Science.gov

Sample records for laboratory collision experiments

  1. Investigating Attachment Behaviors of Cryptosporidium Parvum Oocysts Using Collision Efficiency in Laboratory Column Experiments

    NASA Astrophysics Data System (ADS)

    Park, Y.; Hou, L.; Atwill, R.; Packman, A. I.; Harter, T.

    2009-12-01

    Cryptosporidium is one of the most common enteric parasites of humans and domestic animals, and a number of outbreaks of Cryprosporidiosis, a diarrheal disease caused by Cryptosporidium have been reported worldwide. Natural porous media has been demonstrated to be an effective filter for removing Cryptosporidium parvum from contaminated water and the amount of Cryptosporidium filtered is known to be highly dependent on physical and chemical conditions of the porous media and the water. Cryptosporidium deposition in saturated porous media involves two main steps: approach and attachment. In contrast to the approach mechanisms, attachment processes have not been systematically described to predict a priori because theories that represent attachment behavior (colloid stability) such as DLVO are insufficient to explain experimental data. For this reason, attachment efficiency is calculated based on empirical data, typically experimental breakthrough curves in laboratory columns or field experiments. In this study, collision (attachment) efficiencies (α) of C. parvum oocyst were calculated to test the effect of chemical property changes on the association of oocysts with sand grains. The breakthrough curve data obtained from twelve column experiments and three models were employed to calculate single collector efficiency (η) and α. The first ten experiments were conducted by changing ionic strength and pH, and mixing with natural sediments under the same physical properties (same η). Our experiment results show that iron coating or clay/suspended solids mixture drastically enhanced oocyst deposition. The experiments also showed that increase in ionic strength and decrease in pH enhanced the attachment efficiency. However, the experiment with 100mM NaCl resulted in low attachment efficiency and the experiment with pH 8.5 showed similar attachment efficiency to the one at pH 7. Based on the results from two additional experiments with different flow velocities, it

  2. Verification of Compton Collision and Klein-Nishina Formulas--An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Singhal, R. P.; Burns, A. J.

    1978-01-01

    Describes an experiment to verify the Compton collision formula and the angular dependance of the Klein-Nishina formula. Equipment used is a 1-mCi(137)Cs source, 2x2 in. NaI detector and a multichannel analyzer. Suitable for honor undergraduates. (Author/GA)

  3. The outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals?. I. Mapping the zoo of laboratory collision experiments

    NASA Astrophysics Data System (ADS)

    Güttler, C.; Blum, J.; Zsom, A.; Ormel, C. W.; Dullemond, C. P.

    2010-04-01

    Context. The growth processes from protoplanetary dust to planetesimals are not fully understood. Laboratory experiments and theoretical models have shown that collisions among the dust aggregates can lead to sticking, bouncing, and fragmentation. However, no systematic study on the collisional outcome of protoplanetary dust has been performed so far, so that a physical model of the dust evolution in protoplanetary disks is still missing. Aims: We intend to map the parameter space for the collisional interaction of arbitrarily porous dust aggregates. This parameter space encompasses the dust-aggregate masses, their porosities and the collision velocity. With such a complete mapping of the collisional outcomes of protoplanetary dust aggregates, it will be possible to follow the collisional evolution of dust in a protoplanetary disk environment. Methods: We use literature data, perform laboratory experiments, and apply simple physical models to get a complete picture of the collisional interaction of protoplanetary dust aggregates. Results: We found four different kinds of sticking, two kinds of bouncing, and three kinds of fragmentation as possible outcomes in collisions among protoplanetary dust aggregates. Our best collision model distinguishes between porous and compact dust. We also differentiate between collisions among similar-sized and different-sized bodies. All in all, eight combinations of porosity and mass ratio can be discerned. For each of these cases, we present a complete collision model for dust-aggregate masses between 10-12 and 102 g and collision velocities in the range of 10-4 ldots 104 cm s-1 for arbitrary porosities. This model comprises the collisional outcome, the mass(es) of the resulting aggregate(s) and their porosities. Conclusions: We present the first complete collision model for protoplanetary dust. This collision model can be used for the determination of the dust-growth rate in protoplanetary disks. This paper is dedicated to the

  4. Alfvén wave collisions, the fundamental building block of plasma turbulence. IV. Laboratory experiment

    SciTech Connect

    Drake, D. J.; Schroeder, J. W. R.; Howes, G. G.; Kletzing, C. A.; Skiff, F.; Carter, T. A.; Auerbach, D. W.

    2013-07-15

    Turbulence is a phenomenon found throughout space and astrophysical plasmas. It plays an important role in solar coronal heating, acceleration of the solar wind, and heating of the interstellar medium. Turbulence in these regimes is dominated by Alfvén waves. Most turbulence theories have been established using ideal plasma models, such as incompressible MHD. However, there has been no experimental evidence to support the use of such models for weakly to moderately collisional plasmas which are relevant to various space and astrophysical plasma environments. We present the first experiment to measure the nonlinear interaction between two counterpropagating Alfvén waves, which is the building block for astrophysical turbulence theories. We present here four distinct tests that demonstrate conclusively that we have indeed measured the daughter Alfvén wave generated nonlinearly by a collision between counterpropagating Alfvén waves.

  5. Ball Collision Experiments

    ERIC Educational Resources Information Center

    Cross, R.

    2015-01-01

    Experiments are described on collisions between two billiard balls and between a bat and a ball. The experiments are designed to extend a student's understanding of collision events and could be used either as a classroom demonstration or for a student project.

  6. Collision experiments with fullerenes

    NASA Astrophysics Data System (ADS)

    Campbell, E. E. B.; Ehlich, R.; Westerburg, M.; Hertel, I. V.

    1993-12-01

    Relative fragmentation cross sections for fullerene ion collisions with rare gas atoms and SF6 are presented over a range of collision energies. Structure in the cross sections and threshold energy determinations can shed some light on the fragmentation dynamics. Cluster cluster collisions with fullerenes are also described which show evidence of fusion reactions.

  7. COLLIDE: Collisions into Dust Experiment

    NASA Technical Reports Server (NTRS)

    Colwell, Joshua E.

    1999-01-01

    The Collisions Into Dust Experiment (COLLIDE) was completed and flew on STS-90 in April and May of 1998. After the experiment was returned to Earth, the data and experiment were analyzed. Some anomalies occurred during the flight which prevented a complete set of data from being obtained. However, the experiment did meet its criteria for scientific success and returned surprising results on the outcomes of very low energy collisions into powder. The attached publication, "Low Velocity Microgravity Impact Experiments into Simulated Regolith," describes in detail the scientific background, engineering, and scientific results of COLLIDE. Our scientific conclusions, along with a summary of the anomalies which occurred during flight, are contained in that publication. We offer it as our final report on this grant.

  8. RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT

    SciTech Connect

    Friedlander, Erwin M.; Heckman, Harry H.

    1982-04-01

    Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.

  9. Two LANL laboratory astrophysics experiments

    SciTech Connect

    Intrator, Thomas P.

    2014-01-24

    Two laboratory experiments are described that have been built at Los Alamos (LANL) to gain access to a wide range of fundamental plasma physics issues germane to astro, space, and fusion plasmas. The overarching theme is magnetized plasma dynamics which includes significant currents, MHD forces and instabilities, magnetic field creation and annihilation, sheared flows and shocks. The Relaxation Scaling Experiment (RSX) creates current sheets and flux ropes that exhibit fully 3D dynamics, and can kink, bounce, merge and reconnect, shred, and reform in complicated ways. Recent movies from a large data set describe the 3D magnetic structure of a driven and dissipative single flux rope that spontaneously self-saturates a kink instability. Examples of a coherent shear flow dynamo driven by colliding flux ropes will also be shown. The Magnetized Shock Experiment (MSX) uses Field reversed configuration (FRC) experimental hardware that forms and ejects FRCs at 150km/sec. This is sufficient to drive a collision less magnetized shock when stagnated into a mirror stopping field region with Alfven Mach number MA=3 so that super critical shocks can be studied. We are building a plasmoid accelerator to drive Mach numbers MA >> 3 to access solar wind and more exotic astrophysical regimes. Unique features of this experiment include access to parallel, oblique and perpendicular shocks, shock region much larger than ion gyro radii and ion inertial length, room for turbulence, and large magnetic and fluid Reynolds numbers.

  10. Estimating collision efficiencies from contact freezing experiments

    NASA Astrophysics Data System (ADS)

    Nagare, B.; Marcolli, C.; Stetzer, O.; Lohmann, U.

    2015-04-01

    Interactions of atmospheric aerosols with clouds influence cloud properties and modify the aerosol life cycle. Aerosol particles act as cloud condensation nuclei and ice nucleating particles or become incorporated into cloud droplets by scavenging. For an accurate description of aerosol scavenging and ice nucleation in contact mode, collision efficiency between droplets and aerosol particles needs to be known. This study derives the collision rate from experimental contact freezing data obtained with the ETH Collision Ice Nucleation Chamber CLINCH. Freely falling 80 μm water droplets are exposed to an aerosol consisting of 200 nm diameter silver iodide particles of concentrations from 500-5000 cm-3, which act as ice nucleating particles in contact mode. The chamber is kept at ice saturation in the temperature range from 236-261 K leading to slow evaporation of water droplets giving rise to thermophoresis and diffusiophoresis. Droplets and particles bear charges inducing electrophoresis. The experimentally derived collision efficiency of 0.13 is around one order of magnitude higher than theoretical formulations which include Brownian diffusion, impaction, interception, thermophoretic, diffusiophoretic and electric forces. This discrepancy is most probably due to uncertainties and inaccuracies in the description of thermophoretic and diffusiophoretic processes acting together. This is to the authors knowledge the first dataset of collision efficiencies acquired below 273 K. More such experiments with different droplet and particle diameters are needed to improve our understanding of collision processes acting together.

  11. Organic Laboratory Experiments.

    ERIC Educational Resources Information Center

    Smith, Sherrel

    1990-01-01

    Detailed is a method in which short pieces of teflon tubing may be used for collection tubes for collecting preparative fractions from gas chromatographs. Material preparation, laboratory procedures, and results of this method are discussed. (CW)

  12. Kinetic simulation of a plasma collision experiment

    SciTech Connect

    Larroche, O. )

    1993-08-01

    The ionic Fokker--Planck code which was written for describing plasma shock wave fronts [M. Casanova [ital et] [ital al]. Phys. Rev. Lett. [bold 67], 2143 (1991)] is applied to model the collision of two plasmas in plane geometry. Improvements brought to the code for that purpose are described. The initial phase of the experiment during which the plasmas interpenetrate is accounted for by a simple fluid model, which yields qualitative insight into the phenomena at play as well as an initial condition to start the kinetic simulation. The kinetic results obtained in the stagnation and thermalization phases are discussed with respect to a specific laser-produced plasma collision experiment, as well as to existing fluid and kinetic ( particle-in-cell'') simulations.

  13. Kinetic simulation of a plasma collision experiment

    NASA Astrophysics Data System (ADS)

    Larroche, Olivier

    1993-08-01

    The ionic Fokker-Planck code which was written for describing plasma shock wave fronts [M. Casanova et al. Phys. Rev. Lett. 67, 2143 (1991)] is applied to model the collision of two plasmas in plane geometry. Improvements brought to the code for that purpose are described. The initial phase of the experiment during which the plasmas interpenetrate is accounted for by a simple fluid model, which yields qualitative insight into the phenomena at play as well as an initial condition to start the kinetic simulation. The kinetic results obtained in the stagnation and thermalization phases are discussed with respect to a specific laser-produced plasma collision experiment, as well as to existing fluid and kinetic (``particle-in-cell'') simulations.

  14. COLLIDE-2: Collisions Into Dust Experiment-2

    NASA Technical Reports Server (NTRS)

    Colwell, Joshua E.

    2002-01-01

    The Collisions Into Dust Experimental (COLLIDE-2) was the second flight of the COLLIDE payload. The payload performs six low-velocity impact experiments to study the collisions that are prevalent in planetary ring systems and in the early stages of planet formation. Each impact experiment is into a target of granular material, and the impacts occur at speeds between 1 and 100 cm/s in microgravity and in a vacuum. The experiments are recorded on digital videotape which is later analyzed. During the period of performance a plan was developed to address some of the technical issues that prevented the first flight of COLLIDE from being a complete success, and also to maximize the scientific return based on the science results from the first flight. The experiment was modified following a series of reviews of the design plan, and underwent extensive testing. The data from the experiment show that the primary goal of identifying transition regimes for low-velocity impacts based on cratering versus accretion was achieved. Following a brief period of storage, the experiment flew regimes for low-velocity impacts based on cratering versus accretion was achieved. as a Hitchhiker payload on the MACH-1 Hitchhiker bridge on STS-108 in December 2001. These data have been analyzed and submitted for publication. That manuscript is attached to this report. The experiment was retrieved in January 2002, and all six impact experiments functioned nominally. Preliminary results were reported at the Lunar and Planetary Science Conference.

  15. Laboratory atmospheric compensation experiment

    NASA Astrophysics Data System (ADS)

    Drutman, C.; Moran, James P.; Faria-e-Maia, Francisco; Hyman, Howard; Russell, Jeffrey A.

    1993-06-01

    This paper describes an in-house experiment that was performed at the Avco Research Labs/Textron to test a proprietary atmospheric phase compensation algorithm. Since the laser energies of interest were small enough that thermal blooming was not an issue, it was only necessary to simulate the effect of atmospheric turbulence. This was achieved by fabricating phase screens that mimicked Kolmogorov phase statistics. A simulated atmosphere was constructed from these phase screens and the phase at the simulated ground was measured with a digital heterodyne interferometer. The result of this effort was an initial verification of our proprietary algorithm two years before the field experiment.

  16. Impact Crater Experiments for Introductory Physics and Astronomy Laboratories

    ERIC Educational Resources Information Center

    Claycomb, J. R.

    2009-01-01

    Activity-based collisional analysis is developed for introductory physics and astronomy laboratory experiments. Crushable floral foam is used to investigate the physics of projectiles undergoing completely inelastic collisions with a low-density solid forming impact craters. Simple drop experiments enable determination of the average acceleration,…

  17. Change of Collision Efficiency with Distance in Bacterial Transport Experiements

    SciTech Connect

    Dong, Hailiang; Scheibe, Timothy D.; Johnson, William P.; Monkman, Crystal; Fuller, Mark E.

    2006-05-01

    Previous bacterial transport studies have shown decreased bacterial adhesion with transport distance, largely based on laboratory core experiments. An inferred effect of microbial population variability is invoked to interpret experimental data, but there lacks direct measurement at field-scale, especially in correlation of transport distance with change of bacterial surface properties. This study was undertaken to determine change of collision efficiency with transport distance, taking advantage of the bacterial transport experiment in Oyster, VA in the summer of 2001. Upon injection of an adhesion deficient strain, Comamonas sp. DA001 into a up-gradient well, bacterial samples were taken from multi-level samplers along the flow path, and were injected into cores of 40 cm in length and 7.5 cm in diameter packed with homogenized sediment from the same site, South Oyster focus area (SOFA). Bacterial suspension samples were also measured for bacterial electrophoretic mobility distribution. Using filtration theory, collision efficiency, the probability of bacterial attachment to the grain surfaces upon collision and a quantitative measure of bacterial adhesion, was determined using CXTFIT model fitted attachment rate, measured grain size (10th percentile), porosity, flow velocity, and collector efficiency. Collision efficiency was also determined based on the fraction of retention in the cores. Contrary to previous results and interpretation of field-scale breakthrough curves, our experimentally determined collision efficiency increases with transport distance in the core experiments, which correlates with increasingly negative surface charge of the injected bacteria. Therefore we conclude that the apparent decrease in adhesion with transport distance in the field is strongly controlled by field-scale heterogeneity in physical and chemical aquifer properties and not by microbial population heterogeneity.

  18. Submillimeter Laboratory Investigations: Spectroscopy and Collisions

    NASA Technical Reports Server (NTRS)

    Herbst, Eric; DeLucia, Frank C.

    2002-01-01

    Currently, millimeter-wave and submillimeter-wave spectroscopy is conducted in our laboratory on several different types of spectrometers. Our standard spectrometer utilizes the output of a phase-locked klystron operating in the 40-60 GHz region, which is sent into a crossed-waveguide harmonic generator, or "multiplier". The high frequency millimeter-and submillimeter-wave radiation is transmitted via quasi-optical techniques through an absorption cell and then onto a detector, which is either an InSb hot electron bolometer cooled to 1.4 K or a Si bolometer cooled to 0.3 K. The detector response is sent to a computer for measurement and analysis. The frequency range produced and detected in this manner goes from 80 GHz to upwards of 1 THz. Spectra are normally taken with source modulation, with line frequencies typically measured to an accuracy of 50-100 kHz. Higher accuracy is available when needed. Recently, we developed a new, broad-band spectrometer in our laboratory based on a free-running backward wave oscillator (BWO) of Russian manufacture as the primary source of radiation. The so-called FASSST (fast-scan submillimeter spectroscopic technique) system uses fast-scan and optical calibration methods rather than the traditional locking techniques. The output power from the BWO is split such that 90% goes into the absorption cell while 10% is coupled to a 40-meter Fabry-Perot cavity, which yields fringe? for frequency measurement. Results from this spectrometer on the spectrum of nitric acid (HNO3) show that 100 GHz of spectral data can be obtained in 5 seconds with a measurement accuracy of 50 kHz. Currently, the frequency range of the FASSST system in our laboratory is roughly 100-700 GHz.

  19. Computer-Enhanced Laboratory Experience

    ERIC Educational Resources Information Center

    Davis, Leslie N.; And Others

    1973-01-01

    Discusses a laboratory course with computer-assisted instruction which emphasizes uses of simulated data, students' improvement of experiments, and presentation of a tutorial self-test mode. Indicates that students' enthusiasm is mostly due to computer's potential for in-depth interactivity and conformity to real-life situations. (CC)

  20. High charge state, ion-atom collision experiments using accel-decel

    SciTech Connect

    Bernstein, E.M.; Clark, M.W.; Tanis, J.A.; Graham, W.G.

    1987-01-01

    Recent studies of /sub 16/S/sup 13 +/ + He collisions between 2.5 and 200 MeV, which were made using the accel-decel technique with the Brookhaven National Laboratory coupled MP tandem Van de Graaff accelerators, are discussed. Cross sections were measured for single electron-capture and -loss as well as K x rays correlated to electron-capture. Other planned ion-atom collision experiments requiring accel-decel are also presented. 18 refs., 3 figs.

  1. Laboratory experiments in atmospheric optics.

    PubMed

    Vollmer, M; Tammer, R

    1998-03-20

    Old and new laboratory experiments on atmospheric optics with a focus on mirages, rainbows, and halos are presented. Some qualitative demonstrations serve primarily didactical purposes, e.g., by proving the existence of curved light rays in media with a gradient of the index of refraction, by directly visualizing the minimum-deviation curve for rainbow paths in water droplets, or by helping to elucidate the ray classes in hexagons that contribute to a specific halo. In addition, quantitative experiments allow a direct comparison of angular positions and intensities with analytical computations or Monte Carlo simulations of light scattering from small water droplets or ice hexagons. In particular, the latter can help us to understand complex halo phenomena. PMID:18268748

  2. Laboratory experiments in atmospheric optics.

    PubMed

    Vollmer, M; Tammer, R

    1999-08-16

    Old and new laboratory experiments on atmospheric optics with a focus on mirages, rainbows, and halos are presented. Some qualitative demonstrations serve primarily didactical purposes, e.g., by proving the existence of curved light rays in media with a gradient of the index of refraction, by directly visualizing the minimum-deviation curve for rainbow paths in water droplets, or by helping to elucidate the ray classes in hexagons that contribute to a specific halo. In addition, quantitative experiments allow a direct comparison of angular positions and intensities with analytical computations or Monte Carlo simulations of light scattering from small water droplets or ice hexagons. In particular, the latter can help us to understand complex halo phenomena. PMID:19399049

  3. Customized Laboratory Experience in Physical Chemistry

    ERIC Educational Resources Information Center

    Castle, Karen J.; Rink, Stephanie M.

    2010-01-01

    A new physical chemistry laboratory experience has been designed for upper-level undergraduate chemistry majors. Students customize the first 10 weeks of their laboratory experience by choosing their own set of experiments (from a manual of choices) and setting their own laboratory schedule. There are several topics presented in the accompanying…

  4. A Laboratory Model of two-dimensional Granular Collisions

    NASA Astrophysics Data System (ADS)

    Burton, J. C.; Nagel, S.

    2011-12-01

    Many astrophysical and geophysical processes involve repeated inelastic collisions between discrete granular particles in large-scale flows. Every time the particles collide with one another they lose kinetic energy so that the system cools over time. Examples include the clustering of particles in a granular gas [1], flow in avalanches [2], and the catastrophic collapse of Antarctic ice-shelves [3]. In order to investigate such inelastic, many-particle, systems, we have studied ~2000 particles moving on a two-dimensional, 90 cm x 90 cm, anodized aluminum plate. Our particles are composed of dry ice (solid carbon dioxide) pellets with diameter ~0.5 cm. When placed on a heated flat surface, the pellets float on a cushion of sublimated gas, so that they move in two dimensions essentially without friction. Over time (~ 1 minute), the particles slowly lose mass until they have completely disappeared. Collisions with the plate boundaries are made elastic by sloping the plate's edges slightly upward. The experiment is filmed from above with a high-speed digital camera, so that translational and rotational kinetic energy of each particle can be tracked over time. Our results show qualitative clustering of pellets into regions where many collisions occur, as expected from models of inelastic gases [4]. We will show the results for different initial conditions including "clouds" of pellets colliding with each other at different initial impact velocities. [1] I. Goldhirsch and G. Zanetti, Phys. Rev. Lett. 70, 1619 (1993); S. McNamara and W.R. Young. Phys. Rev. E 50, R28 (1994). [2] P. Bartelt and O. Buser, Ann. Glaciol. 51, 98 (2010). [3] N. Guttenberg et al., Ann. Glaciol. 52, 51 (2011). [4] For a review see: I. Goldhirsch, Annu. Rev. Fluid Mech. 35, 267 (2003).

  5. "Scientific Method" through Laboratory Experience.

    ERIC Educational Resources Information Center

    Hanson, Allen L.

    1981-01-01

    Describes how a sulfate-iodide "clock reaction" experiment can be used to emphasize the importance of observations and hypotheses in revealing cause-effect relationships. Investigative steps, theory, experimental principle, procedure, and the experiment report are discussed. (CS)

  6. Fluid Flow Experiment for Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Vilimpochapornkul, Viroj; Obot, Nsima T.

    1986-01-01

    The undergraduate fluid mechanics laboratory at Clarkson University consists of three experiments: mixing; drag measurements; and fluid flow and pressure drop measurements. The latter experiment is described, considering equipment needed, procedures used, and typical results obtained. (JN)

  7. Multidimensional Screening as a Pharmacology Laboratory Experience.

    ERIC Educational Resources Information Center

    Malone, Marvin H.; And Others

    1979-01-01

    A multidimensional pharmacodynamic screening experiment that addresses drug interaction is included in the pharmacology-toxicology laboratory experience of pharmacy students at the University of the Pacific. The student handout with directions for the procedure is reproduced, drug compounds tested are listed, and laboratory evaluation results are…

  8. Pre-Student Teaching Laboratory Experiences.

    ERIC Educational Resources Information Center

    Verduin, John R., Jr.; Heinz, Charles R.

    This book (paperback), developed for preservice teachers in pre-student teaching laboratory experiences at Southern Illinois University, is intended also for wider use. The first half (text section) has three parts. Part 1 includes rationale for educational laboratory experiences and discussion of student, administrator, and classroom teacher…

  9. Simple Expalanation of a Well-Known Collision Experiment.

    ERIC Educational Resources Information Center

    Herrmann, F.; Schmalzle, P.

    1981-01-01

    Explains that the result of collision experiments with a linear arrangement of several identical elastic balls cannot be predicted solely from the conservation laws and energy and momentum. Indicates that the system of balls must be capable of dispersion-free energy propagation. (Author/JN)

  10. Laboratory and Modeling Studies of Velocity-Changing Collisions, Spin-Changing Collisions, and Magnetic Fields on Sodium Guidestars

    NASA Astrophysics Data System (ADS)

    Kostinski, Natalie; Dimitrova, Ivana; Happer, William

    2010-03-01

    Lasers used to produce sodium guidestars can cause optical pumping of Na atoms, but only interact with atoms that possess resonant Doppler shift. The number density of atmospheric constituents (e.g., Na, N2, O, O2) is so low, that there is minimal collision broadening of the optical absorption lines and distinct velocity groups can be excited. A goal of our work is modeling and laboratory studies of the correlations between the atomic spin polarization and the atomic velocity along the pumping beam. We believe this will aid in understanding the various mechanisms (collision processes, geomagnetic field) that can influence guidestar signal strength. This work should lead to a better understanding of the relative importance of strong and weak velocity-changing collisions.

  11. A Kinetic Experiment for the Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Palmer, Richard E.

    1986-01-01

    Discusses the use of specific reactions of metabolic pathways to make measurements in the laboratory. Describes an adaptation of an experiment used in undergraduate biochemistry laboratories involving the induction of an enzyme in E. coli, as well as its partial purification and characterization. (TW)

  12. Chemical Reaction Experiment for the Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Kwon, K. C.; And Others

    1987-01-01

    Provides an overview of an experiment on reaction kinetics of the anthracene-hydrogen system. Includes a description of the laboratory equipment, procedures, and data analysis requirements. Points out the advantages of the recommended technique. (ML)

  13. Laboratory experiments on columnar jointing

    NASA Astrophysics Data System (ADS)

    Goehring, L.; Morris, S. W.

    2003-12-01

    The mechanism causing columnar jointing has remained an enticing mystery since the basalt columns of the Giant's Causeway in N. Ireland were first reported to science in the 17th century. This phenomenon, in which shrinkage cracks form a quasi-hexagonal arrangement, has been shown to produce columns in starch, glass, coal, sandstone, and ice, as well as in a variety of lava flows. This suggests that this pattern-forming process is very general in nature. However, most studies of columnar jointing have been confined to field studies of basalt flows. Following Muller, we have experimented with desiccating corn starch in an effort to understand this pattern from a more general point of view. The diffusion and evaporation of water in starch is thought to be analogous to the diffusion and extraction of heat from a basalt flow. By combining direct sampling and x-ray tomography, fully 3D descriptions of columnar jointing were obtained with starch samples. We have characterized the pattern with several statistical indices, which describe its structure and relative disorder. These methods can resolve the ordering of the colonnade near the free surface. We identified two distinct mechanisms by which the mean column area increases during pattern evolution. We found both a slow, almost power-law increase in column area, as well as episodes of sudden catastrophic jumps in scale. The latter suggests that the column scale is not a simple single-valued function of drying rate, but rather a metastable state subject to hysteresis. Such metastable behaviour might explain a fundamental question about columnar jointing -- why the columns are so regular in the direction of their growth. Moreover, these experiments may help discriminate between the various theoretical models of this pattern forming process. Finally, our results lead to predictions that could be tested by field measurements on basaltic colonnades.

  14. Discovery & Interaction in Astro 101 Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Maloney, Frank Patrick; Maurone, Philip; DeWarf, Laurence E.

    2016-01-01

    The availability of low-cost, high-performance computing hardware and software has transformed the manner by which astronomical concepts can be re-discovered and explored in a laboratory that accompanies an astronomy course for arts students. We report on a strategy, begun in 1992, for allowing each student to understand fundamental scientific principles by interactively confronting astronomical and physical phenomena, through direct observation and by computer simulation. These experiments have evolved as :a) the quality and speed of the hardware has greatly increasedb) the corresponding hardware costs have decreasedc) the students have become computer and Internet literated) the importance of computationally and scientifically literate arts graduates in the workplace has increased.We present the current suite of laboratory experiments, and describe the nature, procedures, and goals in this two-semester laboratory for liberal arts majors at the Astro 101 university level.

  15. Laboratory and Field Experiments in Motor Learning.

    ERIC Educational Resources Information Center

    Singer, Robert N.; And Others

    This manual for research in motor learning was written for scientifically based physical educators, experimental psychologists, and others interested in the investigation of learning and performance phenomena associated with skill acquisition. Laboratory and field experiments are presented that can be run with or without the presence of a formal…

  16. Laboratory experiments on arc deflection and instability

    SciTech Connect

    Zweben, S.; Karasik, M.

    2000-03-21

    This article describes experiments on arc deflection instability carried out during the past few years at the Princeton University Plasma Physics Laboratory (PPPL). The approach has been that of plasma physicists interested in arcs, but they believe these results may be useful to engineers who are responsible for controlling arc behavior in large electric steel furnaces.

  17. Laser Mode Structure Experiments for Undergraduate Laboratories.

    ERIC Educational Resources Information Center

    Phillips, Richard A.; Gehrz, Robert D.

    Experiments dealing with laser mode structure are presented which are suitable for an upper division undergraduate laboratory. The theory of cavity modes is summarized. The mode structure of the radiation from a helium-neon laser is measured by using a photodiode detector and spectrum analyzer to detect intermode beating. Off-axial modes can be…

  18. Computer Based Simulation of Laboratory Experiments.

    ERIC Educational Resources Information Center

    Edward, Norrie S.

    1997-01-01

    Examines computer based simulations of practical laboratory experiments in engineering. Discusses the aims and achievements of lab work (cognitive, process, psychomotor, and affective); types of simulations (model building and behavioral); and the strengths and weaknesses of simulations. Describes the development of a centrifugal pump simulation,…

  19. Value of Laboratory Experiments for Code Validations

    SciTech Connect

    Wawersik, W.R.

    1998-12-14

    Numerical codes have become indispensable for designing underground structures and interpretating the behavior of geologic systems. Because of the complexities of geologic systems, however, code calculations often are associated with large quantitative uncertainties. This papers presents three examples to demonstrate the value of laboratory(or bench scale) experiments to evaluate the predictive capabilities of such codes with five major conclusions: Laboratory or bench-scale experiments are a very cost-effective, controlled means of evaluating and validating numerical codes, not instead of but before or at least concurrent with the implementation of in situ studies. The design of good laboratory validation tests must identifj what aspects of a code are to be scrutinized in order to optimize the size, geometry, boundary conditions, and duration of the experiments. The design of good and sometimes difficult numerical analyses and sensitivity studies. Laboratory validation tests must involve: Good validation experiments will generate independent data sets to identify the combined effect of constitutive models, model generalizations, material parameters, and numerical algorithms. Successfid validations of numerical codes mandate a close collaboration between experimentalists and analysts drawing from the full gamut of observations, measurements, and mathematical results.

  20. Ultrafiltration of Protein Solutions: A Laboratory Experiment

    ERIC Educational Resources Information Center

    Pansare, Vikram J.; Tien, Daniel; Prud'homme, Robert K.

    2015-01-01

    Biology is playing an increasingly important role in the chemical engineering curriculum. We describe a set of experiments we have implemented in our Undergraduate Laboratory course giving students practical insights into membrane separation processes for protein processing. The goal of the lab is to optimize the purification and concentration of…

  1. Experiments and scaling laws for catastrophic collisions. [of asteroids

    NASA Technical Reports Server (NTRS)

    Fujiwara, A.; Cerroni, P.; Davis, D.; Ryan, E.; Di Martino, M.

    1989-01-01

    The existing data on shattering impacts are reviewed using natural silicate, ice, and cement-mortar targets. A comprehensive data base containing the most important parameters describing these experiments was prepared. The collisional energy needed to shatter consolidated homogeneous targets and the ensuing fragment size distributions have been well studied experimentally. However, major gaps exist in the data on fragment velocity and rotational distributions, as well as collisional energy partitioning for these targets. Current scaling laws lead to predicted outcomes of asteroid collisions that are inconsistent with interpretations of astronomical data.

  2. Gigabar shock wave in a laboratory experiment

    NASA Astrophysics Data System (ADS)

    Gus'kov, S. Yu.

    2016-03-01

    The current status of research on generating a powerful shock wave with a pressure of up to several gigabars in a laboratory experiment is reviewed. The focus is on results which give a possibility of shock-wave experiments to study an equation of state of matter (EOS) at the level of gigabar pressure. The proposals are discussed to achieve a plane record-pressure shock wave driven by laser-accelerated fast electrons with respect to EOS-experiment as well as to prospective method of inertial fusion target (ICF) ignition as shock ignition.

  3. Free collisions in a microgravity many-particle experiment. III. The collision behavior of sub-millimeter-sized dust aggregates

    NASA Astrophysics Data System (ADS)

    Kothe, Stefan; Blum, Jürgen; Weidling, René; Güttler, Carsten

    2013-07-01

    We conducted micro-gravity experiments to study the outcome of collisions between sub-mm-sized dust agglomerates consisting of μm-sized SiO2 monomer grains at velocities of several cm s-1. Prior to the experiments, we used X-ray computer tomography (nano-CT) imaging to study the internal structure of these dust agglomerates and found no rim compaction so that their collision behavior is not governed by preparation-caused artefacts. We found that collisions between these dust aggregates can lead either to sticking or to bouncing, depending mostly on the impact velocity. While previous collision models derived the transition between both regimes from contact physics, we used the available empirical data from these and earlier experiments to derive a power law relation between dust-aggregate mass and impact velocity for the threshold between the two collision outcomes. In agreement with earlier experiments, we show that the transition between both regimes is not sharp, but follows a shallower power law than predicted by previous models (Güttler, C., Blum, J., Zsom, A., Ormel, C.W., Dullemond, C.P. [2010]. Astron. Astrophys. 513, A56). Furthermore, we find that sticking between dust aggregates can lead to the formation of larger structures. Collisions between aggregates-of-aggregates can lead to growth at higher velocities than homogeneous dust agglomerates.

  4. Monitoring hydraulic fracture growth: Laboratory experiments

    SciTech Connect

    Groenenboom, J.; Dam, D.B. van

    2000-04-01

    The authors carry out small-scale hydraulic fracture experiments to investigate the physics of hydraulic fracturing. The laboratory experiments are combined with time-lapse ultrasonic measurements with active sources using both compressional and shear-wave transducers. For the time-lapse measurements they focus on ultrasonic measurement changes during fracture growth. As a consequence they can detect the hydraulic fracture and characterize its shape and geometry during growth. Hence, this paper deals with fracture characterization using time-lapse acoustic data. Hydraulic fracturing is used in the oil and gas industry to stimulate reservoir production.

  5. The BDX experiment at Jefferson Laboratory

    SciTech Connect

    Celentano, Andrea

    2015-06-01

    The existence of MeV-GeV dark matter (DM) is theoretically well motivated but remarkably unexplored. The Beam Dump eXperiment (BDX) at Jefferson Laboratory aims to investigate this mass range. Dark matter particles will be detected through scattering on a segmented, plastic scintillator detector placed downstream of the beam-dump at one of the high intensity JLab experimental Halls. The experiment will collect up to 1022 electrons-on-target (EOT) in a one-year period. For these conditions, BDX is sensitive to the DM-nucleon elastic scattering at the level of a thousand counts per year, and is only limited by cosmogenic backgrounds. The experiment is also sensitive to DM-electron elastic and inelastic scattering, at the level of 10 counts/year. The foreseen signal for these channels is a high-energy (> 100 MeV) electromagnetic shower, with almost no background. The experiment has been presented in form of a Letter of Intent to the laboratory, receiving positive feedback, and is currently being designed.

  6. Controlled Space Physics Experiments using Laboratory Magnetospheres

    NASA Astrophysics Data System (ADS)

    Mauel, M. E.; Kesner, J.; Garnier, D.

    2013-12-01

    Modern society's reliance on space-based platforms for a variety of economic and geopolitical purposes makes understanding the physics of the magnetosphere and "space weather'' one of the most important applications of plasma science. During the past decade, results from the CTX and LDX laboratory magnetospheres and from the RT-1 device at University of Tokyo, we have developed techniques to explore space physics using controlled experiments in laboratory magnetospheres. This presentation briefly reviews observations from the laboratory magnetospheres at Columbia University and MIT, including adiabatic drift-resonant transport, low-frequency MHD turbulence, and the formation of high-beta plasmas with profiles similar to Earth's inner magnetosphere. First principle validation of ``whole plasma'' space weather models have been completed in relevant magnetic geometry, including the spectrum and dynamics of turbulence successfully modeled with nonlinear bounce-averaged gyrokinetic simulations. Plans to explore Alfvénic dynamics and whistler wave trapping are discussed through the achievement of higher-density plasmas using radio-frequency heating. Photographs of the laboratory magnetospheres located at MIT (top) and Columbia University (bottom).

  7. Laboratory experiments from the toy store

    NASA Technical Reports Server (NTRS)

    Mcclelland, H. T.

    1992-01-01

    The following is a laboratory experiment designed to further understanding of materials science. This material could be taught to a typical student of materials science or manufacturing at the high school level or above. The objectives of this experiment are as follows: (1) to qualitatively demonstrate the concepts of elasticity, plasticity, and the strain rate and temperature dependence of the mechanical properties of engineering materials; (2) to qualitatively demonstrate the basics of extrusion including material flow, strain rate dependence of defects, lubrication effects, and the making of hollow shapes by extrusion (the two parts may be two separate experiments done at different times when the respective subjects are covered); and (3) to demonstrate the importance of qualitative observations and the amount of information which can be gathered without quantitative measurements.

  8. Optimizing Laboratory Experiments for Dynamic Astrophysical Phenomena

    SciTech Connect

    Ryutov, D; Remington, B

    2005-09-13

    To make a laboratory experiment an efficient tool for the studying the dynamical astrophysical phenomena, it is desirable to perform them in such a way as to observe the scaling invariance with respect to the astrophysical system under study. Several examples are presented of such scalings in the area of magnetohydrodynamic phenomena, where a number of scaled experiments have been performed. A difficult issue of the effect of fine-scale dissipative structures on the global scale dissipation-free flow is discussed. The second part of the paper is concerned with much less developed area of the scalings relevant to the interaction of an ultra-intense laser pulse with a pre-formed plasma. The use of the symmetry arguments in such experiments is also considered.

  9. Threshold collision induced dissociation experiment for azobenzene and its derivatives

    NASA Astrophysics Data System (ADS)

    Rezaee, Mohammadreza; Compton, Robert

    In this study we investigated protonated azobenzene cation and properties of trans 2,2',6,6'-tetrafluoroazobenzene anion using the collision induced dissociation method and the results are compared with the results from ab initio electronic structure calculations. We measured the bond dissociation energies experimentally and found which theoretical quantum chemistry methods yield best results. Several high accuracy multi-level calculations such as CBS-QB3, G3 and G4 had been carried out to obtain reliable thermochemical information for azobenzene and several of its derivatives and their anion or cation. We also performed other experiments such as Raman spectroscopy to study these light sensitive molecules with promising applications such as photo-switching.

  10. The laboratory investigation of surface envelope solitons: reflection from a vertical wall and collisions of solitons

    NASA Astrophysics Data System (ADS)

    Slunyaev, Alexey; Klein, Marco; Clauss, Günther F.

    2016-04-01

    Envelope soliton solutions are key elements governing the nonlinear wave dynamics within a simplified theory for unidirectional weakly modulated weakly nonlinear wave groups on the water surface. Within integrable models the solitons preserve their structure in collisions with other waves; they do not disperse and can carry energy infinitively long. Steep and short soliton-like wave groups have been shown to exist in laboratory tests [1] and, even earlier, in numerical simulations [2, 3]. Thus, long-living wave groups may play important role in the dynamics of intense sea waves and wave-structure interactions. The solitary wave groups may change the wave statistics and can be taken into account when developing approaches for the deterministic forecasting of dangerous waves, including so-called rogue waves. An experimental campaign has been conducted in the wave basin of the Technical University of Berlin on simulations of intense solitary wave groups. The first successful experimental observation of intense envelope solitons took place in this facility [1]. The new experiments aimed at following main goals: 1) to reproduce intense envelope solitons with different carrier wave lengths; 2) to estimate the rate of envelope soliton dissipation; 3) to consider the reflection of envelope solitons on a vertical wall; 4) to consider head-on collisions of envelope solitons, and 5) to consider overtaking interactions of envelope solitons. Up to 9 wave gauges were used in each experimental run, which enabled registration of the surface movement at different distances from the wavemaker, at different locations across the wave flume and near the wall. Besides surface displacements, the group envelope shapes were directly recorded, with use of phase shifts applied to the modulated waves generated by the wavemaker. [1] A. Slunyaev, G.F. Clauss, M. Klein, M. Onorato, Simulations and experiments of short intense envelope solitons of surface water waves. Phys. Fluids 25, 067105

  11. Laboratory studies of atomic collision processes of importance in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Stebbings, R. F.; Smith, K.

    1985-01-01

    A series of differential cross sections for angular scattering and charge transfer was measured. These studies employ position-sensitive detectors (PSD's) to collect collision products scattered over a wide range of angles; and the research program includes investigation of differential cross sections for total angular scattering, charge transfer, stripping, and other collisions. All of these processes can be studied with the same basic apparatus, but minor modifications in the equipment details and in the data acquisition programs and techniques are required for each individual experiment.

  12. Impact fracture experiments simulating interstellar grain-grain collisions

    NASA Technical Reports Server (NTRS)

    Freund, Friedemann; Chang, Sherwood; Dickinson, J. Thomas

    1990-01-01

    Oxide and silicate grains condensing during the early phases of the formation of the solar system or in the outflow of stars are exposed to high partial pressures of the low-z elements H, C, N and O and their simple gaseous compounds. Though refractory minerals are nominally anhydrous and non-carbonate, if they crystallize in the presence of H2O, N2 and CO or CO2 gases, they dissolve traces of the gaseous components. The question arises: How does the presence of dissolved gases or gas components manifest itself when grain-grain collisions occur. What are the gases emitted when grains are shattered during a collision event. Researchers report on fracture experiments in ultrahigh vacuum (UHV, approximately less than 10 to the -8th power mbar) designed to measure (by means of a quadrupole mass spectrometer, QMS, with microns to ms time resolution) the emission of gases and vapors during and after impact (up to 1.5 sec). Two terrestrial materials were chosen which represent structural and compositional extremes: olivine (San Carlos, AZ), a densely packed Mg-Fe(2+) silicate from the upper mantle, available as 6 to 12 mm single crystals, and obsidian (Oregon), a structurally open, alkaline-SiO2-rich volcanic glass. In the olivine crystals OH- groups have been identified spectroscopically, as well as H2 molecules. Obsidian is a water-rich glass containing OH- besides H2O molecules. Olivine from the mantle often contains CO2, either as CO2-rich fluid in fluid inclusions or structurally dissolved or both. By analogy to synthetic glasses CO2 in the obsidian may be present in form of CO2 molecules in voids of molecular dimensions, or as carbonate anions, CO3(2-). No organic molecules have been detected spectroscopically in either material. Results indicate that refractory oxide/silicates which contain dissolved traces of the H2O and CO/CO2 components but no spectroscopically detectable traces of organics may release complex H-C-O (possibly H-C-N-O) molecules upon fracture

  13. Impact fracture experiments simulating interstellar grain-grain collisions

    NASA Astrophysics Data System (ADS)

    Freund, Friedemann; Chang, Sherwood; Dickinson, J. Thomas

    1990-04-01

    Oxide and silicate grains condensing during the early phases of the formation of the solar system or in the outflow of stars are exposed to high partial pressures of the low-z elements H, C, N and O and their simple gaseous compounds. Though refractory minerals are nominally anhydrous and non-carbonate, if they crystallize in the presence of H2O, N2 and CO or CO2 gases, they dissolve traces of the gaseous components. The question arises: How does the presence of dissolved gases or gas components manifest itself when grain-grain collisions occur. What are the gases emitted when grains are shattered during a collision event. Researchers report on fracture experiments in ultrahigh vacuum (UHV, approximately less than 10 to the -8th power mbar) designed to measure (by means of a quadrupole mass spectrometer, QMS, with microns to ms time resolution) the emission of gases and vapors during and after impact (up to 1.5 sec). Two terrestrial materials were chosen which represent structural and compositional extremes: olivine (San Carlos, AZ), a densely packed Mg-Fe(2+) silicate from the upper mantle, available as 6 to 12 mm single crystals, and obsidian (Oregon), a structurally open, alkaline-SiO2-rich volcanic glass. In the olivine crystals OH- groups have been identified spectroscopically, as well as H2 molecules. Obsidian is a water-rich glass containing OH- besides H2O molecules. Olivine from the mantle often contains CO2, either as CO2-rich fluid in fluid inclusions or structurally dissolved or both. By analogy to synthetic glasses CO2 in the obsidian may be present in form of CO2 molecules in voids of molecular dimensions, or as carbonate anions, CO3(2-). No organic molecules have been detected spectroscopically in either material. Results indicate that refractory oxide/silicates which contain dissolved traces of the H2O and CO/CO2 components but no spectroscopically detectable traces of organics may release complex H-C-O (possibly H-C-N-O) molecules upon fracture

  14. Recent Laboratory Astrophysics Experiments at LULI

    NASA Astrophysics Data System (ADS)

    Koenig, Michel; Michaut, Claire; Loupias, Bérénice; Falize, Emeric; Gregory, Chris; Kuramitsu, Yasuhiro; Dono, Seiichi; Vinci, Tommaso; Waugh, Jonny; Woolsey, Nigel; Ozaki, Norimasa; Benuzzi-Mounaix, Alessandra; Ravasio, Alessandra; Bouquet, Serge; Goahec, Marc Rabec Le; Nazarov, Wigen; Pikuz, Serguey; Sakawa, Youichi; Takabe, Hideaki; Kodama, Ryosuke

    At the LULI laboratory we developed since a few years a program on several topics related to laboratory astrophysics: high velocity jets, shock waves in density gradients, collisionless shocks, and radiative shocks (RS). In this paper, the latest experiments related to RS’s obtained on the new LULI2000 facility and on GEKKOXII are presented. In particular a strong radiative precursor was observed and its time evolution compared with 2D radiative simulations. The second topic developed at LULI is related to plasma jets which are often observed in Young Stellar Objects (YSO), during their phase of bulk contraction. They interact with the interstellar medium resulting in emission lobes, including the so-called bow shocks. The objective of our experiments was to generate plasma jets propagating through an ambient medium. To this aim, we developed a new target design (a foam filled cone ended with a “nozzle”) in order to generate a plasma jet. A jet-like structure was observed and its time evolution studied by varying the foam density. Interaction with ambient medium was recently performed showing growing instabilities for low density gas.

  15. Laboratory Reconnection Experiments - heating and particle acceleration

    NASA Astrophysics Data System (ADS)

    Ono, Yasushi

    Recent laboratory merging/ reconnection experiments have solved a number of key physics of magnetic reconnection: 1) reconnection heating/ acceleration, 2) fast reconnection mechanisms, 3) plasmoid reconnection, 4) non-steady reconnection and 5) non-thermal particle acceleration using new kinetic interpretations. Especially, significant ion temperatures 1.2keV were documented in the world-largest tokamak merging experiment: MAST after detailed 2D elucidation of ion and electron heating characteristics in TS-3 and 4 merging experiments. The measured 2D contours of ion and electron temperatures in TS-3, 4 and MAST reveal ion heating in the downstream by reconnection outflow and electron heating around the X-point by ohmic heating of current sheet. Their detailed heating mechanisms were further investigated by comparing those results with particle simulations developed by NIFS. The ion acceleration mechanism is mostly parallel acceleration by reconnection electric field and partly perpendicular acceleration by electrostatic potential. The fast shock and ion viscosity are the major dumping (heating) mechanisms for the accelerated ions. We successfully applied the reconnection heating - typically 10-50MW to the high-beta spherical tokamak formation and heating. This paper will review major progresses in those international and interdisciplinary merging tokamak experiments.

  16. Experiment definition phase shuttle laboratory LDRL-10.6 experiment

    NASA Technical Reports Server (NTRS)

    1975-01-01

    This report for the Experiment Definition Phase of the Shuttle Laboratory LDRL 10.6 Micrometer Experiment covers period 27 June through 26 September 1975. Activities during the fifth quarter included: (1) reevaluation of system obscuration ratio with a subsequent reduction of this ratio from 0.417 to 0.362, (2) completion of detail drawings for the 6X pre-expander, (3) completion of detail drawings for the nine mirrors that comprise pointing and tracking optomechanical subsystem, (4) continuation of detailing of mechanical portions of CMSS and modifications to accommodate new obscuration ratio, (5) qualitative operation of the optomechanical subsystem of the 10.6 um receiver achieved under experiment measurement task; receiver fully integrated and operation demonstrated over a 10 km experimental link, and (6) data collection task initiated to begin preparation of link analysis volumes.

  17. Laboratory Experiments of Rip Current Generation

    NASA Astrophysics Data System (ADS)

    Garnier, R.; Coco, G.; Lomonaco, P.; Dalrymple, R. A.; Alvarez, A.; Gonzalez, M.; Medina, R.

    2014-12-01

    The hypothesis of rip current generation from purely hydrodynamic processes is here investigated through laboratory experiments. The experiments have been performed at the Cantabria Coastal and Ocean Basin (CCOB) with a segmented wavemaker consisting of 64 waveboards. The basin measures 25m in the cross-shore and 32m in the alongshore direction and the water depth at the wavemaker is 1m. A concrete plane sloping (1:5) beach has been built in the opposite side of the wave machine, its toe is 15m from the waveboards. Reflective lateral walls covered the full length of the basin. The set of instruments consists of 33 wave gauges deployed along two longshore and two cross-shore transects, 7 acoustic Doppler velocimeters and 15 run-up wires. Furthermore a set of two cameras has been synchronized with the data acquisition system. Two types of experiments have been performed to specifically study the generation of rip currents under wave group forcing. First, similarly to the experiments of Fowler and Dalrymple (Proc. 22nd Int. Conf. Coast. Eng.,1990), two intersecting wave trains with opposite directions have been imposed. They give rise to the formation of a non-migrating rip current system with a wavelength that depends on wave frequency and direction. Second, single wave trains with alongshore periodic amplitude attenuation have been imposed. Although the attenuation has been set such that the incident wave field has the same envelope as in the first type of experiments, the rip current system differs due to diffraction and interference processes. The results for different wave conditions (maximum incident wave height from 0.2m to 0.4m, wave period from 1.4s to 2s) will be presented and the intensity of the rip currents will be compared to the alongshore variation in wave set-up. This research is part of the ANIMO project funded by the Spanish Government under contract BIA2012-36822.

  18. Summer Research Experiences with a Laboratory Tokamak

    NASA Astrophysics Data System (ADS)

    Farley, N.; Mauel, M.; Navratil, G.; Cates, C.; Maurer, D.; Mukherjee, S.; Shilov, M.; Taylor, E.

    1998-11-01

    Columbia University's Summer Research Program for Secondary School Science Teachers seeks to improve middle and high school student understanding of science. The Program enhances science teachers' understanding of the practice of science by having them participate for two consecutive summers as members of laboratory research teams led by Columbia University faculty. In this poster, we report the research and educational activities of two summer internships with the HBT-EP research tokamak. Research activities have included (1) computer data acquisition and the representation of complex plasma wave phenomena as audible sounds, and (2) the design and construction of pulsed microwave systems to experience the design and testing of special-purpose equipment in order to achieve a specific technical goal. We also present an overview of the positive impact this type of plasma research involvement has had on high school science teaching.

  19. A novel molecular synchrotron for cold collision and EDM experiments.

    PubMed

    Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping

    2016-01-01

    Limited by the construction demands, the state-of-the-art molecular synchrotrons consist of only 40 segments that hardly make a good circle. Imperfections in the circular structure will lead to the appearance of unstable velocity regions (i.e. stopbands), where molecules of certain forward velocity will be lost from the structure. In this paper, we propose a stopband-free molecular synchrotron. It contains 1570 ring electrodes, which nearly make a perfect circle, capable of confining both light and heavy polar molecules in the low-field-seeking states. Molecular packets can be conveniently manipulated with this synchrotron by various means, like acceleration, deceleration or even trapping. Trajectory calculations are carried out using a pulsed (88)SrF molecular beam with a forward velocity of 50 m/s. The results show that the molecular beam can make more than 500 round trips inside the synchrotron with a 1/e lifetime of 6.2 s. The synchrotron can find potential applications in low-energy collision and reaction experiments or in the field of precision measurements, such as the searches for electric dipole moment of elementary particles. PMID:27600539

  20. A novel molecular synchrotron for cold collision and EDM experiments

    PubMed Central

    Hou, Shunyong; Wei, Bin; Deng, Lianzhong; Yin, Jianping

    2016-01-01

    Limited by the construction demands, the state-of-the-art molecular synchrotrons consist of only 40 segments that hardly make a good circle. Imperfections in the circular structure will lead to the appearance of unstable velocity regions (i.e. stopbands), where molecules of certain forward velocity will be lost from the structure. In this paper, we propose a stopband-free molecular synchrotron. It contains 1570 ring electrodes, which nearly make a perfect circle, capable of confining both light and heavy polar molecules in the low-field-seeking states. Molecular packets can be conveniently manipulated with this synchrotron by various means, like acceleration, deceleration or even trapping. Trajectory calculations are carried out using a pulsed 88SrF molecular beam with a forward velocity of 50 m/s. The results show that the molecular beam can make more than 500 round trips inside the synchrotron with a 1/e lifetime of 6.2 s. The synchrotron can find potential applications in low-energy collision and reaction experiments or in the field of precision measurements, such as the searches for electric dipole moment of elementary particles. PMID:27600539

  1. Laboratory experiments of salt water intrusion

    NASA Astrophysics Data System (ADS)

    Crestani, Elena; Camporese, Matteo; Salandin, Paolo

    2015-04-01

    The problem of saltwater intrusion in coastal aquifers is dealt with by the proper setup of a sand-box device to develop laboratory experiments in a controlled environment. Saline intrusion is a problem of fundamental importance and affects the quality of both surface water and groundwater in coastal areas. In both cases the phenomenon may be linked to anthropogenic (construction of reservoirs, withdrawals, etc.) and/or natural (sea-level excursions, variability of river flows, etc.) changes. In recent years, the escalation of this problem has led to the development of specific projects and studies to identify possible countermeasures, typically consisting of underground barriers. Physical models are fundamental to study the saltwater intrusion problem, since they provide benchmarks for numerical model calibrations and for the evaluation of the effectiveness of solutions to contain the salt wedge. In order to study and describe the evolution of the salt wedge, the effectiveness of underground barriers, and the distance from the coast of a withdrawal that guarantees a continuous supply of fresh water, a physical model has been realized at the University of Padova to represent the terminal part of a coastal aquifer. It consists of a laboratory flume 500 cm long, 30 cm wide and 60 cm high, filled for an height of 45 cm with glass beads with a d50 of 0.6 mm and a uniformity coefficient d60/d10~= 1.5. The material is homogeneous and characterized by a porosity of about 0.37 and by an hydraulic conductivity of about 1.8×10-3 m/s. Upstream from the sand-box, a tank, continuously supplied by a pump, provides fresh water to recharge the aquifer, while the downstream tank, filled with salt water, simulates the sea. The volume of the downstream tank (~= 2 m3) is about five times the upstream one, so that density variations due to the incoming fresh water flow are negligible. The water level in the two tanks is continuously monitored by means of two level probes and is

  2. Magnetized laboratory plasma jets: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce

    2015-01-01

    Experiments involving radial foils on a 1 M A , 100 n s current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μ m Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ˜1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μ s current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics.

