films could selectively sense strain or pH depending on the wavelengths of light used for sensor interrogation.

  8. Nanomechanical behavior of (1 0 0) oriented titanium thin films

    NASA Astrophysics Data System (ADS)

    Vasu, Kuraganti; Ghanashyam Krishna, Mamidipudi; Padmanabhan, Kuppuswamy Anantha

    2014-03-01

    Titanium thin films were deposited on single crystal Si (3 1 1) and polycrystalline 316 LN nuclear grade stainless steel substrates by RF magnetron sputtering. X-ray diffraction revealed that, irrespective of substrate type, films exhibit preferential growth along the (1 0 0) plane. The microstructure of the films corresponds to the zone-I type in structure zone model on both substrates. The hardness and Young's modulus of the films were extracted from load-displacement curves. The maximum values of hardness and Young's modulus were 12 and 132 GPa respectively for 220 nm thin film on SS substrate. The electrical resistivity data revealed that the films are metallic in nature and the resistivity is lower in the case of the 220 nm thickness film, on both substrates. The observed changes in mechanical and electrical properties can be correlated with variations in the microstructure of Ti films.

  9. Germanium Lift-Off Masks for Thin Metal Film Patterning

    NASA Technical Reports Server (NTRS)

    Brown, Ari

    2012-01-01

    A technique has been developed for patterning thin metallic films that are, in turn, used to fabricate microelectronics circuitry and thin-film sensors. The technique uses germanium thin films as lift-off masks. This requires development of a technique to strip or undercut the germanium chemically without affecting the deposited metal. Unlike in the case of conventional polymeric lift-off masks, the substrate can be exposed to very high temperatures during processing (sputter deposition). The reason why polymeric liftoff masks cannot be exposed to very high temperatures (greater than 100 C) is because (a) they can become cross linked, making lift-off very difficult if not impossible, and (b) they can outgas nitrogen and oxygen, which then can react with the metal being deposited. Consequently, this innovation is expected to find use in the fabrication of transition edge sensors and microwave kinetic inductance detectors, which use thin superconducting films deposited at high temperature as their sensing elements. Transition edge sensors, microwave kinetic inductance detectors, and their circuitry are comprised of superconducting thin films, for example Nb and TiN. Reactive ion etching can be used to pattern these films; however, reactive ion etching also damages the underlying substrate, which is unwanted in many instances. Polymeric lift-off techniques permit thin-film patterning without any substrate damage, but they are difficult to remove and the polymer can outgas during thin-film deposition. The outgassed material can then react with the film with the consequence of altered and non-reproducible materials properties, which, in turn, is deleterious for sensors and their circuitry. The purpose of this innovation was to fabricate a germanium lift-off mask to be used for patterning thin metal films.

  10. Residual stress in spin-cast polyurethane thin films

    NASA Astrophysics Data System (ADS)

    Zhang, Hong; Zhang, Li

    2015-01-01

    Residual stress is inevitable during spin-casting. Herein, we report a straightforward method to evaluate the residual stress in as-cast polyurethane thin films using area shrinkage measurement of films in floating state, which shows that the residual stress is independent of radial location on the substrate and decreased with decreasing film thickness below a critical value. We demonstrate that the residual stress is developed due to the solvent evaporation after vitrification during spin-casting and the polymer chains in thin films may undergo vitrification at an increased concentration. The buildup of residual stress in spin-cast polymer films provides an insight into the size effects on the nature of polymer thin films.

  11. Residual stress in spin-cast polyurethane thin films

    SciTech Connect

    Zhang, Hong; Zhang, Li

    2015-01-19

    Residual stress is inevitable during spin-casting. Herein, we report a straightforward method to evaluate the residual stress in as-cast polyurethane thin films using area shrinkage measurement of films in floating state, which shows that the residual stress is independent of radial location on the substrate and decreased with decreasing film thickness below a critical value. We demonstrate that the residual stress is developed due to the solvent evaporation after vitrification during spin-casting and the polymer chains in thin films may undergo vitrification at an increased concentration. The buildup of residual stress in spin-cast polymer films provides an insight into the size effects on the nature of polymer thin films.

  12. Angular magnetoresistance in semiconducting undoped amorphous carbon thin films

    NASA Astrophysics Data System (ADS)

    Sagar, Rizwan Ur Rehman; Saleemi, Awais Siddique; Zhang, Xiaozhong

    2015-05-01

    Thin films of undoped amorphous carbon thin film were fabricated by using Chemical Vapor Deposition and their structure was investigated by using High Resolution Transmission Electron Microscopy and Raman Spectroscopy. Angular magnetoresistance (MR) has been observed for the first time in these undoped amorphous carbon thin films in temperature range of 2 ˜ 40 K. The maximum magnitude of angular MR was in the range of 9.5% ˜ 1.5% in 2 ˜ 40 K. The origin of this angular MR was also discussed.

  13. Mechanical properties of metallic thin films: theoretical approach

    NASA Astrophysics Data System (ADS)

    Phuong, Duong Dai; Hoa, Nguyen Thi; Van Hung, Vu; Khoa, Doan Quoc; Hieu, Ho Khac

    2016-03-01

    The statistical moment method in statistical mechanics was developed to investigate the mechanical properties of free-standing metallic thin films at ambient conditions including the anharmonicity effects of thermal lattice vibrations. Analytical expressions of isothermal areal modulus B T , Young's modulus E and shear modulus G were derived in terms of the power moments of the atomic displacements. Numerical calculations have been performed for metallic Ni, Au and Al thin films, and compared with those of bulk metals. This method is physically transparent and it successfully described the temperature effects on mechanical properties of metallic thin films.

  14. Thermoelastic response of thin metal films and their adjacent materials

    SciTech Connect

    Kang, S.; Yoon, Y.; Kim, J.; Kim, W.

    2013-01-14

    A pulsed laser beam applied to a thin metal film is capable of launching an acoustic wave due to thermal expansion. Heat transfer from the thin metal film to adjacent materials can also induce thermal expansion; thus, the properties of these adjacent materials (as well as the thin metal film) should be considered for a complete description of the thermoelastic response. Here, we show that adjacent materials with a small specific heat and large thermal expansion coefficient can generate an enhanced acoustic wave and we demonstrate a three-fold increase in the peak pressure of the generated acoustic wave on substitution of parylene for polydimethylsiloxane.

  15. XRay Study of Transfer Printed Pentacene Thin Films

    SciTech Connect

    Shao, Y.; Solin, S. A.; Hines, D. R.; Williams, E. D.

    2007-04-10

    We investigated the structural properties and transfer properties of pentacene thin films fabricated by thermal deposition and transfer printing onto SiO2 and plastic substrates, respectively. The dependence of the crystallite size on the printing time, temperature and pressure were measured. The increases of crystalline size were observed when pentacene thin films were printed under specific conditions, e.g. 120 deg. C and 600 psi and can be correlated with the improvement of the field effect mobility of pentacene thin-film transistors.

  16. Mechanics of precisely controlled thin film buckling on Elastomeric substrate.

    SciTech Connect

    Sun, Y.; Jiang, H.; Rogers, J.; Huang, Y.; Arizone State Univ.; Beckman Inst.; University of Illinois Urbana-Champaign

    2007-01-01

    Stretchable electronics has many important and emerging applications. Sun et al. [Nature Nanotech. 1, 201 (2006)] recently demonstrated stretchable electronics based on precisely controlled buckle geometries in GaAs and Si nanoribbons on elastomeric substrates. A nonlinear buckling model is presented in this letter to study the mechanics of this type of thin film/substrate system. An analytical solution is obtained for the buckling geometry (wavelength and amplitude) and the maximum strain in buckled thin film. This solution agrees very well with the experiments, and shows explicitly how buckling can significantly reduce the thin film strain to achieve the system stretchability.

  17. Macroscopic exploration and visual quality inspection of thin film deposit

    NASA Astrophysics Data System (ADS)

    Désage, Simon-Frédéric; Pitard, Gilles; Favrelière, Hugues; Pillet, Maurice; Dellea, Olivier; Fugier, Pascal; Coronel, Philippe; Ollier, Emmanuel

    2014-04-01

    Micro/nanotechnologies evolve causing an evolution of surface characterization systems of thin films. Today, these systems are not adapted to the future needs (or current) to characterize and qualify a large effective area within industrial production. This concerns the thin film active layers or simple mask for structuring the surface. This paper proposes a quality control method for thin films of self-assembled particles and high quality. This method is founded on the intersection of several skills available in our laboratories: Industrial process of visual inspection, optical methods for quality control (large area relative to the state of the art) and advances in micro/nanotechnology (CEA/Liten).

  18. Double Laser for Depth Measurement of Thin Films of Ice.

    PubMed

    Beltrán, Manuel Domingo; Molina, Ramón Luna; Aznar, Miguel Ángel Satorre; Moltó, Carmina Santonja; Verdú, Carlos Millán

    2015-01-01

    The use of thin films is extensive in both science and industry. We have created an experimental system that allows us to measure the thicknesses of thin films (with typical thicknesses of around 1 µm) in real time without the need for any prior knowledge or parameters. Using the proposed system, we can also measure the refractive index of the thin film material exactly under the same experimental conditions. We have also obtained interesting results with regard to structural changes in the solid substance with changing temperature and have observed the corresponding behavior of mixtures of substances. PMID:26426024

  19. A proposal for epitaxial thin film growth in outer space

    NASA Technical Reports Server (NTRS)

    Ignatiev, Alex; Chu, C. W.

    1988-01-01

    A new concept for materials processing in space exploits the ultravacuum component of space for thin film epitaxial growth. The unique low earth orbit space environment is expected to yield 10 to the -14th torr or better pressures, semiinfinite pumping speeds, and large ultravacuum volume without walls. These space ultravacuum properties promise major improvement in the quality, unique nature, and the throughput of epitaxially grown materials. Advanced thin film materials to be epitaxially grown in space include semiconductors, magnetic materials, and thin film high temperature superconductors.

