Science.gov

Sample records for labelled red cell

  1. Use of indium-111 as a red cell label

    SciTech Connect

    AuBuchon, J.P.; Brightman, A.

    1989-02-01

    To select the most promising 111In chelate for use as a second red cell (RBC) label for comparison of the survival of autologous and allogeneic cells, 49 normal RBC samples were studied in vitro after being labeled with 111In-8-hydroxyquinolinol (111In-oxine) prepared by three different methods, 111In-tropolone, and 111In-acetylacetone. Labeling efficiencies reached 99 percent and did not decline when the amount of 111In used was increased from 1.75 to 50 muCi per ml of RBCs. Storage of labeled RBCs in normal AB plasma at 4, 22, and 37 degrees C for up to 48 hours resulted in a similar rate of loss of the label from the RBCs with all labeling methods. These rates were time- and temperature-dependent and were accurate predictions of the rates found in later in vivo experimentation. Fresh RBCs from 11 subjects were labeled with 111In chelated with oxine in the presence of the RBCs or chelated with tropolone just prior to the labeling. RBC mass determinations using these autologous RBCs labeled with 111In accurately reflected the subjects' RBC masses as predicted through standard morphometric formulae. The rate of disappearance of the radionuclide after reinfusion of the autologous RBCs decreased with time. At 24 hours after reinfusion, 89.5 +/- 1.29 percent (mean +/- SEM) of the 111In-tropolone and 87.3 +/- 1.25 percent of the 111In-oxine continued in circulation. 111In is a simple and efficient agent for the labeling of RBCs for blood volume determinations and short-term survivals.

  2. In vivo red blood cell compatibility testing using indium-113m tropolone-labeled red blood cells

    SciTech Connect

    Morrissey, G.J.; Gravelle, D.; Dietz, G.; Driedger, A.A.; King, M.; Cradduck, T.D.

    1988-05-01

    In vivo radionuclide crossmatch is a method for identifying compatible blood for transfusion when allo- or autoantibodies preclude the use of conventional crossmatching techniques. A technique for labeling small volumes of donor red blood cells with (/sup 113m/In)tropolone is reported. The use of /sup 113m/In minimizes the accumulation of background radioactivity and the radiation dose especially so when multiple crossmatches are performed. Labeling red cells with (/sup 113m/In)tropolone is faster and easier to perform than with other radionuclides. Consistently high labeling efficiencies are obtained and minimal /sup 113m/In activity elutes from the labeled red blood cells. A case study involving 22 crossmatches is presented to demonstrate the technique. The radiation dose equivalent from /sup 113m/In is significantly less than with other radionuclides that may be used to label red cells.

  3. Kit for the selective labeling of red blood cells in whole blood with .sup.9 TC

    DOEpatents

    Srivastava, Suresh C.; Babich, John W.; Straub, Rita; Richards, Powell

    1992-01-01

    Disclosed herein are a method and kit for the preparation of .sup.99m Tc labeled red blood cells using whole blood in a closed sterile system containing stannous tin in a form such that it will enter the red blood cells and be available therein for reduction of technetium.

  4. Kit for the selective labeling of red blood cells in whole blood with [sup 99]Tc

    DOEpatents

    Srivastava, S.C.; Babich, J.W.; Straub, R.; Richards, P.

    1992-05-26

    Disclosed herein are a method and kit for the preparation of [sup 99m]Tc labeled red blood cells using whole blood in a closed sterile system containing stannous tin in a form such that it will enter the red blood cells and be available therein for reduction of technetium. No Drawings

  5. Gallbladder visualization during technetium-99m-labeled red cell scintigraphy for gastrointestinal bleeding

    SciTech Connect

    Brill, D.R.

    1985-12-01

    Localization of radionuclide activity in the gallbladder was seen on delayed views following injection of 99mTc-labeled red blood cells for gastrointestinal bleeding in five patients. The mechanism for this unusual finding probably relates to labeling of heme, the biochemical precursor of bilirubin. All patients had had prior transfusions. All but one had severe renal impairment, probably an important predisposing factor.

  6. Tc-99m-labeled red blood cells for the measurement of red cell mass in newborn infants: concise communication

    SciTech Connect

    Linderkamp, O.; Betke, K.; Fendel, H.; Klemm, J.; Lorenzen, K.; Riegel, K.P.

    1980-07-01

    In vitro and in vivo investigations were performed to examine the binding of Tc-99m to neonatal red blood cells (RBC). Labeling efficiency was about 90%, and unbound Tc-99m less than 3% after one washing, in premature and full-term newborns and in children. Thus presence of high percentages of fetal hemoglobin (Hb F) did not influence the labeling of RBCs with Tc-99m. RBCs of 11 newborns were hemolysed and the distribution of Tc-99m on RBC components was analyzed. Although Hb F percentage averaged (60.0 +- 8.10)% (s.d.), only (11.9 +- 3.7)% of Tc-99m was bound by Hb F, whereas (45.0 +- 6.1)% was associated with Hb A. RBC membranes bound (13.7 +- 4.3)% and (29.3 +- 4.0)% were found unbound in hemolysates. These results indicate that Tc-99m preferentially binds to beta chains. In vivo equilibration of Tc-99m RBCs and of albumin labeled with Evans blue was investigated in five newborn infants. Tc-99m RBCs were stable in each case during the first hour after injection. Elution of Tc-99m from RBCs was (3.4 +- 1.5)% per h. Body-to-venous hematocrit ratio averaged 0.86 +- 0.03.

  7. Accuracy of blood volume estimations in critically ill children using 125I-labelled albumin and 51Cr-labelled red cells.

    PubMed

    Linderkamp, O; Holthausen, H; Seifert, J; Butenandt, I; Riegel, K P

    1977-06-01

    Blood volume was estimated using 51chromium labelled red cells and 125iodinated human serum albumin in 5 children with sepsis, in 6 burned children and 7 children with acute lymphoblastic leukaemia. Studies of the equilibration pattern demonstrated that the mixing time of labelled red cells was prolonged to 40 minutes or more in 5 children, indicating the existence of slowly circulating red cells. Mixing of labelled albumin was complete within 10 minutes in 15 patients and within 20 minutes in all the children studied. In a burned patient with severe sepsis, exchange transfusion improved the clinical state and normalized the equilibration pattern of labelled red cells. The mean body/venous haematocrit ratio was 0.893+/-0.018 (SD) in the children with sepsis, 0.859+/-0.052 in the burned patients, and 0.916+/-0.078 in the children with acute lymphoblastic leukaemia, increasing with spleen size in the latter group. PMID:267010

  8. New Red-Emitting Tetrazine-Phenoxazine Fluorogenic Labels for Live-Cell Intracellular Bioorthogonal Labeling Schemes.

    PubMed

    Knorr, Gergely; Kozma, Eszter; Herner, András; Lemke, Edward A; Kele, Péter

    2016-06-20

    The synthesis of a set of tetrazine-bearing fluorogenic dyes suitable for intracellular labeling of proteins in live cells is presented. The red excitability and emission properties ensure minimal autofluorescence, while through-bond energy-transfer-based fluorogenicity reduces nonspecific background fluorescence of unreacted dyes. The tetrazine motif efficiently quenches fluorescence of the phenoxazine core, which can be selectively turned on chemically upon bioorthogonal inverse-electron-demand Diels-Alder reaction with proteins modified genetically with strained trans-cyclooctenes. PMID:27218228

  9. Hyperemic peripheral red marrow in a patient with sickle cell anemia demonstrated on Tc-99m labeled red blood cell venography

    SciTech Connect

    Heiden, R.A.; Locko, R.C.; Stent, T.R. )

    1991-03-01

    A 25-year-old gravid woman, homozygous for sickle cell anemia, with a history of recent deep venous thrombosis, was examined using Tc-99m labeled red blood cell venography for recurrent thrombosis. Although negative for thrombus, the study presented an unusual incidental finding: the patient's peripheral bone marrow was hyperemic in a distribution consistent with peripheral red bone marrow expansion. Such a pattern has not been documented before using this technique. This report supports other literature that has demonstrated hyperemia of peripheral red bone marrow in other hemolytic anemias. This finding may ultimately define an additional role of scintigraphy in assessing the pathophysiologic status of the sickle cell patient.

  10. Method and kit for the selective labeling of red blood cells in whole blood with Tc-99m

    DOEpatents

    Srivastava, S.C.; Babich, J.W.; Straub, R.; Richards, P.

    1988-07-05

    Disclosed herein are a method and kit for the preparation of [sup 99m]Tc labeled red blood cells using whole blood in a closed sterile system containing stannous tin in a form such that it will enter the red blood cells and be available for the reduction of technetium. No Drawings

  11. Method and kit for the selective labeling of red blood cells in whole blood with TC-99M

    DOEpatents

    Srivastava, Suresh C.; Babich, John W.; Straub, Rita; Richards, Powell

    1988-01-01

    Disclosed herein are a method and kit for the preparation of .sup.99m Tc labeled red blood cells using whole blood in a closed sterile system containing stannous tin in a form such that it will enter the red blood cells and be available therein for the reduction of technetium.

  12. An enzyme-linked immunoabsorbent assay for estimating red cell survival of transfused red cells-validation using CR-51 labeling

    SciTech Connect

    Drew, H.; Kickler, T.; Smith, B.; LaFrance, N.

    1984-01-01

    The survival time of transfused red cells antigenically distinct from the recipient's red cells was determined using an indirect enzyme linked antiglobulin test. These results were then compared to those determined by Cr-51 labeling. Three patients with hypoproliferative anemias and one patient (2 studies) with traumatic hemolytic anemia caused by a prosthetic heart valve were studied. Survival times were performed by transfusing a 5cc aliquot of Cr-51 labeled cells along with the remaining unit. One hour post transfusion, a blood sample was drawn and used as the 100% value. Subsequent samples drawn over a 2-3 week period were then compared to the initial sample to determine percent survival for both methods. The ELISA method for measuring red cell survival in antigenically distinct cells is in close agreement with the Cr-51 method. Although CR-51 labeling is the accepted method for red cell survival determination the ELISA method can be used when radioisotopes are unavailable or contraindicated or when the decision to estimate red cell survival is made after transfusion.

  13. Gallbladder Activity on 99mTc-Labeled Red Cell Scintigraphy Confirmed by SPECT/CT Imaging.

    PubMed

    Wang, Ling; Jing, Hongli; Chen, Libo; Wang, Zhenghua; Li, Fang

    2016-09-01

    Tc-labeled red cell (Tc-RBC) scintigraphy is commonly used to detect gastrointestinal bleeding. Gallbladder visualization on Tc-RBC scintigraphy is not common. We present a case of gallbladder visualization on Tc-RBC scintigraphy confirmed by SPECT/CT imaging in a patient with chronic renal failure and anemia. PMID:27405034

  14. AUR memorial award--1988. MRI enhancement of perfused tissues using chromium labeled red blood cells as an intravascular contrast agent

    SciTech Connect

    Eisenberg, A.D.; Conturo, T.E.; Price, R.R.; Holburn, G.E.; Partain, C.L.; James, A.E. Jr. )

    1989-10-01

    It has been demonstrated that chromium (Cr) labeling significantly decreases the relaxation times of packed red blood cells (RBCs). In this study, the spin-lattice relaxation time (T1) of human red cells was shortened from 836 ms to 29 ms and the spin-spin relaxation time (T2) shortened from 134 ms to 18 ms, when the cells were labeled at a Cr incubation concentration of 50 mM. Labeling of canine cells at 50 mM resulted in a T1 of 36 ms and a T2 of 26 ms. A labeling concentration of 10 mM produced similar relaxation enhancement, with uptake of 47% of the available Cr, and was determined to be optimal. The enhancement of longitudinal and transverse relaxation rates (1/T1,-1/T2) per amount of hemoglobin-bound Cr are 6.9 s-1 mM-1 and 9.8 s-1 mM-1 respectively, different from those of a pure Cr+3 solution. Labeling cells at 10 mM decreased the survival half-time in vivo from 16.6 days to 4.7 days in dogs. No difference in red cell survival was found with the use of hetero-transfusion versus auto-transfusion of labeled RBCs. Significant shortening of the T1 (912 ms to 266 ms, P = .03) and T2 (90 ms to 70 ms, P = .006) of spleen and the T1 (764 ms to 282 ms, P = .005) and the T2 (128 ms to 86 ms, P = .005) of liver occurred when 10% of the RBC mass of dogs was exchanged with Cr labeled cells. Liver and spleen spin density changes (P greater than 0.23) and muscle spin density and relaxation changes (P greater than 0.4) were insignificant. The in vivo T1 of a canine spleen which had been infarcted did not change following transfusion with labeled cells, where the T1 of liver did shorten. We believe this preliminary study suggests that Cr labeled red cells may have the potential to become an intravascular magnetic resonance imaging contrast agent.

  15. Measurement of Retinal Blood Flow Using Fluorescently Labeled Red Blood Cells1,2,3

    PubMed Central

    Kornfield, Tess E.

    2015-01-01

    Abstract Blood flow is a useful indicator of the metabolic state of the retina. However, accurate measurement of retinal blood flow is difficult to achieve in practice. Most existing optical techniques used for measuring blood flow require complex assumptions and calculations. We describe here a simple and direct method for calculating absolute blood flow in vessels of all sizes in the rat retina. The method relies on ultrafast confocal line scans to track the passage of fluorescently labeled red blood cells (fRBCs). The accuracy of the blood flow measurements was verified by (1) comparing blood flow calculated independently using either flux or velocity combined with diameter measurements, (2) measuring total retinal blood flow in arterioles and venules, (3) measuring blood flow at vessel branch points, and (4) measuring changes in blood flow in response to hyperoxic and hypercapnic challenge. Confocal line scans oriented parallel and diagonal to vessels were used to compute fRBC velocity and to examine velocity profiles across the width of vessels. We demonstrate that these methods provide accurate measures of absolute blood flow and velocity in retinal vessels of all sizes. PMID:26082942

  16. Assessment of soft tissue hemangiomas in children utilizing Tc-99m labelled red blood cells

    SciTech Connect

    Miller, J.H.

    1984-01-01

    Hemangiomas may present in infancy as soft tissue masses. Occasionally these lesions may be extensive or may not be clinically recognized as a hemangioma, often causing concern for the presence of a malignant lesion. In later childhood these lesions, which may be occult, may cause overgrowth of an extremity. Evaluation of soft tissue masses suspected of being a hemangioma utilizing Technetium 99m labelled red blood cells has been very valuable. This method allows a dynamic evaluation of first pass blood flow. Subsequent static scintiphotos allow an assessment of the lesion itself. These scintiphotos may be obtained sequentially to evaluate therapy. Twenty patients were evaluated by this method ranging in age from two months to eleven years. There were 13 females and seven males. Lesions evaluated by this method include six hemangiomas of the head and neck: parotic region (2), facial (3), and tongue (1). Extremity lesions were evaluated in six children including both upper extremity (1) and lower extremity (5). Torso lesions evaluated include chest wall (2), abdominal wall (2), and one hemangioma of the gut. This procedure is quickly performed on an outpatient basis, has high anatomic resolution, provides and assessment of these lesions in a manner not available by any other imaging procedure and usually requires no sedation. The radiation exposure for this procedure is low (approximately, a 400mR total body dose) and has been well tolerated by both patients and their parents. Scintigraphic evaluation should be the first diagnostic method utilized in the evaluation of these lesions.

  17. Quantitative label-free redox proteomics of reversible cysteine oxidation in red blood cell membranes.

    PubMed

    Zaccarin, Mattia; Falda, Marco; Roveri, Antonella; Bosello-Travain, Valentina; Bordin, Luciana; Maiorino, Matilde; Ursini, Fulvio; Toppo, Stefano

    2014-06-01

    Reversible oxidation of cysteine residues is a relevant posttranslational modification of proteins. However, the low activation energy and transitory nature of the redox switch and the intrinsic complexity of the analysis render quite challenging the aim of a rigorous high-throughput screening of the redox status of redox-sensitive cysteine residues. We describe here a quantitative workflow for redox proteomics, where the ratio between the oxidized forms of proteins in the control vs treated samples is determined by a robust label-free approach. We critically present the convenience of the procedure by specifically addressing the following aspects: (i) the accurate ratio, calculated from the whole set of identified peptides rather than just isotope-tagged fragments; (ii) the application of a robust analytical pipeline to frame the most consistent data averaged over the biological variability; (iii) the relevance of using stringent criteria of analysis, even at the cost of losing potentially interesting but statistically uncertain data. The pipeline has been assessed on red blood cell membrane challenged with diamide as a model of a mild oxidative condition. The cluster of identified proteins encompassed components of the cytoskeleton more oxidized. Indirectly, our analysis confirmed the previous observation that oxidized hemoglobin binds to membranes while oxidized peroxiredoxin 2 loses affinity. PMID:24642086

  18. Splenic scintigraphy using Tc-99m-labeled heat-denatured red blood cells in pediatric patients: concise communication

    SciTech Connect

    Ehrlich, C.P.; Papanicolaou, N.; Treves, S.; Hurwitz, R.A.; Richards, P.

    1982-03-01

    Ten children underwent splenic imaging with heat-denatured red blood cells labeled with technetium-99m (Tc-99m DRBC). The presenting problems included the heterotaxia syndrome, recurrent idiopathic thrombocytopenic purpura following splenectomy, mass in the left posterior hemithorax, and blunt abdominal trauma. In nine patients, the presence or absence of splenic tissue was established. A splenic hematoma was identified in the tenth patient. All patients were initially scanned with Tc-99m sulfur colloid (Tc-99m SC), and were selected for Tc-99m DRBC scintigraphy only after the results of the SC scans failed to establish the clinical problem beyond doubt. The availability of kits containing stannous ions, essential for efficient and stable labeling of red blood cells with Tc-99m and requiring only a small volume of blood, make splenic scintigraphy in children a relatively simple and definitive diagnostic procedure, when identification of splenic tissue is of clinical importance.

  19. Design of an automated algorithm for labeling cardiac blood pool in gated SPECT images of radiolabeled red blood cells

    SciTech Connect

    Hebert, T.J. |; Moore, W.H.; Dhekne, R.D.; Ford, P.V.; Wendt, J.A.; Murphy, P.H.; Ting, Y.

    1996-08-01

    The design of an automated computer algorithm for labeling the cardiac blood pool within gated 3-D reconstructions of the radiolabeled red blood cells is investigated. Due to patient functional abnormalities, limited resolution, and noise, certain spatial and temporal features of the cardiac blood pool that one would anticipate finding in every study are not present in certain frames or with certain patients. The labeling of the cardiac blood pool requires an algorithm that only relies upon features present in all patients. The authors investigate the design of a fully-automated region growing algorithm for this purpose.

  20. Recurrent gastrointestinal bleeding diagnosed by delayed scintigraphy with Tc-99m-labeled red blood cells.

    PubMed

    Nwakanma, Lois; Meyerrose, Gary; Kennedy, Shalyn; Rakvit, Ariwan; Bohannon, Todd; Silva, Micheal

    2003-08-01

    A 56-year-old woman presented with bright-red blood from the rectum. Esophagogastroduodenoscopy revealed mild gastritis. Colonoscopy demonstrated diverticulosis without active bleeding, and in vitro tagged red blood cell scintigraphy was unremarkable. There was no further evidence of bleeding and the patient was discharged home. The patient returned with recurrent bright-red blood from the rectum. Although delayed scintigraphic images seldom demonstrate the site of bleeding, delayed images at 12 hours demonstrated active bleeding near the hepatic flexure in this patient. This was confirmed with selective mesenteric angiography, and was treated with coil embolization of the tertiary branches of the right middle colic artery. PMID:12897664

  1. Rapid and Label-Free Separation of Burkitt's Lymphoma Cells from Red Blood Cells by Optically-Induced Electrokinetics

    PubMed Central

    Liang, Wenfeng; Zhao, Yuliang; Liu, Lianqing; Wang, Yuechao; Dong, Zaili; Li, Wen Jung; Lee, Gwo-Bin; Xiao, Xiubin; Zhang, Weijing

    2014-01-01

    Early stage detection of lymphoma cells is invaluable for providing reliable prognosis to patients. However, the purity of lymphoma cells in extracted samples from human patients' marrow is typically low. To address this issue, we report here our work on using optically-induced dielectrophoresis (ODEP) force to rapidly purify Raji cells' (a type of Burkitt's lymphoma cell) sample from red blood cells (RBCs) with a label-free process. This method utilizes dynamically moving virtual electrodes to induce negative ODEP force of varying magnitudes on the Raji cells and RBCs in an optically-induced electrokinetics (OEK) chip. Polarization models for the two types of cells that reflect their discriminate electrical properties were established. Then, the cells' differential velocities caused by a specific ODEP force field were obtained by a finite element simulation model, thereby established the theoretical basis that the two types of cells could be separated using an ODEP force field. To ensure that the ODEP force dominated the separation process, a comparison of the ODEP force with other significant electrokinetics forces was conducted using numerical results. Furthermore, the performance of the ODEP-based approach for separating Raji cells from RBCs was experimentally investigated. The results showed that these two types of cells, with different concentration ratios, could be separated rapidly using externally-applied electrical field at a driven frequency of 50 kHz at 20 Vpp. In addition, we have found that in order to facilitate ODEP-based cell separation, Raji cells' adhesion to the OEK chip's substrate should be minimized. This paper also presents our experimental results of finding the appropriate bovine serum albumin concentration in an isotonic solution to reduce cell adhesion, while maintaining suitable medium conductivity for electrokinetics-based cell separation. In short, we have demonstrated that OEK technology could be a promising tool for efficient and

  2. Rapid and label-free separation of Burkitt's lymphoma cells from red blood cells by optically-induced electrokinetics.

    PubMed

    Liang, Wenfeng; Zhao, Yuliang; Liu, Lianqing; Wang, Yuechao; Dong, Zaili; Li, Wen Jung; Lee, Gwo-Bin; Xiao, Xiubin; Zhang, Weijing

    2014-01-01

    Early stage detection of lymphoma cells is invaluable for providing reliable prognosis to patients. However, the purity of lymphoma cells in extracted samples from human patients' marrow is typically low. To address this issue, we report here our work on using optically-induced dielectrophoresis (ODEP) force to rapidly purify Raji cells' (a type of Burkitt's lymphoma cell) sample from red blood cells (RBCs) with a label-free process. This method utilizes dynamically moving virtual electrodes to induce negative ODEP force of varying magnitudes on the Raji cells and RBCs in an optically-induced electrokinetics (OEK) chip. Polarization models for the two types of cells that reflect their discriminate electrical properties were established. Then, the cells' differential velocities caused by a specific ODEP force field were obtained by a finite element simulation model, thereby established the theoretical basis that the two types of cells could be separated using an ODEP force field. To ensure that the ODEP force dominated the separation process, a comparison of the ODEP force with other significant electrokinetics forces was conducted using numerical results. Furthermore, the performance of the ODEP-based approach for separating Raji cells from RBCs was experimentally investigated. The results showed that these two types of cells, with different concentration ratios, could be separated rapidly using externally-applied electrical field at a driven frequency of 50 kHz at 20 Vpp. In addition, we have found that in order to facilitate ODEP-based cell separation, Raji cells' adhesion to the OEK chip's substrate should be minimized. This paper also presents our experimental results of finding the appropriate bovine serum albumin concentration in an isotonic solution to reduce cell adhesion, while maintaining suitable medium conductivity for electrokinetics-based cell separation. In short, we have demonstrated that OEK technology could be a promising tool for efficient and

  3. Technetium-99m labeled red blood cells for the detection and localization of cavernous hemangiomas of the bone

    SciTech Connect

    Lenane, P.

    1986-09-01

    Labeled red blood cells (RBCs) have already been proven useful in the detection and localization of many vascular abnormalities. One such abnormality is that of a cavernous hemangioma. Cavernous hemangiomas have a distinct circulation and have been found in many areas of the body. The ability to utilize this unique circulation is important to consider when choosing a diagnostic exam. This paper reports a case demonstrating the usefulness of labeled red blood cells for the detection and localization of cavernous hemangioma of the bone. A 31-yr-old female present with a history of persistent generalized headaches for many years. About 1 yr prior to the exam, she noticed that her headaches had become more localized to the right side of her head. Physical examination revealed a palpable lump developing on the right side of her head which was sensitive to the touch. The patient was then scheduled for a CT scan to be followed by both a bone scan and a /sup 99m/Tc blood-pool scan. A flow study using 15 mCi /sup 99m/Tc labeled RBCs was performed in the right lateral position at 1.5 sec/frame for 32 frames. Immediate blood-pool images 30-min, and 1-hr delayed images were recorded.

  4. A case of metastatic malignancy masquerading as a hepatic hemangioma on labeled red blood cell scintigraphy.

    PubMed

    Farlow, D C; Little, J M; Gruenewald, S M; Antico, V F; O'Neill, P

    1993-07-01

    A 36-yr-old woman with a past history of gastric neuro-endocrine carcinoma (carcinoid tumor) underwent 99mTc-red blood cell (RBC) scintigraphy for evaluation of a 2-cm echogenic liver mass demonstrated on ultrasound. Scan findings were typical of a cavernous hemangioma. On follow-up, however, there was progressive lesion enlargement; histopathology of the resected mass revealed neuro-endocrine carcinoma. This case report, one of the few examples of a false-positive 99mTc-RBC scan, highlights the need for cautious evaluation of focal liver masses, even when there are typical scintigraphic features of cavernous hemangioma. PMID:8315498

  5. Effect of exercise on erythrocyte count and blood activity concentration after technetium-99m in vivo red blood cell labeling

    SciTech Connect

    Konstom, M.A.; Tu'meh, S.; Wynne, J.; Beck, J.R.; Kozlowski, J.; Holman, B.L.

    1982-09-01

    The effects of exercise on blood radiotracer concentration after technetium-99m in vivo red blood cell labeling was studied. After red blood cell labeling, 13 subjects underwent maximal supine bicycle exercise. Radioactivity, analyzed with a well counter, was measured in heparinized venous blood samples drawn at rest and during peak exercise. Changes in activity were compared with changes in erythrocyte count. Activity and erythrocyte counts increased in erythrocyte count (r=0.78), but did not correlate with either duration of exercise or maximal heart rate. Twenty minutes after termination of exercise, activity and erythrocyte count had decreased from peak exercise values but remained higher than preexercise values. In nine nonexercised control subjects, samples drawn 20 minutes apart showed no change in activity or in erythrocyte count. It was concluded that exercise increases blood activity, primarily because of an increase in erythrocyte count. During radionuclide ventriculography, blood activity must be measured before and after any intervention, particularly exercise, before a change in left ventricular activity can be attributed to a change in left ventricular volume.

  6. Effect of Peumus boldus on the labeling of red blood cells and plasma proteins with technetium-99m.

    PubMed

    Reiniger, I W; de Oliveira, J F; Caldeira-de-Araújo, A; Bernardo-Filho, M

    1999-08-01

    Peumus boldus is used in popular medicine in Brazil. The influence of Peumus boldus on the labeling of red blood cells and plasma proteins with 99mTc was studied. Stannous chloride and 99mTc pertechnetate were incubated with blood and a tincture of Peumus boldus. Aliquots of plasma and blood cells were isolated from the mixture and treated with trichloroacetic acid (TCA). After separation, analysis of the soluble and insoluble fractions showed a rapid uptake of the radioactivity by blood cells in the presence of the drug, whereas there was a slight decrease in the amount of 99mTc radioactivity in the TCA-insoluble fraction of plasma. PMID:10376326

  7. Effect of Thuya occidentalis on the labeling of red blood cells and plasma proteins with technetium-99m.

    PubMed Central

    Oliveira, J. F.; Braga, A. C.; Avila, A. S.; Fonseca, L. M.; Gutfilen, B.; Bernardo-Filho, M.

    1996-01-01

    Thuya occidentalis is used in popular medicine in the treatment of condyloma and has antibacterial action. Red blood cells (RBC) labeled with technetium-99m (99mTc) are used for several evaluations in nuclear medicine. This labeling depends on a reducing agent, usually stannous ion. Any drug which alters the labeling of the tracer could be expected to modify the disposition of the radiopharmaceutical. We have evaluated the influence of T. occidentalis extract on the labeling of RBC and plasma proteins with 99mTc. Blood was withdrawn and incubated with T. occidentalis (0.25; 2.5; 20.5; and 34.1 percent v/v). Stannous chloride (1.2 micrograms/ml) was added and then 99mTc was added. Plasma (P) and blood cells (BC) were isolated, also precipitated with trichloroacetic acid and soluble (SF) and insoluble fractions (IF) separated. The analysis of the results shows that there is a decrease in radioactivity (from 97.64 to 75.89 percent) in BC with 34.1 percent of the drug. In the labeling process of RBC with 99mTc, the stannous and pertechnetate ions pass through the membrane, so we suggest that the T. occidentalis effect can be explained (i) by an inhibition of the transport of these ions, (ii) by damage in membrane, (iii) by competition with the cited ions for the same binding sites, or (iv) by possible generation of reactive oxygen species that could oxidize the stannous ion. PMID:9436292

  8. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

    DOE PAGESBeta

    Liu, Daniel S.; Nivon, Lucas G.; Richter, Florian; Goldman, Peter J.; Deerinck, Thomas J.; Yao, Jennifer Z.; Richardson, Douglas; Phipps, William S.; Ye, Anne Z.; Ellisman, Mark H.; et al

    2014-10-13

    In this study, chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of themore » intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies.« less

  9. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

    SciTech Connect

    Liu, Daniel S.; Nivon, Lucas G.; Richter, Florian; Goldman, Peter J.; Deerinck, Thomas J.; Yao, Jennifer Z.; Richardson, Douglas; Phipps, William S.; Ye, Anne Z.; Ellisman, Mark H.; Drennan, Catherine L.; Baker, David; Ting, Alice Y.

    2014-10-13

    In this study, chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of the intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies.

