Science.gov

Sample records for laboratory development division

  1. Prototype prosperity-diversity game for the Laboratory Development Division of Sandia National Laboratories

    SciTech Connect

    VanDevender, P.; Berman, M.; Savage, K.

    1996-02-01

    The Prosperity Game conducted for the Laboratory Development Division of National Laboratories on May 24--25, 1995, focused on the individual and organizational autonomy plaguing the Department of Energy (DOE)-Congress-Laboratories` ability to manage the wrenching change of declining budgets. Prosperity Games are an outgrowth and adaptation of move/countermove and seminar War Games. Each Prosperity Game is unique in that both the game format and the player contributions vary from game to game. This particular Prosperity Game was played by volunteers from Sandia National Laboratories, Eastman Kodak, IBM, and AT&T. Since the participants fully control the content of the games, the specific outcomes will be different when the team for each laboratory, Congress, DOE, and the Laboratory Operating Board (now Laboratory Operations Board) is composed of executives from those respective organizations. Nevertheless, the strategies and implementing agreements suggest that the Prosperity Games stimulate cooperative behaviors and may permit the executives of the institutions to safely explore the consequences of a family of DOE concert.

  2. EPA/OFFICE OF RESEARCH AND DEVELOPMENT'S NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY/HUMAN STUDIES DIVISION INTERNET SITE

    EPA Science Inventory

    The Human Studies Division conducts clinical and epidemiological research to improve the understanding of human health risks associated with environmental pollution. HSD is part of the National Health and Environmental Effects Research Laboratory within the Office of Research and...

  3. Laboratory Astrophysics Division of The AAS (LAD)

    NASA Astrophysics Data System (ADS)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-10-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  4. Laboratory Astrophysics Division of the AAS (LAD)

    NASA Technical Reports Server (NTRS)

    Salama, Farid; Drake, R. P.; Federman, S. R.; Haxton, W. C.; Savin, D. W.

    2012-01-01

    The purpose of the Laboratory Astrophysics Division (LAD) is to advance our understanding of the Universe through the promotion of fundamental theoretical and experimental research into the underlying processes that drive the Cosmos. LAD represents all areas of astrophysics and planetary sciences. The first new AAS Division in more than 30 years, the LAD traces its history back to the recommendation from the scientific community via the White Paper from the 2006 NASA-sponsored Laboratory Astrophysics Workshop. This recommendation was endorsed by the Astronomy and Astrophysics Advisory Committee (AAAC), which advises the National Science Foundation (NSF), the National Aeronautics and Space Administration (NASA), and the U.S. Department of Energy (DOE) on selected issues within the fields of astronomy and astrophysics that are of mutual interest and concern to the agencies. In January 2007, at the 209th AAS meeting, the AAS Council set up a Steering Committee to formulate Bylaws for a Working Group on Laboratory Astrophysics (WGLA). The AAS Council formally established the WGLA with a five-year mandate in May 2007, at the 210th AAS meeting. From 2008 through 2012, the WGLA annually sponsored Meetings in-a-Meeting at the AAS Summer Meetings. In May 2011, at the 218th AAS meeting, the AAS Council voted to convert the WGLA, at the end of its mandate, into a Division of the AAS and requested draft Bylaws from the Steering Committee. In January 2012, at the 219th AAS Meeting, the AAS Council formally approved the Bylaws and the creation of the LAD. The inaugural gathering and the first business meeting of the LAD were held at the 220th AAS meeting in Anchorage in June 2012. You can learn more about LAD by visiting its website at http://lad.aas.org/ and by subscribing to its mailing list.

  5. Graduate Research Assistant Program for Professional Development at Oak Ridge National Laboratory (ORNL) Global Nuclear Security Technology Division (GNSTD)

    SciTech Connect

    Eipeldauer, Mary D; Shelander Jr, Bruce R

    2012-01-01

    The southeast is a highly suitable environment for establishing a series of nuclear safety, security and safeguards 'professional development' courses. Oak Ridge National Laboratory (ORNL) provides expertise in the research component of these subjects while the Y-12 Nuclear Security Complex handles safeguards/security and safety applications. Several universities (i.e., University of Tennessee, Knoxville (UTK), North Carolina State University, University of Michigan, and Georgia Technology Institute) in the region, which offer nuclear engineering and public policy administration programs, and the Howard Baker Center for Public Policy make this an ideal environment for learning. More recently, the Institute for Nuclear Security (INS) was established between ORNL, Y-12, UTK and Oak Ridge Associate Universities (ORAU), with a focus on five principal areas. These areas include policy, law, and diplomacy; education and training; science and technology; operational and intelligence capability building; and real-world missions and applications. This is a new approach that includes professional development within the graduate research assistant program addressing global needs in nuclear security, safety and safeguards.