  20. Angular magnetoresistance in semiconducting undoped amorphous carbon thin films

    SciTech Connect

    Sagar, Rizwan Ur Rehman; Saleemi, Awais Siddique; Zhang, Xiaozhong

    2015-05-07

    Thin films of undoped amorphous carbon thin film were fabricated by using Chemical Vapor Deposition and their structure was investigated by using High Resolution Transmission Electron Microscopy and Raman Spectroscopy. Angular magnetoresistance (MR) has been observed for the first time in these undoped amorphous carbon thin films in temperature range of 2 ∼ 40 K. The maximum magnitude of angular MR was in the range of 9.5% ∼ 1.5% in 2 ∼ 40 K. The origin of this angular MR was also discussed.

  1. Magnetoresistance measurements of superconducting molybdenum nitride thin films

    NASA Astrophysics Data System (ADS)

    Baskaran, R.; Arasu, A. V. Thanikai; Amaladass, E. P.

    2016-05-01

    Molybdenum nitride thin films have been deposited on aluminum nitride buffered glass substrates by reactive DC sputtering. GIXRD measurements indicate formation of nano-crystalline molybdenum nitride thin films. The transition temperature of MoN thin film is 7.52 K. The transition width is less than 0.1 K. The upper critical field Bc2(0), calculated using GLAG theory is 12.52 T. The transition width for 400 µA current increased initially upto 3 T and then decreased, while that for 100 µA current transition width did not decrease.

  2. The state of the art of thin-film photovoltaics

    SciTech Connect

    Surek, T.

    1993-10-01

    Thin-film photovoltaic technologies, based on materials such as amorphous or polycrystalline silicon, copper indium diselenide, cadmium telluride, and gallium arsenide, offer the potential for significantly reducing the cost of electricity generated by photovoltaics. The significant progress in the technologies, from the laboratory to the marketplace, is reviewed. The common concerns and questions raised about thin films are addressed. Based on the progress to date and the potential of these technologies, along with continuing investments by the private sector to commercialize the technologies, one can conclude that thin-film PV will provide a competitive alternative for large-scale power generation in the future.

  3. Development of Thin Film Ceramic Thermocouples for High Temperature Environments

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Farmer, Serene C.; Sayir, Ali; Blaha, Charles A.; Gonzalez, Jose M.

    2004-01-01

    The maximum use temperature of noble metal thin film thermocouples of 1100 C (2000 F) may not be adequate for use on components in the increasingly harsh conditions of advanced aircraft and next generation launch technology. Ceramic-based thermocouples are known for their high stability and robustness at temperatures exceeding 1500 C, but are typically found in the form of rods or probes. NASA Glenn Research Center is investigating the feasibility of ceramics as thin film thermocouples for extremely high temperature applications to take advantage of the stability and robustness of ceramics and the non-intrusiveness of thin films. This paper will discuss the current state of development in this effort.

  4. Rapid protein immobilization for thin film continuous flow biocatalysis.

    PubMed

    Britton, Joshua; Raston, Colin L; Weiss, Gregory A

    2016-08-01

    A versatile enzyme immobilization strategy for thin film continuous flow processing is reported. Here, non-covalent and glutaraldehyde bioconjugation are used to immobilize enzymes on the surfaces of borosilicate reactors. This approach requires only ng of protein per reactor tube, with the stock protein solution readily recycled to sequentially coat >10 reactors. Confining reagents to thin films during immobilization reduced the amount of protein, piranha-cleaning solution, and other reagents by ∼96%. Through this technique, there was no loss of catalytic activity over 10 h processing. The results reported here combines the benefits of thin film flow processing with the mild conditions of biocatalysis. PMID:27461146

  5. Double Laser for Depth Measurement of Thin Films of Ice

    PubMed Central

    Domingo Beltrán, Manuel; Luna Molina, Ramón; Satorre Aznar, Miguel Ángel; Santonja Moltó, Carmina; Millán Verdú, Carlos

    2015-01-01

    The use of thin films is extensive in both science and industry. We have created an experimental system that allows us to measure the thicknesses of thin films (with typical thicknesses of around 1 µm) in real time without the need for any prior knowledge or parameters. Using the proposed system, we can also measure the refractive index of the thin film material exactly under the same experimental conditions. We have also obtained interesting results with regard to structural changes in the solid substance with changing temperature and have observed the corresponding behavior of mixtures of substances. PMID:26426024

  6. Fluorescent thin gel films using organic dyes and pigments

    NASA Astrophysics Data System (ADS)

    Nakazumi, Hiroyuki; Takashi, Tarao; Taniguchi, Shin-ichi; Nanto, Hidehito

    1997-10-01

    New organic-inorganic fluorescent thin gel films included with laser dyes or fluorescent organic pigments have been prepared for display application. The florescent dyes (benzoxazolium, pyrromethene, and rhodamine dyes) and super-fine particles of fluorescent pigments (coumarin and perylene) were successfully incorporated into thin silicate gel films prepared from tetraethoxysilane (TEOS), methyltriethoxysilane (MTES), and methoxysilane oligomer (MTSO) under acid catalyzed hydrolysis. The blue, green, and red luminescence were observed from these thin films (thickness: 100 - 400 nm), respectively. Fluorescence spectra, fluorescent quantum yield and lifetime of thin gel films are examined. Fluorescent peaks for most of dyes and pigments used in gel films were similar to those in solution, and fluorescent lifetime for dyes and pigments used in gel films were 2.9 - 4.5 ns. Photostability of fluorescent gel films is dependent on fluorescent organic dyes and pigments used and/or silicate gel matrixes. Coumarin and perylene pigments have higher fluorescent quantum yield in gel film prepared from MTSO. The large Stokes shift was observed in fluorescent gel film using coumarin and benzoxazolium dyes. The coumarin and perylene pigments are significantly photo- stable in gel film prepared from MTSO, and photodegradation of perylene red after irradiation of 500 W Xi-lamp for 30 min is below 20%.

  7. Cathodic electrodeposition of nanocrystalline titanium dioxide thin films

    SciTech Connect

    Natarajan, C.; Nogami, G.

    1996-05-01

    A new technique for depositing nanocrystalline titanium dioxide thin films on electronically conducting glass was developed. This technique is a two-stage process: (i) cathodic electrodeposition of titanium oxyhydroxide gel film from aqueous solution containing a Ti precursor and (ii) subsequent heat-treatment of this gel film results in the formation of titanium dioxide film. The deposition potential may have a considerable effect on the formation of nanocrystalline film. The nanocrystalline titanium dioxide film shows reversible electrochromism in lithium-ion-containing organic electrolyte. The coloration and bleaching throughout the visible and near-IR range can be switched on and off within a few seconds.

  8. Thin-Film Photovoltaic Solar Array Parametric Assessment

    NASA Technical Reports Server (NTRS)

    Hoffman, David J.; Kerslake, Thomas W.; Hepp, Aloysius F.; Jacobs, Mark K.; Ponnusamy, Deva

    2000-01-01

    This paper summarizes a study that had the objective to develop a model and parametrically determine the circumstances for which lightweight thin-film photovoltaic solar arrays would be more beneficial, in terms of mass and cost, than arrays using high-efficiency crystalline solar cells. Previous studies considering arrays with near-term thin-film technology for Earth orbiting applications are briefly reviewed. The present study uses a parametric approach that evaluated the performance of lightweight thin-film arrays with cell efficiencies ranging from 5 to 20 percent. The model developed for this study is described in some detail. Similar mass and cost trends for each array option were found across eight missions of various power levels in locations ranging from Venus to Jupiter. The results for one specific mission, a main belt asteroid tour, indicate that only moderate thin-film cell efficiency (approx. 12 percent) is necessary to match the mass of arrays using crystalline cells with much greater efficiency (35 percent multi-junction GaAs based and 20 percent thin-silicon). Regarding cost, a 12 percent efficient thin-film array is projected to cost about half is much as a 4-junction GaAs array. While efficiency improvements beyond 12 percent did not significantly further improve the mass and cost benefits for thin-film arrays, higher efficiency will be needed to mitigate the spacecraft-level impacts associated with large deployed array areas. A low-temperature approach to depositing thin-film cells on lightweight, flexible plastic substrates is briefly described. The paper concludes with the observation that with the characteristics assumed for this study, ultra-lightweight arrays using efficient, thin-film cells on flexible substrates may become a leading alternative for a wide variety of space missions.

  9. Glass transition dynamics of stacked thin polymer films

    NASA Astrophysics Data System (ADS)

    Fukao, Koji; Terasawa, Takehide; Oda, Yuto; Nakamura, Kenji; Tahara, Daisuke

    2011-10-01

    The glass transition dynamics of stacked thin films of polystyrene and poly(2-chlorostyrene) were investigated using differential scanning calorimetry and dielectric relaxation spectroscopy. The glass transition temperature Tg of as-stacked thin polystyrene films has a strong depression from that of the bulk samples. However, after annealing at high temperatures above Tg, the stacked thin films exhibit glass transition at a temperature almost equal to the Tg of the bulk system. The α-process dynamics of stacked thin films of poly(2-chlorostyrene) show a time evolution from single-thin-film-like dynamics to bulk-like dynamics during the isothermal annealing process. The relaxation rate of the α process becomes smaller with increase in the annealing time. The time scale for the evolution of the α dynamics during the annealing process is very long compared with that for the reptation dynamics. At the same time, the temperature dependence of the relaxation time for the α process changes from Arrhenius-like to Vogel-Fulcher-Tammann dependence with increase of the annealing time. The fragility index increases and the distribution of the α-relaxation times becomes smaller with increase in the annealing time for isothermal annealing. The observed change in the α process is discussed with respect to the interfacial interaction between the thin layers of stacked thin polymer films.

  10. Analytical and numerical modeling of surface morphologies in thin films

    SciTech Connect

    Genin, F.Y.

    1995-05-01

    Experimental studies have show that strains due to thermal expansion mismatch between a film and its substrate can produce very large stresses in the film that can lead to the formation of holes and hillocks. Based on a phenomenological description of the evolution of a solid surface under both capillary and stress driving forces and for surface and grain boundary self-diffusion, this article provides analytical and numerical solutions for surface profiles of model geometries in polycrystalline thin films. Results can explain a variety of surface morphologies commonly observed experimentally and are discussed to give some practical insights on how to control the growth of holes and hillocks in thin films.