  3. Magnetized laboratory plasma jets: experiment and simulation.

    PubMed

    Schrafel, Peter; Bell, Kate; Greenly, John; Seyler, Charles; Kusse, Bruce

    2015-01-01

    Experiments involving radial foils on a 1 MA, 100 ns current driver can be used to study the ablation of thin foils and liners, produce extreme conditions relevant to laboratory astrophysics, and aid in computational code validation. This research focuses on the initial ablation phase of a 20 μm Al foil (8111 alloy), in a radial configuration, driven by Cornell University's COBRA pulsed power generator. In these experiments ablated surface plasma (ASP) on the top side of the foil and a strongly collimated axial plasma jet are observed developing midway through the current rise. With experimental and computational results this work gives a detailed description of the role of the ASP in the formation of the plasma jet with and without an applied axial magnetic field. This ∼1 T field is applied by a Helmholtz-coil pair driven by a slow, 150 μs current pulse and penetrates the load hardware before arrival of the COBRA pulse. Several effects of the applied magnetic field are observed: (1) without the field extreme-ultraviolet emission from the ASP shows considerable azimuthal asymmetry while with the field the ASP develops azimuthal motion that reduces this asymmetry, (2) this azimuthal motion slows the development of the jet when the field is applied, and (3) with the magnetic field the jet becomes less collimated and has a density minimum (hollowing) on the axis. PERSEUS, an XMHD code, has qualitatively and quantitatively reproduced all these experimental observations. The differences between this XMHD and an MHD code without a Hall current and inertial effects are discussed. In addition the PERSEUS results describe effects we were not able to resolve experimentally and suggest a line of future experiments with better diagnostics. PMID:25679726

  4. Organic Laboratory Experiments: Micro vs. Conventional.

    ERIC Educational Resources Information Center

    Chloupek-McGough, Marge

    1989-01-01

    Presents relevant statistics accumulated in a fall organic laboratory course. Discusses laboratory equipment setup to lower the amount of waste. Notes decreased solid wastes were produced compared to the previous semester. (MVL)

  5. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    SciTech Connect

    Rosenberg, M. J. Li, C. K.; Séguin, F. H.; Frenje, J. A.; Petrasso, R. D.; Fox, W.; Igumenshchev, I.; Stoeckl, C.; Glebov, V.; Town, R. P. J.

    2015-04-15

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β ∼ 10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell simulations predict a stronger flux compression and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.

  6. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    SciTech Connect

    Rosenberg, M. J.; Li, C. K.; Fox, W.; Igumenshchev, I.; Seguin, F. H.; Town, R. P.; Frenje, J. A.; Stoeckl, C.; Glebov, V.; Petrasso, R. D.

    2015-04-08

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compression and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.

  7. Validating the Collision-Dominated Child-Langmuir Law for a DC Discharge Cathode Sheath in an Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Lisovskiy, V.; Yegorenkov, V.

    2009-01-01

    In this paper, we propose a simple method of observing the collision-dominated Child-Langmuir law in the course of an undergraduate laboratory work devoted to studying the properties of gas discharges. To this end we employ the dc gas discharge whose properties are studied in sufficient detail. The undergraduate laboratory work itself is reduced…

  8. Meteorological Development Laboratory Student Career Experience Program

    NASA Astrophysics Data System (ADS)

    McCalla, C., Sr.

    2007-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) provides weather, hydrologic, and climate forecasts and warnings for the protection of life and property and the enhancement of the national economy. The NWS's Meteorological Development Laboratory (MDL) supports this mission by developing meteorological prediction methods. Given this mission, NOAA, NWS, and MDL all have a need to continually recruit talented scientists. One avenue for recruiting such talented scientist is the Student Career Experience Program (SCEP). Through SCEP, MDL offers undergraduate and graduate students majoring in meteorology, computer science, mathematics, oceanography, physics, and statistics the opportunity to alternate full-time paid employment with periods of full-time study. Using SCEP as a recruiting vehicle, MDL has employed students who possess some of the very latest technical skills and knowledge needed to make meaningful contributions to projects within the lab. MDL has recently expanded its use of SCEP and has increased the number of students (sometimes called co- ops) in its program. As a co-op, a student can expect to develop and implement computer based scientific techniques, participate in the development of statistical algorithms, assist in the analysis of meteorological data, and verify forecasts. This presentation will focus on describing recruitment, projects, and the application process related to MDL's SCEP. In addition, this presentation will also briefly explore the career paths of students who successfully completed the program.

  9. Solitons Experience for Black Hole Production in Ultrarelativistic Particle Collisions

    NASA Astrophysics Data System (ADS)

    Ya. Aref'eva, I.

    2012-11-01

    We discuss the analogy between soliton scattering in quantum field theory and black hole/wormholes (BH/WH) production in ultrarelativistic particle collisions in gravity. It is a common wisdom of the current paradigm suggests that BH/WH formation in particles collisions will happen when a center-mass energy of colliding particles is sufficiently above the Planck scale (the transplanckian region) and the BH/WH production can be estimated by the classical geometrical cross section. We compare the background of this paradigm with the functional integral method to scattering amplitudes and, in particular, we stress the analogy of the BH production in collision of ultrarelativistic particle and appearance of breathers poles in the scattering amplitudes in the Sin-Gordon model.

  10. Solitons Experience for Black Hole Production in Ultrarelativistic Particle Collisions

    NASA Astrophysics Data System (ADS)

    Aref'eva, I. Ya.

    2013-06-01

    We discuss the analogy between soliton scattering in quantum field theory and black hole/wormholes (BH/WH) production in ultrarelativistic particle collisions in gravity. It is a common wisdom of the current paradigm suggests that BH/WH formation in particles collisions will happen when a center-mass energy of colliding particles is sufficiently above the Planck scale (the transplanckian region) and the BH/WH production can be estimated by the classical geometrical cross section. We compare the background of this paradigm with the functional integral method to scattering amplitudes and, in particular, we stress the analogy of the BH production in collision of ultrarelativistic particle and appearance of breathers poles in the scattering amplitudes in the Sin-Gordon model.

  11. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  12. Sediment response to moving rainstorms: laboratory experiments

    NASA Astrophysics Data System (ADS)

    de Lima, J. L. M. P.

    2009-04-01

    The soil material transported by surface runoff is an important factor, for example, in water quality management, environmental decision making, urban management and ecosystems sustainability. This study aims at contributing to increased understanding of water erosion factors and processes. The main objective is to quantify experimentally the soil loss caused by both non-moving and moving rainstorms. The importance of storm movement, due to the combined effect of wind and rain, on surface flows has long been recognised, at scales ranging from headwater scales to larger catchment basins. All these processes (rainfall, wind, runoff, soil erosion) involved are germane for investigation at different scales. In this study, laboratory experiments were carried out using several soil flumes and a movable sprinkling-type rainfall simulator. To simulate moving rainstorms, the rainfall simulator was moved upstream and downstream over the soil surface at different speeds. During runoff events overland flow and sediment transport were measured in order to determine hydrographs and sediment production over time. The size distribution of the eroded material is governed by the capacity of the flowing water to transport it. Granulometric curves obtained through conventional hand sieving and optical spectrophotometer method (material below 0.250 mm) were constructed. Distinct hydrologic responses for storms moving upstream and downstream were identified. Soil loss by sheet erosion caused by downstream moving rainstorms was higher than that caused by identical upstream moving rainfall storms or non-moving storms. The results also show that storm movement, affecting spatial and temporal distributions of rainfall, has a marked influence on the granulometric characteristics of sediments transported by overland flow during the runoff event. Storms moving downslope are the most potentially hazardous in terms of erosion.

  13. The laboratory experience in introductory physics courses

    NASA Astrophysics Data System (ADS)

    Di Stefano, Maria C.

    1997-03-01

    The last two decades or so have witnessed intense efforts to improve the teaching and learning of physics. Scholarly studies have provided the grounding for many projects which reform the structure of introductory courses. A number of these innovations, however, are resource intensive, or depend on the ability to introduce changes in areas which are beyond the control of the faculty (e.g., scheduling), thus inhibiting their implementation. An alternative strategy that overcomes these obstacles is to modify the nature of the laboratory experience (a component that practically nobody disputes is an essential part of the introductory course), to provide hands-on learning opportunities that differ from the traditional "follow-this-recipe-to-verify-this-law" approach. I have chosen to implement a variety of activities that support the overall objectives of the course: developing conceptual understanding and transferable skills, and providing practice in the ways scientists actually do science. Given the audience in this two-semester, algebra-based course, mostly biology majors and pre-professionals (health-related careers, such as medicine, physical therapy, and veterinary), these goals were identified as the most important and lasting contribution that a physics course can make to the students intellectual development. I offer here examples of the types of hands on activities that I have implemented, organized for the sake of this presentation in four rather loose categories, depending on which subset of the course objectives the activities mostly address: self-designed lab activities, discussion of demo-type activities, building concepts from simple to complex, and out-of-lab physical phenomena.

  14. Density Estimations in Laboratory Debris Flow Experiments

    NASA Astrophysics Data System (ADS)

    Queiroz de Oliveira, Gustavo; Kulisch, Helmut; Malcherek, Andreas; Fischer, Jan-Thomas; Pudasaini, Shiva P.

    2016-04-01

    Bulk density and its variation is an important physical quantity to estimate the solid-liquid fractions in two-phase debris flows. Here we present mass and flow depth measurements for experiments performed in a large-scale laboratory set up. Once the mixture is released and it moves down the inclined channel, measurements allow us to determine the bulk density evolution throughout the debris flow. Flow depths are determined by ultrasonic pulse reflection, and the mass is measured with a total normal force sensor. The data were obtained at 50 Hz. The initial two phase material was composed of 350 kg debris with water content of 40%. A very fine pebble with mean particle diameter of 3 mm, particle density of 2760 kg/m³ and bulk density of 1400 kg/m³ in dry condition was chosen as the solid material. Measurements reveal that the debris bulk density remains high from the head to the middle of the debris body whereas it drops substantially at the tail. This indicates lower water content at the tail, compared to the head and the middle portion of the debris body. This means that the solid and fluid fractions are varying strongly in a non-linear manner along the flow path, and from the head to the tail of the debris mass. Importantly, this spatial-temporal density variation plays a crucial role in determining the impact forces associated with the dynamics of the flow. Our setup allows for investigating different two phase material compositions, including large fluid fractions, with high resolutions. The considered experimental set up may enable us to transfer the observed phenomena to natural large-scale events. Furthermore, the measurement data allows evaluating results of numerical two-phase mass flow simulations. These experiments are parts of the project avaflow.org that intends to develop a GIS-based open source computational tool to describe wide spectrum of rapid geophysical mass flows, including avalanches and real two-phase debris flows down complex natural

  15. Do-It-Yourself Experiments for the Instructional Laboratory

    ERIC Educational Resources Information Center

    Craig, Norman C.; Hill, Cortland S.

    2012-01-01

    A new design for experiments in the general chemistry laboratory incorporates a "do-it-yourself" component for students. In this design, students perform proven experiments to gain experience with techniques for about two-thirds of a laboratory session and then spend the last part in the do-it-yourself component, applying the techniques to an…

  16. Operational Amplifier Experiments for the Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Braun, Robert D.

    1996-01-01

    Provides details of experiments that deal with the use of operational amplifiers and are part of a course in instrumental analysis. These experiments are performed after the completion of a set of electricity and electronics experiments. (DDR)

  17. Laboratory Experiments for Network Security Instruction

    ERIC Educational Resources Information Center

    Brustoloni, Jose Carlos

    2006-01-01

    We describe a sequence of five experiments on network security that cast students successively in the roles of computer user, programmer, and system administrator. Unlike experiments described in several previous papers, these experiments avoid placing students in the role of attacker. Each experiment starts with an in-class demonstration of an…

  18. Practical Enzyme Kinetics: A Biochemical Laboratory Experiment.

    ERIC Educational Resources Information Center

    Rowe, H. Alan; Brown, Morris

    1988-01-01

    Describes an experiment that provides a fundamental understanding of the kinetics of the enzyme papain. Discusses background, materials, procedures and results. Mentions analogous experiments that can be conducted with enzymatic contact-lens cleaning solutions. (CW)

  19. Spinodal density enhancements in nuclear collisions at the CBM experiment

    NASA Astrophysics Data System (ADS)

    Steinheimer, J.; Koch, V.; Randrup, J.; Bleicher, M.

    2015-04-01

    We discuss a novel approach to describe the evolution of a fireball, created in a high-energy nuclear collision, experiencing spinodal instabilities due to the first-order deconfinement phase transition of quantum chromo dynamics (QCD). We show that initial density fluctuations in these collisions are enhanced in the mechanically unstable region of the QCD phase diagram. In our study we find that the most favorable energy range for observing these density enhancements is at the lower end of the SIS100 accelerator at FAIR, currently under construction. Furthermore we discuss how one can distinguish and constrain different types of QCD phase transitions, one of hadron-quark type and one of liquid-gas type, leading to strong differences in the dynamical evolution of the QCD medium.

  20. Principles of Radio: A Laboratory Experiment

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2002-01-01

    An experiment is proposed for learning the principles of radio. A simple radio receiver illustrates amplitude modulation and demodulation, the selectivity of a receiver and the features of a directional antenna. Both normal and computerized versions of the experiment are described. The computerized experiment employs the "ScienceWorkshop"…

  1. Microscale Experiments in the School Biology Laboratory

    ERIC Educational Resources Information Center

    Delpech, Roger

    2005-01-01

    "Nuggets" are suggestions with practical advice to help in communicating biology to students. They are shorter than the formal papers and have not been peer-reviewed, but may provide ideas for the classroom. This article presents inexpensive alternative methods for students to measure small volumes of liquids in school biology laboratories.

  2. Laboratory Experiment on Electrokinetic Remediation of Soil

    ERIC Educational Resources Information Center

    Elsayed-Ali, Alya H.; Abdel-Fattah, Tarek; Elsayed-Ali, Hani E.

    2011-01-01

    Electrokinetic remediation is a method of decontaminating soil containing heavy metals and polar organic contaminants by passing a direct current through the soil. An undergraduate chemistry laboratory is described to demonstrate electrokinetic remediation of soil contaminated with copper. A 30 cm electrokinetic cell with an applied voltage of 30…

  3. A Meaningful Experience in Laboratory Investigation

    ERIC Educational Resources Information Center

    Szinai, S. S.; Szinai, N.

    1976-01-01

    The framework of the course "Problems in Pharmaceutical Chemistry" was used to give second- and third-year pharmacy students at the University of Florida an opportunity to obtain an insight into the workings of laboratories dealing with drug-related problems. Goals, outline, and an illustrative project for the course are described. (LBH)

  4. Laboratory Experiences in Marine Biology, Student Edition.

    ERIC Educational Resources Information Center

    Raimist, Roger J.

    This manual contains instructions for laboratory exercises using marine organisms. For each exercise a problem is defined, materials are listed, possible ways to solve the problem are suggested, questions are asked to guide the student in interpreting data, and further reading is suggested. The exercises deal with the measurement of oxygen…

  5. A Laboratory Experiment on the Statistical Theory of Nuclear Reactions

    ERIC Educational Resources Information Center

    Loveland, Walter

    1971-01-01

    Describes an undergraduate laboratory experiment on the statistical theory of nuclear reactions. The experiment involves measuring the relative cross sections for formation of a nucleus in its meta stable excited state and its ground state by applying gamma-ray spectroscopy to an irradiated sample. Involves 3-4 hours of laboratory time plus…

  6. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for a laboratory experiment, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  7. Description of the Spacecraft Control Laboratory Experiment (SCOLE) facility

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.; Rallo, Rosemary A.

    1987-01-01

    A laboratory facility for the study of control laws for large flexible spacecraft is described. The facility fulfills the requirements of the Spacecraft Control Laboratory Experiment (SCOLE) design challenge for laboratory experiments, which will allow slew maneuvers and pointing operations. The structural apparatus is described in detail sufficient for modelling purposes. The sensor and actuator types and characteristics are described so that identification and control algorithms may be designed. The control implementation computer and real-time subroutines are also described.

  8. Recent results on central Pb+Pb collisions from experiment NA49

    NASA Astrophysics Data System (ADS)

    Appelshäuser, H.; Bächler, J.; Bailey, S. J.; Barnby, L. S.; Bartke, J.; Barton, R. A.; Biał Kowska, H.; Billmeier, A.; Blyth, C. O.; Bock, R.; Bormann, C.; Brady, F. P.; Brockmann, R.; Brun, R.; Bunč Ić , P.; Caines, H. L.; Cebra, D.; Cooper, G. E.; Cramer, J. G.; Csato, P.; Dunn, J.; Eckardt, V.; Eckhardt, F.; Ferguson, M. I.; Fischer, H. G.; Flierl, D.; Fodor, Z.; Foka, P.; Freund, P.; Friese, V.; Fuchs, M.; Gabler, F.; Gal, J.; Gaź Dzicki, M.; Gł Adysz, E.; Grebieszkow, J.; Günther, J.; Harris, J. W.; Hegyi, S.; Henkel, T.; Hill, L. A.; Huang, I.; Hümmler, H.; Igo, G.; Irmscher, D.; Jacobs, P.; Jones, P. G.; Kadija, K.; Kolesnikov, V. I.; Kowalski, M.; Lasiuk, B.; Lévai, P.; Malakhov, A. I.; Margetis, S.; Markert, C.; Melkumov, G. L.; Mock, A.; Molnár, J.; Nelson, J. M.; Oldenburg, M.; Odyniec, G.; Palla, G.; Panagiotou, A. D.; Petridis, A.; Piper, A.; Porter, R. J.; Poskanzer, A. M.; Poziombka, S.; Prindle, D. J.; Pühlhofer, F.; Rauch, W.; Reid, J. G.; Renfordt, R.; Retyk, W.; Ritter, H. G.; Röhrich, D.; Roland, C.; Roland, G.; Rudolph, H.; Rybicki, A.; Sandoval, A.; Sann, H.; Semenov, A. Yu.; Schäfer, E.; Schmischke, D.; Schmitz, N.; Schönfelder, S.; Seyboth, P.; Seyerlein, J.; Sikler, F.; Skrzypczak, E.; Squier, G. T. A.; Stock, R.; Ströbele, H.; Szentpetery, I.; Sziklai, J.; Szymanski, P.; Toy, M.; Trainor, T. A.; Trentalange, S.; Ullrich, T.; Vassiliou, M.; Vesztergombi, G.; Vranić , D.; Wang, F.; Weerasundara, D. D.; Wenig, S.; Whitten, C.; Wienold, T.; Wood, L.; Yates, T. A.; Zimanyi, J.; Zhu, X.-Z.; Zybert, R.

    1998-08-01

    In this paper we present recent results from experiment NA49 on single- and multiparticle distributions obtained for Pb+Pb collisions at 158GeV/nucleon at the CERN SPS. NA49 aims at a complete description of the hadronic final state of nuclear collisions, which will eventually allow us to establish whether an equilibrated, deconfined state of partonic matter, the quark gluon plasma (QGP), is created in the early stages of these collisions. New experimental results regarding the evolution of the hadron source through transverse expansion to chemical and thermal freeze-out are presented. We find that the available data can be understood in terms of simple physical pictures, indicating that sufficient energy densities for QGP creation are indeed reached in the early stage of the collision. The NA49 results on particle abundances are discussed in comparison with nuclear collisions at lower energy and elementary collisions at various energies. This comparison demonstrates that simple extrapolation from these systems fails to describe the results for Pb+Pb collisions at the CERN SPS.

  9. Industrial Hygiene Laboratory accreditation: The JSC experience

    NASA Technical Reports Server (NTRS)

    Fadner, Dawn E.

    1993-01-01

    The American Industrial Hygiene Association (AIHA) is a society of professionals dedicated to the health and safety of workers and community. With more than 10,000 members, the AIHA is the largest international association serving occupational and environmental health professionals practicing industrial hygiene in private industry, academia, government, labor, and independent organizations. In 1973, AIHA developed a National Industrial Hygiene Laboratory Accreditation Program. The purposes of this program are shown.

  10. Recycle with Heating: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Foord, A.; Mason, G.

    1985-01-01

    Describes an apparatus (built from domestic plumbing pipes and fittings) that uses only water and electricity (as consumables) to investigate basic mass and heat balances in a system with recycle. Also describes experiments using the apparatus. (JN)

  11. Buffer Capacity: An Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Russo, Steven O.; Hanania, George I. H.

    1987-01-01

    Describes a quantitative experiment designed to demonstrate buffer action and the measurement of buffer capacity. Discusses how to make acetate buffers, determine their buffer capacity, plot the capacity/pH curve, and interpret the data obtained. (TW)

  12. Will Allis Prize Talk: Electron Collisions - Experiment, Theory and Applications

    NASA Astrophysics Data System (ADS)

    Bartschat, Klaus

    2016-05-01

    Electron collisions with atoms, ions, and molecules represent one of the very early topics of quantum mechanics. In spite of the field's maturity, a number of recent developments in detector technology (e.g., the ``reaction microscope'' or the ``magnetic-angle changer'') and the rapid increase in computational resources have resulted in significant progress in the measurement, understanding, and theoretical/computational description of few-body Coulomb problems. Close collaborations between experimentalists and theorists worldwide continue to produce high-quality benchmark data, which allow for thoroughly testing and further developing a variety of theoretical approaches. As a result, it has now become possible to reliably calculate the vast amount of atomic data needed for detailed modelling of the physics and chemistry of planetary atmospheres, the interpretation of astrophysical data, optimizing the energy transport in reactive plasmas, and many other topics - including light-driven processes, in which electrons are produced by continuous or short-pulse ultra-intense electromagnetic radiation. In this talk, I will highlight some of the recent developments that have had a major impact on the field. This will be followed by showcasing examples, in which accurate electron collision data enabled applications in fields beyond traditional AMO physics. Finally, open problems and challenges for the future will be outlined. I am very grateful for fruitful scientific collaborations with many colleagues, and the long-term financial support by the NSF through the Theoretical AMO and Computational Physics programs, as well as supercomputer resources through TeraGrid and XSEDE.

  13. [Our experience with outside laboratory quality control].

    PubMed

    Dochev, D; Arakasheva, V; Nashkov, A; Tsachev, K

    1979-01-01

    The results from the national outside laboratory qualitative control of the clinical diagnostic laboratory investigations for the period September 1975 -- May 1977 were described. The following interlaboratory discrepancy was found on base of a systematic analysis of the data from the last two ring-like check-ups, November 1976 and May 1977, exressed by the variation coefficient (V.C. %); total protein, sodium, potassium and chlorides -- under 10%; cholesterol, urea and total fats -- between 10 and 20%; calcium, phosphorus, iron and creatinine -- over 20%. The highest per cent of admissible results are found with total protein -- to 85%; cholesterol -- to 70.38%; glucosa -- to 73.17%, urea -- to 69.23%, potassium -- to 59.46%, chlorides -- to 57.9%. With sodium, phosphorus, calcium, iron creatinine and uric acid the "admissibility" fluctuates about or under 50 per cent. The values of the qualitative-control indices discussed are comparable with the values obtained from them in the interlaboratory comparisons of other countries. PMID:494628

  14. Laboratory experiments in integrated circuit fabrication

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas J.; Kolesar, Edward S.

    1993-06-01

    The objectives of the experiment are fourfold: to provide practical experience implementing the fundamental processes and technology associated with the science and art of integrated circuit (IC) fabrication; to afford the opportunity for the student to apply the theory associated with IC fabrication and semiconductor device operation; to motivate the student to exercise engineering decisions associated with fabricating integrated circuits; and to complement the theory of n-channel MOS and diffused devices that are presented in the classroom by actually fabricating and testing them. Therefore, a balance between theory and practice can be realized in the education of young engineers, whose education is often criticized as lacking sufficient design and practical content.

  15. Laboratory experiments in integrated circuit fabrication

    NASA Technical Reports Server (NTRS)

    Jenkins, Thomas J.; Kolesar, Edward S.

    1993-01-01

    The objectives of the experiment are fourfold: to provide practical experience implementing the fundamental processes and technology associated with the science and art of integrated circuit (IC) fabrication; to afford the opportunity for the student to apply the theory associated with IC fabrication and semiconductor device operation; to motivate the student to exercise engineering decisions associated with fabricating integrated circuits; and to complement the theory of n-channel MOS and diffused devices that are presented in the classroom by actually fabricating and testing them. Therefore, a balance between theory and practice can be realized in the education of young engineers, whose education is often criticized as lacking sufficient design and practical content.

  16. Catching Collisions in the LHC

    SciTech Connect

    Fruguiele, Claudia; Hirschauer, Jim

    2015-06-16

    Now that the Large Hadron Collider has officially turned back on for its second run, within every proton collision could emerge the next new discovery in particle physics. Learn how the detectors on the Compact Muon Solenoid, or CMS, experiment capture and track particles as they are expelled from a collision. Talking us through these collisions are Claudia Fruguiele and Jim Hirschauer of Fermi National Accelerator Laboratory, the largest U.S. institution collaborating on the LHC.

  17. Plasma kinetic effects on interfacial mix in settings relevant to inertial confinement fusion and laboratory experiments

    NASA Astrophysics Data System (ADS)

    Yin, L.; Albright, B. J.; Bergen, B.; Bowers, K. J.; Vold, E. L.; Molvig, K.; Fernández, J. C.; Bang, W.; Bradley, P. A.; Gautier, D. C.; Hamilton, C. E.; Palaniyappan, S.; Santiago Cordoba, M. A.; Hegelich, B. M.; Dyer, G.; Roycroft, R.

    2015-11-01

    Mixing of high-Z/low-Z interfaces in dense plasma media is a problem of importance for understanding mix in inertial confinement fusion experiments and recent experiments at the LANL Trident facility. In this presentation, we apply the VPIC particle-in-cell code with a binary collision model to explore kinetic effects of the atomic mixing. Comparisons are made to published analytic theory and hybrid modeling results and conditions are identified under which plasma kinetic behavior may lead to anomalously rapid atomic mixing. Work performed under the auspices of the U.S. DOE by the LANS, LLC, Los Alamos National Laboratory under Contract No. DE-AC52-06NA25396. Funding provided by the Los Alamos National Laboratory Directed Research and Development Program.

  18. "Crown Ether" Synthesis: An Organic Laboratory Experiment.

    ERIC Educational Resources Information Center

    Field, Kurt W.; And Others

    1979-01-01

    This experiment is designed to acquaint the student with a macromolecular synthesis of a crown ether type compound. The starting materials are readily available and the product, a cyclic polyether, belongs to a class of compounds that has aroused the interest of chemist and biologist alike. (Author/BB)

  19. Preservice Teachers' Research Experiences in Scientists' Laboratories

    ERIC Educational Resources Information Center

    Brown, Sherri; Melear, Claudia

    2007-01-01

    To promote the use of scientific inquiry methods in K-12 classrooms, departments of teacher education must provide science teachers with experiences using such methods. To comply with state and national mandates, an apprenticeship course was designed to afford preservice secondary science teachers opportunities to engage in an authentic, extended,…

  20. Simple Laboratory Experiment for Illustrating Soil Respiration.

    ERIC Educational Resources Information Center

    Hattey, J. A.; Johnson, G. V.

    1997-01-01

    Describes an experiment to illustrate the effect of food source and added nutrients (N) on microbial activity in the soil. Supplies include air-dried soil, dried plant material, sources of carbon and nitrogen, a trap such as KOH, colored water, and a 500-mL Erlenmeyer flask. Includes a diagram of an incubation chamber to demonstrate microbial…

  1. The generation and amplification of intergalactic magnetic fields in analogue laboratory experiments with high power lasers

    NASA Astrophysics Data System (ADS)

    Gregori, G.; Reville, B.; Miniati, F.

    2015-11-01

    The advent of high-power laser facilities has, in the past two decades, opened a new field of research where astrophysical environments can be scaled down to laboratory dimensions, while preserving the essential physics. This is due to the invariance of the equations of magneto-hydrodynamics to a class of similarity transformations. Here we review the relevant scaling relations and their application in laboratory astrophysics experiments with a focus on the generation and amplification of magnetic fields in cosmic environment. The standard model for the origin of magnetic fields is a multi stage process whereby a vanishing magnetic seed is first generated by a rotational electric field and is then amplified by turbulent dynamo action to the characteristic values observed in astronomical bodies. We thus discuss the relevant seed generation mechanisms in cosmic environment including resistive mechanism, collision-less and fluid instabilities, as well as novel laboratory experiments using high power laser systems aimed at investigating the amplification of magnetic energy by magneto-hydrodynamic (MHD) turbulence. Future directions, including efforts to model in the laboratory the process of diffusive shock acceleration are also discussed, with an emphasis on the potential of laboratory experiments to further our understanding of plasma physics on cosmic scales.

  2. Femtoscopy of pp and Pb-Pb collisions with the ALICE experiment at the LHC

    NASA Astrophysics Data System (ADS)

    Loggins, Vera; Alice Collaboration

    2013-10-01

    Femtoscopy is unique among all analysis techniques utilized in subatomic collision experiments as it directly addresses the space-time structure of the evolving system at the femtometer scale. We report on the results of two-particle Bose-Einstein correlation analyses in pp and Pb-Pb collisions at √{ s} = 7 TeV and √{sNN} = 2 . 76 TeV, respectively, recorded by the ALICE experiment at the LHC. We discuss femtoscopic correlations for pions, kaons, and protons as a function of event multiplicity and total pair momentum.

  3. Millikan's Oil-Drop Experiment as a Remotely Controlled Laboratory

    ERIC Educational Resources Information Center

    Eckert, Bodo; Grober, Sebastian; Vetter, Martin; Jodl, Hans-Jorg

    2012-01-01

    The Millikan oil-drop experiment, to determine the elementary electrical charge e and the quantization of charge Q = n [middle dot] e, is an essential experiment in physics teaching but it is hardly performed in class for several reasons. Therefore, we offer this experiment as a remotely controlled laboratory (RCL). We describe the interactivity…

  4. A Simple Photochemical Experiment for the Advanced Laboratory.

    ERIC Educational Resources Information Center

    Rosenfeld, Stuart M.

    1986-01-01

    Describes an experiment to provide students with: (1) an introduction to photochemical techniques and theory; (2) an experience with semimicro techniques; (3) an application of carbon-14 nuclear magnetic resonance; and (4) a laboratory with some qualities of a genuine experiment. These criteria are met in the photooxidation of 9,…

  5. Neural stimulation: clinical and laboratory experiences.

    PubMed

    Pudenz, R H

    1993-03-01

    This is a report of some of the experiences of the author and his associates with electrical stimulation of the animal and human nervous systems. It was presented as a personal history rather than a review of recent investigations and publications concerned with safe and effective stimulation of neural tissue with the ultimate goals of developing neural prostheses. Much of the information presented herein has been published. PMID:8456389

  6. Comparing Volcano Infrasound and Aeroacoustics Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Ogden, D. E.; Matoza, R. S.; Fee, D.

    2012-12-01

    The production of acoustic noise by fluid flows has been studied experimentally within engineering aeroacoustics for over 50 years. These works aim to correlate flow properties and dynamics with the produced acoustic spectra (i.e., patterns of frequencies and amplitude). These correlations are used to design flow fields in man-made jet engines and other machines to reduce the production of harmful acoustic signals and resulting hearing loss. Many of the flow fields in these man-made systems are analogous to those in volcanic eruptions. We postulate that the acoustic signals generated by these flows are also analogous and the aeroacoustics experimental results provide a starting point for modeling the noise generated by volcanic flow fields. Application of empirical results from these experiments to volcanic flow fields is non-trivial. Volcanic eruptions involve complexities not present in man-made experiments including but not limited to multiphase flow, buoyancy forces, and non-uniform atmosphere. This work explores methods by which some of the empirical results from aeroacoustics experiments can be modified for application to volcanic eruptions. Results are compared with observations of volcano infrasound. Preliminary comparison to numerical simulations of volcano infrasound may also be presented.

  7. First experiences with the rotating laboratory

    NASA Technical Reports Server (NTRS)

    Prandtl, L

    1926-01-01

    This report describes experiences with a rotating cylinder to explore the effects of motion and flow upon human sensory organs. One observation was that the variation of the resultant line of gravity (from gravity and centrifugal force) was not felt so strongly as might be expected. The impressions produced by the physical effects on the members of the body, especially the ones caused by the deflecting force (Coriolis force), are exactly what the laws of physics would lead us to expect, although somewhat surprising when observed in one's own body.

  8. Agreed Discoveries: Students' Negotiations in a Virtual Laboratory Experiment

    ERIC Educational Resources Information Center

    Karlsson, Goran; Ivarsson, Jonas; Lindstrom, Berner

    2013-01-01

    This paper presents an analysis of the scientific reasoning of a dyad of secondary school students about the phenomenon of dissolution of gases in water as they work on this in a simulated laboratory experiment. A web-based virtual laboratory was developed to provide learners with the opportunity to examine the influence of physical factors on gas…

  9. High Performance Liquid Chromatography Experiments to Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Kissinger, Peter T.; And Others

    1977-01-01

    Reviews the principles of liquid chromatography with electrochemical detection (LCEC), an analytical technique that incorporates the advantages of both liquids chromatography and electrochemistry. Also suggests laboratory experiments using this technique. (MLH)

  10. Some Experiments with Biological Applications for the Elementary Laboratory

    ERIC Educational Resources Information Center

    Kammer, D. W.; Williams, J. A.

    1975-01-01

    Summarizes physics laboratory experiments with applications in the biological sciences. Includes the following topics: mechanics of the human arm, fluid flow in tubes, physics of learning, the electrocardiograph, nerve impulse conduction, and corrective lenses for eye defects. (Author/MLH)

  11. Analytical study of the Atmospheric Cloud Physics Laboratory (ACPL) experiments

    NASA Technical Reports Server (NTRS)

    Davis, M. H.

    1977-01-01

    The design specifications of the research laboratory as a Spacelab facility are discussed along with the types of planned experiments. These include cloud formation, freezing and scavenging, and electrical phenomena. A summary of the program conferences is included.

  12. Reaction Kinetics: An Experiment for Biochemistry and Organic Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Ewing, Sheila

    1982-01-01

    Describes an experiment to examine the kinetics of carbamate decomposition and the effect of buffer catalysis on the reaction. Includes background information, laboratory procedures, evaluation of data, and teaching suggestions. (Author/JN)

  13. Laboratory Experiments on the Electrochemical Remediation of the Environment

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; Tellez-Giron, Monica; Alvarez, Diana

    2004-01-01

    Ferrate, which is a strong iron oxidant for removing pollutants from water, is developed electrochemically in the laboratory, and used for experiments simulating environmental situations. Thus, ferrate is a powerful oxidizing agent capable of destroying an immense variety of contaminants.

  14. Validating the collision-dominated Child-Langmuir law for a dc discharge cathode sheath in an undergraduate laboratory

    NASA Astrophysics Data System (ADS)

    Lisovskiy, V.; Yegorenkov, V.

    2009-11-01

    In this paper, we propose a simple method of observing the collision-dominated Child-Langmuir law in the course of an undergraduate laboratory work devoted to studying the properties of gas discharges. To this end we employ the dc gas discharge whose properties are studied in sufficient detail. The undergraduate laboratory work itself is reduced to registering the voltage drop across the electrodes, the discharge current as well as the cathode sheath thickness. We can easily perform the measurements of all three quantities with sufficient accuracy in a laboratory equipped with vacuum pumps.

  15. First experiments probing the collision of parallel magnetic fields using laser-produced plasmas

    DOE PAGESBeta

    Rosenberg, M. J.; Li, C. K.; Fox, W.; Igumenshchev, I.; Seguin, F. H.; Town, R. P.; Frenje, J. A.; Stoeckl, C.; Glebov, V.; Petrasso, R. D.

    2015-04-08

    Novel experiments to study the strongly-driven collision of parallel magnetic fields in β~10, laser-produced plasmas have been conducted using monoenergetic proton radiography. These experiments were designed to probe the process of magnetic flux pileup, which has been identified in prior laser-plasma experiments as a key physical mechanism in the reconnection of anti-parallel magnetic fields when the reconnection inflow is dominated by strong plasma flows. In the present experiments using colliding plasmas carrying parallel magnetic fields, the magnetic flux is found to be conserved and slightly compressed in the collision region. Two-dimensional (2D) particle-in-cell (PIC) simulations predict a stronger flux compressionmore » and amplification of the magnetic field strength, and this discrepancy is attributed to the three-dimensional (3D) collision geometry. Future experiments may drive a stronger collision and further explore flux pileup in the context of the strongly-driven interaction of magnetic fields.« less

  16. Establishing laboratory standards for biological flight experiments

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Moriarity, Debra M.

    1989-01-01

    The general objective of this research was to assess the effects of exposure to simulated microgravity on ultrastructural aspects of the contractile system in chicken skeletal muscle cells. This general objective had two specific experimental components: (1) the progression of changes in cell morphology, fusion, and patterns of contractile filament organization in muscle cell cultures grown in hollow fibers in the Clinostat were evaluated, with appropriate controls; (2) to initiate experiments in which muscle cells were grown on the surface of microcarrier beads. The ultimate objective of this second portion of the work is to determine if these beads can be rotated in a bioreactor and thereby obtain a more accurate approximation of the effects of simulated microgravity on differentiated muscle cells.

  17. The JPL MSAT mobile laboratory and the pilot field experiments

    NASA Technical Reports Server (NTRS)

    Berner, Jeff B.; Emerson, Richard F.

    1988-01-01

    A Mobile Laboratory/Propagation Measurement Van (PMV) was developed to support the field experiments of the Mobile Satellite Experiment (MSAT-X) Project. This van was designed to provide flexibility, self-sufficiency and data acquisition to allow for both measurement of equipment performance and the mobile environment. The design philosophy and implementation of the PMV are described. The Pilot Field Experiments and an overall description of the three experiments in which the PMV was used are described.

  18. Carbonatisation of Weathered Peridotites in Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Hövelmann, J.; Austrheim, H.; Beinlich, A.; Munz, I. A.

    2010-12-01

    Enhanced in-situ carbonatisation of ultramafic rocks has been proposed as a strategy for a permanent and safe storage of CO2 in order to reduce anthropogenic greenhouse gas emissions (e.g., Kelemen and Matter 2008). This idea emerged from studies of natural examples demonstrating that ultramafic rocks react extensively with CO2 to form ophicarbonates. However, despite their Mg-rich nature, ultramafic rocks are often associated with calcite (CaCO3) rather than magnesite (MgCO3) and dolomite (CaMg(CO3)2). Whether these so-called ophicalcites represent sedimentary or tectonic breccias or are produced during hydrothermal alteration of ultramafic rocks, has been discussed for many years (e.g., Folk and McBride 1976). The view that reactions between hydrothermal fluids and ultramafic rocks can result in the formation of ophicalcite was recently supported by Beinlich et al. (2010), who documented Ca- and CO2-metasomatism and extreme Mg depletion in serpentinised and weathered peridotite clasts from the conglomerates of the Solund basin (SW Norway). This study also suggests that weathering is an important factor for the carbonatisation of ultramafic rocks. We have performed hydrothermal experiments on weathered peridotites in order to better constrain the mechanisms and conditions that trigger Mg-loss from ultramafic rocks and subsequent calcite precipitation. Un-crushed, partly serpentinised and weathered peridotite samples were allowed to react in a Ca-bearing saline solution under CO2 pressure (PCO2: 130-160 bar) at 200°C. We were able to illustrate the textural and chemical evolution during the reaction through a detailed comparison of the solid and fluid samples before and after the experiments. The initial samples showed a typical mesh texture with veins of serpentine surrounding meshes filled either with fresh or weathered olivine. The experimentally treated samples reveal a strongly reacted rim, predominantly composed of calcite, but still showing ghosts of the

  19. Electron transport and energy degradation in the ionosphere: Evaluation of the numerical solution, comparison with laboratory experiments and auroral observations

    NASA Technical Reports Server (NTRS)

    Lummerzheim, D.; Lilensten, J.

    1994-01-01

    Auroral electron transport calculations are a critical part of auroral models. We evaluate a numerical solution to the transport and energy degradation problem. The numerical solution is verified by reproducing simplified problems to which analytic solutions exist, internal self-consistency tests, comparison with laboratory experiments of electron beams penetrating a collision chamber, and by comparison with auroral observations, particularly the emission ratio of the N2 second positive to N2(+) first negative emissions. Our numerical solutions agree with range measurements in collision chambers. The calculated N(2)2P to N2(+)1N emission ratio is independent of the spectral characteristics of the incident electrons, and agrees with the value observed in aurora. Using different sets of energy loss cross sections and different functions to describe the energy distribution of secondary electrons that emerge from ionization collisions, we discuss the uncertainties of the solutions to the electron transport equation resulting from the uncertainties of these input parameters.

  20. Results from Cu+Au collisions at 200 GeV in PHENIX Experiment

    NASA Astrophysics Data System (ADS)

    Berdnikov, Ya. A.; Ivanishchev, D. A.; Kotov, D. O.; Riabov, V. G.; Riabov, Yu. G.; Samsonov, V. M.; Safonov, A. S.

    2016-01-01

    Collisions of asymmetric nuclei (Cu+Au) differ essentially from the case of symmetric nuclei (Cu+Cu, Au+Au) collisions in the geometry of overlap region. This leads to a number of consequences, which provide more absolute and accurate information about fundamental properties of matter under extreme conditions. Nuclear modification factors for π-mesons in Cu+Au interactions at 200 GeV were measured in PHENIX Experiment at RHIC. New experimental data on measurement of flows of different order (v1, v2) for light hadrons in Cu+Au interactions at 200 GeV will be discussed in this paper.

  1. Procedure Manuals for the Comparative Systems Laboratory Experiments.

    ERIC Educational Resources Information Center

    Saracevic, Tefko, Ed.; Rothenberg, Leslie, Ed.

    The report deals with experiments in testing and evaluation of an information retrieval system within the Comparative Systems Laboratory (CSL). Section I outlines the approach and the general methodology developed in CSL, the operational design of the experiments, the construction and use of the manuals, and the general significance of the…

  2. In Situ Techniques for Monitoring Electrochromism: An Advanced Laboratory Experiment

    ERIC Educational Resources Information Center

    Saricayir, Hakan; Uce, Musa; Koca, Atif

    2010-01-01

    This experiment employs current technology to enhance and extend existing lab content. The basic principles of spectroscopic and electroanalytical techniques and their use in determining material properties are covered in some detail in many undergraduate chemistry programs. However, there are limited examples of laboratory experiments with in…

  3. CONVECTIVE DIFFUSION FIELD MEASUREMENTS COMPARED WITH LABORATORY AND NUMERICAL EXPERIMENTS

    EPA Science Inventory

    Some of the more fundamental diffusion parameters measured in the CONDORS convective diffusion field experiment are compared with laboratory experiment and numerical modeling results by means of nondimensionalizations using convective scaling (i.e., mixing depth, z sub i, for len...

  4. Freeze Drying of Fruits and Vegetables: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Noble, Richard D.

    1979-01-01

    Describes a laboratory experiment for freeze-drying fruits and vegetables which aims to expose college students to the principles of drying and simultaneous heat and mass transfer. The experimental apparatus, procedure of the experiment, and data analysis are also included. (HM)

  5. Glycosidation of Methanol with Ribose: An Interdisciplinary Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Simon, Erin; Cook, Katie; Pritchard, Meredith R.; Stripe, Wayne; Bruch, Martha; Bendinskas, Kestutis

    2010-01-01

    This exercise provides students hands-on experience with the topics of glycosidation, hemiacetal and acetal formation, proton nuclear magnetic resonance ([superscript 1]H NMR) spectroscopy, and kinetic and thermodynamic product formation. In this laboratory experiment, the methyl acetal of ribose is synthesized, and the kinetic and thermodynamic…

  6. The student perspective of high school laboratory experiences

    NASA Astrophysics Data System (ADS)

    Lambert, R. Mitch

    High school science laboratory experiences are an accepted teaching practice across the nation despite a lack of research evidence to support them. The purpose of this study was to examine the perspective of students---stakeholders often ignored---on these experiences. Insight into the students' perspective was explored progressively using a grounded theory methodology. Field observations of science classrooms led to an open-ended survey of high school science students, garnering 665 responses. Twelve student interviews then focused on the data and questions evolving from the survey. The student perspective on laboratory experiences revealed varied information based on individual experience. Concurrent analysis of the data revealed that although most students like (348/665) or sometimes like (270/665) these experiences, some consistent factors yielded negative experiences and prompted suggestions for improvement. The category of responses that emerged as the core idea focused on student understanding of the experience. Students desire to understand the why do, the how to, and the what it means of laboratory experiences. Lacking any one of these, the experience loses educational value for them. This single recurring theme crossed the boundaries of age, level in school, gender, and even the student view of lab experiences as positive or negative. This study suggests reflection on the current laboratory activities in which science teachers engage their students. Is the activity appropriate (as opposed to being merely a favorite), does it encourage learning, does it fit, does it operate at the appropriate level of inquiry, and finally what can science teachers do to integrate these activities into the classroom curriculum more effectively? Simply stated, what can teachers do so that students understand what to do, what's the point, and how that point fits into what they are learning outside the laboratory?

  7. Experiment definition phase shuttle laboratory: LDRL-10.6 experiment

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Progress is reported in the development of the space shuttle laboratory laser data relay link. The system transmittance of various surfaces was considered in order to examine the coating tradeoffs for the beryllium mirrors. The results of six coating combinations considered are summarized. It is recommended that silver coatings be used throughout the system. Design of the pre-expander and a preliminary alignment procedure implemented to align all optical elements to the reference mechanical axis (the rotational axis of the outer gimbal bearing located between the two Gregorian telescopes) are included. The local oscillator subsystem, consisting of the laser, Stark cell, Stark cell electronics, power supply, starting circuit, and conditioning optics were completed and installed in the optimechanical subsystem and operation against a 10.6 micrometer source was attempted. Preliminary measurements of the HgCdTe mixer showed that this critical element was inoperative and in subsequent tests the receiver front end electronics had also failed. Possible reasons for these failures and corrective action and steps to prevent future recurrence are discussed.

  8. Spacecraft Dynamics as Related to Laboratory Experiments in Space. [conference

    NASA Technical Reports Server (NTRS)

    Fichtl, G. H. (Editor); Antar, B. N. (Editor); Collins, F. G. (Editor)

    1981-01-01

    Proceedings are presented of a conference sponsored by the Physics and Chemistry Experiments in Space Working Group to discuss the scientific and engineering aspects involved in the design and performance of reduced to zero gravity experiments affected by spacecraft environments and dynamics. The dynamics of drops, geophysical fluids, and superfluid helium are considered as well as two phase flow, combustion, and heat transfer. Interactions between spacecraft motions and the atmospheric cloud physics laboratory experiments are also examined.

  9. CSI flight experiment projects of the Naval Research Laboratory

    NASA Technical Reports Server (NTRS)

    Fisher, Shalom

    1993-01-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  10. CSI flight experiment projects of the Naval Research Laboratory

    NASA Astrophysics Data System (ADS)

    Fisher, Shalom

    1993-02-01

    The Naval Research Laboratory (NRL) is involved in an active program of CSI flight experiments. The first CSI flight experiment of the Naval Research Laboratory, the Low Power Atmospheric Compensation Experiment (LACE) dynamics experiment, has successfully measured vibrations of an orbiting satellite with a ground-based laser radar. The observations, made on January 7, 8 and 10, 1991, represent the first ever measurements of this type. In the tests, a narrowband heterodyne CO2 laser radar, operating at a wavelength of 10.6 microns, detected vibration induced differential-Doppler signatures of the LACE satellite. Power spectral densities of forced oscillations and modal frequencies and damping rates of free-damped vibrations were obtained and compared with finite element structural models of the LACE system. Another manifested flight experiment is the Advanced Controls Technology Experiment (ACTEX) designed to demonstrate active and passive damping with piezo-electric (PZT) sensors and actuators. This experiment was developed under the management of the Air Force Phillips Laboratory with integration of the experiment at NRL. It is to ride as a secondary, or 'piggyback,' experiment on a future Navy satellite.

  11. Wiki Laboratory Notebooks: Supporting Student Learning in Collaborative Inquiry-Based Laboratory Experiments

    ERIC Educational Resources Information Center

    Lawrie, Gwendolyn Angela; Grøndahl, Lisbeth; Boman, Simon; Andrews, Trish

    2016-01-01

    Recent examples of high-impact teaching practices in the undergraduate chemistry laboratory that include course-based undergraduate research experiences and inquiry-based experiments require new approaches to assessing individual student learning outcomes. Instructors require tools and strategies that can provide them with insight into individual…

  12. Operating Experience of the Tritium Laboratory at CRL

    SciTech Connect

    Gallagher, C.L.; McCrimmon, K.D.

    2005-07-15

    The Chalk River Laboratories Tritium Laboratory has been operating safely and reliably for over 20 years. Safe operations are achieved through proper management, supervision, training and using approved operating procedures and techniques. Reliability is achieved through appropriate equipment selection, routine equipment surveillance testing and routine preventative maintenance. This paper summarizes the laboratory's standard operating protocols and formal compliance programs followed to ensure safe operations. The paper will also review the general set-up of the laboratory and will focus on the experience gained with the operation of various types of equipment such as tritium monitors, tritium analyzers, pumps, purification systems and other systems used in the laboratory during its 20 years of operation.

  13. Overview of the hypernuclear production in heavy-ion collision experiments

    NASA Astrophysics Data System (ADS)

    Rappold, Christophe

    2016-01-01

    In the last decade, heavy-ion collision experiments have brought new insight to the study of hypernucleus. Experiments using ion induced reactions for hypernuclear research focus on two distinct aspects: the spectroscopy and probing the nuclear reaction. In the case of the experimental spectroscopy, the internal structure of hypernuclei is investigated in order to determine the baryon-baryon interaction in the strangeness sector for the hyper-matter equation of state. The dynamical aspect of the nucleus-nucleus reaction can also be explored by studying the production of hypernuclei. The experimental observations of the production mechanisms responsible for the formation of the hypernuclei in ion collisions will be presented. Depending of the center-of-mass energy and the type of experiment, fixed target or collider, hypernuclei can be produced in the mid-rapidity and/or in the spectator regions. The experimental results from both cases will be presented and discussed.

  14. The Binary Collision-Induced Second Overtone Band of Gaseous Hydrogen: Modelling and Laboratory Measurements

    NASA Technical Reports Server (NTRS)

    Brodbeck, C.; Bouanich, J.-P.; Nguyen, Van Thanh; Borysow, Aleksandra

    1999-01-01

    Collision-induced absorption (CIA) is the major source of the infrared opacity of dense planetary atmospheres which are composed of nonpolar molecules. Knowledge of CIA absorption spectra of H2-H2 pairs is important for modelling the atmospheres of planets and cold stars that are mainly composed of hydrogen. The spectra of hydrogen in the region of the second overtone at 0.8 microns have been recorded at temperatures of 298 and 77.5 K for gas densities ranging from 100 to 800 amagats. By extrapolation to zero density of the absorption coefficient measured every 10 cm(exp -1) in the spectral range from 11100 to 13800 cm(exp -1), we have determined the binary absorption coefficient. These extrapolated measurements are compared with calculations based on a model that was obtained by using simple computer codes and lineshape profiles. In view of the very weak absorption of the second overtone band, we find the agreement between results of the model and experiment to be reasonable.

  15. Review of recent experiments on magnetic reconnection in laboratory plasmas

    SciTech Connect

    Yamada, M.