  6. Laboratory directed research and development program FY 1997

    SciTech Connect

    1998-03-01

    This report compiles the annual reports of Laboratory Directed Research and Development projects supported by the Berkeley Lab. Projects are arranged under the following topical sections: (1) Accelerator and fusion research division; (2) Chemical sciences division; (3) Computing Sciences; (4) Earth sciences division; (5) Environmental energy technologies division; (6) life sciences division; (7) Materials sciences division; (8) Nuclear science division; (9) Physics division; (10) Structural biology division; and (11) Cross-divisional. A total of 66 projects are summarized.

  7. Environmental Sciences Division Toxicology Laboratory standard operating procedures

    SciTech Connect

    Kszos, L.A.; Stewart, A.J.; Wicker, L.F.; Logsdon, G.M.

    1989-09-01

    This document was developed to provide the personnel working in the Environmental Sciences Division's Toxicology Laboratory with documented methods for conducting toxicity tests. The document consists of two parts. The first part includes the standard operating procedures (SOPs) that are used by the laboratory in conducting toxicity tests. The second part includes reference procedures from the US Environmental Protection Agency document entitled Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, upon which the Toxicology Laboratory's SOPs are based. Five of the SOPs include procedures for preparing Ceriodaphnia survival and reproduction test. These SOPs include procedures for preparing Ceriodaphnia food (SOP-3), maintaining Ceriodaphnia cultures (SOP-4), conducting the toxicity test (SOP-13), analyzing the test data (SOP-13), and conducting a Ceriodaphnia reference test (SOP-15). Five additional SOPs relate specifically to the fathead minnow (Pimephales promelas) larval survival and growth test: methods for preparing fathead minnow larvae food (SOP-5), maintaining fathead minnow cultures (SOP-6), conducting the toxicity test (SOP-9), analyzing the test data (SOP-12), and conducting a fathead minnow reference test (DOP-14). The six remaining SOPs describe methods that are used with either or both tests: preparation of control/dilution water (SOP-1), washing of glassware (SOP-2), collection and handling of samples (SOP-7), preparation of samples (SOP-8), performance of chemical analyses (SOP-11), and data logging and care of technical notebooks (SOP-16).

  8. A Multiweek Upper-Division Inorganic Laboratory Based on Metallacrowns

    ERIC Educational Resources Information Center

    Sirovetz, Brian J.; Walters, Nicole E.; Bender, Collin N.; Lenivy, Christopher M.; Troup, Anna S.; Predecki, Daniel P.; Richardson, John N.; Zaleski, Curtis M.

    2013-01-01

    Metallacrowns are a versatile class of inorganic compounds with uses in several areas of chemistry. Students engage in a multiweek, upper-division inorganic laboratory that explores four different metallacrown compounds: Fe[superscript III](O[subscript 2]CCH[subscript 3])[subscript 3][9-MC[subscript Fe][superscript III][subscript…

  9. The Chemical Technology Division at Argonne National Laboratory: Applying chemical innovation to environmental problems

    SciTech Connect

    1995-06-01

    The Chemical Technology Division is one of the largest technical divisions at Argonne National Laboratory, a leading center for research and development related to energy and environmental issues. Since its inception in 1948, the Division has pioneered in developing separations processes for the nuclear industry. The current scope of activities includes R&D on methods for disposing of radioactive and hazardous wastes and on energy conversion processes with improved efficiencies, lower costs, and reduced environmental impact. Many of the technologies developed by CMT can be applied to solve manufacturing as well as environmental problems of industry.

  10. 77 FR 4368 - Abbott Laboratories, Diagnostics Division, Including On-Site Leased Workers From Manpower...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-27

    ... Employment and Training Administration Abbott Laboratories, Diagnostics Division, Including On-Site Leased... for Worker Adjustment Assistance on February 24, 2011, applicable to workers of Abbott Laboratories... location of Abbott Laboratories, Diagnostics Division. The Department has determined that these...

  11. 78 FR 70579 - Deluxe Laboratories, Inc., a Division of Deluxe Entertainment Services Group, Inc. Hollywood...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-26

    ... Employment and Training Administration Deluxe Laboratories, Inc., a Division of Deluxe Entertainment Services... division of Deluxe Entertainment Services Group, Inc., Hollywood, California (hereafter referred to as... division of Deluxe Entertainment Services Group, Inc., Hollywood, California, meet the worker...