  10. Computational design of a red fluorophore ligase for site-specific protein labeling in living cells

    PubMed Central

    Liu, Daniel S.; Nivón, Lucas G.; Richter, Florian; Goldman, Peter J.; Deerinck, Thomas J.; Yao, Jennifer Z.; Richardson, Douglas; Phipps, William S.; Ye, Anne Z.; Ellisman, Mark H.; Drennan, Catherine L.; Baker, David; Ting, Alice Y.

    2014-01-01

    Chemical fluorophores offer tremendous size and photophysical advantages over fluorescent proteins but are much more challenging to target to specific cellular proteins. Here, we used Rosetta-based computation to design a fluorophore ligase that accepts the red dye resorufin, starting from Escherichia coli lipoic acid ligase. X-ray crystallography showed that the design closely matched the experimental structure. Resorufin ligase catalyzed the site-specific and covalent attachment of resorufin to various cellular proteins genetically fused to a 13-aa recognition peptide in multiple mammalian cell lines and in primary cultured neurons. We used resorufin ligase to perform superresolution imaging of the intermediate filament protein vimentin by stimulated emission depletion and electron microscopies. This work illustrates the power of Rosetta for major redesign of enzyme specificity and introduces a tool for minimally invasive, highly specific imaging of cellular proteins by both conventional and superresolution microscopies. PMID:25313043

  11. Technetium-99m-labeled red blood cells in the evaluation of hemangiomas of the liver in infants and children

    SciTech Connect

    Miller, J.H.

    1987-09-01

    The vascular origin lesions of the liver (capillary hemangioma/infantile hemangioendothelioma) that present in infancy or early childhood often have a typical clinical picture of hepatomegaly and congestive heart failure. These lesions rarely present as asymptomatic hepatomegaly, simulating a primary hepatic malignancy. These lesions may also simulate a primary or secondary hepatic malignancy on cross-sectional imaging or angiography. Scintigraphic evaluations with technetium-99m-labeled red blood cells offers an accurate method of identification of these lesions, and allows differentiation from other common primary or secondary hepatic masses in infancy or childhood. This scintigraphic method may also be used to follow these patients after medical, radiation, or embolization therapy. Experience with seven patients with these tumors is reported and compared with eight children with other primary or secondary liver tumors also evaluated by this method.

  12. Technetium-99m red blood cell labeling in patients treated with doxorubicin

    SciTech Connect

    Ballinger, J.R.; Gerson, B.; Gulenchyn, K.Y.; Ruddy, T.D.; Davies, R.A.

    1988-03-01

    Radionuclide angiography is useful in monitoring cardiotoxicity of doxorubicin, but in vivo RBC labeling in these patients is believed to be poorer than that in general patients. The left ventricle-to-background activity ratio (R) was not significantly lower in patients treated with doxorubicin (3.24 +/- 1.15, N = 13) than in control patients (3.89 +/- 1.60, N = 14). With both modified in vivo and in vitro labeling, R was significantly improved in patients treated with doxorubicin (4.37 +/- 0.91, N = 8, and 4.37 +/- 1.22, N = 13, respectively). However, with the modified in vivo method, labeling efficiency remained a function of hematocrit, whereas the in vitro method removed this dependency. Both modified in vivo and in vitro labeling result in improved image quality over in vivo labeling in patients treated with doxorubicin, and the choice of method can be based on other factors.

  13. Paramagnetic Gd(3+) labeled red blood cells for magnetic resonance angiography.

    PubMed

    Aryal, Santosh; Stigliano, Cinzia; Key, Jaehong; Ramirez, Maricela; Anderson, Jeff; Karmonik, Christof; Fung, Steve; Decuzzi, Paolo

    2016-08-01

    Despite significant advances in contrast enhanced-magnetic resonance angiography, the lack of truly blood-pool agents with long circulating property is limiting the clinical impact of this imaging technique. The terminal half-life for blood elimination of most small molecular weight gadolinium (Gd) based extracellular fluid agents is about 1.5 h when administered intravenously to subjects with normal renal function. The small size of these extracellular fluid agents does not prevent them from extravasating, especially from damaged vessels which are generally hyperpermeable. Therefore, the development of novel, clinically relevant blood pool contrast agents is critically needed to improve outcomes in the prevention, detection, and treatment of vascular diseases. We have demonstrated the fusion strategies in which the Gd-liposome without any stealth property radically fuses with red blood cells (RBCs) forming MR glowing Gd-RBC with the order of magnitude enhancements in circulation half-life (t1/2 = 50 h) and r1 relaxivity (r1 = 19.0 mM(-1) s(-1)) of Gd. The in vivo contrast enhancement of Gd-RBC was studied by using 3T clinical MR scanner for extended period of time, which clearly visualized the abdominal aorta. In summary, the vascular delivery of blood pool agents may benefit from carriage by RBCs because it naturally stays within the vascular lumen. PMID:27192419

  14. Accelerated removal of antibody-coated red blood cells from the circulation is accurately tracked by a biotin label

    PubMed Central

    Mock, Donald M.; Lankford, Gary L.; Matthews, Nell I.; Burmeister, Leon F.; Kahn, Daniel; Widness, John A.; Strauss, Ronald G.

    2013-01-01

    BACKGROUND Safe, accurate methods to reliably measure circulating red blood cell (RBC) kinetics are critical tools to investigate pathophysiology and therapy of anemia, including hemolytic anemias. This study documents the ability of a method using biotin-labeled RBCs (BioRBCs) to measure RBC survival (RCS) shortened by coating with a highly purified monomeric immunoglobulin G antibody to D antigen. STUDY DESIGN AND METHODS Autologous RBCs from 10 healthy D+ subjects were labeled with either biotin or 51Cr (reference method), coated (opsonized) either lightly (n = 4) or heavily (n = 6) with anti-D, and transfused. RCS was determined for BioRBCs and for 51Cr independently as assessed by three variables: 1) posttransfusion recovery at 24 hours (PTR24) for short-term RCS; 2) time to 50% decrease of the label (T50), and 3) mean potential life span (MPL) for long-term RCS. RESULTS BioRBCs tracked both normal and shortened RCS accurately relative to 51Cr. For lightly coated RBCs, mean PTR24, T50, and MPL results were not different between BioRBCs and 51Cr. For heavily coated RBCs, both short-term and long-term RCS were shortened by approximately 17 and 50%, respectively. Mean PTR24 by BioRBCs (84 ± 18%) was not different from 51Cr (81 ± 10%); mean T50 by BioRBCs (23 ± 17 days) was not different from 51Cr (22 ± 18 days). CONCLUSION RCS shortened by coating with anti-D can be accurately measured by BioRBCs. We speculate that BioRBCs will be useful for studying RCS in conditions involving accelerated removal of RBCs including allo- and autoimmune hemolytic anemias. PMID:22023312

  15. Placental localization in abdominal pregnancy using technetium-99m-labeled red blood cells

    SciTech Connect

    Martin, B.; Payan, J.M.; Jones, J.S.; Buse, M.G. )

    1990-06-01

    In a patient with third trimester abdominal pregnancy with fetal demise, technetium-99m-labeled erythrocytes ({sup 99m}Tc-RBCs) localized the placenta preoperatively, after nonvisualization by ultrasonography and arteriography. Extrauterine placental localization by blood-pool imaging may be useful when ultrasound fails.

  16. Preparation and radiochemical control of 99mTc labeled blood pool agent for in vivo labelling of the red blood cells.

    PubMed

    Ahmad, Israr; Amir, Noshad; Durr-E-Sabih; Bin Asad, Muhammad Hassham Hassan; Rahim, Muhammad Kashif; Hussain, Muhammad Shahzad; Murtaza, Ghulam; Shah, Syed Nisar Hussaian

    2014-01-01

    Our aim was to prepare cheap blood pool imaging kits by simplified method to overcome the burden on purchase department of MINAR, Nishtar Hospital, Multan, Pakistan. Secondarily, prompt supply of kits should save the time of patient during transportation. A total of 24 subjects selected for this study were equally divided into two groups. Mixture of stannous chloride and sodium pyrophosphate solution at pH 7 was injected to these subjects. Various concentrations (ranging from 200 to 800 microg) of stannous chloride dihydrate were injected to group one, followed by intravenous administration of technetium-99m (99mTc) pertechnetate at 30 min interval in 12 subjects. Labeling percentage of each sample was calculated afterwards followed by imaging under gamma camera. Each parameter was tested on three different patients and average of these three was calculated. In second set of experiments done on group two the same procedure was repeated in another 12 subjects, while keeping the concentration of Sn PYP constant at 400 microg. In this case, 99mTc was administered at different time intervals in different subjects ranging from 15 to 120 min (15, 30, 60 and 120 min) followed by calculation of labeling percentage and imaging under gamma camera. In group one, average percentage values of binding of red blood cells with 99mTc were 23.24, 84.88, 83.78 and 60.33% for concentrations of 200, 400, 600 and 800 microg, respectively. In group two, average percentage binging values of 22.26, 84.36. 55.54 and 28.67% were calculated at time intervals of 15, 30, 60 and 120 min, respectively. It is concluded from the results that the best blood pool imaging under gamma camera was observed for the concentration of 400 microg and the time interval of 30 min. The maximum percentage binding of red blood cells with 99mTc was calculated at concentration of 400 microg after 30 min interval that also correlated with imaging results. PMID:25272643

  17. Red blood cell production

    MedlinePlus

    ... cells are an important element of blood. Their job is to transport oxygen to the body’s tissues in exchange for carbon dioxide, which is carried to and eliminated by the lungs. Red blood cells are formed in the red bone marrow of bones. Stem cells in the red bone marrow called hemocytoblasts ...

  18. Effect of exercise on erythrocyte count and blood activity concentration after /sup 99m/Tc in vivo red blood cell labeling

    SciTech Connect

    Konstam, M.A.; Tu'meh, S.; Wynne, J.; Beck, J.R.; Kozlowski, J.; Holman, B.L.

    1982-09-01

    We studied the effect of exercise on blood radiotracer concentration after /sup 99m/Tc in vivo red blood cell labeling. After red blood cell labeling, 13 subjects underwent maximal supine bicycle exercise. Radioactivity, analyzed with a well counter, was measured in heparinized venous blood samples drawn at rest and during peak exercise. Changes in activity were compared with changes in erythrocyte count. Activity and erythrocyte counts increased during exercise in all 13 subjects. Percent increase in activity correlated with percent increase in erythrocyte count (r . -0.78), but did not correlate with either duration of exercise or maximal heart rate. Twenty minutes after termination of exercise, activity and erythrocyte count had decreased from peak exercise values but remained higher than preexercise values. In nine nonexercised control subjects, samples drawn 20 minutes apart showed no change in activity or in erythrocyte count. We conclude that exercise increases blood activity, primarily because of an increase in erythrocyte count. During radionuclide ventriculography, blood activity must be measured before and after any intervention, particularly exercise, before a change in left ventricular activity can be attributed to a change in left ventricular volume.

  19. Radiolabeled red blood cells: status, problems, and prospects

    SciTech Connect

    Srivastava, S.C.

    1983-01-01

    Radionuclidic labels for red cells can be divided into two main categories - cohort or pulse labels, and random labels. The random labels are incorporated into circulating cells of all ages and the labeling process is usually carried out in vitro. The red cell labels in predominant use involve random labeling and employ technetium-99m, chromium-51, indium-111, and gallium-68, roughly in that order. The extent of usefulness depends on the properties of the label such as the half-life, decay mode, and in-vivo stability, etc. Labeled cells can be used for red cell survival measurements when the half-life of the radionuclide is sufficiently long. The major portion of this article deals with random labels.

  20. Use of an oral stable isotope label to confirm variation in red blood cell mean age that influences HbA1c interpretation

    PubMed Central

    Lindsell, Christopher J.; Rogge, Mary Colleen; Haggerty, Shannon; Wagner, David A.; Palascak, Mary B.; Mehta, Shilpa; Hibbert, Jacqueline M.; Joiner, Clinton H.; Franco, Robert S.; Cohen, Robert M.

    2014-01-01

    HbA1c is commonly used to monitor glycemic control. However, there is growing evidence that the relationship between HbA1c and mean blood glucose (MBG) is influenced by variation in red blood cell (RBC) lifespan in hematologically normal individuals. Correction of HbA1c for mean RBC age (MRBC) requires a noninvasive, accurate, and affordable method to measure RBC survival. In this study, we evaluated whether a stable isotope approach would satisfy these requirements. RBC lifespan and MRBC were determined in a group of nine hematologically normal diabetic and nondiabetic subjects using oral 15N-glycine to label heme in an age cohort of RBC. The MRBC was 58.7 ± 9.1 (2SD) days and RBC lifespan was 106 ± 21 (2SD) days. This degree of variation (±15 - 20%) is consistent with previous studies using other techniques. In a subset of seven subjects, MRBC determined with the biotin label technique were available from approximately five years prior, and strongly correlated with the stable isotope values (R2 = 0.79). This study suggests that the MRBC is stable over time but varies substantially among individuals, and supports the importance of its variation in HbA1c interpretation. The characteristics of the stable isotope method support its suitability for studies to directly evaluate the impact of variation in MRBC on the interpretation of HbA1c. PMID:25293624

  1. Red blood cell production

    MedlinePlus Videos and Cool Tools

    ... or another. Red blood cells are an important element of blood. Their job is to transport oxygen ... hemocytoblasts give rise to all of the formed elements in blood. If a hemocytoblast commits to becoming ...

  2. Red blood cells, multiple sickle cells (image)

    MedlinePlus

    Sickle cell anemia is an inherited disorder in which abnormal hemoglobin (the red pigment inside red blood cells) is produced. The abnormal hemoglobin causes red blood cells to assume a sickle shape, like the ones seen in this photomicrograph.

  3. Recent developments in blood cell labeling research

    SciTech Connect

    Srivastava, S.C.; Straub, R.F.; Meinken, G.E.

    1988-09-07

    A number of recent developments in research on blood cell labeling techniques are presented. The discussion relates to three specific areas: (1) a new in vitro method for red blood cell labeling with /sup 99m/Tc; (2) a method for labeling leukocytes and platelets with /sup 99m/Tc; and (3) the use of monoclonal antibody technique for platelet labeling. The advantages and the pitfalls of these techniques are examined in the light of available mechanistic information. Problems that remain to be resolved are reviewed. An assessment is made of the progress as well as prospects in blood cell labeling methodology including that using the monoclonal antibody approach. 37 refs., 4 figs.

  4. Red blood cells, multiple sickle cells (image)

    MedlinePlus

    ... inherited disorder in which abnormal hemoglobin (the red pigment inside red blood cells) is produced. The abnormal hemoglobin causes red blood cells to assume a sickle shape, like the ones seen in this photomicrograph.

  5. Phosphatidylserine exposure and red cell viability in red cell aging and in hemolytic anemia

    PubMed Central

    Boas, Franz Edward; Forman, Linda; Beutler, Ernest

    1998-01-01

    Phosphatidylserine (PS) normally localizes to the inner leaflet of cell membranes but becomes exposed in abnormal or apoptotic cells, signaling macrophages to ingest them. Along similar lines, it seemed possible that the removal of red cells from circulation because of normal aging or in hemolytic anemias might be triggered by PS exposure. To investigate the role of PS exposure in normal red cell aging, we used N-hydroxysuccinimide-biotin to tag rabbit red cells in vivo, then used phycoerythrin-streptavidin to label the biotinylated cells, and annexin V-fluorescein isothiocyanate (FITC) to detect the exposed PS. Flow cytometric analysis of these cells drawn at 10-day intervals up to 70 days after biotinylation indicated that older, biotinylated cells expose more PS. Furthermore, our data match a simple model of red cell senescence that assumes both an age-dependent destruction of senescent red cells preceded by several hours of PS exposure and a random destruction of red cells without PS exposure. By using this model, we demonstrated that the exposure of PS parallels the rate at which biotinylated red cells are removed from circulation. On the other hand, using an annexin V-FITC label and flow cytometry demonstrates that exposed PS does not cause the reduced red cell life span of patients with hemolytic anemia, with the possible exception of those with unstable hemoglobins or sickle cell anemia. Thus, in some cases PS exposure on the cell surface may signal the removal of red cells from circulation, but in other cases some other signal must trigger the sequestration of cells. PMID:9501218

  6. Preoperative localization of intermittently bleeding small intestinal tumors using Tc-99m labeled red blood cell scanning. Report of two cases

    SciTech Connect

    Oliver, G.C.; Rubin, R.J.; Park, Y.H.; Ashton, J.K.

    1987-09-01

    Frequent tagged red blood cell scans offer an important diagnostic adjunct to help define a site of intermittent bleeding. Success is based upon scanning at two-to-four-hour intervals. Two patients are presented who experienced intermittent episodes of melena and hematochezia over prolonged periods of time. In each case an extensive diagnostic work-up had been performed on multiple occasions and failed to demonstrate the source. Utilizing a Technetium-99 macroaggregated albumin (Tc-99m) tagged red blood cell scan, an intermittently bleeding lesion within the small bowel was identified in each instance. In order to detect an intermittently bleeding lesion within the small bowel, more frequent scanning intervals are recommended. Due to rapid clearing of tagged red blood cells into the colon from the small-bowel bleeding point, the source may be obscured by longer, routine scanning intervals.

  7. Far-Red Fluorescent Lipid-Polymer Probes for an Efficient Labeling of Enveloped Viruses.

    PubMed

    Lacour, William; Adjili, Salim; Blaising, Julie; Favier, Arnaud; Monier, Karine; Mezhoud, Sarra; Ladavière, Catherine; Place, Christophe; Pécheur, Eve-Isabelle; Charreyre, Marie-Thérèse

    2016-08-01

    Far-red emitting fluorescent lipid probes are desirable to label enveloped viruses, for their efficient tracking by optical microscopy inside autofluorescent cells. Most used probes are rapidly released from membranes, leading to fluorescence signal decay and loss of contrast. Here, water-soluble lipid-polymer probes are synthesized harboring hydrophilic or hydrophobic far-red emitting dyes, and exhibiting enhanced brightness. They efficiently label Hepatitis C Virus pseudotyped particles (HCVpp), more stably and reproducibly than commercial probes, and a strong fluorescence signal is observed with a high contrast. Labeling with such probes do not alter virion morphology, integrity, nor infectivity. Finally, it is shown by fluorescence microscopy that these probes enable efficient tracking of labeled HCVpp inside hepatocarcinoma cells used as model hepatocytes, in spite of their autofluorescence up to 700 nm. These novel fluorescent lipid-polymer probes should therefore enable a better characterization of early stages of infection of autofluorescent cells by enveloped viruses. PMID:27113918

  8. Red blood cells, sickle cell (image)

    MedlinePlus

    Sickle cell anemia is an inherited blood disease in which the red blood cells produce abnormal pigment (hemoglobin). ... abnormal hemoglobin causes deformity of the red blood cells into crescent or sickle-shapes, as seen in this photomicrograph.

  9. Red blood cells, sickle cell (image)

    MedlinePlus

    Sickle cell anemia is an inherited blood disease in which the red blood cells produce abnormal pigment (hemoglobin). The abnormal hemoglobin causes deformity of the red blood cells into crescent or sickle-shapes, as seen in this photomicrograph.

  10. Red blood cells, sickle cells (image)

    MedlinePlus

    These crescent or sickle-shaped red blood cells (RBCs) are present with Sickle cell anemia, and stand out clearly against the normal round RBCs. These abnormally shaped cells may become entangled and ...

  11. Red Blood Cell Antibody Identification

    MedlinePlus

    ... be limited. Home Visit Global Sites Search Help? RBC Antibody Identification Share this page: Was this page helpful? Also known as: Alloantibody Identification; Antibody ID, RBC; RBC Ab ID Formal name: Red Blood Cell ...

  12. Comparison of technetium-99m IgG with technetium-99m red blood cells labeling in cardiac blood-pool scintigraphy: a preliminary study.

    PubMed

    Javadi, Hamid; Asli, Isa Neshandar; Semnani, Shahriar; Jallalat, Sara; Ansari, Mojtaba; Amini, Abdullatif; Barekat, Maryam; Assadi, Majid

    2011-01-01

    This first clinical prospective study was conducted to use of technetium-99m immunoglobulin G ((99m)Tc-IgG) as compared with autologous (99m)Tc-red blood cells (RBC) in gated blood pool ventriculography. We studied 12 patients who referred to us for a possible diagnosis of liver hemangioma or infection. Six patients underwent gated planar blood pool (GPBP) acquisition using (99m)Tc-RBC and 6 GPBP acquisition using (99m)Tc-IgG. The use of (99m)Tc-IgG in cardiac blood pool studies provided comparable images to (99m)Tc-RBC. In conclusion, (99m)Tc-IgG, which is readily available and needs only a single injection, may be an attractive alternative to (99m)Tc-RBC for the estimation of various cardiac function parameters like left ventricular function. PMID:21512662

  13. Estimation of anti-D IgG in red blood cell eluates using the specific radioactivity of 125I-labeled IgG: effect of unlabeled, cytophilic IgG

    SciTech Connect

    Masouredis, S.P.; Mahan, L.C.; Sudora, E.J.; Langley, J.W.; Victoria, E.J.

    1981-01-01

    The specific radioactivity of conventionally prepared 125I IgG anti-D eluates is significantly less (from 1/5 to 1/20) than that of the 125I IgG fraction used to prepare the eluate. This discrepancy is due to the release of unlabeled, cytophilic IgG from normal red blood cells during eluate preparation and does not represent an underestimation of the eluate anti-D IgG content. Cytophilic IgG content of eluates plays an important role in reducing the nonimmunologic binding of labeled antibody IgG. The results justify the assumption used in numerous studies that the specific radioactivity of 125I IgG fractions can be used to provide a valid estimate of the anti-D IgG content of eluates.

  14. Red cell metabolism studies on Skylab

    NASA Technical Reports Server (NTRS)

    Mengel, C. E.

    1977-01-01

    Blood samples from Spacelab crewmembers were studied for possible environment effects on red cell components. Analysis involved peroxidation of red cell lipids, enzymes of red cell metabolism, and levels of 2,3-diphosphoglyceric acid and adenosine triphosphate. Results show that there is no evidence of lipid peroxidation, that biochemical effect known to be associated with irreversible red cell damage. Changes observed in glycolytic intermediates and enzymes cannot be directly implicated as indicating evidence of red cell damage.

  15. Red cell DAMPs and inflammation.

    PubMed

    Mendonça, Rafaela; Silveira, Angélica A A; Conran, Nicola

    2016-09-01

    Intravascular hemolysis, or the destruction of red blood cells in the circulation, can occur in numerous diseases, including the acquired hemolytic anemias, sickle cell disease and β-thalassemia, as well as during some transfusion reactions, preeclampsia and infections, such as those caused by malaria or Clostridium perfringens. Hemolysis results in the release of large quantities of red cell damage-associated molecular patterns (DAMPs) into the circulation, which, if not neutralized by innate protective mechanisms, have the potential to activate multiple inflammatory pathways. One of the major red cell DAMPs, heme, is able to activate converging inflammatory pathways, such as toll-like receptor signaling, neutrophil extracellular trap formation and inflammasome formation, suggesting that this DAMP both activates and amplifies inflammation. Other potent DAMPs that may be released by the erythrocytes upon their rupture include heat shock proteins (Hsp), such as Hsp70, interleukin-33 and Adenosine 5' triphosphate. As such, hemolysis represents a major inflammatory mechanism that potentially contributes to the clinical manifestations that have been associated with the hemolytic diseases, such as pulmonary hypertension and leg ulcers, and likely plays a role in specific complications of sickle cell disease such as endothelial activation, vaso-occlusive processes and tissue injury. PMID:27251171

  16. Red cell distribution width and nonalcoholic steatohepatitis

    PubMed Central

    Gulcan Kurt, Yasemin; Cayci, Tuncer; Aydin, Fevzi Nuri; Agilli, Mehmet

    2014-01-01

    Red cell distribution width is a measure of deviation of the volume of red blood cells. It is a marker of anisocytosis and often used to evaluate the possible causes of anemia. Elevated red cell distribution width levels are also associated with acute and chronic inflammatory responses. In nonalcoholic steatohepatitis, inflammation is accompanied with steatosis. For assuming red cell distribution width as a marker of nonalcoholic steatohepatitis, intervening factors such as levels of inflammatory markers should also be evaluated. PMID:25473202

  17. Carbon dots as a fluorescent probe for label-free detection of physiological potassium level in human serum and red blood cells.

    PubMed

    Zhang, Lingyang; Chen, Shenna; Zhao, Qian; Huang, Haowen

    2015-06-23

    A unique photoluminescence carbon dots (CDs) with larger size were prepared by microwave-assisted method. Complex functional groups on the surface of the CDs facilitate the nanoparticles to form affinity with some metal ions. Taking advantage of the effective fluorescence quenching effect of K(+), a highly sensitive CD-based fluorescence analytical system for label-free detection of K(+) with limit of detection (LOD) 1.0×10(-12) M was established. The concentrations of potassium ion in biological samples such as human serum are usually found at millimolar levels or even higher. The proposed method begins with a substantial dilution of the sample to place the K(+) concentration in the dynamic range for quantification, which covers 3 orders of magnitude. This offers some advantages: the detection of K(+) only needs very small quantities of biological samples, and the dilution of samples such as serum may effectively eliminate the potential interferences that often originate from the background matrix. The determined potassium levels were satisfactory and closely comparable with the results given by the hospital, indicating that this fluorescent probe is applicable to detection of physiological potassium level with high accuracy. Compared with other relative biosensors requiring modified design, bio-molecular modification or/and sophisticated instruments, this CD-based sensor is very simple, cost-effective and easy detection, suggesting great potential applications for successively monitoring physiological potassium level and the change in biological system. PMID:26092345

  18. What is red cell deformability?

    PubMed

    Schmid-Schönbein, H; Gaehtgens, P

    1981-01-01

    Microscopic flow visualization of the process of red cell adaptation to flow shows that red cell deformation in flow is the consequence of a continuous viscous rather than an elastic deformation. This fluid drop-like adaptation primarily depends on: (a) the fluidity of the cytoplasm and (b) the favourable surface-area-to-volume ratio, with an excess of surface area allowing strong deformations without an increase in surface area (a real strain). (c) In contrast to previous notions, the modulus of shear elasticity of the membrane is probably less significant. After many attempts to differentiate the contribution of bending and shear stiffness to the elastic recovery of the normal biconcave cell shape have not produced equivocal results, we have changed the elastic shear modulus experimentally by cross-linking the spectrin using the membrane-permeant, bifunctional SH-reagent DIAMIDE, which allows to increase the elastic shear modulus in a dose-dependent manner. Despite a 25-fold decrease in compliance the DIAMIDE-treated cells have normal shape and show remarkably small changes in the rheological behaviour when tested in vitro and in vivo. PMID:6948373

  19. Red blood cell volume in preterm neonates

    SciTech Connect

    Quaife, M.A.; Dirksen, J.W.; Paxson, C.L. Jr.; McIntire, R.H. Jr.

    1981-10-01

    In the high-risk neonate, the direct determination of the red cell volume by radionuclide dilution technique appears to be the singularly definitive method of defining treatment efficacy, and is thus a useful evaluation and management tool for the pediatrician. For effective patient management, the red blood cell(RBC) volume of 69 preterm and term neonates was determined. The method utilized, Tc-99m-labeled RBCs, provided a fast and accurate answer with a large reduction in the absorbed radiation dose. In the population studied within a high-risk newborn ICU, the mean RBC volumes between the preterm and term neonates were without significant difference. Grouping and analysis of the RBC volume data with respect to birth weight, gestational ages, and 1- and 5-minute Apgar scores revealed on statistical difference. The mean value found in our population, 32.2 +/- 9.2 ml/kg, however, does differ from those previously reported in which the determinations were made using an indirect estimation from the plasma compartment.

  20. Chemical toxicity of red cells.

    PubMed Central

    Piomelli, S

    1981-01-01

    Exposure to toxic chemicals may result in alterations of red cell function. In certain cases, the toxic effect requires a genetic predisposition and thus affects only a restricted number of individuals; in other instances, the toxic effect is exerted on the hematopoietic system of every person. Glucose-6-phosphate dehydrogenase deficiency is probably the most widespread genetic disorder. It is observed at highest frequency in populations from subtropical countries as a result of its selective advantage vis à vis falciparum malaria. The gene controlling this enzyme is located on the X-chromosome; thus, the defect is sex-linked. Individuals with a genetic defect of this enzyme are extremely susceptible to hemolysis, when exposed to oxidant drugs (such as certain antimalarials and sulfonamides) because of the inability of their red cells to regenerate NADPH. Lead poisoning result in profound effects on the process of heme synthesis. Among the steps most sensitive to lead toxicity are the enzyme delta-aminolevulinic acid dehydratase and the intramitochondrial step that leads to the incorporation of iron into protoporphyrin. By these mechanisms, in severe lead intoxication there is an accumulation of large amounts of delta-aminolevulinic acid (a compound with inherent neurotoxicity), and there are abnormalities of mitochondrial function in all cells of the body. Individuals living in an industrialized society are unavoidably exposed to some environmental lead. Recent evidence indicates that, even at levels of exposure which do not increase the blood lead level above values presently considered normal, abnormalities of heme synthesis are clearly detectable. PMID:7016524

  1. Inflight Assay of Red Blood Cell Deformability

    NASA Technical Reports Server (NTRS)

    Ingram, M.; Paglia, D. E.; Eckstein, E. C.; Frazer, R. E.

    1985-01-01

    Studies on Soviet and American astronauts have demonstrated that red blood cell production is altered in response to low gravity (g) environment. This is associated with changes in individual red cells including increased mean cell volume and altered membrane deformability. During long orbital missions, there is a tendency for the red cell mass deficit to be at least partly corrected although the cell shape anomalies are not. Data currently available suggest that the observed decrease in red cell mass is the result of sudden suppression of erythropoieses and that the recovery trend observed during long missions reflects re-establishment of erythropoietic homeostasis at a "set point" for the red cell mass that is slightly below the normal level at 1 g.