  11. Pyramidal structural defects in erbium silicide thin films

    NASA Astrophysics Data System (ADS)

    Tan, Eu Jin; Bouville, Mathieu; Chi, Dong Zhi; Pey, Kin Leong; Lee, Pooi See; Srolovitz, David J.; Tung, Chih Hang

    2006-01-01

    Pyramidal structural defects, 5-8μm wide, have been discovered in thin films of epitaxial ErSi2-x formed by annealing thin Er films on Si(001) substrates at temperatures of 500-800°C. The formation of these defects is not due to oxidation. We propose that they form as a result of the separation of the silicide film from the substrate and its buckling in order to relieve the compressive, biaxial epitaxial stresses. Silicon can then diffuse through the silicide or along the interface to fully or partially fill the void between the buckled erbium disilicide film and the substrate.

  12. Soft Magnetic Multilayered Thin Films for HF Applications

    NASA Astrophysics Data System (ADS)

    Loizos, George; Giannopoulos, George; Serletis, Christos; Maity, Tuhin; Roy, Saibal; Lupu, Nicoleta; Kijima, Hanae; Yamaguchi, Masahiro; Niarchos, Dimitris

    Multilayered thin films from various soft magnetic materials were successfully prepared by magnetron sputtering in Ar atmosphere. The magnetic properties and microstructure were investigated. It is found that the films show good soft magnetic properties: magnetic coercivity of 1-10 Oe and saturation magnetization higher than 1T. The initial permeability of the films is greater than 300 and flattens up to 600 MHz. The multilayer thin film properties in combination with their easy, fast and reproducible fabrication indicate that they are potential candidates for high frequency applications.

  13. Film and membrane-model thermodynamics of free thin liquid films.

    PubMed

    Radke, C J

    2015-07-01

    In spite of over 7 decades of effort, the thermodynamics of thin free liquid films (as in emulsions and foams) lacks clarity. Following a brief review of the meaning and measurement of thin-film forces (i.e., conjoining/disjoining pressures), we offer a consistent analysis of thin-film thermodynamics. By carefully defining film reversible work, two distinct thermodynamic formalisms emerge: a film model with two zero-volume membranes each of film tension γ(f) and a membrane model with a single zero-volume membrane of membrane tension 2γ(m). In both models, detailed thermodynamic analysis gives rise to thin-film Gibbs adsorption equations that allow calculation of film and membrane tensions from measurements of disjoining-pressure isotherms. A modified Young-Laplace equation arises in the film model to calculate film-thickness profiles from the film center to the surrounding bulk meniscus. No corresponding relation exists in the membrane model. Illustrative calculations of disjoining-pressure isotherms for water are presented using square-gradient theory. We report considerable deviations from Hamaker theory for films less than about 3 nm in thickness. Such thin films are considerably more attractive than in classical Hamaker theory. Available molecular simulations reinforce this finding. PMID:25648681

  14. Tools to synthesize the learning of thin films

    NASA Astrophysics Data System (ADS)

    Rojas, Roberto; Fuster, Gonzalo; Slüsarenko, Viktor

    2011-05-01

    After a review of textbooks written for undergraduate courses in physics, we have found that discussions on thin films are mostly incomplete. They consider the reflected and not the transmitted light for two instead of the four types of thin films. In this work, we complement the discussion in elementary textbooks, by analysing the phase differences required to match the conditions for constructive and destructive interference, in the reflected and transmitted light in four types of thin films. We consider thin films with varied sequences in the refractive index, which we identify as barriers, wells and stairs (up and down). Also, we use the conservation of energy in order to understand the complementary colour fringes observed in the reflected and transmitted light through thin films. We analyse systematically the phase changes by introducing a phase table and we synthesize the results in a circular diagram matching 16 physical situations of interference and their corresponding conditions on the film thickness. The phase table and the circular diagram are a pair of tools easily assimilated by students, and useful to organize, analyse and activate the knowledge about thin films.

  15. Cratering Studies in Thin Plastic Films

    NASA Astrophysics Data System (ADS)

    Shu, A. J.; Bugiel, S.; Gruen, E.; Hillier, J. K.; Horanyi, M.; Munsat, T.

    2012-12-01

    Thin plastic films, such as Polyvinylidene Fluoride (PVDF), have been used as protective coatings or dust detectors on a number of missions including the Dust Counter and Mass Analyzer (DUCMA) instrument on Vega 1 and 2, the High Rate Detector (HRD) on the Cassini Mission, and the Student Dust Counter (SDC) on New Horizons. These types of detectors can be used on the lunar surface or in lunar orbit to detect dust grain size distributions and velocities. Due to their low power requirements and light weight, large surface area detectors can be built for observing low dust fluxes. The SDC dust detector is made up of a permanently polarized layer of PVDF coated on both sides with a thin layer (≈ 100 nm) of aluminum nickel. The operation principle behind this type of detector is that a micrometeorite impact removes a portion of the metal surface layer exposing the permanently polarized PVDF underneath. This causes a local potential near the crater changing the surface charge of the metal layer. The dimensions of the crater determine the strength of the potential and thus the signal generated by the PVDF. The theory uses a crater diameter scaling law which was not intended for use with PVDF. Work is being undertaken to develop a new crater diameter scaling law using iron particles in 52 μm thick PVDF. Samples were brought to the Heidelberg Dust Accelerator and exposed to a selected range of mass and velocities. Samples are being analyzed at the Colorado Center for Lunar Dust and Atmospheric Studies (CCLDAS) using 3D reconstruction photogrammetry using stereo pairs taken in a scanning electron microscope (SEM) and cross sections taken in a focused ion beam (FIB). Further work is planned at the CCLDAS dust accelerator.

  16. Cratering Studies in Thin Plastic Films

    NASA Astrophysics Data System (ADS)

    Shu, Anthony; Bugiel, S.; Gruen, E.; Horanyi, M.; Munsat, T.; Srama, R.; Colorado CenterLunar Dust; Atmospheric Studies (CCLDAS) Team

    2013-10-01

    Thin plastic films, such as Polyvinylidene Fluoride (PVDF), have been used as protective coatings or dust detectors on a number of missions including the Dust Counter and Mass Analyzer (DUCMA) instrument on Vega 1 and 2, the High Rate Detector (HRD) on the Cassini Mission, and the Student Dust Counter (SDC) on New Horizons. These types of detectors can be used on the lunar surface or in lunar orbit to detect dust grain size distributions and velocities. Due to their low power requirements and light weight, large surface area detectors can be built for observing low dust fluxes. The SDC dust detector is made up of a permanently polarized layer of PVDF coated on both sides with a thin layer (≈ 1000 Å) of aluminum nickel. The operation principle is that a micrometeorite impact removes a portion of the metal surface layer exposing the permanently polarized PVDF underneath. This causes a local potential near the crater changing the surface charge of the metal layer. The dimensions of the crater determine the strength of the potential and thus the signal generated by the PVDF. The theoretical basis for signal interpretation uses a crater diameter scaling law which was not intended for use with PVDF. In this work, a crater size scaling law has been experimentally determined, and further simulation work is being done to enhance our understanding of the mechanisms of crater formation. Two Smoothed Particle Hydrodynamics (SPH) codes are being evaluated for use as a simulator for hypervelocity impacts: Ansys Autodyn and LS-Dyna from the Livermore Software Technology Corp. SPH is known to be well suited to the large deformities found in hypervelocity impacts. It is capable of incorporating key physics phenomena, including fracture, heat transfer, melting, etc. Furthermore, unlike Eulerian methods, SPH is gridless allowing large deformities without the inclusion of unphysical erosion algorithms. Experimental results and preliminary simulation results and conclusions will be

  17. The optical properties of YBCO thin films

    NASA Astrophysics Data System (ADS)

    Wallace, Roger James

    We present strong evidence that there is no specific mid- infrared absorption band in YBCO and a generalised Drude model can be used to explain all of the observed features in the optical spectrum. A high vacuum, low temperature ATR experiment has been used to excite surface plasmons (SPP) on YBCO thin films at different temperatures. We have found that the SPP resonance condition varies systematically with temperature. The temperature dependent dielectric function and optical conductivity of YBCO at 2984nm have been determined. We have shown that the renal and imaginary dielectric function of YBCO, ~ɛ= ɛ1 + iɛ2, at 2984nm, are linearly dependent on temperature: ɛ1(T) = -52 + 0.008T and ɛ1(T) = 4 + 0.1T. We have calculated the optical conductivity, σ(T), and the normal reflectance, ℜ(T): σ(T) = 196 + 4.9T and ℜ(T) = 0.99-7.4 × 10-4T, where temperature is in kelvin and the conductivity is in Ω-1 cm-1. A generalised Drude model has been used to analyse our results. The generalised Drude memory function, M = 1//tau + i/omega/lambda, has been calculated as a function of temperature. The parameters 1/τ and λ can be approximated by 1/τ(T) = 50 + 6.6T and 1 + λ(T) ≅ 1.48 - 0.003T +.35 × 10-5T. These expressions are valid between 100K and 300K. An optical technique for determining the thickness of YBCO thin films has been developed. It has been used in an investigation of laser ablated plasmas. We have observed that the limit of material in the plasma plume is not the same as the limit of the luminosity of the plume. The angular distribution of material can be modelled by a cos n/Theta function over much of the range but a combined cos n/Theta + cos m/Theta function is required to describe the distribution near the visible tip of the plume.

  18. Spectroscopic studies of refractory and dielectric thin films

    SciTech Connect

    Truong, C.M.

    1993-01-01

    This work demonstrated the application of the techniques and methodology of surface science to investigate the mechanisms of thin film deposition processes on solid surfaces. The synthesis of boron nitride (BN) thin films was studied using X-ray photoelectron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). In this model system, diborane (B[sub 2]H[sub 6]), ammonia (NH[sub 3]) and hydrazine (N[sub 2]H[sub 4]) were used as precursors to deposit BN thin films on a clean Ru(0001) surface. The result showed that ammonia reaction with diborane yielded only boron-rich boron nitride overlayers. However, stoichiometric BN films in excess of one monolayer could be produced when hydrazine was substituted for ammonia. The effects of oxygen on boron-rich and stoichiometric boron-nitrogen films were also examined. In the second part of this work, high resolution electron energy loss spectroscopy (HREELS) was used to characterize defect centers in MgO and in lithium-doped MgO thin films. The HREELS results showed that MgO thin films grown on Mo(100) were nearly defect-free at temperatures up to 1100 K. HREELS measurements indicated that annealings to higher temperatures induced F-type defect centers in the MgO films. The formation of [Li[sup +]O[sup [minus

  19. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  20. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, Scot P.; Chamberlin, Rhodes

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells.