  12. Asymmetric cell division in plant development.

    PubMed

    Heidstra, Renze

    2007-01-01

    Plant embryogenesis creates a seedling with a basic body plan. Post-embryonically the seedling elaborates with a lifelong ability to develop new tissues and organs. As a result asymmetric cell divisions serve essential roles during embryonic and postembryonic development to generate cell diversity. This review highlights selective cases of asymmetric division in the model plant Arabidopsis thaliana and describes the current knowledge on fate determinants and mechanisms involved. Common themes that emerge are: 1. role of the plant hormone auxin and its polar transport machinery; 2. a MAP kinase signaling cascade and; 3. asymmetric segregating transcription factors that are involved in several asymmetric cell divisions. PMID:17585494

  13. BROOKHAVEN NATIONAL LABORATORY INSTRUMENTATION DIVISION, R AND D PROGRAMS, FACILITIES, STAFF.

    SciTech Connect

    INSTRUMENTATION DIVISION STAFF

    1999-06-01

    To develop state-of-the-art instrumentation required for experimental research programs at BNL, and to maintain the expertise and facilities in specialized high technology areas essential for this work. Development of facilities is motivated by present BNL research programs and anticipated future directions of BNL research. The Division's research efforts also have a significant impact on programs throughout the world that rely on state-of-the-art radiation detectors and readout electronics. Our staff scientists are encouraged to: Become involved in challenging problems in collaborations with other scientists; Offer unique expertise in solving problems; and Develop new devices and instruments when not commercially available. Scientists from other BNL Departments are encouraged to bring problems and ideas directly to the Division staff members with the appropriate expertise. Division staff is encouraged to become involved with research problems in other Departments to advance the application of new ideas in instrumentation. The Division Head integrates these efforts when they evolve into larger projects, within available staff and budget resources, and defines the priorities and direction with concurrence of appropriate Laboratory program leaders. The Division Head also ensures that these efforts are accompanied by strict adherence to all ES and H regulatory mandates and policies of the Laboratory. The responsibility for safety and environmental protection is integrated with supervision of particular facilities and conduct of operations.

  14. 2008 Research Portfolio: Research & Development Division

    ERIC Educational Resources Information Center

    Educational Testing Service, 2008

    2008-01-01

    This document describes the breadth of the research being conducted in 2008 by the Research and Development Division at Educational Testing Service (ETS). The research described falls into three large categories: (1) Research supported by the ETS research allocation; (2) Research funded by testing programs at ETS; and (3) Research funded by…

  15. Website for the Astrochemistry Laboratory, Astrophysics Branch, Space Sciences Division

    NASA Technical Reports Server (NTRS)

    Sandford, Scott; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The Astrochemistry Laboratory in the Astrophysics Branch (SSA) of the Space Sciences Division at NASA's Ames Research Center specializes in the study of extraterrestrial materials and their analogs. The staff has pioneered laboratory studies of space environments including interstellar, cometary, and planetary ices, simulations of the so-called 'Unidentified' Infrared Emission Bands and Diffuse Interstellar Bands using PAHs (Polycyclic Aromatic Hydrocarbons) and PAH-related materials, and has extensive experience with low-temperature spectroscopy and astronomical observation. Important discoveries made by the Astrochemistry Group include: (1) The recognition that polycyclic aromatic hydrocarbons and their ions are common in space; (2) The identification of a major fraction of the known molecular species frozen in interstellar/pre-cometary ices; (3) The recognition that a significant fraction of the carbon in the interstellar medium is carried by both microdiamonds and organic materials; (4) The expansion of the types of molecules expected to be synthesized in interstellar/pre-cometary ices. These could be delivered to the early Earth (or other body) and influence the origin or early evolution of life.

  16. Investigating student learning in upper-division laboratory courses on analog electronics

    NASA Astrophysics Data System (ADS)

    Stetzer, Mackenzie

    2015-03-01

    There are many important learning goals associated with upper-division laboratory instruction; however, until recently, relatively little work has focused on assessing the impact of these laboratory-based courses on students. As part of an ongoing, in-depth investigation of student learning in upper-division laboratory courses on analog electronics, we have been examining the extent to which students enrolled in these courses develop a robust and functional understanding of both canonical electronics topics (e.g., diode, transistor, and op-amp circuits) and foundational circuits concepts (e.g., Kirchhoff's laws and voltage division). This focus on conceptual understanding is motivated in part by a large body of research revealing significant student difficulties with simple dc circuits at the introductory level and by expectations that students finish electronics courses with a level of understanding suitable for building common, practical circuits in a real-world environment. Recently, we have extended the scope of our investigation to include more laboratory-focused learning goals such as the development of (1) troubleshooting proficiency and (2) circuit chunking and design abilities. In this talk, I will highlight findings from written questions and interview tasks that have been designed to probe student understanding in sufficient depth to identify conceptual and reasoning difficulties. I will also use specific examples to illustrate the ways in which this research may inform instruction in upper-division laboratory courses on analog electronics. This work has been supported in part by the National Science Foundation under Grant Nos. DUE-1323426, DUE-1022449, DUE-0962805, and DUE-0618185.