  2. Stem cell labeling for magnetic resonance imaging.

    PubMed

    Himmelreich, Uwe; Hoehn, Mathias

    2008-01-01

    In vivo applications of cells for the monitoring of their cell dynamics increasingly use non-invasive magnetic resonance imaging. This imaging modality allows in particular to follow the migrational activity of stem cells intended for cell therapy strategies. All these approaches require the prior labeling of the cells under investigation for excellent contrast against the host tissue background in the imaging modality. The present review discusses the various routes of cell labeling and describes the potential to observe both cell localization and their cell-specific function in vivo. Possibilities for labeling strategies, pros and cons of various contrast agents are pointed out while potential ambiguities or problems of labeling strategies are emphasized. PMID:18465447

  3. Red blood cell membrane defects.

    PubMed

    Iolascon, Achille; Perrotta, Silverio; Stewart, Gordon W

    2003-03-01

    We present an overview of the currently known molecular basis of red cell membrane disorders. A detailed discussion of the structure of the red cell membrane and the pathophysiology and clinical aspects of its disorders is reported. Generally speaking, hereditary spherocytosis (HS) results from a loss of erythrocyte surface area. The mutations of most cases of HS are located in the following genes: ANK1, SPTB, SLC4A1, EPB42 and SPTA1, which encode for ankyrin, spectrin beta-chain, the anion exchanger 1 (band 3), protein 4.2 and spectrin alpha-chain, respectively. Hereditary elliptocytosis (HE) reflects a diminished elasticity of the skeleton. Its aggravated form, hereditary pyropoikilocytosis (HPP), implies that the skeleton undergoes further destabilization. The mutations responsible for HE and HPP, lie in the SPTA1 and SPTB gene, and in the EPB41 gene encoding protein 4.1. Allele alpha LELY is a common polymorphic allele, which plays the role of an aggravating factor when it occurs in trans of an elliptocytogenic allele of the SPTA1 gene. Southeast Asian ovalocytosis derives from a change in band 3. The genetic disorders of membrane permeability to monovalent cations required a positional cloning approach. In this respect, channelopathies represent a new frontier in the field. Dehydrated hereditary stomatocytosis (DHS) was shown to belong to a pleiotropic syndrome: DHS + fetal edema + pseudohyperkalemia, which maps 16q23-24. Splenectomy is strictly contraindicated in DHS and another disease of the same class, overhydrated hereditary stomatocytosis, because it increases the risk of thromboembolic accidents. PMID:14692233

  4. In vivo red cell destruction by anti-Lu6

    SciTech Connect

    Issitt, P.D.; Valinsky, J.E.; Marsh, W.L.; DiNapoli, J.; Gutgsell, N.S. )

    1990-03-01

    An example is presented of an IgG1, anti-Lu6, that reacted by indirect antiglobulin test and was capable of destroying antigen-positive red cells in vivo. Two methods for the measurement of red cell survival, {sup 51}Cr labeling and flow cytometry, gave the same result: 20 percent of the test dose of Lu:6 red cells was destroyed in the first hour after injection and 80 percent in the first 24 hours. The clinical relevance of the antibody was correctly predicted by an in vitro monocyte monolayer assay. The finding that this example of anti-Lu6 was clinically significant should not be taken to mean that all antibodies directed against high-incidence Lutheran and Lutheran system-related antigens will behave similarly. When such antibodies are encountered, in vivo and/or in vitro studies to assess their clinical significance are necessary before rare blood is used for transfusion.

  5. RED: a red-cell antibody identification expert module.

    PubMed

    Smith, J W; Svirbely, J R; Evans, C A; Strohm, P; Josephson, J R; Tanner, M

    1985-06-01

    We describe a software module in an expert system RED, which interprets data related to red cell antibody identification. There are three portions to this module: the problem-solving component, which incorporates the knowledge required for antibody identification as a hierarchy of programs. The programs in the hierarchy organize within themselves small pieces of knowledge represented in the form of production rules, which are capable of making judgments concerning a specific hypothesis; an intelligent data base for storage of patient data, red cell attributes, and test results; the "overview critic" portion, which combines the atomic hypotheses judged favorably by the antibody programs into a unified judgment concerning the case. Overview makes the decision to terminate processing with a conclusion about which antibodies are actually present and what specific further tests need to be performed to resolve any remaining ambiguities. PMID:3840517

  6. Red blood cell decreases of microgravity

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.

    1985-01-01

    Postflight decreases in red blood cell mass (RBCM) have regularly been recorded after exposure to microgravity. These 5-25 percent decreases do not relate to the mission duration, workload, caloric intake or to the type of spacecraft used. The decrease is accompanied by normal red cell survivals, increased ferritin levels, normal radioactive iron studies, and increases in mean red blood cell volume. Comparable decreases in red blood cell mass are not found after bed rest, a commonly used simulation of the microgravity state. Inhibited bone marrow erythropoiesis has not been proven to date, although reticulocyte numbers in the peripheral circulation are decreased about 50 percent. To date, the cause of the microgravity induced decreases in RBCM is unknown. Increased splenic trapping of circulating red blood cells seem the most logical way to explain the results obtained.

  7. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells...

  8. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells...

  9. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells...

  10. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Red Blood Cells. 640.10 Section 640.10 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells...

  11. 21 CFR 640.10 - Red Blood Cells.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Red Blood Cells. 640.10 Section 640.10 Food and... ADDITIONAL STANDARDS FOR HUMAN BLOOD AND BLOOD PRODUCTS Red Blood Cells § 640.10 Red Blood Cells. The proper name of this product shall be Red Blood Cells. The product is defined as red blood cells...

  12. The antibody approach of labeling blood cells

    SciTech Connect

    Srivastava, S.C.

    1991-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  13. The antibody approach of labeling blood cells

    SciTech Connect

    Srivastava, S.C.

    1991-01-01

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are criticality assessed and evaluated.

  14. The antibody approach of labeling blood cells

    SciTech Connect

    Srivastava, S.C.

    1992-12-31

    Although the science of blood cell labeling using monoclonal antibodies directed against specific cellular antigens is still in its early stages, considerable progress has recently been accomplished in this area. The monoclonal antibody approach offers the promise of greater selectivity and enhanced convenience since specific cell types can be labeled in vivo, thus eliminating the need for complex and damaging cell separation procedures. This article focuses on these developments with primary emphasis on antibody labeling of platelets and leukocytes. The advantages and the shortcomings of the recently reported techniques are critically assessed and evaluated.

  15. Red cell membrane: past, present, and future

    PubMed Central

    Gallagher, Patrick G.

    2008-01-01

    As a result of natural selection driven by severe forms of malaria, 1 in 6 humans in the world, more than 1 billion people, are affected by red cell abnormalities, making them the most common of the inherited disorders. The non-nucleated red cell is unique among human cell type in that the plasma membrane, its only structural component, accounts for all of its diverse antigenic, transport, and mechanical characteristics. Our current concept of the red cell membrane envisions it as a composite structure in which a membrane envelope composed of cholesterol and phospholipids is secured to an elastic network of skeletal proteins via transmembrane proteins. Structural and functional characterization of the many constituents of the red cell membrane, in conjunction with biophysical and physiologic studies, has led to detailed description of the way in which the remarkable mechanical properties and other important characteristics of the red cells arise, and of the manner in which they fail in disease states. Current studies in this very active and exciting field are continuing to produce new and unexpected revelations on the function of the red cell membrane and thus of the cell in health and disease, and shed new light on membrane function in other diverse cell types. PMID:18988878

  16. Colour and label evaluation of commercial pasteurised red juices and related drinks.

    PubMed

    Fallico, B; Arena, E; Chiappara, E; Ballistreri, G

    2010-01-01

    Despite growing demand by consumers for healthy beverages, artificial colours are still widely used. Levels of anthocyanins and artificial colours were determined by HPLC with UV-Vis detection in red orange juices and other red beverages (nectar, juice-based, health, carbonated and sports drinks). The contribution of pigments to the visible colour of the beverage was calculated. Red orange juice samples contained about 34 mg l(-1) of anthocyanins, which were responsible for about 92% of the visible colour. Red juice-based drinks, containing from 0% to 30% of red orange, berry, grape or pomegranate juices, had low levels of anthocyanins (about 7 mg l(-1)) and high levels of E129 (about 32 mg l(-1)), which were responsible for about 90.7% of the colour of these beverages. Red health drinks, enriched with vitamins and polyphenols, contained from 3% to 50% of red fruit juices. Also in this case the E129 levels were higher (about 22 mg l(-1)) than anthocyanins (about 9 mg l(-1)), and were responsible for the colour of the beverages (76.1%). High levels of artificial colours were found in red orange carbonated drinks, but in comparable amounts with those found in the other beverage samples, while anthocyanins were only present in trace amounts. Although all of the beverages claimed to contain red fruits on the labels, no correlation was found between the level of anthocyanins and the declared percentage of red fruits. These labels generally conformed with the requirements of the law, but food product labels can often be misleading to consumers about the real characteristics of the product. PMID:24779619

  17. Studies with nonradioisotopic sodium chromate. I. Development of a technique for measuring red cell volume

    SciTech Connect

    Heaton, W.A.; Hanbury, C.M.; Keegan, T.E.; Pleban, P.; Holme, S. )

    1989-10-01

    A nonradioisotopic method for measuring red cell volume that involves the use of 52Cr-sodium chromate as the red cell label and of graphite furnace atomic absorption analysis of chromium is described. The technique allows the labelling of 20 mL of packed red cells with 40 to 50 micrograms of sodium chromate (Na2CrO4) in 30 minutes at 22 degrees C with 94 +/- 6 percent uptake. Approximately 40 micrograms of Na2CrO4 was injected for in vivo studies. This results in posttransfusion in vivo red cell chromium levels after sample processing in the range of 1 to 7 micrograms per L, which could be quantitated accurately (coefficient of variation = 4.7%) by Zeeman electrothermal atomic absorption spectrophotometry. The labeling concentration of chromium did not cause increased hemolysis, and the labeled cells exhibited an osmotic fragility curve similar to that of unlabeled, fresh ACD red cells. Red cell glutathione peroxidase was unaffected by labeling, although glutathione reductase was reduced by approximately 13 percent (p less than 0.05). The 52Cr red cell volume-measuring method was evaluated by concurrent in vivo studies with the standard 51Cr and 125I-albumin methods for that procedure. Simultaneous measurement of red cell volumes in seven volunteers by the 51Cr, 52Cr, and 125I-albumin techniques correlated highly with each other (r greater than 0.76), with mean values of 2294 +/- 199, 2191 +/- 180, and 2243 +/- 291 mL, respectively. The standard deviations of the differences were small: 134 mL for 52Cr versus 51Cr and 183 mL for 52Cr versus 125I.

  18. Avoiding Anemia: Boost Your Red Blood Cells

    MedlinePlus

    ... link, please review our exit disclaimer . Subscribe Avoiding Anemia Boost Your Red Blood Cells If you’re ... and sluggish, you might have a condition called anemia. Anemia is a common blood disorder that many ...

  19. Viscoelastic transient of confined red blood cells.

    PubMed

    Prado, Gaël; Farutin, Alexander; Misbah, Chaouqi; Bureau, Lionel

    2015-05-01

    The unique ability of a red blood cell to flow through extremely small microcapillaries depends on the viscoelastic properties of its membrane. Here, we study in vitro the response time upon flow startup exhibited by red blood cells confined into microchannels. We show that the characteristic transient time depends on the imposed flow strength, and that such a dependence gives access to both the effective viscosity and the elastic modulus controlling the temporal response of red cells. A simple theoretical analysis of our experimental data, validated by numerical simulations, further allows us to compute an estimate for the two-dimensional membrane viscosity of red blood cells, η(mem)(2D) ∼ 10(-7) N ⋅ s ⋅ m(-1). By comparing our results with those from previous studies, we discuss and clarify the origin of the discrepancies found in the literature regarding the determination of η(mem)(2D), and reconcile seemingly conflicting conclusions from previous works. PMID:25954871

  20. Isotope Labeling in Mammalian Cells

    PubMed Central

    Dutta, Arpana; Saxena, Krishna; Klein-Seetharaman, Judith

    2011-01-01

    Isotope labeling of proteins represents an important and often required tool for the application of nuclear magnetic resonance (NMR) spectroscopy to investigate the structure and dynamics of proteins. Mammalian expression systems have conventionally been considered to be too weak and inefficient for protein expression. However, recent advances have significantly improved the expression levels of these systems. Here, we provide an overview of some of the recent developments in expression strategies for mammalian expression systems in view of NMR investigations. PMID:22167668

  1. Red Fluorescent Carbon Nanoparticle-Based Cell Imaging Probe.

    PubMed

    Ali, Haydar; Bhunia, Susanta Kumar; Dalal, Chumki; Jana, Nikhil R

    2016-04-13

    Fluorescent carbon nanoparticle-based probes with tunable visible emission are biocompatible, environment friendly and most suitable for various biomedical applications. However, synthesis of red fluorescent carbon nanoparticles and their transformation into functional nanoparticles are very challenging. Here we report red fluorescent carbon nanoparticle-based nanobioconjugates of <25 nm hydrodynamic size and their application as fluorescent cell labels. Hydrophobic carbon nanoparticles are synthesized via high temperature colloid-chemical approach and transformed into water-soluble functional nanoparticles via coating with amphiphilic polymer followed by covalent linking with desired biomolecules. Following this approach, carbon nanoparticles are functionalized with polyethylene glycol, primary amine, glucose, arginine, histidine, biotin and folic acid. These functional nanoparticles can be excited with blue/green light (i.e., 400-550 nm) to capture their emission spanning from 550 to 750 nm. Arginine and folic acid functionalized nanoparticles have been demonstrated as fluorescent cell labels where blue and green excitation has been used for imaging of labeled cells. The presented method can be extended for the development of carbon nanoparticle-based other bioimaging probes. PMID:27011336

  2. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells...

  3. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells...

  4. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells...

  5. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells...

  6. 21 CFR 864.8540 - Red cell lysing reagent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Red cell lysing reagent. 864.8540 Section 864.8540...) MEDICAL DEVICES HEMATOLOGY AND PATHOLOGY DEVICES Hematology Reagents § 864.8540 Red cell lysing reagent. (a) Identification. A red cell lysing reagent is a device used to lyse (destroy) red blood cells...

  7. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell...

  8. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell...

  9. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell...

  10. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell...

  11. 21 CFR 864.5300 - Red cell indices device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red cell indices device. 864.5300 Section 864.5300....5300 Red cell indices device. (a) Identification. A red cell indices device, usually part of a larger... corpuscular hemoglobin (MCH), and the mean corpuscular hemoglobin concentration (MCHC). The red cell...

  12. 99mTc-red blood cells SPECT and planar scintigraphy in the diagnosis of hepatic hemangiomas.

    PubMed

    Artiko, M V; Sobić-Saranović, P D; Perisić-Savić, S M; Stojković, V M; Radoman, B I; Knezević, S J; Petrović, S N; Obradović, B V; Milović, V

    2008-01-01

    The aim of the study is the assessment of the value of SPECT (single photon emission computerized tomography) using 99mTc-labeled red blood cells in the detection of liver hemangioma, in comparison to planar imaging. With planar red blood cell scintigraphy, sensitivity of the method was 76%, specificity 98%, positive predictive value 98% and negative predictive value 79%. With SPECT, sensitivity of the method was 95%, specificity 98%, positive predictive value 98% and negative predictive value 94%. The smallest lesion detected by planar red blood cell scintigraphy was 1.2 cm, and with SPECT red blood cell scintigraphy 0.8 cm. The use of 99mTc-labeled red blood cells SPECT improved the sensitivity much more in smaller lesions (0.8 to 2 cm), than in bigger ones (2-5 cm). SPECT with radiolabeled red blood cells significantlyy improves the results of scintigraphic findings, especially in the small lesions. PMID:19245136

  13. Density increment and decreased survival of rat red blood cells induced by cadmium

    SciTech Connect

    Kunimoto, M.; Miura, T.

    1986-01-01

    Male Wistar rats were injected with CdCl/sub 2/ subcutaneously to examine in vivo effects of Cd on density and survival of red blood cells. During the 7 days after administration of 1.0 mg Cd/kg, the following sequence of events occurred: (1) a progressive increase in the amount of more dense red blood cells concomitant with a decrease in that of light red blood cells from the first to the third day; (2) an increase in the spleen weight at the third day; (3) a decrease in the hematocrit value and an increase in the amount of light red blood cells at the fifth day; and (4) a recovery of the hematocrit value at the seventh day. Five days after administration, the hematocrit value decreased in a dose-dependent mode and the decrease was significant at the 1% level at 1.0 and 1.5 mg Cd/kg. A highly significant splenomegaly was also observed at 0.5 to 1.5 mg Cd/kg. In order to label red blood cells in vivo, (/sup 3/H) diisopropylfluorophosphate ((/sup 3/H)DFP) was injected into rats. At Day 11, Cd at either 0.5 or 1.0 mg/kg was administered to (/sup 3/H)DFP-prelabeled animals. Cd administration accelerated /sup 3/H-labeled red cell clearance from the blood. Six days after Cd administration, the radioactivity of red blood cells was 76 and 68% of the control at 0.5 and 1.0 mg Cd/kg, respectively. In vitro treatment of rat red density and accelerated in vivo clearance of red blood cells from the recipient circulation. These results show that Cd at low dose can cause anemia by increasing red cell density and by accelerating red cell sequestration, presumably in the spleen.

  14. Red cell metabolism studies on Skylab

    NASA Technical Reports Server (NTRS)

    Mengel, C. E.

    1974-01-01

    On the basis of these background data, metabolic studies were performed on humans involved in space flight. These studies included the Skylab experiences. The primary purpose of the investigations was to study red cells for: (1) evidences of lipid peroxidation, or (2) changes at various points in the glycolytic pathway. The Skylab missions were an opportunity to study blood samples before, during, and after flight and to compare results with simultaneous controls. No direct evidence that lipid peroxidation had occurred in the red blood cells was apparent in the studies.

  15. Models for the red blood cell lifespan.

    PubMed

    Shrestha, Rajiv P; Horowitz, Joseph; Hollot, Christopher V; Germain, Michael J; Widness, John A; Mock, Donald M; Veng-Pedersen, Peter; Chait, Yossi

    2016-06-01

    The lifespan of red blood cells (RBCs) plays an important role in the study and interpretation of various clinical conditions. Yet, confusion about the meanings of fundamental terms related to cell survival and their quantification still exists in the literature. To address these issues, we started from a compartmental model of RBC populations based on an arbitrary full lifespan distribution, carefully defined the residual lifespan, current age, and excess lifespan of the RBC population, and then derived the distributions of these parameters. For a set of residual survival data from biotin-labeled RBCs, we fit models based on Weibull, gamma, and lognormal distributions, using nonlinear mixed effects modeling and parametric bootstrapping. From the estimated Weibull, gamma, and lognormal parameters we computed the respective population mean full lifespans (95 % confidence interval): 115.60 (109.17-121.66), 116.71 (110.81-122.51), and 116.79 (111.23-122.75) days together with the standard deviations of the full lifespans: 24.77 (20.82-28.81), 24.30 (20.53-28.33), and 24.19 (20.43-27.73). We then estimated the 95th percentiles of the lifespan distributions (a surrogate for the maximum lifespan): 153.95 (150.02-158.36), 159.51 (155.09-164.00), and 160.40 (156.00-165.58) days, the mean current ages (or the mean residual lifespans): 60.45 (58.18-62.85), 60.82 (58.77-63.33), and 57.26 (54.33-60.61) days, and the residual half-lives: 57.97 (54.96-60.90), 58.36 (55.45-61.26), and 58.40 (55.62-61.37) days, for the Weibull, gamma, and lognormal models respectively. Corresponding estimates were obtained for the individual subjects. The three models provide equally excellent goodness-of-fit, reliable estimation, and physiologically plausible values of the directly interpretable RBC survival parameters. PMID:27039311

  16. Viscoelastic Transient of Confined Red Blood Cells

    PubMed Central

    Prado, Gaël; Farutin, Alexander; Misbah, Chaouqi; Bureau, Lionel

    2015-01-01

    The unique ability of a red blood cell to flow through extremely small microcapillaries depends on the viscoelastic properties of its membrane. Here, we study in vitro the response time upon flow startup exhibited by red blood cells confined into microchannels. We show that the characteristic transient time depends on the imposed flow strength, and that such a dependence gives access to both the effective viscosity and the elastic modulus controlling the temporal response of red cells. A simple theoretical analysis of our experimental data, validated by numerical simulations, further allows us to compute an estimate for the two-dimensional membrane viscosity of red blood cells, ηmem2D ∼ 10−7 N⋅s⋅m−1. By comparing our results with those from previous studies, we discuss and clarify the origin of the discrepancies found in the literature regarding the determination of ηmem2D, and reconcile seemingly conflicting conclusions from previous works. PMID:25954871

  17. Red Blood Cells Play a Role in Reverse Cholesterol Transport

    PubMed Central

    Hung, Kimberly T.; Berisha, Stela Z.; Ritchey, Brian M.; Santore, Jennifer; Smith, Jonathan D.

    2012-01-01

    Objective Reverse cholesterol transport (RCT) involves the removal of cholesterol from peripheral tissue for excretion in the feces. Here, we determined whether red blood cells (RBCs) can contribute to RCT. Methods and Results We performed a series of studies in apoAI-deficient mice where the HDL-mediated pathway of RCT is greatly diminished. RBCs carried a higher fraction of whole blood cholesterol than plasma in apoAI-deficient mice, and as least as much of the labeled cholesterol derived from injected foam cells appeared in RBCs compared to plasma. To determine if RBCs mediate RCT to the fecal compartment, we measured RCT in anemic and control apoAI-deficient mice and found that anemia decreased RCT to the feces by over 35% after correcting for fecal mass. Transfusion of [3H]cholesterol labeled RBCs led to robust delivery of the labeled cholesterol to the feces in apoAI-deficient hosts. In wild type mice, the majority of the blood cholesterol mass, as well as [3H]cholesterol derived from the injected foam cells, was found in plasma, and anemia did not significantly alter RCT to the feces after correction for fecal mass. Conclusion The RBC cholesterol pool is dynamic and facilitates RCT of peripheral cholesterol to the feces, particularly in the low HDL state. PMID:22499994

  18. 21 CFR 864.8185 - Calibrator for red cell and white cell counting.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Calibrator for red cell and white cell counting... Calibrator for red cell and white cell counting. (a) Identification. A calibrator for red cell and white cell counting is a device that resembles red or white blood cells and that is used to set instruments...

  19. 21 CFR 864.8185 - Calibrator for red cell and white cell counting.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Calibrator for red cell and white cell counting... Calibrator for red cell and white cell counting. (a) Identification. A calibrator for red cell and white cell counting is a device that resembles red or white blood cells and that is used to set instruments...

  20. 21 CFR 864.8185 - Calibrator for red cell and white cell counting.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Calibrator for red cell and white cell counting... Calibrator for red cell and white cell counting. (a) Identification. A calibrator for red cell and white cell counting is a device that resembles red or white blood cells and that is used to set instruments...

  1. 21 CFR 864.8185 - Calibrator for red cell and white cell counting.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Calibrator for red cell and white cell counting... Calibrator for red cell and white cell counting. (a) Identification. A calibrator for red cell and white cell counting is a device that resembles red or white blood cells and that is used to set instruments...

  2. 21 CFR 864.8185 - Calibrator for red cell and white cell counting.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Calibrator for red cell and white cell counting... Calibrator for red cell and white cell counting. (a) Identification. A calibrator for red cell and white cell counting is a device that resembles red or white blood cells and that is used to set instruments...

  3. Determination of Fc function with frozen red blood cells.

    PubMed

    Gurevich, V; Bertolini, J; Lyons, K

    2006-09-01

    The Fc function of immunoglobulins is commonly determined by an assay based on monitoring immunoglobulin induced, complement mediated red cell lysis. This assay requires a continuous source of fresh red cells. We have shown that the assay can be successfully performed with frozen red cells. The possibility of access to a stored standard stock of red cells will improve the convenience of performing the assay and could contribute to improved assay reproducibility. PMID:16500112

  4. Chloride transport in human red cells.

    PubMed Central

    Dalmark, M

    1975-01-01

    1. The chloride equilibrium flux (chloride self-exchange) was determined by measuring the rate of 36Cl efflux from radioactively labelled human red cells. The cellular chloride concentration was varied between 5 and 700 mM by the nystatin technique (Cass & Dalmark, 1973). The chloride transport capacity was not affected by the nystatin technique. 2. The chloride equilibrium flux showed saturation kinetics in the pH range between 6-2 and 9-2 (0 degrees C). The chloride transport decreased at chloride concentrations higher than those which gave the maximum transport. 3. The apparent half-saturation constant, (K1/2), depended on the pH and whether the chloride transport was perceived as a function of the chloride concentration in the medium or in the cell water. The (K1/2)m increased and the (K1/2)c decreased with increasing pH. The dependence of the chloride transport on the chloride concentration was described by Michaelis-Menten kinetics at pH 7-2, but at values of pH outside pH 7-8 S-shaped or steeper graphs were observed. 4. The chloride equilibrium flux varied with the pH at constant chloride concentration in the medium (pH 5-7-9-5). The transport had a bell-shaped pH dependence at chloride concentrations below 200 mM. At chloride concentrations between 300 and 600 mM the chloride transport increased with increasing pH to reach a plateau around pH 8. The position of the acidic branches of the pH graphs was independent of the chloride concentration (25-600 mM), but the position of the alkaline branches moved towards higher values of pH with increasing chloride concentration (5-150 mM). Thus, the position of the pH optimum increased with increasing chloride concentration. The chloride transport at low pH values was a function of the inverse second power of the hydrogen ion concentration. The pK of the groups which caused the inhibition was approximately 6 and independent of the temperature (0-18 degrees C). 5. The chloride equilibrium flux as a function of

  5. Survival of Er(a+) red cells in a patient with allo-anti-Era

    SciTech Connect

    Thompson, H.W.; Skradski, K.J.; Thoreson, J.R.; Polesky, H.F.

    1985-03-01

    /sup 51/Chromium-labeled Er(a+) red cells survived nearly normally (T1/2 of 21 days) in a patient with allo-anti-Era. Transfusion of Er(a+) blood was without significant reaction and did not affect the anti-Era titer.

  6. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... identify human blood-group antibodies. (b) Source. Reagent Red Blood Cells shall be prepared from human... 21 Food and Drugs 7 2010-04-01 2010-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells §...

  7. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 7 2013-04-01 2013-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall...

  8. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 7 2014-04-01 2014-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall...

  9. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 7 2012-04-01 2012-04-01 false Reagent Red Blood Cells. 660.30 Section 660.30...) BIOLOGICS ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall...

  10. 21 CFR 660.30 - Reagent Red Blood Cells.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 7 2011-04-01 2010-04-01 true Reagent Red Blood Cells. 660.30 Section 660.30 Food... ADDITIONAL STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.30 Reagent Red Blood Cells. (a) Proper name and definition. The proper name of the product shall be Reagent...

  11. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Red blood cell enzyme assay. 864.7100 Section 864... enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in... kinase or 2,3-diphosphoglycerate. A red blood cell enzyme assay is used to determine the enzyme...

  12. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Red blood cell enzyme assay. 864.7100 Section 864... enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in... kinase or 2,3-diphosphoglycerate. A red blood cell enzyme assay is used to determine the enzyme...

  13. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Red blood cell enzyme assay. 864.7100 Section 864... enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in... kinase or 2,3-diphosphoglycerate. A red blood cell enzyme assay is used to determine the enzyme...

  14. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Red blood cell enzyme assay. 864.7100 Section 864... enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in... kinase or 2,3-diphosphoglycerate. A red blood cell enzyme assay is used to determine the enzyme...

  15. 21 CFR 864.7100 - Red blood cell enzyme assay.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Red blood cell enzyme assay. 864.7100 Section 864... enzyme assay. (a) Identification. Red blood cell enzyme assay is a device used to measure the activity in... kinase or 2,3-diphosphoglycerate. A red blood cell enzyme assay is used to determine the enzyme...

  16. Responder individuality in red blood cell alloimmunization.

    PubMed

    Körmöczi, Günther F; Mayr, Wolfgang R

    2014-11-01

    Many different factors influence the propensity of transfusion recipients and pregnant women to form red blood cell alloantibodies (RBCA). RBCA may cause hemolytic transfusion reactions, hemolytic disease of the fetus and newborn and may be a complication in transplantation medicine. Antigenic differences between responder and foreign erythrocytes may lead to such an immune answer, in part with suspected specific HLA class II associations. Biochemical and conformational characteristics of red blood cell (RBC) antigens, their dose (number of transfusions and pregnancies, absolute number of antigens per RBC) and the mode of exposure impact on RBCA rates. In addition, individual circumstances determine the risk to form RBCA. Responder individuality in terms of age, sex, severity of underlying disease, disease- or therapy-induced immunosuppression and inflammation are discussed with respect to influencing RBC alloimmunization. For particular high-risk patients, extended phenotype matching of transfusion and recipient efficiently decreases RBCA induction and associated clinical risks. PMID:25670932

  17. Reversibility of red blood cell deformation

    NASA Astrophysics Data System (ADS)

    Zeitz, Maria; Sens, P.

    2012-05-01

    The ability of cells to undergo reversible shape changes is often crucial to their survival. For red blood cells (RBCs), irreversible alteration of the cell shape and flexibility often causes anemia. Here we show theoretically that RBCs may react irreversibly to mechanical perturbations because of tensile stress in their cytoskeleton. The transient polymerization of protein fibers inside the cell seen in sickle cell anemia or a transient external force can trigger the formation of a cytoskeleton-free membrane protrusion of μm dimensions. The complex relaxation kinetics of the cell shape is shown to be responsible for selecting the final state once the perturbation is removed, thereby controlling the reversibility of the deformation. In some case, tubular protrusion are expected to relax via a peculiar “pearling instability.”