    1995-02-01

    The present paper reviews recent laboratory experiments on magnetic reconnection. Examples will be drawn from electron current sheet experiments, merging spheromaks, and from high temperature tokamak plasmas with the Lundquist numbers exceeding 10{sup 7}. These recent laboratory experiments create an environment which satisfies the criteria for MHD plasma and in which the global boundary conditions can be controlled externally. Experiments with fully three dimensional reconnection are now possible. In the most recent TFTR tokamak discharges, Motional Stark effect (MSE) data have verified the existence of a partial reconnection. In the experiment of spheromak merging, a new plasma acceleration parallel to the neutral line has been indicated. Together with the relationship of these observations to the analysis of magnetic reconnection in space and in solar flares, important physics issues such as global boundary conditions, local plasma parameters, merging angle of the field lines, and the 3-D aspects of the reconnection are discussed.

  16. Argumentation in the Chemistry Laboratory: Inquiry and Confirmatory Experiments

    NASA Astrophysics Data System (ADS)

    Katchevich, Dvora; Hofstein, Avi; Mamlok-Naaman, Rachel

    2013-02-01

    One of the goals of science education is to provide students with the ability to construct arguments—reasoning and thinking critically in a scientific context. Over the years, many studies have been conducted on constructing arguments in science teaching, but only few of them have dealt with studying argumentation in the laboratory. Our research focuses on the process in which students construct arguments in the chemistry laboratory while conducting various types of experiments. It was found that inquiry experiments have the potential to serve as an effective platform for formulating arguments, owing to the features of this learning environment. The discourse during inquiry-type experiments was found to be rich in arguments, whereas that during confirmatory-type experiments was found to be sparse in arguments. The arguments, which were developed during the discourse of an open inquiry experiment, focus on the hypothesis-building stage, analysis of the results, and drawing appropriate conclusions.

  17. Nucleophilic Aromatic Substitution, A Guided Inquiry Laboratory Experiment.

    PubMed

    Winfield, Leyte L

    2010-01-01

    Inquiry-based learning is a unique student-centered alternative to traditional instruction. This form of active learning is ideal for the organic chemistry laboratory as it encourages critical thinking and hands on problem solving to complete an experiment. Electrophilic Aromatic Substitution is immediately associated with the undergraduate organic chemistry course. However, nucleophilic aromatic substitution is not. The N-arylation of aniline derivatives is a useful reaction for implementing nucleophilic aromatic substitution into the undergraduate curriculum. Under the framework of inquiry-based learning, a straightforward procedure has been developed for the undergraduate laboratory. This experiment explores the reaction rate of the nucleophilic aromatic substitution using various electrophiles. The reaction is conducted under microwave irradiation and the experiment is completed in one laboratory setting. PMID:21197138

  18. Development of sensorial experiments and their implementation into undergraduate laboratories

    NASA Astrophysics Data System (ADS)

    Bromfield Lee, Deborah Christina

    "Visualization" of chemical phenomena often has been limited in the teaching laboratories to the sense of sight. We have developed chemistry experiments that rely on senses other than eyesight to investigate chemical concepts, make quantitative determinations, and familiarize students with chemical techniques traditionally designed using only eyesight. Multi-sensory learning can benefit all students by actively engaging them in learning through stimulation or an alternative way of experiencing a concept or ideas. Perception of events or concepts usually depends on the information from the different sensory systems combined. The use of multi-sensory learning can take advantage of all the senses to reinforce learning as each sense builds toward a more complete experience of scientific data. Research has shown that multi-sensory representations of scientific phenomena is a valuable tool for enhancing understanding of chemistry as well as displacing misconceptions through experience. Multi-sensory experiences have also been shown to enrich memory performance. There are few experiments published which utilize multiple senses in the teaching laboratory. The sensorial experiments chosen were conceptually similar to experiments currently performed in undergraduate laboratories; however students collect different types of data using multi-sensory observations. The experiments themselves were developed by using chemicals that would provide different sensory changes or capitalizing on sensory observations that were typically overlooked or ignored and obtain similar and precise results as in traditional experiments. Minimizing hazards and using safe practices are especially essential in these experiments as students utilize senses traditionally not allowed to be used in the laboratories. These sensorial experiments utilize typical equipment found in the teaching laboratories as well as inexpensive chemicals in order to aid implementation. All experiments are rigorously tested

  19. On integrating LES and laboratory turbulent flow experiments

    SciTech Connect

    Grinstein, Fernando Franklin

    2008-01-01

    Critical issues involved in large eddy simulation (LES) experiments relate to the treatment of unresolved subgrid scale flow features and required initial and boundary condition supergrid scale modelling. The inherently intrusive nature of both LES and laboratory experiments is noted in this context. Flow characterization issues becomes very challenging ones in validation and computational laboratory studies, where potential sources of discrepancies between predictions and measurements need to be clearly evaluated and controlled. A special focus of the discussion is devoted to turbulent initial condition issues.

  20. Measurement of J/ψ production in Pb—Pb and pp collisions at the LHC with the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Gagliardi, Martino; ALICE Collaboration

    2013-03-01

    ALICE (A Large Ion Collider Experiment) aims to study the behaviour of nuclear matter at high energy densities and the transition to Quark Gluon Plasma (QGP), expected to occur in relativistic heavy ion collisions. Quarkonia are important probes of nuclear matter and QGP, through the modification of their yield in the hot and dense medium formed in heavy ion collisions. Their measurement in pp collisions is also crucial to the ALICE physics program. ALICE measures quarkonium production at both forward (in the dimuon channel) and mid-rapidity (in the dielectron channel). In 2010 and 2011 the Large Hadron Collider has provided pp collisions at TeV and 2.76 TeV and Pb-Pb collisions at TeV. The ALICE results on J/ψ production in both Pb-Pb and pp collisions are presented.

  1. Soap from Nutmeg: An Integrated Introductory Organic Chemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    de Mattos, Marcio C. S.; Nicodem, David E.

    2002-01-01

    The extraction of trimyristin from nutmeg, its purification, and its conversion to a soap (sodium myristate) are described. Concepts such as the isolation of a natural product, recrystallization, identification of a solid, solubility, acidity and basicity, and organic reaction can be presented to students using integrated experiments in an introductory experimental chemistry laboratory. These experiments can easily be done in three class periods of four hours.

    See Letter re: this article.

  2. Neutrino-atom collisions

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2016-05-01

    Neutrino-atom scattering provides a sensitive tool for probing nonstandard interactions of massive neutrinos in laboratory measurements. The ionization channel of this collision process plays an important role in experiments searching for neutrino magnetic moments. We discuss some theoretical aspects of atomic ionization by massive neutrinos. We also outline possible manifestations of neutrino electromagnetic properties in coherent elastic neutrino-nucleus scattering.

  3. An Enzyme Kinetics Experiment for the Undergraduate Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Olsen, Robert J.; Olsen, Julie A.; Giles, Greta A.

    2010-01-01

    An experiment using [superscript 1]H NMR spectroscopy to observe the kinetics of the acylase 1-catalyzed hydrolysis of "N"-acetyl-DL-methionine has been developed for the organic laboratory. The L-enantiomer of the reactant is hydrolyzed completely in less than 2 h, and [superscript 1]H NMR spectroscopic data from a single sample can be worked up…

  4. A Unit Cell Laboratory Experiment: Marbles, Magnets, and Stacking Arrangements

    ERIC Educational Resources Information Center

    Collins, David C.

    2011-01-01

    An undergraduate first-semester general chemistry laboratory experiment introducing face-centered, body-centered, and simple cubic unit cells is presented. Emphasis is placed on the stacking arrangement of solid spheres used to produce a particular unit cell. Marbles and spherical magnets are employed to prepare each stacking arrangement. Packing…

  5. Equations of motion for control of the SCOLE laboratory experiment

    NASA Technical Reports Server (NTRS)

    Meirovitch, L.; Quinn, R. D.; Norris, M. A.

    1984-01-01

    The objectives of this study are listed as follows: (1) to develop Lagrange's equations of motion for the shuttle antenna configuration in orbit; (2) to modify equations using the Lagrange multiplier method to develop equations of motion for the laboratory experiment; and (3) to discuss methods for simulation and control. The equations are presented in graph form.

  6. Human Gene Discovery Laboratory: A Problem-Based Learning Experience

    ERIC Educational Resources Information Center

    Bonds, Wesley D., Sr.; Paolella, Mary Jane

    2006-01-01

    A single-semester elective combines Mendelian and molecular genetics in a problem-solving format. Students encounter a genetic disease scenario, construct a family pedigree, and try to confirm their medical diagnoses through laboratory experiences. Encouraged to generate ideas as they test their hypotheses, students realize the importance of data…

  7. Advanced Undergraduate Laboratory Experiment in Inelastic Electron Tunneling Spectroscopy.

    ERIC Educational Resources Information Center

    White, H. W.; Graves, R. J.

    1982-01-01

    An advanced undergraduate laboratory experiment in inelastic electron tunneling spectroscopy is described. Tunnel junctions were fabricated, the tunneling spectra of several molecules absorbed on the surface of aluminum oxide measured, and mode assignments made for several of the prominent peaks in spectra using results obtained from optical…

  8. Differentiating Biochemistry Course Laboratories Based on Student Experience

    ERIC Educational Resources Information Center

    Jakubowski, Henry V.

    2011-01-01

    Content and emphases in undergraduate biochemistry courses can be readily tailored to accommodate the standards of the department in which they are housed, as well as the backgrounds of the students in the courses. A more challenging issue is how to construct laboratory experiences for a class with both chemistry majors, who usually have little or…

  9. Lidocaine Metabolism and Toxicity: A Laboratory Experiment for Dental Students.

    ERIC Educational Resources Information Center

    Kusek, J. C.

    1980-01-01

    A laboratory exercise for dental students is presented using a toxic dose of lidocaine in place of an anesthetic dose of pentobarbital. The use of lidocaine demonstrates its toxic and lethal actions and increases the relevance of the experience for dental students. (Author/MLW)

  10. Computer Simulation of Laboratory Experiments: An Unrealized Potential.

    ERIC Educational Resources Information Center

    Magin, D. J.; Reizes, J. A.

    1990-01-01

    Discussion of the use of computer simulation for laboratory experiments in undergraduate engineering education focuses on work at the University of New South Wales in the instructional design and software development of a package simulating a heat exchange device. The importance of integrating theory, design, and experimentation is also discussed.…

  11. Forensics as a Laboratory Experience in Small Group Communication.

    ERIC Educational Resources Information Center

    Zeuschner, Raymond Bud

    Forensics programs can be laboratories for small group processes, whether or not they are explicitly recognized by either the participants or their teachers. Small group dynamics, as identified by M. Shaw (1981), are present and clearly define the forensic activity as a small group experience. The combination of being a small group, spending…

  12. Cotton pollen retention in boll weevils, a laboratory experiment

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cotton pollen is thought to exist in a boll weevil’s gut for at least 18 hours. In a controlled laboratory experiment examining non-cotton food sources, a cotton pollen grain was found in an individual boll weevil that had not fed on cotton for 120 hours. Because we believe that finding whole or ...

  13. Development of Sensorial Experiments and Their Implementation into Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Bromfield Lee, Deborah Christina

    2009-01-01

    "Visualization" of chemical phenomena often has been limited in the teaching laboratories to the sense of sight. We have developed chemistry experiments that rely on senses other than eyesight to investigate chemical concepts, make quantitative determinations, and familiarize students with chemical techniques traditionally designed using only…

  14. A Virtual Rock Physics Laboratory Through Visualized and Interactive Experiments

    NASA Astrophysics Data System (ADS)

    Vanorio, T.; Di Bonito, C.; Clark, A. C.

    2014-12-01

    As new scientific challenges demand more comprehensive and multidisciplinary investigations, laboratory experiments are not expected to become simpler and/or faster. Experimental investigation is an indispensable element of scientific inquiry and must play a central role in the way current and future generations of scientist make decisions. To turn the complexity of laboratory work (and that of rocks!) into dexterity, engagement, and expanded learning opportunities, we are building an interactive, virtual laboratory reproducing in form and function the Stanford Rock Physics Laboratory, at Stanford University. The objective is to combine lectures on laboratory techniques and an online repository of visualized experiments consisting of interactive, 3-D renderings of equipment used to measure properties central to the study of rock physics (e.g., how to saturate rocks, how to measure porosity, permeability, and elastic wave velocity). We use a game creation system together with 3-D computer graphics, and a narrative voice to guide the user through the different phases of the experimental protocol. The main advantage gained in employing computer graphics over video footage is that students can virtually open the instrument, single out its components, and assemble it. Most importantly, it helps describe the processes occurring within the rock. These latter cannot be tracked while simply recording the physical experiment, but computer animation can efficiently illustrate what happens inside rock samples (e.g., describing acoustic waves, and/or fluid flow through a porous rock under pressure within an opaque core-holder - Figure 1). The repository of visualized experiments will complement lectures on laboratory techniques and constitute an on-line course offered through the EdX platform at Stanford. This will provide a virtual laboratory for anyone, anywhere to facilitate teaching/learning of introductory laboratory classes in Geophysics and expand the number of courses

  15. Recording the PHILAE Touchdown using CASSE: Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Knapmeyer, M.; Faber, C.; Witte, L.; Schröder, S.; Tune, J.-B.; Möhlmann, D.; Arnold, W.; Roll, R.; Chares, B.; Fischer, H.-H.; Seidensticker, K. J.

    2013-09-01

    The landing of Philae on comet 67P/Churyumov-Gerasimenko is scheduled for November 14, 2014. Its landing feet house the triaxial acceleration sensors of CASSE (Comet Acoustic Surface Sounding Experiment [1]) which will thus be the first sensors to be in mechanical contact with the cometary surface. It is planned that CASSE will be in listening mode to record the deceleration of the lander by the collision with the comet. The analysis of this data will not only support an engineering analysis of the landing process itself but also yield information about the mechanical properties of the comet's surface. Here, we describe a series of controlled landings of a lander model. The tests were conducted in the Landing & Mobility Test Facility (LAMA) of the DLR Institute of Space Systems in Bremen, Germany, where an industrial robot can be programmed to move landers or rovers along predefined paths and under simulated low gravity (Figure 1).

  16. Bow Shock Fragmentation Driven by a Thermal Instability in Laboratory Astrophysics Experiments

    NASA Astrophysics Data System (ADS)

    Suzuki-Vidal, F.; Lebedev, S. V.; Ciardi, A.; Pickworth, L. A.; Rodriguez, R.; Gil, J. M.; Espinosa, G.; Hartigan, P.; Swadling, G. F.; Skidmore, J.; Hall, G. N.; Bennett, M.; Bland, S. N.; Burdiak, G.; de Grouchy, P.; Music, J.; Suttle, L.; Hansen, E.; Frank, A.

    2015-12-01

    The role of radiative cooling during the evolution of a bow shock was studied in laboratory-astrophysics experiments that are scalable to bow shocks present in jets from young stellar objects. The laboratory bow shock is formed during the collision of two counterstreaming, supersonic plasma jets produced by an opposing pair of radial foil Z-pinches driven by the current pulse from the MAGPIE pulsed-power generator. The jets have different flow velocities in the laboratory frame, and the experiments are driven over many times the characteristic cooling timescale. The initially smooth bow shock rapidly develops small-scale nonuniformities over temporal and spatial scales that are consistent with a thermal instability triggered by strong radiative cooling in the shock. The growth of these perturbations eventually results in a global fragmentation of the bow shock front. The formation of a thermal instability is supported by analysis of the plasma cooling function calculated for the experimental conditions with the radiative packages ABAKO/RAPCAL.

  17. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 2: Experiment selection

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The selection and definition of candidate experiments and the associated experiment instrumentation requirements are described. Information is presented that addresses the following study objectives: (1) determine specific research and technology needs in the comm/nav field through a survey of the scientific/technical community; (2) develop manned low earth orbit space screening criteria and compile lists of potential candidate experiments; (3) in Blue Book format, define and describe selected candidate experiments in sufficient detail to develop laboratory configuration designs and layouts; and (4) develop experiment time phasing criteria and recommend a payload for sortie can/early laboratory missions.

  18. Experiences and prospects of nuclear astrophysics in underground laboratories

    SciTech Connect

    Junker, M.

    2014-05-09

    Impressive progress has been made in the course the last decades in understanding astrophysical objects. Increasing precision of nuclear physics data has contributed significantly to this success, but now a better understanding of several important findings is frequently limited by uncertainties related to the available nuclear physics data. Consequently it is desirable to improve significantly the quality of these data. An important step towards higher precision is an excellent signal to background ratio of the data. Placing an accelerator facility inside an underground laboratory reducing the cosmic ray induced background by six orders of magnitude is a powerful method to reach this goal, even though careful reduction of environmental and beam induced background must still be considered. Experience in the field of underground nuclear astrophysics has been gained since 20 years due to the pioneering work of the LUNA Collaboration (Laboratory for Underground Nuclear Astrophysics) operating inside the underground laboratories of the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. Based on the success of this work presently also several other projects for underground laboratories dedicated to nuclear astrophysics are being pursued worldwide. This contribution will give a survey of the past experience in underground nuclear astrophysics as well as an outlook on future developments.

  19. Experiences and prospects of nuclear astrophysics in underground laboratories

    NASA Astrophysics Data System (ADS)

    Junker, M.

    2014-05-01

    Impressive progress has been made in the course the last decades in understanding astrophysical objects. Increasing precision of nuclear physics data has contributed significantly to this success, but now a better understanding of several important findings is frequently limited by uncertainties related to the available nuclear physics data. Consequently it is desirable to improve significantly the quality of these data. An important step towards higher precision is an excellent signal to background ratio of the data. Placing an accelerator facility inside an underground laboratory reducing the cosmic ray induced background by six orders of magnitude is a powerful method to reach this goal, even though careful reduction of environmental and beam induced background must still be considered. Experience in the field of underground nuclear astrophysics has been gained since 20 years due to the pioneering work of the LUNA Collaboration (Laboratory for Underground Nuclear Astrophysics) operating inside the underground laboratories of the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. Based on the success of this work presently also several other projects for underground laboratories dedicated to nuclear astrophysics are being pursued worldwide. This contribution will give a survey of the past experience in underground nuclear astrophysics as well as an outlook on future developments.

  20. Experiences and Prospects of Nuclear Astrophysics in Underground Laboratories

    NASA Astrophysics Data System (ADS)

    Junker, M.

    2016-01-01

    Impressive progress has been made in the course the last decades in understanding astrophysical objects. Increasing precision of nuclear physics data has contributed significantly to this success, but now a better understanding of several important findings is frequently limited by uncertainties related to the available nuclear physics data. Consequently it is desirable to improve significantly the quality of these data. An important step towards higher precision is an excellent signal to background ratio of the data. Placing an accelerator facility inside an underground laboratory reducing the cosmic ray induced background by six orders of magnitude is a powerful method to reach this goal, even though careful reduction of environmental and beam induced background must still be considered. Experience in the field of underground nuclear astrophysics has been gained since 20 years due to the pioneering work of the LUNA Collaboration (Laboratory for Underground Nuclear Astrophysics) operating inside the underground laboratories of the Laboratori Nazionali del Gran Sasso (LNGS) in Italy. Based on the success of this work presently also several other projects for underground laboratories dedicated to nuclear astrophysics are being pursued worldwide. This contribution will give a survey of the past experience in underground nuclear astrophysics as well as an outlook on future developments.

  1. Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey

    NASA Astrophysics Data System (ADS)

    Barrie, Simon C.; Bucat, Robert B.; Buntine, Mark A.; Burke da Silva, Karen; Crisp, Geoffrey T.; George, Adrian V.; Jamie, Ian M.; Kable, Scott H.; Lim, Kieran F.; Pyke, Simon M.; Read, Justin R.; Sharma, Manjula D.; Yeung, Alexandra

    2015-07-01

    Student experience surveys have become increasingly popular to probe various aspects of processes and outcomes in higher education, such as measuring student perceptions of the learning environment and identifying aspects that could be improved. This paper reports on a particular survey for evaluating individual experiments that has been developed over some 15 years as part of a large national Australian study pertaining to the area of undergraduate laboratories-Advancing Science by Enhancing Learning in the Laboratory. This paper reports on the development of the survey instrument and the evaluation of the survey using student responses to experiments from different institutions in Australia, New Zealand and the USA. A total of 3153 student responses have been analysed using factor analysis. Three factors, motivation, assessment and resources, have been identified as contributing to improved student attitudes to laboratory activities. A central focus of the survey is to provide feedback to practitioners to iteratively improve experiments. Implications for practitioners and researchers are also discussed.

  2. Scientific equity: experiments in laboratory education in Ghana.

    PubMed

    Osseo-Asare, Abena Dove

    2013-12-01

    During the 1960s the Ministry of Education in Ghana created a network of school laboratories to increase scientific literacy among young citizens. The ministry stocked these "Science Centres" with imported beakers, Bunsen burners, and books. Education officials and university scientists worked with teachers to create lesson plans on water, air, plants, and other topics. The government hoped that scientifically minded schoolchildren would be better prepared to staff the industries of the future. The adoption of laboratory norms represented a desire for scientific equity, rather than a condition of cultural mimicry. Interviews with ministry officials and science educators, alongside letters and reports, indicate how students and teachers appropriated the laboratories in the small West African nation. Their experiences in mobilizing resources from across Ghana and around the world provide a metaphor for ongoing efforts to establish access to scientific goods in Africa. PMID:24783491

  3. Wiki Laboratory Notebooks: Supporting Student Learning in Collaborative Inquiry-Based Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Lawrie, Gwendolyn Angela; Grøndahl, Lisbeth; Boman, Simon; Andrews, Trish

    2016-06-01

    Recent examples of high-impact teaching practices in the undergraduate chemistry laboratory that include course-based undergraduate research experiences and inquiry-based experiments require new approaches to assessing individual student learning outcomes. Instructors require tools and strategies that can provide them with insight into individual student contributions to collaborative group/teamwork throughout the processes of experimental design, data analysis, display and communication of their outcomes in relation to their research question(s). Traditional assessments in the form of laboratory notebooks or experimental reports provide limited insight into the processes of collaborative inquiry-based activities. A wiki environment offers a collaborative domain that can potentially support collaborative laboratory processes and scientific record keeping. In this study, the effectiveness of the wiki in supporting laboratory learning and assessment has been evaluated through analysis of the content and histories for three consenting, participating groups of students. The conversational framework has been applied to map the relationships between the instructor, tutor, students and laboratory activities. Analytics that have been applied to the wiki platform include: character counts, page views, edits, timelines and the extent and nature of the contribution by each student to the wiki. Student perceptions of both the role and the impact of the wiki on their experiences and processes have also been collected. Evidence has emerged from this study that the wiki environment has enhanced co-construction of understanding of both the experimental process and subsequent communication of outcomes and data. A number of features are identified to support success in the use of the wiki platform for laboratory notebooks.

  4. Spectral probing of impact-generated vapor in laboratory experiments

    NASA Astrophysics Data System (ADS)

    Schultz, Peter H.; Eberhardy, Clara A.

    2015-03-01

    High-speed spectra of hypervelocity impacts at the NASA Ames Vertical Gun Range (AVGR) captured the rapidly evolving conditions of impact-generated vapor as a function of impact angle, viewpoint, and time (within the first 50 μs). Impact speeds possible at the AVGR (<7 km/s) are insufficient to induce significant vaporization in silicates, other than the high-temperature (but low-mass) jetting component created at first contact. Consequently, this study used powdered dolomite as a proxy for surveying the evolution and distribution of chemical constituents within much longer lasting vapor. Seven separate telescopes focused on different portions of the impact vapor plume and were connected through quartz fibers to two 0.35 cm monochromaters. Quarter-space experiments reduced the thermal background and opaque phases due to condensing particles and heated projectile fragments while different exposure times isolated components passing through different the fields of view, both above and below the surface within the growing transient cavity. At early times (<5 μs), atomic emission lines dominate the spectra. At later times, molecular emission lines dominate the composition of the vapor plume along a given direction. Layered targets and target mixtures isolated the source and reveal that much of the vaporization comes from the uppermost surface. Collisions by projectile fragments downrange also make significant contributions for impacts below 60° (from the horizontal). Further, impacts into mixtures of silicates with powdered dolomite reveal that frictional heating must play a role in vapor production. Such results have implications for processes controlling vaporization on planetary surfaces including volatile release, atmospheric evolution (formation and erosion), vapor generated by the Deep Impact collision, and the possible consequences of the Chicxulub impact.

  5. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Lisa Ruffe and Neil Yorio prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  6. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated October 8, 1991: 'Plant researchers Neil Yorio and Lisa Ruffe prepare to harvest a crop of Waldann's Green Lettuce from KSC's Biomass Production Chamber (BPC). KSC researchers have grown several different crops in the BPC to determine which plants will better produce food, water and oxygen on long-duration space missions.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  7. Radiative Shocks And Plasma Jets As Laboratory Astrophysics Experiments

    SciTech Connect

    Koenig, M.; Loupias, B.; Vinci, T.; Ozaki, N.; Benuzzi-Mounaix, A.; Rabec le Goahec, M.; Falize, E.; Bouquet, S.; Courtois, C.; Nazarov, W.; Aglitskiy, Y.; Faenov, A. Ya.; Pikuz, T.; Schiavi, A.

    2007-08-02

    Dedicated laboratory astrophysics experiments have been developed at LULI in the last few years. First, a high velocity (70 km/s) radiative shock has been generated in a xenon filled gas cell. We observed a clear radiative precursor, measure the shock temperature time evolution in the xenon. Results show the importance of 2D radiative losses. Second, we developed specific targets designs in order to generate high Mach number plasma jets. The two schemes tested are presented and discussed.

  8. Radiative Shocks And Plasma Jets As Laboratory Astrophysics Experiments

    NASA Astrophysics Data System (ADS)

    Koenig, M.; Loupias, B.; Vinci, T.; Ozaki, N.; Benuzzi-Mounaix, A.; Rabec Le Goahec, M.; Falize, E.; Bouquet, S.; Michaut, C.; Herpe, G.; Baroso, P.; Nazarov, W.; Aglitskiy, Y.; Faenov, A. Ya.; Pikuz, T.; Courtois, C.; Woolsey, N. C.; Gregory, C. D.; Howe, J.; Schiavi, A.; Atzeni, S.

    2007-08-01

    Dedicated laboratory astrophysics experiments have been developed at LULI in the last few years. First, a high velocity (70 km/s) radiative shock has been generated in a xenon filled gas cell. We observed a clear radiative precursor, measure the shock temperature time evolution in the xenon. Results show the importance of 2D radiative losses. Second, we developed specific targets designs in order to generate high Mach number plasma jets. The two schemes tested are presented and discussed.

  9. The Effect of Guided-Inquiry Laboratory Experiments on Science Education Students' Chemistry Laboratory Attitudes, Anxiety and Achievement

    ERIC Educational Resources Information Center

    Ural, Evrim

    2016-01-01

    The study aims to search the effect of guided inquiry laboratory experiments on students' attitudes towards chemistry laboratory, chemistry laboratory anxiety and their academic achievement in the laboratory. The study has been carried out with 37 third-year, undergraduate science education students, as a part of their Science Education Laboratory…

  10. Holographic study of a vibrating bell: An undergraduate laboratory experiment

    NASA Astrophysics Data System (ADS)

    Menou, Kristen; Audit, Benjamin; Boutillon, Xavier; Vach, Holger

    1998-05-01

    An experiment combining holography and musical acoustics is described. Structures of vibration modes of a bell are visualized by time-average holography under either acoustical or mechanical excitation. The vibration amplitude as measured by an accelerometer shows very good quantitative agreement with that determined from our holograms by fringe counting. An effect of degenerate level separation is shown in the mechanical case. It is argued that this experiment is not only very inexpensive for a physics laboratory already equipped for holography, but that it also strongly stimulates students to deepen their insight into a variety of different topics in applied physics.

  11. Thermal-blooming laboratory experiments. (Reannouncement with new availability information)

    SciTech Connect

    Johnson, B.

    1992-12-31

    The authors conducted a multiphase series of laboratory experiments to explore the adaptive optics compensation of a laser beam distorted by strong thermal blooming. Their experimental approach was to create on a small, low-power beam the same phase distortion that would be experienced by a large, high-power beam propagating through the atmosphere and to apply phase compensation via deformable mirrors. The authors performed the investigations to lay the foundation for future ground-based laser experiments and their corresponding atmospheric-propagation computer models.

  12. An EPR Experiment for the Undergraduate Physical Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Butera, R. A.; Waldeck, D. H.

    2000-11-01

    An experiment that illustrates the principles of electron paramagnetic resonance spectroscopy in the undergraduate physical chemistry laboratory is described. Students measure the value of g for DPPH and use it to determine the value of g for two inorganic complexes, Cu(acac)2 and VO(acac)2. The students use two instruments: an instructional device that illustrates the principles of EPR and a commercial Varian E4 spectrometer. This approach allows an elucidation of the principles of the method and provides experience with a more sophisticated research-grade instrument.

  13. Direct Photon and Neutral Pion Production in pp and Pb-Pb Collisions Measured with the ALICE Experiment at LHC

    NASA Astrophysics Data System (ADS)

    Peressounko, D.

    2015-06-01

    Measurements of direct photon and neutral pion production in heavy-ion collisions provide a comprehensive set of observables characterizing properties of the hot QCD medium. Direct photons provide means to test the initial stage of an AA collision and carry information about the temperature and space-time evolution of the hot medium. Neutral pion suppression probes the parton energy loss in the hot medium. Measurements of neutral meson spectra in pp collisions at LHC energies √ {s} = 0.9, ; 2.76, ; 7 ; {textrm{TeV}} serve as a reference for heavy-ion collisions and also provide valuable input data for parameterization of the QCD parton Fragmentation Functions. In this talk, results from the ALICE experiment on direct photon and neutral pion production in pp and Pb-Pb collisions are summarized.

  14. Armor breakup and reformation in a degradational laboratory experiment

    NASA Astrophysics Data System (ADS)

    Orrú, Clara; Blom, Astrid; Uijttewaal, Wim S. J.

    2016-06-01

    Armor breakup and reformation was studied in a laboratory experiment using a trimodal mixture composed of a 1 mm sand fraction and two gravel fractions (6 and 10 mm). The initial bed was characterized by a stepwise downstream fining pattern (trimodal reach) and a downstream sand reach, and the experiment was conducted under conditions without sediment supply. In the initial stage of the experiment an armor formed over the trimodal reach. The formation of the armor under partial transport conditions led to an abrupt spatial transition in the bed slope and in the mean grain size of the bed surface, as such showing similar results to a previous laboratory experiment conducted with a bimodal mixture. The focus of the current analysis is to study the mechanisms of armor breakup. After an increase in flow rate the armor broke up and a new coarser armor quickly formed. The breakup initially induced a bed surface fining due to the exposure of the finer substrate, which was accompanied by a sudden increase in the sediment transport rate, followed by the formation of an armor that was coarser than the initial one. The reformation of the armor was enabled by the supply of coarse material from the upstream degrading reach and the presence of gravel in the original substrate sediment. Here armor breakup and reformation enabled slope adjustment such that the new steady state was closer to normal flow conditions.

  15. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte (right) and Cheryl Mackowiak harvest potatoes grown in the Biomass Production Chamber of the Controlled Enviornment Life Support System (CELSS in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' Their work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  16. Research and the planned Space Experiment Research and Processing Laboratory

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Original photo and caption dated August 14, 1995: 'KSC plant physiologist Dr. Gary Stutte harvests a potato grown in the Biomass Production Chamber of the Controlled environment Life Support system (CELSS) in Hangar L at Cape Canaveral Air Station. During a 418-day 'human rated' experiment, potato crops grown in the chamber provided the equivalent of a continuous supply of the oxygen for one astronaut, along with 55 percent of that long-duration space flight crew member's caloric food requirements and enough purified water for four astronauts while absorbing their expelled carbon dioxide. The experiment provided data that will help demonstarte the feasibility of the CELSS operating as a bioregenerative life support system for lunar and deep-space missions that can operate independently without the need to carry consumables such as air, water and food, while not requiring the expendable air and water system filters necessary on today's human-piloted spacecraft.' His work is an example of the type of life sciences research that will be conducted at the Space Experiment Research Procession Laboratory (SERPL). The SERPL is a planned 100,000-square-foot laboratory that will provide expanded and upgraded facilities for hosting International Space Station experiment processing. In addition, it will provide better support for other biological and life sciences payload processing at KSC. It will serve as a magnet facility for a planned 400-acre Space Station Commerce Park.

  17. E917 experiment: Probing the dynamics of HI collisions + searching for the QGP

    SciTech Connect

    Ogilvie, C.A.; E917 Collaboration

    1996-12-31

    Experiment E917 has two main goals: to understand and probe the detailed mechanism of hadronic rescattering in HI collisions and to systematically search for a small volume of QGP. Correlated, discrete changes in sensitive QGP signatures as a function of both centrality and beam energy could indicate the presence of new physics. A precursor to the QGP is the possible change of hadronic properties in a dense medium. We will measure the {phi} and K{sup *} effective mass as a function of centrality to search for any change in the width or mass of these particles.

  18. Inter-Laboratory Uranium Double-Spike Experiment

    SciTech Connect

    Russ, G. P

    1999-11-11

    In environmental samples, the major analytical limitation on the use of uranium {sup 238}U/{sup 235}U determinations as an indicator of uranium enrichment is mass dependent bias occurring during the measurement. The double-spike technique can be used to correct the data for this effect. The purpose of this experiment was to evaluate the variation of mass bias among several laboratories and to determine the extent to which the double-spike could be used to reduce analytical uncertainty. Four laboratories performed replicate analyses on each of three samples. Generally mass bias was determined to be small compared to the random scatter of the measurements, but in at least one case, the bias was > 1%. In 8 of 12 cases, intra-laboratory variance was reduced when the double-spike correction was applied. For all three samples, the inter-laboratory variance was decreased, though the decrease was small. Based on a reasonable assumption about the true isotopic compositions of the samples, the accuracy of 11 of the twelve analyses was improved by applying the double spike correction. When the double spike is used to correct for mass bias, the {sup 238}U/{sup 235}U accuracy is better than 1% even for samples as small as 1 ng. For 50 ng of uranium, 0.1% accuracy was achieved.

  19. Laboratory outreach then and now: the Oregon experience.

    PubMed

    Nigon, Donna L

    2003-01-01

    Outreach programs, designed to extend hospital testing services to non-inpatient audiences, developed during the 1970s and early 1980s under the pressure of reimbursement restriction. Both the federal government and other third-party payers responded to the exponential explosion of health-care costs by attempting to limit and control reimbursement. In turn, hospital administrators and laboratory directors, looking for revenue streams to lessen the financial impact of these initiatives, recognized that the clinical laboratory represented an opportunity to capture revenue streams that were then flowing to independent and commercial providers. A recent review of the mature outreach market in the state of Oregon provides insight into the evolution of such programs and can be used by laboratory directors and hospital administrators to benchmark their own outreach activities. The experiences of both large and small hospitals in various stages of outreach development also provide a road map for those involved in strategic and business planning for community laboratory services. PMID:12945517

  20. Identified charged hadron production in Pb-Pb collisions at √ {s_{NN} } = 2.76 TeV with the ALICE experiment at the LHC

    NASA Astrophysics Data System (ADS)

    Milano, Leonardo

    2015-10-01

    Quark Gluon Plasma (QGP) is an unavoidable consequence of Quantum Chromodynamics (QCD). High-energy heavy-ion collisions offer the unique possibility to reproduce in the laboratory the conditions expected during the very first stages of the evolution of the Universe. The ALICE (A Large Ion Collider Experiment) experiment at the Large Hadron Collider (LHC) allows the study of the dense nuclear environment created in nucleus-nucleus collisions. Particle Identification (PID) is one of the key features of the ALICE experiment. Identified particle spectra represent a crucial tool to understand the behaviour of the matter created in high-energy heavy-ion collisions. The transverse momentum p T distributions of identified hadrons contain information about the transverse expansion of the system and constrain the freeze-out properties of the system. Hydrodynamic models have proved to be very successful reproducing a large number of features of heavy-ion collisions ( e.g., particle p T distributions, radial flow, elliptic flow, Hanbury Brown-Twiss correlations, ...). The measurement of the p T distributions of identified π, K and p in Pb-Pb collisions at √ {s_{NN} } = 2.76 TeV is presented and discussed in terms of hydrodynamics. The V0 detector allows the selection of events based on the eccentricity of the collision (related with the initial geometry). This makes possible the study of the correlation between the p T distribution of hadrons and elliptic flow on an event-by-event basis. Hadron abundances can be obtained from the principle of maximum entropy using statistical concepts. This allows the extrapolation of the chemical freeze-out parameters from the data. Over the last years it has been proved that the chemical freeze-out temperature T ch is connected with the phase transition temperature T C . The measurements of the freeze-out parameters at the LHC energies are described in detail and the results obtained by various groups at lower energies are extended with

  1. Cryogenic Fracturing: Laboratory Visualization Experiments and Numerical Simulations Using Peridynamics

    NASA Astrophysics Data System (ADS)

    Martin-Short, R.; Edmiston, J. K.

    2015-12-01

    Typical hydraulic fracturing operations involve the use of a large quantity of water, which can be problematic for several reasons including possible formation (permeability) damage, disposal of waste water, and the use of precious local water resource. An alternate reservoir permeability enhancing technology not requiring water is cryogenic fracturing. This method induces controlled fracturing of rock formations by thermal shock and has potentially important applications in the geothermal and hydrocarbon industries. In this process, cryogenic fluid—such as liquid nitrogen—is injected into the subsurface, causing fracturing due to thermal gradients. These fractures may improve the formation permeability relative to that achievable by hydraulic fracturing alone. We conducted combined laboratory visualization and numerical simulations studies of thermal-shock-induced fracture initiation and propagation resulting from liquid nitrogen injection in rock and analog materials. The experiment used transparent soda-lime glass cubes to facilitate real-time visualization of fracture growth and the fracture network geometry. In this contribution, we report the effect of overall temperature difference between cryogenic fluid and solid material on the produced fracture network, by pre-heating the glass cubes to several temperatures and injecting liquid nitrogen. Temperatures are monitored at several points by thermocouple and the fracture evolution is captured visually by camera. The experiment was modeled using a customized, thermoelastic, fracture-capable numerical simulation code based on peridynamics. The performance of the numerical code was validated by the results of the laboratory experiments, and then the code was used to study the different factors affecting a cryogenic fracturing operation, including the evolution of residual stresses and constitutive relationships for material failure. In complex rock such as shale, understanding the process of cryogenic

  2. Georgia Teachers in Academic Laboratories: Research Experiences in the Geosciences

    NASA Astrophysics Data System (ADS)

    Barrett, D.

    2005-12-01

    The Georgia Intern-Fellowships for Teachers (GIFT) is a collaborative effort designed to enhance mathematics and science experiences of Georgia teachers and their students through summer research internships for teachers. By offering business, industry, public science institute and research summer fellowships to teachers, GIFT provides educators with first-hand exposure to the skills and knowledge necessary for the preparation of our future workforce. Since 1991, GIFT has placed middle and high school mathematics, science and technology teachers in over 1000 positions throughout the state. In these fellowships, teachers are involved in cutting edge scientific and engineering research, data analysis, curriculum development and real-world inquiry and problem solving, and create Action Plans to assist them in translating the experience into changed classroom practice. Since 2004, an increasing number of high school students have worked with their teachers in research laboratories. The GIFT program places an average of 75 teachers per summer into internship positions. In the summer of 2005, 83 teachers worked in corporate and research environments throughout the state of Georgia and six of these positions involved authentic research in geoscience related departments at the Georgia Institute of Technology, including aerospace engineering and the earth and atmospheric sciences laboratories. This presentation will review the history and the structure of the program including the support system for teachers and mentors as well as the emphasis on inquiry based learning strategies. The focus of the presentation will be a comparison of two placement models of the teachers placed in geoscience research laboratories: middle school earth science teachers placed in a 6 week research experience and high school teachers placed in 7 week internships with teams of 3 high school students. The presentation will include interviews with faculty to determine the value of these experiences

  3. The Heavy Photon Search experiment at Jefferson Laboratory

    SciTech Connect

    Celentano, Andrea

    2014-11-01

    The Heavy Photon Search experiment (HPS) at Jefferson Laboratory will search for a new U(1) massive gauge boson, or "heavy-photon", mediator of a new fundamental interaction, called "dark-force", that couples to ordinary photons through kinetic mixing. HPS has sensitivity in the mass range 20 MeV – 1 GeV and coupling epsilon2 between 10-5 and 10-10. The HPS experiment will look for the e+e- decay of the heavy photon, by resonance search and detached vertexing, in an electron beam fixed target experiment. HPS will use a compact forward spectrometer, which employs silicon microstrip detectors for vertexing and tracking, and a PbWO4 electromagnetic calorimeter for energy measurement and fast triggering.

  4. The Heavy Photon Search experiment at Jefferson Laboratory

    SciTech Connect

    Celentano, Andrea

    2014-11-01

    The Heavy Photon Search experiment (HPS) at Jefferson Laboratory will search for a new U(1) massive gauge boson, or "heavy-photon", mediator of a new fundamental interaction, called "dark-force", that couples to ordinary photons through kinetic mixing. HPS has sensitivity in the mass range 20 MeV – 1 GeV and coupling epsilon2 between 10−5 and 10−10. The HPS experiment will look for the e+e− decay of the heavy photon, by resonance search and detached vertexing, in an electron beam fixed target experiment. HPS will use a compact forward spectrometer, which employs silicon microstrip detectors for vertexing and tracking, and a PbWO4 electromagnetic calorimeter for energy measurement and fast triggering.

  5. Exploration of the Kinked Jet in the Crab Nebula with Scaled Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Li, Chikang

    2015-11-01

    X-ray images from the Chandra X-ray Observatory show that the South-East jet in the Crab nebula changes direction every few years. This remarkable phenomenon is also frequently observed for jets in other pulsar-wind nebulae and in other astrophysical objects. Numerical simulations suggest that it may be a consequence of current-driven, magnetohydrodynamic (MHD) instabilities taking place in the jet, yet that is just a hypothesis without verification in controlled experiments. To that end, we recently conducted scaled laboratory experiments that reproduced this phenomenon. In these experiments, a supersonic plasma jet was generated in the collision of two laser-produced plasma plumes, and this jet was radiographed from the side using 15-MeV and 3-MeV protons. It was observed that if self-generated toroidal magnetic fields around the jet were strong enough, they triggered plasma instabilities that caused substantial deflections throughout the jet propagation, mimicking the kinked jet structure seen in the Crab Nebula. We have modeled these laboratory experiments with comprehensive two- and three-dimensional numerical simulations, which in conjunction with the experiments provide compelling evidence that we have an accurate model of the most important physics of magnetic fields and MHD instabilities in the observed jet in the Crab Nebula. The work described here was performed in part at the LLE National Laser User's Facility (NLUF), and was supported in part by US DOE (Grant No. DE-FG03- 03SF22691), LLNL (subcontract Grant No. B504974) and LLE (subcontract Grant No. 412160-001G).

  6. Constraining PCP Violating Varying Alpha Theory through Laboratory Experiments

    SciTech Connect

    Maity, Debaprasad; Chen, Pisin; /NCTS, Taipei /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC

    2012-06-06

    In this report we have studied the implication of a parity and charge-parity (PCP) violating interaction in varying alpha theory. Due to this interaction, the state of photon polarization can change when it passes through a strong background magnetic field. We have calculated the optical rotation and ellipticity of the plane of polarization of an electromagnetic wave and tested our results against different laboratory experiments. Our model contains a PCP violating parameter {beta} and a scale of alpha variation {omega}. By analyzing the laboratory experimental data, we found the most stringent constraints on our model parameters to be 1 {le} {omega} {le} 10{sup 13} GeV{sup 2} and -0.5 {le} {beta} {le} 0.5. We also found that with the existing experimental input parameters it is very difficult to detect the ellipticity in the near future.

  7. Rotationally inelastic collisions of He and Ar with NaK: Theory and Experiment

    NASA Astrophysics Data System (ADS)

    Price, T. J.; Towne, A. C.; Richter, K.; Jones, J.; Hickman, A. P.; Huennekens, J.; Faust, C.; Malenda, R. F.; Ross, A. J.; Crozet, P.; Talbi, D.; Forrey, R. C.

    2016-05-01

    Rotationally inelastic thermal collisions of NaK A1Σ+ molecules with He and Ar have been studied at Lehigh and Lyon. In both laboratories, a pump laser excites a particular ro-vibrational level A1Σ+ (v , J). Strong transitions from the pumped (v , J) level and weaker transitions from collisionally-populated levels (v ,J' = J + ΔJ) occur. Ratios of line intensities yield information about population and orientation transfer. At Lyon, we also identify v changing collisions. A strong propensity for ΔJ = even transitions is observed for He and Ar. Theoretical calculations are underway; we've calculated He-NaK and Ar-NaK potential surfaces using GAMESS and performed coupled channel scattering calculations for JM -->J'M' transitions. Semiclassical formulas for the cross sections have been obtained and agree well with our quantum mechanical calculations. Using the vector model, where J precesses with polar angle θ about the z-axis, we derived the distribution of final polar angles θ' and final M' states. We identify a special case where the θ' distribution is a Lorentzian centered at θ. Work supported by NSF, XSEDE and CNRS (PICS).

  8. LABORATORY STUDY OF RATE COEFFICIENTS FOR H{sub 2}O:He INELASTIC COLLISIONS BETWEEN 20 AND 120 K

    SciTech Connect

    Tejeda, G.; Moreno, E.; Fernández, J. M.; Montero, S.; Carmona-Novillo, E.; Hernández, M. I.

    2015-01-01

    State-to-state rate coefficients for ortho-H{sub 2}O:He and para-H{sub 2}O:He inelastic collisions in the 20-120 K thermal range are investigated by means of an improved experimental procedure. This procedure is based on the use of a kinetic master equation (MEQ) which describes the evolution of populations of H{sub 2}O rotational levels along a supersonic jet of H{sub 2}O highly diluted in helium. The MEQ is expressed in terms of experimental observables and rate coefficients for H{sub 2}O:He inelastic collisions. The primary experimental observables are the local number density and the populations of the rotational energy levels of H{sub 2}O, quantities which are determined along the jet with unprecedented accuracy by means of Raman spectroscopy with high space resolution. Sets of rate coefficients from the literature and from present close-coupling calculations using two different potential energy surfaces (PESs) have been tested against the experiment. The Green et al. rate coefficients are up to 50% too low compared to the experiment, while most rates calculated here from the Hodges et al. PES and the Patkowski et al. PES are much closer to the experimental values. Experimental rates with an estimated accuracy on the order of 10% have been obtained for ortho-H{sub 2}O:He and para-H{sub 2}O:He inelastic collisions between 20 and 120 K by scaling and averaging the theoretical rates to the experiment.

  9. Lab-scale ash production by abrasion and collision experiments of porous volcanic samples

    NASA Astrophysics Data System (ADS)

    Mueller, S. B.; Lane, S. J.; Kueppers, U.

    2015-09-01

    In the course of explosive eruptions, magma is fragmented into smaller pieces by a plethora of processes before and during deposition. Volcanic ash, fragments smaller than 2 mm, has near-volcano effects (e.g. increasing mobility of PDCs, threat to human infrastructure) but may also cause various problems over long duration and/or far away from the source (human health and aviation matters). We quantify the efficiency of ash generation during experimental fracturing of pumiceous and scoriaceous samples subjected to shear and normal stress fields. Experiments were designed to produce ash by overcoming the yield strength of samples from Tenerife (Canary Islands, Spain), Sicily and Lipari Islands (Italy), with this study having particular interest in the < 355 μm fraction. Fracturing within volcanic conduits, plumes and pyroclastic density currents (PDCs) was simulated through a series of abrasion (shear) and collision (normal) experiments. An understanding of these processes is crucial as they are capable of producing very fine ash (< 10 μm). These particles can remain in the atmosphere for several days and may travel large distances (~ 1000s of km). This poses a threat to the aviation industry and human health. From the experiments we establish that abrasion produced the finest-grained material and up to 50% of the generated ash was smaller than 10 μm. In comparison, the collision experiments that applied mainly normal stress fields produced coarser grain sizes. Results were compared to established grain size distributions for natural fall and PDC deposits and good correlation was found. Energies involved in collision and abrasion experiments were calculated and showed an exponential correlation with ash production rate. Projecting these experimental results into the volcanic environment, the greatest amounts of ash are produced in the most energetic and turbulent regions of volcanic flows, which are proximal to the vent. Finest grain sizes are produced in PDCs

  10. Laboratory studies of atomic collision processes of importance in planetary atmospheres

    NASA Technical Reports Server (NTRS)

    Stebbings, R. F.; Smith, K.

    1984-01-01

    Progress in the following research supported under NSG 7386 is reported: (1) measurement of differential cross sections for atomic and molecular collisions relevant to analysis and modeling of data from Pioneer 11, Pioneer 12, Voyager 1, and Voyager 2; (2) analysis of measured differential cross section results to provide scattering data in forms that are easy to apply to atmospheric modeling work; (3) analysis of the data to give basic information on the molecular potentials involved in the scattering process; and (4) development and initial use of apparatus to study dissociative processes in neutral molecules.

  11. Experiments at The Virtual National Laboratory for Heavy Ion Fusion

    SciTech Connect

    Seidl, P.A.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Kwan, J.W.; MacLaren, S.A.; Ponce, D.; Shuman, D.; Yu, S.; Ahle, L.; Lund, S.; Molvik, A.; Sangster, T.C.

    2000-07-24

    An overview of experiments is presented, in which the physical dimensions, emittance and perveance are scaled to explore driver-relevant beam dynamics. Among these are beam merging, focusing to a small spot, and bending and recirculating beams. The Virtual National Laboratory for Heavy Ion Fusion (VNL) is also developing two driver-scale beam experiments involving heavy-ion beams with I(sub beam) about 1 Ampere to provide guidance for the design of an Integrated Research Experiment (IRE) for driver system studies within the next 5 years. Multiple-beam sources and injectors are being designed and a one-beam module will be built and tested. Another experimental effort will be the transport of such a beam through about 100 magnetic quadrupoles. The experiment will determine transport limits at high aperture fill factors, beam halo formation, and the influence on beam properties of secondary electron Research into driver technology will be briefly presented, including the development of ferromagnetic core materials, induction core pulsers, multiple-beam quadrupole arrays and plasma channel formation experiments for pinched transport in reactor chambers.

  12. Slab pull and indentation tectonics: insights from 3D laboratory experiments

    NASA Astrophysics Data System (ADS)

    Regard, Vincent; Faccenna, Claudio; Martinod, Joseph; Bellier, Olivier

    2005-03-01

    We investigate, using 3D laboratory experiments, how the dynamics of indentation process are affected by the evolution at depth of the oceanic and continental subductions. Lithospheric plates are modelled by sand-silicone plates floating on glucose syrup, and the density contrast between oceanic and continental lithospheric plates and asthenosphere is reproduced. Analogue experiments model the convergence between two lithospheric plates, a small continent indenting a large continental plate. We show that the surface deformation in front of the indenter and above the oceanic subduction zone depends on the behaviour of the slab below the collision zone. Slab break-off following the subduction of the small continent favours the indentation process, because it results in an increasing compression in front of the indenter, and extension above the neighbouring oceanic subduction, both of them being responsible for the appearance of the indenter-like geometry of the plate boundary. When the slab does not deform significantly at depth, in contrast, the closure of the oceanic domain in front of the indenter is followed by a longer period of continental subduction, during which the tectonic regime within the wide continent remains quite homogeneous. Comparing the presented analogue experiments with the subductions both part of the Arabian indenter within Eurasia, our results suggest that the different tectonic regime on both sides of the Arabia indenter may partly result from the probable occurrence of a detachment at depth under eastern Anatolia.

  13. Simulation studies of plasma lens experiments at Daresbury laboratory

    NASA Astrophysics Data System (ADS)

    Hanahoe, K.; Mete, O.; Xia, G.; Angal-Kalinin, D.; Jones, J.; Smith, J.

    2016-03-01

    Experiments are planned to study plasma lensing using the VELA and CLARA Front End accelerators at Daresbury Laboratory. This paper presents results of 2-dimensional particle-in-cell simulations of the proposed experiments. The variation in focusing strength and emittance growth with beam and plasma parameters are studied in the overdense (plasma density much greater than bunch density) regime for the VELA beam. The effect of spherical and longitudinal aberrations on the beam emittance was estimated through numerical and theoretical studies. Simulation results show that a focusing strength equivalent to a magnetic field gradient of 10 T m-1 can be achieved using VELA, and a gradient of 247 T m-1 can be achieved using CLARA Front End.

  14. Accessing the new collisionless reconnection regime in laboratory experiment

    NASA Astrophysics Data System (ADS)

    Olson, Joseph; Egedal, Jan; Greess, Samuel; Wallace, John; Clark, Michael; Forest, Cary

    2015-11-01

    The Terrestrial Reconnection Experiment (TREX), the largest dedicated reconnection experiment to date, is currently in operation at the Wisconsin Plasma Astrophysics Laboratory (WiPAL). In its inaugural run, TREX demonstrated its ability to operate in what has traditionally been called the collisionless reconnection regime by observing the out-of-plane magnetic field characteristic of Hall reconnection. Additionally, TREX is projected to access even more collisionless parameters in which electron pressure anisotropy develops, greatly influencing the dynamics of the reconnection process beyond two fluid effects. For example, spacecraft observations and kinetic simulations show that large-scale current layers are driven by this pressure anisotropy. In the last year, TREX has undergone upgrades to its plasma heating, reconnection drive, and diagnostic suite in order to study these features exclusive to truly collisionless reconnection. Preliminary results from the newly optimized experimental runs will be presented. Supported in part by DoE grant DE-SC0010463.