  17. Section III, Division 5 - Development And Future Directions

    SciTech Connect

    Morton, Dana K.; Jetter, Robert I; Nestell, James E.; Burchell, Timothy D; Sham, Sam

    2012-01-01

    This paper provides commentary on a new division under Section III of the ASME Boiler and Pressure Vessel (BPV) Code. This new Division 5 has an issuance date of November 1, 2011 and is part of the 2011 Addenda to the 2010 Edition of the BPV Code. The new Division covers the rules for the design, fabrication, inspection and testing of components for high temperature nuclear reactors. Information is provided on the scope and need for Division 5, the structure of Division 5, where the rules originated, the various changes made in finalizing Division 5, and the future near-term and long-term expectations for Division 5 development.

  18. Physics Division Argonne National Laboratory description of the programs and facilities.

    SciTech Connect

    Thayer, K.J.

    1999-05-24

    The ANL Physics Division traces its roots to nuclear physics research at the University of Chicago around the time of the second world war. Following the move from the University of Chicago out to the present Argonne site and the formation of Argonne National Laboratory: the Physics Division has had a tradition of research into fundamental aspects of nuclear and atomic physics. Initially, the emphasis was on areas such as neutron physics, mass spectrometry, and theoretical studies of the nuclear shell model. Maria Goeppert Maier was an employee in the Physics Division during the time she did her Nobel-Prize-winning work on the nuclear shell model. These interests diversified and at the present time the research addresses a wide range of current problems in nuclear and atomic physics. The major emphasis of the current experimental nuclear physics research is in heavy-ion physics, centered around the ATLAS facility (Argonne Tandem-Linac Accelerator System) with its new injector providing intense, energetic ion beams over the fill mass range up to uranium. ATLAS is a designated National User Facility and is based on superconducting radio-frequency technology developed in the Physics Division. A small program continues in accelerator development. In addition, the Division has a strong program in medium-energy nuclear physics carried out at a variety of major national and international facilities. The nuclear theory research in the Division spans a wide range of interests including nuclear dynamics with subnucleonic degrees of freedom, dynamics of many-nucleon systems, nuclear structure, and heavy-ion interactions. This research makes contact with experimental research programs in intermediate-energy and heavy-ion physics, both within the Division and on the national and international scale. The Physics Division traditionally has strong connections with the nation's universities. We have many visiting faculty members and we encourage students to participate in our

  19. Fiscal years 1993 and 1994 decontamination and decommissioning activities photobriefing book for the Argonne National Laboratory-East Site, Technology Development Division, Decontamination and Decommissioning Projects Department

    SciTech Connect

    1995-12-31

    This photobriefing book describes the ongoing decontamination and decommissioning projects at the Argonne National Laboratory (ANL)-East Site near Lemont, Illinois. The book is broken down into three sections: introduction, project descriptions, and summary. The introduction elates the history and mission of the Decontamination and Decommissioning (D and D) Projects Department at ANL-East. The second section describes the active ANL-East D and D projects, giving a project history and detailing fiscal year (FY) 1993 and FY 1994 accomplishments and FY 1995 goals. The final section summarizes the goals of the D and D Projects Department and the current program status. The D/D projects include the Experimental Boiling Water Reactor, Chicago Pile-5 Reactor, that cells, and plutonium gloveboxes. 73 figs.

  20. Investigating Student Ownership of Projects in Upper-Division Physics Laboratory Courses

    NASA Astrophysics Data System (ADS)

    Stanley, Jacob

    In undergraduate research experiences, student development of an identity as a scientist is coupled to their sense of ownership of their research projects. As a first step towards studying similar connections in physics laboratory courses, we investigate student ownership of projects in a lasers-based upper-division course. Students spent the final seven weeks of the semester working in groups on final projects of their choosing. Using data from the Project Ownership Survey and weekly student reflections, we investigate student ownership as it relates to students' personal agency, self-efficacy, peer interactions, and complex affective responses to challenges and successes. We present evidence of students' project ownership in an upper-division physics lab. Additionally, we propose a model for student development of ownership through cycles of frustration and excitement as students progress on their projects. This work was supported by NSF Grant Nos. DUE-1323101 and DUE-1334170.

  1. Los Alamos National Laboratory Prototype Fabrication Division CNM Briefing

    SciTech Connect

    Hidalgo, Stephen P.; Keyser, Richard J.

    2012-06-18

    Prototype Fabrication Division designs, programs, manufactures, and inspects on-site high quality, diverse material parts and components that can be delivered at the pace the customer needs to meet their mission. Our goal is to bring vision to reality in the name of science.