  18. Multiscale simulation of red blood cell aggregation

    NASA Astrophysics Data System (ADS)

    Bagchi, P.; Popel, A. S.

    2004-11-01

    In humans and other mammals, aggregation of red blood cells (RBC) is a major determinant to blood viscosity in microcirculation under physiological and pathological conditions. Elevated levels of aggregation are often related to cardiovascular diseases, bacterial infection, diabetes, and obesity. Aggregation is a multiscale phenomenon that is governed by the molecular bond formation between adjacent cells, morphological and rheological properties of the cells, and the motion of the extra-cellular fluid in which the cells circulate. We have developed a simulation technique using front tracking methods for multiple fluids that includes the multiscale characteristics of aggregation. We will report the first-ever direct computer simulation of aggregation of deformable cells in shear flows. We will present results on the effect of shear rate, strength of the cross-bridging bonds, and the cell rheological properties on the rolling motion, deformation and subsequent breakage of an aggregate.

  19. Red blood cell transfusion in newborn infants.

    PubMed

    Whyte, Robin K; Jefferies, Ann L

    2014-04-01

    Red blood cell transfusion is an important and frequent component of neonatal intensive care. The present position statement addresses the methods and indications for red blood cell transfusion of the newborn, based on a review of the current literature. The most frequent indications for blood transfusion in the newborn are the acute treatment of perinatal hemorrhagic shock and the recurrent correction of anemia of prematurity. Perinatal hemorrhagic shock requires immediate treatment with large quantities of red blood cells; the effects of massive transfusion on other blood components must be considered. Some guidelines are now available from clinical trials investigating transfusion in anemia of prematurity; however, considerable uncertainty remains. There is weak evidence that cognitive impairment may be more severe at follow-up in extremely low birth weight infants transfused at lower hemoglobin thresholds; therefore, these thresholds should be maintained by transfusion therapy. Although the risks of transfusion have declined considerably in recent years, they can be minimized further by carefully restricting neonatal blood sampling. PMID:24855419

  20. From Red Cells to Soft Porous Lubrication

    NASA Astrophysics Data System (ADS)

    Wu, Qianhong; Gacka, Thomas; Nathan, Rungun; Crawford, Robert; Vucbmss Team

    2014-11-01

    Biological scientists have wondered, since the motion of red cells was first observed in capillaries, how the highly flexible red cell can move with so little friction in tightly fitting microvessels without being damaged or undergoing hemolysis. Theoretical studies (Feng and Weinbaum, 2000, JFM; Wu et al., 2004, PRL) attributed this frictionless motion to the dramatically enhanced hydrodynamic lifting force generated inside the soft, porous, endothelial surface layer (ESL) covering the inner surfaces of our capillaries, as a red blood cell glides over it. Herein we report the first experimental examination of this concept. The results conclusively demonstrate that significant fraction of the overall lifting force generated in a soft porous layer as a planing surface glides over it, is contributed by the pore fluid pressure, and thus frictional loss is reduced significantly. Moreover, the experimental predictions showed excellent agreement with the experimental data. This finding has the potential of dramatically changing existing lubrication approaches, and can result in substantial savings in energy consumption and thus reduction in greenhouse gas emissions.

  1. Single-cell label-free photoacoustic flowoxigraphy in vivo

    PubMed Central

    Wang, Lidai; Maslov, Konstantin; Wang, Lihong V.

    2013-01-01

    Label-free functional imaging of single red blood cells (RBCs) in vivo holds the key to uncovering the fundamental mechanism of oxygen metabolism in cells. To this end, we developed single-RBC photoacoustic flowoxigraphy (FOG), which can image oxygen delivery from single flowing RBCs in vivo with millisecond-scale temporal resolution and micrometer-scale spatial resolution. Using intrinsic optical absorption contrast from oxyhemoglobin (HbO2) and deoxyhemoglobin (HbR), FOG allows label-free imaging. Multiple single-RBC functional parameters, including total hemoglobin concentration (CHb), oxygen saturation (sO2), sO2 gradient (), flow speed (vf), and oxygen release rate (rO2), have been quantified simultaneously in real time. Working in reflection instead of transmission mode, the system allows minimally invasive imaging at more anatomical sites. We showed the capability to measure relationships among sO2, , vf, and rO2 in a living mouse brain. We also demonstrated that single-RBC oxygen delivery was modulated by changing either the inhalation gas or blood glucose. Furthermore, we showed that the coupling between neural activity and oxygen delivery could be imaged at the single-RBC level in the brain. The single-RBC functional imaging capability of FOG enables numerous biomedical studies and clinical applications. PMID:23536296

  2. Design of polymeric immunomicrospheres for cell labelling and cell separation

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Margel, S.

    1978-01-01

    Synthesis of several classes of hydrophylic microspheres applied to cell labeling and cell separation is described. Five classes of cross-linked microspheres with functional groups such as carboxyl, hydroxyl, amide and/or pyridine groups were synthesized. These functional groups were used to bind covalently antibodies and other proteins to the surface of the microspheres. To optimize the derivatisation technique, polyglutaraldehyde immunomicrospheres were prepared and utilized. Specific populations of human and murine lymphocytes were labelled with microspheres synthesized by the emulsion of the ionizing radiation technique. The labelling of the cells by means of microspheres containing an iron core produced successful separation of B from T lymphocytes by means of a magnetic field.

  3. Red blood cell (RBC) transfusion rates among US chronic dialysis patients during changes to Medicare end-stage renal disease (ESRD) reimbursement systems and erythropoiesis stimulating agent (ESA) labels

    PubMed Central

    2014-01-01

    Background Several major ESRD-related regulatory and reimbursement changes were introduced in the United States in 2011. In several large, national datasets, these changes have been associated with decreases in erythropoiesis stimulating agent (ESA) utilization and hemoglobin concentrations in the ESRD population, as well as an increase in the use of red blood cell (RBC) transfusions in this population. Our objective was to examine the use of RBC transfusion before and after the regulatory and reimbursement changes implemented in 2011 in a prevalent population of chronic dialysis patients in a large national claims database. Methods Patients in the Truven Health MarketScan Commercial and Medicare Databases with evidence of chronic dialysis were selected for the study. The proportion of chronic dialysis patients who received any RBC transfusion and RBC transfusion event rates per 100 patient-months were calculated in each month from January 1, 2007 to March 31, 2012. The results were analyzed overall and stratified by primary health insurance payer (commercial payer or Medicare). Results Overall, the percent of chronic dialysis patients with RBC transfusion and RBC transfusion event rates per 100 patient-months increased between January 2007 and March 2012. When stratified by primary health insurance payer, it appears that the increase was driven by the primary Medicare insurance population. While the percent of patients with RBC transfusion and RBC transfusion event rates did not increase in the commercially insured population between 2007 and 2012 they did increase in the primary Medicare insurance population; the majority of the increase occurred in 2011 during the same time frame as the ESRD-related regulatory and reimbursement changes. Conclusions The regulatory and reimbursement changes implemented in 2011 may have contributed to an increase in the use of RBC transfusions in chronic dialysis patients in the MarketScan dataset who were covered by Medicare plus

  4. Neocytolysis: physiological down-regulator of red-cell mass

    NASA Technical Reports Server (NTRS)

    Alfrey, C. P.; Rice, L.; Udden, M. M.; Driscoll, T. B.

    1997-01-01

    It is usually considered that red-cell mass is controlled by erythropoietin-driven bone marrow red-cell production, and no physiological mechanisms can shorten survival of circulating red cells. In adapting to acute plethora in microgravity, astronauts' red-cell mass falls too rapidly to be explained by diminished red-cell production. Ferrokinetics show no early decline in erythropolesis, but red cells radiolabelled 12 days before launch survive normally. Selective destruction of the youngest circulating red cells-a process we call neocytolysis-is the only plausible explanation. A fall in erythropoietin below a threshold is likely to initiate neocytolysis, probably by influencing surface-adhesion molecules. Recognition of neocytolysis will require re-examination of the pathophysiology and treatment of several blood disorders, including the anaemia of renal disease.

  5. ELECTRON MICROSCOPE ANALYSIS OF YOUNG AND OLD RED BLOOD CELLS STAINED WITH COLLOIDAL IRON FOR SURFACE CHARGE EVALUATION

    PubMed Central

    Marikovsky, Y.; Danon, D.

    1969-01-01

    Human and rabbit red blood cells, separated into "young" and "old" age groups by differential flotation on phthalate esters, were fixed with glutaraldehyde and labeled with colloidal ferric oxide. Electron micrographs of thin sections of young cells showed a uniform and dense depostion of positive iron particles. Old cells showed particles deposited irregularly, leaving unlabeled gaps on the membrane surface. Red cells incubated with 10 units/ml receptor-destroying enzyme (RDE) demonstrate a reduced labeling, similar to that of old cells. After neuraminic acid had been removed from red cells by 20 units/ml RDE, no iron particles were found on membrane surfaces. The different labeling of young, old, and RDE-treated human and rabbit red cells was correlated with their electric mobility and agglutinability by poly-L-lysine. The contradiction between the apparent similarity in charge density of human and rabbit red cells as estimated by density of iron particles and the markedly lower electric mobility of rabbit red cells is discussed. PMID:4186411

  6. Electron microscope analysis of young and old red blood cells stained with colloidal iron for surface charge evaluation.

    PubMed

    Marikovsky, Y; Danon, D

    1969-10-01

    Human and rabbit red blood cells, separated into "young" and "old" age groups by differential flotation on phthalate esters, were fixed with glutaraldehyde and labeled with colloidal ferric oxide. Electron micrographs of thin sections of young cells showed a uniform and dense depostion of positive iron particles. Old cells showed particles deposited irregularly, leaving unlabeled gaps on the membrane surface. Red cells incubated with 10 units/ml receptor-destroying enzyme (RDE) demonstrate a reduced labeling, similar to that of old cells. After neuraminic acid had been removed from red cells by 20 units/ml RDE, no iron particles were found on membrane surfaces. The different labeling of young, old, and RDE-treated human and rabbit red cells was correlated with their electric mobility and agglutinability by poly-L-lysine. The contradiction between the apparent similarity in charge density of human and rabbit red cells as estimated by density of iron particles and the markedly lower electric mobility of rabbit red cells is discussed. PMID:4186411

  7. Red Rain Cells Recovered from Interior of the Polonnaruwa Meteorite

    NASA Astrophysics Data System (ADS)

    Wickramarathne, K.; Wickramasinghe, N. C.

    2013-03-01

    Red rain cells were discovered in extracts from the Polonnaruwa (Aralaganwila) meteorite that fell nearly ten days before a red rain event in the same location in Sri Lanka. A causal connection is speculated.

  8. Anesthetics and red blood cell rheology

    NASA Astrophysics Data System (ADS)

    Aydogan, Burcu; Aydogan, Sami

    2014-05-01

    There are many conditions where it is useful for anesthetists to have a knowledge of blood rheology. Blood rheology plays an important role in numerous clinical situations. Hemorheologic changes may significantly affect the induction and recovery times with anesthetic agents. But also, hemorheologic factors are directly or indirectly affected by many anesthetic agents or their metabolites. In this review, the blood rheology with special emphasis on its application in anesthesiology, the importance hemorheological parameters in anesthesiology and also the effect of some anesthetic substances on red blood cell rheology were presented.

  9. The effect of osmotic pressure of aqueous PEG solutions on red blood cells.

    PubMed

    Herrmann, A; Arnold, K; Pratsch, L

    1985-08-01

    A drastic increase of the intracellular microviscosity of red blood cells in the presence of polyethylene glycol (PEG) was established by electron spin resonance using the small spin label molecule 2,2,6,6-tetramethyl-piperidine-N-oxyl-4-one (TEMPONE). The effective osmotic pressure of PEG solutions stressing the cells was estimated by comparison with those cytoplasmic rotational correlation times of TEMPONE measured in NaCl or sucrose containing media of known osmotic pressure. PMID:2998502

  10. Mechanosensing Dynamics of Red blood Cells

    NASA Astrophysics Data System (ADS)

    Wan, Jiandi

    2015-11-01

    Mechanical stress-induced deformation of human red blood cells (RBCs) plays important physiopathological roles in oxygen delivery, blood rheology, transfusion, and malaria. Recent studies demonstrate that, in response to mechanical deformation, RBCs release adenosine-5'-triphosphate (ATP), suggesting the existence of mechanotransductive pathways in RBCs. Most importantly, the released ATP from RBCs regulates vascular tone and impaired release of ATP from RBCs has been linked to diseases such as type II diabetes and cystic fibrosis. To date, however, the mechanisms of mechanotransductive release of ATP from RBCs remain unclear. Given that RBCs experience shear stresses continuously during the circulation cycle and the released ATP plays a central role in vascular physiopathology, understanding the mechanotransductive release of ATP from RBCs will provide not only fundamental insights to the role of RBCs in vascular homeostasis but also novel therapeutic strategies for red cell dysfunction and vascular disease. This talk describes the main research in my group on integrating microfluidic-based approaches to study the mechanosensing dynamics of RBCs. Specifically, I will introduce a micro?uidic approach that can probe the dynamics of shear-induced ATP release from RBCs with millisecond resolution and provide quantitative understandings of the mechanosensitive ATP release processes in RBCs. Furthermore, I will also describe our recent findings about the roles of the Piezo1 channel, a newly discovered mechanosensitive cation channel in the mechanotransductive ATP release in RBCs. Last, possible functions of RBCs in the regulation of cerebral blood flow will be discussed.

  11. Classification of blood cells and tumor cells using label-free ultrasound and photoacoustics.

    PubMed

    Strohm, Eric M; Kolios, Michael C

    2015-08-01

    A label-free method that can identify cells in a blood sample using high frequency photoacoustic and ultrasound signals is demonstrated. When the wavelength of the ultrasound or photoacoustic wave is similar to the size of a single cell (frequencies of 100-500 MHz), unique periodic features occur within the ultrasound and photoacoustic power spectrum that depend on the cell size, structure, and morphology. These spectral features can be used to identify different cell types present in blood, such as red blood cells (RBCs), white blood cells (WBCs), and circulating tumor cells. Circulating melanoma cells are ideal for photoacoustic detection due to their endogenous optical absorption properties. Using a 532 nm pulsed laser and a 375 MHz transducer, the ultrasound and photoacoustic signals from RBCs, WBCs, and melanoma cells were individually measured in an acoustic microscope to examine how the signals change between cell types. A photoacoustic and ultrasound signal was detected from RBCs and melanoma cells; only an ultrasound signal was detected from WBCs. The different cell types were distinctly separated using the ultrasound and photoacoustic signal amplitude and power spectral periodicity. The size of each cell was also estimated from the spectral periodicity. For the first time, sound waves generated using pulse-echo ultrasound and photoacoustics have been used to identify and size single cells, with applications toward counting and identifying cells, including circulating melanoma cells. PMID:26079610

  12. Microconfined flow behavior of red blood cells.

    PubMed

    Tomaiuolo, Giovanna; Lanotte, Luca; D'Apolito, Rosa; Cassinese, Antonio; Guido, Stefano

    2016-01-01

    Red blood cells (RBCs) perform essential functions in human body, such as gas exchange between blood and tissues, thanks to their ability to deform and flow in the microvascular network. The high RBC deformability is mainly due to the viscoelastic properties of the cell membrane. Since an impaired RBC deformability could be found in some diseases, such as malaria, sickle cell anemia, diabetes and hereditary disorders, there is the need to provide further insight into measurement of RBC deformability in a physiologically relevant flow field. Here, RBCs deformability has been studied in terms of the minimum apparent plasma-layer thickness by using high-speed video microscopy of RBCs flowing in cylindrical glass capillaries. An in vitro systematic microfluidic investigation of RBCs in micro-confined conditions has been performed, resulting in the determination of the RBCs time recovery constant, RBC volume and surface area and RBC membrane shear elastic modulus and surface viscosity. It has been noticed that the deformability of RBCs induces cells aggregation during flow in microcapillaries, allowing the formation of clusters of cells. Overall, our results provide a novel technique to estimate RBC deformability and also RBCs collective behavior, which can be used for the analysis of pathological RBCs, for which reliable quantitative methods are still lacking. PMID:26071649

  13. Label-Free and Continuous-Flow Ferrohydrodynamic Separation of HeLa Cells and Blood Cells in Biocompatible Ferrofluids

    PubMed Central

    Zhao, Wujun; Zhu, Taotao; Cheng, Rui; Liu, Yufei; He, Jian; Qiu, Hong; Wang, Lianchun; Nagy, Tamas; Querec, Troy D.; Unger, Elizabeth R.

    2016-01-01

    In this study, a label-free, low-cost, and fast ferrohydrodynamic cell separation scheme is demonstrated using HeLa cells (an epithelial cell line) and red blood cells. The separation is based on cell size difference, and conducted in a custom-made biocompatible ferrofluid that retains the viability of cells during and after the assay for downstream analysis. The scheme offers moderate-throughput (≈106 cells h−1 for a single channel device) and extremely high recovery rate (>99%) without the use of any label. It is envisioned that this separation scheme will have clinical applications in settings where rapid cell enrichment and removal of contaminating blood will improve efficiency of screening and diagnosis such as cervical cancer screening based on mixed populations in exfoliated samples. PMID:27478429

  14. Cells labeled with multiple fluorophores bound to a nucleic acid carrier

    SciTech Connect

    Dattagupta, N.; Kamarch, M.E.

    1989-04-25

    In passing labeled cells through a cell sorter, the improvement which comprises employing a labeled cell comprising a cell, an antibody specific to and bound to such cell, a nucleic acid fragment joined to the antibody, and a plurality of labels on the nucleic acid fragment. Because of the presence of multiple labels, the sensitivity of the separation of labeled cells in increased.

  15. Fluorometric assay for red blood cell antibodies

    SciTech Connect

    Schreiber, A.B.; Lambermont, M.; Strosberg, A.D.; Wybran, J.

    1981-03-01

    A fluorometric assay is described for the detection of red blood cell antibodies. The assay reveals as little as 600 molecules of bound, fluoroesceinated rabbit anti-human IgG antibodies per erythrocyte. Eleven patients with possible autoimmune erythrocyte disorder and negative direct antiglobulin test were studied by the fluorometric assay. The outcome of the fluorometric assay was compared with that of the human allogeneic rosette test. Results obtained by the two methods were in complete agreement. Five of the patients were shown to possess unexpectedly high levels of erythrocyte-bound IgG in spite of a negative, direct antiglobulin test. These findings and the validity of the fluorometric assay are discussed.

  16. Optical analysis of red blood cell suspension

    NASA Astrophysics Data System (ADS)

    Szołna, Alicja A.; Grzegorzewski, Bronisław

    2008-12-01

    The optical properties of suspensions of red blood cells (RBCs) were studied. Fresh human venues blood was obtained from adult healthy donors. RBCs were suspended in isotonic salt solution, and in autologous plasma. Suspensions with haematocrit 0.25 - 3% were investigated. Novel technique was proposed to determine the scattering coefficient μs for the suspensions. The intensity of He-Ne laser light transmitted through a wedge-shape container filled with a suspension was recorded. To find the dependence of the intensity on the thickness of the sample the container was moved horizontally. The dependence of μs on the haematocrit was determined for RBCs suspended in the isotonic salt solution. RBCs suspended in plasma tend to form rouleaux. For the RBCs suspended in plasma, the scattering coefficient as a function of time was obtained. It is shown that this technique can be useful in the study of rouleaux formation.

  17. State of the science of blood cell labeling

    SciTech Connect

    Srivastava, S.C.; Straub, R.F.

    1989-01-01

    Blood cell labeling can be considered a science in as far as it is based on precise knowledge and can be readily reproduced. This benchmark criterion is applied to all current cell labeling modalities and their relative merits and deficiencies are discussed. Mechanisms are given where they are known as well as labeling yields, label stability, and cell functionality. The focus is on the methodology and its suitability to the clinical setting rather than on clinical applications per se. Clinical results are cited only as proof of efficacy of the various methods. The emphasis is on technetium as the cell label, although comparisons are made between technetium and indium, and all blood cells are covered. 52 refs., 6 figs., 7 tabs.

  18. Tissue engineering red blood cells: a therapeutic.

    PubMed

    van Veen, Theun; Hunt, John A

    2015-07-01

    The use of red blood cells (RBCs) in transfusion is widespread in modern medicine. Limitations in blood transfusion have made an urgent argument for the focus on alternatives, as particular medical treatments heavily rely on the supply of donated blood. Stem cells have been successfully used in vitro to produce RBCs and researchers are currently challenged with developing larger-scale culture methods to meet the requirements for clinically relevant cell numbers. The ultimate conditions that will be beneficial for this type of research are trivial. A successful human clinical trial has shown that tremendous progress has already been made in this field. Other alternatives are based on the oxygen carrier protein that RBCs contain, i.e. haemoglobin (Hb). Chemically defined molecules and crosslinked proteins, which are able to bind and transport oxygen, have been found to be functional in vivo. Major progress has been achieved, but developing highly suitable products for the transfusion market still remains an enormous challenge for these acellular blood substitutes. We provide a review about developing alternatives for blood transfusion, with the emphasis on tissue-engineering approaches. PMID:24753354

  19. Growth and replication of red rain cells at 121°C and their red fluorescence

    NASA Astrophysics Data System (ADS)

    Gangappa, Rajkumar; Wickramasinghe, Chandra; Wainwright, Milton; Kumar, A. Santhosh; Louis, Godfrey

    2010-09-01

    We have shown that the red cells found in the Red Rain (which fell on Kerala, India, in 2001) survive and grow after incubation for periods of up to two hours at 121°C . Under these conditions daughter cells appear within the original mother cells and the number of cells in the samples increases with length of exposure to 121°C. No such increase in cells occurs at room temperature, suggesting that the increase in daughter cells is brought about by exposure of the Red Rain cells to high temperatures. This is an independent confirmation of results reported earlier by two of the present authors, claiming that the cells can replicate under high pressure at temperatures upto 300°C. The flourescence behaviour of the red cells is shown to be in remarkable correspondence with the extended red emission observed in the Red Rectagle planetary nebula and other galactic and extragalactic dust clouds, suggesting, though not proving an extraterrestrial origin.

  20. High efficiency labeling of glycoproteins on living cells

    PubMed Central

    Zeng, Ying; Ramya, T. N. C.; Dirksen, Anouk; Dawson, Philip E.; Paulson, James C.

    2010-01-01

    We describe a simple method for efficiently labeling cell surface glycans on virtually any living animal cell. The method employs mild Periodate oxidation to generate an aldehyde on sialic acids, followed by Aniline-catalyzed oxime Ligation with a suitable tag (PAL). Aniline catalysis dramatically accelerates oxime ligation, allowing use of low concentrations of aminooxy-biotin at neutral pH to label the majority of cell surface glycoproteins while maintaining high cell viability. PMID:19234450

  1. Distribution of chloride permeabilities in normal human red cells.

    PubMed Central

    Raftos, J E; Bookchin, R M; Lew, V L

    1996-01-01

    1. The rate of dehydration of K+ permeabilized red cells is influenced by their Cl- permeability (PCl). In instances of pathological K+ permeabilization, cell-to-cell differences in PCl may determine which red cells dehydrate most. The present study was designed to investigate whether PCl differed significantly among red cells from a single blood sample. 2. Previously available methods measure only the mean PCl of red cell populations. We describe a 'profile migration' method in which dilute red cell suspensions in low-K+ media were permeabilized to K+ with a high concentration of valinomycin, rendering PCl the main rate-limiting factor for cell dehydration. As the cells dehydrated, samples were processed to obtain full haemolysis curves at precise times. Variations in PCl among cells would have appeared as progressive changes in the profile of their haemolysis curves, as the curves migrated towards lower tonicities. 3. Red cells from five normal volunteers showed no change in profile of the migrating haemolysis curves, suggesting that their PCl distributions were fairly uniform. Quantitative analysis demonstrated that intercell variation in PCl was less than 7.5%. 4. Results obtained with this technique were analysed using the Lew-Bookchin red cell model. The calculated PCl was within the normal range described in earlier studies. PMID:8815210

  2. Destruction of newly released red blood cells in space flight

    NASA Technical Reports Server (NTRS)

    Alfrey, C. P.; Udden, M. M.; Huntoon, C. L.; Driscoll, T.

    1996-01-01

    Space flight results in a rapid change in total blood volume, plasma volume, and red blood cell mass because the space to contain blood is decreased. The plasma volume and total blood volume decreases during the first hours in space and remain at a decreased level for the remainder of the flight. During the first several hours following return to earth, plasma volume and total blood volume increase to preflight levels. During the first few days in space recently produced red blood cells disappear from the blood resulting in a decrease in red blood cell mass of 10-15%. Red cells 12 d old or older survive normally and production of new cells continues at near preflight levels. After the first few days in space, the red cell mass is stable at the decreased level. Following return to earth the hemoglobin and red blood cell mass concentrations decrease reflecting the increase in plasma volume. The erythropoietin levels increase responding to "postflight anemia"; red cell production increases, and the red cell mass is restored to preflight levels after several weeks.

  3. Kit for the rapid preparation of .sup.99m Tc red blood cells

    DOEpatents

    Richards, Powell; Smith, Terry D.

    1976-01-01

    A method and sample kit for the preparation of .sup.99m Tc-labeled red blood cells in a closed, sterile system. A partially evacuated tube, containing a freeze-dried stannous citrate formulation with heparin as an anticoagulant, allows whole blood to be automatically drawn from the patient. The radioisotope is added at the end of the labeling sequence to minimize operator exposure. Consistent 97% yields in 20 minutes are obtained with small blood samples. Freeze-dried kits have remained stable after five months.

  4. Control of red blood cell mass during spaceflight

    NASA Technical Reports Server (NTRS)

    Lane, H. W.; Alfrey, C. P.; Driscoll, T. B.; Smith, S. M.; Nyquist, L. E.

    1996-01-01

    Data are reviewed from twenty-two astronauts from seven space missions in a study of red blood cell mass. The data show that decreased red cell mass in all astronauts exposed to space for more than nine days, although the actual dynamics of mass changes varies with flight duration. Possible mechanisms for these changes, including alterations in erythropoietin levels, are discussed.

  5. Instant magnetic labeling of tumor cells by ultrasound in vitro

    NASA Astrophysics Data System (ADS)

    Mo, Runyang; Yang, Jian; Wu, Ed X.; Lin, Shuyu

    2011-09-01

    Magnetic labeling of living cells creates opportunities for numerous biomedical applications. Here we describe an instantly cell magnetic labeling method based on ultrasound. We present a detailed study on the ultrasound performance of a simple and efficient labeling protocol for H-22 cells in vitro. High frequency focus ultrasound was investigated as an alternative method to achieve instant cell labeling with the magnetic particles without the need for adjunct agents or initiating cell cultures. Mean diameter of 168 nm dextran-T40 coated superparamagnetic iron oxide (SPIO) nanoparticles were prepared by means of classical coprecipitation in solution in our laboratory. H-22 tumor cells suspended in phosphate-buffered saline (PBS, pH=7.2) were exposed to ultrasound at 1.37 MHz for up to 120 s in the presence of SPIOs. The cellular uptake of iron oxide nanoparticles was detected by prussion blue staining. The viability of cells was determined by a trypan blue exclusion test. At 2 W power and 60 s ultrasound exposure in presence of 410 μg/ml SPIOs, H-22 cell labeling efficiency reached 69.4±6.3% and the labeled cells exhibited an iron content of 10.38±2.43 pg per cell. Furthermore, 95.2±3.2% cells remained viable. The results indicated that the ultrasound protocol could be potentially applied to label cells with large-sized magnetic particles. We also calculated the shear stress at the 2 W power and 1.37 MHz used in experiments. The results showed that the shear stress threshold for ultrasonically induced H-22 cell reparable sonoporation was 697 Pa. These findings provide a quantitative guidance in designing ultrasound protocols for cell labeling.