  1. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, S.P.; Chamberlin, R.

    1997-10-07

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  2. Thin film photovoltaic device and process of manufacture

    DOEpatents

    Albright, S.P.; Chamberlin, R.

    1999-02-09

    Provided is a thin film photovoltaic device and a method of manufacturing the device. The thin film photovoltaic device comprises a film layer having particles which are smaller than about 30 microns in size held in an electrically insulating matrix material to reduce the potential for electrical shorting through the film layer. The film layer may be provided by depositing preformed particles onto a surrogate substrate and binding the particles in a film-forming matrix material to form a flexible sheet with the film layer. The flexible sheet may be separated from the surrogate substrate and cut into flexible strips. A plurality of the flexible strips may be located adjacent to and supported by a common supporting substrate to form a photovoltaic module having a plurality of electrically interconnected photovoltaic cells. 13 figs.

  3. TI--CR--AL--O thin film resistors

    DOEpatents

    Jankowski, Alan F.; Schmid, Anthony P.

    2000-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film <1 .mu.m thick. The film resistivity can be discretely selected through control of the target composition and the deposition parameters. The application of Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  4. Developing Multilayer Thin Film Strain Sensors With High Thermal Stability

    NASA Technical Reports Server (NTRS)

    Wrbanek, John D.; Fralick, Gustave C.; Gonzalez, Jose M., III

    2006-01-01

    A multilayer thin film strain sensor for large temperature range use is under development using a reactively-sputtered process. The sensor is capable of being fabricated in fine line widths utilizing the sacrificial-layer lift-off process that is used for micro-fabricated noble-metal sensors. Tantalum nitride films were optimized using reactive sputtering with an unbalanced magnetron source. A first approximation model of multilayer resistance and temperature coefficient of resistance was used to set the film thicknesses in the multilayer film sensor. Two multifunctional sensors were fabricated using multilayered films of tantalum nitride and palladium chromium, and tested for low temperature resistivity, TCR and strain response. The low temperature coefficient of resistance of the films will result in improved stability in thin film sensors for low to high temperature use.

  5. Deposition, Characterization, And Simulation Of Thin Films With Form Birefringence

    NASA Astrophysics Data System (ADS)

    Jacobson, M. R.; Horowitz, F.; Liao, Bangjun

    1984-12-01

    Birefringence in optical thin films due to structure on a scale large compared to atoms but small compared to optical wavelengths, known as form birefringence (FB), was observed almost a century ago. More recently, studies of obliquely deposited metal films stimulated new interest in birefringent films. The link between structure, which is predominantly columnar in evaporated thin films, and birefringence has been conclusively demonstrated through ellipsometric measurement and modeling. Direct measurements of form birefringence are especially tedious in tilted films, since essentially four quantities must be derived: three indices of refraction and the film thickness. Clearly, four measurements are required; Horowitz' used an ellipsometric method to perform such measurements on a zirconium oxide (Zr02) film. Later, a 4.6-μm-thick film of Zr02 was obliquely deposited; spectrophotometric measurements revealed its utility as a half-wave plate. A parallel effort directed at understanding FB films through computer simulations has been undertaken by Sikkens and Liao. These simulations can be specialized to include defects, epitaxy, and anisotropic surface mobility. Applications of obliquely deposited FB films of familiar thin film materials can be anticipated if their structure and performance can be more thoroughly understood.

  6. Cracking of thin films: the role of interfaces

    SciTech Connect

    He, M.Y.

    1996-12-31

    This paper addresses some micromechanics analyses for thin film cracking with emphasis placed on the role of interfaces. Fail-safe bounds are provided through the discussion of four problems related to different failure modes.

  7. On-Chip Sensing of Thermoelectric Thin Film's Merit.

    PubMed

    Xiao, Zhigang; Zhu, Xiaoshan

    2015-01-01

    Thermoelectric thin films have been widely explored for thermal-to-electrical energy conversion or solid-state cooling, because they can remove heat from integrated circuit (IC) chips or micro-electromechanical systems (MEMS) devices without involving any moving mechanical parts. In this paper, we report using silicon diode-based temperature sensors and specific thermoelectric devices to characterize the merit of thermoelectric thin films. The silicon diode temperature sensors and thermoelectric devices were fabricated using microfabrication techniques. Specifically, e-beam evaporation was used to grow the thermoelectric thin film of Sb2Te3 (100 nm thick). The Seebeck coefficient and the merit of the Sb2Te3 thin film were measured or determined. The fabrication of silicon diode temperature sensors and thermoelectric devices are compatible with the integrated circuit fabrication. PMID:26193272

  8. Thin-Film Resistance Heat-Flux Sensors

    NASA Technical Reports Server (NTRS)

    Fralick, Gustave C.; Wrbanek, John D.; Blaha, Charles A.

    2005-01-01

    Thin-film heat-flux sensors of a proposed type would offer advantages over currently available thin-film heat flux sensors. Like a currently available thin-film heat-flux sensor, a sensor according to the proposal would be based on measurement of voltages related to the temperatures of thin metal films on the hotter and colder faces of a layer of an electrically insulating and moderately thermally conductive material. The heat flux through such a device is proportional to the difference between the temperatures and to the thermal conductivity of the layer. The advantages of the proposed sensors over the commercial ones would arise from the manner in which the temperature-related voltages would be generated and measured.

  9. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema

    Sandia

    2009-09-01

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  10. Self-Assembling Process for Fabricating Tailored Thin Films

    ScienceCinema

    None

    2010-01-08

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  11. Preparation of silver-activated zinc sulfide thin films

    NASA Technical Reports Server (NTRS)

    Feldman, C.; Swindells, F. E.

    1968-01-01

    Silver improves luminescence and reduces contamination of zinc sulfide phosphors. The silver is added after the zinc sulfide phosphors are deposited in thin films by vapor evaporation, but before calcining, by immersion in a solution of silver salt.

  12. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    SciTech Connect

    Not Available

    2013-06-01

    This National Center for Photovoltaics sheet describes the capabilities of its polycrystalline thin-film research in the area of cadmium telluride. The scope and core competencies and capabilities are discussed.

  13. Polycrystalline Thin-Film Research: Cadmium Telluride (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet that includes scope, core competencies and capabilities, and contact/web information for Polycrystalline Thin-Film Research: Cadmium Telluride at the National Center for Photovoltaics.

  14. Role of Microstructural Phenomena in Magnetic Thin Films. Final Report

    SciTech Connect

    Laughlin, D. E.; Lambeth, D. N.

    2001-04-30

    Over the period of the program we systematically varied microstructural features of magnetic thin films in an attempt to better identify the role which each feature plays in determining selected extrinsic magnetic properties. This report summarizes the results.

  15. A thin film hydroponic system for plant studies

    NASA Technical Reports Server (NTRS)

    Hines, Robert; Prince, Ralph; Muller, Eldon; Schuerger, Andrew

    1990-01-01

    The Land Pavillion, EPCOT Center, houses a hydroponic, thin film growing system identical to that residing in NASA's Biomass Production Chamber at Kennedy Space Center. The system is targeted for plant disease and nutrition studies. The system is described.

  16. Photoacoustic characterization of the mechanical properties of thin films

    NASA Astrophysics Data System (ADS)

    Hernandez, Carmen M.; Murray, Todd W.; Krishnaswamy, Sridhar

    2002-01-01

    Narrow band photoacoustics (laser ultrasonics) are used to characterize the properties of free-standing nanometer-sized thin films. Photoacoustic generation is achieved by use of a microchip laser which deposits pulsed laser energy in the form of a spatially periodic source on the structure. The resulting narrow band ultrasonic modes are monitored using a Michelson interferometer. By varying the geometry of the spatially periodic source, a wide range of acoustic wave numbers is probed. Results are presented for two-layer thin film aluminum/silicon-nitride (Al/Si3N4) membranes. For such thin films, only the two lowest order guided modes are generated and these in turn can be related to sheet and flexural modes in plates. The mechanical properties and residual stress in the thin films are evaluated from measured acoustic dispersion curves for these two lowest order modes.

  17. Self-Assembling Process for Fabricating Tailored Thin Films

    SciTech Connect

    2008-07-31

    A simple, economical nanotechnology coating process that enables the development of nanoparticle thin films with architectures and properties unattainable by any other processing method. 2007 R&D 100 winner (SAND2007-1878P)

  18. Multifunctional oxide thin films for magnetoelectric and electromechanical applications

    NASA Astrophysics Data System (ADS)

    Baek, Seung Hyub

    Epitaxial multifunctional oxide thin films have been extensively researched to understand and exploit a variety of their physical properties. In order to integrate such versatile properties into real devices, there are several critical issues: (1) high-quality thin film growth, (2) fundamental understanding on reliable performance, and (3) device fabrication process preserving functionality of oxides. We have investigated all these issues, employing two different materials: multiferroic BiFeO3 and piezoelectric Pb(Mg1/3 Nb2/3)O3-PbTiO3 (PMN-PT) epitaxial thin films. For the high-quality thin film growth, we have chosen both BiFeO 3 and PMN-PT thin films as a model system. Bi2O3and PbO are the volatile species in these oxides, which makes it hard to grow phase-pure stoichiometric thin films. Because the properties of oxides are sensitive to stoichiometry and defects, it is highly required to fix such volatile elements during thin film growth. We have grown high-quality epitaxial thin films using a fast-rate off-axis sputtering method and vicinal substrates. In addition, we were able to control domain structures of BiFeO3 thin films using vicinal substrates. For the study on the reliability issues in oxides, we have used BiFeO 3 thin films within the framework of magnetoelectric device applications. For reliable magnetoelectric performance of BiFeO3, polarization switching path has to be (1) deterministic, and to be retained along with (2) time---retention, and (3) cycles--- fatigue. We have used monodomain BiFeO3 thin films as a model system. Based on theoretical predictions, we have studied polarization switching paths, and achieved both selective polarization switching and retention problems using island BiFeO3 structure. We have also investigated polarization fatigue, dependent on switching path. For the demonstration of working devices preserving the original functionality of oxides, we have fabricated micro-cantilevers using PMN-PT heterostructure on Si. The

  19. Drop impact on thin liquid films using TIRM

    NASA Astrophysics Data System (ADS)

    Pack, Min; Ying Sun Team

    2015-11-01

    Drop impact on thin liquid films is relevant to a number of industrial processes such as pesticide spraying and repellent surface research such as self-cleaning applications. In this study, we systematically investigate the drop impact dynamics on thin liquid films on plain glass substrates by varying the film thickness, viscosity and impact velocity. High speed imaging is used to track the droplet morphology and trajectory over time as well as observing instability developments at high Weber number impacts. Moreover, the air layer between the drop and thin film upon drop impact is probed by total internal reflection microscopy (TIRM) where the grayscale intensity is used to measure the air layer thickness and spreading radius over time. For low We impact on thick films (We ~ 10), the effect of the air entrainment is pronounced where the adhesion of the droplet to the wall is delayed by the air depletion and liquid film drainage, whereas for high We impact (We >100) the air layer is no longer formed and instead, the drop contact with the wall is limited only to the film drainage for all film thicknesses. In addition, the maximum spreading radius of the droplet is analyzed for varying thin film thickness and viscosity.