  2. ANALYTICAL CAPABILITY - ISOTOPE HYDROLOGY LABORATORY (WATER QUALITY MANAGEMENT BRANCH, WATER SUPPLY AND WATER RESOURCES DIVISION, NRMRL)

    EPA Science Inventory

    The mission of NRMRL's Water Supply and Water Resources Division's Isotope Hydrology Laboratory is to resolve environmental hydrology problems through research and application of naturally occurring isotopes.Analytical capabilities at IHL include light stable isotope radio mass...

  3. ISOTOPE HYDROLOGY LABORATORY (WATER QUALITY MANAGEMENT BRANCH, WATER SUPPLY AND WATER RESOURCES DIVISION, NRMRL)

    EPA Science Inventory

    The mission of NRMRL's Water Supply and Water Resources Division's Isotope Hydrology Laboratory (IHL) is to resolve environmental hydrology problems through research and application of naturally occurring isotopes.The emergent field of isotope hydrology follows advances in anal...

  4. Section III, Division 5 - Development and Future Directions

    SciTech Connect

    D. K. Morton; R I Jetter; James E Nestell; T. D. Burchell; T L Sham

    2012-07-01

    This paper provides commentary on a new division under Section III of the ASME Boiler and Pressure Vessel (BPV) Code. This new Division 5 has an issuance date of November 1, 2011 and is part of the 2011 Addenda to the 2010 Edition of the BPV Code. The new Division covers the rules for the design, fabrication, inspection and testing of components for high temperature nuclear reactors. Information is provided on the scope and need for Division 5, the structure of Division 5, where the rules originated, the various changes made in finalizing Division 5, and the future near-term and long-term expectations for Division 5 development. Portions of this paper were based on Chapter 17 of the Companion Guide to the ASME Boiler & Pressure Vessel Code, Fourth Edition, © ASME, 2012, Reference.

  5. Synthesis of 10-Ethyl Flavin: A Multistep Synthesis Organic Chemistry Laboratory Experiment for Upper-Division Undergraduate Students

    ERIC Educational Resources Information Center

    Sichula, Vincent A.

    2015-01-01

    A multistep synthesis of 10-ethyl flavin was developed as an organic chemistry laboratory experiment for upper-division undergraduate students. Students synthesize 10-ethyl flavin as a bright yellow solid via a five-step sequence. The experiment introduces students to various hands-on experimental organic synthetic techniques, such as column…

  6. Mimicking the Scientific Process in the Upper-Division Laboratory.

    ERIC Educational Resources Information Center

    Switzer, Paul V.; Shriner, Walter McKee

    2000-01-01

    Presents an active-learning technique in which students design their studies that was found to be successful in an animal behavior laboratory course. Divides the laboratory course into three components: (1) structured and technique-oriented exercises; (2) open-ended and student-designed investigations; and (3) independent projects. Explains…

  7. Microgravity Emissions Laboratory Developed

    NASA Technical Reports Server (NTRS)

    Goodnight, Thomas W.; McNelis, Anne M.

    2001-01-01

    The Microgravity Emissions Laboratory (MEL) was developed for the support, simulation, and verification of the International Space Station microgravity environment. The MEL utilizes an inertial measurement system using acceleration emissions generated by various operating components of the space station. These emissions, if too large, could hinder the science performed on the space station by disturbing the microgravity environment. Typical test components are disk drives, pumps, motors, solenoids, fans, and cameras. These components will produce inertial forces, which disturb the microgravity on-orbit station environment. These components, usually housed within a station rack, must meet acceleration limits imposed at the rack interface for minimizing the onboard station-operating environment. The NASA Glenn Research Center developed this one-of-a-kind laboratory for testing components and, eventually, rack-level configurations. The MEL approach is to measure the component's generated inertial forces. This force is a product of the full diagonal mass matrix including the test setup (the center of gravity, mass moment of inertia, and weight) and the resolved diagonal rigid-body acceleration determined from measurements using the 10 apparatus accelerometers. The mass matrix can be test derived. The bifilar torsional pendulum method is used to measure the moment of inertia for the test component.

  8. Laboratory development TPV generator

    SciTech Connect

    Holmquist, G.A.; Wong, E.M.; Waldman, C.H.