  6. A novel cell permeant and far red-fluorescing DNA probe, DRAQ5, for blood cell discrimination by flow cytometry.

    PubMed

    Smith, P J; Wiltshire, M; Davies, S; Patterson, L H; Hoy, T

    1999-10-29

    The deep red fluorescing agent (DRAQ5) is a synthetic anthraquinone with a high affinity for DNA and a high capacity to rapidly enter living cells or stain fixed cells. DRAQ5 is optimally excited by red-light emitting sources and yields a deep red emission spectrum which extends into the low infra-red. DRAQ5 shows excitation at sub-optimal wavelengths including the 488 nm line and the multi-line UV wavelengths emitted by argon-ion lasers. Single beam (488 nm) flow cytometry has been used to demonstrate the utility of DRAQ5-nuclear DNA fluorescence as a discriminating parameter for human leucocytes and lymphoma cells, in combination with fluorochrome-labelled antibodies for the detection of surface antigens and subpopulation recognition. DRAQ5 fluorescence was found to reflect cellular DNA content as evidenced by cell cycle distribution profiles for asynchronous and cell cycle-perturbed populations. Importantly, DRAQ5 can be used in combination with FITC and RPE-labelled antibodies, without the need for fluorescence compensation. PMID:10556697

  7. Red blood cells in sports: effects of exercise and training on oxygen supply by red blood cells.

    PubMed

    Mairbäurl, Heimo

    2013-01-01

    During exercise the cardiovascular system has to warrant substrate supply to working muscle. The main function of red blood cells in exercise is the transport of O2 from the lungs to the tissues and the delivery of metabolically produced CO2 to the lungs for expiration. Hemoglobin also contributes to the blood's buffering capacity, and ATP and NO release from red blood cells contributes to vasodilation and improved blood flow to working muscle. These functions require adequate amounts of red blood cells in circulation. Trained athletes, particularly in endurance sports, have a decreased hematocrit, which is sometimes called "sports anemia." This is not anemia in a clinical sense, because athletes have in fact an increased total mass of red blood cells and hemoglobin in circulation relative to sedentary individuals. The slight decrease in hematocrit by training is brought about by an increased plasma volume (PV). The mechanisms that increase total red blood cell mass by training are not understood fully. Despite stimulated erythropoiesis, exercise can decrease the red blood cell mass by intravascular hemolysis mainly of senescent red blood cells, which is caused by mechanical rupture when red blood cells pass through capillaries in contracting muscles, and by compression of red cells e.g., in foot soles during running or in hand palms in weightlifters. Together, these adjustments cause a decrease in the average age of the population of circulating red blood cells in trained athletes. These younger red cells are characterized by improved oxygen release and deformability, both of which also improve tissue oxygen supply during exercise. PMID:24273518

  8. Red blood cell vesiculation in hereditary hemolytic anemia

    PubMed Central

    Alaarg, Amr; Schiffelers, Raymond M.; van Solinge, Wouter W.; van Wijk, Richard

    2013-01-01

    Hereditary hemolytic anemia encompasses a heterogeneous group of anemias characterized by decreased red blood cell survival because of inherited membrane, enzyme, or hemoglobin disorders. Affected red blood cells are more fragile, less deformable, and more susceptible to shear stress and oxidative damage, and show increased vesiculation. Red blood cells, as essentially all cells, constitutively release phospholipid extracellular vesicles in vivo and in vitro in a process known as vesiculation. These extracellular vesicles comprise a heterogeneous group of vesicles of different sizes and intracellular origins. They are described in literature as exosomes if they originate from multi-vesicular bodies, or as microvesicles when formed by a one-step budding process directly from the plasma membrane. Extracellular vesicles contain a multitude of bioactive molecules that are implicated in intercellular communication and in different biological and pathophysiological processes. Mature red blood cells release in principle only microvesicles. In hereditary hemolytic anemias, the underlying molecular defect affects and determines red blood cell vesiculation, resulting in shedding microvesicles of different compositions and concentrations. Despite extensive research into red blood cell biochemistry and physiology, little is known about red cell deformability and vesiculation in hereditary hemolytic anemias, and the associated pathophysiological role is incompletely assessed. In this review, we discuss recent progress in understanding extracellular vesicles biology, with focus on red blood cell vesiculation. Also, we review recent scientific findings on the molecular defects of hereditary hemolytic anemias, and their correlation with red blood cell deformability and vesiculation. Integrating bio-analytical findings on abnormalities of red blood cells and their microvesicles will be critical for a better understanding of the pathophysiology of hereditary hemolytic anemias. PMID

  9. Red blood cell in simple shear flow

    NASA Astrophysics Data System (ADS)

    Chien, Wei; Hew, Yayu; Chen, Yeng-Long

    2013-03-01

    The dynamics of red blood cells (RBC) in blood flow is critical for oxygen transport, and it also influences inflammation (white blood cells), thrombosis (platelets), and circulatory tumor migration. The physical properties of a RBC can be captured by modeling RBC as lipid membrane linked to a cytoskeletal spectrin network that encapsulates cytoplasm rich in hemoglobin, with bi-concave equilibrium shape. Depending on the shear force, RBC elasticity, membrane viscosity, and cytoplasm viscosity, RBC can undergo tumbling, tank-treading, or oscillatory motion. We investigate the dynamic state diagram of RBC in shear and pressure-driven flow using a combined immersed boundary-lattice Boltzmann method with a multi-scale RBC model that accurately captures the experimentally established RBC force-deformation relation. It is found that the tumbling (TU) to tank-treading (TT) transition occurs as shear rate increases for cytoplasm/outer fluid viscosity ratio smaller than 0.67. The TU frequency is found to be half of the TT frequency, in agreement with experiment observations. Larger viscosity ratios lead to the disappearance of stable TT phase and unstable complex dynamics, including the oscillation of the symmetry axis of the bi-concave shape perpendicular to the flow direction. The dependence on RBC bending rigidity, shear modulus, the order of membrane spectrin network and fluid field in the unstable region will also be discussed.

  10. Developmental Plasticity of Red Blood Cell Homeostasis

    PubMed Central

    Golub, Mari S.; Hogrefe, Casey E.; Malka, Roy; Higgins, John M.

    2014-01-01

    Most human physiologic set points like body temperature are tightly regulated and show little variation between healthy individuals. Red blood cell (RBC) characteristics such as hematocrit (HCT) and mean cell volume (MCV) are stable within individuals but can vary by 20% from one healthy person to the next. The mechanisms for the majority of this inter-individual variation are unknown and do not appear to involve common genetic variation. Here we show that environmental conditions present during development, namely in utero iron availability, can exert long-term influence on a set point related to the RBC life cycle. In a controlled study of rhesus monkeys and a retrospective study of humans, we use a mathematical model of in vivo RBC population dynamics to show that in utero iron deficiency is associated with a lowered threshold for RBC clearance and turnover. This in utero effect is plastic, persisting at least two years after birth and after the cessation of iron deficiency. Our study reports a rare instance of developmental plasticity in the human hematologic systems and also shows how mathematical modeling can be used to identify cellular mechanisms involved in the adaptive control of homeostatic set points. PMID:24415575

  11. Cell labeling with magnetic nanoparticles: Opportunity for magnetic cell imaging and cell manipulation

    PubMed Central

    2013-01-01

    This tutorial describes a method of controlled cell labeling with citrate-coated ultra small superparamagnetic iron oxide nanoparticles. This method may provide basically all kinds of cells with sufficient magnetization to allow cell detection by high-resolution magnetic resonance imaging (MRI) and to enable potential magnetic manipulation. In order to efficiently exploit labeled cells, quantify the magnetic load and deliver or follow-up magnetic cells, we herein describe the main requirements that should be applied during the labeling procedure. Moreover we present some recommendations for cell detection and quantification by MRI and detail magnetic guiding on some real-case studies in vitro and in vivo. PMID:24564857

  12. The aging of the red blood cell. A multifactor process.

    PubMed

    Danon, D; Marikovsky, Y

    1988-01-01

    Red blood cell (rbc) senescence is associated with loss of surface sialic acid, which is the principal carrier of surface negative charge and determines the electrokinetic behavior of old rbcs. Loss of sialic acid in an old rbc is demonstrated in its decreased electric mobility and lower negative charge density, determined topographically with cationic particle labeling. Surface sialic acid determines also the mutual attraction--repulsion forces, as demonstrated in enhanced aggluinability with cationic molecules, lectins, and blood group antibodies. Loss of sialic acid accompanies ATP-depletion in vitro; thus, a T-antigen site is unmasked. Macrophages have specific receptors to the site as to newly exposed galactose and N-acetyl galactosamine sugars. Furthermore, the involvement of complement molecules in the recognition of old RBCs by macrophages has been shown. This is possibly due to loss of sialic acid or at least a regrouping--relocation of surface anionic sites due to cell shape changes from discocytes to crenated forms, which accompany both in vivo and in vitro rbc aging. In turn, shape changes are apparently controlled by the cytoskeletal network underlying the rbc membrane, which undergoes structural alteration with physiologic aging in changing the dimensions of oligomeric spectrin and the thickness of the spectrin-actin cytoskeletal assembly. PMID:3052636

  13. Synthesis and assembly of membrane skeletal proteins in mammalian red cell precursors

    SciTech Connect

    Hanspal, M.; Palek, J.

    1987-09-01

    The synthesis of membrane skeletal proteins in avian nucleated red cells has been the subject of extensive investigation, whereas little is known about skeletal protein synthesis in bone marrow erythroblasts and peripheral blood reticulocytes in mammals. To address this question, we have isolated nucleated red cell precursors and reticulocytes from spleens and from the peripheral blood, respectively, of rats with phenylhydrazine-induced hemolytic anemia and pulse-labeled them with (/sup 35/S)methionine. Pulse-labeling of nucleated red cell precursors shows that the newly synthesized alpha- and beta-spectrins are present in the cytosol, with a severalfold excess of alpha-spectrin over beta-spectrin. However, in the membrane-skeletal fraction, newly synthesized alpha- and beta-spectrins are assembled in stoichiometric amounts, suggesting that the association of alpha-spectrin with the membrane skeleton may- be rate-limited by the amount of beta-spectrin synthesized, as has been shown recently in avian erythroid cells. Pulse-chase experiments in the rat nucleated red cell precursors show that the newly synthesized alpha- and beta-spectrin of the cytosol turn over coordinately and extremely rapidly. In contrast, in the membrane-skeletal fraction, the newly synthesized polypeptides of spectrin are stable. In contrast to nucleated erythroid cells, in reticulocytes the synthesis of alpha- and beta-spectrins is markedly diminished compared with the synthesis and assembly of proteins comigrating with bands 2.1 and 4.1 on SDS gels. Thus, in nucleated red cell precursors, the newly synthesized spectrin may be attached to the plasma membrane before proteins 2.1 and 4.1 are completely synthesized and incorporated in the membrane.

  14. Identification and behavior of label-retaining cells in epithelia

    SciTech Connect

    Bickenbach, J.R.

    1982-01-01

    A subpopulation of stem cells has been demonstrated in several renewing tissues. Such cells have a slow cell cycle and provide differentiating cells during normal turnover and during regeneration of the tissue following damage. The presence of slowly-cycling cells in epithelia from regions of skin and oral mucosa was examined by labeling 10-day-old mice and 5-day-old hamsters with tritiated thymidine (/sup 3/H-TdR) and observing the rate at which label was diluted from the basal cells. Label was rapidly diluted by cell division in most cells but a small percentage of basal cells (label-retaining cells, LRCS) was found to retain label for up to ninety days. Electron microscopic autoradiography and ..beta..-glucuronidase histochemistry with autoradiography were used to distinguish slowly-cycling keratinocytes from Langerhans cells. Such findings of slowly-cycling keratinocytes in epithelia with the ability to proliferate in culture and with a direct relationship to patterns of tissue architecture suggest that LRCs in epithelia correspond to stem cells described in other continuously renewing tissues.

  15. Multiexcitation Fluorogenic Labeling of Surface, Intracellular, and Total Protein Pools in Living Cells.

    PubMed

    Naganbabu, Matharishwan; Perkins, Lydia A; Wang, Yi; Kurish, Jeffery; Schmidt, Brigitte F; Bruchez, Marcel P

    2016-06-15

    Malachite green (MG) is a fluorogenic dye that shows fluorescence enhancement upon binding to its engineered cognate protein, a fluorogen activating protein (FAP). Energy transfer donors such as cyanine and rhodamine dyes have been conjugated with MG to modify the spectral properties of the fluorescent complexes, where the donor dyes transfer energy through Förster resonance energy transfer to the MG complex resulting in binding-conditional fluorescence emission in the far-red region. In this article, we use a violet-excitable dye as a donor to sensitize the far-red emission of the MG-FAP complex. Two blue emitting fluorescent coumarin dyes were coupled to MG and evaluated for energy transfer to the MG-FAP complex via its secondary excitation band. 6,8-Difluoro-7-hydroxycoumarin-3-carboxylic acid (Pacific blue, PB) showed the most efficient energy transfer and maximum brightness in the far-red region upon violet (405 nm) excitation. These blue-red (BluR) tandem dyes are spectrally varied from other tandem dyes and are able to produce fluorescence images of the MG-FAP complex with a large Stokes shift (>250 nm). These dyes are cell-permeable and are used to label intracellular proteins. Used together with a cell-impermeable hexa-Cy3-MG (HCM) dye that labels extracellular proteins, we are able to visualize extracellular, intracellular, and total pools of cellular protein using one fluorogenic tag that combines with distinct dyes to effect different spectral characteristics. PMID:27159569

  16. Light scattering by aggregated red blood cells.

    PubMed

    Tsinopoulos, Stephanos V; Sellountos, Euripides J; Polyzos, Demosthenes

    2002-03-01

    In low flow rates, red blood cells (RBCs) fasten together along their axis of symmetry and form a so-called rouleaux. The scattering of He-Ne laser light by a rouleau consisting of n (2 < or = n < or = 8) average-sized RBCs is investigated. The interaction problem is treated numerically by means of an advanced axisymmetric boundary element--fast Fourier transform methodology. The scattering problem of one RBC was solved first, and the results showed that the influence of the RBC's membrane on the scattering patterns is negligible. Thus the rouleau is modeled as an axisymmetric, homogeneous, low-contrast dielectric cylinder, on the surface of which appears, owing to aggregated RBCs, a periodic roughness along the direction of symmetry. The direction of the incident laser light is considered to be perpendicular to the scatterer's axis of symmetry. The differential scattering cross sections in both perpendicular and parallel scattering planes and for all the scattering angles are calculated and presented in detail. PMID:11900021

  17. Light scattering by aggregated red blood cells

    NASA Astrophysics Data System (ADS)

    Tsinopoulos, Stephanos V.; Sellountos, Euripides J.; Polyzos, Demosthenes

    2002-03-01

    In low flow rates, red blood cells (RBCs) fasten together along their axis of symmetry and form a so-called rouleaux. The scattering of He-Ne laser light by a rouleau consisting of n (2 less-than-or-equal n less-than-or-equal 8) average-sized RBCs is investigated. The interaction problem is treated numerically by means of an advanced axisymmetric boundary element--fast Fourier transform methodology. The scattering problem of one RBC was solved first, and the results showed that the influence of the RBC's membrane on the scattering patterns is negligible. Thus the rouleau is modeled as an axisymmetric, homogeneous, low-contrast dielectric cylinder, on the surface of which appears, owing to aggregated RBCs, a periodic roughness along the direction of symmetry. The direction of the incident laser light is considered to be perpendicular to the scatterer's axis of symmetry. The differential scattering cross sections in both perpendicular and parallel scattering planes and for all the scattering angles are calculated and presented in detail.

  18. Electrochemical Red Blood Cell Counting: One at a Time.

    PubMed

    Sepunaru, Lior; Sokolov, Stanislav V; Holter, Jennifer; Young, Neil P; Compton, Richard G

    2016-08-01

    We demonstrate that the concentration of a red blood cell solution under physiological conditions can be determined by electrochemical voltammetry. The magnitude of the oxygen reduction currents produced at an edge-plane pyrolytic graphite electrode was diagnosed analytically at concentrations suitable for a point-of-care test device. The currents could be further enhanced when the solution of red blood cells was exposed to hydrogen peroxide. We show that the enhanced signal can be used to detect red blood cells at a single entity level. The method presented relies on the catalytic activity of red blood cells towards hydrogen peroxide and on surface-induced haemolysis. Each single cell activity is expressed as current spikes decaying within a few seconds back to the background current. The frequency of such current spikes is proportional to the concentration of cells in solution. PMID:27355839

  19. Cell-to-Cell Trafficking of Macromolecules through Plasmodesmata Potentiated by the Red Clover Necrotic Mosaic Virus Movement Protein.

    PubMed

    Fujiwara, T.; Giesman-Cookmeyer, D.; Ding, B.; Lommel, S. A.; Lucas, W. J.

    1993-12-01

    Direct evidence is presented for cell-to-cell trafficking of macromolecules via plasmodesmata in higher plants. The fluorescently labeled 35-kD movement protein of red clover necrotic mosaic virus (RCNMV) trafficked rapidly from cell to cell when microinjected into cowpea leaf mesophyll cells. Furthermore, this protein potentiated rapid cell-to-cell trafficking of RCNMV RNA, but not DNA. Electron microscopic studies demonstrated that the 35-kD movement protein does not unfold the RCNMV RNA molecules. Thus, if unfolding of RNA is necessary for cell-to-cell trafficking, it may well involve participation of endogenous cellular factors. These findings support the hypothesis that trafficking of macromolecules is a normal plasmodesmal function, which has been usurped by plant viruses for their cell-to-cell spread. PMID:12271056

  20. Effects of helicopter transport on red blood cell components

    PubMed Central

    Otani, Taiichi; Oki, Ken-ichi; Akino, Mitsuaki; Tamura, Satoru; Naito, Yuki; Homma, Chihiro; Ikeda, Hisami; Sumita, Shinzou

    2012-01-01

    Background There are no reported studies on whether a helicopter flight affects the quality and shelf-life of red blood cells stored in mannitol-adenine-phosphate. Materials and methods Seven days after donation, five aliquots of red blood cells from five donors were packed into an SS-BOX-110 container which can maintain the temperature inside the container between 2 °C and 6 °C with two frozen coolants. The temperature of an included dummy blood bag was monitored. After the box had been transported in a helicopter for 4 hours, the red blood cells were stored again and their quality evaluated at day 7 (just after the flight), 14, 21 and 42 after donation. Red blood cell quality was evaluated by measuring adenosine triphosphate, 2,3-diphosphoglycerate, and supernatant potassium, as well as haematocrit, intracellular pH, glucose, supernatant haemoglobin, and haemolysis rate at the various time points. Results During the experiment the recorded temperature remained between 2 and 6 °C. All data from the red blood cells that had undergone helicopter transportation were the same as those from a control group of red blood cell samples 7 (just after the flight), 14, 21, and 42 days after the donation. Only supernatant Hb and haemolysis rate 42 days after the donation were slightly increased in the helicopter-transported group of red blood cell samples. All other parameters at 42 days after donation were the same in the two groups of red blood cells. Discussion These results suggest that red blood cells stored in mannitol-adenine-phosphate are not significantly affected by helicopter transportation. The differences in haemolysis by the end of storage were small and probably not of clinical significance. PMID:22153688

  1. Label-free high-throughput cell screening in flow

    PubMed Central

    Mahjoubfar, Ata; Chen, Claire; Niazi, Kayvan R.; Rabizadeh, Shahrooz; Jalali, Bahram

    2013-01-01

    Flow cytometry is a powerful tool for cell counting and biomarker detection in biotechnology and medicine especially with regards to blood analysis. Standard flow cytometers perform cell type classification both by estimating size and granularity of cells using forward- and side-scattered light signals and through the collection of emission spectra of fluorescently-labeled cells. However, cell surface labeling as a means of marking cells is often undesirable as many reagents negatively impact cellular viability or provide activating/inhibitory signals, which can alter the behavior of the desired cellular subtypes for downstream applications or analysis. To eliminate the need for labeling, we introduce a label-free imaging-based flow cytometer that measures size and cell protein concentration simultaneously either as a stand-alone instrument or as an add-on to conventional flow cytometers. Cell protein concentration adds a parameter to cell classification, which improves the specificity and sensitivity of flow cytometers without the requirement of cell labeling. This system uses coherent dispersive Fourier transform to perform phase imaging at flow speeds as high as a few meters per second. PMID:24049682

  2. Red Blood Cells Preconditioned with Hemin Are Less Permissive to Plasmodium Invasion In Vivo and In Vitro

    PubMed Central

    Gaudreault, Véronique; Wirbel, Jakob; Jardim, Armando; Rohrbach, Petra; Scorza, Tatiana

    2015-01-01

    Malaria is a parasitic disease that causes severe hemolytic anemia in Plasmodium-infected hosts, which results in the release and accumulation of oxidized heme (hemin). Although hemin impairs the establishment of Plasmodium immunity in vitro and in vivo, mice preconditioned with hemin develop lower parasitemia when challenged with Plasmodium chabaudi adami blood stage parasites. In order to understand the mechanism accounting for this resistance as well as the impact of hemin on eryptosis and plasma levels of scavenging hemopexin, red blood cells were labeled with biotin prior to hemin treatment and P. c. adami infection. This strategy allowed discriminating hemin-treated from de novo generated red blood cells and to follow the infection within these two populations of cells. Fluorescence microscopy analysis of biotinylated-red blood cells revealed increased P. c. adami red blood cells selectivity and a decreased permissibility of hemin-conditioned red blood cells for parasite invasion. These effects were also apparent in in vitro P. falciparum cultures using hemin-preconditioned human red blood cells. Interestingly, hemin did not alter the turnover of red blood cells nor their replenishment during in vivo infection. Our results assign a function for hemin as a protective agent against high parasitemia, and suggest that the hemolytic nature of blood stage human malaria may be beneficial for the infected host. PMID:26465787

  3. Live cell immunogold labelling of RNA polymerase II

    PubMed Central

    Orlov, Igor; Schertel, Andreas; Zuber, Guy; Klaholz, Bruno; Drillien, Robert; Weiss, Etienne; Schultz, Patrick; Spehner, Danièle

    2015-01-01

    Labeling nuclear proteins with electron dense probes in living cells has been a major challenge due to their inability to penetrate into nuclei. We developed a lipid-based approach for delivering antibodies coupled to 0.8 nm ultrasmall gold particles into the nucleus to label RNA polymerase II. Focussed Ion Beam slicing coupled to Scanning Electron Microscopy (FIB/SEM) enabled visualization of entire cells with probe localization accuracy in the 10 nm range. PMID:25662860

  4. Red Blood Cell Dysfunction Induced by High-Fat Diet

    PubMed Central

    Unruh, Dusten; Srinivasan, Ramprasad; Benson, Tyler; Haigh, Stephen; Coyle, Danielle; Batra, Neil; Keil, Ryan; Sturm, Robert; Blanco, Victor; Palascak, Mary; Franco, Robert S.; Tong, Wilson; Chatterjee, Tapan; Hui, David Y.; Davidson, W. Sean; Aronow, Bruce J.; Kalfa, Theodosia; Manka, David; Peairs, Abigail; Blomkalns, Andra; Fulton, David J.; Brittain, Julia E.; Weintraub, Neal L.; Bogdanov, Vladimir Y.

    2015-01-01

    Background High-fat diet (HFD) promotes endothelial dysfunction and proinflammatory monocyte activation, which contribute to atherosclerosis in obesity. We investigated whether HFD also induces the dysfunction of red blood cells (RBCs), which serve as a reservoir for chemokines via binding to Duffy antigen receptor for chemokines (DARC). Methods and Results A 60% HFD for 12 weeks, which produced only minor changes in lipid profile in C57/BL6 mice, markedly augmented the levels of monocyte chemoattractant protein-1 bound to RBCs, which in turn stimulated macrophage migration through an endothelial monolayer. Levels of RBC-bound KC were also increased by HFD. These effects of HFD were abolished in DARC−/− mice. In RBCs from HFD-fed wild-type and DARC−/− mice, levels of membrane cholesterol and phosphatidylserine externalization were increased, fostering RBC-macrophage inflammatory interactions and promoting macrophage phagocytosis in vitro. When labeled ex vivo and injected into wild-type mice, RBCs from HFD-fed mice exhibited ≈3-fold increase in splenic uptake. Finally, RBCs from HFD-fed mice induced increased macrophage adhesion to the endothelium when they were incubated with isolated aortic segments, indicating endothelial activation. Conclusions RBC dysfunction, analogous to endothelial dysfunction, occurs early during diet-induced obesity and may serve as a mediator of atherosclerosis. These findings may have implications for the pathogenesis of atherosclerosis in obesity, a worldwide epidemic. PMID:26467254

  5. Labeling of lectin receptors during the cell cycle.

    PubMed

    Garrido, J

    1976-12-01

    Labeling of lectin receptors during the cell cycle. (Localizabión de receptores para lectinas durante el ciclo celular). Arch. Biol. Med. Exper. 10: 100-104, 1976. The topographic distribution of specific cell surface receptors for concanavalin A and wheat germ agglutinin was studied by ultrastructural labeling in the course of the cell cycle. C12TSV5 cells were synchronized by double thymidine block or mechanical selection (shakeoff). They were labeled by means of lectin-peroxidase techniques while in G1 S, G2 and M phases of the cycle. The results obtained were similar for both lectins employed. Interphase cells (G1 S, G2) present a stlihtly discontinous labeling pattern that is similar to the one observed on unsynchronized cells of the same line. Cells in mitosis, on the contrary, present a highly discontinous distribution of reaction product. This pattern disappears after the cells enters G1 and is not present on mitotic cells fixed in aldehyde prior to labeling. PMID:1030938

  6. 21 CFR 660.35 - Labeling.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.35 Labeling. In... or end of the label, oustide of the main panel. (2) If washing the cells is required by the manufacturer, the container label shall include appropriate instructions; if the cells should not be...

  7. 21 CFR 660.35 - Labeling.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.35 Labeling. In... or end of the label, oustide of the main panel. (2) If washing the cells is required by the manufacturer, the container label shall include appropriate instructions; if the cells should not be...

  8. 21 CFR 660.35 - Labeling.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.35 Labeling. In... or end of the label, oustide of the main panel. (2) If washing the cells is required by the manufacturer, the container label shall include appropriate instructions; if the cells should not be...

  9. Dysferlin and Other Non-Red Cell Proteins Accumulate in the Red Cell Membrane of Diamond-Blackfan Anemia Patients

    PubMed Central

    Pesciotta, Esther N.; Sriswasdi, Sira; Tang, Hsin-Yao; Speicher, David W.; Mason, Philip J.; Bessler, Monica

    2014-01-01

    Diamond Blackfan Anemia (DBA) is a congenital anemia usually caused by diverse mutations in ribosomal proteins. Although the genetics of DBA are well characterized, the mechanisms that lead to macrocytic anemia remain unclear. We systematically analyzed the proteomes of red blood cell membranes from multiple DBA patients to determine whether abnormalities in protein translation or erythropoiesis contribute to the observed macrocytosis or alterations in the mature red blood cell membrane. In depth proteome analysis of red cell membranes enabled highly reproducible identification and quantitative comparisons of 1100 or more proteins. These comparisons revealed clear differences between red cell membrane proteomes in DBA patients and healthy controls that were consistent across DBA patients with different ribosomal gene mutations. Proteins exhibiting changes in abundance included those known to be increased in DBA such as fetal hemoglobin and a number of proteins not normally found in mature red cell membranes, including proteins involved in the major histocompatibility complex class I pathway. Most striking was the presence of dysferlin in the red blood cell membranes of DBA patients but absent in healthy controls. Immunoblot validation using red cell membranes isolated from additional DBA patients and healthy controls confirmed a distinct membrane protein signature specific to patients with DBA. PMID:24454878

  10. Molecular basis of red cell membrane disorders.

    PubMed

    Delaunay, Jean

    2002-01-01

    We will consider an array of genetic disorders of the red cell membrane. Some affect well-known genes. The mutations of most cases of hereditary spherocytosis (HS) are located in the following genes: ANK1, SPTB, SLC4A1, EPB42 and SPTA1, which encode ankyrin, spectrin beta-chain, the anion exchanger 1 (band 3), protein 4.2 and spectrin alpha-chain, respectively. A dominant form of distal renal tubular acidosis also stems from distinct mutations in the SLC4A1 gene. The mutations responsible for hereditary elliptocytosis (HE) and its aggravated form, poikilocytosis (HP), lie in the SPTA1 and SPTB gene, already mentioned, and in the EPB41 gene encoding protein 4.1. Whereas in HS, the SPTA1 and SPTB gene mutations tend to abolish the synthesis of the corresponding chains, in HE/HP, they hinder spectrin tetramerization. Allele alpha(LELY) is a common polymorphic allele which plays the role of an aggravating factor when it occurs in trans of an elliptocytogenic allele of the SPTA1 gene. Southeast Asian ovalocytosis results from a 27- nucleotide deletion in the SLC4A1 gene. Besides these conditions in which the mutations were reached from known alterations in the proteins, other conditions required a positional cloning approach. Such are the genetic disorders of membrane permeability to monovalent cations. Knowledge is the most advanced as regards dehydrated hereditary stomatocytois (DHS). DHS was shown to belong to a pleiotropic syndrome: DHS + fetal edema + pseudohyperkalemia, which maps to 16q23-24. Concerning DHS and another disease of the same class, overhydrated hereditary stomatocytosis, splenectomy almost certainly appears to elicit thromboembolic accidents. PMID:12432217

  11. Molecular characterization of the human red cell Rho(D) antigen.

    PubMed Central

    Gahmberg, C G

    1983-01-01

    Human red cells of Rh blood groups -D-/-D- ('super-D'), -/- (Rhnull) and normal Rho(D)+ cells were radioactively surface-labeled using the lactoperoxidase 125I method. Polyacrylamide gel electrophoresis in the presence of SDS followed by fluorography showed a strong enrichment of a polypeptide with an apparent mol. wt. of 28,0000-33,000 in the 125I-labeled -D-/-D- membranes. This polypeptide was specifically immune precipitated with anti-Rho(D) antiserum. Treatment of intact cells with trypsin or Pronase did not digest the protein. The Rho polypeptide migrated identically on polyacrylamide gel electrophoresis under reducing and non-reducing conditions. It was not phosphorylated after in vitro incubation of red cells with 32P. When whole labeled membranes were solubilized in neutral detergent and applied to lectin-Sepharose columns the Rho(D) polypeptide adsorbed to Ricinus communis lectin but not to wheat germ lectin or Lens culinaris lectin. The purified molecule did not adsorb to R. communis lectin-Sepharose. Treatment of the Rho(D) antigen with endo-N-acetyl glucosaminidase H, endo-beta-galactosidase or mild alkali did not lower its apparent mol. wt. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:11894930

  12. Single-cell measurement of red blood cell oxygen affinity

    PubMed Central

    Di Caprio, Giuseppe; Stokes, Chris; Higgins, John M.; Schonbrun, Ethan

    2015-01-01

    Oxygen is transported throughout the body by hemoglobin (Hb) in red blood cells (RBCs). Although the oxygen affinity of blood is well-understood and routinely assessed in patients by pulse oximetry, variability at the single-cell level has not been previously measured. In contrast, single-cell measurements of RBC volume and Hb concentration are taken millions of times per day by clinical hematology analyzers, and they are important factors in determining the health of the hematologic system. To better understand the variability and determinants of oxygen affinity on a cellular level, we have developed a system that quantifies the oxygen saturation, cell volume, and Hb concentration for individual RBCs in high throughput. We find that the variability in single-cell saturation peaks at an oxygen partial pressure of 2.9%, which corresponds to the maximum slope of the oxygen–Hb dissociation curve. In addition, single-cell oxygen affinity is positively correlated with Hb concentration but independent of osmolarity, which suggests variation in the Hb to 2,3-diphosphoglycerate (2–3 DPG) ratio on a cellular level. By quantifying the functional behavior of a cellular population, our system adds a dimension to blood cell analysis and other measurements of single-cell variability. PMID:26216973

  13. IgG red blood cell autoantibodies in autoimmune hemolytic anemia bind to epitopes on red blood cell membrane band 3 glycoprotein

    SciTech Connect

    Victoria, E.J.; Pierce, S.W.; Branks, M.J.; Masouredis, S.P. )

    1990-01-01

    Red blood cell (RBC) autoantibodies from patients with IgG warm-type autoimmune hemolytic anemia were labeled with iodine 125 and their RBC binding behavior characterized. Epitope-bearing RBC membrane polypeptides were identified after autoantibody immunoprecipitation of labeled membranes and immunoblotting. Immunoaffinity isolation of labeled membrane proteins with 12 different IgG hemolytic autoantibodies with protein A-agarose revealed a major polypeptide at Mr 95 to 110 kd, which coelectrophoresed on sodium dodecylsulfate-polyacrylamide gel electrophoresis with a membrane component isolated with sheep IgG anti-band 3. Immunoprecipitation studies with chymotrypsinized RBCs resulted in the recovery of two labeled membrane polypeptides with molecular weights characteristically resulting from the chymotryptic fragmentation of band 3. Immunoblotting with sheep IgG anti-band 3 of the immunoprecipitated polypeptides confirmed that hemolytic autoantibody binding led to recovery of band 3 or its fragments. Two 125I-labeled IgG hemolytic autoantibodies showed binding behavior consistent with epitope localization on band 3. The labeled RBC autoantibodies bound immunospecifically to all types of human RBC tested, including those of rare Rh type (Rh-null, D--) at a site density of approximately 10(6) per RBC. The 125I-IgG in two labeled autoantibodies was 84% and 92% adsorbable by human and higher nonhuman primate RBCs. Antigen-negative animal RBC bound less than 10%, consistent with immunospecific RBC binding. IgG-1 was the major subclass in five autoantibodies tested; one of six fixed complement; and autoantibody IgG appeared polyclonal by isoelectric focusing. We conclude that IgG eluted from RBCs of patients with autoimmune hemolytic anemia consists predominantly of a single totally RBC-adsorbable antibody population that binds to antigenic determinants on band 3.