  15. Storing data from fusion experiments at the National Storage Laboratory

    SciTech Connect

    Butner, D.N.; Meyer, W.H.

    1993-09-03

    The National Storage Laboratory (NSL) at the National Energy Research Supercomputer Center (NERSC) is a prototype facility which is developing data storage and retrieval techniques using hardware that includes a hierarchy of storage devices. The ultimate goal is to store terabytes of data and achieve rapid retrieval times compatible with the type of media where the data is stored. Files stored in the NSL are accessed directly using the Network File System (NFS); in the future, the Andrew File System (AFS) is expected to be used. System level control of files is available using the File Transfer Protocol (FTP) or a set of program-callable routines. We have experimented with storing and retrieving data from fusion experiments at LLNL and at General Atomics in San Diego, California, using computers running UNIX and VMS operating systems. We discuss some issues associated with accessing files whose names are known, but which are not immediately available, the time required for retrieval, and other pertinent parameters.

  16. Laboratory experiments on stratified flow through a suspended porous fence

    NASA Astrophysics Data System (ADS)

    Delavan, Sarah; Nokes, Roger; Plew, David

    2012-11-01

    This study explores stratified flow through a suspended, porous, fence-like obstacle to simulate flow through fish farm cages, mussel farm rope suspensions, flow through suspended aquatic vegetation, underwater energy production structures, or windbreak and wave break fencing. Laboratory experiments were performed in a density stratified, stationary flume with a suspended porous fence model using a particle tracking velocimetry (PTV) system. Experiments explored the effect on the fluid of the fence depth to total depth ratio, the system Richardson number, and the porosity of the fence. Preliminary results suggest that the density stratification of the fluid inhibits vertical fluid motion, that fence porosity greatly controls the vertical mixing of the fluid, and that there may be an optimal fence depth to total depth ratio for full development of the system flow structures.

  17. Plasma interaction experiment 2 (PIX 2): Laboratory and flight results

    NASA Technical Reports Server (NTRS)

    Grier, N. T.

    1985-01-01

    The Plasma Interaction Experiments 1 and 2 (PIX 1 and 2) were designed as first steps toward understanding interactions between high-voltage solar arrays and the surrounding plasma. The PIX 2 consisted of an approximately 2000-sq cm array divided into four equal segments. Each of the segments could be biased independently and the current measured separately. In addition to the solar array segments, PIX 2 had a hot-wire-filament electron emitter and a spherical Langmuir probe. The emitter was operated when the array segments were biased positively bove 125 V. Thermal electrons from the emitter aided in balancing the electron currents collected by the array. Laboratory and flight results of PIX 2 are presented. At high positive voltages on the solar array segments, the flight currents were approximately an order of magnitude larger than the ground test currents. This is attributed to the tank walls in the laboratory interfering with the electron currents to the array segments. From previous tests it is known that the tank walls limit the electron currents at high voltages. This was the first verification of the extent of the laboratory tank effect on the plasma coupling current.

  18. Laboratory plasma physics experiments using merging supersonic plasma jets

    SciTech Connect

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A.; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ≈ ni ~ 10¹⁶ cm⁻³, Te ≈ Ti ≈ 1.4 eV, Vjet ≈ 30–100 km/s, mean charge $\\bar{Z}$ ≈ 1, sonic Mach number Ms ≡ Vjet/Cs > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.

  19. Laboratory plasma physics experiments using merging supersonic plasma jets

    DOE PAGESBeta

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A.; Gilmore, M.; Lynn, A. G.; Messer, S. J.; et al

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ≈ ni ~ 10¹⁶ cm⁻³, Te ≈ Ti ≈ 1.4 eV, Vjet ≈ 30–100 km/s, mean chargemore » $$\\bar{Z}$$ ≈ 1, sonic Mach number Ms ≡ Vjet/Cs > 10, jet diameter = 5 cm, and jet length ≈ 20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.« less

  20. Laboratory plasma physics experiments using merging supersonic plasma jets

    NASA Astrophysics Data System (ADS)

    Hsu, S. C.; Moser, A. L.; Merritt, E. C.; Adams, C. S.; Dunn, J. P.; Brockington, S.; Case, A.; Gilmore, M.; Lynn, A. G.; Messer, S. J.; Witherspoon, F. D.

    2015-04-01

    We describe a laboratory plasma physics experiment at Los Alamos National Laboratory that uses two merging supersonic plasma jets formed and launched by pulsed-power-driven railguns. The jets can be formed using any atomic species or mixture available in a compressed-gas bottle and have the following nominal initial parameters at the railgun nozzle exit: ne ~ ni ~ 1016 cm-3, Te ~ Ti ~ 1.4 eV, V jet ~ 30-100 km/s, mean charge $\\bar{Z}$ ~ 1, sonic Mach number Ms ≡ V jet/Cs > 10, jet diameter = 5 cm, and jet length ~20 cm. Experiments to date have focused on the study of merging-jet dynamics and the shocks that form as a result of the interaction, in both collisional and collisionless regimes with respect to the inter-jet classical ion mean free path, and with and without an applied magnetic field. However, many other studies are also possible, as discussed in this paper.

  1. Experiences of Mentors Training Underrepresented Undergraduates in the Research Laboratory

    PubMed Central

    Prunuske, Amy J.; Wilson, Janelle; Walls, Melissa; Clarke, Benjamin

    2013-01-01

    Successfully recruiting students from underrepresented groups to pursue biomedical science research careers continues to be a challenge. Early exposure to scientific research is often cited as a powerful means to attract research scholars with the research mentor being critical in facilitating the development of an individual's science identity and career; however, most mentors in the biological sciences have had little formal training in working with research mentees. To better understand mentors’ experiences working with undergraduates in the laboratory, we conducted semistructured interviews with 15 research mentors at a public university in the Midwest. The interviewed mentors were part of a program designed to increase the number of American Indians pursuing biomedical/biobehavioral research careers and represented a broad array of perspectives, including equal representation of male and female mentors, mentors from underrepresented groups, mentors at different levels of their careers, and mentors from undergraduate and professional school departments. The mentors identified benefits and challenges in being an effective mentor. We also explored what the term underrepresented means to the mentors and discovered that most of the mentors had an incomplete understanding about how differences in culture could contribute to underrepresented students’ experience in the laboratory. Our interviews identify issues relevant to designing programs and courses focused on undergraduate student research. PMID:24006389

  2. Astrophysical Jets as Hypersonic Buckshot: Laboratory Experiments and Simulations

    NASA Astrophysics Data System (ADS)

    Frank, A.; Ciardi, A.; Yirak, K.; Lebedev, S.

    2009-08-01

    Herbig-Haro (HH) jets are commonly thought of as homogeneous beams of plasma traveling at hypersonic velocities. Structure within jet beams is often attributed to periodic or ``pulsed'' variations of conditions at the jet source. In this contribution we offer an alternative to ``pulsed'' models of protostellar jets. Using direct numerical simulations and laboratory experiments we explore the possibility that jets are chains of sub-radial clumps propagating through a moving inter-clump medium. Our simulations explore an idealization of this scenario by injecting small (r < r_{jet}), dense (rho > rho_{jet}) spheres embedded in an otherwise smooth inter-clump jet flow. The spheres are initialized with velocities differing from the jet velocity by ˜ 15%. We find the consequences of shifting from homogeneous to heterogeneous flows are significant as clumps interact with each other and with the inter-clump medium in a variety of ways. We also present new experiments that, for the first time, directly address issues of magnetized astrophysical jets. Our experiments explore the propagation and stability of super-magnetosonic, radiatively cooled, and magnetically dominated bubbles with internal, narrow jets. The results are scalable to astrophysical environments via the similarity of dimensionless numbers controlling the dynamics in both settings. These experiments show the jets are subject to kink mode instabilities which quickly fragment the jet into narrow chains of hypersonic knots, providing support for the ``clumpy jet'' paradigm.

  3. Kinetics of Papain: An Introductory Biochemistry Laboratory Experiment

    NASA Astrophysics Data System (ADS)

    Cornely, Kathleen; Crespo, Eric; Earley, Michael; Kloter, Rachel; Levesque, Aime; Pickering, Mary

    1999-05-01

    Enzyme kinetics experiments are popular in the undergraduate laboratory. These experiments have pedagogic value because they reinforce the concepts of Michaelis-Menten kinetics covered in the lecture portion of the course and give students the experience of calculating kinetic constants from data they themselves have generated. In this experiment, we investigate the kinetics of the thiol protease papain. The source of the papain is commercially available papaya latex. A specific substrate, Na-benzoyl-arginine-p-nitroanilide (BAPNA), is used, which takes advantage of the fact that papain interacts with a phenylalanine residue two amino acids away from the peptide bond cleaved. Upon hydrolysis by papain, a bright yellow product is released, p-nitroaniline. This allows the reaction to be monitored spectrophotometrically by measuring the rate of formation of the p-nitroaniline product as a function of the increase in absorbance of the solution at the lmax of p-nitroaniline (400 nm) over time at various substrate concentrations. These data are used to plot a Lineweaver-Burk plot from which the vmax and KM are obtained. If time permits, students carry out additional investigations in which e of p-nitroaniline is measured, the enzyme solution protein concentration is measured, the enzyme purity is evaluated by SDS-PAGE, and a pH-rate profile is constructed from experimental data.

  4. Impact of flow velocity on biochemical processes - a laboratory experiment

    NASA Astrophysics Data System (ADS)

    Boisson, A.; Roubinet, D.; Aquilina, L.; Bour, O.; Davy, P.

    2014-08-01

    Understanding and predicting hydraulic and chemical properties of natural environments are current crucial challenges. It requires considering hydraulic, chemical and biological processes and evaluating how hydrodynamic properties impact on biochemical reactions. In this context, an original laboratory experiment to study the impact of flow velocity on biochemical reactions along a one-dimensional flow streamline has been developed. Based on the example of nitrate reduction, nitrate-rich water passes through plastic tubes at several flow velocities (from 6.2 to 35 mm min-1), while nitrate concentration at the tube outlet is monitored for more than 500 h. This experimental setup allows assessing the biologically controlled reaction between a mobile electron acceptor (nitrate) and an electron donor (carbon) coming from an immobile phase (tube) that produces carbon during its degradation by microorganisms. It results in observing a dynamic of the nitrate transformation associated with biofilm development which is flow-velocity dependent. It is proposed that the main behaviors of the reaction rates are related to phases of biofilm development through a simple analytical model including assimilation. Experiment results and their interpretation demonstrate a significant impact of flow velocity on reaction performance and stability and highlight the relevance of dynamic experiments over static experiments for understanding biogeochemical processes.

  5. Experimenting from a distance—remotely controlled laboratory (RCL)

    NASA Astrophysics Data System (ADS)

    Gröber, Sebastian; Vetter, Martin; Eckert, Bodo; Jodl, Hans-Jörg

    2007-05-01

    The use of computers and multimedia, as well as the World Wide Web and new communication technologies, allows new forms of teaching and learning such as distance learning, blended learning, use of virtual libraries and many more. The herewith discussed remotely controlled laboratory (RCL) project shall offer an additional contribution. The basic idea is for a user to connect via the Internet with a computer from place A to a real experiment carried out in place B. An overview of our technical and didactical developments as well as an outlook on future plans is presented. Currently, about ten RCLs have been implemented. The essential characteristics of an RCL are the intuitive use and interactivity (operating the technical parameters), the possibility of different points of view of the ongoing experiment thanks to web cams and the quickest possible transfer of the data measured by the user. A reasonable use of sensibly chosen real experiments as remote labs allows a new form of homework and exercises, as well as project work and the execution of experiments, which usually would be a teacher's prerogative only.

  6. Dynamics of Protonated Peptide Ion Collisions with Organic Surfaces: Consonance of Simulation and Experiment.

    PubMed

    Pratihar, Subha; Barnes, George L; Laskin, Julia; Hase, William L

    2016-08-18

    In this Perspective, mass spectrometry experiments and chemical dynamics simulations are described that have explored the atomistic dynamics of protonated peptide ions, peptide-H(+), colliding with organic surfaces. These studies have investigated the energy transfer and fragmentation dynamics for peptide-H(+) surface-induced dissociation (SID), peptide-H(+) physisorption on the surface, soft landing (SL), and peptide-H(+) reaction with the surface, reactive landing (RL). SID provides primary structures of biological ions and information regarding their fragmentation pathways and energetics. Two SID mechanisms are found for peptide-H(+) fragmentation. A traditional mechanism in which peptide-H(+) is vibrationally excited by its collision with the surface, rebounds off the surface and then dissociates in accord with the statistical, RRKM unimolecular rate theory. The other, shattering, is a nonstatistical mechanism in which peptide-H(+) fragments as it collides with the surface, dissociating via many pathways and forming many product ions. Shattering is important for collisions with diamond and perfluorinated self-assembled monolayer (F-SAM) surfaces, increasing in importance with the peptide-H(+) collision energy. Chemical dynamics simulations also provide important mechanistic insights on SL and RL of biological ions on surfaces. The simulations indicate that SL occurs via multiple mechanisms consisting of sequences of peptide-H(+) physisorption on and penetration in the surface. SL and RL have a broad range of important applications including preparation of protein or peptide microarrays, development of biocompatible substrates and biosensors, and preparation of novel synthetic materials, including nanomaterials. An important RL mechanism is intact deposition of peptide-H(+) on the surface. PMID:27467857

  7. Computational Modeling of Laboratory X-ray Emission due to Low-Energy Collisions of H-like and He-like ions with H2

    NASA Astrophysics Data System (ADS)

    Miller, Ansley; Mullen, Patrick Dean; Cumbee, Renata; Stancil, Phillip C.; Leutenegger, Maurice A.

    2016-06-01

    Charge exchange between highly-charged ions and neutral molecules occurs when the solar wind, or other astrophysical plasmas, collide with cool gas. This process emits observable X-rays with specific line intensities. Recent CX experiments at Lawrence Livermore National Laboratory measured the X-ray hardness ratios of low-energy collisions between hydrogen- and helium-like ions with H2 (Leutenegger et al. 2010). Using our recently developed X-ray modeling package, Kronos_v2 (Mullen et al. 2016), which utilizes multi-channel Landau-Zener charge exchange cross sections, we have computed theoretical hydrogen-like hardness ratios to aid in interpretation of the experimental data. While the computed hardness ratios are somewhat smaller than the experiment, it shows better agreement than earlier classical trajectory predictions. We are also in the process of building Kronos_v3; further enhancing the comprehensive charge exchange database to include helium-like and multielectron ions to allow for comparison with experiments and for models of hot astrophysical environments such as supernova remnants, star-forming galaxies, and galaxy clusters.Leutenegger, M. et al. 2010, Phys. Rev. Lett., 105, 063201Mullen, P. D. et al., 2016, ApJS, in press

  8. Asteroid Regolith Mechanical Properties: Laboratory Experiments With Cohesive Powders

    NASA Astrophysics Data System (ADS)

    Durda, Daniel D.; Scheeres, D. J.; Roark, S. E.; Dissly, R.; Sanchez, P.

    2012-10-01

    Despite clear evidence that small asteroids undergo drastic physical evolution, the geophysics and mechanics of many of the processes governing that evolution remain a mystery due to a lack of scientific data, both on the sub-surface and global geophysics of these small bodies and on the mechanical properties of regoliths in the unique micro-gravity regime they inhabit. We are beginning a three-year effort to study regolith properties and processes on low-gravity, small asteroids by conducting analog experiments with cohesive powders in a 1-g laboratory environment. Based on a rigorous comparison of forces it can be shown that van der Waals cohesive forces between millimeter to centimeter-sized grains on asteroids ranging in size from Eros to Itokawa, respectively, may exceed their ambient weight several-fold. This observation implies that regoliths composed of impact debris of those sizes should behave on the microgravity surfaces of small asteroids like flour or other cohesive powders do in the 1-g environment here on Earth. Our goal is to develop an improved understanding of the role of cohesion in affecting regolith processes and surface morphology of small Solar System bodies, some the targets of ongoing and proposed NASA New Frontiers and Discovery missions, and to quantify the range of expected mechanical properties of such regoliths. Our experiments will be conducted in ambient and vacuum conditions within an environmental test chamber at Ball Aerospace & Technologies Corporation (BATC) in Boulder, CO. To aid in validating our experiment chamber and support equipment performance, and before proceeding with experiments on geologic regolith simulant materials, we will perform a series of comparative, ‘calibration’ experiments with micro glass spheres; all primary experiments will be performed with at least one non-idealized regolith simulant, like JSC-1, that more realistically simulates the angular particle shapes expected in actual geologic fragments

  9. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    SciTech Connect

    Davidovits, Paul

    2015-10-20

    Aerosols containing black carbon (and some specific types of organic particulate matter) directly absorb incoming light, heating the atmosphere. In addition, all aerosol particles backscatter solar light, leading to a net-cooling effect. Indirect effects involve hydrophilic aerosols, which serve as cloud condensation nuclei (CCN) that affect cloud cover and cloud stability, impacting both atmospheric radiation balance and precipitation patterns. At night, all clouds produce local warming, but overall clouds exert a net-cooling effect on the Earth. The effect of aerosol radiative forcing on climate may be as large as that of the greenhouse gases, but predominantly opposite in sign and much more uncertain. The uncertainties in the representation of aerosol interactions in climate models makes it problematic to use model projections to guide energy policy. The objective of our program is to reduce the uncertainties in the aerosol radiative forcing in the two areas highlighted in the ASR Science and Program Plan. That is, (1) addressing the direct effect by correlating particle chemistry and morphology with particle optical properties (i.e. absorption, scattering, extinction), and (2) addressing the indirect effect by correlating particle hygroscopicity and CCN activity with particle size, chemistry, and morphology. In this connection we are systematically studying particle formation, oxidation, and the effects of particle coating. The work is specifically focused on carbonaceous particles where the uncertainties in the climate relevant properties are the highest. The ongoing work consists of laboratory experiments and related instrument inter-comparison studies both coordinated with field and modeling studies, with the aim of providing reliable data to represent aerosol processes in climate models. The work is performed in the aerosol laboratory at Boston College. At the center of our laboratory setup are two main sources for the production of aerosol particles: (a

  10. Experiments on 1,000 km/s flyer acceleration and collisions

    NASA Astrophysics Data System (ADS)

    Karasik, Max; Weaver, J. L.; Aglitskiy, Y.; Kehne, D. M.; Zalesak, S. T.; Velikovich, A. L.; Oh, J.; Serlin, V.; Obenschain, S. P.

    2012-10-01

    We will present results from follow-on experiments to the record-high velocities achieved using the ultra-uniform deep-uv drive of the Nike KrF laser [Karasik et al, Phys. Plasmas 17, 056317 (2010)], in which highly accelerated planar foils of deuterated polystyrene were made to collide with a witness foil to produce ˜1 Gbar shock pressures and result in heating of matter to thermonuclear temperatures. Such velocities may indicate a path to lower minimum energy required for central ignition. Still higher velocities and higher target densities are required for impact fast ignition. New results give velocity of >1,100 km/s achieved through improvements in pulseshaping. Variation of second foil parameters results in significant change in fusion neutron production on impact. In-flight target density is inferred from target heating upon collision via DD neutron time-of-flight ion temperature measurement. Availability of pressures generated by collisions of such highly accelerated flyers may provide an experimental platform for study of matter at extreme conditions. Work is supported by US DOE (NNSA).

  11. Laboratory astrophysical collisionless shock experiments on Omega and NIF

    NASA Astrophysics Data System (ADS)

    Park, Hye-Sook; Ross, J. S.; Huntington, C. M.; Fiuza, F.; Ryutov, D.; Casey, D.; Drake, R. P.; Fiksel, G.; Froula, D.; Gregori, G.; Kugland, N. L.; Kuranz, C.; Levy, M. C.; Li, C. K.; Meinecke, J.; Morita, T.; Petrasso, R.; Plechaty, C.; Remington, B.; Sakawa, Y.; Spitkovsky, A.; Takabe, H.; Zylstra, A. B.

    2016-03-01

    We are performing scaled astrophysics experiments on Omega and on NIF. Laser driven counter-streaming interpenetrating supersonic plasma flows can be studied to understand astrophysical electromagnetic plasma phenomena in a controlled laboratory setting. In our Omega experiments, the counter-streaming flow plasma state is measured using Thomson scattering diagnostics, demonstrating the plasma flows are indeed super-sonic and in the collisionless regime. We observe a surprising additional electron and ion heating from ion drag force in the double flow experiments that are attributed to the ion drag force and electrostatic instabilities. [1] A proton probe is used to image the electric and magnetic fields. We observe unexpected large, stable and reproducible electromagnetic field structures that arise in the counter-streaming flows [2]. The Biermann battery magnetic field generated near the target plane, advected along the flows, and recompressed near the midplane explains the cause of such self-organizing field structures [3]. A D3He implosion proton probe image showed very clear filamentary structures; three-dimensional Particle-In-Cell simulations and simulated proton radiography images indicate that these filamentary structures are generated by Weibel instabilities and that the magnetization level (ratio of magnetic energy over kinetic energy in the system) is ∼0.01 [4]. These findings have very high astrophysical relevance and significant implications. We expect to observe true collisionless shock formation when we use >100 kJ laser energy on NIF.

  12. Laboratory simulations of the pyrolytic release experiments - An interim report

    NASA Technical Reports Server (NTRS)

    Hubbard, J. S.

    1979-01-01

    During its operation on Mars the pyrolytic release experiment (PR) detected the fixation of small amounts of CO2 and/or CO. Laboratory simulations of the experimental conditions were made in an attempt to substantiate the previous conclusion that these reactions were chemical rather than biological. After pretreatment and incubation under various conditions, pyrolytic analysis was used to indicate the extent of surface catalyzed conversion of (C-14)O2 or (C-14)O to (C-14)-organic compounds. This abiotic synthesis was detected in experiments with three iron oxides, viz. hematite, magnetite and maghemite. When the incubation atmosphere was supplemented with water vapor, the levels of synthesis were in a range comparable to that detected in the Viking PR tests. An abiotic synthesis was also detected in experiments with a mixture of clays and minerals (Mars analog soil) or with montmorillonite artificially enriched in iron. With either substratum the reaction appeared to be the result of a photocatalytic synthesis of (C-14)-organics from (C-14)O and surface hydroxyl groups. This process was not dependent on the presence of water vapor in the incubation atmosphere. Although a duplication of the Viking data has not been achieved, these findings support the abiotic interpretation of the PR results.

  13. Scaled Laboratory Collisionless Shock Experiments in the Large Plasma Device

    NASA Astrophysics Data System (ADS)

    Clark, S. E.; Schaeffer, D.; Everson, E.; Bondarenko, A.; Winske, D.; Constantin, C.; Niemann, C.

    2013-12-01

    Collisionless shocks in space plasmas have been investigated since the fifties and are typically studied via in-situ satellite observations, which are limited due to the large structure of collisionless shocks in space environments relative to the satellite observation platform. Scaled, repeatable experiments in the Large Plasma Device (LAPD) at UCLA provide a test bed for studying collisionless shocks in the laboratory, where questions of ion and electron heating and acceleration can be addressed and examined in detail. The experiments are performed by ablating a graphite or plastic target using the Raptor kilojoule-class laser facility at UCLA. The laser provides an on-target energy in the range of 100-500 J that drives a super-Alfvénic (MA > 1) debris plasma across a background magnetic field (200-800 G) into the ambient, magnetized LAPD plasma. Typical plasma parameters in the LAPD consist of a H+ or He+ ambient plasma with a core column (diameter > 20 cm ) density ni ~ 1013 cm-3 and electron temperature Te ~ 10 eV embedded in a larger plasma discharge (diameter ~ 80 cm) of density ni ~ 1012 cm-3 and Te ~ 5 eV. The ambient ion temperature is Ti ~ 1 eV. Experimental results from the latest collisionless shock campaign will be presented and compared with two dimensional hybrid simulations of the experiment. Fielded diagnostics include Thomson scattering, ion spectroscopy, magnetic flux probes, Langmuir probes, and microwave reflectometry.

  14. Hypervelocity Impact Experiments in the Laboratory Relating to Lunar Astrobiology

    NASA Astrophysics Data System (ADS)

    Burchell, M. J.; Parnell, J.; Bowden, S. A.; Crawford, I. A.

    2010-12-01

    The results of a set of laboratory impact experiments (speeds in the range 1-5 km s-1) are reviewed. They are discussed in the context of terrestrial impact ejecta impacting the Moon and hence lunar astrobiology through using the Moon to learn about the history of life on Earth. A review of recent results indicates that survival of quite complex organic molecules can be expected in terrestrial meteorites impacting the lunar surface, but they may have undergone selective thermal processing both during ejection from the Earth and during lunar impact. Depending on the conditions of the lunar impact (speed, angle of impact etc.) the shock pressures generated can cause significant but not complete sterilisation of any microbial load on a meteorite (e.g. at a few GPa 1-0.1% of the microbial load can survive, but at 20 GPa this falls to typically 0.01-0.001%). For more sophisticated biological products such as seeds (trapped in rocks) the lunar impact speeds generate shock pressures that disrupt the seeds (experiments show this occurs at approximately 1 GPa or semi-equivalently 1 km s-1). Overall, the delivery of terrestrial material of astrobiological interest to the Moon is supported by these experiments, although its long term survival on the Moon is a separate issue not discussed here.

  15. The Software Engineering Laboratory: An operational software experience factory

    NASA Technical Reports Server (NTRS)

    Basili, Victor R.; Caldiera, Gianluigi; Mcgarry, Frank; Pajerski, Rose; Page, Gerald; Waligora, Sharon

    1992-01-01

    For 15 years, the Software Engineering Laboratory (SEL) has been carrying out studies and experiments for the purpose of understanding, assessing, and improving software and software processes within a production software development environment at NASA/GSFC. The SEL comprises three major organizations: (1) NASA/GSFC, Flight Dynamics Division; (2) University of Maryland, Department of Computer Science; and (3) Computer Sciences Corporation, Flight Dynamics Technology Group. These organizations have jointly carried out several hundred software studies, producing hundreds of reports, papers, and documents, all of which describe some aspect of the software engineering technology that was analyzed in the flight dynamics environment at NASA. The studies range from small, controlled experiments (such as analyzing the effectiveness of code reading versus that of functional testing) to large, multiple project studies (such as assessing the impacts of Ada on a production environment). The organization's driving goal is to improve the software process continually, so that sustained improvement may be observed in the resulting products. This paper discusses the SEL as a functioning example of an operational software experience factory and summarizes the characteristics of and major lessons learned from 15 years of SEL operations.

  16. Internal Gravity Waves: Generation and Breaking Mechanisms by Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    la Forgia, Giovanni; Adduce, Claudia; Falcini, Federico

    2016-04-01

    Internal gravity waves (IGWs), occurring within estuaries and the coastal oceans, are manifest as large amplitude undulations of the pycnocline. IGWs propagating horizontally in a two layer stratified fluid are studied. The breaking of an IGW of depression shoaling upon a uniformly sloping boundary is investigated experimentally. Breaking dynamics beneath the shoaling waves causes both mixing and wave-induced near-bottom vortices suspending and redistributing the bed material. Laboratory experiments are conducted in a Perspex tank through the standard lock-release method, following the technique described in Sutherland et al. (2013). Each experiment is analysed and the instantaneous pycnocline position is measured, in order to obtain both geometric and kinematic features of the IGW: amplitude, wavelength and celerity. IGWs main features depend on the geometrical parameters that define the initial experimental setting: the density difference between the layers, the total depth, the layers depth ratio, the aspect ratio, and the displacement between the pycnoclines. Relations between IGWs geometric and kinematic features and the initial setting parameters are analysed. The approach of the IGWs toward a uniform slope is investigated in the present experiments. Depending on wave and slope characteristics, different breaking and mixing processes are observed. Sediments are sprinkled on the slope to visualize boundary layer separation in order to analyze the suspension e redistribution mechanisms due to the wave breaking.

  17. Laboratory experiments of supersonic flows through clumpy environments

    NASA Astrophysics Data System (ADS)

    Douglas, M. R.; Wilde, B. H.; Blue, B. E.; Hansen, J. F.; Foster, J. M.; Rosen, P. A.; Williams, R. J. R.; Hartigan, P.; Frank, A.

    2010-11-01

    Supersonic flows through heterogeneous environments are common in astrophysics as evidenced by high resolution Hubble Space Telescope images of a variety of astrophysical objects, including supernova remnants and stellar jets. In many instances, the imaged flows exhibit a complex morphology consisting of multiple clumps, bow shocks, and filamentary structure extending over a range of spatial scales. To gain a better understanding of the dynamics occurring in such multi-clump flows, scaled laboratory experiments are being carried out at the Omega Laser Facility. In these experiments, a laser pulse is used to heat a halfraum to indirectly drive a near planar shock through a target that typically consists of many small dense spheres embedded in lower density foam. The evolution of the target is then imaged using x-ray radiography. Targets have been designed to span the parameter space of clump number and clump size distribution, as well as investigate the quantitative differences in shock propagation through a clumpy target with that of a uniform target of the same average density. An overview of the experiments and comparison with simulations will be presented.

  18. Magnetic shielding of a laboratory Hall thruster. II. Experiments

    SciTech Connect

    Hofer, Richard R. Goebel, Dan M.; Mikellides, Ioannis G.; Katz, Ira

    2014-01-28

    The physics of magnetic shielding in Hall thrusters were validated through laboratory experiments demonstrating essentially erosionless, high-performance operation. The magnetic field near the walls of a laboratory Hall thruster was modified to effectively eliminate wall erosion while maintaining the magnetic field topology away from the walls necessary to retain efficient operation. Plasma measurements at the walls validate our understanding of magnetic shielding as derived from the theory. The plasma potential was maintained very near the anode potential, the electron temperature was reduced by a factor of two to three, and the ion current density was reduced by at least a factor of two. Measurements of the carbon backsputter rate, wall geometry, and direct measurement of plasma properties at the wall indicate that the wall erosion rate was reduced by a factor of 1000 relative to the unshielded thruster. These changes effectively eliminate wall erosion as a life limitation in Hall thrusters, enabling a new class of deep-space missions that could not previously be attempted.

  19. The Nature of Laboratory Learning Experiences in Secondary Science Online

    NASA Astrophysics Data System (ADS)

    Crippen, Kent J.; Archambault, Leanna M.; Kern, Cindy L.

    2013-06-01

    Teaching science to secondary students in an online environment is a growing international trend. Despite this trend, reports of empirical studies of this phenomenon are noticeably missing. With a survey concerning the nature of laboratory activities, this study describes the perspective of 35-secondary teachers from 15-different U.S. states who are teaching science online. The type and frequency of reported laboratory activities are consistent with the tradition of face-to-face instruction, using hands-on and simulated experiments. While provided examples were student-centered and required the collection of data, they failed to illustrate key components of the nature of science. The features of student-teacher interactions, student engagement, and nonverbal communications were found to be lacking and likely constitute barriers to the enactment of inquiry. These results serve as a call for research and development focused on using existing communication tools to better align with the activity of science such that the nature of science is more clearly addressed, the work of students becomes more collaborative and authentic, and the formative elements of a scientific inquiry are more accessible to all participants.

  20. Deformation Monitoring of Materials Under Stress in Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Skarlatos, D.; Yiatros, S.

    2016-06-01

    Photogrammetry is a valid alternative solution to linear variable differential transformer (LVDT) measurements in structural testing in laboratory conditions. Although the use of LVDTs boasts a high degree of accuracy, on the other hand it is limiting as it offers measurements between two points and it thus might be unable to capture localized deformations and strains over a bigger area of a structural specimen. In this aspect photogrammetry seems to offer certain advantages. Commercial solutions provide limited testing envelopes, while on the other hand, the wide range on new materials need more versatile techniques. Based on the need to develop an in-house photogrammetric toolbox to support several structural and material experiments in the department Advanced Pore Morphology (APM) aluminium foam specimens developed at Fraunhofer IFAM in Germany and cured at CUT, were tested under monotonic compressive load. Data acquisition, analysis and results, along with lessons learnt from the process are presented in this work.

  1. Seeded FEL Microbunching Experiments at the UCLA Neptune Laboratory

    SciTech Connect

    Tochitsky, S. Ya.; Musumeci, P.; Rosenzweig, J. B.; Joshi, C.; Gottschalk, S. C.

    2010-11-04

    Seeded high-gain FELs, which can generate very powerful radiation pulses in a relatively compact undulator and simultaneously modulate the electron beam longitudinally at the seed wavelength, are important tools for advanced accelerator development. A single-pass 0.5-9 THz FEL amplifier-buncher driven by a regular photoinjector is being built at the UCLA Neptune Laboratory. FEL interactions at 340 {mu}m (1 THz) are considered for the first experiment, since time-resolved measurements of longitudinal current distribution of the bunched beam using the RF deflecting cavity are possible. A design of a 0.2-2.0 {mu}m FEL using the same undulators is presented. In this case the FEL is driven by a high-peak current beam from the laser-plasma accelerator tunable in the 100-300 MeV range.

  2. Laboratory experiment of the rock anelastic strain recovery compliances

    NASA Astrophysics Data System (ADS)

    Gao, Lu; Wang, Lianjie

    2012-09-01

    Anelastic strain recovery (ASR) compliances are the important parameters for the ASR in situ stress measurement method to accurately evaluate the magnitude of the stress. The laboratory experiment of the creep and ASR processes for three types of rocks (sandstone, marble and granite) were performed. The tests were carried out at 50% of the uniaxial compressive strength (UCS). And the ASR compliances of the shear mode Jas(t), the volumetric mode Jav(t) and the ratio of Jas(t) and Jav(t) were obtained, respectively. The experimental result show that both the magnitude and increase rate of the ASR compliance greatly depend on the rock type, and the ratios of Jas(t) and Jav(t) trend to different constant values after enough elapsed time for each type of rock specimen.

  3. Slew maneuvers of Spacecraft Control Laboratory Experiment (SCOLE)

    NASA Technical Reports Server (NTRS)

    Kakad, Yogendra P.

    1992-01-01

    This is the final report on the dynamics and control of slew maneuvers of the Spacecraft Control Laboratory Experiment (SCOLE) test facility. The report documents the basic dynamical equation derivations for an arbitrary large angle slew maneuver as well as the basic decentralized slew maneuver control algorithm. The set of dynamical equations incorporate rigid body slew maneuver and three dimensional vibrations of the complete assembly comprising the rigid shuttle, the flexible beam, and the reflector with an offset mass. The analysis also includes kinematic nonlinearities of the entire assembly during the maneuver and the dynamics of the interactions between the rigid shuttle and the flexible appendage. The equations are simplified and evaluated numerically to include the first ten flexible modes to yield a model for designing control systems to perform slew maneuvers. The control problem incorporates the nonlinear dynamical equations and is expressed in terms of a two point boundary value problem.

  4. Linear Collisions

    ERIC Educational Resources Information Center

    Walkiewicz, T. A.; Newby, N. D., Jr.

    1972-01-01

    A discussion of linear collisions between two or three objects is related to a junior-level course in analytical mechanics. The theoretical discussion uses a geometrical approach that treats elastic and inelastic collisions from a unified point of view. Experiments with a linear air track are described. (Author/TS)

  5. Rainfall estimation using moving cars as rain gauges - laboratory experiments

    NASA Astrophysics Data System (ADS)

    Rabiei, E.; Haberlandt, U.; Sester, M.; Fitzner, D.

    2013-11-01

    The spatial assessment of short time-step precipitation is a challenging task. Low density of observation networks, as well as the bias in radar rainfall estimation motivated the new idea of exploiting cars as moving rain gauges with windshield wipers or optical sensors as measurement devices. In a preliminary study, this idea has been tested with computer experiments (Haberlandt and Sester, 2010). The results have shown that a high number of possibly inaccurate measurement devices (moving cars) provide more reliable areal rainfall estimations than a lower number of precise measurement devices (stationary gauges). Instead of assuming a relationship between wiper frequency (W) and rainfall intensity (R) with an arbitrary error, the main objective of this study is to derive valid W-R relationships between sensor readings and rainfall intensity by laboratory experiments. Sensor readings involve the wiper speed, as well as optical sensors which can be placed on cars and are usually made for automating wiper activities. A rain simulator with the capability of producing a wide range of rainfall intensities is designed and constructed. The wiper speed and two optical sensors are used in the laboratory to measure rainfall intensities, and compare it with tipping bucket readings as reference. Furthermore, the effect of the car speed on the estimation of rainfall using a car speed simulator device is investigated. The results show that the sensor readings, which are observed from manual wiper speed adjustment according to the front visibility, can be considered as a strong indicator for rainfall intensity, while the automatic wiper adjustment show weaker performance. Also the sensor readings from optical sensors showed promising results toward measuring rainfall rate. It is observed that the car speed has a significant effect on the rainfall measurement. This effect is highly dependent on the rain type as well as the windshield angle.

  6. LABORATORY EXPERIMENTS TO SIMULATE CO2 OCEAN DISPOSAL

    SciTech Connect

    Stephen M. Masutani

    1999-12-31

    This Final Technical Report summarizes the technical accomplishments of an investigation entitled ''Laboratory Experiments to Simulate CO{sub 2} Ocean Disposal'', funded by the U.S. Department of Energy's University Coal Research Program. This investigation responds to the possibility that restrictions on greenhouse gas emissions may be imposed in the future to comply with the Framework Convention on Climate Change. The primary objective of the investigation was to obtain experimental data that can be applied to assess the technical feasibility and environmental impacts of oceanic containment strategies to limit release of carbon dioxide (CO{sub 2}) from coal and other fossil fuel combustion systems into the atmosphere. A number of critical technical uncertainties of ocean disposal of CO{sub 2} were addressed by performing laboratory experiments on liquid CO{sub 2} jet break-up into a dispersed droplet phase, and hydrate formation, under deep ocean conditions. Major accomplishments of this study included: (1) five jet instability regimes were identified that occur in sequence as liquid CO{sub 2} jet disintegration progresses from laminar instability to turbulent atomization; (2) linear regression to the data yielded relationships for the boundaries between the five instability regimes in dimensionless Ohnesorge Number, Oh, and jet Reynolds Number, Re, space; (3) droplet size spectra was measured over the full range of instabilities; (4) characteristic droplet diameters decrease steadily with increasing jet velocity (and increasing Weber Number), attaining an asymptotic value in instability regime 5 (full atomization); and (5) pre-breakup hydrate formation appears to affect the size distribution of the droplet phase primary by changing the effective geometry of the jet.

  7. Central Exclusive Production in Proton-Proton Collisions with the STAR Experiment at RHIC

    NASA Astrophysics Data System (ADS)

    Guryn, Włodek

    2016-07-01

    We shall describe the physics program with tagged forward protons, focusing on Central Exclusive Production in polarized proton-proton collisions at the Relativistic Heavy Ion Collider (RHIC), with the STAR detector at √s = 200 GeV. Preliminary results in CEP of two oppositely charged pions and kaons produced in the processes pp → ppπ+π- and pp → ppK+K- shall be presented. Those Double Pomeron Exchange (DPE) processes, allow the final states to be dominated by gluonic exchanges. Silicon strip detectors placed in Roman Pots were used for measuring forward protons. The preliminary results are based on the measurement of the recoil system of charged particles in the STAR experiment's Time Projection Chamber (TPC). Ionization energy loss, dE/dx, of charged particles was used for particle identification (PID).

  8. Atomic collision experiments utilizing low-velocity, highly-charged ion beams

    SciTech Connect

    Johnson, B.M.; Jones, K.W.; Meron, M.

    1982-01-01

    Intense beams of highly-stripped ions are now routinely produced at low velocities using the Brookhaven dual MP-tandens in a unique four-stage accel/decel mode. This mode of operation combines three stages of acceleration, stripping at high energy, and one stage of deceleration to near-zero velocity. To date, experiments have used 10-100 nA beams of bare and few-electron heavy ions at energies as low as 0.2 MeV/amu, and upgrades of the facility should push the lower limit below 0.1 MeV/amu. Recent experiments, such as measurements of charge transfer and x-ray production for S/sup 6-16+/ on He and Ar at 6 to 20 MeV and P(b) measurements for MO x-rays produced in Cl/sup 16 +/ + Ar collisions at 20, 10, and 5 MeV have demonstrated the usefulness of highly-stripped, low-velocity projectiles. These experiments and a few possibilities for future experiments are discussed.

  9. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 3: Laboratory descriptions

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The following study objectives are covered: (1) identification of major laboratory equipment; (2) systems and operations analysis in support of the laboratory design; and (3) conceptual design of the comm/nav research laboratory.

  10. Cyclic deformations in the Opalinus clay: a laboratory experiment

    NASA Astrophysics Data System (ADS)

    Huber, Emanuel; Huggenberger, Peter; Möri, Andreas; Meier, Edi

    2015-04-01

    The influence of tunnel climate on deformation cycles of joint openings and closings is often observed immediately after excavation. At the EZ-B niche in the Mt. Terri rock laboratory (Switzerland), a cyclic deformation of the shaly Opalinus clay has been monitored for several years. The deformation cycles of the joints parallel to the clay bedding planes correlate with seasonal variations in relative humidity of the air in the niche. In winter, when the relative humidity is the lowest (down to 65%), the joints open as the clay volume decreases, whereas they tend to close in the summer when the relative humidity reaches up to 100%. Furthermore, in situ measurements have shown the trend of an increasingly smaller aperture of joints with time. A laboratory experiment was carried out to reproduce the observed cyclic deformation in a climate chamber using a core sample of Opalinus clay. The main goal of the experiment was to investigate the influence of the relative humidity on the deformation of the Opalinus clay while excluding the in situ effects (e.g. confining stress). The core sample of Opalinus clay was put into a closed ended PVC tube and the space between the sample and the tube was filled with resin. Then, the sample (size: 28 cm × 14 cm × 6.5 cm) was cut in half lengthways and the open end was cut, so that the half-core sample could move in one direction. The mounted sample was exposed to wetting and drying cycles in a climate chamber. Air temperature, air humidity and sample weight were continuously recorded. Photographs taken at regular time intervals by a webcam allowed the formation/deformation of cracks on the surface of the sample to be monitored. A crackmeter consisting of a double-plate capacitor attached to the core sample was developed to measure the dynamics of the crack opening and closing. Preliminary results show that: - Deformation movements during different climate cycles can be visualized with the webcam - The crackmeter signal gives a

  11. Boulder transport by tsunamis: A laboratory experiment on incipient motion

    NASA Astrophysics Data System (ADS)

    Bressan, Lidia; Antonini, Alessandro; Gaeta, Maria Gabriella; Guerrero, Massimo; Miani, Marco; Petruzzelli, Valentina; Samaras, Achilleas

    2015-04-01

    Coastal boulders transported inland by high-energy events, such as tsunamis or storms, have been found along several coastal areas worldwide. The importance of these deposits relies on their implications on coastal hazard assessment, since they contribute to the identification of past events and to the study of their magnitude and characteristics. However, the identification of the event responsible of the dislocation of the boulder (tsunami or storm) is not trivial given the complexities of the tsunami and storm phenomena, the coastal environment, the initial boulder conditions, the uncertainties of the problem, etc. The hydrodynamics methods usually adopted are 1) the use of simple hydrodynamics formulae to estimate the minimum flow velocity and height required to move a boulder, and 2) numerical simulations that model the boulder transport together with the specific tsunami (or storm) event. The main shortcomings of the first method are the simplifications adopted, while the second approach implies the simulation of the transport event, which might not be practical because of the amount of uncertainties involved. To contribute to this study field, a laboratory experiment on the flow conditions for boulder transport was carried out at the Hydraulic Engineering Laboratory (LIDR) of the University of Bologna, Italy, in a 11 m long and 0.5 m wide flume. The main objective of this experiment is to provide experimental data for the conditions of the incipient motion for boulders, i.e. to relate the threshold flow velocity and depth for transport with the characteristics of the boulders, i.e. weight and geometry. The experimental channel is divided in three parts: on one end of the channel, a water tank is closed by a gate, followed by a central flat bed and a 1:10 slope, where the boulder is located. A bore, generated by quickly opening the gate (simulating a dam-break), flows in the channel, climbs up the slope and hits the boulder. The impact of the flow on the

  12. High energy nuclear collisions

    SciTech Connect

    Plasil, F.

    1998-01-01

    This presentation covers three broad topics: a brief introduction to the field of nucleus-nucleus collisions at relativistic energies; a discussion of several topics illustrating what`s been learned after more than a decade of fixed target experiments; and an indication of what the future may bring at the Relativistic Heavy Ion Collider (RHIC) under construction at the Brookhaven National Laboratory (BNL) and at the Large Hadron Collider (LHC) planned at CERN.

  13. Deformation of plate boundaries associated with subduction of continental margins: insights from 3D thermo-mechanical laboratory experiments (Invited)

    NASA Astrophysics Data System (ADS)

    Boutelier, D. A.; Cruden, A. R.

    2013-12-01

    The general sequence of tectonic events leading to the formation of collisional mountain belts includes closure of an ocean basin through oceanic subduction, subduction of a continental margin and deformation of the lithosphere. Laboratory experiments reproducing this fundamental chain of events investigate the three-dimensional and thermo-mechanical mechanics of the associated processes. Experiments reveal that this basic scenario can be considerably modified at the beginning of continental subduction. The buoyancy of the subducted passive margin causes a strong horizontal compression in the plates, which can lead to the formation of new thrusts in the magmatic arc or back-arc spreading center if the collision was preceded by oceanic subduction in the tensile regime. Several complex scenarios can develop, depending on the polarity of the new thrusts. If the new thrust in the arc or back-arc has the same polarity as the main subduction zone, the entire area located between the trench and the new thrust can be subducted, leaving little evidence of its former existence in the geological record. This process also modifies the thermal and mechanical regime of the subducted lithosphere, resulting in lower temperatures in the subducted crust thereby allowing deeper subduction. If the polarity of the new thrust is opposite to that of the existing subduction zone, the two slabs collide at depth, with the new slab generally cutting through the pre-existing slab. The distribution of convergence across several thrusts necessarily leads to a reduction of the convergence rate on the pre-existing subduction thrust. This leads to a reduction of the viscous coupling supporting the subducted lithosphere, causing an increase in downdip tension in the slab, and a rapid decrease of the slab strength due to temperature increase, eventually leading to slab break-off. Finally, the deformation caused by the subduction of the buoyant continental crust is fundamentally three

  14. Recording the PHILAE Touchdown using CASSE: Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Knapmeyer, Martin; Faber, Claudia; Tune, Jean-Baptiste; Arnold, Walter; Witte, Lars; Schröder, Silvio; Roll, Reinhard; Chares, Bernd; Fischer, Hans-Herbert; Möhlmann, Diedrich; Seidensticker, Klaus

    2014-05-01

    The landing of Philae on comet 67P/Churyumov-Gerasimenko is scheduled for November 11, 2014. Its landing feet house the triaxial acceleration sensors of CASSE (Comet Acoustic Surface Sounding Experiment) which will thus be the first sensors to be in mechanical contact with the cometary surface. It is planned that CASSE will be in listening mode to record the deceleration of the lander by the collision with the comet. The analysis of this data will not only support an engineering analysis of the landing process itself but also yield information about the mechanical properties of the comet's surface. Here, we describe a series of controlled landings of a lander model. The tests were conducted in the Landing & Mobility Test Facility (LAMA) of the DLR Institute of Space Systems in Bremen, Germany, where an industrial robot can be programmed to move landers or rovers along predefined paths and under simulated low gravity. The qualification model of the Philae landing gear was used in the tests. It consists of three legs manufactured of carbon fiber and metal joints. Attached to each leg is a foot with two soles and a mechanically driven ice screw to secure the lander on the comet. The right one of these soles, if viewed from the outside towards the lander body, houses a Brüel & Kjaer DeltaTron 4506 triaxial piezoelectric accelerometer as used on the spacecraft. Orientation of the three axes was such that the X-axis of the accelerometer points downwards while the Y and Z axes are horizontal. This somewhat uncommon orientation was necessary due to the position of the electric connector on the 4506. Data was recorded at a sampling rate of 8.2 kHz for a duration of 2 s. Touchdown measurements were conducted on three types of ground with different landing velocities. Landings with low velocities were carried out on the concrete floor of the LAMA to determine the stiffness of the landing gear based on the deceleration data measured with the accelerometer. Landings on fine

  15. Laboratory Experiments on Convective Entrainment Using a Saline Water Tank

    NASA Astrophysics Data System (ADS)

    Jonker, Harmen J. J.; Jiménez, Maria A.

    2014-06-01

    Entrainment fluxes in a shear-free convective boundary layer have been measured with a saline water tank set-up. The experiments were targeted towards measuring the entrainment behaviour for medium to high Richardson numbers and use a two-layer design, i.e. two stacked non-stratified (neutral) layers with different densities. With laser induced fluorescence (LIF), the entrainment flux of a fluorescent dye is measured for bulk Richardson numbers in the range 30-260. It is proposed that a carefully chosen combination of top-down and bottom-up processes improves the accuracy of LIF-based entrainment observations. The observed entrainment fluxes are about an order of magnitude lower than reported for thermal water tanks: the derived buoyancy entrainment ratio, , is found to be , which is to be compared with for a thermal convection tank (Deardorff et al., J Fluid Mech 100:41-64, 1980). An extensive discussion is devoted to the influence of the Reynolds and Prandtl numbers in laboratory experiments on entrainment.

  16. Laser guide star experiment at Lawrence Livermore National Laboratory

    SciTech Connect

    Max, C.E.; Friedman, H.W.; Brase, J.B.; Avicola, K.; Bissinger, H.; Gavel, D.T.; Horton, J.A.; Morris, J.R.; Olivier, S.S.; Presta, R.W.; Rapp, D.A.; Salmon, T.J.; Waltjen, K.

    1993-01-01

    An overview of the Laser Guide Star feasibility experiment at Lawrence Livermore National Laboratory is presented. The goal of the project is to demonstrate a closed-loop adaptive optics system using a sodium-layer laser guide star to correct wavefront aberrations caused by atmospheric turbulence. The laser beam is projected upwards from a beam director located 5 meters from a half-meter telescope and forms a spot about 2 meters in diameter in the mesospheric sodium layer at an altitude of about 95 km. The laser beam is approximately fifth magnitude and is visible to the unaided eye at the top of the Rayleigh-scattered laser beam. A Shack-Hartmann wave front sensor measures the aberrated wave front and a continuous sheet deformable mirrow will correct the wave front in a closed loop control system at a bandwidth fast enough to follow changes in the atmosphere. In this paper, the authors present an overview of the methodology for the design of the experiment and the requirements of the laser source. The long term goal of this effort is to develop laser guide stars and adaptive optics for large astronomical telescopes and to this end, a summary of laser issues relevant to future sites is presented.

  17. Laboratory experiment on boundaries of upper stage plane bed regime

    NASA Astrophysics Data System (ADS)

    Zrostlík, Štěpán; Matoušek, Václav

    2016-04-01

    Results are discussed of laboratory experiments on criteria determining the transition between the regime of dunes and the upper stage plane bed (UPB) regime and the transition between the UPB regime and the regime of wavy flow. The experiments were carried for 3 fractions of plastic material and two fractions of glass beads in a broad range of flow conditions (different discharges of water and solids and longitudinal bed slopes) in a tilting flume. The experiments reveal that, contrary to expectations, a constant value of the Shields parameter is not an appropriate criterion for the transition between the dune regime and the UPB regime. Furthermore, the transition appears to be insensitive to the total discharge of solids and water. Instead, the criterion seems to be well represented by a constant value of the average transport concentration of sediment (the ratio of volumetric discharge of solids and volumetric discharge of mixture). The experimental results exhibit a very tight correlation between the transport concentration and the longitudinal bed slope. Hence, a constant value of the bed slope can be considered an appropriate criterion for the transition. The transition between the UPB regime and the wavy regime (significant waves develop but they are not always standing waves) is found at a constant value of Froude number, which is in agreement with literature, although it is found at a higher value than the literature usually suggests (Fr = 1.2 instead of 1.0). Hence, the transition occurs in the super-critical flow but it is not necessarily associated with the critical flow.

  18. Laboratory Experiment of Saltwater Intrusion into Freshwater Aquifer

    NASA Astrophysics Data System (ADS)

    Maekawa, K.; Karasaki, K.; Takasu, T.

    2006-12-01

    It is important for safety assessment of high-level radioactive waste geologic disposal to understand groundwater flow in deep underground accurately. Especially groundwater flow in the coastal area considered to be quite complex that involves density and hydraulic gradient driven flow of freshwater and saltwater. Furthermore, bentonite, which is one of the favored artificial barrier materials, may not swell very well in saltwater as it does in freshwater, and therefore may not provide a reliable seal if salinity is high enough. In order to understand the behavior of saltwater intrusion into freshwater in deep underground, we constructed a laboratory equipment "Mini-MACRO" named after the original large scale MACRO (MAss transport Characterization in host ROck) and aimed to increase a precision and efficiency of experiment. Mini-MACRO equipment consists of three parts: a sandbox (0.5m x 0.25m x 0.1m) and each reservoir tank for saltwater and freshwater. Saltwater intrusion experiments are conducted using glass beads (sub-millimeter in diameter) and colored saltwater in the sandbox with a transparent face plate to allow visual observation. In the present paper we summarize the concept of the equipment design and the results of the experiment that we created several cases of experimental conditions to observe the saltwater intrusion behavior against various hydraulic gradients and densities of saltwater. This equipment contributes to the better understanding of saltwater intrusion behavior and to increasing confidence in modeling methodology of groundwater flow and mass transport in deep underground through comparison with numerical analysis. We believe that it is crucial for the safety assessment of geologic disposal to integrate this knowledge.