    1996-02-01

    A laboratory model of a TPV generator in the kilowatt range was developed and tested. It was based on methane/oxygen combustion and a spectrally matched selective emitter/collector pair (ytterbia emitter-silicon PV cell). The system demonstrated a power output of 2.4 kilowatts at an overall efficiency of 4.5{percent} without recuperation of heat from the exhaust gases. Key aspects of the effort include: (1) process development and fabrication of mechanically strong selective emitter ceramic textile materials; (2) design of a stirred reactor emitter/burner capable of handling up to 175,000 Btu/hr fuel flows; (3) support to the developer of the production silicon concentrator cells capable of withstanding TPV environments; (4) assessing the apparent temperature exponent of selective emitters; and (5) determining that the remaining generator efficiency improvements are readily defined combustion engineering problems that do not necessitate breakthrough technology. The fiber matrix selective emitter ceramic textile (felt) was fabricated by a relic process with the final heat-treatment controlling the grain growth in the porous ceramic fiber matrix. This textile formed a cylindrical cavity for a stirred reactor. The ideal stirred reactor is characterized by constant temperature combustion resulting in a uniform reactor temperature. This results in a uniform radiant emission from the emitter. As a result of significant developments in the porous emitter matrix technology, a TPV generator burner/emitter was developed that produced kilowatts of radiant energy. {copyright} {ital 1996 American Institute of Physics.}

  9. Materials Science and Engineering Laboratory, Materials Reliability Division, FY 2002 Programs and Accomplishments

    NASA Astrophysics Data System (ADS)

    2002-09-01

    The Materials Reliability Division mission is to develop and disseminate measurement methods and standards enhancing the quality and reliability of materials for industry. Our focus in FY02 continues development of measurements for materials evaluation in micro- and optoelectronics.

  10. BNL Sources Development Laboratory

    SciTech Connect

    Ben-Zvi, I.; Graves, W.; Heese, R.; Johnson, E.D.; Krinsky, S.; Yu, L.H.

    1997-01-01

    The NSLS has a long-standing interest in providing the best possible synchrotron radiation sources for its user community, and hence, has recently established the Source Development Laboratory (SDL) to pursue research into fourth generation synchrotron radiation sources. A major element of the program includes development of a high peak power FEL meant to operate in the vacuum ultraviolet. The objective of the program is to develop the source, and experimental technology together to provide the greatest impact on UV science. The accelerator under construction for the SDL consists of a high brightness RF photocathode electron gun followed by a 230 MeV short pulse linac incorporating a magnetic chicane for pulse compression. The gun drive laser is a wide bandwidth Ti: Sapphire regenerative amplifier capable of pulse shaping which will be used to study non- linear emittance compensation. Using the compressor, 1 nC bunches with a length as small as 50 {mu}m sigma (2 kA peak current) are available for experiments. In this paper we briefly describe the facility and detail our plans for utilizing the 10 m long NISUS wiggler to carry out single pass FEL experiments. These include a 1 {mu}m SASE demonstration, a seeded beam demonstration at 300 nm, and a High Gain Harmonic Generation experiment at 200 mn. The application of chirped pulse amplification to this type of FEL will also be discussed.

  11. Argonne National Laboratory, High Energy Physics Division: Semiannual report of research activities, July 1, 1986-December 31, 1986

    SciTech Connect

    Not Available

    1987-01-01

    This paper discusses the research activity of the High Energy Physics Division at the Argonne National Laboratory for the period, July 1986-December 1986. Some of the topics included in this report are: high resolution spectrometers, computational physics, spin physics, string theories, lattice gauge theory, proton decay, symmetry breaking, heavy flavor production, massive lepton pair production, collider physics, field theories, proton sources, and facility development. (LSP)

  12. 78 FR 28630 - Pfizer Therapeutic Research, Pfizer Worldwide Research & Development Division, Formerly Known as...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Pfizer Therapeutic Research, Pfizer Worldwide Research & Development Division, Formerly Known as Warner Lambert Company, Comparative Medicine Department, Including On-Site Leased From Charles River Laboratories...

  13. Mapping the future of CIC Division, Los Alamos National Laboratory. Final report

    SciTech Connect

    1996-01-01

    This report summarizes three scenario-based strategic planning workshops run for the CIC Division of the Los Alamos National Laboratory during November and December, 1995. Each of the two-day meetings was facilitated by Northeast Consulting Resources, Inc. (NCRI) of Boston, MA. using the Future Mapping{reg_sign} methodology.

  14. Life Sciences Division progress report for CYs 1997-1998 [Oak Ridge National Laboratory

    SciTech Connect

    Mann, Reinhold C.