  14. Delayed positive gastrointestinal bleeding studies with technetium-99m-red blood cells: Utility of a second injection

    SciTech Connect

    Jacobson, A.F. )

    1991-02-01

    Two patients studied with technetium-99m-labeled red blood cells (RBCs) for gastrointestinal bleeding had positive findings only on 24-hr delayed images, at which time the site of bleeding could not be ascertained. In each instance, when additional delayed images suggested that active bleeding was occurring, a second aliquot of RBCs was labeled and injected. Sites of active hemorrhage were identified following further imaging in both patients. When delayed GI bleeding images are positive, further views should be obtained to ascertain if the pattern of intraluminal activity changes. If renewed active hemorrhage is suspected, reinjection with a second dose of labeled RBCs may identify the bleeding site.

  15. Formation of dimethylthioarsenicals in red blood cells

    SciTech Connect

    Naranmandura, Hua; Suzuki, Kazuo T.

    2008-03-15

    The bladder and skin are the primary targets for arsenic-induced carcinogenicity in mammals. Thioarsenicals dimethylmonothioarsinic (DMMTA{sup V}) and dimethyldithioarsinic (DMDTA{sup V}) acids are common urinary metabolites, the former being much more toxic than non-thiolated dimethylarsinic acid (DMA{sup V}) and comparable to dimethylarsinous acid (DMA{sup III}) in epidermoid cells, suggesting that the metabolic production of thioarsenicals may be a risk factor for the development of cancer in these organs. To reveal their production sites (tissues/body fluids), we examined the uptake and transformation of the four dimethylated arsenicals by incubation with rat and human red blood cells (RBCs). Although DMA{sup V} and DMDTA{sup V} were not taken up by either type of RBCs, DMA{sup III} and DMMTA{sup V} were taken up by both (more efficiently by rat ones), though DMMTA{sup V} was taken up slowly, and then the arsenic transformed into DMDTA{sup V} was excreted from both types of animal RBCs. On the other hand, although DMA{sup III} taken up rapidly by rat RBCs was retained in the RBCs, that taken up by human RBCs was immediately transformed into DMMTA{sup V} and then excreted into the incubation medium without being retained in the RBCs. In a separate experiment, arsenic remaining in primary rat hepatocytes after incubation with 1.5 {mu}M DMA{sup III} was recovered from the incubation medium in the forms of DMA{sup V} and DMMTA{sup V} in the presence of human RBCs, but not in the presence of rat RBCs (in which the arsenic was bound to hemoglobin). Thus, DMMTA{sup V} was detected in the medium only in the presence of human RBCs and increased with incubation time. It was proposed that arsenic is excreted from hepatocytes into the bloodstream in the form of DMA{sup III} and then taken up by RBCs in humans, where it is transformed into DMMTA{sup V} and then excreted again into the bloodstream.

  16. Attachment of antibody to biotinylated red blood cells: immuno-red blood cells display high affinity to immobilized antigen and normal biodistribution in rats.

    PubMed

    Muzykantov, V R; Murciano, J C

    1996-08-01

    Streptavidin-mediated attachment of biotinylated antibodies (b-Ab) to biotinylated red blood cells (b-RBC) is useful for preparation of immuno-red blood cells, a prospective vehicle for drug targeting. However, streptavidin (SA) induces lysis of extensively biotinylated RBC by complement due to cross-linking and inactivation of RBC complement regulators. To reduce cross-linking of RBC membrane proteins, we utilized mild biotinylation of RBC with 20 microM biotin ester (b20-RBC). SA effectively binds to rat b20-RBC (10(5) SA molecules/cell) and provides for following attachment of 5 x 10(4) molecules of b-IgG/SA per b20-RBC. By in vitro assay, b-Ab/SA/b20-RBC were stable in fresh rat serum. Serum-stable immuno-red blood cells (b-Ab/SA/b20-RBC) specifically bound to antigen-coated surfaces, but not to BSA-coated surfaces. Biodistribution of 51Cr-labelled b-Ab/SA/b20-RBC in rats was similar to that of control RBC, with no indication of lysis in vivo. These results suggest b-Ab/SA/b20-RBC may be explored as a vehicle for drug targeting. PMID:8756393

  17. Dynamic quantitative photothermal monitoring of cell death of individual human red blood cells upon glucose depletion

    NASA Astrophysics Data System (ADS)

    Vasudevan, Srivathsan; Chen, George Chung Kit; Andika, Marta; Agarwal, Shuchi; Chen, Peng; Olivo, Malini

    2010-09-01

    Red blood cells (RBCs) have been found to undergo ``programmed cell death,'' or eryptosis, and understanding this process can provide more information about apoptosis of nucleated cells. Photothermal (PT) response, a label-free photothermal noninvasive technique, is proposed as a tool to monitor the cell death process of living human RBCs upon glucose depletion. Since the physiological status of the dying cells is highly sensitive to photothermal parameters (e.g., thermal diffusivity, absorption, etc.), we applied linear PT response to continuously monitor the death mechanism of RBC when depleted of glucose. The kinetics of the assay where the cell's PT response transforms from linear to nonlinear regime is reported. In addition, quantitative monitoring was performed by extracting the relevant photothermal parameters from the PT response. Twofold increases in thermal diffusivity and size reduction were found in the linear PT response during cell death. Our results reveal that photothermal parameters change earlier than phosphatidylserine externalization (used for fluorescent studies), allowing us to detect the initial stage of eryptosis in a quantitative manner. Hence, the proposed tool, in addition to detection of eryptosis earlier than fluorescence, could also reveal physiological status of the cells through quantitative photothermal parameter extraction.

  18. Reflectance confocal microscopy of red blood cells: simulation and experiment

    PubMed Central

    Zeidan, Adel; Yelin, Dvir

    2015-01-01

    Measuring the morphology of red blood cells is important for clinical diagnosis, providing valuable indications on a patient’s health. In this work, we have simulated the appearance of normal red blood cells under a reflectance confocal microscope and discovered unique relations between the morphological parameters and the resulting characteristic interference patterns of the cell. The simulation results showed good agreement with in vitro reflectance confocal images of red blood cells, acquired using spectrally encoded flow cytometry that imaged the cells in a linear flow without artificial staining. By matching the simulated patterns to confocal images of the cells, this method could be used for measuring cell morphology in three dimensions and for studying their physiology. PMID:26600999

  19. Method for determining properties of red blood cells

    DOEpatents

    Gourley, Paul L.

    2001-01-01

    A method for quantifying the concentration of hemoglobin in a cell, and indicia of anemia, comprises determining the wavelength of the longitudinal mode of a liquid in a laser microcavity; determining the wavelength of the fundamental transverse mode of a red blood cell in the liquid in the laser microcavity; and determining if the cell is anemic from the difference between the wavelength of the longitudinal mode and the fundamental transverse mode. In addition to measuring hemoglobin, the invention includes a method using intracavity laser spectroscopy to measure the change in spectra as a function of time for measuring the influx of water into a red blood cell and the cell's subsequent rupture.

  20. Red blood cell-derived microparticles: An overview.

    PubMed

    Westerman, Maxwell; Porter, John B

    2016-07-01

    The red blood cell (RBC) is historically the original parent cell of microparticles (MPs). In this overview, we describe the discovery and the early history of red cell-derived microparticles (RMPs) and present an overview of the evolution of RMP. We report the formation, characteristics, effects of RMP and factors which may affect RMP evaluation. The review examines RMP derived from both normal and pathologic RBC. The pathologic RBC studies include sickle cell anemia (SCA), sickle cell trait (STr), thalassemia intermedia (TI), hereditary spherocytosis (HS), hereditary elliptocytosis (HE), hereditary stomatocytosis (HSt) and glucose-6-phosphate dehydrogenase deficiency (G6PD). PMID:27282583

  1. The Effect of Shape Memory on Red Blood Cell Motions

    NASA Astrophysics Data System (ADS)

    Niu, Xiting; Shi, Lingling; Pan, Tsorng-Whay; Glowinski, Roland

    2013-11-01

    An elastic spring model is applied to study the effect of the shape memory on the motion of red blood cell in flows. In shear flow, shape memory also plays an important role to obtain all three motions: tumbling, swinging, and tank-treading. In Poiseuille flow, cell has an equilibrium shape as a slipper or parachute depending on capillary number. To ensure the tank-treading motion while in slippery shape, a modified model is proposed by introducing a shape memory coefficient which describes the degree of shape memory in cells. The effect of the coefficient on the cell motion of red blood cell will be presented.

  2. Polyelectrolyte coating of ferumoxytol nanoparticles for labeling of dendritic cells

    NASA Astrophysics Data System (ADS)

    Celikkin, Nehar; Jakubcová, Lucie; Zenke, Martin; Hoss, Mareike; Wong, John Erik; Hieronymus, Thomas

    2015-04-01

    Engineered magnetic nanoparticles (MNPs) are emerging to be used as cell tracers, drug delivery vehicles, and contrast agents for magnetic resonance imaging (MRI) for enhanced theragnostic applications in biomedicine. In vitro labeling of target cell populations with MNPs and their implantation into animal models and patients shows promising outcomes in monitoring successful cell engraftment, differentiation and migration by using MRI. Dendritic cells (DCs) are professional antigen-presenting cells that initiate adaptive immune responses. Thus, DCs have been the focus of cellular immunotherapy and are increasingly applied in clinical trials. Here, we addressed the coating of different polyelectrolytes (PE) around ferumoxytol particles using the layer-by-layer technique. The impact of PE-coated ferumoxytol particles for labeling of DCs and Flt3+ DC progenitors was then investigated. The results from our studies revealed that PE-coated ferumoxytol particles can be readily employed for labeling of DC and DC progenitors and thus are potentially suitable as contrast agents for MRI tracking.

  3. Effect of an electrical left ventricular assist device on red blood cell and platelet survival in the cow. Technical report

    SciTech Connect

    Melaragno, A.J.; Vecchione, J.J.; Katchis, R.J.; Abdu, W.A.; Ouellet, R.P.

    1982-04-23

    Blood volume measurements were made in cows after infusion of human 125 iodine albumin and autologous 51 chromium-labeled red blood cells. Repeated intravenous infusions of iodinated human albumin did not appear to isosensitize the cows. When the cow red blood cells were incubated at 37 C after labeling with 51 chromium, there was elution of the 51 chromium, and the 51 chromium T 50 values were 45 hours in both healthy cows and cows with LVAD's. Measurements also were made in the cow platelets labeled with 51 chromium or 111 Indium-oxine. The platelets labeled with 51 chromium had T 50 values of 4 days, and platelets labeled with 111 Indium-oxine had T 50 values of 0.9 to 2.7 days. 51 chromium-labeled platelets had similar T 50 values in healthy cows and cows with LVAD's. Bovine platelets isolated from units of blood using serial differential centrifugation were labeled with 51 chromium or with 111 Indium-oxine, and after infusion in healthy cows and cows with LVAD's measurements were made of platelet circulation and distribution. The disappearance of platelet radioactivity from the blood was linear with time, and the platelet lifespan was 6-10 days. The presence of an LVAD did not affect initial recovery or lifespan of cow platelets.

  4. Separation of a single cell by red-laser manipulation

    NASA Astrophysics Data System (ADS)

    Shikano, Shuji; Horio, Koji; Ohtsuka, Yoshihiro; Eto, Yuzuro

    1999-10-01

    A single cell of yeast was separated from a bulk sample of yeast without causing damage to the cell. A focused red-laser light beam was used for trapping and transporting the cell. A specially designed microchannel separator played an essential role in the success of the separation.

  5. Acetylcholinesterase: an enzymatic marker of human red blood cell aging.

    PubMed

    Prall, Y G; Gambhir, K K; Ampy, F R

    1998-01-01

    The purpose of this investigation was to determine whether acetylcholinesterase (AChE) can be used as a marker of cell aging in human red blood cells (RBCs). This study used consented subjects; both males and females in an age range of 21-42 years. The blood samples (8-9 mL) were drawn in tubes containing sodium heparin or EDTA as anticoagulants. To avoid contamination with other cells, (lymphocytes, monocytes and reticulocytes), RBCs were purified (PRBC) by Hypaque-Ficoll gradient technique. The PRBCs were subfractionated into young (y) (1.08-1.09), mid (m) (1.09-1.11) and old (o) (1.11-1.12) percoll density (g/mL) fractions using a discontinuous percoll gradient. The mean +/- 1 SD AChE per gram hemoglobin (U/g Hgb) activities in whole blood (WB) purified human red blood cells (PRBCs), young human red blood cells (y-RBCs), mid age human red blood cells (m-RBCs) and old human red blood cells (o-RBCs) were 27.4 +/- 2.98, 26.0 +/- 2.33, 25.5 +/- 1.64, 20.3 +/- 3.84, 14.6 +/- 3.42 in males and 26.3 +/- 4.44, 24.8 /- 4.83, 26.4 +/- 4.59, 24.0 +/- 5.50 and 12.4 +/- 7.09 in females respectively. Although there was variation in the data, the results indicated that old human red blood cells showed significantly (p<.05) lower AChE activity compared to young human red blood cells of both sexes. These preliminary but novel observations suggest that AChE can be an excellent enzymatic marker for RBC aging in man. PMID:9698047

  6. Stable isotope labeling of oligosaccharide cell surface antigens

    SciTech Connect

    Unkefer, C.J.; Silks, L.A. III; Martinez, R.A.

    1998-12-31

    The overall goal of this Laboratory Directed Research and Development (LDRD) project was to develop new methods for synthesis of {sup 13}C-labeled oligosaccharides that are required for nuclear magnetic resonance (NMR) studies of their solution conformation. Oligosaccharides are components of the cell`s outer surface and are involved in important processes such as cell-cell recognition and adhesion. Recently, Danishefsky and coworkers at Slone-Kettering Cancer Center developed a method for the solid-phase chemical synthesis of oligosaccharides. The specific goal of this LDRD project was to prepare uniform {sup 13}C-labeled aldohexose precursors required for the solid-phase synthesis of the Lewis blood-group antigenic determinants. We report the synthesis of {sup 13}C-labeled D-glucal, D-galactal and Fucosyl precursors. We have been collaborating with the Danishefsky group on the synthesis of the Lewis oligosaccharides and the NMR analysis of their solution conformation.

  7. Transplantation of Adrenal Cortical Progenitor Cells Enriched by Nile Red

    PubMed Central

    Dunn, James C.Y.; Chu, Yinting; Qin, Harry H.; Zupekan, Tatiana

    2009-01-01

    Background The adrenal cortex may contain progenitor cells useful for tissue regeneration. Currently there are no established methods to isolate these cells. Material and Methods Murine adrenal cells were sorted into a Nile-Red-bright (NRbright) and a Nile-Red-dim (NRdim) population of cells according to their degree of cholesterol content revealed by Nile Red fluorescence. The cells were transplanted under the renal capsule to determine their ability for regeneration. Results The NRbright cells contained an abundance of lipid droplets, whereas the NRdim cells contained little. The NRbright cells expressed Sf1 and the more differentiated adrenal cortical genes including Cyp11a1, Cyp11b1, and Cyp11b2, whereas the NRdim cells expressed Sf1 but not the more differentiated adrenal cortical genes. After 56 days of implantation in unilateral adrenalectomized mice, the NRdim cells expressed Sf1 and the more differentiated adrenal cortical genes, whereas the NRbright cells ceased to express Sf1 as well as the more differentiated adrenal cortical genes. NRdim cells also proliferated in the presence of basic fibroblast growth factor. Conclusions The population of NRdim cells contained adrenal cortical progenitor cells that can proliferate and give rise to differentiated daughter cells. These cells may be useful for adrenal cortical regeneration. PMID:19592014

  8. Theory of the sphering of red blood cells.

    PubMed

    Fung, Y C; Tong, P

    1968-02-01

    A rigorous mathematical solution of the sphering of a red blood cell is obtained under the assumptions that the red cells is a fluid-filled shell and that it can swell into a perfect sphere in an appropriate hypotonic medium. The solution is valid for finite strain of the cell membrane provided that the membrane is isotropic, elastic and incompressible. The most general nonlinear elastic stress-strain law for the membrane in a state of generalized plane stress is used. A necessary condition for a red cell to be able to sphere is that its extensional stiffness follow a specific distribution over the membrane. This distribution is strongly influenced by the surface tension in the cell membrane. A unique relation exists between the extensional stiffness, pressure differential, surface tension, and the ratio of the radius of the sphere to that of the undeformed red cell. The functional dependence of this stiffness distribution on various physical parameters is presented. A critique of some current literature on red cell mechanics is presented. PMID:5639934

  9. Fluorescent Labeling of Yeast Cell Wall Components.

    PubMed

    Okada, Hiroki; Ohya, Yoshikazu

    2016-01-01

    Yeast cells stained with a fluorescent dye that specifically binds to one of the cell wall components can be observed under a fluorescent microscope. Visualization of the components 1,3-β-glucan, mannoproteins, and/or chitin not only provides information concerning the cell wall, but also reveals clues about various cellular activities such as cell polarity, vesicular transport, establishment of budding pattern, apical and isotropic bud growth, and replicative cell age. This protocol describes a standard method for visualizing different components of the yeast cell wall. PMID:27480714

  10. Quantification of Depletion-Induced Adhesion of Red Blood Cells

    NASA Astrophysics Data System (ADS)

    Steffen, P.; Verdier, C.; Wagner, C.

    2013-01-01

    Red blood cells (RBCs) are known to form aggregates in the form of rouleaux due to the presence of plasma proteins under physiological conditions. The formation of rouleaux can also be induced in vitro by the addition of macromolecules to the RBC suspension. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly originate from indirect measurements such as flow chamber experiments, but data is lacking at the single cell level. Here, we present measurements on the dextran-induced aggregation of red blood cells using atomic force microscopy-based single cell force spectroscopy. The effects of dextran concentration and molecular weight on the interaction energy of adhering RBCs were determined. The results on adhesion energy are in excellent agreement with a model based on the depletion effect and previous experimental studies. Furthermore, our method allowed to determine the adhesion force, a quantity that is needed in theoretical investigations on blood flow.

  11. Quantification of depletion-induced adhesion of red blood cells.

    PubMed

    Steffen, P; Verdier, C; Wagner, C

    2013-01-01

    Red blood cells (RBCs) are known to form aggregates in the form of rouleaux due to the presence of plasma proteins under physiological conditions. The formation of rouleaux can also be induced in vitro by the addition of macromolecules to the RBC suspension. Current data on the adhesion strength between red blood cells in their natural discocyte shapes mostly originate from indirect measurements such as flow chamber experiments, but data is lacking at the single cell level. Here, we present measurements on the dextran-induced aggregation of red blood cells using atomic force microscopy-based single cell force spectroscopy. The effects of dextran concentration and molecular weight on the interaction energy of adhering RBCs were determined. The results on adhesion energy are in excellent agreement with a model based on the depletion effect and previous experimental studies. Furthermore, our method allowed to determine the adhesion force, a quantity that is needed in theoretical investigations on blood flow. PMID:23383842

  12. 21 CFR 660.35 - Labeling.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... matrix. (g) The package label or package insert shall state the blood group antigens that have been... STANDARDS FOR DIAGNOSTIC SUBSTANCES FOR LABORATORY TESTS Reagent Red Blood Cells § 660.35 Labeling. In... container label of Group O cells shall state: “FOR USE IN DETECTION OF UNEXPECTED ANTIBODIES” or “FOR USE...

  13. X-ray microscopic studies of labeled nuclear cell structures

    NASA Astrophysics Data System (ADS)

    Vogt, S.; Schneider, G.; Steuernagel, A.; Lucchesi, J.; Schulze, E.; Rudolph, D.; Schmahl, G.

    2000-05-01

    In X-ray microscopy different proteins are not readily distinguishable. However, in cell biology it is often desirable to localize single proteins, e.g., inside the cell nucleus. This can be achieved by immunogold labeling. Colloidal gold conjugated antibodies are used to mark the protein specifically. With silver solution these are enlarged so as to heighten their contrast. The strong absorption of silver allows easy visualization of the label in the nuclei. In this study male specific lethal 1 protein in male Drosophila melanogaster cells was labeled. This protein forms, together with four other proteins, a complex that is associated with the male X chromosome. It regulates dosage compensation by enhancing X-linked gene transcription in males. Room temperature and cyro transmission X-ray microscopic images (taken with the Göttingen TXM at BESSY) of these labeled cells are shown. Confocal laser scan microscopy ascertains the correct identification of the label in the X-ray micrographs, and allows comparison of the structural information available from both instruments.

  14. Interfacial polymerization for colorimetric labeling of protein expression in cells.

    PubMed

    Lilly, Jacob L; Sheldon, Phillip R; Hoversten, Liv J; Romero, Gabriela; Balasubramaniam, Vivek; Berron, Brad J

    2014-01-01

    Determining the location of rare proteins in cells typically requires the use of on-sample amplification. Antibody based recognition and enzymatic amplification is used to produce large amounts of visible label at the site of protein expression, but these techniques suffer from the presence of nonspecific reactivity in the biological sample and from poor spatial control over the label. Polymerization based amplification is a recently developed alternative means of creating an on-sample amplification for fluorescence applications, while not suffering from endogenous labels or loss of signal localization. This manuscript builds upon polymerization based amplification by developing a stable, archivable, and colorimetric mode of amplification termed Polymer Dye Labeling. The basic concept involves an interfacial polymer grown at the site of protein expression and subsequent staining of this polymer with an appropriate dye. The dyes Evans Blue and eosin were initially investigated for colorimetric response in a microarray setting, where both specifically stained polymer films on glass. The process was translated to the staining of protein expression in human dermal fibroblast cells, and Polymer Dye Labeling was specific to regions consistent with desired protein expression. The labeling is stable for over 200 days in ambient conditions and is also compatible with modern mounting medium. PMID:25536421

  15. Interfacial Polymerization for Colorimetric Labeling of Protein Expression in Cells

    PubMed Central

    Lilly, Jacob L.; Sheldon, Phillip R.; Hoversten, Liv J.; Romero, Gabriela; Balasubramaniam, Vivek; Berron, Brad J.

    2014-01-01

    Determining the location of rare proteins in cells typically requires the use of on-sample amplification. Antibody based recognition and enzymatic amplification is used to produce large amounts of visible label at the site of protein expression, but these techniques suffer from the presence of nonspecific reactivity in the biological sample and from poor spatial control over the label. Polymerization based amplification is a recently developed alternative means of creating an on-sample amplification for fluorescence applications, while not suffering from endogenous labels or loss of signal localization. This manuscript builds upon polymerization based amplification by developing a stable, archivable, and colorimetric mode of amplification termed Polymer Dye Labeling. The basic concept involves an interfacial polymer grown at the site of protein expression and subsequent staining of this polymer with an appropriate dye. The dyes Evans Blue and eosin were initially investigated for colorimetric response in a microarray setting, where both specifically stained polymer films on glass. The process was translated to the staining of protein expression in human dermal fibroblast cells, and Polymer Dye Labeling was specific to regions consistent with desired protein expression. The labeling is stable for over 200 days in ambient conditions and is also compatible with modern mounting medium. PMID:25536421

  16. Labeling proteins on live mammalian cells using click chemistry.

    PubMed

    Nikić, Ivana; Kang, Jun Hee; Girona, Gemma Estrada; Aramburu, Iker Valle; Lemke, Edward A

    2015-05-01

    We describe a protocol for the rapid labeling of cell-surface proteins in living mammalian cells using click chemistry. The labeling method is based on strain-promoted alkyne-azide cycloaddition (SPAAC) and strain-promoted inverse-electron-demand Diels-Alder cycloaddition (SPIEDAC) reactions, in which noncanonical amino acids (ncAAs) bearing ring-strained alkynes or alkenes react, respectively, with dyes containing azide or tetrazine groups. To introduce ncAAs site specifically into a protein of interest (POI), we use genetic code expansion technology. The protocol can be described as comprising two steps. In the first step, an Amber stop codon is introduced--by site-directed mutagenesis--at the desired site on the gene encoding the POI. This plasmid is then transfected into mammalian cells, along with another plasmid that encodes an aminoacyl-tRNA synthetase/tRNA (RS/tRNA) pair that is orthogonal to the host's translational machinery. In the presence of the ncAA, the orthogonal RS/tRNA pair specifically suppresses the Amber codon by incorporating the ncAA into the polypeptide chain of the POI. In the second step, the expressed POI is labeled with a suitably reactive dye derivative that is directly supplied to the growth medium. We provide a detailed protocol for using commercially available ncAAs and dyes for labeling the insulin receptor, and we discuss the optimal surface-labeling conditions and the limitations of labeling living mammalian cells. The protocol involves an initial cloning step that can take 4-7 d, followed by the described transfections and labeling reaction steps, which can take 3-4 d. PMID:25906116

  17. Imaging of inflammatory processes with labeled cells

    SciTech Connect

    Froelich, J.W.; Swanson, D.

    1984-04-01

    Radionuclide techniques for localizing inflammatory processes had relied heavily upon /sup 67/Ga-citrate until McAfee and Thakur described the technique for the radiolabeling of leukocytes with /sup 111/In-oxine. Since their initial description in 1976 there has been continued development of the radiopharmaceutical, as well as clinical efficacy. At present /sup 111/In-labeled leukocytes continue to be handled as an investigational new drug but this has not greatly limited its clinical availability. Indium-/sup 111/ leukocytes are the agent of choice for evaluation of patients with fever of unknown origin, osteomyelitis, and prosthetic graft infections; and preliminary data shows great promise in the area of detecting reoccurrence of inflammatory bowel disease. This article attempts to review currently accepted uses of 111In leukocytes as well as potential areas of application.

  18. Pure Red Cell Aplasia Following Interleukin-2 Therapy

    PubMed Central

    Dutcher, Janice P.; Fan, Wen; Wiernik, Peter H.