  20. Crystalline Indium Sulphide thin film by photo accelerated deposition technique

    NASA Astrophysics Data System (ADS)

    Dhanya, A. C.; Preetha, K. C.; Deepa, K.; Remadevi, T. L.

    2015-02-01

    Indium sulfide thin films deserve special attention because of its potential application as buffer layers in CIGS based solar cells. Highly transparent indium sulfide (InS) thin films were prepared using a novel method called photo accelerated chemical deposition (PCD). Ultraviolet source of 150 W was used to irradiate the solution. Compared to all other chemical methods, PCD scores its advantage for its low cost, flexible substrate and capable of large area of deposition. Reports on deposition of high quality InS thin films at room temperature are very rare in literature. The precursor solution was initially heated to 90°C for ten minutes and then deposition was carried out at room temperature for two hours. The appearance of the film changed from lemon yellow to bright yellow as the deposition time increased. The sample was characterized for its structural and optical properties. XRD profile showed the polycrystalline behavior of the film with mixed phases having crystallite size of 17 nm. The surface morphology of the films exhibited uniformly distributed honey comb like structures. The film appeared to be smooth and the value of extinction coefficient was negligible. Optical measurements showed that the film has more than 80% transmission in the visible region. The direct band gap energy was 2.47eV. This method is highly suitable for the synthesis of crystalline and transparent indium sulfide thin films and can be used for various photo voltaic applications.

  1. Synthesizing skyrmion bound pairs in Fe-Gd thin films

    NASA Astrophysics Data System (ADS)

    Lee, J. C. T.; Chess, J. J.; Montoya, S. A.; Shi, X.; Tamura, N.; Mishra, S. K.; Fischer, P.; McMorran, B. J.; Sinha, S. K.; Fullerton, E. E.; Kevan, S. D.; Roy, S.

    2016-07-01

    We show that properly engineered amorphous Fe-Gd alloy thin films with perpendicular magnetic anisotropy exhibit bound pairs of like-polarity, opposite helicity skyrmions at room temperature. Magnetic mirror symmetry planes present in the stripe phase, instead of chiral exchange, determine the internal skyrmion structure and the net achirality of the skyrmion phase. Our study shows that stripe domain engineering in amorphous alloy thin films may enable the creation of skyrmion phases with technologically desirable properties.

  2. Linear Microbolometric Array Based on VOx Thin Film

    NASA Astrophysics Data System (ADS)

    Chen, Xi-Qu

    2010-05-01

    In this paper, a linear microbolometric array based on VOx thin film is proposed. The linear microbolometric array is fabricated by using micromachining technology, and its thermo-sensitive VOx thin film has excellent infrared response spectrum and TCR characteristics. Integrated with CMOS circuit, an experimentally prototypical monolithic linear microbolometric array is designed and fabricated. The testing results of the experimental linear array show that the responsivity of linear array can approach 18KV/W and is potential for infrared image systems.

  3. Extreme ultraviolet transmission of a synthetic diamond thin film

    NASA Technical Reports Server (NTRS)

    Vallerga, John V.; Gibson, J. L.; Knowles, J. L.

    1991-01-01

    Measurements are presented of a thin film of synthetic diamond at various wavelengths in the extreme ultraviolet. The synthetic diamond combines the transmission properties of carbon with the strength, density, and ruggedness of a natural diamond. The Extreme Ultraviolet Transmission (EUV) of a film of the synthetic diamond has shown the existence of a thin surface layer of silicon, probably in the form of silicon carbide, which is not a contaminant layer.

  4. Solitons in yttrium iron garnet thin films with localized gain

    NASA Astrophysics Data System (ADS)

    Pal, Ritu; Loomba, Shally; Kumar, C. N.

    2016-05-01

    We present the exact analytical solutions of cubic-quintic nonlinear Schrödinger equation with localized gain. We have demonstrated that the bright and dark solitons exist for the repulsive cubic and attractive quintic nonlinearity. These solutions have been obtained for those values of parameters which support the formation of solitons in Yttrium iron garnet thin films. Our results may be useful to understand the nonlinear pulse excitations in thin films.

  5. UV imprinting for thin film solar cell application

    NASA Astrophysics Data System (ADS)

    Escarré, J.; Battaglia, C.; Söderström, K.; Pahud, C.; Biron, R.; Cubero, O.; Haug, F.-J.; Ballif, C.

    2012-02-01

    UV imprinting is an interesting, low cost technique to produce large area thin film solar cells incorporating nanometric textures. Here, we review and present new results confirming that replicas of the most common textures used in photovoltaics can be obtained by UV imprinting with an excellent fidelity. The use of these replicas as substrates for amorphous and micromorph thin film silicon solar cells is also shown, together with a comparison with devices obtained on the original textures.

  6. High frequency, small signal MH loops of ferromagnetic thin films

    NASA Technical Reports Server (NTRS)

    Grimes, C. A.; Ong, K. G.

    2000-01-01

    A method is presented for transforming the high frequency bias susceptibility measurements of ferromagnetic thin films into the form of a MH loop with, depending upon the measurement geometry, the y-axis zero crossing giving a measure of the coercive force or anisotropy field. The loops provide a measure of the quantitative and qualitative high frequency switching properties of ferromagnetic thin films. c2000 American Institute of Physics.

  7. Synthesizing skyrmion bound pairs in Fe-Gd thin films

    DOE PAGESBeta

    Lee, J. C. T.; Chess, J. J.; Montoya, S. A.; Shi, X.; Tamura, N.; Mishra, S. K.; Fischer, P.; McMorran, B. J.; Sinha, S. K.; Fullerton, E. E.; et al

    2016-07-11

    Here, we show that properly engineered amorphous Fe-Gd alloy thin films with perpendicular magnetic anisotropy exhibit bound pairs of like-polarity, opposite helicity skyrmions at room temperature. Magnetic mirror symmetry planes present in the stripe phase, instead of chiral exchange, determine the internal skyrmion structure and the net achirality of the skyrmion phase. Our study shows that stripe domain engineering in amorphous alloy thin films may enable the creation of skyrmion phases with technologically desirable properties.

  8. Simple flash evaporator for making thin films of compounds

    SciTech Connect

    Hemanadhan, M.; Bapanayya, Ch.; Agarwal, S. C.

    2010-07-15

    A simple and compact arrangement for flash evaporation is described. It uses a cell phone vibrator for powder dispensing that can be incorporated into a vacuum deposition chamber without any major alterations. The performance of the flash evaporation system is checked by making thin films of the optical memory chalcogenide glass Ge{sub 2}Sb{sub 2}Te{sub 5} (GST). Energy dispersive x-ray analysis shows that the flash evaporation preserves the stoichiometry in thin films.

  9. Recent technological advances in thin film solar cells

    SciTech Connect

    Ullal, H.S.; Zwelbel, K.; Surek, T.

    1990-03-01

    High-efficiency, low-cost thin film solar cells are an exciting photovoltaic technology option for generating cost-effective electricity in 1995 and beyond. This paper reviews the substantial advances made by several thin film solar cell technologies, namely, amorphous silicon, copper indium diselenide, cadmium telluride, and polycrystalline silicon. Recent examples of utility demonstration projects of these emerging materials are also discussed. 8 refs., 4 figs.

  10. Scanned probe microscopy for thin film superconductor development

    SciTech Connect

    Moreland, J.

    1996-12-31

    Scanned probe microscopy is a general term encompassing the science of imaging based on piezoelectric driven probes for measuring local changes in nanoscale properties of materials and devices. Techniques like scanning tunneling microscopy, atomic force microscopy, and scanning potentiometry are becoming common tools in the production and development labs in the semiconductor industry. The author presents several examples of applications specific to the development of high temperature superconducting thin films and thin-film devices.

  11. Heat flux induced dryout and rewet in thin films

    NASA Technical Reports Server (NTRS)

    Stroes, Gustave; Fricker, Darren; Issacci, Farrokh; Catton, Ivan

    1990-01-01

    Heat flux induced dryout of thin liquid films on an inclined copper plate was studied. Rewet of the dried out area is also considered. The four fluids used to form the thin films exhibited very different dryout and rewet characteristics. The contact angle and hysteresis effects were found to be important, but they must be considered in context with other parameters. No single variable was found to independently determine the pattern of dryout and rewet.

  12. Adhesion and Thin-Film Module Reliability

    SciTech Connect

    McMahon, T. J.; Jorgenson, G. J.

    2006-01-01

    Among the infrequently measured but essential properties for thin-film (T-F) module reliability are the interlayer adhesion and cohesion within a layer. These can be cell contact layers to glass, contact layers to the semiconductor, encapsulant to cell, glass, or backsheet, etc. We use an Instron mechanical testing unit to measure peel strengths at 90deg or 180deg and, in some cases, a scratch and tape pull test to evaluate inter-cell layer adhesion strengths. We present peel strength data for test specimens laminated from the three T-F technologies, before and after damp heat, and in one instance at elevated temperatures. On laminated T-F cell samples, failure can occur uniformly at any one of the many interfaces, or non-uniformly across the peel area at more than one interface. Some peel strengths are Lt1 N/mm. This is far below the normal ethylene vinyl acetate/glass interface values of >10 N/mm. We measure a wide range of adhesion strengths and suggest that adhesion measured under higher temperature and relative humidity conditions is more relevant for module reliability.