    1999-06-01

    This is the first formal progress report issued by the ORNL Life Sciences Division. It covers the period from February 1997 through December 1998, which has been critical in the formation of our new division. The legacy of 50 years of excellence in biological research at ORNL has been an important driver for everyone in the division to do their part so that this new research division can realize the potential it has to make seminal contributions to the life sciences for years to come. This reporting period is characterized by intense assessment and planning efforts. They included thorough scrutiny of our strengths and weaknesses, analyses of our situation with respect to comparative research organizations, and identification of major thrust areas leading to core research efforts that take advantage of our special facilities and expertise. Our goal is to develop significant research and development (R&D) programs in selected important areas to which we can make significant contributions by combining our distinctive expertise and resources in the biological sciences with those in the physical, engineering, and computational sciences. Significant facilities in mouse genomics, mass spectrometry, neutron science, bioanalytical technologies, and high performance computing are critical to the success of our programs. Research and development efforts in the division are organized in six sections. These cluster into two broad areas of R&D: systems biology and technology applications. The systems biology part of the division encompasses our core biological research programs. It includes the Mammalian Genetics and Development Section, the Biochemistry and Biophysics Section, and the Computational Biosciences Section. The technology applications part of the division encompasses the Assessment Technology Section, the Environmental Technology Section, and the Toxicology and Risk Analysis Section. These sections are the stewards of the division's core competencies. The common

  15. Chemopreventive Agent Development | Division of Cancer Prevention

    Cancer.gov

    This group promotes and supports research on early chemopreventive agent development, from preclinical studies to phas | Research on early chemopreventive agent development, from preclinical studies to phase I clinical trials.

  16. Professional Development within the Division of Student Affairs.

    ERIC Educational Resources Information Center

    Hall, Charles W. L.

    This paper reviews the foundations, trends, and issues in the professional development of student personnel workers and the potential impact of that development on the Division of Student Affairs. The history of professional development arising from the application of management techniques to school systems, and for faculty and administrator…

  17. THE COMMUNITY DEVELOPMENT DIVISION OF ICA AND INTERNATIONAL EDUCATION.

    ERIC Educational Resources Information Center

    SHIELDS, JAMES J., JR.

    IN 1961, JUST BEFORE THE INTERNATIONAL COOPERATION ADMINISTRATION WAS REORGANIZED AS THE AGENCY OF INTERNATIONAL DEVELOPMENT, THIS STUDY INVESTIGATED THE ROLE OF EDUCATION IN INTERGOVERNMENTAL PROGRAMS IN COMMUNITY DEVELOPMENT. IT IS BASED ON THE COMMUNITY DEVELOPMENT DIVISION'S FILES, ITS PUBLISHED AND UNPUBLISHED REPORTS, DOCUMENTS IN ITS…

  18. Cognitive Development At The Middle-Division Level

    NASA Astrophysics Data System (ADS)

    Manogue, Corinne A.; Gire, Elizabeth

    2009-11-01

    One of the primary goals, as students transition from the lower-division to upper-division courses is to facilitate the cognitive development needed for work as a physicist. The Paradigms in Physics curriculum (junior-level courses developed at Oregon State University) addresses this goal by coaching students to coordinate different modes of reasoning, highlighting common techniques and concepts across physics topics, and setting course expectations to be more aligned with the professional culture of physicists. This poster will highlight some of the specific ways in which we address these cognitive changes in the context of classical mechanics and E&M.

  19. Collective synchronization of divisions in Drosophila development

    NASA Astrophysics Data System (ADS)

    Vergassola, Massimo

    Mitoses in the early development of most metazoans are rapid and synchronized across the entire embryo. While diffusion is too slow, in vitro experiments have shown that waves of the cell-cycle regulator Cdk1 can transfer information rapidly across hundreds of microns. However, the signaling dynamics and the physical properties of chemical waves during embryonic development remain unclear. We develop FRET biosensors for the activity of Cdk1 and the checkpoint kinase Chk1 in Drosophila embryos and exploit them to measure waves in vivo. We demonstrate that Cdk1 chemical waves control mitotic waves and that their speed is regulated by the activity of Cdk1 during the S-phase (and not mitosis). We quantify the progressive slowdown of the waves with developmental cycles and identify its underlying control mechanism by the DNA replication checkpoint through the Chk1/Wee1 pathway. The global dynamics of the mitotic signaling network illustrates a novel control principle: the S-phase activity of Cdk1 regulates the speed of the mitotic wave, while the Cdk1 positive feedback ensures an invariantly rapid onset of mitosis. Mathematical modeling captures the speed of the waves and predicts a fundamental distinction between the S-phase Cdk1 trigger waves and the mitotic phase waves, which is illustrated by embryonic ablation experiments. In collaboration with Victoria Deneke1, Anna Melbinger2, and Stefano Di Talia1 1 Department of Cell Biology, Duke University Medical Center 2 Department of Physics, University of California San Diego.

  20. Development and uses of upper-division conceptual assessments

    NASA Astrophysics Data System (ADS)

    Wilcox, Bethany R.; Caballero, Marcos D.; Baily, Charles; Sadaghiani, Homeyra; Chasteen, Stephanie V.; Ryan, Qing X.; Pollock, Steven J.