  19. Characterisation of rockfalls from seismic signal: insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Farin, Maxime; Mangeney, Anne; Toussaint, Renaud; de Rosny, Julien; Shapiro, Nikolai; Dewez, Thomas; Hibert, Clément; Mathon, Christian; Sedan, Olivier; Berger, Frédéric

    2015-04-01

    Rockfalls, debris flows and rock avalanches represent a major natural hazard for the population in mountainous, volcanic and coastal areas but their direct observation on the field is very difficult. Recent field studies showed that gravitational instabilities can be detected, localized and characterized thanks to the seismic signal they generate. Therefore, a burning challenge for risks assessment related to these events is to obtain quantiative informations on the characteristics of the rockfalls (mass, speed, extension,...) from the properties of the signal (seismic energy, frequencies,...). Using a theoretical model of viscoelastic impact of a sphere on a plane, we develop analytical scaling laws relating the energy radiated in elastic waves, the energy dissipated in viscoelasticity during the impact and the frequencies of the generated seismic signal to the mass m and the impact speed V z of the sphere and to the elastic parameters of the involved materials. The radiated elastic energy is shown to vary as m5/3V z11/5 on plates and as mV z13/5 on blocks, regardless of the elastic parameters. The energy dissipated in viscoelasticity does not depend on the support thickness and varies as m2/3V z11/5. The mean frequency of the generated signal is inversely proportional to the impact duration. Then, we conduct simple laboratory experiments that consist in dropping spherical beads of different size and materials and small gravels on thin plates of glass and PMMA and rock blocks. In the experiments, piezoelectric accelerometers are used to record the signals in a wide frequency range: 1 Hz to 56 kHz. The experiments are also monitored optically using fast cameras. The elastic energy emitted by an impact on the supports is first quantitatively estimated and compared to the potential energy of fall and to the potential energy change during the shock. We observe a quantitative agreement between experimental data and the analytical scaling laws, even when we use small

  20. Understanding the dynamics of volcanic jet through laboratory experiments

    NASA Astrophysics Data System (ADS)

    Cigala, Valeria; Kueppers, Ulrich; Dingwell, Donald Bruce

    2015-04-01

    Explosive volcanic eruptions pose great hazards in both the near- and far-field. Understanding the factors controlling the dynamics of pyroclast ejection is essential for better assessment of related hazards. The dynamics of volcanic explosions, which can be observed and characterized in the field only in a very incomplete manner due to their inaccessibility and hazards, can be simulated in the laboratory where experiments can be performed in their immediate proximity under controlled conditions. Using a shock-tube we ejected loose particles while controlling parameters such as temperature, applied overpressure, starting grain size distribution, conduit length and exit vent geometry. We recorded each explosion with a high-speed camera and collected the sample after deposition, thereby quantifying the velocity of individual particles, the jet spreading angle and the production of fines. The experiments were performed at 500°C and 15MPa using materials of two different densities ("Schaumlava" and "Laacher See Bims") and three grain size ranges (1-2 mm, 0.5-1 mm and 0.125-0.250 mm). Additionally, we varied the setup to allow for different sample-to-gas ratios and varying fragmentation depth at start of each experiment. We also deployed four different exit vents: a cylindrical continuation of the shock-tube, a funnel with a flaring of 30°, a funnel with a flaring of 15° and a nozzle. All vents are characterized by the same height and bottom diameter. The results of the current investigation together with comparison with other experimental campaigns showed particle velocities ranging from 130 to 290 m/s, gas spreading angles varying from 14 to 37° and particles spreading angles from 12° to 2°. Moreover we observed dynamically evolving ejection characteristics (speed and spreading angle) and strong variations in the production of fines (up to a factor of 2) during the course of individual experiments. We further qualitatively present the impact of experimental

  1. First results from experiment NA49 at the CERN SPS with 158 GeV/nucleon Pb on Pb collisions

    SciTech Connect

    Rudolph, H.; NA49 Collaboration

    1995-03-01

    CERN experiment NA49 had its first beam time in November/December 1994 with a {sup 208}Pb beam of 158 GeV/nucleon. The experimental setup to study Pb+Pb collisions is described and first results on two particle correlations and transverse energy production are discussed.

  2. Previous Driving Experience, but Not Vision, Is Associated With Motor Vehicle Collision Rate in Bioptic Drivers

    PubMed Central

    Dougherty, Bradley E.; Flom, Roanne E.; Bullimore, Mark A.; Raasch, Thomas W.

    2015-01-01

    Purpose Bioptic telescopic spectacles (BTS) consist of a small telescope (or telescopes) mounted high in a pair of spectacle lenses. More than 40 states allow for some form of bioptic driving licensure for people with decreased central vision. The purpose of this study was to determine significant associations among previous driving experience, vision, and motor vehicle collisions (MVCs) for bioptic drivers in Ohio. Methods We conducted a retrospective study of patients who received a vision examination and subsequently obtained bioptic licensure. We obtained driving records from the Ohio Bureau of Motor Vehicles in order to determine MVC involvement. Relationships among vision measures, age, sex, previous experience, and MVCs were investigated using time-to-event analysis and the Cox proportional hazards regression model. Results We identified 237 bioptic drivers (65% male). Age at initial exam ranged from 16 to 81 years, and mean visual acuity was approximately 20/120. The number of MVCs per driver ranged from 0 to 11, with 124 (52%) drivers having had at least one MVC. Visual acuity and contrast sensitivity were not significant predictors of MVC. Drivers without previous driving experience were significantly more likely to have been involved in an MVC (P < 0.001), and this association remained significant after adjusting for age and sex (P = 0.01). The rate of MVC per year decreased steadily over a 10-year period for drivers without previous experience. Conclusions Previous nonbioptic driving experience, but not visual acuity or contrast sensitivity, was associated with yearly MVC rate in bioptic drivers. PMID:26436885

  3. Laboratory Measurements of Room Temperature Vibrational Energy Transfer in O3 - O Collisions

    NASA Astrophysics Data System (ADS)

    Schaeffer, J.; Black, L.; Pedersen, T.; Castle, K. J.

    2009-12-01

    Vibrational energy exchange between O3 and O may play a significant role in the temperature and density structure of Earth’s upper mesosphere / lower thermosphere between 60 and100km. More accurate laboratory measurements of this rate coefficient are needed to improve aeronomic models of the region. A slow flowing gas mixture of O3 in Ar/Xe bath gas through a 1m long cell is used to perform laboratory measurements of the rate coefficient for quenching of vibrationally excited O3 by O(3P). Nd:YAG pulses (266nm) are used to photodissociate a small fraction of the O3, providing O atoms and vibrationally excited O3 via a modest temperature jump (~10K). Diode laser absorption spectroscopy in the 1030cm-1 region is used to measure the time-evolving populations in various O3 vibrational states. Data are taken at varying O concentrations to allow determination of the rate coefficient of interest using a global nonlinear least squares regression fitting algorithm programmed in Visual FORTRAN. Recent progress and updated measurements will be reported.

  4. iPads in the Science Laboratory: Experience in Designing and Implementing a Paperless Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Hesser, Tiffany L.; Schwartz, Pauline M.

    2013-01-01

    In the fall of 2012, 20 General Chemistry Honors students at the University of New Haven were issued the new iPad 3 to incorporate these devices both in the classroom and the laboratory. This paper will focus on the integration of the iPad into the laboratory curriculum while creating a paperless experience, an environment where no paper would…

  5. Laboratory experiments designed to test the remediation properties of materials

    SciTech Connect

    Gilbert, J.S.; Wildeman, T.R.; Ford, K.L.

    1999-07-01

    Passive treatment systems constructed to remediate mine drainage have proven to be very successful for a wide variety of drainage compositions and volumes. The construction of an anaerobic passive treatment system requires a mixture of local materials with the objective of producing a system that allows adequate water flow while supporting the growth of sulfate-reducing bacteria. These bacteria have the effect of reducing the oxidizing potential in the system causing many sulfide-forming metals in solution to precipitate. The focus of these experiments was the study of chemical characteristics of materials, individually and in mixtures, with the purpose of determining which would be best suited for incorporation into a treatment system. The materials of interest were manure (fresh and aged), alfalfa, limestone, and sawdust, which were all collected in close proximity to the construction site of the proposed treatment system. A variety of chemical and physical hypotheses were formulated prior to performing simple chemical characterization and anaerobic treatment tests. The hypotheses relating to the chemical nature of the single materials were carbon to nitrogen ratio, availability of low molecular weight organic acids, number of adsorption sites, and organic carbon content. In addition, hypotheses concerning the performance of mixtures were evaluated by looking at the relative amount of bacterial growth (and metal removal) seen in each mixture over a 4-week period. The results of the laboratory experiments confirmed hypotheses, and demonstrated that in the mixtures, the anaerobic bacteria flourish when alfalfa is present, up to a point. The best mixture that allowed proliferation of bacteria while also removing metals consisted of 50% limestone, 25% aged manure, 15% sawdust, and 10% alfalfa (% by weight).

  6. Emulating JWST Exoplanet Transit Observations in a Testbed laboratory experiment

    NASA Astrophysics Data System (ADS)

    Touli, D.; Beichman, C. A.; Vasisht, G.; Smith, R.; Krist, J. E.

    2014-12-01

    The transit technique is used for the detection and characterization of exoplanets. The combination of transit and radial velocity (RV) measurements gives information about a planet's radius and mass, respectively, leading to an estimate of the planet's density (Borucki et al. 2011) and therefore to its composition and evolutionary history. Transit spectroscopy can provide information on atmospheric composition and structure (Fortney et al. 2013). Spectroscopic observations of individual planets have revealed atomic and molecular species such as H2O, CO2 and CH4 in atmospheres of planets orbiting bright stars, e.g. Deming et al. (2013). The transit observations require extremely precise photometry. For instance, Jupiter transit results to a 1% brightness decrease of a solar type star while the Earth causes only a 0.0084% decrease (84 ppm). Spectroscopic measurements require still greater precision <30ppm. The Precision Projector Laboratory (PPL) is a collaboration between the Jet Propulsion Laboratory (JPL) and California Institute of Technology (Caltech) to characterize and validate detectors through emulation of science images. At PPL we have developed a testbed to project simulated spectra and other images onto a HgCdTe array in order to assess precision photometry for transits, weak lensing etc. for Explorer concepts like JWST, WFIRST, EUCLID. In our controlled laboratory experiment, the goal is to demonstrate ability to extract weak transit spectra as expected for NIRCam, NIRIS and NIRSpec. Two lamps of variable intensity, along with spectral line and photometric simulation masks emulate the signals from a star-only, from a planet-only and finally, from a combination of a planet + star. Three masks have been used to simulate spectra in monochromatic light. These masks, which are fabricated at JPL, have a length of 1000 pixels and widths of 2 pixels, 10 pixels and 1 pixel to correspond respectively to the noted above JWST instruments. From many-hour long

  7. New Laboratory-Based Satellite Impact Experiments for Breakup Fragment Characterization

    NASA Astrophysics Data System (ADS)

    Liou, J.-C.

    A consortium consisting of the NASA Orbital Debris Program Office, U.S. Air Force’s Space and Missile Systems Center, The Aerospace Corporation, and University of Florida is planning a series of hypervelocity impact experiments on mockup targets at the U.S. Air Force’s Arnold Engineering Development Complex (AEDC) in early 2014. The target for the first experiment resembles a rocket upper stage whereas the target for the second experiment represents a typical 60-cm/50-kg class payload that incorporates modern spacecraft materials and components as well as exterior wrap of multi-layer insulation and three solar panels. The projectile is designed with the maximum mass that AEDC’s Range G two-stage light gas gun can accelerate to an impact speed of 7 km/sec. The impact energy is expected to be close to 15 MJ to ensure catastrophic destruction of the target after the impact. Low density foam panels are installed inside the target chamber to slow down and soft-catch the fragments for post-impact processing. Diagnostic instruments, such as x-ray and high speed optical cameras, will also be used to record the breakup process. The main goal of this “DebriSat” project is to characterize the physical properties, including size, mass, shape, and density distributions, of orbital debris that would be generated by a hypervelocity collision involving an upper stage or a modern satellite in the low Earth orbit environment. In addition, representative fragments will be selected for laboratory optical and radar measurements to allow for better interpretation of data obtained by telescope and radar observations. This paper will provide a preliminary report of the impact results and the plans to process, measure, and analyze the fragments.

  8. New Laboratory-Based Satellite Impact Experiments for Breakup Fragment Characterization

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Fitz-Coy, N.; Dikova, R.; Wilson, M.; Huynh, T.; Sorge, M.; Sheaffer, P.; Opiela, J.; Cowardin, H.; Krisko, P.; Rushing, R.; Nolen, M.; Roebuck, B.

    2014-01-01

    A consortium consisting of the NASA Orbital Debris Program Office, U.S. Air Force's Space and Missile Systems Center, the Aerospace Corporation, and University of Florida is planning a series of hypervelocity impact experiments on mockup targets at the U.S. Air Force's Arnold Engineering Development Complex (AEDC) in early 2014. The target for the first experiment resembles a rocket upper stage whereas the target for the second experiment represents a typical 60-cm/50-kg class payload that incorporates modern spacecraft materials and components as well as exterior wrap of multi-layer insulation and three solar panels. The projectile is designed with the maximum mass that AEDC's Range G two-stage light gas gun can accelerate to an impact speed of 7 km/sec. The impact energy is expected to be close to 15 MJ to ensure catastrophic destruction of the target after the impact. Low density foam panels are installed inside the target chamber to slow down and soft-catch the fragments for post-impact processing. Diagnostic instruments, such as x-ray and high speed optical cameras, will also be used to record the breakup process. The main goal of this "DebriSat" project is to characterize the physical properties, including size, mass, shape, and density distributions, of orbital debris that would be generated by a hypervelocity collision involving an upper stage or a modern satellite in the low Earth orbit environment. In addition, representative fragments will be selected for laboratory optical and radar measurements to allow for better interpretation of data obtained by telescope and radar observations. This paper will provide a preliminary report of the impact results and the plans to process, measure, and analyze the fragments.

  9. Dynamics of spacecraft control laboratory experiment (SCOLE) slew maneuvers

    NASA Technical Reports Server (NTRS)

    Kakad, Y. P.

    1987-01-01

    This is the first of two reports on the dynamics and control of slewing maneuvers of the NASA Spacecraft Control Laboratory Experiment (SCOLE). In this report, the dynamics of slewing maneuvers of SCOLE are developed in terms of an arbitrary maneuver about any given axis. The set of dynamical equations incorporate rigid-body slew maneuver and three-dimensional vibrations of the complete assembly comprising the rigid shuttle, the flexible beam, and the reflector with an offset mass. The analysis also includes kinematic nonlinearities of the entire assembly during the maneuver and the dynamics of the interaction between the rigid shuttle and the flexible appendage. The final set of dynamical equations obtained for slewing maneuvers is highly nonlinear and coupled in terms of the flexible modes and the rigid-body modes. The equations are further simplified and evaluated numerically to include the first ten flexible modes and the SCOLE data to yield a model for designing control systems to perform slew maneuvers.

  10. Frictional sliding in layered rock: laboratory-scale experiments

    SciTech Connect

    Buescher, B.J.; Perry, K.E. Jr.; Epstein, J.S.

    1996-09-01

    The work is part of the rock mechanics effort for the Yucca Mountain Site Characterization Program. The laboratory-scale experiments are intended to provide high quality data on the mechanical behavior of jointed structures that can be used to validate complex numerical models for rock-mass behavior. Frictional sliding between simulated rock joints was studied using phase shifting moire interferometry. A model, constructed from stacks of machined and sandblasted granite plates, contained a central hole bore normal to the place so that frictional slip would be induced between the plates near the hole under compressive loading. Results show a clear evolution of slip with increasing load. Since the rock was not cycled through loading- unloading, the quantitative differences between the three data sets are probably due to a ``wearing-in`` effect. The highly variable spatial frequency of the data is probably due to the large grain size of the granite and the stochastic frictional processes. An unusual feature of the evolution of slip with increasing load is that as the load gets larger, some plates seem to return to a null position. Figs, 6 refs.

  11. Joint Langley Research Center/Jet Propulsion Laboratory CSI experiment

    NASA Technical Reports Server (NTRS)

    Neat, Gregory W.; O'Brien, John F.; Lurie, Boris J.; Garnica, Angel; Belvin, W. K.; Sulla, Jeff; Won, John

    1992-01-01

    This paper describes a joint Control Structure Interaction (CSI) experiment in which Jet Propulsion Laboratory (JPL) damping devices were incorporated into the Langley Research Center (LaRC) Phase 0 Testbed. The goals of the effort were twofold: (1) test the effectiveness of the JPL structural damping methods in a new structure and (2) assess the feasibility of combining JPL local control methods with the LaRC multiple input multiple output global control methods. Six dampers (2 piezoelectric active members, 4 viscous dampers), placed in three different regions of the structure, produced up to 26 dB attenuation in target modes. The combined control strategy in which the JPL damping methods contributed local control action and the LaRC control scheme provided global control action, produced and overall control scheme with increased stability margins and improved performance. This paper presents an overview of the technologies contributed from the two centers, the strategies used to combine them, and results demonstrating the success of the damping and cooperative control efforts.

  12. Laboratory Experiments for Seawater Intrusion into Freshwater Aquifer with Heterogeneity

    NASA Astrophysics Data System (ADS)

    Maekawa, K.; Karasaki, K.; Takasu, T.

    2007-12-01

    It is important for safety assessment of high-level radioactive waste geologic disposal to understand groundwater flow in deep underground accurately. Especially, groundwater flow in the coastal area is considered to be quite complex that involves density and hydraulic gradient driven flow of freshwater and seawater. In order to understand the behavior of seawater intrusion into freshwater in deep underground, we constructed a laboratory equipment, 'Mini-MACRO' (MAss transport Characterization in host ROck). Mini-MACRO consists of three parts: a sandbox (0.5m x 0.25m x 0.1m) and a reservoir tank on each side containing saltwater simulating seawater and freshwater, respectively. Seawater intrusion experiments are conducted using glass beads (sub- millimeter in diameter) and colored saltwater in the sandbox with a transparent face plate to allow visual observation. We created several cases of experimental conditions to observe the seawater intrusion behavior into two-layered stratum against various hydraulic gradients and densities of saltwater resembling the so-called Henry Problem. We confirmed that the results using this equipment match numerical results under simple heterogeneous condition. These results contribute to the better understanding of seawater intrusion behavior and to increasing confidence in modeling methodology of groundwater flow and mass transport in deep underground through comparison with numerical analysis. We believe that it is crucial for the safety assessment of geologic disposal to integrate this knowledge.

  13. Laboratory photoionized plasma experiments at Z - Comparison with modeling

    NASA Astrophysics Data System (ADS)

    Mayes, D.; Lockard, T.; Durmaz, T.; Hall, I.; Mancini, R.; Bailey, J.; Rochau, G.; Loisel, G.; Heeter, R.; Liedahl, D.

    2013-10-01

    Photoionized plasmas are common in astrophysical environments, such as x-ray binaries and active galactic nuclei. We discuss an experimental and modeling effort to study the atomic kinetics in plasmas of this type via K-shell line absorption spectroscopy. Results from a first pass thru our 2nd-generation dataset are compared with results of several modeling codes attempting to simulate our experimental conditions. The experiment employs the intense x-ray flux emitted by the collapse of a z-pinch to produce and backlight a Neon photoionized plasma in a cm-scale gas cell at various distances from the z-pinch. The filling pressure is monitored in situ providing the plasma particle number density. High-resolution spectra from a TREX spectrometer are processed with a suite of specially designed IDL tools to produce transmission spectra, which show absorption in several ionization stages of Neon. Analysis independent of atomic kinetics calculations yields the charge state distribution and ion areal densities used to benchmark atomic kinetics codes. In addition, the electron temperature, extracted from a level population ratio, is used to test heating models. This work is sponsored in part by the National Nuclear Security Administration under the High Energy Density Laboratory Plasmas grant program through DOE Grant DE-FG52-09NA29551, and the Z Facility Fundamental Science Program of SNL.

  14. Collision-induced rotational excitation in N2 (+)((2)Σg (+),v=0)-Ar: Comparison of computations and experiment.

    PubMed

    Unke, Oliver T; Castro-Palacio, Juan Carlos; Bemish, Raymond J; Meuwly, Markus

    2016-06-14

    The collisional dynamics of N2 (+)((2)Σg (+)) cations with Ar atoms is studied using quasi-classical simulations. N2 (+)-Ar is a proxy to study cooling of molecular ions and interesting in its own right for molecule-to-atom charge transfer reactions. An accurate potential energy surface (PES) is constructed from a reproducing kernel Hilbert space (RKHS) interpolation based on high-level ab initio data. The global PES including the asymptotics is fully treated within the realm of RKHS. From several ten thousand trajectories, the final state distribution of the rotational quantum number of N2 (+) after collision with Ar is determined. Contrary to the interpretation of previous experiments which indicate that up to 98% of collisions are elastic and conserve the quantum state, the present simulations find a considerably larger number of inelastic collisions which supports more recent findings. PMID:27306007

  15. Safety in the Chemical Laboratory: Experiments Integrating Evaluation of Chemical Hazards into the Chemistry Curriculum.

    ERIC Educational Resources Information Center

    Pierce, J. T.; And Others

    1984-01-01

    Proposes use of two experiments to sample and analyze contaminents in the laboratory. Experiments focus on estimating hydrogen sulfide levels in the general chemistry laboratory during qualitative analysis and determining the concentration of organic vapors associated with organic chemistry laboratories. (JN)

  16. Sampling Participants’ Experience in Laboratory Experiments: Complementary Challenges for More Complete Data Collection

    PubMed Central

    McAuliffe, Alan; McGann, Marek

    2016-01-01

    Speelman and McGann’s (2013) examination of the uncritical way in which the mean is often used in psychological research raises questions both about the average’s reliability and its validity. In the present paper, we argue that interrogating the validity of the mean involves, amongst other things, a better understanding of the person’s experiences, the meaning of their actions, at the time that the behavior of interest is carried out. Recently emerging approaches within Psychology and Cognitive Science have argued strongly that experience should play a more central role in our examination of behavioral data, but the relationship between experience and behavior remains very poorly understood. We outline some of the history of the science on this fraught relationship, as well as arguing that contemporary methods for studying experience fall into one of two categories. “Wide” approaches tend to incorporate naturalistic behavior settings, but sacrifice accuracy and reliability in behavioral measurement. “Narrow” approaches maintain controlled measurement of behavior, but involve too specific a sampling of experience, which obscures crucial temporal characteristics. We therefore argue for a novel, mid-range sampling technique, that extends Hurlburt’s descriptive experience sampling, and adapts it for the controlled setting of the laboratory. This controlled descriptive experience sampling may be an appropriate tool to help calibrate both the mean and the meaning of an experimental situation with one another. PMID:27242588

  17. Lava-substrate heat transfer: Laboratory experiments and thermodynamic modeling

    NASA Astrophysics Data System (ADS)

    Rumpf, M.; Fagents, S. A.; Hamilton, C. W.; Wright, R.; Crawford, I.

    2012-12-01

    We have performed laboratory experiments and numerical modeling to investigate the heat transfer from a lava flow into various substrate materials, focusing on the effects of the differing thermophysical properties of substrate materials. Initial motivation for this project developed from the desire to understand the loss of solar wind volatiles embedded in lunar regolith deposits that were subsequently covered by a lava flow. The Moon lacks a significant atmosphere and magnetosphere, leaving the surface regolith exposed to bombardment by solar flare and solar wind particles, and by the cosmogenic products of galactic cosmic rays. Preservation of particle-rich regolith deposits may have occurred by the emplacement of an active lava flow on top of the regolith layer, provided the embedded particles survive heating by the lava. During future expeditions to the lunar surface, ancient regolith deposits could be sampled through surface drilling to extract the extra-lunar particles, revealing a history of the solar activity and galactic events not available on the Earth. This project also has important implications for terrestrial lava flows, particularly in the prediction of lava flow hazards. Lava erupted on Earth may be emplaced on various substrates, including solid lava rock, volcanic tephra, sands, soils, etc. The composition, grain size, consolidation, moisture content, etc. of these materials will vary greatly and have different effects on the cooling of the flow. Accounting for specific properties of the substrate could be an important improvement in lava flow models We have performed laboratory experiments in collaboration with the Department of Art and Art History at the University of Hawaii at Manoa in which ~5-6 kg of basalt, collected at Kilauea Volcano, Hawaii, is melted to ~1200 °C. The lava is poured into a device constructed of calcium silicate sheeting that has been filled with a solid or particulate substrate material and embedded with thermocouples

  18. Numerical simulations of impacts involving porous bodies. II. Comparison with laboratory experiments

    NASA Astrophysics Data System (ADS)

    Jutzi, Martin; Michel, Patrick; Hiraoka, Kensuke; Nakamura, Akiko M.; Benz, Willy

    2009-06-01

    In this paper, we compare the outcome of high-velocity impact experiments on porous targets, composed of pumice, with the results of simulations by a 3D SPH hydrocode in which a porosity model has been implemented. The different populations of small bodies of our Solar System are believed to be composed, at least partially, of objects with a high degree of porosity. To describe the fragmentation of such porous objects, a different model is needed than that used for non-porous bodies. In the case of porous bodies, the impact process is not only driven by the presence of cracks which propagate when a stress threshold is reached, it is also influenced by the crushing of pores and compaction. Such processes can greatly affect the whole body's response to an impact. Therefore, another physical model is necessary to improve our understanding of the collisional process involving porous bodies. Such a model has been developed recently and introduced successfully in a 3D SPH hydrocode [Jutzi, M., Benz, W., Michel, P., 2008. Icarus 198, 242-255]. Basic tests have been performed which already showed that it is implemented in a consistent way and that theoretical solutions are well reproduced. However, its full validation requires that it is also capable of reproducing the results of real laboratory impact experiments. Here we present simulations of laboratory experiments on pumice targets for which several of the main material properties have been measured. We show that using the measured material properties and keeping the remaining free parameters fixed, our numerical model is able to reproduce the outcome of these experiments carried out under different impact conditions. This first complete validation of our model, which will be tested for other porous materials in the future, allows us to start addressing problems at larger scale related to small bodies of our Solar System, such as collisions in the Kuiper Belt or the formation of a family by the disruption of a porous

  19. Lab-scale ash production by abrasion and collision experiments of porous volcanic samples

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Lane, Steve J.; Kueppers, Ulrich

    2014-05-01

    In the course of explosive eruptions, magma is fragmented into smaller pieces by a plethora of processes before deposition. Volcanic ash, all fragments smaller than 2 mm, may have imminent and near-volcano effects but may also cause various problems over long duration and/or far away from the source. In an attempt to quantify the efficiency of ash generation, various experimental setups were applied on pumice and scoria samples. We used samples collected on Tenerife (Canary Islands, Spain), Sicily and Lipari Islands (both Italy) for experiments that generated shear or normal stress fields or combinations of these within the rock samples. Experiments were designed to overcome low yield strengths of samples and produce ash, with this study having particular interest in the < 355 µm fraction. By abrasion and collision experiments, the processes that are likely to happen within volcanic conduits, plumes or pyroclastic density currents (PDCs) were simulated. An understanding of these secondary fragmentation processes is crucial as they are capable of producing very fine ash, with size ranges from a few microns to few millimetres. These particles are known to remain in the atmosphere for several days and travel large distances (~ 100s of km). This poses threats to the aviation industry and human health. From the experiments we establish that abrasion setups produced the finest material and up to 50% of the generated ash was smaller than 10 µm. In comparison, the drop experiments that applied mainly normal stress fields produced coarser grain sizes. Results were compared to grain size distributions described in literature for natural fall and PDC deposits and good correlation was found. Energies involved in drop experiments were calculated and showed an exponential correlation with ash production rate. Projecting these results into the actual volcanic environment, highest amounts of ash are produced in most energetic and turbulent areas, which are proximal to the vent

  20. Plasmid Instability in Batch Cultures of Recombinant Bacteria. A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Bentley, William E.; Kompala, Dhinakar S.

    1990-01-01

    Described is a laboratory experiment designed to expose students to problem-solving methods individually and as a group. Included are background information, a list of materials, laboratory procedures, analysis methods, and probable results. (CW)

  1. Modeling of Thermal-Hydrological-Chemical Laboratory Experiments

    SciTech Connect

    P. F. Dobson; T. J. Kneafsey; E. L. Sonnenthal; Nicolas Spycher

    2001-05-31

    The emplacement of heat-generating nuclear waste in the potential geologic repository at Yucca Mountain, Nevada, will result in enhanced water-rock interaction around the emplacement drifts. Water present in the matrix and fractures of the rock around the drift may vaporize and migrate via fractures to cooler regions where condensation would occur. The condensate would react with the surrounding rock, resulting in mineral dissolution. Mineralized water flowing under gravity back towards the heat zone would boil, depositing the dissolved minerals. Such mineral deposition would reduce porosity and permeability above the repository, thus altering the flow paths of percolating water. The objective of this research is to use coupled thermal-hydrological-chemical (THC) models to simulate previously conducted laboratory experiments involving tuff dissolution and mineral precipitation in a boiling, unsaturated fracture. Numerical simulations of tuff dissolution and fracture plugging were performed using a modified version of the TOUGHREACT code developed at LBNL by T. Xu and K. Pruess. The models consider the transport of heat, water, gas and dissolved constituents, reactions between gas, mineral and aqueous phases, and the coupling of porosity and permeability to mineral dissolution and precipitation. The model dimensions and initial fluid chemistry, rock mineralogy, permeability, and porosity were defined using the experimental conditions. A 1-D plug-flow model was used to simulate dissolution resulting from reaction between deionized water and crushed ash flow tuff. A 2-D model was developed to simulate the flow of mineralized water through a planar fracture within a block of ash flow tuff where boiling conditions led to mineral precipitation. Matrix blocks were assigned zero permeability to confine fluid flow to the fracture, and permeability changes in the fracture were specified using the porosity cubic law relationship.

  2. Infrasound Generated by Strombolian Eruptions - Insights from Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Dabrowa, A.; Phillips, J. C.; Rust, A.; Green, D. N.

    2010-12-01

    In recent years infrasonic monitoring at volcanoes has become an increasingly common tool. Much of the current work on interpreting volcano infrasound has concentrated on Strombolian eruptions, and several mechanisms have been suggested for the sound produced at these eruptions. However, the precise mechanisms at the vent need to be identified and understood if infrasound recorded in the field is to be used to infer conditions in the volcanic system. In this work, laboratory experiments using audio recordings coupled with high speed video footage have been conducted to gain a deeper understanding of these sounds. A simplified analogue model is used as an analogy for a Strombolian eruption: an air bubble rises through a tank containing a viscous Newtonian liquid (golden syrup) and bursts at the surface. Although the experimental set-up is simple and idealized, it allows control of physical properties and measurement of the processes observed far more accurately than would be possible in the field. Physical parameters which may control the form of the acoustic wave produced, such as liquid viscosity (achieved by dilution of pure golden syrup with water) and bubble volume are investigated. Initial results show that the onset of the main part of the acoustic waveform occurs concurrently with the onset of bubble rupture. Trends in the amplitude and frequency of the acoustic waveform, as well as bubble rupture speed are seen as the liquid viscosity varied. A number of candidate mechanisms for the production of sound during the experiments have been investigated, and synthetic waveforms compared to experimental data. These include the flow of gas through a growing hole from a pressurised reservoir (the bubble), and the mass flux due to the collapse of the bubble film. Importantly it has been shown that even in this very simple case - the sound produced by the bursting of a hemispherical bubble formed at the surface of a viscous liquid - is not as simple as some theories

  3. Hands-on laboratory Experience in Teaching-Learning Physiology.

    ERIC Educational Resources Information Center

    Randall, Walter C.; Burkholder, Timothy

    1990-01-01

    The results of actual student participation, with organized group discussions, which show that laboratory teaching remains the premiere mechanism for teaching and learning organ-system physiology are discussed. Laboratories using a pithed frog, a turtle heart, an anesthetized rabbit, and noninvasive recordings from students during exercise are…

  4. An "in Silico" DNA Cloning Experiment for the Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Elkins, Kelly M.

    2011-01-01

    This laboratory exercise introduces students to concepts in recombinant DNA technology while accommodating a major semester project in protein purification, structure, and function in a biochemistry laboratory for junior- and senior-level undergraduate students. It is also suitable for forensic science courses focused in DNA biology and advanced…

  5. The 5th Annual NASA Spacecraft Control Laboratory Experiment (SCOLE) Workshop, part 2

    NASA Technical Reports Server (NTRS)

    Taylor, Lawrence W., Jr. (Compiler)

    1990-01-01

    A collection of papers from the workshop are presented. The topics addressed include: the modeling, systems identification, and control synthesis for the Spacecraft Control Laboratory Experiment (SCOLE) configuration.

  6. Combining Laboratory Experiments with Digital Tools to Do Scientific Inquiry

    ERIC Educational Resources Information Center

    Kluge, Anders

    2014-01-01

    This qualitative study investigates the gap between a lab experiment and theory of science. Two groups of 4 students in 2 different classes in 11th grade (15-16 years old) are followed as they process results and experiences from a lab experiment using a digital environment. The experiment is as a part of a larger project about genes and cells,…

  7. Resource Letter EMAA-2: Laboratory Experiences for Elementary Astronomy

    ERIC Educational Resources Information Center

    Kruglak, Haym

    1976-01-01

    This article provides resource materials teaching astronomy. Included are references to laboratory manuals, articles, films, telescopes, handbooks, and atlases. Each reference is classified as elementary, intermediate or advanced. (SL)

  8. A Novel Laboratory Course on Advanced ChE Experiments.

    ERIC Educational Resources Information Center

    Lauterbach, J.; White, S.; Liu, Z.; Bodner, G. M.; Delgass, W. N.

    1997-01-01

    Describes a novel approach to laboratory teaching that provides students with a learning environment which allows them to develop advanced experimental skills that are necessary for success in research and development environments. (DKM)

  9. Measurement and Its Reliability: An Introductory Laboratory Experiment

    ERIC Educational Resources Information Center

    Poultney, Sherman K.

    1971-01-01

    Describes a laboratory activity about measurement and its reliability for general education students. The measurement focuses on automobile speeds and allows for estimates of errors, experimental design, and relativity in addition to kinematical concepts. (DS)

  10. Research and Laboratory Instruction--An Experiment in Teaching

    ERIC Educational Resources Information Center

    Kramm, Kenneth R.

    1976-01-01

    Describes an attempt to incorporate research into laboratory work in an introductory ecology class and a senior seminar. The investigation involves the examination of rhythms of food consumption and circadian activities in humans. (GS)

  11. Do the O2 Schumann-Runge Bands Participate in keV Collision-Induced Dissociation Experiments?

    NASA Astrophysics Data System (ADS)

    Lin, Yawei; Mayer, Paul M.

    2011-01-01

    In high-energy (keV) CID experiments, oxygen has the unique ability to enhance specific ion fragmentation pathways that lie within a relatively narrow band of activation energy. It has been previously proposed that this oxygen-enhanced dissociation phenomenon is due to the participation of the {{O}_{{2}}}{B}{ ^{{3}}}{Σ_{{u}}}^{ + } - {X}{ ^{{3}}}{Σ_{{g}}}^{ - } (Schumann-Runge) system in the collision complex. During the collision, oxygen is first excited to its {B}{ ^{{3}}}{Σ_{{u}}}^{ + } state before it returns this energy to the projectile ion. This energy drives the nonstatistical dissociation of the projectile provided there is an energetically accessible pathway in resonance with the absorbed radiation. To probe the validity of this hypothesis, a modified VG-ZAB mass spectrometer was used to observe the photon emissions from keV collisions of a selection of projectile ions with O2 target gas. By studying the resulting collision-induced emission (CIE) spectra, a second potential mechanism came to light, one that involves the near-isoenergetic O2 +. A 2Πu→X 2 Πg state transition.

  12. Do the O2 Schumann-Runge bands participate in keV collision-induced dissociation experiments?

    PubMed

    Lin, Yawei; Mayer, Paul M

    2011-01-01

    In high-energy (keV) CID experiments, oxygen has the unique ability to enhance specific ion fragmentation pathways that lie within a relatively narrow band of activation energy. It has been previously proposed that this oxygen-enhanced dissociation phenomenon is due to the participation of the O(2) B(3)Σ(u)(+) - X(3)Σ(g)(-) (Schumann-Runge) system in the collision complex. During the collision, oxygen is first excited to its [Formula: see text] state before it returns this energy to the projectile ion. This energy drives the nonstatistical dissociation of the projectile provided there is an energetically accessible pathway in resonance with the absorbed radiation. To probe the validity of this hypothesis, a modified VG-ZAB mass spectrometer was used to observe the photon emissions from keV collisions of a selection of projectile ions with O(2) target gas. By studying the resulting collision-induced emission (CIE) spectra, a second potential mechanism came to light, one that involves the near-isoenergetic O(2) (+.) A (2)Π(u)→X (2) Π(g) state transition. PMID:21472546

  13. Some More Simple Laser Experiments for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Yap, F. Y.

    1969-01-01

    Describes three elementary optics experiments using a laser instead of conventional light sources. Experiments illustrate the Fresnel-Arago law, elliptical polarization, double refraction and polarization in calcite, and interference by a Fresnel biprism. Because of the high intensity of the laser beam, these experiments lend themselves very well…

  14. Designing Online Resources in Preparation for Authentic Laboratory Experiences

    PubMed Central

    Boulay, Rachel; Parisky, Alex; Leong, Peter

    2013-01-01

    Professional development for science teachers can be benefited through active learning in science laboratories. However, how online training materials can be used to complement traditional laboratory training is less understood. This paper explores the design of online training modules to teach molecular biology and user perception of those modules that were part of an intensive molecular biology “boot camp” targeting high school biology teachers in the State of Hawaii. The John A. Burns School of Medicine at the University of Hawaii had an opportunity to design and develop professional development that prepares science teachers with an introduction of skills, techniques, and applications for their students to conduct medical research in a laboratory setting. A group of 29 experienced teachers shared their opinions of the online materials and reported on how they used the online materials in their learning process or teaching. PMID:24319698

  15. General Chemistry Laboratory--Scientific Inquiry: 157 New Experiments in One Semester

    NASA Astrophysics Data System (ADS)

    Black, Suzanne L.

    1996-08-01

    700 General Chemistry students were allowed to choose and run their own experiment. They went to the library to select an experiment from the literature, then they modified the experiment and performed it in the laboratory. Given the appropriate guidelines, the students were able to experience chemical research and thus get an idea of what science is really all about. The success of this laboratory is discussed from both the students' and staff's perspectives.

  16. Isospin Effects in Heavy-Ion Collisions: Some Results From CHIMERA Experiments At LNS And Perspectives With Radioactive Beams

    SciTech Connect

    Cardella, G.; De Filippo, E.; Pagano, A.; Papa, M.; Pirrone, S.; Verde, G.; Amorini, F.; Cavallaro, S.; Lombardo, I.; Porto, F.; Rizzo, F.; Russotto, P.; Anzalone, A.; Maiolino, C.; Arena, N.; Geraci, E.; Grassi, L.; Lo Nigro, S.; Politi, G.; Auditore, L.

    2009-05-04

    CHIMERA is a 4{pi} multidetector for charged particles available at Laboratori Nazionali del Sud (INFN-LNS). A new method to measure the time scale of the emission of nuclear fragments is described, together with some applications in the field of the isospin dynamics of heavy-ion collisions. Competition between fusion-like and binary reactions near the energy threshold for nuclear multifragmentation is discussed. Opportunities are pointed out to use the detector at low and intermediate energies using the kinematical-coincidence method.

  17. Three-pion Hanbury-Brown-Twiss correlations in relativistic heavy-ion collisions from the STAR experiment

    SciTech Connect

    Adams, J.; Adler, C.; Ahammed, Z.; Allgower, C.; Amonett, J.; Anderson, B.D.; Anderson, M.; Arkhipkin, D.; Averichev, G.S.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Botje, M.; Boucham, A.; Brandin, A.; Bravar, A.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderon de la Barca Sanchez, M.; Cardenas, A.; Carroll, J.; Castillo, J.; Castro, M.; Cebra, D.; Chaloupka, P.; Chattopadhyay, S.; Chen, Y.; Chernenko, S.P.; Cherney, M.; Chikanian, A.; Choi, B.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Corral, Mora M.; Cramer, J.G.; Crawford, H.J.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Draper, J.E.; Dunin, V.B.; Dunlop, J.C.; Eckardt, V.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Fachini, P.; Faine, V.; Faivre, J.; Fatemi, R.; Filimonov, K.; Finch, E.; Fisyak, Y.; Flierl, D.; Foley, K.J.; Fu, J.; Gagliardi, C.A.; Gagunashvili, N.; Gans, J.; Gaudichet, L.; Germain, M.; Geurts, F.; Ghazikhanian, V.; Grachov, O.; Guedon, M.; Guertin, S.M.; Gushin, E.; Gutierrez, T.D.; Hallman, T.J.; Hardtke, D.; Harris, J.W.; Heinz, M.; Henry, T.W.; Heppelmann, S.; Herston, T.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Horsley, M.; Huang, H.Z.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Johnson, I.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kaneta, M.; Kaplan, M.; Keane, D.; Kiryluk, J.; Kisiel, A.; Klay, J.; Klein, S.R.; Klyachko, A.; Kollegger, T.; Konstantinov, A.S.; Kopytine, M.; Kotchenda, L.; Kovalenko, A.D.; Kramer, M.; Kravtsov, P.; Krueger, K.; Kuhn, C.; Kulikov, A.I.; Kunde, G.J.; Kunz, C.L.; Kutuev, R.Kh.; Kuznetsov, A.A.; Lamont, M.A.C.; Landgraf, J.M.; Lange, S.; Lansdell, C.P.; Lasiuk, B.; Laue, F.; Lauret, J.; Lebedev, A.; Lednicky, R.; Leontiev, V.M.; LeVine, M.J.; Li, Q.; Lindenbaum, S.J.; Lisa, M.A.; Liu, F.; Liu, L.; Liu, Q.J.; Liu, Z.; et al.

    2003-06-19

    Data from the first physics run at the Relativistic Heavy-Ion Collider at Brookhaven National Laboratory, Au+Au collisions at {radical}s{sub NN} = 130 GeV, have been analyzed by the STAR Collaboration using three-pion correlations with charged pions to study whether pions are emitted independently at freezeout. We have made a high-statistics measurement of the three-pion correlation function and calculated the normalized three-particle correlator to obtain a quantitative measurement of the degree of chaoticity of the pion source. It is found that the degree of chaoticity seems to increase with increasing particle multiplicity.

  18. Social setting, intuition and experience in laboratory experiments interact to shape cooperative decision-making

    PubMed Central

    Capraro, Valerio; Cococcioni, Giorgia

    2015-01-01

    Recent studies suggest that cooperative decision-making in one-shot interactions is a history-dependent dynamic process: promoting intuition versus deliberation typically has a positive effect on cooperation (dynamism) among people living in a cooperative setting and with no previous experience in economic games on cooperation (history dependence). Here, we report on a laboratory experiment exploring how these findings transfer to a non-cooperative setting. We find two major results: (i) promoting intuition versus deliberation has no effect on cooperative behaviour among inexperienced subjects living in a non-cooperative setting; (ii) experienced subjects cooperate more than inexperienced subjects, but only under time pressure. These results suggest that cooperation is a learning process, rather than an instinctive impulse or a self-controlled choice, and that experience operates primarily via the channel of intuition. Our findings shed further light on the cognitive basis of human cooperative decision-making and provide further support for the recently proposed social heuristics hypothesis. PMID:26156762

  19. Social setting, intuition and experience in laboratory experiments interact to shape cooperative decision-making.

    PubMed

    Capraro, Valerio; Cococcioni, Giorgia

    2015-07-22

    Recent studies suggest that cooperative decision-making in one-shot interactions is a history-dependent dynamic process: promoting intuition versus deliberation typically has a positive effect on cooperation (dynamism) among people living in a cooperative setting and with no previous experience in economic games on cooperation (history dependence). Here, we report on a laboratory experiment exploring how these findings transfer to a non-cooperative setting. We find two major results: (i) promoting intuition versus deliberation has no effect on cooperative behaviour among inexperienced subjects living in a non-cooperative setting; (ii) experienced subjects cooperate more than inexperienced subjects, but only under time pressure. These results suggest that cooperation is a learning process, rather than an instinctive impulse or a self-controlled choice, and that experience operates primarily via the channel of intuition. Our findings shed further light on the cognitive basis of human cooperative decision-making and provide further support for the recently proposed social heuristics hypothesis. PMID:26156762

  20. Restructuring a General Microbiology Laboratory into an Investigative Experience.

    ERIC Educational Resources Information Center

    Deutch, Charles E.

    1994-01-01

    Describes an investigative laboratory sequence based upon the isolation and characterization of soil bacteria to aid microbiology teachers in providing students with activities that expose them to basic techniques of microbiology as well as demonstrates the scientific process and the experimental analysis of microorganisms. (ZWH)

  1. Operational experience on the Brookhaven National Laboratory Accelerator Test Facility

    SciTech Connect

    Batchelor, K.; Babzien, M.; Ben-Zvi, I.

    1994-09-01

    Brookhaven National Laboratory Accelerator Test Facility is a laser-electron linear accelerator complex designed to provide high brightness beams for testing of advanced acceleration concepts and high power pulsed photon sources. Results of electron beam parameters attained during the commissioning of the nominally 45 MeV energy machine are presented.

  2. Experimenting from a Distance--Remotely Controlled Laboratory (RCL)

    ERIC Educational Resources Information Center

    Grober, Sebastian; Vetter, Martin; Eckert, Bodo; Jodl, Hans-Jorg

    2007-01-01

    The use of computers and multimedia, as well as the World Wide Web and new communication technologies, allows new forms of teaching and learning such as distance learning, blended learning, use of virtual libraries and many more. The herewith discussed remotely controlled laboratory (RCL) project shall offer an additional contribution. The basic…

  3. Interactive Screen Experiments--Innovative Virtual Laboratories for Distance Learners

    ERIC Educational Resources Information Center

    Hatherly, P. A.; Jordan, S. E.; Cayless, A.

    2009-01-01

    The desirability and value of laboratory work for physics students is a well-established principle and issues arise where students are inherently remote from their host institution, as is the case for the UK's Open University. In this paper, we present developments from the Physics Innovations Centre for Excellence in Teaching and Learning…

  4. Argumentation in the Chemistry Laboratory: Inquiry and Confirmatory Experiments

    ERIC Educational Resources Information Center

    Katchevich, Dvora; Hofstein, Avi; Mamlok-Naaman, Rachel

    2013-01-01

    One of the goals of science education is to provide students with the ability to construct arguments--reasoning and thinking critically in a scientific context. Over the years, many studies have been conducted on constructing arguments in science teaching, but only few of them have dealt with studying argumentation in the laboratory. Our research…

  5. Laboratory Experiences in an Introduction to Natural Science Course.

    ERIC Educational Resources Information Center

    Barnard, Sister Marquita

    1984-01-01

    Describes a two-semester course designed to meet the needs of future elementary teachers, home economists, and occupational therapists. Laboratory work includes homemade calorimeters, inclined planes, and computing. Content areas of the course include measurement, physics, chemistry, astronomy, biology, geology, and meteorology. (JN)

  6. A Virtual Laboratory on Natural Computing: A Learning Experiment

    ERIC Educational Resources Information Center

    de Castro, Leandro Nunes; Muñoz, Yupanqui Julho; de Freitas, Leandro Rubim; El-Hani, Charbel Niño

    2008-01-01

    Natural computing is a terminology used to describe computational algorithms developed by taking inspiration from information processing mechanisms in nature, methods to synthesize natural phenomena in computers, and novel computational approaches based on natural materials. The virtual laboratory on natural computing (LVCoN) is a Web environment…

  7. The Nature of Laboratory Learning Experiences in Secondary Science Online

    ERIC Educational Resources Information Center

    Crippen, Kent J.; Archambault, Leanna M.; Kern, Cindy L.

    2013-01-01

    Teaching science to secondary students in an online environment is a growing international trend. Despite this trend, reports of empirical studies of this phenomenon are noticeably missing. With a survey concerning the nature of laboratory activities, this study describes the perspective of 35-secondary teachers from 15-different U.S. states who…

  8. EXPERIMENTS ON BUOYANT PLUME DISPERSION IN A LABORATORY CONVENTION TANK

    EPA Science Inventory

    Buoyant plume dispersion in the convective boundary layer (CBL) is investigated experimentally in a laboratory convection tank. The focus is on highly-buoyant plumes that loft near the CBL capping inversion and resist downward mixing. Highly- buoyant plumes are those with dimen...

  9. Creatine Synthesis: An Undergraduate Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Smith, Andri L.; Tan, Paula

    2006-01-01

    Students in introductory chemistry classes typically appreciate seeing the connection between course content and the "real world". For this reason, we have developed a synthesis of creatine monohydrate--a popular supplement used in sports requiring short bursts of energy--for introductory organic chemistry laboratory courses. Creatine monohydrate…

  10. Integrating Interdisciplinary Research-Based Experiences in Biotechnology Laboratories

    ERIC Educational Resources Information Center

    Iyer, Rupa S.; Wales, Melinda E.

    2012-01-01

    The increasingly interdisciplinary nature of today's scientific research is leading to the transformation of undergraduate education. In addressing these needs, the University of Houston's College of Technology has developed a new interdisciplinary research-based biotechnology laboratory curriculum. Using the pesticide degrading bacterium,…

  11. Raising Environmental Awareness through Applied Biochemistry Laboratory Experiments

    ERIC Educational Resources Information Center

    Salman Ashraf, S.

    2013-01-01

    Our environment is under constant pressure and threat from various sources of pollution. Science students, in particular chemistry students, must not only be made aware of these issues, but also be taught that chemistry (and science) can provide solutions to such real-life issues. To this end, a newly developed biochemistry laboratory experiment…

  12. Capillary Electrophoresis Analysis of Cations in Water Samples: An Experiment for the Introductory Laboratory

    ERIC Educational Resources Information Center

    Pursell, Christopher J.; Chandler, Bert; Bushey, Michelle M.

    2004-01-01

    Capillary electrophoresis is gradually working its way into the undergraduate laboratory curriculum. Typically, experiments utilizing this newer technology have been introduced into analytical or instrumental courses. The authors of this article have introduced an experiment into the introductory laboratory that utilizes capillary electrophoresis…

  13. Simulated and Virtual Science Laboratory Experiments: Improving Critical Thinking and Higher-Order Learning Skills

    ERIC Educational Resources Information Center

    Simon, Nicole A.

    2013-01-01

    Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory…

  14. Parallel Combinatorial Synthesis of Azo Dyes: A Combinatorial Experiment Suitable for Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Gung, Benjamin W.; Taylor, Richard T.

    2004-01-01

    An experiment in the parallel synthesis of azo dyes that demonstrates the concepts of structure-activity relationships and chemical diversity with vivid colors is described. It is seen that this experiment is suitable for the second-semester organic chemistry laboratory and also for the one-semester organic laboratory.

  15. Redefining Authentic Research Experiences in Introductory Biology Laboratories and Barriers to Their Implementation

    ERIC Educational Resources Information Center

    Spell, Rachelle M.; Guinan, Judith A.; Miller, Kristen R.; Beck, Christopher W.

    2014-01-01

    Incorporating authentic research experiences in introductory biology laboratory classes would greatly expand the number of students exposed to the excitement of discovery and the rigor of the scientific process. However, the essential components of an authentic research experience and the barriers to their implementation in laboratory classes are…

  16. Chemical Remediation of Nickel(II) Waste: A Laboratory Experiment for General Chemistry Students

    ERIC Educational Resources Information Center

    Corcoran, K. Blake; Rood, Brian E.; Trogden, Bridget G.

    2011-01-01

    This project involved developing a method to remediate large quantities of aqueous waste from a general chemistry laboratory experiment. Aqueous Ni(II) waste from a general chemistry laboratory experiment was converted into solid nickel hydroxide hydrate with a substantial decrease in waste volume. The remediation method was developed for a…

  17. An Undergraduate Laboratory Experiment in Bioinorganic Chemistry: Ligation States of Myoglobin

    ERIC Educational Resources Information Center

    Bailey, James A.

    2011-01-01

    Although there are numerous inorganic model systems that are readily presented as undergraduate laboratory experiments in bioinorganic chemistry, there are few examples that explore the inorganic chemistry of actual biological molecules. We present a laboratory experiment using the oxygen-binding protein myoglobin that can be easily incorporated…

  18. Improving the Efficacy of On-Campus Laboratory Experiences Using the Myers-Briggs Type Indicator.

    ERIC Educational Resources Information Center

    Metcalf, Kim K.; Wilson, Martha A.

    1994-01-01

    Preservice teachers worked in groups containing diverse personalities and participated in laboratory experiences that applied classroom knowledge. Surveys indicated students considered the laboratory activities more valuable and influential than field experiences in many ways. The most diverse cohorts reported stronger, more positive feelings…

  19. The Need Of Laboratory Experiments In Parallel To Astrobiological Space Fligth Experiments

    NASA Astrophysics Data System (ADS)

    Horneck, G.