  13. Charge transport mechanisms in phthalocyanine thin films

    NASA Astrophysics Data System (ADS)

    Colesniuc, Corneliu; Sharoni, Amos; Schuller, Ivan K.

    2008-03-01

    Devices consisting of phthalocyanine thin films sandwiched between gold electrodes were fabricated by organic molecular beam deposition. Samples with different organic layer thickness were deposited on sapphire substrates in-situ, using a shadow mask and a mobile sample holder controlled manually. The structural asymmetry of the devices determined by the different metal-organic interfaces is reflected in the I-V curves at positive and negative voltages. The logarithmic scale I-V plots can be fitted with linear functions of different slopes corresponding to different conduction regimes. At low temperatures a transition from the ohmic regime to a slope two space charge limited conduction mechanism is followed at higher voltages by a high slope linear dependence that tends to saturate when the voltage reaches maximum values. At higher temperatures the intermediary space charge limited regime disappears and the transition is from ohmic to high slope space charge limited. Traps with different energy and energy distribution determine the different conduction regimes. Shallow traps located at discrete energy levels control the transport at intermediate voltages while exponentially distributed traps determine the high voltage behavior. Work supported by AFOSR-MURI.

  14. Photodesorption from copper, beryllium and thin films

    SciTech Connect

    Foerster, C.L.; Halama, H.J.; Korn, G.

    1991-01-01

    Ever increasing circulating currents in electron-positron colliders and light sources demand lower and lower photodesportion (PSD) from the surfaces of their vacuum chambers and their photon absorbers. This is particularly important in compact electron storage rings and B meson factories where photon power of several kw cm{sup {minus}1} is deposited on the surfaces. Given the above factors we have measured PSD from 1m long bars of (1) solid copper and solid beryllium, and (2), TiN, Au and C thin films deposited on solid copper bars. Each sample was exposed to about 10{sup 23} photons/m with a critical energy of 500 eV at the VUV ring of the NSLS. PSD was recorded for two conditions: after a 200{degrees}C bake-out and after an Ar glow discharge cleaning. In addition, we also measured reflected photons, photoelectrons and desorption as functions of normal, 75 mrad, 100 mrad, and 125 mrad incident photons. 15 refs., 8 figs., 1 tab.

  15. Photodesorption from copper, beryllium and thin films

    SciTech Connect

    Foerster, C.L.; Halama, H.J.; Korn, G.

    1991-12-31

    Ever increasing circulating currents in electron-positron colliders and light sources demand lower and lower photodesportion (PSD) from the surfaces of their vacuum chambers and their photon absorbers. This is particularly important in compact electron storage rings and B meson factories where photon power of several kw cm{sup {minus}1} is deposited on the surfaces. Given the above factors we have measured PSD from 1m long bars of (1) solid copper and solid beryllium, and (2), TiN, Au and C thin films deposited on solid copper bars. Each sample was exposed to about 10{sup 23} photons/m with a critical energy of 500 eV at the VUV ring of the NSLS. PSD was recorded for two conditions: after a 200{degrees}C bake-out and after an Ar glow discharge cleaning. In addition, we also measured reflected photons, photoelectrons and desorption as functions of normal, 75 mrad, 100 mrad, and 125 mrad incident photons. 15 refs., 8 figs., 1 tab.

  16. Inverse bilayer magnetoelectric thin film sensor

    NASA Astrophysics Data System (ADS)

    Yarar, E.; Salzer, S.; Hrkac, V.; Piorra, A.; Höft, M.; Knöchel, R.; Kienle, L.; Quandt, E.

    2016-07-01

    Prior investigations on magnetoelectric (ME) thin film sensors using amorphous FeCoSiB as a magnetostrictive layer and AlN as a piezoelectric layer revealed a limit of detection (LOD) in the range of a few pT/Hz1/2 in the mechanical resonance. These sensors are comprised of a Si/SiO2/Pt/AlN/FeCoSiB layer stack, as dictated by the temperatures required for the deposition of the layers. A low temperature deposition route of very high quality AlN allows the reversal of the deposition sequence, thus allowing the amorphous FeCoSiB to be deposited on the very smooth Si substrate. As a consequence, the LOD could be enhanced by almost an order of magnitude reaching 400 fT/Hz1/2 at the mechanical resonance of the sensor. Giant ME coefficients (αME) as high as 5 kV/cm Oe were measured. Transmission electron microscopy investigations revealed highly c-axis oriented growth of the AlN starting from the Pt-AlN interface with local epitaxy.

  17. Thin Film Technology Development for the Powersphere

    NASA Technical Reports Server (NTRS)

    Simburger, Edward J.; Matsumoto, James H.; Giants, Thomas W.; Garcia, Alexander, III; Liu, Simon; Rawal, Suraj P.; Perry, Alan R.; Marshall, Craig H.; Lin, John K.; Scarborough, Stephen; Curtis, Henry B.

    2003-01-01

    The Aerospace Corporation, NASA Glenn Research Center, Lockheed-Martin, and ILC Dover over the past two years have been engaged in developing a Multifunctional Inflatable Structure for the Powersphere Concept under contract with NASA (NAS3-01115). The Powersphere concept consists of a relatively large spherical solar array, which would be deployed from a microsatellite. The Powersphere structure and the deployment method was patented by the Aerospace Corporation (U.S. Patent Numbers 6,284,966 B 1 and 6,3 18,675). The work on this project has resulted in a number of technological innovations in the state of the art for integrating flexible thin-film solar cells with flex circuit harness technology and inflatable ultraviolet-light-rigidizable structures. The specific power, specific volume, for the Powersphere are presented in Figures 1 and 2 as a function of solar cell technology and efficiency. The Powersphere will enable microsatellite missions across NASA enterprises and DoD missions by providing ample electric power at an affordable cost. The Powersphere design provides attitude-independent electric power and thermal control for an enclosed microsatellite payload. The design is scalable, robust in high radiation environments and provides sufficient electric power to allow the use of electric propulsion. Electric propulsion enables precise positioning of microsatellites which is required for inspectors that would be deployed to inspect the International Space Station, Space Shuttle or large unmanned spacecraft. The Powersphere allows for efficient launch packaging versus deployed volume as shown in Figure 3.

  18. Product reliability and thin-film photovoltaics

    NASA Astrophysics Data System (ADS)

    Gaston, Ryan; Feist, Rebekah; Yeung, Simon; Hus, Mike; Bernius, Mark; Langlois, Marc; Bury, Scott; Granata, Jennifer; Quintana, Michael; Carlson, Carl; Sarakakis, Georgios; Ogden, Douglas; Mettas, Adamantios

    2009-08-01

    Despite significant growth in photovoltaics (PV) over the last few years, only approximately 1.07 billion kWhr of electricity is estimated to have been generated from PV in the US during 2008, or 0.27% of total electrical generation. PV market penetration is set for a paradigm shift, as fluctuating hydrocarbon prices and an acknowledgement of the environmental impacts associated with their use, combined with breakthrough new PV technologies, such as thin-film and BIPV, are driving the cost of energy generated with PV to parity or cost advantage versus more traditional forms of energy generation. In addition to reaching cost parity with grid supplied power, a key to the long-term success of PV as a viable energy alternative is the reliability of systems in the field. New technologies may or may not have the same failure modes as previous technologies. Reliability testing and product lifetime issues continue to be one of the key bottlenecks in the rapid commercialization of PV technologies today. In this paper, we highlight the critical need for moving away from relying on traditional qualification and safety tests as a measure of reliability and focus instead on designing for reliability and its integration into the product development process. A drive towards quantitative predictive accelerated testing is emphasized and an industrial collaboration model addressing reliability challenges is proposed.

  19. Miniaturized thin film glutamate and glutamine biosensors.

    PubMed

    Moser, I; Jobst, G; Aschauer, E; Svasek, P; Varahram, M; Urban, G; Zanin, V A; Tjoutrina, G Y; Zharikova, A V; Berezov, T T

    1995-01-01

    Integrated thin film biosensors were developed for the simultaneous measurement of L-glutamine and L-glutamate in a mu-flow cell. Due to a novel glutaminase with an activity optimum in the neutral pH range, direct monitoring of glutamine in a mammalian cell culture medium could be performed. The glutamine bienzyme sensor was prepared by co-immobilization of glutaminase with glutamate oxidase within a photopatterned poly(2-hydroxyethyl methacrylate) (pHEMA) hydrogel membrane. The sensor response was linear in the concentration range of 50 mumol to 10 mmol glutamine/l. Additionally, a glutamate biosensor was integrated on the sensor chip for difference measurement of possible glutamate interferences. The sensor-chip could be used for at least 300 measurements without any alteration in the performance of its sensors. A new sensor-chip with an integrated flow cell provided the possibility of simultaneous measurement of four different parameters at a cell volume of 1 microliter. In order to complete the microsystem, and in order to obtain a "lab on chip", a battery operated surface mounted device (SMD) potentiostat was developed. PMID:7612205

  20. Thin transparent conducting films of cadmium stannate

    DOEpatents

    Wu, Xuanzhi; Coutts, Timothy J.

    2001-01-01

    A process for preparing thin Cd.sub.2 SnO.sub.4 films. The process comprises the steps of RF sputter coating a Cd.sub.2 SnO.sub.4 layer onto a first substrate; coating a second substrate with a CdS layer; contacting the Cd.sub.2 SnO.sub.4 layer with the CdS layer in a water- and oxygen-free environment and heating the first and second substrates and the Cd.sub.2 SnO.sub.4 and CdS layers to a temperature sufficient to induce crystallization of the Cd.sub.2 SnO.sub.4 layer into a uniform single-phase spinel-type structure, for a time sufficient to allow full crystallization of the Cd.sub.2 SnO.sub.4 layer at that temperature; cooling the first and second substrates to room temperature; and separating the first and second substrates and layers from each other. The process can be conducted at temperatures less than 600.degree. C., allowing the use of inexpensive soda lime glass substrates.

  1. Nanostructured refractory thin films for solar applications

    NASA Astrophysics Data System (ADS)

    Ollier, E.; Dunoyer, N.; Dellea, O.; Szambolics, H.