    2016-01-01

    A 61-year-old woman with metastatic renal cell carcinoma underwent systemic treatment with high-dose interleukin-2 (IL-2). Anemia requiring transfusion of 1 unit of packed red blood cells (PRBCs) was required during the second week of IL-2 therapy. One month following completion of high-dose IL-2 treatment, she was hospitalized for severe, symptomatic anemia and received 5 units of PRBCs. She was referred back for evaluation. A complete hematologic evaluation was performed including antiviral serology, evaluation for hemolysis, complete iron studies, and finally bone marrow aspiration and biopsy. The diagnosis was pure red cell aplasia, and no inciting viral cause could be ascertained. She required PRBCs for 5 months following IL-2 therapy. It was concluded that IL-2 was the cause of her red cell aplasia. This subsequently resolved spontaneously, and she had normal hemoglobin and hematocrit, respectively, 1 and 2 years after treatment. PMID:27144182

  19. A statistical model for red blood cell survival.

    PubMed

    Korell, Julia; Coulter, Carolyn V; Duffull, Stephen B

    2011-01-01

    A statistical model for the survival time of red blood cells (RBCs) with a continuous distribution of cell lifespans is presented. The underlying distribution of RBC lifespans is derived from a probability density function with a bathtub-shaped hazard curve, and accounts for death of RBCs due to senescence (age-dependent increasing hazard rate) and random destruction (constant hazard), as well as for death due to initial or delayed failures and neocytolysis (equivalent to early red cell mortality). The model yields survival times similar to those of previously published studies of RBC survival and is easily amenable to inclusion of drug effects and haemolytic disorders. PMID:20950630

  20. The fate of phenylhydroxylamine in human red cells.

    PubMed

    Kiese, M; Taeger, K

    1976-01-01

    Phenylhydroxylamine added to human red cells under aerobic conditions and in the presence of glucose was partly reduced to aniline. About half the hydroxylamine was recovered as amine after a 2-hr incubation. The aniline, after acetylation, was identified as acetanilide by melting point, Rf-value in TCL as well as UV, IR, and NMR spectroscopy. The fate of the remaining phenylhydroxylamine was followed by use of 14C-labeled phenylhydroxylamine. About 30% of the total radioactivity was bound to hemoglobin or other proteins and about 20% was found in highly polar low-molecular substances which were insoluble in organic solvents. The elucidation of the sites at which phenylhydroxylamine was bound to hemoglobin was complicated by the lability of the bonds. When purified human hemoglobin had reacted with radioactive phenylhydroxylamine, large proportions of the radioactivity bound to hemoglobin were removed by treatment with acid or with PMB for separation of alpha- and beta-chains. The radioactive compound liberated from hemoglobin by acid was found to be aniline. After reaction with phenylhydroxylamine the number of SH groups titrable with PMB was found to be diminished. Pretreatment of hemoglobin with N-ethylmaleimide or PMB decreased the amount of phenylhydroxylamine bound to hemoglobin but did not fully prevent the reaction. Tryptic digestion of hemoglobin after reaction with radioactive phenylhydroxylamine yielded tryptic peptides with lower specific activity than that of hemoglobin. Chymotryptic digestion of the tryptic core yielded a core with specific activity much higher than that of hemoglobin. Fingerprinting of the tryptic or chymotryptic hydrolyzates showed the presence of peptides with high and other ones with low or no radioactivity and of radioactive compounds which did not react with ninhydrin. In the covalent binding of phenylhydroxylamine to globin the SH group beta93 plays an important role, but other yet unknown sites are also reactive. PMID:934354

  1. Water soluble fluorescence quantum dot probe labeling liver cancer cells.

    PubMed

    Chang, Baoxing; Yang, Xianjun; Wang, Fang; Wang, Yinsong; Yang, Rui; Zhang, Ning; Wang, Baiqi

    2013-11-01

    Water soluble quantum dots (QDs) have been prepared by hydrothermal method and characterized by ultraviolet irradiation, XRD, TEM, UV-Vis absorption spectrometer and fluorescence spectrometer. Then the QD-antibody-AFP probes (QD-Ab-AFP) were synthesized by chemical process and specifically labeled AFP antigen in PLC/PRF/5 liver cancer cells. The results showed that the QDs were cubic structure and had excellent optical properties. Moreover, the QD-Ab-AFP with good stability could specifically label liver cancer cells. This work provides strong foundation for further studying and developing new approach to detect liver cancer at early stage. PMID:23888351

  2. Regulation of red cell membrane protein interactions: implications for red cell function.

    PubMed

    Takakuwa, Y

    2001-03-01

    This article presents new insights into the molecular mechanism for regulating red cell membrane protein interactions that are responsible for erythrocyte membrane mechanical properties. For various skeletal proteins, structure-function correlations of protein 4.1R have been studied in detail. Kinetic analysis with the resonant mirror detection method has determined the nature of 4.1R interactions with various binding partners such as band 3, glycophorin C, and p55, and their binding sites. More importantly, calmodulin (CaM) binds to 4.1R in a Ca2+-independent manner to modulate the 4.1R interactions in the presence of Ca2+ at microM. Crystal structure of the 30-kD domain of 4.1R has a cloverleaf-like architecture with three lobes, each of which contains a binding region specific for binding partners. CaM binds to the grooves situated in two regions between the three lobes, possibly leading to conformational changes of the three lobes with a consequent alteration in the capacity of 4.1R to bind to its partners. The present findings on erythrocyte 4.1R should provide a basis for better understanding the membrane functions of nonerythroid cells. PMID:11224681

  3. Deep Learning in Label-free Cell Classification.

    PubMed

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-01-01

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells. PMID:26975219

  4. Deep Learning in Label-free Cell Classification

    DOE PAGESBeta

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-03-15

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individualmore » cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. In conclusion, this system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.« less

  5. Deep Learning in Label-free Cell Classification

    PubMed Central

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-01-01

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells. PMID:26975219

  6. Deep Learning in Label-free Cell Classification

    NASA Astrophysics Data System (ADS)

    Chen, Claire Lifan; Mahjoubfar, Ata; Tai, Li-Chia; Blaby, Ian K.; Huang, Allen; Niazi, Kayvan Reza; Jalali, Bahram

    2016-03-01

    Label-free cell analysis is essential to personalized genomics, cancer diagnostics, and drug development as it avoids adverse effects of staining reagents on cellular viability and cell signaling. However, currently available label-free cell assays mostly rely only on a single feature and lack sufficient differentiation. Also, the sample size analyzed by these assays is limited due to their low throughput. Here, we integrate feature extraction and deep learning with high-throughput quantitative imaging enabled by photonic time stretch, achieving record high accuracy in label-free cell classification. Our system captures quantitative optical phase and intensity images and extracts multiple biophysical features of individual cells. These biophysical measurements form a hyperdimensional feature space in which supervised learning is performed for cell classification. We compare various learning algorithms including artificial neural network, support vector machine, logistic regression, and a novel deep learning pipeline, which adopts global optimization of receiver operating characteristics. As a validation of the enhanced sensitivity and specificity of our system, we show classification of white blood T-cells against colon cancer cells, as well as lipid accumulating algal strains for biofuel production. This system opens up a new path to data-driven phenotypic diagnosis and better understanding of the heterogeneous gene expressions in cells.

  7. Isotopic Labeling of Red Cabbage Anthocyanins with Atmospheric 13-CO2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Isotopic labeling of plants provides a unique opportunity for understanding metabolic processes. A significant challenge of isotopic labeling during plant growth is that isotopes must be administered without disrupting plant development and at sufficient levels for mass spectral analysis. We describ...

  8. Separating Magnetically Labeled and Unlabeled Biological Cells within Microfluidic Channels

    NASA Astrophysics Data System (ADS)

    Byvank, Tom; Vieira, Greg; Miller, Brandon; Yu, Bo; Chalmers, Jeffrey; Lee, L. James; Sooryakumar, R.

    2011-03-01

    The transport of microscopic objects that rely on magnetic forces have numerous advantages including flexibility of controlling many design parameters and the long range magnetic interactions generally do not adversely affect biological or chemical interactions. We present results on the use of magnetic micro-arrays imprinted within polydimethylsiloxane (PDMS) microfluidic channels that benefit from these features and the ability to rapidly reprogram the magnetic energy landscape for cell manipulation and sorting applications. A central enabling feature is the very large, tunable, magnetic field gradients (> 10 4) that can be designed within the microfluidic architecture. Through use of antibody-conjugated magnetic microspheres to label biological cells, results on the transport and sorting of heterogeneous cell populations are presented. The effects of micro-array and fluid channel design parameters, competition between magnetic forces and hydrodynamic drag forces, and cell-labeling efficiency on cell separation are discussed.

  9. Multiplex cell and lineage tracking with combinatorial labels.

    PubMed

    Loulier, Karine; Barry, Raphaëlle; Mahou, Pierre; Le Franc, Yann; Supatto, Willy; Matho, Katherine S; Ieng, Siohoi; Fouquet, Stéphane; Dupin, Elisabeth; Benosman, Ryad; Chédotal, Alain; Beaurepaire, Emmanuel; Morin, Xavier; Livet, Jean

    2014-02-01

    We present a method to label and trace the lineage of multiple neural progenitors simultaneously in vertebrate animals via multiaddressable genome-integrative color (MAGIC) markers. We achieve permanent expression of combinatorial labels from new Brainbow transgenes introduced in embryonic neural progenitors with electroporation of transposon vectors. In the mouse forebrain and chicken spinal cord, this approach allows us to track neural progenitor's descent during pre- and postnatal neurogenesis or perinatal gliogenesis in long-term experiments. Color labels delineate cytoarchitecture, resolve spatially intermixed clones, and specify the lineage of astroglial subtypes and adult neural stem cells. Combining colors and subcellular locations provides an expanded marker palette to individualize clones. We show that this approach is also applicable to modulate specific signaling pathways in a mosaic manner while color-coding the status of individual cells regarding induced molecular perturbations. This method opens new avenues for clonal and functional analysis in varied experimental models and contexts. PMID:24507188

  10. Optical painting and fluorescence activated sorting of single adherent cells labelled with photoswitchable Pdots.

    PubMed

    Kuo, Chun-Ting; Thompson, Alison M; Gallina, Maria Elena; Ye, Fangmao; Johnson, Eleanor S; Sun, Wei; Zhao, Mengxia; Yu, Jiangbo; Wu, I-Che; Fujimoto, Bryant; DuFort, Christopher C; Carlson, Markus A; Hingorani, Sunil R; Paguirigan, Amy L; Radich, Jerald P; Chiu, Daniel T

    2016-01-01

    The efficient selection and isolation of individual cells of interest from a mixed population is desired in many biomedical and clinical applications. Here we show the concept of using photoswitchable semiconducting polymer dots (Pdots) as an optical 'painting' tool, which enables the selection of certain adherent cells based on their fluorescence, and their spatial and morphological features, under a microscope. We first develop a Pdot that can switch between the bright (ON) and dark (OFF) states reversibly with a 150-fold contrast ratio on irradiation with ultraviolet or red light. With a focused 633-nm laser beam that acts as a 'paintbrush' and the photoswitchable Pdots as the 'paint', we select and 'paint' individual Pdot-labelled adherent cells by turning on their fluorescence, then proceed to sort and recover the optically marked cells (with 90% recovery and near 100% purity), followed by genetic analysis. PMID:27118210

  11. Optical painting and fluorescence activated sorting of single adherent cells labelled with photoswitchable Pdots

    PubMed Central

    Kuo, Chun-Ting; Thompson, Alison M.; Gallina, Maria Elena; Ye, Fangmao; Johnson, Eleanor S.; Sun, Wei; Zhao, Mengxia; Yu, Jiangbo; Wu, I-Che; Fujimoto, Bryant; DuFort, Christopher C.; Carlson, Markus A.; Hingorani, Sunil R.; Paguirigan, Amy L.; Radich, Jerald P.; Chiu, Daniel T.

    2016-01-01

    The efficient selection and isolation of individual cells of interest from a mixed population is desired in many biomedical and clinical applications. Here we show the concept of using photoswitchable semiconducting polymer dots (Pdots) as an optical ‘painting' tool, which enables the selection of certain adherent cells based on their fluorescence, and their spatial and morphological features, under a microscope. We first develop a Pdot that can switch between the bright (ON) and dark (OFF) states reversibly with a 150-fold contrast ratio on irradiation with ultraviolet or red light. With a focused 633-nm laser beam that acts as a ‘paintbrush' and the photoswitchable Pdots as the ‘paint', we select and ‘paint' individual Pdot-labelled adherent cells by turning on their fluorescence, then proceed to sort and recover the optically marked cells (with 90% recovery and near 100% purity), followed by genetic analysis. PMID:27118210

  12. [Effects of superparamagnetic iron-oxide particles-labeling on the multi-diffentiation of rabbit marrow mesenchymal stem cell in vitro].

    PubMed

    Jin, Xuhong; Yang, Liu; Zhang, Shou; Dun, Xiaojun; Wang, Fuyou; Tan, Hongbo

    2012-02-01

    The aim of this study was to label rabbit bone derived mesenchymal stem cells (BMSCs) with superparamagnetic iron oxide particles (SPIO) and to study the effects of magnetic labeling on the multi-differentiation of BMSCs. Rabbit BMSCs were isolated, purified, expanded, then coincubated with SPIO(25 microg/ml) complexed to protamine sulfate (Pro) transfection agents overnight. Prussian blue staining and transmission electron microscopy were performed to show intracellular iron. Cell differentiation was evaluated. Both labeled and unlabeled BMSCs were subjected to osteogenic, adipogenic and chondrogenic differentiation to assess their differentiation capacity for 21 d. Osteogenic cells were stained with alizarin red to reveal calcium deposition, adipogenic cells were stained with oil redO' respectively. Chondrogenic cells stained with Safranin-O, glycosamino glycans, and type II collagen production was assessed by standard immunohistochemistry. Cell with immunohistochemistry staining were detected by polarized light microscopy and analysed by Image-Pro Plus software. The results showed that intracytoplasmic nanoparticles were stained with Prussian blue and observed by transmission electron microscopy clearly except the unlabeled control. As compared with the nonlabeled cells, it showed no statistically significant difference on the differentiation of the labeled BMSCs. And the differentiation of the labeled cells were unaffected by the endosomal incorporation of SPIO. In summary, BMSCs can be labeled with SPIO without significant change in cell multi-differentiation capacity. PMID:22404022

  13. Variation in Growth, Colonization of Maize, and Metabolic Parameters of GFP- and DsRed-Labeled Fusarium verticillioides Strains.

    PubMed

    Wu, Lei; Conner, R L; Wang, Xiaoming; Xu, Rongqi; Li, Hongjie

    2016-08-01

    Autofluorescent proteins are frequently applied as visual markers in the labeling of filamentous fungi. Genes gfp and DsRed were transformed into the genome of Fusarium verticillioides via the Agrobacterium tumefaciens-mediated transformation method. The selected transformants displayed a bright green or red fluorescence in all the organelles of the growing fungal mycelia and spores (except for the vacuoles) both in cultures and in the maize (Zea mays) roots they colonized. The results of gene-specific polymerase chain reaction (PCR) analysis and the thermal asymmetrical interlaced (TAIL)-PCR analysis demonstrated that gfp and DsRed were integrated on different chromosomes of the fungus. Reductions in the colony growth on the plates at pH 4.0 and 5.5 was observed for the green fluorescent protein (GFP)-transformant G3 and the DsRed-transformant R4, but transformants G4 and R1 grew as well as the wild-type strain at pH 4.0. The speed of growth of all the transformants was similar to the wild-type strain at pH ≥ 7. The insertion of gfp and DsRed did not alter the production of extracellular enzymes and fumonisin B by F. verticillioides. The transformants expressing GFP and DsRed proteins were able to colonize maize roots. However, the four transformants examined produced fewer CFU in the root samples than the wild-type strain during a sampling period of 7 to 28 days after inoculation. PMID:27088391

  14. Specific cell surface labeling of GPCRs using split GFP.

    PubMed

    Jiang, Wen-Xue; Dong, Xu; Jiang, Jing; Yang, Yu-Hong; Yang, Ju; Lu, Yun-Bi; Fang, San-Hua; Wei, Er-Qing; Tang, Chun; Zhang, Wei-Ping

    2016-01-01

    Specific cell surface labeling is essential for visualizing the internalization processes of G-protein coupled receptors (GPCRs) and for gaining mechanistic insight of GPCR functions. Here we present a rapid, specific, and versatile labeling scheme for GPCRs at living-cell membrane with the use of a split green fluorescent protein (GFP). Demonstrated with two GPCRs, GPR17 and CysLT2R, we show that two β-stands (β-stands 10 and 11) derived from a superfolder GFP (sfGFP) can be engineered to one of the three extracellular loop of a GPCR. The complementary fragment of sfGFP has nine β-strands (β-stands 1-9) that carries the mature fluorophore, and can be proteolytically derived from the full-length sfGFP. Separately the GFP fragments are non-fluorescent, but become fluorescent upon assembly, thus allowing specific labeling of the target proteins. The two GFP fragments rapidly assemble and the resulting complex is extremely tight under non-denaturing conditions, which allows real-time and quantitative assessment of the internalized GPCRs. We envision that this labeling scheme will be of great use for labeling other membrane proteins in various biological and pharmacological applications. PMID:26857153

  15. Dual network model for red blood cell membranes

    NASA Astrophysics Data System (ADS)

    Boal, David H.; Seifert, Udo; Zilker, Andreas

    1992-12-01

    A two-component network is studied by Monte Carlo simulation to model the lipid/spectrin membrane of red blood cells. The model predicts that the shear modulus decreases rapidly with the maximum length of the model spectrin and should be in the 10-7 J/m2 range for human red blood cells. A simplified model for the isolated spectrin network shows a negative Lamé coefficient λ. Transverse fluctuations of the dual membrane are found to be fluidlike over the range of wavelengths investigated.

  16. Photoacoustic response of suspended and hemolyzed red blood cells

    NASA Astrophysics Data System (ADS)

    Saha, Ratan K.; Karmakar, Subhajit; Roy, Madhusudan

    2013-07-01

    The effect of confinement of hemoglobin molecules on photoacoustic (PA) signal is studied experimentally. The PA amplitudes for samples with suspended red blood cells (SRBCs) and hemolyzed red blood cells (HRBCs) were found to be comparable at each hematocrit for 532 nm illumination. The difference between the corresponding amplitudes increased with increasing hematocrit for 1064 nm irradiation. For example, the PA amplitude for the SRBCs was about 260% higher than that of the HRBCs at 40% hematocrit. This observation may help to develop a PA method detecting hemolysis noninvasively.

  17. Immunomicrospheres - Reagents for cell labeling and separation

    NASA Technical Reports Server (NTRS)

    Rembaum, A.; Dreyer, W. J.

    1980-01-01

    Immunomicrospheres are specially designed microscopic particles that have antibodies or similar molecules chemically bound to their surfaces. The antibody-coated microspheres react in a highly specific way with target cells, viruses, or other antigenic agents. Immunomicrospheres may be synthesized so that they incorporate compounds that are highly radioactive, intensely fluorescent, magnetic, electron opaque, highly colored, or pharmacologically active. These various types of microspheres may be coated with pure, highly specific monoclonal antibodies obtained by the new hybridoma cell cloning techniques or with conventional antibody preparations. Some of the many present and potential applications for these new reagents are (1) new types of radioimmune or immunofluorescent assays, (2) improved fluorescence microscopy, (3) separation of cells on the basis of the fluorescent, electrophoretic, or magnetic properties of bound immunomicrospheres, (4) markers for use in several types of electron or standard light microscopy, and (5) delivery of lethal compouds to specific undesirable living cells. The combination of the various new types of synthetic microspheres and the newly available homogeneous antibodies offers new opportunities in research, diagnosis, and therapy.

  18. Evaluation of the red cell storage lesion after irradiation in filtered packed red cell units

    SciTech Connect

    Hillyer, C.D.; Tiegerman, K.O.; Berkman, E.M. )

    1991-07-01

    Packed red cell units (n = 10) were filtered and divided equally. One-half unit from each donor was irradiated (x) (3500 cGy). On Days 0, 14, 28, and 42, ATP, K+, Na+, lactate dehydrogenase (LDH), plasma-free hemoglobin (PFH), and pH were determined. The reduction in ATP was greater in the irradiated than the nonirradiated (y) units by Day 42 (mean x-y: -70, p = 0.0005). The increase in K+ was greater in the irradiated than nonirradiated units on Days 14, 28, and 42 (mean x-y: 17-20, p = 0.0001). Decrease in pH and increases in LDH and PFH were significant (p less than 0.05) on Day 42 only. K+ increases added only 1.7 to 2.0 mmol per unit, a difference felt to be clinically insignificant. The changes noted in ATP, pH, LDH, and PFH are significant but minimal on Day 42 and imply that viability changes would also be minimal. These biochemical data support the storage of irradiated units for at least 28 days.

  19. Anatomy of the red cell membrane skeleton: unanswered questions.

    PubMed

    Lux, Samuel E

    2016-01-14

    The red cell membrane skeleton is a pseudohexagonal meshwork of spectrin, actin, protein 4.1R, ankyrin, and actin-associated proteins that laminates the inner membrane surface and attaches to the overlying lipid bilayer via band 3-containing multiprotein complexes at the ankyrin- and actin-binding ends of spectrin. The membrane skeleton strengthens the lipid bilayer and endows the membrane with the durability and flexibility to survive in the circulation. In the 36 years since the first primitive model of the red cell skeleton was proposed, many additional proteins have been discovered, and their structures and interactions have been defined. However, almost nothing is known of the skeleton's physiology, and myriad questions about its structure remain, including questions concerning the structure of spectrin in situ, the way spectrin and other proteins bind to actin, how the membrane is assembled, the dynamics of the skeleton when the membrane is deformed or perturbed by parasites, the role lipids play, and variations in membrane structure in unique regions like lipid rafts. This knowledge is important because the red cell membrane skeleton is the model for spectrin-based membrane skeletons in all cells, and because defects in the red cell membrane skeleton underlie multiple hemolytic anemias. PMID:26537302

  20. Effect of misoprostol and cimetidine on gastric cell labeling index

    SciTech Connect

    Fich, A.; Arber, N.; Sestieri, M.; Zajicek, G.; Rachmilewitz, D.

    1985-07-01

    The effect of misoprostol and cimetidine on gastric cell turnover was studied. Endoscopic biopsy specimens of fundic and antral mucosa were obtained from duodenal ulcer patients before and after 4 wk of therapy with cimetidine 1.2 g/day or misoprostol 800 micrograms/day. Biopsy specimens were incubated with (/sup 3/H)thymidine. Glandular column length and number of labeled cells were determined after autoradiography. There was no significant difference in column length of antral or fundic glands before or after therapy with cimetidine and misoprostol. The number of antral and fundic labeled cells was significantly decreased after misoprostol treatment (3.6 +/- 0.3 and 4.6 +/- 0.4, mean +/- SE), as opposed to their respective number before therapy (6.9 +/- 0.5 and 8.3 +/- 0.8) (p less than 0.01). On the other hand, after treatment with cimetidine, the number of antral and fundic labeled cells was significantly higher (11.8 +/- 0.9 and 7.5 +/- 1.0, respectively) as compared with their number before therapy (5.7 +/- 0.5 and 5.6 +/- 0.6, respectively). The decreased gastric cell turnover induced by misoprostol indicates that the trophic effect of prostanoids on gastric mucosa is not due to an increase in cellular kinetics. The increased gastric cell turnover induced by cimetidine may contribute to its therapeutic effect in peptic ulcer disease.

  1. Fermented red ginseng extract inhibits cancer cell proliferation and viability.

    PubMed

    Oh, Jisun; Jeon, Seong Bin; Lee, Yuri; Lee, Hyeji; Kim, Ju; Kwon, Bo Ra; Yu, Kang-Yeol; Cha, Jeong-Dan; Hwang, Seung-Mi; Choi, Kyung-Min; Jeong, Yong-Seob

    2015-04-01

    Red ginseng (Panax ginseng C.A. Meyer) is the most widely recognized medicinal herb due to its remedial effects in various disorders, such as cancers, diabetes, and heart problems. In this study, we investigated the anticancer effect of fermented red ginseng extract (f-RGE; provided by Jeonju Biomaterials Institute, Jeonju, South Korea) in a parallel comparison with the effect of nonfermented red ginseng extract (nf-RGE; control) on several cancer cell lines--MCF-7 breast cancer cells, HepG2 hepatocellular carcinoma cells, and reprogrammed MCF-7 cells (mimicking cancer stem cells). Cells were cultured at various concentrations of RGE (from 0.5 up to 5 mg/mL) and their viabilities and proliferative properties were examined. Our data demonstrate the following: (1) nf-RGE inhibited cell viability at ≥1 mg/mL for MCF-7 cells and ≥2 mg/mL for HepG2 cells, (2) in the presence of a carcinogenic agent, 12-O-tetradecanoylphorbol-13-acetate (TPA), nf-RGE treatment in combination with paclitaxel synergistically decreased MCF-7 as well as HepG2 cell viability, (3) f-RGE (which contained a greater level of Rg3 content) more effectively decreased the viability of MCF-7 and HepG2 cells compared to nf-RGE, and (4) f-RGE appeared more potent for inhibiting cancerous differentiation of reprogrammed MCF-7 cells in a synergistic fashion with paclitaxel, especially in the presence of TPA, compared to nf-RGE. These findings suggest that f-RGE treatment may be more effective for decreasing cancer cell survival by inducing apoptotic cell death and also presumably for preventing cancer stem cell differentiation compared to nf-RGE. PMID:25658580

  2. Labeling Stem Cells with Superparamagnetic Iron Oxide Nanoparticles: Analysis of the Labeling Efficacy by Microscopy and Magnetic Resonance Imaging

    PubMed Central

    Jasmin; Torres, Ana Luiza Machado; Jelicks, Linda; de Carvalho, Antonio Carlos Campos; Spray, David C.; Mendez-Otero, Rosalia

    2013-01-01

    Stem cell therapy has emerged as a potential therapeutic option for cell death-related heart diseases. Application of non-invasive cell tracking approaches is necessary to determine tissue distribution and lifetime of stem cells following their injection and will likely provide knowledge about poorly understood stem cells mechanisms of tissue repair. Magnetic resonance imaging (MRI) is a potentially excellent tool for high-resolution visualization of the fate of cells after transplantation and for evaluation of therapeutic strategies. The application of MRI for in vivo cell tracking requires contrast agents to achieve efficient cell labeling without causing any toxic cellular effects or eliciting any other side effects. For these reasons clinically approved contrast agents (e.g., ferumoxides) and incorporation facilitators (e.g., protamine) are currently the preferred materials for cell labeling and tracking. Here we describe how to use superparamag-netic iron oxide nanoparticles to label cells and to monitor cell fate in several disease models. PMID:22791437

  3. Investigations into agents for improving cell labeling with positron- and gamma-emitting radionuclides

    SciTech Connect

    Zoghbi, S.S.; Thakur, M.L.; Gottschalk, A.; Pande, S.; Srivastava, S.C.; Richards, P.

    1982-01-01

    It was possible to label leukocytes with Co-oxine, but a large proportion of the radioactivity was eluted from the cells upon washing. Ruthenium oxine labeled platelets efficiently in plasma while negligible proportion of radioactivity was eluted from the cells. Three factors influence the labeling efficiency of the cells: duration of the incubation periods; cell concentration; and ACD concentration.

  4. Dynamic quantitative microscopy and nanoscopy of red blood cells in sickle cell disease

    NASA Astrophysics Data System (ADS)

    Shaked, Natan T.; Satterwhite, Lisa L.; Telen, Marilyn J.; Truskey, George A.; Wax, Adam

    2012-03-01

    We have applied wide-field digital interferometric techniques to quantitatively image sickle red blood cells (RBCs) [1] in a noncontact label-free manner, and measure the nanometer-scale fluctuations in their thickness as an indication of their stiffness. The technique can simultaneously measure the fluctuations for multiple spatial points on the RBC and thus yields a map describing the stiffness of each RBC in the field of view. Using this map, the local rigidity regions of the RBC are evaluated quantitatively. Since wide-field digital interferometry is a quantitative holographic imaging technique rather than one-point measurement, it can be used to simultaneously evaluate cell transverse morphology plus thickness in addition to its stiffness profile. Using this technique, we examine the morphology and dynamics of RBCs from individuals who suffer from sickle cell disease, and find that the sickle RBCs are significantly stiffer than healthy RBCs. Furthermore, we show that the technique is sensitive enough to distinguish various classes of sickle RBCs, including sickle RBCs with visibly-normal morphology, compared to the stiffer crescent-shaped sickle RBCs.

  5. Red Blood Cell Spectrin Skeleton in the Spotlight.

    PubMed

    Braun-Breton, Catherine; Abkarian, Manouk

    2016-02-01

    Das et al. recently reported a role for the major merozoite surface protein MSP1 in malarial parasite egress from the red blood cell (RBC). On the basis of these new data and physical considerations, we propose an updated model for the main steps of this essential process for parasite proliferation. PMID:26652974

  6. Spatial Distributions of Red Blood Cells Significantly Alter Local Haemodynamics

    PubMed Central

    Sherwood, Joseph M.; Holmes, David; Kaliviotis, Efstathios; Balabani, Stavroula

    2014-01-01

    Although bulk changes in red blood cell concentration between vessels have been well characterised, local distributions are generally overlooked. Red blood cells aggregate, deform and migrate within vessels, forming heterogeneous distributions which have considerable effect on local haemodynamics. The present study reports data on the local distribution of human red blood cells in a sequentially bifurcating microchannel, representing the branching geometry of the microvasculature. Imaging methodologies with simple extrapolations are used to infer three dimensional, time-averaged velocity and haematocrit distributions under a range of flow conditions. Strong correlation between the bluntness of the velocity and haematocrit profiles in the parent branch of the geometry is observed and red blood cell aggregation has a notable effect on the observed trends. The two branches of the first bifurcation show similar characteristics in terms of the shapes of the profiles and the extent of plasma skimming, despite the difference in geometric configuration. In the second bifurcation, considerable asymmetry between the branches in the plasma skimming relationship is observed, and elucidated by considering individual haematocrit profiles. The results of the study highlight the importance of considering local haematocrit distributions in the analysis of blood flow and could lead to more accurate computational models of blood flow in microvascular networks. The experimental approaches developed in this work provide a foundation for further examining the characteristics of microhaemodynamics. PMID:24950214

  7. Further studies of sodium transport in feline red cells.

    PubMed

    Sha'afi, R I; Pascoe, E

    1973-06-01

    The transport of radioactive sodium in high sodium cat red blood cells has been studied under various experimental conditions. It was found that iodoacetate (IAA) and iodoacetamide (IAM) inhibit Na influx by 50% whereas NaF has no effect. Reversible dyes, such as methylene blue (Mb), also inhibit this influx by 60%. Both IAA and Mb effects show a lag period of about 40 min. Cell starvation abolishes the volume-dependent Na influx which is generally observed in these cells. IAA reduces significantly the volume-dependent Na influx but does not inhibit it completely. 5 mM magnesium chloride produces a twofold increase in Na influx. On the other hand, MgCl(2) has no effect on Na transport in human red cells or on potassium or sulfate transport in cat red cells. The effect of MgCl(2) is quite rapid and does not interfere with the volume-dependent Na influx. This effect is abolished in starved cells. Reincubation of previously stored cells in buffered solutions containing glucose and MgCl(2) causes more than one order of magnitude increase in Na influx. These several observations are discussed in terms of the possibility of a link between Na transport and Na-Mg-activated ATPase. PMID:4733097

  8. Red blood cell replacement, or nanobiotherapeutics with enhanced red blood cell functions?

    PubMed

    Chang, Thomas Ming Swi

    2015-06-01

    Why is this important? Under normal circumstances, donor blood is the best replacement for blood. However, there are exceptions: During natural epidemics (e.g., HIV, Ebola, etc.) or man-made epidemics (terrorism, war, etc.), there is a risk of donor blood being contaminated, and donors being disqualified because they have contracted disease. Unlike red blood cells (RBCs), blood substitutes can be sterilized to remove infective agents. Heart attack and stroke are usually caused by obstruction of arterial blood vessels. Unlike RBCs, which are particulate, blood substitutes are in the form of a solution that can perfuse through obstructed vessels with greater ease to reach the heart and brain, as has been demonstrated in animal studies. Severe blood loss from injuries sustained during accidents, disasters, or war may require urgent blood transfusion that cannot wait for transportation to the hospital for blood group testing. Unlike RBCs, blood substitutes do not have specific blood groups, and can be administered on the spot. RBCs have to be stored under refrigeration for up to 42 days, and are thus difficult to transport and store in times of disaster and at the battlefront. Blood substitutes can be stored at room temperature for more than 1 year, compared to the RBC shelf life of 1 day, at room temperature. In cases of very severe hemorrhagic shock, there is usually a safety window of 60 min for blood replacement, beyond which there could be problems related to irreversible shock. Animal studies show that a particular type of blood substitute, with enhanced RBC enzymes, may be able to prolong the duration of the safety window. PMID:26096663

  9. Red blood cell homeostasis: recognition of distinct types of damaged homologous red blood cells by a mouse macrophage cell line.