    For laboratory studies on the responses of resistant life forms to simulated interplane- tary space conditions, test beds are available that simulate the parameters of space, such as vacuum, solar electromagnetic and cosmic ionizing radiation, temperature extremes and reduced gravity, which can be applied separately or in selected com- binations. Appropriate biological test systems are extremophiles, i.e. microorganisms that are adapted to grow or survive in extreme conditions of our biosphere. Examples are airborne microbes, endolithic or endoevaporitic microbial communities, or isolated biomolecules. The studies contribute to answer several questions of astrobiology, such as (i) the role of solar UV radiation in genetic stability, (ii) the role of gravity in basic biological functions, (iii) the chances and limits for interplanetary transfer of life, (iv) strategies of adaptation to environmental extremes, and (v) the needs for planetary protection. As an example, the ground controls that were performed in parallel with 3 BIOPAN flight experiments will be presented.

  20. A Thin Layer Chromatography Laboratory Experiment of Medical Importance

    ERIC Educational Resources Information Center

    Sharma, Loretta; Desai, Ankur; Sharma, Ajit

    2006-01-01

    A thin layer chromatography experiment of medical importance is described. The experiment involves extraction of lipids from simulated amniotic fluid samples followed by separation, detection, and scanning of the lecithin and sphingomyelin bands on TLC plates. The lecithin-to-sphingomyelin ratio is calculated. The clinical significance of this…

  1. Iron-Sulfur-Carbonyl and -Nitrosyl Complexes: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Glidewell, Christopher; And Others

    1985-01-01

    Background information, materials needed, procedures used, and typical results obtained, are provided for an experiment on iron-sulfur-carbonyl and -nitrosyl complexes. The experiment involved (1) use of inert atmospheric techniques and thin-layer and flexible-column chromatography and (2) interpretation of infrared, hydrogen and carbon-13 nuclear…

  2. A Spectroscopic-Based Laboratory Experiment for Protein Conformational Studies

    ERIC Educational Resources Information Center

    Ramos, Carlos Henrique I.

    2004-01-01

    This article describes a practical experiment for teaching basic spectroscopic techniques to introduce the topic of protein conformational change to students in the field of molecular biology, biochemistry, or structural biology. The spectroscopic methods employed in the experiment are absorbance, for protein concentration measurements, and…

  3. A Cyclic Voltammetry Experiment for the Instrumental Analysis Laboratory.

    ERIC Educational Resources Information Center

    Baldwin, Richard P.; And Others

    1984-01-01

    Background information and procedures are provided for experiments that illustrate the nature of cyclic voltammetry and its application in the characterization of organic electrode processes. The experiments also demonstrate the concepts of electrochemical reversibility and diffusion-controlled mass transfer. (JN)

  4. Reactions of Thiocyanate Ions with Acid: A Laboratory Experiment.

    ERIC Educational Resources Information Center

    Glidewell, Christopher; And Others

    1984-01-01

    Background information, procedures, and typical results are provided for a three-part experiment involving reactions of potassium thiocynate (KNCS) with sulfuric acid. The experiment represents the final stage of structured work prior to students' research projects during their final year. (JM)

  5. Undergraduate Laboratory Experiment Modules for Probing Gold Nanoparticle Interfacial Phenomena

    ERIC Educational Resources Information Center

    Karunanayake, Akila G.; Gunatilake, Sameera R.; Ameer, Fathima S.; Gadogbe, Manuel; Smith, Laura; Mlsna, Deb; Zhang, Dongmao

    2015-01-01

    Three gold-nanoparticle (AuNP) undergraduate experiment modules that are focused on nanoparticles interfacial phenomena have been developed. Modules 1 and 2 explore the synthesis and characterization of AuNPs of different sizes but with the same total gold mass. These experiments enable students to determine how particle size affects the AuNP…

  6. A "Greenhouse Gas" Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Gomez, Elaine; Paul, Melissa; Como, Charles; Barat, Robert

    2014-01-01

    This experiment and analysis offer an effective experience in greenhouse gas reduction. Ammoniated water is flowed counter-current to a simulated flue gas of air and CO2 in a packed column. The gaseous CO2 concentrations are measured with an on-line, non- dispersive, infrared analyzer. Column operating parameters include total gas flux, dissolved…

  7. A Membrane Gas Separation Experiment for the Undergraduate Laboratory.

    ERIC Educational Resources Information Center

    Davis, Richard A.; Sandall, Orville C.

    1991-01-01

    Described is a membrane experiment that provides students with experience in fundamental engineering skills such as mass balances, modeling, and using the computer as a research tool. Included are the experimental design, theory, method of solution, sample calculations, and conclusions. (KR)

  8. Microcomputer-Based Digital Signal Processing Laboratory Experiments.

    ERIC Educational Resources Information Center

    Tinari, Jr., Rocco; Rao, S. Sathyanarayan

    1985-01-01

    Describes a system (Apple II microcomputer interfaced to flexible, custom-designed digital hardware) which can provide: (1) Fast Fourier Transform (FFT) computation on real-time data with a video display of spectrum; (2) frequency synthesis experiments using the inverse FFT; and (3) real-time digital filtering experiments. (JN)

  9. A Semi-Batch Reactor Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Derevjanik, Mario; Badri, Solmaz; Barat, Robert

    2011-01-01

    This experiment and analysis offer an economic yet challenging semi-batch reactor experience. Household bleach is pumped at a controlled rate into a batch reactor containing pharmaceutical hydrogen peroxide solution. Batch temperature, product molecular oxygen, and the overall change in solution conductivity are metered. The reactor simulation…

  10. Laser-driven ICF experiments: Laboratory Report No. 223

    SciTech Connect

    McCrory, R.L.

    1991-04-01

    Laser irradiation uniformity is a key issue and is treated in some detail. The basic irradiation uniformity requirements and practical ways of achieving these requirements are both discussed, along with two beam-smoothing techniques: induced spatial incoherence (ISI), and smoothing by spectral dispersion (SSD). Experiments to measure and control the irradiation uniformity are also highlighted. Following the discussion of irradiation uniformity, a brief review of coronal physics is given, including the basic physical processes and their experimental signatures, together with a summary of pertinent diagnostics and results from experiments. Methods of determining ablation rates and thermal transport are also described. The hydrodynamics of laser-driven targets must be fully understood on the basis of experiments. Results from implosion experiments, including a brief description of the diagnostics, are presented. Future experiments aimed at determining ignition scaling and demonstrating hydrodynamically equivalent physics applicable to high-gain designs.

  11. PROTON - LAMBDA CORRELATIONS IN AU-AU COLLISIONS AT SQUARE ROOT NN = 200 GEV FROM THE STAR EXPERIMENT.

    SciTech Connect

    RENAULT,G.

    2004-03-15

    The space-time evolution of the source of particles formed in the collision of nuclei can be studied through particle correlations. The STAR experiment is dedicated to study ultra-relativistic heavy ions collisions and allows to measure non-identical strange particle correlations. The source size can be extracted by studying p - {Lambda}, {bar p} - {bar {Lambda}}, {bar p} - {Lambda} and p - {bar {Lambda}} correlation functions. Strong interaction potential has been studied for these systems using an analytical model. Final State Interaction (FSI) parameters have been determined and has shown a significant annihilation process present in {bar p} - {Lambda} and p - {bar {Lambda}} systems not present in p - {Lambda} and {bar p} - {bar {Lambda}}.

  12. Reflectance Experiment Laboratory (RELAB) Description and User's Manual

    NASA Technical Reports Server (NTRS)

    Pieters, Carle M.; Hiroi, Takahiro; Pratt, Steve F.; Patterson, Bill

    2004-01-01

    Spectroscopic data acquired in the laboratory provide the interpretive foundation upon which compositional information about unexplored or unsampled planetary surfaces is derived from remotely obtained reflectance spectra. The RELAB is supported by NASA as a multi-user spectroscopy facility, and laboratory time can be made available at no charge to investigators who are in funded NASA programs. RELAB has two operational spectrometers available to NASA scientists: 1) a near- ultraviolet, visible, and near-infrared bidirectional spectrometer and 2) a near- and mid- infrared FT-IR spectrometer. The overall purpose of the design and operation of the RELAB bidirectional spectrometer is to obtain high precision, high spectral resolution, bidirectional reflectance spectra of earth and planetary materials. One of the key elements of its design is the ability to measure samples using viewing geometries specified by the user. This allows investigators to simulate, under laboratory conditions, reflectance spectra obtained remotely (i.e., with spaceborne, telescopic, and airborne systems) as well as to investigate geometry dependent reflectance properties of geologic materials. The Nicolet 740 FT-IR spectrometer currently operates in reflectance mode from 0.9 to 25 Fm. Use and scheduling of the RELAB is monitored by a 4-member advisory committee. NASA investigators should direct inquiries to the Science Manager or RELAB Operator.

  13. Design and performance simulation of a segmented-absorber based muon detection system for high energy heavy ion collision experiments

    NASA Astrophysics Data System (ADS)

    Ahmad, S.; Bhaduri, P. P.; Jahan, H.; Senger, A.; Adak, R.; Samanta, S.; Prakash, A.; Dey, K.; Lebedev, A.; Kryshen, E.; Chattopadhyay, S.; Senger, P.; Bhattacharjee, B.; Ghosh, S. K.; Raha, S.; Irfan, M.; Ahmad, N.; Farooq, M.; Singh, B.

    2015-03-01

    A muon detection system (MUCH) based on a novel concept using a segmented and instrumented absorber has been designed for high-energy heavy-ion collision experiments. The system consists of 6 hadron absorber blocks and 6 tracking detector triplets. Behind each absorber block a detector triplet is located which measures the tracks of charged particles traversing the absorber. The performance of such a system has been simulated for the CBM experiment at FAIR (Germany) that is scheduled to start taking data in heavy ion collisions in the beam energy range of 6-45 A GeV from 2019. The muon detection system is mounted downstream to a Silicon Tracking System (STS) that is located in a large aperture dipole magnet which provides momentum information of the charged particle tracks. The reconstructed tracks from the STS are to be matched to the hits measured by the muon detector triplets behind the absorber segments. This method allows the identification of muon tracks over a broad range of momenta including tracks of soft muons which do not pass through all the absorber layers. Pairs of oppositely charged muons identified by MUCH could therefore be combined to measure the invariant masses in a wide range starting from low mass vector mesons (LMVM) up to charmonia. The properties of the absorber (material, thickness, position) and of the tracking chambers (granularity, geometry) have been varied in simulations of heavy-ion collision events generated with the UrQMD generator and propagated through the setup using the GEANT3, the particle transport code. The tracks are reconstructed by a Cellular Automaton algorithm followed by a Kalman Filter. The simulations demonstrate that low mass vector mesons and charmonia can be clearly identified in central Au+Au collisions at beam energies provided by the international Facility for Antiproton and Ion Research (FAIR).

  14. Using Microcomputers in the Physical Chemistry Laboratory: Activation Energy Experiment.

    ERIC Educational Resources Information Center

    Touvelle, Michele; Venugopalan, Mundiyath

    1986-01-01

    Describes a computer program, "Activation Energy," which is designed for use in physical chemistry classes and can be modified for kinetic experiments. Provides suggestions for instruction, sample program listings, and information on the availability of the program package. (ML)

  15. The Semipermeability of Biological Membranes: An Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Frimer, Aryeh A.

    1985-01-01

    The semipermeability of biological membranes is simply and directly illustrated in an experiment which uses ovolecithin liposomes as convenient models for biological membranes. Background information and procedures used are provided. (JN)

  16. 4,5-Diphenyl-1-methylimidazole: An Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Anastas, Paul T.; And Others

    1985-01-01

    Background information and procedures used are provided for the synthesis of 4,5-diphenyl-methylimidazole. This experiment on the chemistry of heterocycles is ideally suited for beginning undergraduate organic chemistry students. (JN)

  17. Combining Laboratory Experiments with Digital Tools to Do Scientific Inquiry

    NASA Astrophysics Data System (ADS)

    Kluge, Anders

    2014-09-01

    This qualitative study investigates the gap between a lab experiment and theory of science. Two groups of 4 students in 2 different classes in 11th grade (15-16 years old) are followed as they process results and experiences from a lab experiment using a digital environment. The experiment is as a part of a larger project about genes and cells, and this study concerns how the digital environment can support students' sensemaking. The study shows how the students only are left with 'how-to' skills before they engage in collaborative processing supported by their own picture from the experiment. The picture becomes a hub for interactive sensemaking and is extensively used for annotation and discussion. Four elements in the digital support are identified as crucial: an extendable point of reference, facilitation to compare and contrast, a pointer to standard science knowledge, and a structure to guide the students to significant issues. The study identifies where the digital support succeeds and fails in this process of sensemaking from a lab experiment.

  18. A teaching intervention for reading laboratory experiments in college-level introductory chemistry

    NASA Astrophysics Data System (ADS)

    Kirk, Maria Kristine

    The purpose of this study was to determine the effects that a pre-laboratory guide, conceptualized as a "scientific story grammar," has on college chemistry students' learning when they read an introductory chemistry laboratory manual and perform the experiments in the chemistry laboratory. The participants (N = 56) were students enrolled in four existing general chemistry laboratory sections taught by two instructors at a women's liberal arts college. The pre-laboratory guide consisted of eight questions about the experiment, including the purpose, chemical species, variables, chemical method, procedure, and hypothesis. The effects of the intervention were compared with those of the traditional pre-laboratory assignment for the eight chemistry experiments. Measures included quizzes, tests, chemistry achievement test, science process skills test, laboratory reports, laboratory average, and semester grade. The covariates were mathematical aptitude and prior knowledge of chemistry and science processes, on which the groups differed significantly. The study captured students' perceptions of their experience in general chemistry through a survey and interviews with eight students. The only significant differences in the treatment group's performance were in some subscores on lecture items and laboratory items on the quizzes. An apparent induction period was noted, in that significant measures occurred in mid-semester. Voluntary study with the pre-laboratory guide by control students precluded significant differences on measures given later in the semester. The groups' responses to the survey were similar. Significant instructor effects on three survey items were corroborated by the interviews. The researcher's students were more positive about their pre-laboratory tasks, enjoyed the laboratory sessions more, and were more confident about doing chemistry experiments than the laboratory instructor's groups due to differences in scaffolding by the instructors.

  19. Absorption spectroscopy of a laboratory photoionized plasma experiment at Z

    SciTech Connect

    Hall, I. M.; Durmaz, T.; Mancini, R. C.; Bailey, J. E.; Rochau, G. A.; Golovkin, I. E.; MacFarlane, J. J.

    2014-03-15

    The Z facility at the Sandia National Laboratories is the most energetic terrestrial source of X-rays and provides an opportunity to produce photoionized plasmas in a relatively well characterised radiation environment. We use detailed atomic-kinetic and spectral simulations to analyze the absorption spectra of a photoionized neon plasma driven by the x-ray flux from a z-pinch. The broadband x-ray flux both photoionizes and backlights the plasma. In particular, we focus on extracting the charge state distribution of the plasma and the characteristics of the radiation field driving the plasma in order to estimate the ionisation parameter.

  20. Laboratory experiments duplicate conditions in the Earth’s crust

    USGS Publications Warehouse

    Peselnick, L.; Dieterich, J.H.; Stewart, R.M.

    1974-01-01

    An experimental device that simulates conditions in the Earth's crust at depths of up to 30 kilometers has been constructed by geophysicists working at the U.S Geological Survey laboratories in Menlo Park, California. A high pressure "bomb" is being used to experimentally measure the velocity of seismic waves in different types of rock at various confining pressures and temperatures. The principal purpose of these measurements is to determine the elastic and non-elastic properties of rocks and minerals under conditions of high-pressure such as exist deep in the Earth's crust. 

  1. Zero-gravity atmospheric Cloud Physics Experiment Laboratory; Programmatics report

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The programmatics effort included comprehensive analyses in four major areas: (1) work breakdown structure, (2) schedules, (3) costs, and (4) supporting research and technology. These analyses are discussed in detail in the following sections which identify and define the laboratory project development schedule, cost estimates, funding distributions and supporting research and technology requirements. All programmatics analyses are correlated among themselves and with the technical analyses by means of the work breakdown structure which serves as a common framework for program definition. In addition, the programmatic analyses reflect the results of analyses and plans for reliability, safety, test, and maintenance and refurbishment.

  2. From laboratory to industry Phasics experience (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wattellier, Benoit F.; Lebrun, Marie-Begoña.

    2016-03-01

    We describe several examples of technology transfer from academic laboratories to PHASICS. PHASICS was created in 2003 as a spin-off of LULI an academic laboratory working on plasma physics and developing high power lasers to create such objects which temperature and pressure conditions are close to those at the center of stars. In order to optimize the intensity at laser focus, several thesis treated the subject of adaptive optics for lasers. LULI decided to collaborate with ONERA who just invented a technique for wave front sensing called multiwave lateral shearing interferometry. Though developed at first for infrared metrology applications, this technique proved to be very efficient with lasers because it was able to analyze wave front of modulated beams with sharp edges. Before being industrialized the technique was further improved to a compact version called quadriwave lateral shearing interferometry. As soon as PHASICS was created, we felt the potential of making wave front images from transparent objects because of QWLSI high spatial resolution. PHASICS and Institut Fresnel started a collaboration to study applications in microscopy imaging. Research subjects include biological imaging, CARS microscopy, anisotropy imaging, or laser damage testing. The results of research were then included in PHASICS products but sometimes only a tool developed during the project became a product. We will present research works that led to transfers as well as the method we used to ensure fruitful collaboration and transfer.

  3. Chemistry Graduate Teaching Assistants' Experiences in Academic Laboratories and Development of a Teaching Self-image

    NASA Astrophysics Data System (ADS)

    Gatlin, Todd Adam

    Graduate teaching assistants (GTAs) play a prominent role in chemistry laboratory instruction at research based universities. They teach almost all undergraduate chemistry laboratory courses. However, their role in laboratory instruction has often been overlooked in educational research. Interest in chemistry GTAs has been placed on training and their perceived expectations, but less attention has been paid to their experiences or their potential benefits from teaching. This work was designed to investigate GTAs' experiences in and benefits from laboratory instructional environments. This dissertation includes three related studies on GTAs' experiences teaching in general chemistry laboratories. Qualitative methods were used for each study. First, phenomenological analysis was used to explore GTAs' experiences in an expository laboratory program. Post-teaching interviews were the primary data source. GTAs experiences were described in three dimensions: doing, knowing, and transferring. Gains available to GTAs revolved around general teaching skills. However, no gains specifically related to scientific development were found in this laboratory format. Case-study methods were used to explore and illustrate ways GTAs develop a GTA self-image---the way they see themselves as instructors. Two general chemistry laboratory programs that represent two very different instructional frameworks were chosen for the context of this study. The first program used a cooperative project-based approach. The second program used weekly, verification-type activities. End of the semester interviews were collected and served as the primary data source. A follow-up case study of a new cohort of GTAs in the cooperative problem-based laboratory was undertaken to investigate changes in GTAs' self-images over the course of one semester. Pre-semester and post-semester interviews served as the primary data source. Findings suggest that GTAs' construction of their self-image is shaped through the

  4. Cavity Ring down Spectroscopy Experiment for an Advanced Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Stacewicz, T.; Wasylczyk, P.; Kowalczyk, P.; Semczuk, M.

    2007-01-01

    A simple experiment is described that permits advanced undergraduates to learn the principles and applications of the cavity ring down spectroscopy technique. The apparatus is used for measurements of low concentrations of NO[subscript 2] produced in air by an electric discharge. We present the setup, experimental procedure, data analysis and some…

  5. Car-Crash Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Ball, Penny L.; And Others

    1974-01-01

    Describes an interesting, inexpensive, and highly motivating experiment to study uniform and accelerated motion by measuring the position of a car as it crashes into a rigid wall. Data are obtained from a sequence of pictures made by a high speed camera. (Author/SLH)

  6. A Nonlinear, Multiinput, Multioutput Process Control Laboratory Experiment

    ERIC Educational Resources Information Center

    Young, Brent R.; van der Lee, James H.; Svrcek, William Y.

    2006-01-01

    Experience in using a user-friendly software, Mathcad, in the undergraduate chemical reaction engineering course is discussed. Example problems considered for illustration deal with simultaneous solution of linear algebraic equations (kinetic parameter estimation), nonlinear algebraic equations (equilibrium calculations for multiple reactions and…

  7. User Experience in Digital Games: Differences between Laboratory and Home

    ERIC Educational Resources Information Center

    Takatalo, Jari; Hakkinen, Jukka; Kaistinen, Jyrki; Nyman, Gote

    2011-01-01

    Playing entertainment computer, video, and portable games, namely, digital games, is receiving more and more attention in academic research. Games are studied in different situations with numerous methods, but little is known about if and how the playing situation affects the user experience (UX) in games. In addition, it is hard to understand and…

  8. An Approach to Poiseuille's Law in an Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Sianoudis, I. A.; Drakaki, E.

    2008-01-01

    The continuous growth of computer and sensor technology allows many researchers to develop simple modifications and/or refinements to standard educational experiments, making them more attractive and comprehensible to students and thus increasing their educational impact. In the framework of this approach, the present study proposes an alternative…

  9. A Process Dynamics and Control Experiment for the Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Spencer, Jordan L.

    2009-01-01

    This paper describes a process control experiment. The apparatus includes a three-vessel glass flow system with a variable flow configuration, means for feeding dye solution controlled by a stepper-motor driven valve, and a flow spectrophotometer. Students use impulse response data and nonlinear regression to estimate three parameters of a model…

  10. Neutrino-oscillation experiments at Brookhaven National Laboratory

    SciTech Connect

    Ahrens, L.A.; Aronson, S.A.; Connolly, P.L.; Gibbard, B.G.; Maeda, Y.; Murtagh, M.J.; Murtagh, S.J.; Terada, S.; Callas, J.; Cutts, D.

    1983-01-01

    Two groups have submitted major proposals for neutrino oscillation searches at BNL. Both are two detector experiments with a close detector at approx. = 100m and a far detector at approx. = 900m. While the details of the experiments are quite different, both groups expect to obtain nu/sub ..mu../ disappearance limits of delta m/sup 2/sin2 theta approx. = 0.1 - 0.2 for small mass difference and sin/sup 2/2 theta at the few percent level for the most sensitive delta m/sup 2/(approx. = 25eV/sup 2/). Since both detectors are designed to identify electrons as well as muons they expect to obtain significant limits on nu/sub e/ appearance (nu/sub ..mu../ ..-->.. nu/sub e/). Each has received approval for a single detector (Phase I) experiment with the two detector phase (Phase II) still pending. The present status of the single detector experiments is detailed. (WHK)

  11. Coulometric Analysis Experiment for the Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Dabke, Rajeev B.; Gebeyehu, Zewdu; Thor, Ryan

    2011-01-01

    An undergraduate experiment on coulometric analysis of four commercial household products is presented. A special type of coulometry cell made of polydimethylsiloxane (PDMS) polymer is utilized. The PDMS cell consists of multiple analyte compartments and an internal network of salt bridges. Experimental procedure for the analysis of the acid in a…

  12. Ion Exchange Chromatography and Spectrophotometry: An Introductory Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Foster, N.; And Others

    1985-01-01

    Describes an experiment in which students use ion exchange chromatography to separate a mixture of chloro complexes of transition metal ions and then use spectrophotometry to define qualitatively the efficiency of the ion exchange columns. Background information, materials needed, and procedures used are included. (JN)

  13. A Laboratory Experiment on How to Create Dimensionless Correlations

    ERIC Educational Resources Information Center

    Edwards, Robert V.

    2010-01-01

    An experiment is described that illustrates how chemical engineering correlations are created. Balls of different diameters and different specific gravities (all less than one) are dropped from several heights into a pool of water, and the maximum depth reached by the ball is measured. This data is used to estimate the coefficients for a…

  14. What Do We Expect From Students' Physics Laboratory Experiments?

    ERIC Educational Resources Information Center

    Trumper, Ricardo

    2002-01-01

    Explains that thinking like a physicist involves an understanding of the scientific methods of inquiry and the ability to use these methods in investigations. Describes two simple experiments in which high school and college students measure physical constants and make an easy analysis of their experimental data by applying the tools offered by…

  15. Radiative Transfer Theory Verified by Controlled Laboratory Experiments

    NASA Technical Reports Server (NTRS)

    Mishchenko, Michael I.; Goldstein, Dennis H.; Chowdhary, Jacek; Lompado, Arthur

    2013-01-01

    We report the results of high-accuracy controlled laboratory measurements of the Stokes reflection matrix for suspensions of submicrometer-sized latex particles in water and compare them with the results of a numerically exact computer solution of the vector radiative transfer equation (VRTE). The quantitative performance of the VRTE is monitored by increasing the volume packing density of the latex particles from 2 to 10. Our results indicate that the VRTE can be applied safely to random particulate media with packing densities up to 2. VRTE results for packing densities of the order of 5 should be taken with caution, whereas the polarized bidirectional reflectivity of suspensions with larger packing densities cannot be accurately predicted. We demonstrate that a simple modification of the phase matrix entering the VRTE based on the so-called static structure factor can be a promising remedy that deserves further examination.

  16. Radiative transfer theory verified by controlled laboratory experiments.

    PubMed

    Mishchenko, Michael I; Goldstein, Dennis H; Chowdhary, Jacek; Lompado, Arthur

    2013-09-15

    We report the results of high-accuracy controlled laboratory measurements of the Stokes reflection matrix for suspensions of submicrometer-sized latex particles in water and compare them with the results of a numerically exact computer solution of the vector radiative transfer equation (VRTE). The quantitative performance of the VRTE is monitored by increasing the volume packing density of the latex particles from 2% to 10%. Our results indicate that the VRTE can be applied safely to random particulate media with packing densities up to ∼2%. VRTE results for packing densities of the order of 5% should be taken with caution, whereas the polarized bidirectional reflectivity of suspensions with larger packing densities cannot be accurately predicted. We demonstrate that a simple modification of the phase matrix entering the VRTE based on the so-called static structure factor can be a promising remedy that deserves further examination. PMID:24104804

  17. Vapor-phase biofiltration: Laboratory and field experience

    SciTech Connect

    Evans, P.J.; Bourbonais, K.A.; Peterson, L.E.; Lee, J.H.; Laakso, G.L.

    1995-12-31

    Application of vapor-phase bioreactors (VPBs) to petroleum hydrocarbons is complicated by the different mass transfer characteristics of aliphatics and aromatics. Laboratory- and pilot-scale VPB studies were conducted to evaluate treatment of soil vapor extraction (SVE) off-gas. A mixture of compost, perlite, and activated carbon was the selected medium based on pressure drop, microbial colonization, and adsorption properties. Two different pilot-scale reactors were built with a difference of 70:1 in scale. The smaller VPB`s maximum effective elimination capacity (EC) was determined to be 7.2 g m{sup {minus}3} h{sup {minus}1}; the larger unit`s EC was 70% to 80% of this value. Low EC values may be attributable to a combination of mass-transfer and kinetic limitations.

  18. Experimenting with Impacts in a Conceptual Physics or Descriptive Astronomy Laboratory

    ERIC Educational Resources Information Center

    LoPresto, Michael C.

    2016-01-01

    What follows is a description of the procedure for and results of a simple experiment on the formation of impact craters designed for the laboratory portions of lower mathematical-level general education science courses such as conceptual physics or descriptive astronomy. The experiment provides necessary experience with data collection and…

  19. The Heavy Photon Search experiment at Jefferson Laboratory

    SciTech Connect

    De Napoli, Marzio

    2015-06-01

    Many beyond Standard Model theories predict a new massive gauge boson, a.k.a. 'dark' or 'heavy photon', directly coupling to hidden sector particles with dark charge. The heavy photon is expected to mix with the Standard Model photon through kinetic mixing and therefore couple weakly to normal charge. The Heavy Photon Search (HPS) experiment will search for the heavy photon at the Thomas Jefferson National Accelerator Facility (JLab), in the mass range 20-1000 MeV/c2 and coupling to electric charge ϵ2 = α'/α in the range 10-5 to 10-10. HPS will look for the e+e- decay channel of heavy photons radiated by electron Bremsstrahlung, employing both invariant mass search and detached vertexing techniques. The experiment employs a compact forward spectrometer comprising silicon microstrip detectors for vertexing and tracking and an electromagnetic calorimeter for particle identification and triggering.

  20. Laser fusion experiments, facilities and diagnostics at Lawrence Livermore Laboratory

    SciTech Connect

    Ahlstrom, H.G.

    1980-02-01

    The progress of the LLL Laser Fusion Program to achieve high gain thermonuclear micro-explosions is discussed. Many experiments have been successfully performed and diagnosed using the large complex, 10-beam, 30 TW Shiva laser system. A 400 kJ design of the 20-beam Nova laser has been completed. The construction of the first phase of this facility has begun. New diagnostic instruments are described which provide one with new and improved resolution, information on laser absorption and scattering, thermal energy flow, suprathermal electrons and their effects, and final fuel conditions. Measurements were made on the absorption and Brillouin scattering for target irradiations at both 1.064 ..mu..m and 532 nm. These measurements confirm the expected increased absorption and reduced scattering at the shorter wavelength. Implosion experiments have been performed which have produced final fuel densities over the range of 10x to 100x liquid DT density.

  1. The Heavy Photon Search experiment at Jefferson Laboratory

    NASA Astrophysics Data System (ADS)

    De Napoli, Marzio

    2015-06-01

    Many beyond Standard Model theories predict a new massive gauge boson, aka "dark" or "heavy photon", directly coupling to hidden sector particles with dark charge. The heavy photon is expected to mix with the Standard Model photon through kinetic mixing and therefore couple weakly to normal charge. The Heavy Photon Search (HPS) experiment will search for the heavy photon at the Thomas Jefferson National Accelerator Facility (JLab), in the mass range 20-1000 MeV/c2 and coupling to electric charge ɛ2 = α'/α in the range 10-5 to 10-10. HPS will look for the e+e- decay channel of heavy photons radiated by electron Bremsstrahlung, employing both invariant mass search and detached vertexing techniques. The experiment employs a compact forward spectrometer comprising silicon microstrip detectors for vertexing and tracking and an electromagnetic calorimeter for particle identification and triggering.

  2. Laboratory Drop Towers for the Experimental Simulation of Dust-aggregate Collisions in the Early Solar System

    NASA Astrophysics Data System (ADS)

    Blum, Jürgen; Beitz, Eike; Bukhari, Mohtashim; Gundlach, Bastian; Hagemann, Jan-Hendrik; Heißelmann, Daniel; Kothe, Stefan; Schräpler, Rainer; von Borstel, Ingo; Weidling, René

    2014-06-01

    For the purpose of investigating the evolution of dust aggregates in the early Solar System, we developed two vacuum drop towers in which fragile dust aggregates with sizes up to ~10 cm and porosities up to 70% can be collided. One of the drop towers is primarily used for very low impact speeds down to below 0.01 m/sec and makes use of a double release mechanism. Collisions are recorded in stereo-view by two high-speed cameras, which fall along the glass vacuum tube in the center-of-mass frame of the two dust aggregates. The other free-fall tower makes use of an electromagnetic accelerator that is capable of gently accelerating dust aggregates to up to 5 m/sec. In combination with the release of another dust aggregate to free fall, collision speeds up to ~10 m/sec can be achieved. Here, two fixed high-speed cameras record the collision events. In both drop towers, the dust aggregates are in free fall during the collision so that they are weightless and match the conditions in the early Solar System.

  3. Laboratory Drop Towers for the Experimental Simulation of Dust-aggregate Collisions in the Early Solar System

    PubMed Central

    Blum, Jürgen; Beitz, Eike; Bukhari, Mohtashim; Gundlach, Bastian; Hagemann, Jan-Hendrik; Heißelmann, Daniel; Kothe, Stefan; Schräpler, Rainer; von Borstel, Ingo; Weidling, René

    2014-01-01

    For the purpose of investigating the evolution of dust aggregates in the early Solar System, we developed two vacuum drop towers in which fragile dust aggregates with sizes up to ~10 cm and porosities up to 70% can be collided. One of the drop towers is primarily used for very low impact speeds down to below 0.01 m/sec and makes use of a double release mechanism. Collisions are recorded in stereo-view by two high-speed cameras, which fall along the glass vacuum tube in the center-of-mass frame of the two dust aggregates. The other free-fall tower makes use of an electromagnetic accelerator that is capable of gently accelerating dust aggregates to up to 5 m/sec. In combination with the release of another dust aggregate to free fall, collision speeds up to ~10 m/sec can be achieved. Here, two fixed high-speed cameras record the collision events. In both drop towers, the dust aggregates are in free fall during the collision so that they are weightless and match the conditions in the early Solar System. PMID:24962693

  4. Laboratory drop towers for the experimental simulation of dust-aggregate collisions in the early solar system.

    PubMed

    Blum, Jürgen; Beitz, Eike; Bukhari, Mohtashim; Gundlach, Bastian; Hagemann, Jan-Hendrik; Heißelmann, Daniel; Kothe, Stefan; Schräpler, Rainer; von Borstel, Ingo; Weidling, René

    2014-01-01

    For the purpose of investigating the evolution of dust aggregates in the early Solar System, we developed two vacuum drop towers in which fragile dust aggregates with sizes up to ~10 cm and porosities up to 70% can be collided. One of the drop towers is primarily used for very low impact speeds down to below 0.01 m/sec and makes use of a double release mechanism. Collisions are recorded in stereo-view by two high-speed cameras, which fall along the glass vacuum tube in the center-of-mass frame of the two dust aggregates. The other free-fall tower makes use of an electromagnetic accelerator that is capable of gently accelerating dust aggregates to up to 5 m/sec. In combination with the release of another dust aggregate to free fall, collision speeds up to ~10 m/sec can be achieved. Here, two fixed high-speed cameras record the collision events. In both drop towers, the dust aggregates are in free fall during the collision so that they are weightless and match the conditions in the early Solar System. PMID:24962693

  5. Studying inelastic collisions of H2 and D2 by means of ultrasonic experiments

    NASA Astrophysics Data System (ADS)

    Perez-Rios, Jesus; Montero, Salvador

    2014-05-01

    An explicit formulation for the rotation-translation relaxation time in terms of state-to-state rate coefficients associated to inelastic collisions is presented. The formulation provides a tangible link between acoustic and gas dynamics, and quantum scattering calculations. The state-to-state rates needed for the detailed interpretation of relaxation of H2 and D2, including isotopic variant mixtures, have been calculated by solving the close-coupled Schrödinger equations. Relaxation related quantities (rotational cross section, bulk viscosity, relaxation time, and collision number) calculated from first principles agree reasonably well with acoustic absorption experimental data on H2 and D2 well below 293 K. This result confirms the proposed formulation, the quantum scattering calculations, and the potential energy surface employed. This work was partially supported by DOE, Office of Science.

  6. Insights into oil cracking based on laboratory experiments

    USGS Publications Warehouse

    Hill, R.J.; Tang, Y.; Kaplan, I.R.

    2003-01-01

    The objectives of this pyrolysis investigation were to determine changes in (1) oil composition, (2) gas composition and (3) gas carbon isotope ratios and to compare these results with hydrocarbons in reservoirs. Laboratory cracking of a saturate-rich Devonian oil by confined, dry pyrolysis was performed at T = 350-450??C, P = 650 bars and times ranging from 24 h to 33 days. Increasing thermal stress results in the C15+ hydrocarbon fraction cracking to form C6-14 and C1-5 hydrocarbons and pyrobitumen. The C6-14 fraction continues to crack to C 1-5 gases plus pyrobitumen at higher temperatures and prolonged heating time and the ?? 13Cethane-?? 13Cpropane difference becomes greater as oil cracking progresses. There is considerable overlap in product generation and product cracking. Oil cracking products accumulate either because the rate of generation of any product is greater than the rate of removal by cracking of that product or because the product is a stable end member under the experimental conditions. Oil cracking products decrease when the amount of product generated from a reactant is less than the amount of product cracked. If pyrolysis gas compositions are representative of gases generated from oil cracking in nature, then understanding the processes that alter natural gas composition is critical. ?? 2003 Elsevier Ltd. All rights reserved.

  7. Integrated laboratory scale demonstration experiment of S-I cycle

    SciTech Connect

    Leybros, Jean; Duhamet, Jean; Ode, Denis; Pons, Nicolas; Dehaudt, Philippe; Boidron, Michel

    2007-07-01

    The Sulfur Iodine thermochemical cycle for the production of hydrogen is one of the promising approaches for use with next generation high temperature advanced nuclear reactors. Within the framework of an international collaboration (I-NERI project) between the American DOE and the French CEA, the development of a laboratory scale hydrogen production loop using the sulfur iodine cycle will be performed under prototypic conditions to demonstrate the key chemical processes, to check the materials and to provide the technical basis for evaluating the S-I cycle for nuclear hydrogen production (process efficiency and preliminary costs). The S-I cycle has been split into three sections. Each must complete stand alone tests prior to closed loop operation. CEA is responsible for the development, construction and operation of the Bunsen section where hydro-iodic acid and sulfuric acid are generated. After a general description of the loop and its objectives, a focus is made on the section provided by CEA, its design and the first tests performed in stand-alone mode. Reflexions on a preliminary scale up of major components for an industrial unit are also discussed. (authors)

  8. Epigenetics of complex diseases: from general theory to laboratory experiments.

    PubMed

    Schumacher, A; Petronis, A

    2006-01-01

    Despite significant effort, understanding the causes and mechanisms of complex non-Mendelian diseases remains a key challenge. Although numerous molecular genetic linkage and association studies have been conducted in order to explain the heritable predisposition to complex diseases, the resulting data are quite often inconsistent and even controversial. In a similar way, identification of environmental factors causal to a disease is difficult. In this article, a new interpretation of the paradigm of "genes plus environment" is presented in which the emphasis is shifted to epigenetic misregulation as a major etiopathogenic factor. Epigenetic mechanisms are consistent with various non-Mendelian irregularities of complex diseases, such as the existence of clinically indistinguishable sporadic and familial cases, sexual dimorphism, relatively late age of onset and peaks of susceptibility to some diseases, discordance of monozygotic twins and major fluctuations on the course of disease severity. It is also suggested that a substantial portion of phenotypic variance that traditionally has been attributed to environmental effects may result from stochastic epigenetic events in the cell. It is argued that epigenetic strategies, when applied in parallel with the traditional genetic ones, may significantly advance the discovery of etiopathogenic mechanisms of complex diseases. The second part of this chapter is dedicated to a review of laboratory methods for DNA methylation analysis, which may be useful in the study of complex diseases. In this context, epigenetic microarray technologies are emphasized, as it is evident that such technologies will significantly advance epigenetic analyses in complex diseases. PMID:16909908

  9. Laboratory and clinical experience with neodymium:YAG laser prostatectomy

    NASA Astrophysics Data System (ADS)

    Kabalin, John N.

    1996-05-01

    Since 1991, we have undertaken extensive laboratory and clinical studies of the Neodymium:YAG (Nd:YAG) laser for surgical treatment of bladder outlet obstruction due to prostatic enlargement or benign prostatic hyperplasia (BPH). Side-firing optical fibers which emit a divergent, relatively low energy density Nd:YAG laser beam produce coagulation necrosis of obstructing periurethral prostate tissue, followed by gradual dissolution and slough in the urinary stream. Laser-tissue interactions and Nd:YAG laser dosimetry for prostatectomy have been studied in canine and human prostate model systems, enhancing clinical application. Ongoing studies examine comparative Nd:YAG laser dosimetry for various beam configurations produced by available side-firing optical fibers and continue to refine operative technique. We have documented clinical outcomes of Nd:YAG laser prostatectomy in 230 consecutive patients treated with the UrolaseTM side-firing optical fiber. Nd:YAG laser coagulation the prostate produces a remarkably low acute morbidity profile, with no significant bleeding or fluid absorption. No postoperative incontinence has been produced. Serial assessments of voiding outcomes over more than 3 years of followup show objective and symptomatic improvement following Nd:YAG laser prostatectomy which is comparable to older but more morbid electrosurgical approaches. Nd:YAG laser prostatectomy is a safe, efficacious, durable and cost-effective treatment for BPH.

  10. Erosion processes in granular flows: insights from laboratory experiments

    NASA Astrophysics Data System (ADS)

    Farin, Maxime; Mangeney, Anne; Roche, Olivier

    2013-04-01

    Experimental granular column collapse were conducted over an inclined channel covered by an erodible bed of granular material in order to reproduce at laboratory scale erosion processes of natural flows propagating over deposits formed by earlier events. The studied control parameters were the slope angle, the aspect ratio (i.e. height over length), the volume and the shape of the granular column released, and the thickness and compaction of the erodible bed. The results show that erosion processes affect the flow runout distance over a critical slope angle ?c that depends on the column volume, aspect ratio, and shape. For slope higher than ?c, the granular avalanche excavates the erodible layer immediately at the flow front, behind which waves traveling downstream are observed and help entraining grains from the erodible bed. Erosion efficiency (i.e. maximal depth and duration of excavation, waves dimensions) is shown to increase as the slope angle and the column's volume increase. It is also dependent on the aspect ratio and on the nature of the erodible bed: the maximal excavation depth and the duration of the excavation decrease as the degree of compaction of the erodible granular bed increases. Erosion processes notably increase granular flows runout distance at inclinations close to the repose angle of the grains, in particular for columns of small aspect ratio. We demonstrate, however, that the flow runout distance observed on an erodible bed cannot be reproduced on a rough bed by simply adding the entrained volume of erodible bed to the initial column volume.

  11. An investigation of the effects of the common cold on simulated driving performance and detection of collisions: a laboratory study

    PubMed Central

    Jamson, Samantha

    2012-01-01

    Objective The aim of the present research was to investigate whether individuals with a common cold showed impaired ability on a simulated driving task and the ability to detect potential collisions between moving objects. Design The study involved comparison of a healthy group with a group with colds. These scores were adjusted for individual differences by collecting further data when both groups were healthy and using these scores as covariates. On both occasions, volunteers rated their symptoms and carried out a simulated driving session. On the first occasion, volunteers also carried out a collision detection task. Setting University of Leeds Institute for Transport Studies. Sample Twenty-five students from the University of Leeds. Ten volunteers were healthy on both occasions and 15 had a cold on the first session and were healthy on the second. Main outcome measures In the collision detection task, the main outcomes were correct detections and response to a secondary identification task. In the simulated driving task, the outcomes were speed, lateral control, gap acceptance, overtaking behaviour, car following, vigilance and traffic light violations. Results Those with a cold detected fewer collisions and had a higher divided attention error than those who were healthy. Many basic driving skills were unimpaired by the illness. However, those with a cold were slower at responding to unexpected events and spent a greater percentage of time driving at a headway of <2 s. Conclusions The finding that having a common cold is associated with reduced ability to detect collisions and respond quickly to unexpected events is of practical importance. Further research is now required to examine the efficacy of information campaigns and countermeasures such as caffeine. PMID:22761287

  12. Definition of experiments and instruments for a communication/navigation research laboratory. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This study was undertaken to develop conceptual designs for a manned, space shuttle sortie mission laboratory capable of supporting a wide variety of experiments in conjunction with communications and navigation research. This space/laboratory would be one in which man may effectively increase experiment efficiency by certain observations, modifications, setup, calibration, and limited maintenance steps. In addition, man may monitor experiment progress and perform preliminary data evaluation to verify proper equipment functioning and may terminate or redirect experiments to obtain the most desirable end results. The flexibility and unique capabilities of man as an experimenter in such a laboratory will add greatly to the simplification of space experiments and this provides the basis for commonality in many of the supportive subsystems, thus reaping the benefits of reusability and reduced experiment costs. For Vol. 4, see N73-19268.

  13. Subpicosecond compression experiments at Los Alamos National Laboratory

    SciTech Connect

    Carlsten, B.E.; Russell, S.J.; Kinross-Wright, J.M.

    1995-09-01

    The authors report on recent experiments using a magnetic chicane compressor at 8 MeV. Electron bunches at both low (0.1 nC) and high (1 nC) charges were compressed from 20 ps to less than 1 ps (FWHM). A transverse deflecting rf cavity was used to measure the bunch length at low charge; the bunch length at high charge was inferred from an induced energy spread of the beam. The longitudinal centrifugal-space charge force is calculated using a point-to-point numerical simulation and is shown not to influence the energy-spread measurement.

  14. Ferric sulfates on Mars: Surface Explorations and Laboratory Experiments

    NASA Astrophysics Data System (ADS)

    Wang, A.; Ling, Z.; Freeman, J. J.

    2008-12-01

    Recent results from missions to Mars have reinforced the importance of sulfates for Mars science. They are the hosts of water, the sinks of acidity, and maybe the most active species in the past and current surface/near-surface processes on Mars. Fe-sulfate was found frequently by Spirit and Opportunity rovers: jarosite in Meridiani Planum outcrops and a less specific "ferric sulfate" in the salty soils excavated by Spirit at Gusev Crater. Pancam spectral analysis suggests a variety of ferric sulfates in these soils, i.e. ferricopiapite, jarosite, fibroferrite, and rhomboclase. A change in the Pancam spectral features occurred in Tyrone soils after ~ 190 sols of exposure to surface conditions. Dehydration of ferric sulfate is a possible cause. We synthesized eight ferric sulfates and conducted a series of hydration/dehydration experiments. Our goal was to establish the stability fields and phase transition pathways of these ferric sulfates. In our experiments, water activity, temperature, and starting structure are the variables. No redox state change was observed. Acidic, neutral, and basic salts were used. Ferric sulfate sample containers were placed into relative humidity buffer solutions that maintain static relative humidity levels at three temperatures. The five starting phases were ferricopiapite (Fe4.67(SO4)6(OH)2.20H2O), kornelite (Fe2(SO4)3.7H2O), rhomboclase (FeH(SO4)2.4H2O), pentahydrite (Fe2(SO4)3.5H2O), and an amorphous phase (Fe2(SO4)3.5H2O). A total of one hundred fifty experiments have been running for nearly ten months. Thousands of coupled Raman and gravimetric measurements were made at intermediate steps to monitor the phase transitions. The first order discovery from these experiments is the extremely large stability field of ferricopiapite. Ferricopiapite is the major ferric sulfate to precipitate from a Fe3+-S-rich aqueous solution at mid-low temperature, and it has the highest H2O/Fe ratio (~ 4.3). However, unlike the Mg-sulfate with highest

  15. Reversibility and step processes: An experiment for the undergraduate laboratory

    NASA Astrophysics Data System (ADS)

    Gupta, V. K.; Shanker, Gauri; Sharma, N. K.

    1984-10-01

    An experiment with a spring is described to illustrate the fact that the irreversibility involved in a physical process in transforming the system from an initial state to a terminal state bears an inverse relationship to the number of discrete steps in which it is carried out, leading to the conclusion that the process becomes reversible as the number of steps tends to infinity. A similar relationship is shown to hold for processes like charging of a capacitor and compression of a perfect gas.

  16. Cleanup of a Department of Energy Nonreactor Nuclear Facility: Experience at the Los Alamos National Laboratory High Pressure Tritium Laboratory

    SciTech Connect

    Horak, H.L.

    1995-02-01

    On October 25, 1990, Los Alamos National Laboratory (LANL) ceased programmatic operations at the High Pressure Tritium Laboratory (HPTL). Since that time, LANL has been preparing the facility for transfer into the Department of Energy`s (DOE`s) Decontamination and Decommissioning Program. LANL staff now has considerable operational experience with the cleanup of a 40-year-old facility used exclusively to conduct experiments in the use of tritium, the radioactive isotope of hydrogen. Tritium and its compounds have permeated the HPTL structure and equipment, have affected operations and procedures, and now dominate efforts at cleanup and disposal. At the time of shutdown, the HPTL still had a tritium inventory of over 100 grams in a variety of forms and containers.

  17. Inclusive photon production at forward rapidities in pp collisions at LHC energies with the ALICE experiment

    NASA Astrophysics Data System (ADS)

    Sudipan De for the ALICE collaboration

    2016-04-01

    Measurements of multiplicity and pseudorapidity distributions of particles produced in pp collisions are important for the study of particle production mechanisms and to obtain baseline distributions to be compared with those from heavy-ion collisions. The inclusive photon measurements (dominated by π0 decays) are complementary to the charged particle measurements. The present work focuses on the forward rapidity region with comparisons to different models such as PYTHIA and PHOJET. We report the measurements of multiplicity and pseudorapidity distributions of inclusive photons using the ALICE Photon Multiplicity Detector (PMD) at forward rapidities (2.3 < η < 3.9) in pp collisions at = 0.9, 2.76 and 7 TeV. It is observed that the photon multiplicity distributions are well described by negative binomial distributions (NBD). Multiplicity distributions are studied in terms of KNO variables for each energy. It is shown that the increase in the average photon multiplicity as a function of beam energy is compatible with both a logarithmic and power law dependence. The results are compared to different model predictions. These models reproduce experimental results at lower energy while they are not accurate at higher energies.

  18. Toward a deeper understanding of how experiments constrain the underlying physics of heavy-ion collisions

    NASA Astrophysics Data System (ADS)

    Sangaline, Evan; Pratt, Scott

    2016-02-01

    Recent work has provided the means to rigorously determine properties of superhadronic matter from experimental data through the application of broad scale modeling of high-energy nuclear collisions within a Bayesian framework. These studies have provided unprecedented statistical inferences about the physics underlying nuclear collisions by virtue of simultaneously considering a wide range of model parameters and experimental observables. Notably, this approach has been used to constrain both the QCD equation of state and the shear viscosity above the quark-hadron transition. Although the inferences themselves have a clear meaning, the complex nature of the relationships between model parameters and observables has remained relatively obscure. We present here a novel extension of the standard Bayesian Markov-chain Monte Carlo approach that allows for the quantitative determination of how inferences of model parameters are driven by experimental measurements and their uncertainties. This technique is then applied in the context of heavy-ion collisions in order to explore previous results in greater depth. The resulting relationships are useful for identifying model weaknesses, prioritizing future experimental measurements, and, most importantly, developing an intuition for the roles that different observables play in constraining our understanding of the underlying physics.

  19. Laboratory: Undergraduate Laboratory Experiment Teaching Fundamental Concepts of Rheology in Context of Sickle Cell Anemia

    ERIC Educational Resources Information Center

    Vernengo, Jennifer; Purdy, Caitlin; Farrell, Stephanie

    2014-01-01

    This paper describes a biomedical engineering experiment that introduces students to rheology. Healthy and sickle-cell blood analogs are prepared that are composed of chitosan particles suspended in aqueous glycerol solutions, which substitute for RBCs and plasma, respectively. Students study flow properties of the blood analogs with a viscometer…

  20. Solvent-Free Wittig Reaction: A Green Organic Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Leung, Sam H.; Angel, Stephen A.

    2004-01-01

    Some Wittig reactions can be carried out by grinding the reactants in a mortar with a pestle for about 20 minutes, as per investigation. A laboratory experiment involving a solvent-free Wittig reaction that can be completed in a three-hour sophomore organic chemistry laboratory class period, are developed.

  1. Chemistry Laboratory--A Self-Paced Project Approach with Traditional Experiments.

    ERIC Educational Resources Information Center

    Faber, Gary C.; Martin, Elizabeth M.

    1983-01-01

    Citing problems with a traditional introductory chemistry laboratory program, discusses a two-semester, project-oriented laboratory program using traditional experiments. A series of slide/tape programs discussing/illustrating potentially difficult concepts and techniques is used to facilitate instruction. Includes list of topics covered in the…

  2. Investigating Affective Experiences in the Undergraduate Chemistry Laboratory: Students' Perceptions of Control and Responsibility

    ERIC Educational Resources Information Center

    Galloway, Kelli R.; Malakpa, Zoebedeh; Bretz, Stacey Lowery

    2016-01-01

    Meaningful learning requires the integration of cognitive and affective learning with the psychomotor, i.e., hands-on learning. The undergraduate chemistry laboratory is an ideal place for meaningful learning to occur. However, accurately characterizing students' affective experiences in the chemistry laboratory can be a very difficult task. While…

  3. The Synthesis of a Cockroach Pheromone: An Experiment for the Second-Year Organic Chemistry Laboratory

    ERIC Educational Resources Information Center

    Feist, Patty L.

    2008-01-01

    This experiment describes the synthesis of gentisyl quinone isovalerate, or blattellaquinone, a sex pheromone of the German cockroach that was isolated and identified in 2005. The synthesis is appropriate for the second semester of a second-year organic chemistry laboratory course. It can be completed in two, three-hour laboratory periods and uses…

  4. Seeking More Effective Outcomes from Science Laboratory Experiences (Grades 7-14): Six Companion Studies.

    ERIC Educational Resources Information Center

    Sutman, Frank X.; And Others

    The series of three sets of companion studies reported in this presentation addresses the need for seeking more effective outcomes from science laboratory experiences, which is indicated by conflicting outcomes of earlier reported research related to laboratory instruction at two different academic levels--grades 7-12 and beginning college. Four…

  5. An Analysis of High School Students' Perceptions and Academic Performance in Laboratory Experiences

    ERIC Educational Resources Information Center

    Mirchin, Robert Douglas

    2012-01-01

    This research study is an investigation of student-laboratory (i.e., lab) learning based on students' perceptions of experiences using questionnaire data and evidence of their science-laboratory performance based on paper-and-pencil assessments using Maryland-mandated criteria, Montgomery County Public Schools (MCPS) criteria, and published…

  6. Combustion and Energy Transfer Experiments: A Laboratory Model for Linking Core Concepts across the Science Curriculum

    ERIC Educational Resources Information Center

    Barreto, Jose C.; Dubetz, Terry A.; Schmidt, Diane L.; Isern, Sharon; Beatty, Thomas; Brown, David W.; Gillman, Edward; Alberte, Randall S.; Egiebor, Nosa O.