    2014-08-01

    Selective solar absorbers are key elements of all solar thermal systems. Solar thermal panels and Concentrated Solar Power (CSP) systems aim respectively at producing heat and electricity. In both cases, a surface receives the solar radiation and is designed to have the highest optical absorption (lowest optical reflectivity) of the solar radiation in the visible wavelength range where the solar intensity is the highest. It also has a low emissivity in the infrared (IR) range in order to avoid radiative thermal losses. Current solutions in the state of the art usually consist in deposited interferential thin films or in cermets [1]. Structured surfaces have been proposed and have been simulated because they are supposed to be more efficient when the solar radiation is not normal to the receiving surface and because they could potentially be fabricated with refractory materials able to sustain high operating temperatures. This work presents a new method to fabricate micro/nanostructured surfaces on molybdenum (refractory metal with a melting temperature of 2623°C). This method now allows obtaining a refractory selective surface with an excellent optical selectivity and a very high absorption in the visible range. This high absorption performance was obtained by achieving a double structuration at micro and nano scales thanks to an innovative process flow.

  2. Synthesis and Applications of Titanium Oxide Nanotube Thin Films

    NASA Astrophysics Data System (ADS)

    Miyauchi, Masahiro; Tokudome, Hiromasa

    Layer-by-layer or vertically aligned TiO2 nanotube thin films were fabricated by using hydrothermally grown titanate nanotubes. These films were optically transparent and exhibited various functions. Layer-by-layer growth of TiO2 nanotubes on glass substrates was achieved by alternate layer deposition using an aqueous solution of colloidal titanate nanotubes and that of a polycation. These films exhibited photoinduced hydrophilic conversion, low-reflectivity, and significant electrochromism, owing to their unique one dimensional open-pore nanostructure. In addition, transparent thin films of vertically aligned TiO2 nanotube arrays were grown by a hydrothermal treatment of metal Ti thin film on glass substrates. These nanotube arrays were well adhered to the substrates and exhibited super-hydrophilicity even under the dark condition and the efficient electron field emission.

  3. Fluorescence Recovery after Photobleaching in Confined Polymer Thin Films

    NASA Astrophysics Data System (ADS)

    Gray, Laura A. G.; Brangwynne, Clifford P.; Priestley, Rodney D.

    Over the past twenty years many studies have shown a reduction in the glass transition temperature (Tg) of thin polymer films confined on the nanoscale when supported on non-attractive substrates or free-standing. The depth dependence of Tg has been measured using thin layers of fluorescently tagged polymer to localize the dye within a larger polymer film stack, revealing a decrease in local Tg tens of nanometers into the film. These results have been explained by the propagation of enhanced mobility from the free-surface into the polymer film. Fewer direct measurements of molecular mobility have been made in confined polymer systems. Here, we present the results of fluorescence recovery after photobleaching (FRAP) experiments investigating the mobility of fluorescently doped and labeled methacrylate-based polymers confined in thin film geometries. Bleaching and recovery was monitored using a laser-scanning confocal microscope that enabled us to bleach arbitrary micron-sized shapes to monitor diffusion in polymer melts.

  4. Application and deterioration of thin films used for microelectronic devices

    SciTech Connect

    Hummel, R.E.

    1987-01-01

    Microelectronic technology makes use of the knowledge and characterization methods of thin films and of our understanding of interfaces between thin films or between films and substrates. (See in this context some of the other papers in this book). The present contribution deals accordingly with thin films utilized in microelectronic devices. It needs to be realized that computers and other related devices depend heavily on metallic or semiconducting layers that often have only the size of one-tenth of the thickness of a human hair. As the electronic devices shrink, these layers represent an ever-greater fraction of the total device volume. These very films actually determine the electrical characteristics and also the stability (reliability) of the devices.

  5. Polycrystalline thin-film solar cells and modules

    SciTech Connect

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG&E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  6. Polycrystalline thin-film solar cells and modules

    SciTech Connect

    Ullal, H.S.; Stone, J.L.; Zweibel, K.; Surek, T.; Mitchell, R.L.

    1991-12-01

    This paper describes the recent technological advances in polycrystalline thin-film solar cells and modules. Three thin film materials, namely, cadmium telluride (CdTe), copper indium diselenide (CuInSe{sub 2}, CIS) and silicon films (Si-films) have made substantial technical progress, both in device and module performance. Early stability results for modules tested outdoors by various groups worldwide are also encouraging. The major global players actively involved in the development of the these technologies are discussed. Technical issues related to these materials are elucidated. Three 20-kW polycrystalline thin-film demonstration photovoltaic (PV) systems are expected to be installed in Davis, CA in 1992 as part of the Photovoltaics for Utility-Scale Applications (PVUSA) project. This is a joint project between the US Department of Energy (DOE), Pacific Gas and Electric (PG E), Electric Power Research Institute (EPRI), California Energy Commission (CEC), and a utility consortium.

  7. Formation of diamond nanoparticle thin films by electrophoretic deposition

    NASA Astrophysics Data System (ADS)

    Goto, Yosuke; Ohishi, Fujio; Tanaka, Kuniaki; Usui, Hiroaki

    2016-03-01

    Thin films of diamond nanoparticles were prepared by electrophoretic deposition (EPD) using 0.5 wt % dispersions in water, ethanol, and 2-propanol. The film growth rate increased with increasing voltage applied to the electrodes. However, an excessive increase in voltage caused the degradation of film morphology. The optimum voltage was 4 V with an electrode separation of 5 mm. The film growth rate was higher in organic solvents than in water. The deposited film had a smooth surface with an average surface roughness comparable to the size of primary particles of the source material. It is notable that the EPD films had a considerably higher physical stability than spin-coated and cast films. The stability was further improved by thermally annealing the films. IR analysis revealed that the diamond nanoparticles have carboxy and amino groups on their surfaces. It is considered that the stability of the EPD films originate from a chemical reaction between these functional groups.

  8. Methods for preparing colloidal nanocrystal-based thin films

    DOEpatents

    Kagan, Cherie R.; Fafarman, Aaron T.; Choi, Ji-Hyuk; Koh, Weon-kyu; Kim, David K.; Oh, Soong Ju; Lai, Yuming; Hong, Sung-Hoon; Saudari, Sangameshwar Rao; Murray, Christopher B.

    2016-05-10

    Methods of exchanging ligands to form colloidal nanocrystals (NCs) with chalcogenocyanate (xCN)-based ligands and apparatuses using the same are disclosed. The ligands may be exchanged by assembling NCs into a thin film and immersing the thin film in a solution containing xCN-based ligands. The ligands may also be exchanged by mixing a xCN-based solution with a dispersion of NCs, flocculating the mixture, centrifuging the mixture, discarding the supernatant, adding a solvent to the pellet, and dispersing the solvent and pellet to form dispersed NCs with exchanged xCN-ligands. The NCs with xCN-based ligands may be used to form thin film devices and/or other electronic, optoelectronic, and photonic devices. Devices comprising nanocrystal-based thin films and methods for forming such devices are also disclosed. These devices may be constructed by depositing NCs on to a substrate to form an NC thin film and then doping the thin film by evaporation and thermal diffusion.

  9. Research on polycrystalline thin-film materials, cells, and modules

    NASA Astrophysics Data System (ADS)

    Mitchell, R. L.; Zweibel, K.; Ullal, H. S.

    1990-11-01

    DOE supports research activities in polycrystalline thin films through the Polycrystalline Thin Film Program. This program includes includes R and D in both copper indium diselenide and cadmium telluride thin films for photovoltaic applications. The objective is to support R and D of photovoltaic cells and modules that meet the DOE long term goals of high efficiency (15 to 20 percent), low cost ($50/sq cm), and reliability (30-year life time). Research carried out in this area is receiving increased recognition due to important advances in polycrystalline thin film CuInSe2 and CdTe solar cells and modules. These have become the leading thin film materials for photovoltaics in terms of efficiency and stability. DOE has recognized this potential through a competitive initiative for the development of CuInSe(sub 2) and CdTe modules. The recent progress and future directions are studied of the Polycrystalline Thin Film Program and the status of the subcontracted research on these promising photovoltaic materials.

  10. Research on polycrystalline thin-film materials, cells, and modules

    SciTech Connect

    Mitchell, R.L.; Zweibel, K.; Ullal, H.S.

    1990-11-01

    The US Department of Energy (DOE) supports research activities in polycrystalline thin films through the Polycrystalline Thin-Film Program at the Solar Energy Research Institute (SERI). This program includes research and development (R D) in both copper indium diselenide and cadmium telluride thin films for photovoltaic applications. The objective of this program is to support R D of photovoltaic cells and modules that meet the DOE long-term goals of high efficiency (15%--20%), low cost ($50/m{sup 2}), and reliability (30-year life time). Research carried out in this area is receiving increased recognition due to important advances in polycrystalline thin-film CuInSe{sub 2} and CdTe solar cells and modules. These have become the leading thin-film materials for photovoltaics in terms of efficiency and stability. DOE has recognized this potential through a competitive initiative for the development of CuInSe{sub 2} and CdTe modules. This paper focuses on the recent progress and future directions of the Polycrystalline Thin-Film Program and the status of the subcontracted research on these promising photovoltaic materials. 26 refs., 12 figs, 1 tab.

  11. Toughening thin-film structures with ceramic-like amorphous silicon carbide films.

    PubMed

    Matsuda, Yusuke; Ryu, Ill; King, Sean W; Bielefeld, Jeff; Dauskardt, Reinhold H

    2014-01-29

    A significant improvement of adhesion in thin-film structures is demonstrated using embedded ceramic-like amorphous silicon carbide films (a-SiC:H films). a-SiC:H films exhibit plasticity at the nanoscale and outstanding chemical and thermal stability unlike most materials. The multi-functionality and the ease of processing of the films have potential to offer a new toughening strategy for reliability of nanoscale device structures. PMID:23894055

  12. Thin aerogel films for optical, thermal, acoustic, and electronic applications

    SciTech Connect

    Hrubesh, L.W.; Poco, J.F.