    PubMed

    Singer, J A; Morrison, M; Walker, W S

    1987-06-01

    The mouse macrophage (M phi) cell line IC-21 preferentially ingests a subpopulation of homologous red blood cells (MRBC) from normal mice. This subpopulation presumably bears the so-called transfusion lesion, a consequence of damage acquired during the drawing and processing of blood. To determine if all damaged MRBC were recognized by a common receptor site on IC-21 M phi, we prepared suspensions of MRBC damaged in vitro by treatment with tannic acid and compared the phagocytic uptake of these cells with those bearing the transfusion lesion. Trypsin treatment of IC-21 M phi rendered them unable to recognize MRBC bearing the transfusion lesion; but it had no effect on the uptake of tannic acid-damaged MRBC, showing that IC-21 M phi have separate recognition sites for these two populations of damaged MRBC. PMID:3474332

  10. Aggregation of red blood cells: From rouleaux to clot formation

    NASA Astrophysics Data System (ADS)

    Wagner, Christian; Steffen, Patrick; Svetina, Saša

    2013-06-01

    Red blood cells are known to form aggregates in the form of rouleaux. This aggregation process is believed to be reversible, but there is still no full understanding on the adhesion mechanism. There are at least two competing models, based either on bridging or on depletion. We review recent experimental results on the single cell level and theoretical analyses of the depletion model and of the influence of the cell shape on the adhesion strength. Another important aggregation mechanism is caused by activation of platelets. This leads to clot formation which is life-saving in the case of wound healing, but also a major cause of death in the case of a thrombus induced stroke. We review historical and recent results on the participation of red blood cells in clot formation.

  11. Calcium movements across the membrane of human red cells

    PubMed Central

    Schatzmann, H. J.; Vincenzi, F. F.

    1969-01-01

    1. A study has been made of the cellular content and movement of Ca across the membrane of human red blood cells. 2. The [Ca] in the cellular contents of fresh red cells is 4·09 × 10-2 mM. The intracellular concentration of free ionic Ca ([Ca2+]) is considered to be less than this value and therefore less than extracellular [Ca2+] under normal conditions. 3. Observation of unidirectional Ca fluxes with 45Ca confirms previous reports of low permeability of the red cell membrane for Ca. After nearly 1 week of loading in the cold, intracellular 45Ca content is 1·8% of extracellular 45Ca content. Appearance in extracellular fluid of 45Ca from coldloaded cells can be considered to arise from two compartments. Efflux of 45Ca from the `slower compartment' is accelerated by the addition of glucose. 4. Starved red cells, incubated at 37° C, after reversible haemolysis for loading with Ca and Mg-ATP, exhibit an outward net transport of Ca against an electrochemical gradient. The transport is associated with the appearance of inorganic phosphate (Pi). Cells treated similarly, but without ATP show no transport and no appearance of Pi. 5. During the initial phase of transport, 1·3 mole Pi appear per mole Ca transported. 6. The transport of Ca from ATP-loaded cells is highly temperature-dependent, with a Q10 of 3·5. 7. Cell membrane adenosine triphosphatase (ATPase) activity of reversibly haemolysed cells is stimulated only by intracellular, and not by extracellular Ca. 8. Neither Ca transport in reversibly haemolysed cells, nor the Ca-Mg activated ATPase of isolated cell membranes is sensitive to Na, K, ouabain or oligomycin. 9. Mg is not transported under the conditions which reveal Ca transport, but Mg appears to be necessary for Ca transport. 10. Sr is transported from reversibly haemolysed Mg-ATP-loaded cells. Sr also can substitute for Ca, but not for Mg, in the activation of membrane ATPase. 11. It is concluded that, in addition to a low passive permeability, an

  12. Red Blood Cell Polymorphism and Susceptibility to Plasmodium vivax

    PubMed Central

    Zimmerman, Peter A.; Ferreira, Marcelo U.; Howes, Rosalind E.; Mercereau-Puijalon, Odile

    2013-01-01

    Resistance to Plasmodium vivax blood-stage infection has been widely recognised to result from absence of the Duffy (Fy) blood group from the surface of red blood cells (RBCs) in individuals of African descent. Interestingly, recent studies from different malaria-endemic regions have begun to reveal new perspectives on the association between Duffy gene polymorphism and P. vivax malaria. In Papua New Guinea and the Americas, heterozygous carriers of a Duffy-negative allele are less susceptible to P. vivax infection than Duffy-positive homozygotes. In Brazil, studies show that the Fya antigen, compared to Fyb, is associated with lower binding to the P. vivax Duffy-binding protein and reduced susceptibility to vivax malaria. Additionally, it is interesting that numerous studies have now shown that P. vivax can infect RBCs and cause clinical disease in Duffy-negative people. This suggests that the relationship between P. vivax and the Duffy antigen is more complex than customarily described. Evidence of P. vivax Duffy-independent red cell invasion indicates that the parasite must be evolving alternative red cell invasion pathways. In this chapter, we review the evidence for P. vivax Duffy-dependent and Duffy-independent red cell invasion. We also consider the influence of further host gene polymorphism associated with malaria endemicity on susceptibility to vivax malaria. The interaction between the parasite and the RBC has significant potential to influence the effectiveness of P. vivax-specific vaccines and drug treatments. Ultimately, the relationships between red cell polymorphisms and P. vivax blood-stage infection will influence our estimates on the population at risk and efforts to eliminate vivax malaria. PMID:23384621

  13. Red blood cell and iron metabolism during space flight.

    PubMed

    Smith, Scott M

    2002-10-01

    Space flight anemia is a widely recognized phenomenon in astronauts. Reduction in circulating red blood cells and plasma volume results in a 10% to 15% decrement in circulatory volume. This effect appears to be a normal physiologic adaptation to weightlessness and results from the removal of newly released blood cells from the circulation. Iron availability increases, and (in the few subjects studied) iron stores increase during long-duration space flight. The consequences of these changes are not fully understood. PMID:12361780

  14. Red blood cell and iron metabolism during space flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2002-01-01

    Space flight anemia is a widely recognized phenomenon in astronauts. Reduction in circulating red blood cells and plasma volume results in a 10% to 15% decrement in circulatory volume. This effect appears to be a normal physiologic adaptation to weightlessness and results from the removal of newly released blood cells from the circulation. Iron availability increases, and (in the few subjects studied) iron stores increase during long-duration space flight. The consequences of these changes are not fully understood.

  15. Label-free quantitative cell division monitoring of endothelial cells by digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Bauwens, Andreas; Vollmer, Angelika; Ketelhut, Steffi; Langehanenberg, Patrik; Müthing, Johannes; Karch, Helge; von Bally, Gert

    2010-05-01

    Digital holographic microscopy (DHM) enables quantitative multifocus phase contrast imaging for nondestructive technical inspection and live cell analysis. Time-lapse investigations on human brain microvascular endothelial cells demonstrate the use of DHM for label-free dynamic quantitative monitoring of cell division of mother cells into daughter cells. Cytokinetic DHM analysis provides future applications in toxicology and cancer research.

  16. Backward elastic light scattering of malaria infected red blood cells

    NASA Astrophysics Data System (ADS)

    Lee, Seungjun; Lu, Wei

    2011-08-01

    We investigated the backward light scattering pattern of healthy and malaria (Plasmodium falciparum) parasitized red blood cells. The spectrum could clearly distinguish between predominant ring stage infected blood cells and healthy blood cells. Further, we found that infected samples mixed with different stages of P. falciparum showed different signals, suggesting that even variance in parasite stages could also be detected by the spectrum. These results together with the backward scattering technique suggest the potential of non-invasive diagnosis of malaria through light scattering of blood cells near the surface of human body, such as using eyes or skin surface.

  17. Intracellular energetic units in red muscle cells.

    PubMed Central

    Saks, V A; Kaambre, T; Sikk, P; Eimre, M; Orlova, E; Paju, K; Piirsoo, A; Appaix, F; Kay, L; Regitz-Zagrosek, V; Fleck, E; Seppet, E

    2001-01-01

    The kinetics of regulation of mitochondrial respiration by endogenous and exogenous ADP in muscle cells in situ was studied in skinned cardiac and skeletal muscle fibres. Endogenous ADP production was initiated by addition of MgATP; under these conditions the respiration rate and ADP concentration in the medium were dependent on the calcium concentration, and 70-80% of maximal rate of respiration was achieved at ADP concentration below 20 microM in the medium. In contrast, when exogenous ADP was added, maximal respiration rate was observed only at millimolar concentrations. An exogenous ADP-consuming system consisting of pyruvate kinase (PK; 20-40 units/ml) and phosphoenolpyruvate (PEP; 5 mM), totally suppressed respiration activated by exogenous ADP, but the respiration maintained by endogenous ADP was not suppressed by more than 20-40%. Creatine (20 mM) further activated respiration in the presence of ATP and PK+PEP. Short treatment with trypsin (50-500 nM for 5 min) decreased the apparent K(m) for exogenous ADP from 300-350 microM to 50-60 microM, increased inhibition of respiration by PK+PEP system up to 70-80%, with no changes in MgATPase activity and maximal respiration rates. Electron-microscopic observations showed detachment of mitochondria and disordering of the regular structure of the sarcomere after trypsin treatment. Two-dimensional electrophoresis revealed a group of at least seven low-molecular-mass proteins in cardiac skinned fibres which were very sensitive to trypsin and not present in glycolytic fibres, which have low apparent K(m) for exogenous ADP. It is concluded that, in oxidative muscle cells, mitochondria are incorporated into functional complexes ('intracellular energetic units') with adjacent ADP-producing systems in myofibrils and in sarcoplasmic reticulum, probably due to specific interaction with cytoskeletal elements responsible for mitochondrial distribution in the cell. It is suggested that these complexes represent the basic

  18. Activated polymorphonuclear cells increase sickle red blood cell retention in lung: role of phospholipids.

    PubMed

    Haynes, Johnson; Obiako, Boniface

    2002-01-01

    This study investigates the role of the activated polymorphonuclear cell (APMN) products on sickle red blood cell (SRBC) retention/adherence in the pulmonary circulation. Isolated rat lungs were perfused with (51)Cr-labeled normal RBCs (NRBC) or SRBCs (10% hematocrit) suspensions +/- PMNs. Specific activities of lung and perfusate were measured and retention (the number of SRBC/g lung) was calculated. SRBC retention was 3.5 times greater than NRBC retention. PMN activation was required to increase SRBC retention. Supernatants from APMN increased SRBC retention, which suggested soluble products such as oxidants, PAF, and/or leukotriene (LTB(4)) are involved. Heat inactivation of PMN NADPH oxidase had no effect on retention. Whereas neither platelet-activating factor (PAF) nor LTB(4) (secreted by APMN) increased SRBC retention, PAF+LTB(4) did. The PAF antagonist, WEB-2170, attenuated SRBC retention mediated by PAF+LTB(4) and APMNs. Similarly, zileuton (5-lipoxygenase inhibitor) attenuated APMN-mediated SRBC retention. We conclude the concomitant release of PAF and LTB(4) from APMN is involved in the initiation of microvascular occlusion by SRBCs in the perfused rat lung. PMID:11748055

  19. Membranotropic photobiomodulation on red blood cell deformability

    NASA Astrophysics Data System (ADS)

    Luo, Gang-Yue; Zhao, Yan-Ping; Liu, Timon C.; Liu, Song-Hao

    2007-05-01

    To assess modulation of laser on erythrocyte permeability and deformability via cell morphology changes, healthy human echinocytes with shrinking size and high plasmic viscosity due to cellular dehydration were treated with 1 mW, 2 mW, 3 mW, and 5 mW laser power exposure respectively. Image analyzing system on single intact erythrocyte was applied for measuring comprehensive cell morphological parameters (surface area, external membrane perimeter, circle index and elongation index) that were determined by the modulation of erythrocyte water permeability and deformability to detect relationship between erythrocyte water permeability alteration and deformability. Our preliminary experiment showed that exposure under light dose of 5 mW for 5 min could induce more active erythrocyte swelling and deformation. water channel aquaporin-1(AQP-1) was inhibited by the incubation of HgCl II in the presence and absence of 5 mW laser irradiation. The result suggested that osmotic water permeability is a primary factor in the procedure of erythrocyte deformability. In addition, no modulation of laser(5mW) on erythrocyte deformability had been found when the echinocytes were cultured with GDP-β-S (G protein inhibitor).

  20. Broad-host-range plasmids for red fluorescent protein labeling of gram-negative bacteria for use in the zebrafish model system.

    PubMed

    Singer, John T; Phennicie, Ryan T; Sullivan, Matthew J; Porter, Laura A; Shaffer, Valerie J; Kim, Carol H

    2010-06-01

    To observe real-time interactions between green fluorescent protein-labeled immune cells and invading bacteria in the zebrafish (Danio rerio), a series of plasmids was constructed for the red fluorescent protein (RFP) labeling of a variety of fish and human pathogens. The aim of this study was to create a collection of plasmids that would express RFP pigments both constitutively and under tac promoter regulation and that would be nontoxic and broadly transmissible to a variety of Gram-negative bacteria. DNA fragments encoding the RFP dimeric (d), monomeric (m), and tandem dimeric (td) derivatives d-Tomato, td-Tomato, m-Orange, and m-Cherry were cloned into the IncQ-based vector pMMB66EH in Escherichia coli. Plasmids were mobilized into recipient strains by conjugal mating. Pigment production was inducible in Escherichia coli, Pseudomonas aeruginosa, Edwardsiella tarda, and Vibrio (Listonella) anguillarum strains by isopropyl-beta-d-thiogalactopyranoside (IPTG) treatment. A spontaneous mutant exconjugant of P. aeruginosa PA14 was isolated that expressed td-Tomato constitutively. Complementation analysis revealed that the constitutive phenotype likely was due to a mutation in lacI(q) carried on pMMB66EH. DNA sequence analysis confirmed the presence of five transitions, four transversions, and a 2-bp addition within a 14-bp region of lacI. Vector DNA was purified from this constitutive mutant, and structural DNA sequences for RFP pigments were cloned into the constitutive vector. Exconjugants of P. aeruginosa, E. tarda, and V. anguillarum expressed all pigments in an IPTG-independent fashion. Results from zebrafish infectivity studies indicate that RFP-labeled pathogens will be useful for the study of real-time interactions between host cells of the innate immune system and the infecting pathogen. PMID:20363780

  1. Broad-Host-Range Plasmids for Red Fluorescent Protein Labeling of Gram-Negative Bacteria for Use in the Zebrafish Model System▿ †

    PubMed Central

    Singer, John T.; Phennicie, Ryan T.; Sullivan, Matthew J.; Porter, Laura A.; Shaffer, Valerie J.; Kim, Carol H.

    2010-01-01

    To observe real-time interactions between green fluorescent protein-labeled immune cells and invading bacteria in the zebrafish (Danio rerio), a series of plasmids was constructed for the red fluorescent protein (RFP) labeling of a variety of fish and human pathogens. The aim of this study was to create a collection of plasmids that would express RFP pigments both constitutively and under tac promoter regulation and that would be nontoxic and broadly transmissible to a variety of Gram-negative bacteria. DNA fragments encoding the RFP dimeric (d), monomeric (m), and tandem dimeric (td) derivatives d-Tomato, td-Tomato, m-Orange, and m-Cherry were cloned into the IncQ-based vector pMMB66EH in Escherichia coli. Plasmids were mobilized into recipient strains by conjugal mating. Pigment production was inducible in Escherichia coli, Pseudomonas aeruginosa, Edwardsiella tarda, and Vibrio (Listonella) anguillarum strains by isopropyl-β-d-thiogalactopyranoside (IPTG) treatment. A spontaneous mutant exconjugant of P. aeruginosa PA14 was isolated that expressed td-Tomato constitutively. Complementation analysis revealed that the constitutive phenotype likely was due to a mutation in lacIq carried on pMMB66EH. DNA sequence analysis confirmed the presence of five transitions, four transversions, and a 2-bp addition within a 14-bp region of lacI. Vector DNA was purified from this constitutive mutant, and structural DNA sequences for RFP pigments were cloned into the constitutive vector. Exconjugants of P. aeruginosa, E. tarda, and V. anguillarum expressed all pigments in an IPTG-independent fashion. Results from zebrafish infectivity studies indicate that RFP-labeled pathogens will be useful for the study of real-time interactions between host cells of the innate immune system and the infecting pathogen. PMID:20363780

  2. Red blood cell sodium heteroexchange in familial primary hypertrophic cardiomyopathy.

    PubMed

    Semplicini, A; Mozzato, M G; Bongiovi, S; Marzola, M; Macor, F; Ceolotto, G; Serena, L; Pessina, A C

    1994-03-01

    The hallmark of primary hypertrophic cardiomyopathy is an inappropriate myocardial hypertrophy, linked to myofibril disarray of the left ventricle. Its variable clinical expression may be due to genetic heterogeneity and variable penetrance. Since we have recently shown that abnormalities of cation transport in the erythrocytes are associated with cardiac hypertrophy in essential hypertensives and insulin-dependent diabetics, we have investigated the relationship between cardiac anatomy and function and red cell Li+/Na+ and Na+/H+ exchange in 33 relatives of a patient who died of cardiac failure and was found to have a primary hypertrophic cardiomyopathy at autopsy. According to echocardiographic examination, 11 members of the family also had a hypertrophic cardiomyopathy, with a family distribution compatible with autosomal dominant genetic transmission and variable penetrance. Red cell Li+/Na+ and Na+/H+ exchange were not significantly different in the affected members as compared to the unaffected, but in the former, after correction for potentially confounding variables, interventricular septum thickness was positively correlated to Na+/H+ exchange and diastolic function (Area E/Area A and Vmax E/Vmax A) negatively correlated to Li+/Na+ exchange. Since a generalized overactivity of the cell membrane Na+/H+ exchange, reflected by increased Na+/H+ and Li+/Na+ exchanges in the red cells, could favour cellular growth and diastolic dysfunction, our data suggest that abnormalities of cell membrane cation transport could play a role in the phenotypic expression of hypertrophic cardiomyopathy. PMID:8013504

  3. Labeling Cytosolic Targets in Live Cells with Blinking Probes

    PubMed Central

    Xu, Jianmin; Chang, Jason; Yan, Qi; Dertinger, Thomas; Bruchez, Marcel; Weiss, Shimon

    2013-01-01

    With the advent of superresolution imaging methods, fast dynamic imaging of biological processes in live cells remains a challenge. A subset of these methods requires the cellular targets to be labeled with spontaneously blinking probes. The delivery and specific targeting of cytosolic targets and the control of the probes’ blinking properties are reviewed for three types of blinking probes: quantum dots, synthetic dyes, and fluorescent proteins. PMID:23930154

  4. Ultra-fast stem cell labelling using cationised magnetoferritin

    NASA Astrophysics Data System (ADS)

    Correia Carreira, S.; Armstrong, J. P. K.; Seddon, A. M.; Perriman, A. W.; Hartley-Davies, R.; Schwarzacher, W.

    2016-03-01

    Magnetic cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) facilitates many important biotechnological applications, such as cell imaging and remote manipulation. However, to achieve adequate cellular loading of SPIONs, long incubation times (24 hours and more) or laborious surface functionalisation are often employed, which can adversely affect cell function. Here, we demonstrate that chemical cationisation of magnetoferritin produces a highly membrane-active nanoparticle that can magnetise human mesenchymal stem cells (hMSCs) using incubation times as short as one minute. Magnetisation persisted for several weeks in culture and provided significant T2* contrast enhancement during magnetic resonance imaging. Exposure to cationised magnetoferritin did not adversely affect the membrane integrity, proliferation and multi-lineage differentiation capacity of hMSCs, which provides the first detailed evidence for the biocompatibility of magnetoferritin. The combination of synthetic ease and flexibility, the rapidity of labelling and absence of cytotoxicity make this novel nanoparticle system an easily accessible and versatile platform for a range of cell-based therapies in regenerative medicine.Magnetic cell labelling with superparamagnetic iron oxide nanoparticles (SPIONs) facilitates many important biotechnological applications, such as cell imaging and remote manipulation. However, to achieve adequate cellular loading of SPIONs, long incubation times (24 hours and more) or laborious surface functionalisation are often employed, which can adversely affect cell function. Here, we demonstrate that chemical cationisation of magnetoferritin produces a highly membrane-active nanoparticle that can magnetise human mesenchymal stem cells (hMSCs) using incubation times as short as one minute. Magnetisation persisted for several weeks in culture and provided significant T2* contrast enhancement during magnetic resonance imaging. Exposure to cationised

  5. Alterations of Red Cell Membrane Properties in Nneuroacanthocytosis

    PubMed Central

    Siegl, Claudia; Hamminger, Patricia; Jank, Herbert; Ahting, Uwe; Bader, Benedikt; Danek, Adrian; Gregory, Allison; Hartig, Monika; Hayflick, Susan; Hermann, Andreas; Prokisch, Holger; Sammler, Esther M.; Yapici, Zuhal; Prohaska, Rainer; Salzer, Ulrich

    2013-01-01

    Neuroacanthocytosis (NA) refers to a group of heterogenous, rare genetic disorders, namely chorea acanthocytosis (ChAc), McLeod syndrome (MLS), Huntington’s disease-like 2 (HDL2) and pantothenate kinase associated neurodegeneration (PKAN), that mainly affect the basal ganglia and are associated with similar neurological symptoms. PKAN is also assigned to a group of rare neurodegenerative diseases, known as NBIA (neurodegeneration with brain iron accumulation), associated with iron accumulation in the basal ganglia and progressive movement disorder. Acanthocytosis, the occurrence of misshaped erythrocytes with thorny protrusions, is frequently observed in ChAc and MLS patients but less prevalent in PKAN (about 10%) and HDL2 patients. The pathological factors that lead to the formation of the acanthocytic red blood cell shape are currently unknown. The aim of this study was to determine whether NA/NBIA acanthocytes differ in their functionality from normal erythrocytes. Several flow-cytometry-based assays were applied to test the physiological responses of the plasma membrane, namely drug-induced endocytosis, phosphatidylserine exposure and calcium uptake upon treatment with lysophosphatidic acid. ChAc red cell samples clearly showed a reduced response in drug-induced endovesiculation, lysophosphatidic acid-induced phosphatidylserine exposure, and calcium uptake. Impaired responses were also observed in acanthocyte-positive NBIA (PKAN) red cells but not in patient cells without shape abnormalities. These data suggest an “acanthocytic state” of the red cell where alterations in functional and interdependent membrane properties arise together with an acanthocytic cell shape. Further elucidation of the aberrant molecular mechanisms that cause this acanthocytic state may possibly help to evaluate the pathological pathways leading to neurodegeneration. PMID:24098554

  6. Alterations of red cell membrane properties in neuroacanthocytosis.

    PubMed

    Siegl, Claudia; Hamminger, Patricia; Jank, Herbert; Ahting, Uwe; Bader, Benedikt; Danek, Adrian; Gregory, Allison; Hartig, Monika; Hayflick, Susan; Hermann, Andreas; Prokisch, Holger; Sammler, Esther M; Yapici, Zuhal; Prohaska, Rainer; Salzer, Ulrich

    2013-01-01

    Neuroacanthocytosis (NA) refers to a group of heterogenous, rare genetic disorders, namely chorea acanthocytosis (ChAc), McLeod syndrome (MLS), Huntington's disease-like 2 (HDL2) and pantothenate kinase associated neurodegeneration (PKAN), that mainly affect the basal ganglia and are associated with similar neurological symptoms. PKAN is also assigned to a group of rare neurodegenerative diseases, known as NBIA (neurodegeneration with brain iron accumulation), associated with iron accumulation in the basal ganglia and progressive movement disorder. Acanthocytosis, the occurrence of misshaped erythrocytes with thorny protrusions, is frequently observed in ChAc and MLS patients but less prevalent in PKAN (about 10%) and HDL2 patients. The pathological factors that lead to the formation of the acanthocytic red blood cell shape are currently unknown. The aim of this study was to determine whether NA/NBIA acanthocytes differ in their functionality from normal erythrocytes. Several flow-cytometry-based assays were applied to test the physiological responses of the plasma membrane, namely drug-induced endocytosis, phosphatidylserine exposure and calcium uptake upon treatment with lysophosphatidic acid. ChAc red cell samples clearly showed a reduced response in drug-induced endovesiculation, lysophosphatidic acid-induced phosphatidylserine exposure, and calcium uptake. Impaired responses were also observed in acanthocyte-positive NBIA (PKAN) red cells but not in patient cells without shape abnormalities. These data suggest an "acanthocytic state" of the red cell where alterations in functional and interdependent membrane properties arise together with an acanthocytic cell shape. Further elucidation of the aberrant molecular mechanisms that cause this acanthocytic state may possibly help to evaluate the pathological pathways leading to neurodegeneration. PMID:24098554

  7. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells

    PubMed Central

    Hofemeier, Arne D.; Hachmeister, Henning; Pilger, Christian; Schürmann, Matthias; Greiner, Johannes F. W.; Nolte, Lena; Sudhoff, Holger; Kaltschmidt, Christian; Huser, Thomas; Kaltschmidt, Barbara

    2016-01-01

    Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO43− symmetric stretch vibrations at 959 cm−1 assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue–implant-interfaces or disease diagnosis. PMID:27225821

  8. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells

    NASA Astrophysics Data System (ADS)

    Hofemeier, Arne D.; Hachmeister, Henning; Pilger, Christian; Schürmann, Matthias; Greiner, Johannes F. W.; Nolte, Lena; Sudhoff, Holger; Kaltschmidt, Christian; Huser, Thomas; Kaltschmidt, Barbara

    2016-05-01

    Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO43‑ symmetric stretch vibrations at 959 cm‑1 assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue–implant-interfaces or disease diagnosis.

  9. Label-free nonlinear optical microscopy detects early markers for osteogenic differentiation of human stem cells.

    PubMed

    Hofemeier, Arne D; Hachmeister, Henning; Pilger, Christian; Schürmann, Matthias; Greiner, Johannes F W; Nolte, Lena; Sudhoff, Holger; Kaltschmidt, Christian; Huser, Thomas; Kaltschmidt, Barbara

    2016-01-01

    Tissue engineering by stem cell differentiation is a novel treatment option for bone regeneration. Most approaches for the detection of osteogenic differentiation are invasive or destructive and not compatible with live cell analysis. Here, non-destructive and label-free approaches of Raman spectroscopy, coherent anti-Stokes Raman scattering (CARS) and second harmonic generation (SHG) microscopy were used to detect and image osteogenic differentiation of human neural crest-derived inferior turbinate stem cells (ITSCs). Combined CARS and SHG microscopy was able to detect markers of osteogenesis within 14 days after osteogenic induction. This process increased during continued differentiation. Furthermore, Raman spectroscopy showed significant increases of the PO4(3-) symmetric stretch vibrations at 959 cm(-1) assigned to calcium hydroxyapatite between days 14 and 21. Additionally, CARS microscopy was able to image calcium hydroxyapatite deposits within 14 days following osteogenic induction, which was confirmed by Alizarin Red-Staining and RT- PCR. Taken together, the multimodal label-free analysis methods Raman spectroscopy, CARS and SHG microscopy can monitor osteogenic differentiation of adult human stem cells into osteoblasts with high sensitivity and spatial resolution in three dimensions. Our findings suggest a great potential of these optical detection methods for clinical applications including in vivo observation of bone tissue-implant-interfaces or disease diagnosis. PMID:27225821

  10. Fluorogenic Green-Inside Red-Outside (GIRO) Labeling Approach Reveals Adenylyl Cyclase-Dependent Control of BKα Surface Expression

    PubMed Central

    2015-01-01

    The regulation of surface levels of protein is critical for proper cell function and influences properties including cell adhesion, ion channel contributions to current flux, and the sensitivity of surface receptors to ligands. Here we demonstrate a two-color labeling system in live cells using a single fluorogen activating peptide (FAP) based fusion tag, which enables the rapid and simultaneous quantification of surface and internal proteins. In the nervous system, BK channels can regulate neural excitability and neurotransmitter release, and the surface trafficking of BK channels can be modulated by signaling cascades and assembly with accessory proteins. Using this labeling approach, we examine the dynamics of BK channel surface expression in HEK293 cells. Surface pools of the pore-forming BKα subunit were stable, exhibiting a plasma membrane half-life of >10 h. Long-term activation of adenylyl cyclase by forskolin reduced BKα surface levels by 30%, an effect that could not be attributed to increased bulk endocytosis of plasma membrane proteins. This labeling approach is compatible with microscopic imaging and flow cytometry, providing a solid platform for examining protein trafficking in living cells. PMID:26301573