    2007-01-01

    Core concepts can be integrated throughout lower-division science and engineering courses by using a series of related, cross-referenced laboratory experiments. Starting with butane combustion in chemistry, the authors expanded the underlying core concepts of energy transfer into laboratories designed for biology, physics, and engineering. This…

  7. Using Laboratory Experiments and Circuit Simulation IT Tools in an Undergraduate Course in Analog Electronics

    ERIC Educational Resources Information Center

    Baltzis, Konstantinos B.; Koukias, Konstantinos D.

    2009-01-01

    Laboratory-based courses play a significant role in engineering education. Given the role of electronics in engineering and technology, laboratory experiments and circuit simulation IT tools are used in their teaching in several academic institutions. This paper discusses the characteristics and benefits of both methods. The content and structure…

  8. The Heat of Protonation of Pyridine and Chloro Substituted Pyridines: A Physical Chemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Smith, Robert L.; Pinnick, H. R., Jr.

    1980-01-01

    Describes a physical chemistry laboratory experiment that illustrates the concepts of inductive and resonance effects by the calorimetric determination of the heats of protonation of pyridine, 2-chloropyridine, and 3-chloropyridine. (CS)

  9. An Experiment Using Sucrose Density Gradients in the Undergraduate Biochemistry Laboratory.

    ERIC Educational Resources Information Center

    Turchi, Sandra L.; Weiss, Monica

    1988-01-01

    Describes an experiment to be performed in an undergraduate biochemistry laboratory that is based on a gradient centrifugation system employing a simple bench top centrifuge, a freezer, and frozen surcose gradient solution to separate macromolecules and subcellular components. (CW)

  10. The Synthesis and Proton NMR Spectrum of Methyl 7-Cycloheptatrienylacetate: An Advanced Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Jurch, G. R., Jr.; And Others

    1980-01-01

    Describes an advanced undergraduate laboratory experiment designed to give the senior chemistry student an opportunity to apply several synthetic and purification techniques as well as possibilities for the application of NMR spectroscopy. (CS)

  11. The Quartz-Crystal Microbalance in an Undergraduate Laboratory Experiment: I. Fundamentals and Instrumentation

    ERIC Educational Resources Information Center

    Tsionsky, Vladimir

    2007-01-01

    The fundamentals, as well as the instrumentation of the quartz-crystal microbalance (QCM) technique that is used in an undergraduate laboratory experiment are being described. The QCM response can be easily used to change the properties of any system.

  12. Determination of Rate Constants for Ouabain Inhibition of Adenosine Triphosphatase: An Undergraduate Biological Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Sall, Eri; And Others

    1978-01-01

    Describes an undergraduate biological chemistry laboratory experiment which provides students with an example of pseudo-first-order kinetics with the cardiac glycoside inhibition of mammalism sodium and potassium transport. (SL)

  13. Imidazole as a pH Probe: An NMR Experiment for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Hagan, William J., Jr.; Edie, Dennis L.; Cooley, Linda B.

    2007-01-01

    The analysis describes an NMR experiment for the general chemistry laboratory, which employs an unknown imidazole solution to measure the pH values. The described mechanism can also be used for measuring the acidity within the isolated cells.

  14. Screening for Saponins Using the Blood Hemolysis Test. An Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Sotheeswaran, Subramaniam

    1988-01-01

    Describes an experiment for undergraduate chemistry laboratories involving a chemical found in plants and some sea animals. Discusses collection and identification of material, a hemolysis test, preparation of blood-coated agar plates, and application of samples. (CW)

  15. Real-time laboratory exercises to test contingency plans for classical swine fever: experiences from two national laboratories.

    PubMed

    Koenen, F; Uttenthal, A; Meindl-Böhmer, A

    2007-12-01

    In order to adequately and efficiently handle outbreaks of contagious diseases such as classical swine fever (CSF), foot and mouth disease or highly pathogenic avian influenza, competent authorities and the laboratories involved have to be well prepared and must be in possession of functioning contingency plans. These plans should ensure that in the event of an outbreak access to facilities, equipment, resources, trained personnel, and all other facilities needed for the rapid and efficient eradication of the outbreak is guaranteed, and that the procedures to follow are well rehearsed. It is essential that these plans are established during 'peace-time' and are reviewed regularly. This paper provides suggestions on how to perform laboratory exercises to test preparedness and describes the experiences of two national reference laboratories for CSF. The major lesson learnt was the importance of a well-documented laboratory contingency plan. The major pitfalls encountered were shortage of space, difficulties in guaranteeing biosecurity and sufficient supplies of sterile equipment and consumables. The need for a standardised laboratory information management system, that is used by all those involved in order to reduce the administrative load, is also discussed. PMID:18293611

  16. Geochemistry of shale groundwaters: Results of preliminary laboratory leaching experiments

    SciTech Connect

    Von Damm, K.L.; Johnson, K.O.

    1987-09-01

    Twelve shales were reacted with distilled water at 20/sup 0/C and 100/sup 0/C; the composition of the waters and the mineralogy were determined before and after reaction. The experiments were conducted in a batch mode over a period of approximately 40 days. Major changes occurred in the solution chemistry; in most cases sulfate became the dominant anion while either sodium or calcium was the major cation. The high sulfate is most likely a result of the oxidation of pyrite in the samples. In the 100/sup 0/C experiments some of the solutions became quite acidic. Examination of the observed mineralogy and comparison to the mineral assemblage calculated to be in equilibrium with the experimentally determined waters, suggests that the acidic waters are generated when no carbonate minerals remain to buffer the groundwaters to a more neutral pH. The pH of shale waters will be determined by the balance between the oxidation of pyrite and organic matter and the dissolution of carbonate minerals. The experimental data are helping to elucidate the chemical reactions that control the pH of shale groundwaters, a critical parameter in determining other water-rock and waste-water-rock interactions and ultimate solute mobility. An experimental approach also provides a means of obtaining data for shales for which no groundwater data are available as well as data on chemical species which are not usually determined or reported.

  17. Evaporation of J13 water: laboratory experiments and geochemical modeling

    SciTech Connect

    Dibley, M.J.; Knauss, K.G.; Rosenberg, N.D.

    1999-08-11

    We report results from experiments on the evaporative chemical evolution of synthetic J13 water, representative of water from well J13, a common reference water in the Yucca Mountain Project. Data include anion and cation analysis and qualitative mineral identification for a series of open system experiments, with and without crushed tuff present, conducted at sub-boiling temperatures. Ca and Mg precipitated readily as carbonates and anions Cl, F, NO{sub 3} and SO{sub 4} remained in solution in nearly identical ratios. The pH stabilized at about 10. After {approx} 1000x concentration, the minerals formed were amorphous silica, aragonite and calcite. The presence of tuff appears to have very little effect on the relative distribution of the anions in solution, except for possibly F, which had a relatively lower concentration ratio. The Si was lower in the solutions with tuff present suggesting that the tuff enhances SiO{sub 2} precipitation. Even though the tools to model highly-concentrated salt solutions are limited, we compare our experimental results with the results of geochemical models, with (perhaps) surprising good results. In response to different assumed CO{sub 2} levels, pH varied, but anion concentrations were not greatly affected.

  18. EM techniques for archaeological laboratory experiments: preliminary results

    NASA Astrophysics Data System (ADS)

    Capozzoli, Luigi; De Martino, Gregory; Giampaolo, Valeria; Raffaele, Luongo; Perciante, Felice; Rizzo, Enzo

    2015-04-01

    The electromagnetic techniques (EM) are based on the investigation of subsoil geophysical parameters and in the archaeological framework they involve in studying contrasts between the buried cultural structures and the surrounding materials. Unfortunately, the geophysical contrast between archaeological features and surrounding soils sometimes are difficult to define due to problems of sensitivity and resolution both related on the characteristic of the subsoil and the geophysical methods. For this reason an experimental activity has been performed in the Hydrogeosite laboratory addressed on the assessment of the capability of geophysical techniques to detect archeological remains placed in the humid/saturated subsoil. At Hydrogeosite Laboratory of CNR-IMAA, a large scale sand-box is located, consisting on a pool shape structures of 230m3 where archaeological remains have been installed . The remains are relative to a living environment and burial of Roman times (walls, tombs, roads, harbour, etc.) covered by sediments. In order to simulate lacustrine and wetland condition and to simulate extreme events (for example underwater landslide, fast natural erosion coast, etc.) the phreatic level was varied and various acquisitions for the different scenarios were performed. In order to analyze the EM behavior of the buried small archaeological framework, ground penetrating radar (GPR) and electrical resistivity tomographies were performed. With GPR, analysis in time domain and frequency domain were performed and coupled to information obtained through resistivity analysis with the support of numerical simulations used to compare the real data with those modeled. A dense grid was adopted for 400 and 900 MHz e-m acquisitions in both the directions, the maximum depth of investigation was limited and less than 3 meters. The same approach was used for ERT acquisition where different array are employed, in particular 3D configuration was used to carry out a 3D resistivity

  19. Blast Wave Driven Instabilities In Laboratory Astrophysics Experiments

    NASA Astrophysics Data System (ADS)

    Kuranz, Carolyn; Drake, R.; Grosskopf, M.; Robey, H.; Hansen, J.; Miles, A.; Knauer, J.; Arnett, D.; Plewa, T.; Hearn, N.; Meakin, C.

    2008-05-01

    This presentation discusses experiments well scaled to the blast wave driven instabilities at the He/H interface during the explosion phase of SN1987A. This core-collapse supernova was detected about 50 kpc from Earth making it the first supernova observed so closely to earth in modern times. The progenitor star was a blue supergiant with a mass of 18-20 solar masses. A blast wave occurred following the supernova explosion because there was a sudden, finite release of energy. Blast waves consist of a shock front followed by a rarefaction wave. When a blast wave crosses an interface with a decrease in density, hydrodynamic instabilities will develop. These experiments include target materials scaled in density to the He/H layer in SN1987A. About 5 kJ of laser energy from the Omega Laser facility irradiates a 150 µm plastic layer that is followed by a low-density foam layer. A blast wave structure similar to those in supernovae is created in the plastic layer. The blast wave crosses a three-dimensional interface with a wavelength of 71 µm in two orthogonal directions. This produces unstable growth dominated by the Rayleigh-Taylor (RT) instability. We have detected the interface structure under these conditions, using dual orthogonal radiography, and will show some of the resulting data. Recent advancements in our x-ray backlighting techniques have greatly improved the resolution of our x-ray radiographic images. Under certain conditions, the improved images show some mass extending beyond the RT spike and penetrating further than previously observed. Current simulations do not show this phenomenon. This presentation will discuss the amount of mass in these spike extensions. Recent results from an experiment using more realistic initial conditions based on stellar evolution models will also be shown. This research was sponsored by the Stewardship Science Academic Alliance through DOE Research Grants DE-FG52-07NA28058, DE-FG52-04NA00064.

  20. Subpicosecond Compression Experiments at Los Alamos National Laboratory

    SciTech Connect

    Carlsten, B.E.; Feldman, D.W.; Kinross-Wright, J.M.; Milder, M.L.; Russell, S.J.; Plato, J.G.; Sherwood, B.A.; Weber, M.E.; Cooper, R.G.; Sturges, R.E.

    1996-04-01

    We report on recent experiments using a magnetic chicane compressor at 8 MeV. Electron bunches at both low (0.1 nC) and high (1 nC) charges were compressed from 10{endash}15 ps to less than 1 ps (FWHM). A transverse deflecting rf cavity was used to measure the bunch length at low charge; the bunch length at high charge was inferred from the induced energy spread of the beam. The longitudinal centrifugal space-charge force [{ital Phys}. {ital Rev}. {ital E} {bold 51}, 1453 (1995)] is calculated using a point-to-point numerical simulation and is shown not to influence the energy-spread measurement. {copyright} {ital 1996 American Institute of Physics.}

  1. Search for relativistic electrons in laboratory discharge experiments

    NASA Astrophysics Data System (ADS)

    Ostgaard, Nikolai; Carlson, Brant E.; Grøndahl, Øystein; Kochkin, Pavlo; Nisi, Ragnhild S.; Gjesteland, Thomas

    2015-04-01

    Discharge experiments were carried out at the Technical University of Eindhoven in 2013. The experimental set-up was designed to search for electrons produced in meter-scale sparks using a 1 MV Marx generator. Negative voltage was applied to the HV electrode. Five thin (1 mm) plastic detectors (5 cm2 each) were distributed in various configurations close to the spark gap. Earlier studies have shown (for HV negative) that X-rays are produced when a cloud of streamers has developed 30-60 cm from the negative electrode. This indicates that the electrons producing the X-rays are also accelerated in this location, probably in the strong electric field from countestreaming streamers of opposite polarity. Comparing our measurements with modeling results we find that 200-400 keV electrons produced about 30-60 cm from the negative electrode is the most likely source of our measurements.

  2. The Los Alamos National Laboratory source geometry experiment

    SciTech Connect

    Stump, B.W.; Pearson, D.C.; Edwards, C.L.; Baker, D.F.

    1995-09-01

    The Source Geometry Experiment was successfully conducted over the time period 17 April to 7 May 95. Recording in the mine was conducted 24 April to 4 May 95. Five single sources were instrumented that included four cylindrical charges at different burdens (distance from the free face) and a pseudo-spherical charge. Nine production shots conducted during the two week visit to the mine were also recorded. Included in these production shots were a number of explosions designed to primarily bulk (no cast) the overburden and a number which cast material into the mine pit. Instrumentation was divided into six primary types: (1) Near-source accelerometers were deployed at distances of approximately 20 to 300 m [14, three-component 25 g/volt accelerometers and 16, three-component 1 g/volt accelerometers]; (2) Linear array of velocity gauges to quantify wave propagation effects [4-11 three component strong motion velocity gauges]; (3)Far-field velocity gages deployed in an azimuthal array around the mine at ranges from 500 to 2500 m [8, three component velocity gauges]; (4) High speed film and multiple camera video designed to quantify the two and three dimensional affects around the explosions [2 high speed cameras and 3 Hi-8 video cameras]; (5) Velocity of detonation and detonation time measurements of selected explosions [2 VODR systems]; and (6) Pre and post shot laser survey. Any one shot had as many as 154 channels of data. Although the complete data set is still being assembled, quality checked and analyzed, it appears that nearly 2,000 channels of data were successfully recovered during the experiment. Preliminary analysis of the data illustrates the: (1) Significant spall accompanied both the cylindrical and spherical single sources; (2) Similarity of waveforms from the cylindrical and spherical single sources; (3) Strong variations in the body and surface wave generation from the nine production shot.

  3. Laboratory Experiments on Core Merging and Stratification After Giant Impacts

    NASA Astrophysics Data System (ADS)

    Landeau, M.; Olson, P.; Deguen, R.; Hirsh, B.

    2015-12-01

    The fluid dynamics of core merging after giant impacts in the late stages of accretion provides constraints on metal-silicate equilibration, core stratification, and early magnetic field generation. The energy released during giant impacts, such as those thought to have formed Earth's Moon and the crustal dichotomy on Mars, likely resulted in melting of the impactor and much or all of the protoplanet's mantle. Under these conditions, the liquid core of the impactor migrates through a fully-liquid magma ocean, and merges with the protoplanet's core. Unlike the laminar flow in numerical simulations, liquid impact experiments can produce turbulence, as expected during core formation. We present experiments on liquid blobs of variable density released into another liquid consisting of two immiscible layers, representing the magma ocean and protocore, respectively. The released liquid is denser than the upper layer, immiscible in the upper layer, and miscible in the lower layer. With a shallow upper layer, the relevant regime for giant impacts, a turbulent cloud of released and upper liquids penetrates into the lower layer, collapses and spreads along the interface between the upper and lower layers. This behavior contrasts with the laminar core merging observed in impact simulations or the classical iron rain scenario, and suggests that metal-silicate chemical equilibration extends inside the protocore. Experimental scalings for low-density releases predict that compositional stratification of the core is likely in the aftermath of planet formation, and the stratified layer detected by seismology at the top of Earth's core is compatible with a moon-forming impact. By implication, the early core dynamo had to overcome compositional stratification to initiate.

  4. Closing the loop on improvement: Packaging experience in the Software Engineering Laboratory

    NASA Technical Reports Server (NTRS)

    Waligora, Sharon R.; Landis, Linda C.; Doland, Jerry T.

    1994-01-01

    As part of its award-winning software process improvement program, the Software Engineering Laboratory (SEL) has developed an effective method for packaging organizational best practices based on real project experience into useful handbooks and training courses. This paper shares the SEL's experience over the past 12 years creating and updating software process handbooks and training courses. It provides cost models and guidelines for successful experience packaging derived from SEL experience.

  5. Researches on interactions of satellite-speed helium atoms with aluminum and quartz surfaces. [atomic collisions with aluminum skin (structural member) of satellites (laboratory study)

    NASA Technical Reports Server (NTRS)

    Liu, S. M.; Knuth, E. L.

    1976-01-01

    Three major areas were experimentally studied: (1) energy transfer in collisions of satellite-speed (700 m/sec) helium atoms with a cleaned satellite-type aluminum surface was investigated using the molecular-beam technique. Spatial and energy distributions of reflected helium atoms were measured and analyzed, (2) The gross accommodation coefficient for a satellite-speed (7000 m/sec) helium beam entering a 2-inch-diameter aluminum spherical cavity was determined by measuring the exit velocity distribution of the leaving helium atoms using a metastable time-of-flight method. Results indicate that the 7000-m/sec satellite-speed helium atoms entering the cavity gain full accommodation with the room-temperature inner surface of the sphere through a large number of collisions before leaving the spherical cavity; and (3) the feasibility of producing a satellite-speed atomic hydrogen beam by arc-heating, for use in studies of interactions of satellite-surfaces with hydrogen atoms under laboratory conditions, was investigated. It was found that a stable arc-heated molecular hydrogen beam can be obtained using the arc-heater, and that a partially dissociated hydrogen beam can be produced. Photographs of laboratory equipment are shown.

  6. Phosphatidylcholine from "Healthful" Egg Yolk Varieties: An Organic Laboratory Experience

    NASA Astrophysics Data System (ADS)

    Hodges, Linda C.

    1995-12-01

    I have added an investigative element to a popular undergraduate experiment. the characterization of phosphatidylcholine (PC) from egg yolks. Varieties of eggs are commercially available which have been obtained from chickens fed a diet containing no animal fat. Presumably, less saturated fat in the diet of the chickens could be reflected in the fatty acid composition of various classes of biological lipids, including phospholipids, in the eggs from these chickens. PC is extracted using conventional methods, the extract is further purified by chromatography on silicic acid, and the column fractions are assayed for the presence and purity of PC by TLC. Fractions containing pure PC are pooled, concentrated, hydrolyzed, and esterified to obtain the fatty acid methyl esters (FAME) which are identified by GLC. Comparing FAMEs derived from PC of yolks of regular eggs to those obtained from the other special brands adds a novel twist to the students' work and generates greater student interest and involvement in both the interpretation of data than a simple isolation of a biological compound alone evokes.

  7. Tailored blast wave formation: Developing experiments pertinent to laboratory astrophysics

    NASA Astrophysics Data System (ADS)

    Moore, Alastair S.; Symes, Daniel R.; Smith, Roland A.

    2005-05-01

    The first production of ``tailored'' blast waves in a cluster media using an intense, 2×1016 W cm-2, laser pulse is reported. This new technique produces cylindrical blast waves with a strong axial modulation of variable spatial frequency as a seed for instability growth. Spherical or cylindrical colliding blast waves can also be produced. Energy deposition in the cluster medium was modified using moderate-power (<1015 W cm-2) ``laser-machining,'' which destroyed clusters in selected regions while keeping the atomic density constant. Electron density profiles track the time evolution showing the production of strongly modulated blast waves and the development of a thin shell after ~6 ns in H2. Similarity parameters suggest that the hydrogen results are hydrodynamically scalable, but instabilities are precluded by the lack of radiation and low Reynolds number. Similar argon and xenon experiments do not form blast waves on the studied time scale, but indicate that radiation might become influential later in the evolution.

  8. Tailored blast wave formation: Developing experiments pertinent to laboratory astrophysics

    SciTech Connect

    Moore, Alastair S.; Symes, Daniel R.; Smith, Roland A.

    2005-05-15

    The first production of 'tailored' blast waves in a cluster media using an intense, 2x10{sup 16} W cm{sup -2}, laser pulse is reported. This new technique produces cylindrical blast waves with a strong axial modulation of variable spatial frequency as a seed for instability growth. Spherical or cylindrical colliding blast waves can also be produced. Energy deposition in the cluster medium was modified using moderate-power (<10{sup 15} W cm{sup -2}) 'laser-machining', which destroyed clusters in selected regions while keeping the atomic density constant. Electron density profiles track the time evolution showing the production of strongly modulated blast waves and the development of a thin shell after {approx_equal}6 ns in H{sub 2}. Similarity parameters suggest that the hydrogen results are hydrodynamically scalable, but instabilities are precluded by the lack of radiation and low Reynolds number. Similar argon and xenon experiments do not form blast waves on the studied time scale, but indicate that radiation might become influential later in the evolution.

  9. Anti-Collision Function Design and Performances of the CNES Formation Flying Experiment on the PRISMA Mission

    NASA Technical Reports Server (NTRS)

    Cayeux, P.; Raballand, F.; Borde, J.; Berges, J.-C.; Meyssignac, B.

    2007-01-01

    Within the framework of a partnership agreement, EADS ASTRIUM has worked since June 2006 for the CNES formation flying experiment on the PRISMA mission. EADS ASTRIUM is responsible for the anti-collision function. This responsibility covers the design and the development of the function as a Matlab/Simulink library, as well as its functional validation and performance assessment. PRISMA is a technology in-orbit testbed mission from the Swedish National Space Board, mainly devoted to formation flying demonstration. PRISMA is made of two micro-satellites that will be launched in 2009 on a quasi-circular SSO at about 700 km of altitude. The CNES FFIORD experiment embedded on PRISMA aims at flight validating an FFRF sensor designed for formation control, and assessing its performances, in preparation to future formation flying missions such as Simbol X; FFIORD aims as well at validating various typical autonomous rendezvous and formation guidance and control algorithms. This paper presents the principles of the collision avoidance function developed by EADS ASTRIUM for FFIORD; three kinds of maneuvers were implemented and are presented in this paper with their performances.

  10. Integrated verification experiment data collected as part of the Los Alamos National Laboratory`s Source Region program. Appendix F: Regional data from Lawrence Livermore National Laboratory and Sandia National Laboratory Seismic Networks

    SciTech Connect

    Taylor, S.R.

    1993-06-11

    A dataset of regional seismograms assembled for a series of Integrated Verification Experiments conducted by the Los Alamos National Laboratory Source Region program is described. The seismic data has been assembled from networks operated by Lawrence Livermore National Laboratory and Sandia National Laboratory. Examples of the data are shown and basic recording characteristics of the network are described. The seismograms are available on a data tape in SAC format upon request.

  11. Oscillating load-induced acoustic emission in laboratory experiment

    USGS Publications Warehouse

    Ponomarev, Alexander; Lockner, David A.; Stroganova, S.; Stanchits, S.; Smirnov, V.

    2010-01-01

    Spatial and temporal patterns of acoustic emission (AE) were studied. A pre-fractured cylinder of granite was loaded in a triaxial machine at 160 MPa confining pressure until stick-slip events occurred. The experiments were conducted at a constant strain rate of 10−7 s−1 that was modulated by small-amplitude sinusoidal oscillations with periods of 175 and 570 seconds. Amplitude of the oscillations was a few percent of the total load and was intended to simulate periodic loading observed in nature (e.g., earth tides or other sources). An ultrasonic acquisition system with 13 piezosensors recorded acoustic emissions that were generated during deformation of the sample. We observed a correlation between AE response and sinusoidal loading. The effect was more pronounced for higher frequency of the modulating force. A time-space spectral analysis for a “point” process was used to investigate details of the periodic AE components. The main result of the study was the correlation of oscillations of acoustic activity synchronized with the applied oscillating load. The intensity of the correlated AE activity was most pronounced in the “aftershock” sequences that followed large-amplitude AE events. We suggest that this is due to the higher strain-sensitivity of the failure area when the sample is in a transient, unstable mode. We also found that the synchronization of AE activity with the oscillating external load nearly disappeared in the period immediately after the stick-slip events and gradually recovered with further loading.

  12. FLARE (Facility for Laboratory Reconnection Experiments): A Major Next-Step for Laboratory Studies of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ji, Hantao; Bhattacharjee, A.; Prager, S.; Daughton, W.; Bale, Stuart D.; Carter, T.; Crocker, N.; Drake, J.; Egedal, J.; Sarff, J.; Fox, W.; Jara-Almonte, J.; Myers, C.; Ren, Y.; Yamada, M.; Yoo, J.

    2015-04-01

    A new intermediate-scale plasma experiment, called the Facility for Laboratory Reconnection Experiments or FLARE (flare.pppl.gov), is under construction at Princeton as a joint project by five universities and two national labs to study magnetic reconnection in regimes directly relevant to heliophysical and astrophysical plasmas. The currently existing small-scale experiments have been focusing on the single X-line reconnection process in plasmas either with small effective sizes or at low Lundquist numbers, both of which are typically very large in natural plasmas. These new regimes involve multiple X-lines as guided by a reconnection "phase diagram", in which different coupling mechanisms from the global system scale to the local dissipation scale are classified into different reconnection phases [H. Ji & W. Daughton, Phys. Plasmas 18, 111207 (2011)]. The design of the FLARE device is based on the existing Magnetic Reconnection Experiment (MRX) (mrx.pppl.gov) and is to provide experimental access to the new phases involving multiple X-lines at large effective sizes and high Lundquist numbers, directly relevant to magnetospheric, solar wind, and solar coronal plasmas. After a brief summary of recent laboratory results on the topic of magnetic reconnection, the motivating major physics questions, the construction status, and the planned collaborative research especially with heliophysics communities will be discussed.

  13. Nature in the laboratory--nature as a laboratory. Considerations about the ethics of release experiments.

    PubMed

    Rehmann-Sutter, C

    1993-03-15

    Field tests with genetically modified organisms go beyond the boundaries of the politically and morally neutralized space that normally surrounds scientific experiments. They enter public areas. As a social process of shaping nature they are political in a fundamental sense. Consequences of this observation concern the legitimacy of decisions and the legitimacy of deciding procedures. The political rights of citizens and their human rights can only be respected if these procedures are democratic. Without a more serious exploration of the specific circumstances of release tests--for example, the precise ecological context, the consequences for the future development of the affected ecosystem, the social consequences, and the possible institutional ways of establishing gene technology in agriculture--we do not really know what we are doing when we release transgenic organisms. Moral judgements today can therefore only be prima facie, not free from shortcomings. As responsible judges we must confess that we are still morally blind. PMID:8458405

  14. In-house experiments in large space structures at the Air Force Wright Aeronautical Laboratories Flight Dynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Gordon, Robert W.; Ozguner, Umit; Yurkovich, Steven

    1989-01-01

    The Flight Dynamics Laboratory is committed to an in-house, experimental investigation of several technical areas critical to the dynamic performance of future Air Force large space structures. The advanced beam experiment was successfully completed and provided much experience in the implementation of active control approaches on real hardware. A series of experiments is under way in evaluating ground test methods on the 12 meter trusses with significant passive damping. Ground simulated zero-g response data from the undamped truss will be compared directly with true zero-g flight test data. The performance of several leading active control approaches will be measured and compared on one of the trusses in the presence of significant passive damping. In the future, the PACOSS dynamic test article will be set up as a test bed for the evaluation of system identification and control techniques on a complex, representative structure with high modal density and significant passive damping.

  15. FLARE (Facility for Laboratory Reconnection Experiments): A Major Next-Step for Laboratory Studies of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Bale, S.; Carter, T.; Crocker, N.; Drake, J.; Egedal, J.; Wallace, J.; Belova, E.; Ellis, R.; Fox, W.; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C.; Que, W.; Ren, Y.; Titus, P.; Yamada, M.; Yoo, J.; Daughton, W.

    2014-10-01

    A new intermediate-scale plasma experiment, called the Facility for Laboratory Reconnection Experiments or FLARE, is under construction at Princeton as a joint project by five universities and two national labs to study magnetic reconnection in regimes directly relevant to space, solar, astrophysical, and fusion plasmas. The currently existing small-scale experiments have been focusing on the single X-line reconnection process in plasmas either with small effective sizes or at low Lundquist numbers, but both of which are typically very large in natural and fusion plasmas. The design of the FLARE device is motivated to provide experimental access to the new regimes involving multiple X-lines at large effective sizes and high Lundquist numbers. The motivating major physics questions, the construction status, and the planned collaborative research will be discussed.

  16. Electron impact collision strengths in Ne VII

    SciTech Connect

    Di, L.; Shi, J.R.; Zhao, G.

    2012-07-15

    The lines of Ne VII have been observed in many astronomical objects, and some transitions from high energy levels were observed both in Seyfert galaxies and stellar coronae. Thus, the atomic data for these transitions are important for modeling. Using the code FAC we calculated the collision strengths based on the distorted-wave method with large configuration interactions included. The Maxwellian averaged effective collision strengths covering the typical temperature range of astronomical and laboratory hot plasmas are presented. We extend the calculation of the energy levels to n=4 and 5. The energy levels, wavelengths, spontaneous transition rates, weighted oscillator strengths, and effective collision strengths were reported. Compared with the results from experiment or previous theoretical calculations a general agreement is found. It is found that the resonance effects are important in calculating the effective collision strengths.

  17. Appropriate solid-body models as initial conditions for SPH-based numerical collision experiments

    NASA Astrophysics Data System (ADS)

    Burger, C.; Maindl, T. I.; Dvorak, R.; Schäfer, C.; Speith, R.

    2016-02-01

    Providing the simulation algorithm with suitable initial conditions is a crucial first step in almost all numerical computations, except for the most trivial cases. Even the most sophisticated simulation program will not produce meaningful results if not started with an appropriate initial configuration, satisfying demands like isotropy, a low level of noise and physical accuracy. Some of these requirements are unique to Smoothed Particle Hydrodynamics (SPH) - the numerical method considered here - others are of fundamental relevance, independent of the chosen numerical technique. The main focus of this work lies on considerations concerning initial conditions for subsequent SPH simulation runs. The geometrical arrangement of an initial SPH particle setup is discussed, particularly w.r.t. regular lattice configurations and associated symmetry effects. In order to avoid unphysical behavior the initial particle configuration has to be in a relaxed (i.e. equilibrated) state where necessary. This is of particular importance for simulations of giant collisions, where the involved bodies naturally exhibit a hydrostatic internal structure. Beyond the common numerical procedure, a semi-analytical approach for relaxation is introduced and validated, practically eliminating the need for spending significant amounts of valuable computing time solely for the production of a relaxed initial state in a lot of situations. Finally the basic relevance of relaxation itself is studied, focusing on collision simulations in different mass ranges important in the context of planet formation and the transport of water.

  18. Connecting Solubility, Equilibrium, and Periodicity in a Green, Inquiry Experiment for the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Cacciatore, Kristen L.; Amado, Jose; Evans, Jason J.; Sevian, Hannah

    2008-01-01

    We present a novel first-year chemistry laboratory experiment that connects solubility, equilibrium, and chemical periodicity concepts. It employs a unique format that asks students to replicate experiments described in different sample lab reports, each lacking some essential information, rather than follow a scripted procedure. This structure is…

  19. Linking Laboratory Experiences to the Real World: The Extraction of Octylphenoxyacetic Acid from Water

    ERIC Educational Resources Information Center

    Loyo-Rosales, Jorge E.; Torrents, Alba; Rosales-Rivera, Georgina C.; Rice, Clifford C.

    2006-01-01

    Several chemical concepts to the extraction of a water pollutant OPC (octylphenoxyacetic acid) is presented. As an introduction to the laboratory experiment, a discussion on endocrine disrupters is conducted to familiarize the student with the background of the experiment and to explain the need for the extraction and quantitation of the OPC which…

  20. Size Exclusion Chromatography: An Experiment for High School and Community College Chemistry and Biotechnology Laboratory Programs

    ERIC Educational Resources Information Center

    Brunauer, Linda S.; Davis, Kathryn K.

    2008-01-01

    A simple multiday laboratory exercise suitable for use in a high school or community college chemistry course or a biotechnology advanced placement biology course is described. In this experiment students gain experience in the use of column chromatography as a tool for the separation and characterization of biomolecules, thus expanding their…

  1. What's New in the Launching of Start-Ups? Features and Implications of Laboratory Experiments

    ERIC Educational Resources Information Center

    Matricano, Diego

    2009-01-01

    This article responds to "Laboratory experiments as a tool in the empirical economic analysis of high-expectation start-ups" by Martin Curley and Piero Formica, published in the December 2008 issue of "Industry and Higher Education." The exploitation of knowledge and experience is increasingly important to companies operating in the globalized…

  2. BASIC and the Density of Glass. A First-Year Laboratory/Computer Experiment.

    ERIC Educational Resources Information Center

    Harris, Arlo D.

    1986-01-01

    Describes a first-year chemistry laboratory experiment which uses a simple computer program written in BASIC, to analyze data collected by students about the density of a set of marbles. A listing of the program is provided, along with a sample printout of the experiment's results. (TW)

  3. Advanced Undergraduate-Laboratory Experiment on Electron Spin Resonance in Single-Crystal Ruby

    ERIC Educational Resources Information Center

    Collins, Lee A.; And Others

    1974-01-01

    An electron-spin-resonance experiment which has been successfully performed in an advanced undergraduate physics laboratory is described. A discussion of that part of the theory of magnetic resonance necessary for the understanding of the experiment is also provided in this article. (DT)

  4. An Enzymatic Clinical Chemistry Laboratory Experiment Incorporating an Introduction to Mathematical Method Comparison Techniques

    ERIC Educational Resources Information Center

    Duxbury, Mark

    2004-01-01

    An enzymatic laboratory experiment based on the analysis of serum is described that is suitable for students of clinical chemistry. The experiment incorporates an introduction to mathematical method-comparison techniques in which three different clinical glucose analysis methods are compared using linear regression and Bland-Altman difference…

  5. Laboratory Experiments on the Electrochemical Remediation of the Environment. Part 8. Microscale Simultaneous Photocatalysis

    ERIC Educational Resources Information Center

    Ibanez, Jorge G.; Mena-Brito, Rodrigo; Fregoso-Infante, Arturo

    2005-01-01

    A microscale experiment in which the simultaneous oxidation of an organic compound and the reduction of a metal ion are photocatalytically performed in an aqueous slurry containing TiO[subscript 2] irradiated with UV light. This experiment can be performed in the laboratory session with simple chemicals and equipments.

  6. Virtualisation of Engineering Discipline Experiments for an Internet-Based Remote Laboratory

    ERIC Educational Resources Information Center

    Tiwari, Rajiv; Singh, Khilawan

    2011-01-01

    A comprehensive survey on the Internet based virtualisation of experiments is presented, covering several individual as well as collaborative efforts in various engineering disciplines. From this survey it could be concluded that there is a pressing need to develop full-fledged remote laboratory experiments for integrated directly into engineering…

  7. Cross-Disciplinary Thermoregulation and Sweat Analysis Laboratory Experiences for Undergraduate Chemistry and Exercise Science Students

    ERIC Educational Resources Information Center

    Mulligan, Gregory; Taylor, Nichole; Glen, Mary; Tomlin, Dona; Gaul, Catherine A.

    2011-01-01

    Cross-disciplinary (CD) learning experiences benefit student understanding of concepts and curriculum by offering opportunities to explore topics from the perspectives of alternate fields of study. This report involves a qualitative evaluation of CD health sciences undergraduate laboratory experiences in which concepts and students from two…

  8. Annotated List of Chemistry Laboratory Experiments with Computer Access. Final Report.

    ERIC Educational Resources Information Center

    Bunce, S. C.; And Others

    Project Chemlab was designed to prepare an "Annotated List of Laboratory Experiments in Chemistry from the Journal of Chemical Education (1957-1979)" and to develop a computer file and program to search for specific types of experiments. Provided in this document are listings (photoreduced copies of printouts) of over 1500 entries classified into…

  9. Discovering Inexpensive, Effective Catalysts for Solar Energy Conversion: An Authentic Research Laboratory Experience

    ERIC Educational Resources Information Center

    Shaner, Sarah E.; Hooker, Paul D.; Nickel, Anne-Marie; Leichtfuss, Amanda R.; Adams, Carissa S.; de la Cerda, Dionisia; She, Yuqi; Gerken, James B.; Pokhrel, Ravi; Ambrose, Nicholas J.; Khaliqi, David; Stahl, Shannon S.; Schuttlefield Christus, Jennifer D.

    2016-01-01

    Electrochemical water oxidation is a major focus of solar energy conversion efforts. A new laboratory experiment has been developed that utilizes real-time, hands-on research to discover catalysts for solar energy conversion. The HARPOON, or Heterogeneous Anodes Rapidly Perused for Oxygen Overpotential Neutralization, experiment allows an array of…

  10. Computation of Chemical Shifts for Paramagnetic Molecules: A Laboratory Experiment for the Undergraduate Curriculum

    ERIC Educational Resources Information Center

    Pritchard, Benjamin P.; Simpson, Scott; Zurek, Eva; Autschbach, Jochen

    2014-01-01

    A computational experiment investigating the [superscript 1]H and [superscript 13]C nuclear magnetic resonance (NMR) chemical shifts of molecules with unpaired electrons has been developed and implemented. This experiment is appropriate for an upper-level undergraduate laboratory course in computational, physical, or inorganic chemistry. The…

  11. An Investigation of Students' Prior Experience with Laboratory Practicals and Report-Writing.

    ERIC Educational Resources Information Center

    Kaunda, L.; Ball, D.

    1998-01-01

    A study of 723 University of Cape Town (South Africa) physics students investigated their prior experience with laboratory procedures and technical report writing. Results suggest that, although students are generally aware of the importance of these elements of learning, school experience with teaching of scientific concepts and skills is often…

  12. An Undergraduate Biochemistry Laboratory Course with an Emphasis on a Research Experience

    ERIC Educational Resources Information Center

    Caspers, Mary Lou; Roberts-Kirchhoff, Elizabeth S.

    2003-01-01

    In their junior or senior year, biochemistry majors at the University of Detroit Mercy are required to take a two-credit biochemistry laboratory course. Five years ago, the format of this course was changed from structured experiments to a more project-based approach. Several structured experiments were included at the beginning of the course…

  13. The Equilibrium Constant for Bromothymol Blue: A General Chemistry Laboratory Experiment Using Spectroscopy

    ERIC Educational Resources Information Center

    Klotz, Elsbeth; Doyle, Robert; Gross, Erin; Mattson, Bruce

    2011-01-01

    A simple, inexpensive, and environmentally friendly undergraduate laboratory experiment is described in which students use visible spectroscopy to determine a numerical value for an equilibrium constant, K[subscript c]. The experiment correlates well with the lecture topic of equilibrium even though the subject of the study is an acid-base…

  14. The Synthesis of 4,6,8-Trimethylazulene: An Organic Laboratory Experiment.

    ERIC Educational Resources Information Center

    Garst, Michael E.; And Others

    1983-01-01

    A two-stage synthesis of 4,6,8-trimethylazulene was developed for use in the undergraduate experiment, highlighting concepts not usually covered in the laboratory. The experiment requires purification procedures of chromatography and of sublimation and illustrates concepts of aromaticity, molecular orbital theory, and carbodium ion reactivity. (JN)

  15. Enhancing the Student Experience of Laboratory Practicals through Digital Video Guides

    ERIC Educational Resources Information Center

    Croker, Karen; Andersson, Holger; Lush, David; Prince, Rob; Gomez, Stephen

    2010-01-01

    Laboratory-based learning allows students to experience bioscience principles first hand. In our experience, practical content and equipment may have changed over time, but teaching methods largely remain the same, typically involving; whole class introduction with a demonstration, students emulating the demonstration in small groups, gathering…

  16. Lysozyme Thermal Denaturation and Self-Interaction: Four Integrated Thermodynamic Experiments for the Physical Chemistry Laboratory

    ERIC Educational Resources Information Center

    Schwinefus, Jeffrey J.; Schaefle, Nathaniel J.; Muth, Gregory W.; Miessler, Gary L.; Clark, Christopher A.

    2008-01-01

    As part of an effort to infuse our physical chemistry laboratory with biologically relevant, investigative experiments, we detail four integrated thermodynamic experiments that characterize the denaturation (or unfolding) and self-interaction of hen egg white lysozyme as a function of pH and ionic strength. Students first use Protein Explorer to…

  17. Designing an Acoustic Suspension Speaker System in the General Physics Laboratory: A Divergent experiment

    ERIC Educational Resources Information Center

    Horton, Philip B.

    1969-01-01

    Describes a student laboratory project involving the design of an "acoustic suspension speaker system. The characteristics of the loudspeaker used are measured as an extension of the inertia-balance experiment. The experiment may be extended to a study of Stelmholtz resonators, coupled oscillators, electromagnetic forces, thermodynamics and…

  18. Thermodynamic Exploration of Eosin-Lysozyme Binding: A Physical Chemistry and Biochemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Huisman, Andrew J.; Hartsell, Lydia R.; Krueger, Brent P.; Pikaart, Michael J.

    2010-01-01

    We developed a modular pair of experiments for use in the undergraduate physical chemistry and biochemistry laboratories. Both experiments examine the thermodynamics of the binding of a small molecule, eosin Y, to the protein lysozyme. The assay for binding is the quenching of lysozyme fluorescence by eosin through resonant energy transfer. In…

  19. Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey

    ERIC Educational Resources Information Center

    Barrie, Simon C.; Bucat, Robert B.; Buntine, Mark A.; Burke da Silva, Karen; Crisp, Geoffrey T.; George, Adrian V.; Jamie, Ian M.; Kable, Scott H.; Lim, Kieran F.; Pyke, Simon M.; Read, Justin R.; Sharma, Manjula D.; Yeung, Alexandra

    2015-01-01

    Student experience surveys have become increasingly popular to probe various aspects of processes and outcomes in higher education, such as measuring student perceptions of the learning environment and identifying aspects that could be improved. This paper reports on a particular survey for evaluating individual experiments that has been developed…

  20. Physical barriers formed from gelling liquids: 1. numerical design of laboratory and field experiments

    SciTech Connect

    Finsterle, S.; Moridis, G.J.; Pruess, K.; Persoff, P.

    1994-01-01

    The emplacement of liquids under controlled viscosity conditions is investigated by means of numerical simulations. Design calculations are performed for a laboratory experiment on a decimeter scale, and a field experiment on a meter scale. The purpose of the laboratory experiment is to study the behavior of multiple gout plumes when injected in a porous medium. The calculations for the field trial aim at designing a grout injection test from a vertical well in order to create a grout plume of a significant extent in the subsurface.

  1. Plasma physics and environmental perturbation laboratory. [magnetospheric experiments from space shuttle

    NASA Technical Reports Server (NTRS)

    Vogl, J. L.

    1973-01-01

    Current work aimed at identifying the active magnetospheric experiments that can be performed from the Space Shuttle, and designing a laboratory to carry out these experiments is described. The laboratory, known as the PPEPL (Plasma Physics and Environmental Perturbation Laboratory) consists of 35-ft pallet of instruments connected to a 25-ft pressurized control module. The systems deployed from the pallet are two 50-m booms, two subsatellites, a high-power transmitter, a multipurpose accelerator, a set of deployable canisters, and a gimbaled instrument platform. Missions are planned to last seven days, during which two scientists will carry out experiments from within the pressurized module. The type of experiments to be performed are outlined.

  2. A Fast and Inexpensive Western Blot Experiment for the Undergraduate Laboratory

    NASA Astrophysics Data System (ADS)

    Farrell, Shawn O.; Farrell, Lynn E.

    1995-08-01

    Western blotting is an important, modern technique for transferring proteins from a gel onto nitrocellulose or other suitable support and then detecting a protein of interest using antibodies. We have developed an experiment and optimized the conditions for the undergraduate laboratory. The experiment can be done quickly using an electrophoretic blotter or more cheaply using passive transfer. This experiment allows the student to learn valuable procedures currently used in biochemistry and other biological sciences.

  3. Undergraduate Laboratory Experiment Facilitating Active Learning of Concepts in Transport Phenomena: Experiment with a Subliming Solid

    ERIC Educational Resources Information Center

    Utgikar, Vivek P.

    2015-01-01

    An experiment based on the sublimation of a solid was introduced in the undergraduate Transport Phenomena course. The experiment required the students to devise their own apparatus and measurement techniques. The theoretical basis, assignment of the experiment, experimental results, and student/instructor observations are described in this paper.…

  4. Electron-positron production in ultra-peripheral heavy-ion collisions with the STAR experiment

    SciTech Connect

    Morozov, Vladimir Borisovitch

    2003-08-01

    This thesis presents a measurement of the cross-section of the purely electromagnetic production of e{sup +}e{sup -} pairs accompanied by mutual nuclear Coulomb excitation AuAu {yields} Au*Au* + e{sup +}e{sup -}, in ultra-peripheral gold-gold collisions at RHIC at the center-of-mass collision energy of {radical}S{sub NN} = 200 GeV per nucleon. These reactions were selected by detecting neutron emission by the excited gold ions in the Zero Degree Calorimeters. The charged tracks in the e{sup +}e{sup -} events were reconstructed with the STAR Time Projection Chamber. The detector acceptance limits the kinematical range of the observed e{sup +}e{sup -} pairs; therefore the measured cross-section is extrapolated to 4{pi} with the use of Monte Carlo simulations. We have developed a Monte Carlo simulation for ultra-peripheral e{sup +}e{sup -} production at RHIC based on the Equivalent Photon Approximation, the lowest-order QED e{sup +}e{sup -} production cross-section by two real photons and the assumption that the mutual nuclear excitations and the e{sup +}e{sup -} production are independent (EPA model). We compare our experimental results to two models: the EPA model and a model based on full QED calculation of the e{sup +}e{sup -} production, taking the photon virtuality into account. The measured differential cross-section d{sigma}/dM{sub inv} (M{sub inv} - e{sup +}e{sup -} invariant mass) agrees well with both theoretical models. The measured differential cross-section d{sigma}/dp{sub {perpendicular}}{sup tot} (p{sub {perpendicular}}{sup tot} - e{sup +}e{sup -} total transverse momentum) favors the full QED calculation over the EPA model.

  5. THE IPOS FRAMEWORK: LINKING FISH SWIMMING PERFORMANCE IN ALTERED FLOWS FROM LABORATORY EXPERIMENTS TO RIVERS

    SciTech Connect

    Neary, Vincent S

    2011-01-01

    Current understanding of the effects of turbulence on the swimming performance of fish 32 is primarily derived from laboratory experiments under pressurized flow swim tunnels 33 and open channel flow facilities. These studies have produced valuable information on 34 the swimming mechanics and behavior of fish in turbulent flow. However, laboratory 35 studies have limited representation of the flows fish experience in nature. The complex 36 flow structure in rivers is imparted primarily by the highly heterogeneous and non37 uniform bed and planform geometry. Our goal is to direct future laboratory and field 38 studies to adopt a common framework that will shape the integration of both approaches. 39 This paper outlines four characteristics of turbulent flow, which we suggest should be 40 evaluated when generalizing results from fish turbulent studies in both the laboratory and 41 the field. The framework is based on four turbulence characteristics that are summarized 42 under the acronym IPOS: Intensity, Periodicity, Orientation, and Scale.

  6. Zero-gravity cloud physics laboratory: Candidate experiments definition and preliminary concept studies

    NASA Technical Reports Server (NTRS)

    Eaton, L. R.; Greco, R. V.; Hollinden, A. B.

    1973-01-01

    The candidate definition studies on the zero-g cloud physics laboratory are covered. This laboratory will be an independent self-contained shuttle sortie payload. Several critical technology areas have been identified and studied to assure proper consideration in terms of engineering requirements for the final design. Areas include chambers, gas and particle generators, environmental controls, motion controls, change controls, observational techniques, and composition controls. This unique laboratory will allow studies to be performed without mechanical, aerodynamics, electrical, or other type techniques to support the object under study. This report also covers the candidate experiment definitions, chambers and experiment classes, laboratory concepts and plans, special supporting studies, early flight opportunities and payload planning data for overall shuttle payload requirements assessments.

  7. Teaching astronomy for the blind: Providing a lecture and laboratory experience

    NASA Astrophysics Data System (ADS)

    Spagna, George F.

    1991-04-01

    A general education course in astronomy was successfully adapted to provide a meaningful laboratory science experience for a visually-impaired student. Minor alterations to the style of lecture, coupled with an edition of the text on audio cassette tapes, allowed the student to keep pace with the theory component of the course. Laboratory equipment was modified to provide tactile measuring apparatus, which allowed the student to perform all the same processes of data acquisition and analysis required of sighted students.

  8. Feasibility study of a zero-gravity (orbital) atmospheric cloud physics experiments laboratory

    NASA Technical Reports Server (NTRS)

    Hollinden, A. B.; Eaton, L. R.

    1972-01-01

    A feasibility and concepts study for a zero-gravity (orbital) atmospheric cloud physics experiment laboratory is discussed. The primary objective was to define a set of cloud physics experiments which will benefit from the near zero-gravity environment of an orbiting spacecraft, identify merits of this environment relative to those of groundbased laboratory facilities, and identify conceptual approaches for the accomplishment of the experiments in an orbiting spacecraft. Solicitation, classification and review of cloud physics experiments for which the advantages of a near zero-gravity environment are evident are described. Identification of experiments for potential early flight opportunities is provided. Several significant accomplishments achieved during the course of this study are presented.

  9. Case-Study Investigation of Equine Maternity via PCR-RFLP: A Biochemistry Laboratory Experiment.

    PubMed

    Millard, Julie T; Chuang, Edward; Lucas, James S; Nagy, Erzsebet E; Davis, Griffin T

    2013-11-12

    A simple and robust biochemistry laboratory experiment is described that uses restriction fragment length polymorphism (RFLP) of polymerase chain reaction (PCR) products to verify the identity of a potentially valuable horse. During the first laboratory period, students purify DNA from equine samples and amplify two loci of mitochondrial DNA. During the second laboratory period, students digest PCR products with restriction enzymes and analyze the fragment sizes through agarose gel electrophoresis. An optional step of validating DNA extracts through realtime PCR can expand the experiment to three weeks. This experiment, which has an engaging and versatile scenario, provides students with exposure to key principles and techniques of molecular biology, bioinformatics, and evolution in a forensic context. PMID:24363455

  10. Simulated and Virtual Science Laboratory Experiments: Improving Critical Thinking and Higher-Order Learning Skills

    NASA Astrophysics Data System (ADS)

    Simon, Nicole A.

    Virtual laboratory experiments using interactive computer simulations are not being employed as viable alternatives to laboratory science curriculum at extensive enough rates within higher education. Rote traditional lab experiments are currently the norm and are not addressing inquiry, Critical Thinking, and cognition throughout the laboratory experience, linking with educational technologies (Pyatt & Sims, 2007; 2011; Trundle & Bell, 2010). A causal-comparative quantitative study was conducted with 150 learners enrolled at a two-year community college, to determine the effects of simulation laboratory experiments on Higher-Order Learning, Critical Thinking Skills, and Cognitive Load. The treatment population used simulated experiments, while the non-treatment sections performed traditional expository experiments. A comparison was made using the Revised Two-Factor Study Process survey, Motivated Strategies for Learning Questionnaire, and the Scientific Attitude Inventory survey, using a Repeated Measures ANOVA test for treatment or non-treatment. A main effect of simulated laboratory experiments was found for both Higher-Order Learning, [F (1, 148) = 30.32,p = 0.00, eta2 = 0.12] and Critical Thinking Skills, [F (1, 148) = 14.64,p = 0.00, eta 2 = 0.17] such that simulations showed greater increases than traditional experiments. Post-lab treatment group self-reports indicated increased marginal means (+4.86) in Higher-Order Learning and Critical Thinking Skills, compared to the non-treatment group (+4.71). Simulations also improved the scientific skills and mastery of basic scientific subject matter. It is recommended that additional research recognize that learners' Critical Thinking Skills change due to different instructional methodologies that occur throughout a semester.

  11. FLARE (Facility for Laboratory Reconnection Experiments): A Major Next-Step for Laboratory Studies of Magnetic Reconnection

    NASA Astrophysics Data System (ADS)

    Ji, H.; Bhattacharjee, A.; Prager, S.; Daughton, W. S.; Bale, S. D.; Carter, T. A.; Crocker, N.; Drake, J. F.; Egedal, J.; Sarff, J.; Wallace, J.; Belova, E.; Ellis, R.; Fox, W. R., II; Heitzenroeder, P.; Kalish, M.; Jara-Almonte, J.; Myers, C. E.; Que, W.; Ren, Y.; Titus, P.; Yamada, M.; Yoo, J.

    2014-12-01

    A new intermediate-scale plasma experiment, called the Facility for Laboratory Reconnection Experiments or FLARE, is under construction at Princeton as a joint project by five universities and two national labs to study magnetic reconnection in regimes directly relevant to space, solar and astrophysical plasmas. The currently existing small-scale experiments have been focusing on the single X-line reconnection process in plasmas either with small effective sizes or at low Lundquist numbers, both of which are typically very large in natural plasmas. These new regimes involve multiple X-lines as guided by a reconnection "phase diagram", in which different coupling mechanisms from the global system scale to the local dissipation scale are classified into different reconnection phases [H. Ji & W. Daughton, Phys. Plasmas 18, 111207 (2011)]. The design of the FLARE device is based on the existing Magnetic Reconnection Experiment (MRX) at Princeton (http://mrx.pppl.gov) and is to provide experimental access to the new phases involving multiple X-lines at large effective sizes and high Lundquist numbers, directly relevant to space and solar plasmas. The motivating major physics questions, the construction status, and the planned collaborative research especially with space and solar research communities will be discussed.