    1994-09-01

    Aerogels are a special class of continuously porous solid materials which are characterized by nanometer size particles and pores. Typically, aerogels are made using sol-gel chemistry to form a solvent filled, high porosity gel that is dried by removing the solvent without collapsing the tenuous solid phase. As bulk materials, aerogels are known to have many exceptional, and even some unique physical properties. Aerogels provide the highest thermal insulation and lowest dielectric constant of any other material known. However, some important applications require the aerogels in the form of thin films or sheets. For example, electronic applications require micrometer thin aerogel films bonded to a substrate, and others require thicker films, either on a substrate or as free standing sheets. Special methods are required to make aerogel thin films or sheets. In this paper, the authors discuss the special conditions needed to fabricate thin aerogel films and they describe methods to make films and thin sheets. They also give some specific applications for which aerogel films are being developed.

  13. Application of surface analytical methods in thin film analysis

    NASA Astrophysics Data System (ADS)

    Wen, Xingu

    Self-assembly and the sol-gel process are two promising methods for the preparation of novel materials and thin films. In this research, these two methods were utilized to prepare two types of thin films: self-assembled monolayers of peptides on gold and SiO2 sol-gel thin films modified with Ru(II) complexes. The properties of the resulting thin films were investigated by several analytical techniques in order to explore their potential applications in biomaterials, chemical sensors, nonlinear optics and catalysis. Among the analytical techniques employed in the study, surface analytical techniques, such as X-ray photoelectron spectroscopy (XPS) and grazing angle reflection absorption Fourier transform infrared spectroscopy (RA-FTIR), are particularly useful in providing information regarding the compositions and structures of the thin films. In the preparation of peptide thin films, monodisperse peptides were self-assembled on gold substrate via the N-terminus-coupled lipoic acid. The film compositions were investigated by XPS and agreed well with the theoretical values. XPS results also revealed that the surface coverage of the self-assembled films was significantly larger than that of the physisorbed films and that the chemisorption between the peptides and gold surface was stable in solvent. Studies by angle dependent XPS (ADXPS) and grazing angle RA-FTIR indicated that the peptides were on average oriented at a small angle from the surface normal. By using a model of orientation distribution function, both the peptide tilt angle and film thickness can be well calculated. Ru(II) complex doped SiO2 sol-gel thin films were prepared by low temperature sol-gel process. The ability of XPS coupled with Ar + ion sputtering to provide both chemical and compositional depth profile information of these sol-gel films was evaluated. This technique, together with UV-VIS and electrochemical measurements, was used to investigate the stability of Ru complexes in the composite

  14. Electrodeposition and growth mechanism of SnSe thin films

    NASA Astrophysics Data System (ADS)

    Biçer, Mustafa; Şişman, İlkay

    2011-01-01

    Tin selenide (SnSe) thin films were electrochemically deposited onto Au(1 1 1) substrates from an aqueous solution containing SnCl2, Na2SeO3, and EDTA at room temperature (25 °C). The electrochemical behaviors and the codeposition potentials of Sn and Se were explored by cyclic voltammetry. X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and UV-vis absorption spectroscopy were employed to characterize the thin films. When the electrodeposition potential increased, the Se content in the films decreased. It was found that the stoichiometric SnSe thin films could be obtained at -0.50 V. The as-deposited films were crystallized in the preferential orientation along the (1 1 1) plane. The morphologies of SnSe films could be changed from spherical grains to platelet-like particles as the deposition potential increases. The SEM investigations show that the film growth proceeds via nucleation, growth of film layer and formation of needle-like particles on the overlayer of the film. The optical absorption study showed the film has direct transition with band gap energy of 1.3 eV.

  15. Geometric shape control of thin film ferroelectrics and resulting structures

    DOEpatents

    McKee, Rodney A.; Walker, Frederick J.

    2000-01-01

    A monolithic crystalline structure and a method of making involves a semiconductor substrate, such as silicon, and a ferroelectric film, such as BaTiO.sub.3, overlying the surface of the substrate wherein the atomic layers of the ferroelectric film directly overlie the surface of the substrate. By controlling the geometry of the ferroelectric thin film, either during build-up of the thin film or through appropriate treatment of the thin film adjacent the boundary thereof, the in-plane tensile strain within the ferroelectric film is relieved to the extent necessary to permit the ferroelectric film to be poled out-of-plane, thereby effecting in-plane switching of the polarization of the underlying substrate material. The method of the invention includes the steps involved in effecting a discontinuity of the mechanical restraint at the boundary of the ferroelectric film atop the semiconductor substrate by, for example, either removing material from a ferroelectric film which has already been built upon the substrate, building up a ferroelectric film upon the substrate in a mesa-shaped geometry or inducing the discontinuity at the boundary by ion beam deposition techniques.

  16. Semiconducting properties of Al doped ZnO thin films.

    PubMed

    Al-Ghamdi, Ahmed A; Al-Hartomy, Omar A; El Okr, M; Nawar, A M; El-Gazzar, S; El-Tantawy, Farid; Yakuphanoglu, F

    2014-10-15

    Aluminum doped ZnO (AZO) thin films were successfully deposited via spin coating technique onto glass substrates. Structural properties of the films were analyzed by X-ray diffraction, atomic force microscopy (AFM) and energy dispersive X-ray spectroscopy. X-ray diffraction results reveal that all the films are polycrystalline with a hexagonal wurtzite structure with a preferential orientation according to the direction (002) plane. The crystallite size of ZnO and AZO films was determined from Scherrer's formula and Williamson-Hall analysis. The lattice parameters of the AZO films were found to decrease with increasing Al content. Energy dispersive spectroscopy (EDX) results indicate that Zn, Al and O elements are present in the AZO thin films. The electrical conductivity, mobility carriers and carrier concentration of the films are increased with increasing Al doping concentration. The optical band gap (Eg) of the films is increased with increasing Al concentration. The AZO thin films indicate a high transparency in the visible region with an average value of 86%. These transparent AZO films may be open a new avenue for optoelectronic and photonic devices applications in near future. PMID:24840493

  17. Front and backside processed thin film electronic devices

    DOEpatents

    Evans, Paul G.; Lagally, Max G.; Ma, Zhenqiang; Yuan, Hao-Chih; Wang, Guogong; Eriksson, Mark A.

    2012-01-03

    This invention provides thin film devices that have been processed on their front- and backside. The devices include an active layer that is sufficiently thin to be mechanically flexible. Examples of the devices include back-gate and double-gate field effect transistors, double-sided bipolar transistors and 3D integrated circuits.

  18. Thin film characterization using spectroscopic ellipsometry

    NASA Technical Reports Server (NTRS)

    Alterovitz, Samuel A.

    1990-01-01

    The application of the multiple angle and wavelength (MAW) technique to measure the dielectric function of semiconducting films is discussed. This technique evaluates unambiguously the complex dielectric function, epsilon (E), of the film without any pre-assumptions. In some cases the effective medium approximation (EMA) was used to determine the volume fraction of the film components. Application of the MAW technique to several semiconducting films was published previously. Different applications and examples are given, including metal and insulator films.

  19. Characterization of the mechanical properties of freestanding platinum thin films

    NASA Astrophysics Data System (ADS)

    Abbas, Khawar

    Many MEMS devices utilize nanocrystalline thin metallic films as mechanical structures, in particular, micro switching devices where these films are used as Ohmic contacts. But the elastic and plastic properties of these thin films (thickness < 1mum) are significantly different from those of the bulk material. At these scales the volume fraction of material defects such as: grain boundaries, dislocations and interstitials become quite significant and become a chief contributor to the physical and mechanical material properties. In order to effectively design MEMS devices it is important that these material properties are explored and mechanical behavior of the structure they form be characterized. Popular thin film materials used in MEMS devices are Aluminum (Al), Copper (Cu), Nickel (Ni) and Gold (Au). Platinum has traditionally gained acceptance into the MEMS industry because of its chemical inertness and high temperature stability. However the mechanical properties of platinum remains the least exploited. Platinum has a high Young's Modulus (164 GPa, for bulk) and high melting temperature (1768 °C) and therefore can be used as a 'thin film' structure (cantilever, a bridge or a membrane) in high temperature environments with high resistance to mechanical failure. The physical size of these thin film structure make it very difficult to handle them and employ traditional mechanical testing methodologies and techniques and therefore require custom test platforms. One such recently developed platform is presented in this dissertation. The test platform is comprised of a microfabricated cascaded thermal actuator system and test specimen. The cascaded thermal actuator system is capable of providing tens of microns of displacement and tens of milli-Newton forces simultaneously while applying a relatively low temperature gradient across the test specimen. The dimensions of the platform make its use possible in both the SEM/TEM environments and on a probe station under

  20. Polycrystalline Superconducting Thin Films: Texture Control and Critical Current Density

    NASA Astrophysics Data System (ADS)

    Yang, Feng

    1995-01-01

    The growth processes of polycrystalline rm YBa_2CU_3O_{7-X} (YBCO) and yttria-stabilized-zirconia (YSZ) thin films have been developed. The effectiveness of YSZ buffer layers on suppression of the reaction between YBCO thin films and metallic substrates was carefully studied. Grown on the chemically inert surfaces of YSZ buffer layers, YBCO thin films possessed good quality of c-axis alignment with the c axis parallel to the substrate normal, but without any preferred in-plane orientations. This leads to the existence of a large percentage of the high-angle grain boundaries in the YBCO films. The critical current densities (rm J_{c}'s) found in these films were much lower than those in single crystal YBCO thin films, which was the consequence of the weak -link effect of the high-angle grain boundaries in these films. It became clear that the in-plane alignment is vital for achieving high rm J_{c }s in polycrystalline YBCO thin films. To induce the in-plane alignment, ion beam-assisted deposition (IBAD) technique was integrated into the conventional pulsed laser deposition process for the growth of the YSZ buffer layers. It was demonstrated that using IBAD the in-plane orientations of the YSZ grains could be controlled within a certain range of a common direction. This ion -bombardment induced in-plane texturing was explained using the anisotropic sputtering yield theory. Our observations and analyses have provided valuable information on the optimization of the IBAD process, and shed light on the texturing mechanism in YSZ. With the in-plane aligned YSZ buffer layers, YBCO thin films grown on metallic substrates showed improved rm J_{c}s. It was found that the in-plane alignment of YSZ and that of YBCO were closely related. A direct correlation was revealed between the rm J_{c} value and the degree of the in-plane alignment for the YBCO thin films. To explain this correlation, a numerical model was applied to multi-grain superconducting paths with different