  12. Development and Operation of a MUMPS Laboratory Information System: A Decade's Experience

    PubMed Central

    Miller, R. E.; Causey, J. P.; Moore, G. W.; Wilk, G. E.

    1988-01-01

    We describe more than a decade's experience with inhouse development and operation of a clinical laboratory computer system written in the MUMPS programming language for a 1000 bed teaching hospital. The JHLIS is a networked minicomputer system that supports accessioning, instrument monitoring, and result reporting for over 3000 specimens and 30,000 test results daily. Development and operation of the system accounts for 6% of the budget of the laboratories which have had a 70% increase in workload over the past decade. Our experience with purchased MUMPS software maintained and enhanced inhouse suggests an attractive alternative to lengthy inhouse development.

  13. Insights From Laboratory Experiments On Simulated Faults With Application To Fracture Evolution In Geothermal Systems

    SciTech Connect

    Stephen L. Karner, Ph.D

    2006-06-01

    Laboratory experiments provide a wealth of information related to mechanics of fracture initiation, fracture propagation processes, factors influencing fault strength, and spatio-temporal evolution of fracture properties. Much of the existing literature reports on laboratory studies involving a coupling of thermal, hydraulic, mechanical, and/or chemical processes. As these processes operate within subsurface environments exploited for their energy resource, laboratory results provide insights into factors influencing the mechanical and hydraulic properties of geothermal systems. I report on laboratory observations of strength and fluid transport properties during deformation of simulated faults. The results show systematic trends that vary with stress state, deformation rate, thermal conditions, fluid content, and rock composition. When related to geophysical and geologic measurements obtained from engineered geothermal systems (e.g. microseismicity, wellbore studies, tracer analysis), laboratory results provide a means by which the evolving thermal reservoir can be interpreted in terms of physico-chemical processes. For example, estimates of energy release and microearthquake locations from seismic moment tensor analysis can be related to strength variations observed from friction experiments. Such correlations between laboratory and field data allow for better interpretations about the evolving mechanical and fluid transport properties in the geothermal reservoir – ultimately leading to improvements in managing the resource.

  14. Ghost imaging experiment with sunlight compared to laboratory experiment with thermal light

    NASA Astrophysics Data System (ADS)

    Karmakar, Sanjit; Meyers, Ronald; Shih, Yanhua

    2012-10-01

    A recent article reports on the demonstration of ghost imaging using sunlight which also presents theory for ghost imaging in the atmosphere based on two photon interference. The current paper reviews the experiment from a different context than that presented by Karmakar, Meyers and Shih (KMS). Here we examine data from the KMS sunlight ghost imaging experiment and compare it to ghost imaging produced by true thermal light.

  15. Laboratory Experiments on Electrochemical Remediation of the Environment: Electrocoagulation of Oily Wastewater

    NASA Astrophysics Data System (ADS)

    Ibanez, Jorge G.; Takimoto, Martha M.; Vasquez, Ruben C.; Basak, Sanjay; Myung, Noseung; Rajeshwar, Krishnan

    1995-11-01

    A laboratory experiment illustrating the principle and application of electrocoagulation is described using oil-water emulsions as the medium to be treated and iron as the anode. The destabilized oil droplets are shown to be separated from the aqueous phase via electrolysis and iron hydrooxide coagulant formation. This simple experiment is shown to afford opportunities for exploring concepts related to colloid chemistry, electrochemistry, corrosion, and analytical chemistry.

  16. Making sense from space-time data in laboratory experiments on space plasma processes

    NASA Technical Reports Server (NTRS)

    Gekelman, Walter; Bamber, James; Leneman, David; Vincena, Steve; Maggs, James; Rosenberg, Steve

    1995-01-01

    A number of visualization techniques are discussed in a laboratory experiment designed to study phenomena that occur in space. Visualization tools are used to design the apparatus, collect data, and make one-, two-, and three-dimensional plots of the results. These tools are an indispensable part of the experiment because the data sets are hundreds of megabytes in size and rapid turnaround is required.

  17. LABORATORY EXPERIMENTS, NUMERICAL SIMULATIONS, AND ASTRONOMICAL OBSERVATIONS OF DEFLECTED SUPERSONIC JETS: APPLICATION TO HH 110

    SciTech Connect

    Hartigan, P.; Carver, R.; Foster, J. M.; Rosen, P. A.; Williams, R. J. R.; Wilde, B. H.; Coker, R. F.; Hansen, J. F.; Blue, B. E.; Frank, A.

    2009-11-01

    Collimated supersonic flows in laboratory experiments behave in a similar manner to astrophysical jets provided that radiation, viscosity, and thermal conductivity are unimportant in the laboratory jets and that the experimental and astrophysical jets share similar dimensionless parameters such as the Mach number and the ratio of the density between the jet and the ambient medium. When these conditions apply, laboratory jets provide a means to study their astrophysical counterparts for a variety of initial conditions, arbitrary viewing angles, and different times, attributes especially helpful for interpreting astronomical images where the viewing angle and initial conditions are fixed and the time domain is limited. Experiments are also a powerful way to test numerical fluid codes in a parameter range in which the codes must perform well. In this paper, we combine images from a series of laboratory experiments of deflected supersonic jets with numerical simulations and new spectral observations of an astrophysical example, the young stellar jet HH 110. The experiments provide key insights into how deflected jets evolve in three dimensions, particularly within working surfaces where multiple subsonic shells and filaments form, and along the interface where shocked jet material penetrates into and destroys the obstacle along its path. The experiments also underscore the importance of the viewing angle in determining what an observer will see. The simulations match the experiments so well that we can use the simulated velocity maps to compare the dynamics in the experiment with those implied by the astronomical spectra. The experiments support a model where the observed shock structures in HH 110 form as a result of a pulsed driving source rather than from weak shocks that may arise in the supersonic shear layer between the Mach disk and bow shock of the jet's working surface.

  18. Advanced Laboratory at Texas State University: Error Analysis, Experimental Design, and Research Experience for Undergraduates

    NASA Astrophysics Data System (ADS)

    Ventrice, Carl

    2009-04-01

    Physics is an experimental science. In other words, all physical laws are based on experimentally observable phenomena. Therefore, it is important that all physics students have an understanding of the limitations of certain experimental techniques and the associated errors associated with a particular measurement. The students in the Advanced Laboratory class at Texas State perform three detailed laboratory experiments during the semester and give an oral presentation at the end of the semester on a scientific topic of their choosing. The laboratory reports are written in the format of a ``Physical Review'' journal article. The experiments are chosen to give the students a detailed background in error analysis and experimental design. For instance, the first experiment performed in the spring 2009 semester is entitled Measurement of the local acceleration due to gravity in the RFM Technology and Physics Building. The goal of this experiment is to design and construct an instrument that is to be used to measure the local gravitational field in the Physics Building to an accuracy of ±0.005 m/s^2. In addition, at least one of the experiments chosen each semester involves the use of the research facilities within the physics department (e.g., microfabrication clean room, surface science lab, thin films lab, etc.), which gives the students experience working in a research environment.

  19. Laboratory experiments on current flow between stationary and moving electrodes in magnetoplasmas

    NASA Technical Reports Server (NTRS)

    Stenzel, Reiner L.; Urrutia, J. M.

    1990-01-01

    Laboratory experiments were performed in order to investigate the basic physics of current flow between tethered electrodes in magnetoplasmas. The major findings are summarized. The experiments are performed in an effectively very large laboratory plasma in which not only the nonlinear current collection is addressed but also the propagation and spread of currents, the formation of current wings by moving electrodes, the current closure, and radiation from transmission lines. The laboratory plasma consists of a pulsed dc discharge whose Maxwellian afterglow provides a quiescent, current-free uniform background plasma. Electrodes consisting of collectors and electron emitters are inserted into the plasma and a pulsed voltage is applied between two floating electrodes via insulated transmission lines. Besides the applied current in the wire, the total current density in the plasma is obtained from space and time resolved magnetic probe measurements via Maxwell's law. Langmuir probes yield the plasma parameters.

  20. Determination of Mercury in Milk by Cold Vapor Atomic Fluorescence: A Green Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Armenta, Sergio; de la Guardia, Miguel

    2011-01-01

    Green analytical chemistry principles were introduced to undergraduate students in a laboratory experiment focused on determining the mercury concentration in cow and goat milk. In addition to traditional goals, such as accuracy, precision, sensitivity, and limits of detection in method selection and development, attention was paid to the…

  1. Developing School Laboratories To Promote the Establishment of Individual Experience Programs. Final Report.

    ERIC Educational Resources Information Center

    Valley Springs School District 2, AR.

    A project was conducted to promote and develop individual Supervised Agricultural Experience (SAE) programs in Arkansas through the development of laboratories. It was felt that strong SAE programs enhance the instructional portion of agriculture education, serve as a motivational tool, and improve the relations between the local school and…

  2. Solubility and Solubility Product Determination of a Sparingly Soluble Salt: A First-Level Laboratory Experiment

    ERIC Educational Resources Information Center

    Bonomo, Raffaele P.; Tabbi, Giovanni; Vagliasindi, Laura I.

    2012-01-01

    A simple experiment was devised to let students determine the solubility and solubility product, "K"[subscript sp], of calcium sulfate dihydrate in a first-level laboratory. The students experimentally work on an intriguing equilibrium law: the constancy of the product of the ion concentrations of a sparingly soluble salt. The determination of…

  3. Understanding Fluorescence Measurements through a Guided-Inquiry and Discovery Experiment in Advanced Analytical Laboratory

    ERIC Educational Resources Information Center

    Wilczek-Vera, Grazyna; Salin, Eric Dunbar

    2011-01-01

    An experiment on fluorescence spectroscopy suitable for an advanced analytical laboratory is presented. Its conceptual development used a combination of the expository and discovery styles. The "learn-as-you-go" and direct "hands-on" methodology applied ensures an active role for a student in the process of visualization and discovery of concepts.…

  4. Women's Experiences in the Engineering Laboratory in Japan

    ERIC Educational Resources Information Center

    Hosaka, Masako

    2014-01-01

    This qualitative study aims to examine Japanese women undergraduate engineering students' experiences of interacting with departmental peers of the same year in the laboratory setting by using interview data of 32 final-year students at two modestly selective national universities in Japan. Expectation state theory that explains unequal…

  5. Thermodynamics of Sodium Dodecyl Sulfate (SDS) Micellization: An Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Marcolongo, Juan P.; Mirenda, Martin

    2011-01-01

    An undergraduate laboratory experiment is presented that allows a thermodynamic characterization of micelle formation of sodium dodecyl sulfate (SDS) in aqueous solutions. The critical micelle concentration (CMC) and the degree of micelle ionization (alpha) are obtained at different temperatures by conductimetry. The molar standard free energy…

  6. An Advanced Undergraduate Chemistry Laboratory Experiment Exploring NIR Spectroscopy and Chemometrics

    ERIC Educational Resources Information Center

    Wanke, Randall; Stauffer, Jennifer

    2007-01-01

    An advanced undergraduate chemistry laboratory experiment to study the advantages and hazards of the coupling of NIR spectroscopy and chemometrics is described. The combination is commonly used for analysis and process control of various ingredients used in agriculture, petroleum and food products.

  7. Non-stop lab week: A real laboratory experience for life sciences postgraduate courses.

    PubMed

    Freitas, Maria João; Silva, Joana Vieira; Korrodi-Gregório, Luís; Fardilha, Margarida

    2016-05-01

    At the Portuguese universities, practical classes of life sciences are usually professor-centered 2-hour classes. This approach results in students underprepared for a real work environment in a research/clinical laboratory. To provide students with a real-life laboratory environment, the Non-Stop Lab Week (NSLW) was created in the Molecular Biomedicine master program at the University of Aveiro, Portugal. The unique feature of the NSLW is its intensity: during a 1-week period, students perform a subcloning and a protein expression project in an environment that mimics a real laboratory. Students work autonomously, and the progression of work depends on achieving the daily goals. Throughout the three curricular years, most students considered the intensity of the NSLW a very good experience and fundamental for their future. Moreover, after some experience in a real laboratory, students state that both the techniques and the environment created in the NSLW were similar to what they experience in their current work situation. The NSLW fulfills a gap in postgraduate students' learning, particularly in practical skills and scientific thinking. Furthermore, the NSLW experience provides skills to the students that are crucial to their future research area. © 2016 by The International Union of Biochemistry and Molecular Biology, 44:297-303, 2016. PMID:26891775

  8. Kinetics of Carboxylesterase: An Experiment for Biochemistry and Physical Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Nichols, C. S.; Cromartie, T. H.

    1979-01-01

    Describes a convenient, inexpensive experiment in enzyme kinetics developed for the undergraduate biochemistry laboratory at the University of Virginia. Required are a single beam visible spectrophotometer with output to a recorder, a constant temperature, a commercially available enzyme, substrates, and buffers. (BT)

  9. Transitioning from Expository Laboratory Experiments to Course-Based Undergraduate Research in General Chemistry

    ERIC Educational Resources Information Center

    Clark, Ted M.; Ricciardo, Rebecca; Weaver, Tyler

    2016-01-01

    General chemistry courses predominantly use expository experiments that shape student expectations of what a laboratory activity entails. Shifting within a semester to course-based undergraduate research activities that include greater decision-making, collaborative work, and "messy" real-world data necessitates a change in student…

  10. Coulometric Titration of Ethylenediaminetetraacetate (EDTA) with Spectrophotometric Endpoint Detection: An Experiment for the Instrumental Analysis Laboratory

    ERIC Educational Resources Information Center

    Williams, Kathryn R.; Young, Vaneica Y.; Killian, Benjamin J.

    2011-01-01

    Ethylenediaminetetraacetate (EDTA) is commonly used as an anticoagulant in blood-collection procedures. In this experiment for the instrumental analysis laboratory, students determine the quantity of EDTA in commercial collection tubes by coulometric titration with electrolytically generated Cu[superscript 2+]. The endpoint is detected…

  11. Gravimetric Analysis of Bismuth in Bismuth Subsalicylate Tablets: A Versatile Quantitative Experiment for Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Davis, Eric; Cheung, Ken; Pauls, Steve; Dick, Jonathan; Roth, Elijah; Zalewski, Nicole; Veldhuizen, Christopher; Coeler, Joel

    2015-01-01

    In this laboratory experiment, lower- and upper-division students dissolved bismuth subsalicylate tablets in acid and precipitated the resultant Bi[superscript 3+] in solution with sodium phosphate for a gravimetric determination of bismuth subsalicylate in the tablets. With a labeled concentration of 262 mg/tablet, the combined data from three…

  12. A Static Method as an Alternative to Gel Chromatography: An Experiment for the Undergraduate Biochemistry Laboratory

    ERIC Educational Resources Information Center

    Burum, Alex D.; Splittgerber, Allan G.

    2008-01-01

    This article describes a static method as an alternative to gel chromatography, which may be used as an undergraduate laboratory experiment. In this method, a constant mass of Sephadex gel is swollen in a series of protein solutions. UV-vis spectrophotometry is used to find a partition coefficient, KD, that indicates the fraction of the interior…

  13. The Quartz-Crystal Microbalance in an Undergraduate Laboratory Experiment: Measuring Mass

    ERIC Educational Resources Information Center

    Tsionsky, Vladimir

    2007-01-01

    The study explains the quartz-crystal microbalance (QCM) technique, which is often used as an undergraduate laboratory experiment for measuring the mass of a system. QCM can be used as a mass sensor only when the measured mass is rigidly attached to the surface.

  14. Laboratory and in-flight experiments to evaluate 3-D audio display technology

    NASA Astrophysics Data System (ADS)

    Ericson, Mark; McKinley, Richard; Kibbe, Marion; Francis, Daniel

    1994-01-01

    Laboratory and in-flight experiments were conducted to evaluate 3-D audio display technology for cockpit applications. A 3-D audio display generator was developed which digitally encodes naturally occurring direction information onto any audio signal and presents the binaural sound over headphones. The acoustic image is stabilized for head movement by use of an electromagnetic head-tracking device. In the laboratory, a 3-D audio display generator was used to spatially separate competing speech messages to improve the intelligibility of each message. Up to a 25 percent improvement in intelligibility was measured for spatially separated speech at high ambient noise levels (115 dB SPL). During the in-flight experiments, pilots reported that spatial separation of speech communications provided a noticeable improvement in intelligibility. The use of 3-D audio for target acquisition was also investigated. In the laboratory, 3-D audio enabled the acquisition of visual targets in about two seconds average response time at 17 degrees accuracy. During the in-flight experiments, pilots correctly identified ground targets 50, 75, and 100 percent of the time at separation angles of 12, 20, and 35 degrees, respectively. In general, pilot performance in the field with the 3-D audio display generator was as expected, based on data from laboratory experiments.

  15. Evaluation of the Persistent Issues in History Laboratory for Virtual Field Experience (PIH-LVFE)

    ERIC Educational Resources Information Center

    Brush, Thomas; Saye, John; Kale, Ugur; Hur, Jung Won; Kohlmeier, Jada; Yerasimou, Theano; Guo, Lijiang; Symonette, Simone

    2009-01-01

    The Persistent Issues in History Laboratory for Virtual Field Experience (PIH-LVFE) combines a database of video cases of authentic classroom practices with multiple resources and tools to enable pre-service social studies teachers to virtually observe teachers implementing problem-based learning activities. In this paper, we present the results…

  16. The Kinetics and Inhibition of Gamma-Glutamyl Transpeptidase: A Biochemistry Laboratory Experiment.

    ERIC Educational Resources Information Center

    Splittgerber, A. G.; Sohl, Julie

    1988-01-01

    Discusses an enzyme kinetics laboratory experiment involving a two substrate system for undergraduate biochemistry. Uses the enzyme gamma-glutamyl transpeptidase as this enzyme in blood serum is of clinical significance. Notes elevated levels are seen in liver disease, alcoholism, and epilepsy. Uses a spectrophotometer for the analysis. (MVL)

  17. Nitration of Phenols Using Cu(NO[subscript 3])[subscript 2]: Green Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Yadav, Urvashi; Mande, Hemant; Ghalsasi, Prasanna

    2012-01-01

    An easy-to-complete, microwave-assisted, green chemistry, electrophilic nitration method for phenol using Cu(NO[subscript 3])[subscript 2] in acetic acid is discussed. With this experiment, students clearly understand the mechanism underlying the nitration reaction in one laboratory session. (Contains 4 schemes.)

  18. Microwave-Assisted Esterification: A Discovery-Based Microscale Laboratory Experiment

    ERIC Educational Resources Information Center

    Reilly, Maureen K.; King, Ryan P.; Wagner, Alexander J.; King, Susan M.

    2014-01-01

    An undergraduate organic chemistry laboratory experiment has been developed that features a discovery-based microscale Fischer esterification utilizing a microwave reactor. Students individually synthesize a unique ester from known sets of alcohols and carboxylic acids. Each student identifies the best reaction conditions given their particular…

  19. A Laboratory Experiment, Based on the Maillard Reaction, Conducted as a Project in Introductory Statistics

    ERIC Educational Resources Information Center

    Kravchuk, Olena; Elliott, Antony; Bhandari, Bhesh

    2005-01-01

    A simple laboratory experiment, based on the Maillard reaction, served as a project in Introductory Statistics for undergraduates in Food Science and Technology. By using the principles of randomization and replication and reflecting on the sources of variation in the experimental data, students reinforced the statistical concepts and techniques…

  20. Usnic Acid and the Intramolecular Hydrogen Bond: A Computational Experiment for the Organic Laboratory

    ERIC Educational Resources Information Center

    Green, Thomas K.; Lane, Charles A.

    2006-01-01

    A computational experiment is described for the organic chemistry laboratory that allows students to estimate the relative strengths of the intramolecular hydrogen bonds of usnic and isousnic acids, two related lichen secondary metabolites. Students first extract and purify usnic acid from common lichens and obtain [superscript 1]H NMR and IR…

  1. A Stopped-Flow Kinetics Experiment for the Physical Chemistry Laboratory Using Noncorrosive Reagents

    ERIC Educational Resources Information Center

    Prigodich, Richard V.

    2014-01-01

    Stopped-flow kinetics techniques are important to the study of rapid chemical and biochemical reactions. Incorporation of a stopped-flow kinetics experiment into the physical chemistry laboratory curriculum would therefore be an instructive addition. However, the usual reactions studied in such exercises employ a corrosive reagent that can over…

  2. X-Ray Diffraction of Intermetallic Compounds: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Skakuj, Kacper

    2015-01-01

    Here we describe an experiment for the undergraduate physical chemistry laboratory in which students synthesize the intermetallic compounds AlNi and AlNi3 and study them by X-ray diffractometry. The compounds are synthesized in a simple one-step reaction occurring in the solid state. Powder X-ray diffractograms are recorded for the two compounds…

  3. Designing Experiments on Thermal Interactions by Secondary-School Students in a Simulated Laboratory Environment

    ERIC Educational Resources Information Center

    Lefkos, Ioannis; Psillos, Dimitris; Hatzikraniotis, Euripides

    2011-01-01

    Background and purpose: The aim of this study was to explore the effect of investigative activities with manipulations in a virtual laboratory on students' ability to design experiments. Sample: Fourteen students in a lower secondary school in Greece attended a teaching sequence on thermal phenomena based on the use of information and…

  4. Measurement of the Compressibility Factor of Gases: A Physical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Varberg, Thomas D.; Bendelsmith, Andrew J.; Kuwata, Keith T.

    2011-01-01

    In this article, we describe an experiment for the undergraduate physical chemistry laboratory in which students measure the compressibility factor of two gases, helium and carbon dioxide, as a function of pressure at constant temperature. The experimental apparatus is relatively inexpensive to construct and is described and diagrammed in detail.…

  5. Development of a Web-Enabled Learning Platform for Geospatial Laboratories: Improving the Undergraduate Learning Experience

    ERIC Educational Resources Information Center

    Mui, Amy B.; Nelson, Sarah; Huang, Bruce; He, Yuhong; Wilson, Kathi

    2015-01-01

    This paper describes a web-enabled learning platform providing remote access to geospatial software that extends the learning experience outside of the laboratory setting. The platform was piloted in two undergraduate courses, and includes a software server, a data server, and remote student users. The platform was designed to improve the quality…

  6. Ideas in Practice (3): A Simulated Laboratory Experience in Digital Design.

    ERIC Educational Resources Information Center

    Cleaver, Thomas G.

    1988-01-01

    Gives an example of the use of a simplified logic simulator in a logic design course. Discusses some problems in logic design classes, commercially available software, and software problems. Describes computer-aided engineering (CAE) software. Lists 14 experiments in the simulated laboratory and presents students' evaluation of the course. (YP)

  7. Bacterial Production of Poly(3-hydroxybutyrate): An Undergraduate Student Laboratory Experiment

    ERIC Educational Resources Information Center

    Burns, Kristi L.; Oldham, Charlie D.; May, Sheldon W.

    2009-01-01

    As part of a multidisciplinary course that is cross-listed between five departments, we developed an undergraduate student laboratory experiment for culturing, isolating, and purifying the biopolymer, poly(3-hydroxybutyrate), PHB. This biopolyester accumulates in the cytoplasm of bacterial cells under specific growth conditions, and it has…

  8. Solar cells: A laboratory experiment on the temperature dependence of the open-circuit voltage

    SciTech Connect

    Khoury, A.; Charles, J.; Charette, J.; Fieux, M.; Mialhe, P.

    1984-05-01

    This paper describes a simple demonstration of the effect of an increase in temperature upon the performance of solar cells under concentrated light. It is shown that the expected increase of the open-circuit voltage is offset by the temperature effect. This experiment should be quite relevant as an introduction to the study of concentration for undergraduate physics laboratories.

  9. Ring-Closing Metathesis: An Advanced Guided-Inquiry Experiment for the Organic Laboratory

    ERIC Educational Resources Information Center

    Schepmann, Hala G.; Mynderse, Michelle

    2010-01-01

    The design and implementation of an advanced guided-inquiry experiment for the organic laboratory is described. Grubbs's second-generation catalyst is used to effect the ring-closing metathesis of diethyl diallylmalonate. The reaction is carried out under an inert atmosphere at room temperature and monitored by argentic TLC. The crude reaction is…

  10. A Laboratory Experience for Students of Differential Equations using RLC Circuits.

    ERIC Educational Resources Information Center

    Graham, Jeff; Barnes, Julia

    1997-01-01

    Argues that although differential equations are billed as applied mathematics, there is rarely any hands-on experience incorporated into the course. Presents a laboratory project that requires students to obtain data from a physics lab and use that data to compute the coefficients of the second order differential equation, which mathematically…

  11. A Student Laboratory Experiment Based on the Vitamin C Clock Reaction

    ERIC Educational Resources Information Center

    Vitz, Ed

    2007-01-01

    The Vitamin C Clock Reaction has now been adapted to serve as a student laboratory experiment in the education process of high-school and college-level general chemistry. Despite of imparting valuable knowledge, it also may be hazardous, as the tincture of iodine contains inflammable substances that may cause burning on prolonged exposure.

  12. Liquid-Liquid Extraction of Insecticides from Juice: An Analytical Chemistry Laboratory Experiment

    ERIC Educational Resources Information Center

    Radford, Samantha A.; Hunter, Ronald E., Jr.; Barr, Dana Boyd; Ryan, P. Barry

    2013-01-01

    A laboratory experiment was developed to target analytical chemistry students and to teach them about insecticides in food, sample extraction, and cleanup. Micro concentrations (sub-microgram/mL levels) of 12 insecticides spiked into apple juice samples are extracted using liquid-liquid extraction and cleaned up using either a primary-secondary…

  13. Quantum Dots in a Polymer Composite: A Convenient Particle-in-a-Box Laboratory Experiment

    ERIC Educational Resources Information Center

    Rice, Charles V.; Giffin, Guinevere A.

    2008-01-01

    Semiconductor quantum dots are at the forefront of materials science chemistry with applications in biological imaging and photovoltaic technologies. We have developed a simple laboratory experiment to measure the quantum-dot size from fluorescence spectra. A major roadblock of quantum-dot based exercises is the particle synthesis and handling;…

  14. Laboratory Experiment Investigating the Impact of Ocean Acidification on Calcareous Organisms

    ERIC Educational Resources Information Center

    Perera, Alokya P.; Bopegedera, A. M. R. P.

    2014-01-01

    The increase in ocean acidity since preindustrial times may have deleterious consequences for marine organisms, particularly those with calcareous structures. We present a laboratory experiment to investigate this impact with general, introductory, environmental, and nonmajors chemistry students. For simplicity and homogeneity, calcite was…

  15. Dehydration of 2-Methyl-1-Cyclohexanol: New Findings from a Popular Undergraduate Laboratory Experiment

    ERIC Educational Resources Information Center

    Friesen, J. Brent; Schretzman, Robert

    2011-01-01

    The mineral acid-catalyzed dehydration of 2-methyl-1-cyclohexanol has been a popular laboratory exercise in second-year organic chemistry for several decades. The dehydration experiment is often performed by organic chemistry students to illustrate Zaitsev's rule. However, sensitive analytical techniques reveal that the results do not entirely…

  16. Laboratory experiments on stability and entrainment of oceanic stratocumulus. Part 1: Instability experiment

    NASA Technical Reports Server (NTRS)

    Shy, Shenqyang S.

    1990-01-01

    The existence and persistence of marine stratocumulus play a significant role in the overall energy budget of the earth. Their stability and entrainment process are important in global climate studies, as well as for local weather forecasting. The purposes of the experimental simulations are to study this process and to address this paradox. The effects of buoyancy reversal is investigated, followed by two types of experiments. An instability experiment involves the behavior of a fully turbulent wake near the inversion generated by a sliding plate. Due to buoyancy reversal, the heavy, mixed fluid starts to sink, turning the potential energy created by the mixing process into kinetic energy, thereby increasing the entrainment rate. An entrainment experiment, using a vertically oscillating grid driven by a controllable speed motor, produces many eddy-induced entrainments at a surface region on scales much less than the depth of the layer.

  17. Collision-induced absorption by CO{sub 2} in the far infrared: Analysis of leading-order moments and interpretation of the experiment

    SciTech Connect

    Kouzov, A. P.; Chrysos, M.

    2009-10-15

    The diagrammatic theory, developed recently by the authors [Phys. Rev. A 74, 012732 (2006)], is applied to binary collision-induced properties, with emphasis on induced dipole moments. Assuming rototranslational dynamics to be classical and using irreducible spherical tensor formalism, exact analytical formulas are worked out for the two leading order spectral moments of a collision-induced band by two interacting linear molecules. The formulas are applied to the far infrared absorption by CO{sub 2}-CO{sub 2}, and permit interpretation of the experiment. This study provides evidence of the adequacy of the electrostatic induction mechanism, provided that hitherto missing vibrational terms of static polarizability are considered.

  18. Fostering expert inquiry skills and beliefs about chemistry through the MORE laboratory experience

    NASA Astrophysics Data System (ADS)

    Tien, Lydia Tsing

    Typical college science instruction fails to promote an accurate view of science as a discipline and a practice. This is likely due to the fact that the experiences of students in the classroom are very different from the actions and thought processes of scientists. Thus, students often leave the classroom experience with poor inquiry skills and naive beliefs about scientific practice. In order to bridge the gap between the typical classroom experience and expert practice, the MORE Project laboratory curriculum was developed to accompany the general chemistry course at the University of California at Berkeley. The framework guiding the curriculum development considered findings from educational and cognitive science research. The three components of the framework are: (a) exploration of concepts through authentic scientific inquiry; (b) promotion of metacognition; and (c) support for guided discovery. The curriculum provides students with a cognitive model of expert research, the MORE (Model-Observe-Reflect-Explain) Cycle, to encourage students to explore conceptually-rich systems through authentic research opportunities, such as designing experiments and refining explanatory models. By embedding the MORE structure into the laboratory curriculum, we provide students with a model for how scientists think through the inquiry process. In order to assess the impact of the MORE Project learning environment, it was implemented in two sections concurrent with the traditional laboratory experience. Various instruments were administered to determine any differences between the test and control groups with regards to attitudes towards chemistry, conceptual understanding, inquiry skills, and beliefs about scientific practice. Based on the analyses, students experiencing the MORE classroom achieved significant gains in all areas compared with students enrolled in the more traditional laboratory class. Specifically, students in the MORE class (a) recognized the complex, dynamic

  19. Unsaturated Flow Through a Fractured-Matrix-Network: Dynamic Pathways in Meso-Scale Laboratory Experiments

    SciTech Connect

    Wood, Thomas Ronald

    2002-12-01

    We conducted two laboratory experiments at the meter scale in which water was applied to the top of an initially dry, uncemented wall composed of porous bricks. One experiment (Experiment 1) encouraged evaporation and resulting mineral precipitation, while the other (Experiment 2) was designed to minimize these processes. In both cases, processes acting within the fracture network controlled early time behavior, forming discrete pathways and demonstrating fractures to act as both flow conductors and capillary barriers. At a later time, evaporation–mineral precipitation in Experiment 1 constrained flow, strengthening some pathways and starving others. In Experiment 2, the wetted structure took on the appearance of a diffuse plume; however, individual pathways persisted within the wetted structure and interacted, displaying erratic outflow over a wide range of timescales, including switching between pathways. Thus, under conditions of constant supply and both with and without evaporation–mineral precipitation, unsaturated flow through fractured rock can create dynamic preferential pathways.

  20. Evidence of an Alternative Currency for Altruism in Laboratory-Based Experiments

    PubMed Central

    Farrelly, Daniel; Moan, Emma; White, Kristi; Young, Sarah

    2015-01-01

    Research shows that altruistic behaviours arise in varying social situations in line with different theories of causes of such behaviours. However most research uses financial costs only, which makes our understanding of altruism currently limited. This study presents findings of three experiments that use a novel and simple laboratory-based task that measures altruism based on the amount of time participants are willing to spend as a cost to help others. This task assessed two specific theories; altruistic punishment (Experiments 1 & 2) and empathy-altruism (Experiment 3). All experiments showed that the task was successful, as participants were more likely to altruistically punish violators of social contracts than other scenarios (Experiments 1 and 2), and also incur more costs to behave altruistically towards others when feeling empathic than different emotional states (Experiment 3). These results provide clear support for the use and value of this novel task in future research. PMID:27247644

  1. Enhancing the Student Experiment Experience: Visible Scientific Inquiry Through a Virtual Chemistry Laboratory

    NASA Astrophysics Data System (ADS)

    Donnelly, Dermot; O'Reilly, John; McGarr, Oliver

    2013-08-01

    Practical work is often noted as a core reason many students take on science in secondary schools (high schools). However, there are inherent difficulties associated with classroom practical work that militate against scientific inquiry, an approach espoused by many science educators. The use of interactive simulations to facilitate student inquiry has emerged as a complement to practical work. This study presents case studies of four science teachers using a virtual chemistry laboratory (VCL) with their students in an explicitly guided inquiry manner. Research tools included the use of the Inquiry Science Implementation Scale in a `talk-aloud' manner, Reformed Teaching Observation Protocol for video observations, and teacher interviews. The findings suggest key aspects of practical work that hinder teachers in adequately supporting inquiry and highlight where a VCL can overcome many of these difficulties. The findings also indicate considerations in using the VCL in its own right.

  2. Insight into the dynamics of granular column collapse using Discrete Element Methods and laboratory experiments

    NASA Astrophysics Data System (ADS)

    Martin, Hugo; Mangeney, Anne; Farin, Maxime; Richard, Patrick

    2016-04-01

    The mechanical behavior of granular flows is still an open issue. In particular, quantitative agreement between the detailed dynamics of the flow and laboratory experiments is necessary to better constrain the performance and limits of the models. We propose here to compare quantitatively the flow profiles and the force during granular column collapse simulated using Discrete Element Models and laboratory experiments. These small scale experiments are performed with dry granular material released initially from a cylinder on a sloping plane. The flow profiles and the acoustic signal generated by the granular impacts and stresses on the plane are recorded systematically [Farin et al., 2015]. These experiments are simulated using the Discrete Element Method Modys [Richard et al., 2000]. We show that the effect of the removing gate should be taken into account in the model in order to quantatively reproduce the flow dynamics. Furthermore we compare the simulated and observed acoustic signals that are generated by the fluctuating stresses exerted by the grains on the substrate in different frequency bands. [1] P. Richard et Luc Oger. 2000 Etude de la géométrie de milieux granulaires modèles tridimensionnels par simulation numérique. [2] Farin, M., Mangeney, A., Toussaint, R., De Rosny, J., Shapiro, N., Dewez, T., Hibert, C., Mathon, C., Sedan, O., Berger. 2015, Characterization of rockfalls from seismic signal: insights from laboratory experiments

  3. Photochemistry of organic molecules in the Solar System : Experiments in Terrestrial orbit and laboratory simulations

    NASA Astrophysics Data System (ADS)

    Cottin, Hervé; Guan, Yuan Yong; Coll, Patrice; Coscia, David; Fray, Nicolas; Macari, Frederique; Raulin, Francois; Stalport, Fabien; Szopa, Cyril; Chaput, Didier; Viso, Michel; Bertrand, Marylene; Chabin, Annie; Thirkell, Laurent; Westall, Frances; Maurel, Marie-Christine; Vergne, Jacques; Brack, André

    Photochemistry is leading the chemical evolution in the Solar System. The VUV photolysis of organic compounds is easy to study in the laboratory, with monochromatic sources, but it is difficult to simulate the whole range of wavelengths corresponding to the most energetic part of the Solar radiation (<190nm). This is why the results obtained in laboratory are difficult to extrapolate to the extraterrestrial environments. Space is the only laboratory allowing the exposure of samples to all the space parameters simultaneously. We present the preparation and follow-up of experiments with exobiological interest, in Terrestrial orbit, (AMINO, PRO- CESS, and UV-olution) organized by the European Space Agency (ESA). The experiments are carried out on a FOTON capsule, using the BIOPAN facility (UVolution Sept.2007), and on the International Space Station, using the EXPOSE facilities on the COLUMBUS European module (PROCESS - beginning Feb 2008) and the Russian module ZARYA (AMINO) (beginning expected by the end of 2008). In this project, organic molecules related to the study of the chemistry of Mars, Titan, meteorites or Comets are exposed in space between 10 days and 18 months (according to the experiment). The evolution of the samples can be studied when the samples are returned to Earth, and compared to the results of ground experiments. Preliminary results of the Uvolution experiment will be presented.

  4. Experimenting with impacts in a conceptual physics or descriptive astronomy laboratory

    NASA Astrophysics Data System (ADS)

    LoPresto, Michael C.

    2016-07-01

    What follows is a description of the procedure for and results of a simple experiment on the formation of impact craters designed for the laboratory portions of lower mathematical-level general education science courses such as conceptual physics or descriptive astronomy. The experiment provides necessary experience with data collection and analysis as well as practice with quantitative skills such as measurement and calculation in a manner that does not exceed the mathematical scope of the courses while, due to its hands-on nature and interesting topic, remaining engaging.

  5. Magnetic field reversals: the geodynamo, laboratory experiments and models (Lewis Fry Richardson Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Fauve, S.

    2009-04-01

    I will first compare reversals of Earth's magnetic field known from palaeomagnetic data to the ones observed in a laboratory experiment for the magnetic field generated by a turbulent flow of liquid sodium (VKS experiment). Despite major differences between the flow in Earth's core and in the experiment, both systems display reversals that share a lot of similar properties. I will understand them using a simple model in the framework of low dynamical system theory. Finally, I will discuss what can be learnt from numerical simulations.

  6. On the potential for using immersive virtual environments to support laboratory experiment contextualisation

    NASA Astrophysics Data System (ADS)

    Machet, Tania; Lowe, David; Gütl, Christian

    2012-12-01

    This paper explores the hypothesis that embedding a laboratory activity into a virtual environment can provide a richer experimental context and hence improve the understanding of the relationship between a theoretical model and the real world, particularly in terms of the model's strengths and weaknesses. While an identified learning objective of laboratories is to support the understanding of the relationship between models and reality, the paper illustrates that this understanding is hindered by inherently limited experiments and that there is scope for improvement. Despite the contextualisation of learning activities having been shown to support learning objectives in many fields, there is traditionally little contextual information presented during laboratory experimentation. The paper argues that the enhancing laboratory activity with contextual information affords an opportunity to improve students' understanding of the relationship between the theoretical model and the experiment (which is effectively a proxy for the complex real world), thereby improving their understanding of the relationship between the model and reality. The authors propose that these improvements can be achieved by setting remote laboratories within context-rich virtual worlds.

  7. Student Reciprocal Peer Teaching as a Method for Active Learning: An Experience in an Electrotechnical Laboratory

    NASA Astrophysics Data System (ADS)

    Muñoz-García, Miguel A.; Moreda, Guillermo P.; Hernández-Sánchez, Natalia; Valiño, Vanesa

    2012-10-01

    Active learning is one of the most efficient mechanisms for learning, according to the psychology of learning. When students act as teachers for other students, the communication is more fluent and knowledge is transferred easier than in a traditional classroom. This teaching method is referred to in the literature as reciprocal peer teaching. In this study, the method is applied to laboratory sessions of a higher education institution course, and the students who act as teachers are referred to as "laboratory monitors." A particular way to select the monitors and its impact in the final marks is proposed. A total of 181 students participated in the experiment, experiences with laboratory monitors are discussed, and methods for motivating and training laboratory monitors and regular students are proposed. The types of laboratory sessions that can be led by classmates are discussed. This work is related to the changes in teaching methods in the Spanish higher education system, prompted by the Bologna Process for the construction of the European Higher Education Area

  8. Laboratory transport experiments with antibiotic sulfadiazine: Experimental results and parameter uncertainty analysis

    NASA Astrophysics Data System (ADS)

    Sittig, S.; Vrugt, J. A.; Kasteel, R.; Groeneweg, J.; Vereecken, H.

    2011-12-01

    Persistent antibiotics in the soil potentially contaminate the groundwater and affect the quality of drinking water. To improve our understanding of antibiotic transport in soils, we performed laboratory transport experiments in soil columns under constant irrigation conditions with repeated applications of chloride and radio-labeled SDZ. The tracers were incorporated in the first centimeter, either with pig manure or with solution. Breakthrough curves and concentration profiles of the parent compound and the main transformation products were measured. The goal is to describe the observed nonlinear and kinetic transport behavior of SDZ. Our analysis starts with synthetic transport data for the given laboratory flow conditions for tracers which exhibit increasingly complex interactions with the solid phase. This first step is necessary to benchmark our inverse modeling approach for ideal situations. Then we analyze the transport behavior using the column experiments in the laboratory. Our analysis uses a Markov chain Monte Carlo sampler (Differential Evolution Adaptive Metropolis algorithm, DREAM) to efficiently search the parameter space of an advective-dispersion model. Sorption of the antibiotics to the soil was described using a model regarding reversible as well as irreversible sorption. This presentation will discuss our initial findings. We will present the data of our laboratory experiments along with an analysis of parameter uncertainty.

  9. A simple laboratory experiment to measure the surface tension of a liquid in contact with air

    NASA Astrophysics Data System (ADS)

    Riba, Jordi-Roger; Esteban, Bernat

    2014-09-01

    A simple and accurate laboratory experiment to measure the surface tension of liquids has been developed, which is well suited to teach the behaviour of liquids to first- or second-year students of physics, engineering or chemistry. The experimental setup requires relatively inexpensive equipment usually found in physics and chemistry laboratories, since it consists of a used or recycled burette, an analytical balance and a stereoscopic microscope or a micrometer. Experimental data and error analysis show that the surface tension of distilled water, 1-butanol and glycerol can be determined with accuracy better than 1.4%.

  10. Communication and laboratory performance in parapsychology experiments: demand characteristics and the social organization of interaction.

    PubMed

    Wooffitt, Robin

    2007-09-01

    This paper reports findings from a conversation analytic study of experimenter-participant interaction in parapsychology experiments. It shows how properties of communication through which the routine business of the experiment is conducted may have an impact on the research participant's subsequent performance. In this, the study explores social psychological features of the psychology laboratory. In particular, it examines aspects of Orne's (1962) account of what he called the demand characteristics of the psychological experiment. The data come from a corpus of audio recordings of experimenter-participant interaction during experiments on extra-sensory perception. These kinds of experiments, and the phenomena they purport to study, are undoubtedly controversial; however, the paper argues that there are grounds for social psychologists to consider parapsychology experiments as a class (albeit distinctive) of psychology experiments, and, therefore, as sites in which general social psychological and communicative phenomena can be studied. The empirical sections of the paper examine interaction during part of the experimental procedure when the experimenter verbally reviews a record of the participant's imagery reported during an earlier part of the experiment. The analysis shows that the way in which the experimenter acknowledges the research participants' utterances may be significant for the trajectory of the experiment and explores how the participants' subsequent performance in the experiment may be influenced by interactionally generated contingencies. PMID:17877849

  11. Solute and heat transport model of the Henry and Hilleke laboratory experiment

    USGS Publications Warehouse

    Langevin, C.D.; Dausman, A.M.; Sukop, M.C.

    2010-01-01

    SEAWAT is a coupled version of MODFLOW and MT3DMS designed to simulate variable-density ground water flow and solute transport. The most recent version of SEAWAT, called SEAWAT Version 4, includes new capabilities to represent simultaneous multispecies solute and heat transport. To test the new features in SEAWAT, the laboratory experiment of Henry and Hilleke (1972) was simulated. Henry and Hilleke used warm fresh water to recharge a large sand-filled glass tank. A cold salt water boundary was represented on one side. Adjustable heating pads were used to heat the bottom and left sides of the tank. In the laboratory experiment, Henry and Hilleke observed both salt water and fresh water flow systems separated by a narrow transition zone. After minor tuning of several input parameters with a parameter estimation program, results from the SEAWAT simulation show good agreement with the experiment. SEAWAT results suggest that heat loss to the room was more than expected by Henry and Hilleke, and that multiple thermal convection cells are the likely cause of the widened transition zone near the hot end of the tank. Other computer programs with similar capabilities may benefit from benchmark testing with the Henry and Hilleke laboratory experiment. Journal Compilation ?? 2009 National Ground Water Association.

  12. Solute and heat transport model of the Henry and hilleke laboratory experiment.

    PubMed

    Langevin, Christian D; Dausman, Alyssa M; Sukop, Michael C

    2010-01-01

    SEAWAT is a coupled version of MODFLOW and MT3DMS designed to simulate variable-density ground water flow and solute transport. The most recent version of SEAWAT, called SEAWAT Version 4, includes new capabilities to represent simultaneous multispecies solute and heat transport. To test the new features in SEAWAT, the laboratory experiment of Henry and Hilleke (1972) was simulated. Henry and Hilleke used warm fresh water to recharge a large sand-filled glass tank. A cold salt water boundary was represented on one side. Adjustable heating pads were used to heat the bottom and left sides of the tank. In the laboratory experiment, Henry and Hilleke observed both salt water and fresh water flow systems separated by a narrow transition zone. After minor tuning of several input parameters with a parameter estimation program, results from the SEAWAT simulation show good agreement with the experiment. SEAWAT results suggest that heat loss to the room was more than expected by Henry and Hilleke, and that multiple thermal convection cells are the likely cause of the widened transition zone near the hot end of the tank. Other computer programs with similar capabilities may benefit from benchmark testing with the Henry and Hilleke laboratory experiment. PMID:19563419

  13. Status report and preliminary results of the spacecraft control laboratory experiment

    NASA Technical Reports Server (NTRS)

    Williams, Jeffrey P.

    1987-01-01

    The Spacecraft Control Laboratory Experiment (SCOLE) was conceived to provide a physical test bed for investigation of control techniques for large flexible spacecraft. The SCOLE problem is defined as two design challenges. The first challenge is to design control laws for a mathematical model of a large antenna attached to the space shuttle by a long flexible mast. The second challenge is to design and implement a control scheme on a laboratory representation of the structure modelled in the first part. Control sensors and actuators are typical of those which the control designer would have to deal with on an actual spacecraft. The primary control processing computer is representative of the capacity and speed which may be expected in actual flight computers. A brief description is given of the laboratory apparatus along with some preliminary results of structural dynamics tests and actuator effectiveness tests.

  14. Development of a multipass cell for atomic collision experiments in the presence of a laser field

    NASA Astrophysics Data System (ADS)

    Braithwaite, N.; Deharak, B. A.; Martin, N. L. S.; Murray, A. J.; Nixon, K. L.

    2011-05-01

    Experiments on electron-impact ionization in the presence of a pulsed laser field are currently being carried out at the Universities of Manchester, UK and Kentucky, USA. The experiments are difficult because, with a typical laser pulse length of a few nanoseconds and a repetition rate of order 10 Hz, the live time is equivalent to a few seconds per year. In order to increase the effective live time, one possible approach is to create a ``multipass cell'' in which a laser pulse is passed several times through the interaction region. A scheme will be presented which uses spherical or parabolic mirrors to create a non-repetitive path which passes through the interaction region many times before being guided out of the cell. The pulse may then either be dumped or passed through a regenerative amplifier (thus allowing for any losses in the cavity), and then re-injected into the original path, so as to increase the interaction time by several orders of magnitude. Experiments on electron-impact ionization in the presence of a pulsed laser field are currently being carried out at the Universities of Manchester, UK and Kentucky, USA. The experiments are difficult because, with a typical laser pulse length of a few nanoseconds and a repetition rate of order 10 Hz, the live time is equivalent to a few seconds per year. In order to increase the effective live time, one possible approach is to create a ``multipass cell'' in which a laser pulse is passed several times through the interaction region. A scheme will be presented which uses spherical or parabolic mirrors to create a non-repetitive path which passes through the interaction region many times before being guided out of the cell. The pulse may then either be dumped or passed through a regenerative amplifier (thus allowing for any losses in the cavity), and then re-injected into the original path, so as to increase the interaction time by several orders of magnitude. Work supported by NSF Grant PHY-0855040 (NLSM).

  15. The Relationship Between Achievement and Laboratory Skills to the Number of Experiments Performed by the High School Chemistry Student.

    ERIC Educational Resources Information Center

    Grosmark, Jay Waldo

    The purpose of this study was to determine the effectiveness of doubling the laboratory experiments and time in the laboratory on student achievement, performance on laboratory skills, and attitude toward high school chemistry. One hundred forty-three students were assigned either of two treatments. All students performed the same basic…

  16. DebriSat - A Planned Laboratory-Based Satellite Impact Experiment for Breakup Fragment Characterizations

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Clark, S.; Fitz-Coy, N.; Huynh, T.; Opiela, J.; Polk, M.; Roebuck, B.; Rushing, R.; Sorge, M.; Werremeyer, M.

    2013-01-01

    The goal of the DebriSat project is to characterize fragments generated by a hypervelocity collision involving a modern satellite in low Earth orbit (LEO). The DebriSat project will update and expand upon the information obtained in the 1992 Satellite Orbital Debris Characterization Impact Test (SOCIT), which characterized the breakup of a 1960 s US Navy Transit satellite. There are three phases to this project: the design and fabrication of DebriSat - an engineering model representing a modern, 60-cm/50-kg class LEO satellite; conduction of a laboratory-based hypervelocity impact to catastrophically break up the satellite; and characterization of the properties of breakup fragments down to 2 mm in size. The data obtained, including fragment size, area-to-mass ratio, density, shape, material composition, optical properties, and radar cross-section distributions, will be used to supplement the DoD s and NASA s satellite breakup models to better describe the breakup outcome of a modern satellite.

  17. Apoptosis as the focus of an authentic research experience in a cell physiology laboratory.

    PubMed

    Byrd, Shere K

    2016-06-01

    Curriculum-embedded independent research is a high-impact teaching practice that has been shown to increase student engagement and learning. This article describes a multiweek laboratory project for an upper-division undergraduate cell physiology laboratory using apoptosis via the mitochondrial pathway as the overarching theme. Students did literature research on apoptotic agents that acted via the mitochondrial pathway. Compounds ranged from natural products such as curcumin to synthetic compounds such as etoposide. Groups of two to three students planned a series of experiments using one of three cultured cell lines that required them to 1) learn to culture cells; 2) determine treatment conditions, including apoptotic agent solubility and concentration ranges that had been reported in the literature; 3) choose two methods to validate/quantify apoptotic capacity of the reagent; and 4) attempt to "rescue" cells from undergoing apoptosis using one of several available compounds/methods. In essence, given some reagent and equipment constraints, students designed an independent experiment to highlight the effects of different apoptotic agents on cells in culture. Students presented their experimental designs as in a laboratory group meeting and their final findings as a classroom "symposium." This exercise can be adapted to many different types of laboratories with greater or lesser equipment and instrumentation constraints, incorporates several core cell physiology methods, and encourages key experimental design and critical thinking components of independent research. PMID:27231261

  18. Laboratory experiments in the study of the chemistry of the outer planets.

    PubMed

    Scattergood, T W

    1987-01-01

    The investigation of chemical evolution of bodies in our solar system has, in the past, included observations, theoretical modeling, and laboratory simulations. Of these programs, the last one has been the most criticized due to the inherent difficulties in accurately recreating alien environments in the laboratory. Processes such as wall reactions and changes in chemistry due to difficulties in achieving realistic conditions of temperature, pressure, composition, and energy flux may yield results which are not truly representative of the systems being modeled. However, many laboratory studies have been done which have yielded data useful in planetary science. Gross simulations of atmospheric chemistry have placed constraints on the nature of complex molecules expected in planetary atmospheres. More precise studies of specific chemical processes have provided information about the sources and properties of product gases and aerosols. Determinations of basic properties such as spectral features and reaction rate constants yield data useful in the interpretation of observations and in computational modeling. Alone, and in conjunction with modeling, laboratory experiments will continue to be used to further our understanding of the outer solar system, and some experiments that need to be done are listed. PMID:11538221

  19. Summary Report of Laboratory Critical Experiment Analyses Performed for the Disposal Criticality Analysis Methodology

    SciTech Connect

    J. Scaglione

    1999-09-09

    This report, ''Summary Report of Laboratory Critical Experiment Analyses Performed for the Disposal Criticality Analysis Methodology'', contains a summary of the laboratory critical experiment (LCE) analyses used to support the validation of the disposal criticality analysis methodology. The objective of this report is to present a summary of the LCE analyses' results. These results demonstrate the ability of MCNP to accurately predict the critical multiplication factor (keff) for fuel with different configurations. Results from the LCE evaluations will support the development and validation of the criticality models used in the disposal criticality analysis methodology. These models and their validation have been discussed in the ''Disposal Criticality Analysis Methodology Topical Report'' (CRWMS M&O 1998a).

  20. Laboratory experiments on membrane filter sampling of airborne mycotoxins produced by Stachybotrys atra corda

    NASA Astrophysics Data System (ADS)

    Pasanen, A.-L.; Nikulin, M.; Tuomainen, M.; Berg, S.; Parikka, P.; Hintikka, E.-L.

    A membrane filter method for sampling of airborne stachybotrystoxins was studied in the laboratory. Toxigenic strains of Stachybotrys atra on wallpaper, grain, hay and straw were used as toxin sources in the experiments. Air samples were collected on cellulose nitrate and polycarbonate membrane filters at air flow rates of 10-20 ℓ min -1. After the filter sampling, the air was passed through methanol. The results showed that stachybotrystoxins (trichothecenes) were concentrated in airborne fungal propagules, and thus can be collected on filters. Polycarbonate filters with a pore size of 0.2 μm collected the highest percentage of toxic samples. The laboratory experiments indicated that polycarbonate filter sampling for the collection of airborne mycotoxins is a promising method for extension to field measurements.