    2015-12-01

    [This paper is part of the Focused Collection on Upper Division Physics Courses.] The use of validated conceptual assessments alongside conventional course exams to measure student learning in introductory courses has become standard practice in many physics departments. These assessments provide a more standard measure of certain learning goals, allowing for comparisons of student learning across instructors, semesters, institutions, and pedagogies. Researchers at the University of Colorado Boulder have developed several similar assessments designed to target the more advanced physics of upper-division classical mechanics, electrostatics, quantum mechanics, and electrodynamics courses. Here, we synthesize the existing research on our upper-division assessments and discuss some of the barriers and challenges associated with their development, validation, and implementation as well as some of the strategies we have used to overcome these barriers.

  1. 2010-11 Research Portfolio: Research & Development Division

    ERIC Educational Resources Information Center

    Educational Testing Service, 2010

    2010-01-01

    This document describes the breadth of the research that the ETS (Educational Testing Service) Research & Development division is conducting in 2010. This portfolio will be updated in early 2011 to reflect changes to existing projects and new projects that were added after this document was completed. The research described in this portfolio falls…

  2. Rocketdyne Division annual site environmental report Santa Susana Field Laboratory and Desoto sites 1995

    SciTech Connect

    1996-07-30

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation (Rocketdyne). These are identified as the Santa Susana Field Laboratory (SSFL) and the DeSoto site. The sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The DeSoto site essentially comprises office space and light industry with no remaining radiological operations, and has little potential impact on the environment. The SSFL site, because of its large size (2,668 acres), warrants comprehensive monitoring to assure protection of the environment. SSFL consists of four administrative areas used for research, development, and test operations as well as a buffer zone. A portion of Area I and all of Area II are owned by the U.S. Government and assigned to the National Aeronautics and Space Administration (NASA). A portion of Area IV is under option for purchase by the Department of Energy (DOE).

  3. Laboratory directed research and development

    SciTech Connect

    Not Available

    1991-11-15

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle''; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  4. Mitochondrial dynamics and inheritance during cell division, development and disease

    PubMed Central

    Mishra, Prashant; Chan, David C.

    2014-01-01

    Preface During cell division, it is critical to properly partition functional sets of organelles to each daughter cell. The partitioning of mitochondria shares some common features with other organelles, particularly in their interactions with cytoskeletal elements to facilitate delivery to the daughter cells. However, mitochondria have unique features – including their own genome and a maternal mode of germline transmission – that place additional demands on this process. We discuss the mechanisms regulating mitochondrial segregation during cell division, oogenesis, fertilization and tissue development. The mechanisms that ensure the integrity of these organelles and their DNA include fusion-fission dynamics, organelle transport, mitophagy, and genetic selection of functional genomes. Defects in these processes can lead to cell and tissue pathologies. PMID:25237825

  5. Radioactive target and source development at Argonne National Laboratory

    SciTech Connect

    Greene, J.P.; Ahmad, I.; Thomas, G.E.

    1992-10-01

    An increased demand for low-level radioactive targets has created the need for a laboratory dedicated to the production of these foils. A description is given of the radioactive target produced as well as source development work being performed at the Physics Division target facility of Argonne National Laboratory (ANL). Highlights include equipment used and the techniques employed. In addition, some examples of recent source preparation are given as well as work currently in progress.

  6. Radioactive target and source development at Argonne National Laboratory

    SciTech Connect

    Greene, J.P.; Ahmad, I.; Thomas, G.E.

    1992-01-01

    An increased demand for low-level radioactive targets has created the need for a laboratory dedicated to the production of these foils. A description is given of the radioactive target produced as well as source development work being performed at the Physics Division target facility of Argonne National Laboratory (ANL). Highlights include equipment used and the techniques employed. In addition, some examples of recent source preparation are given as well as work currently in progress.

  7. Research and Development. Laboratory Activities.

    ERIC Educational Resources Information Center

    Gallaway, Ann, Ed.

    Research and Development is a laboratory-oriented course that includes the appropriate common essential elements for industrial technology education plus concepts and skills related to research and development. This guide provides teachers of the course with learning activities for secondary students. Introductory materials include an…

  8. Culturally relevant inquiry-based laboratory module implementations in upper-division genetics and cell biology teaching laboratories.

    PubMed

    Siritunga, Dimuth; Montero-Rojas, María; Carrero, Katherine; Toro, Gladys; Vélez, Ana; Carrero-Martínez, Franklin A

    2011-01-01

    Today, more minority students are entering undergraduate programs than ever before, but they earn only 6% of all science or engineering PhDs awarded in the United States. Many studies suggest that hands-on research activities enhance students' interest in pursuing a research career. In this paper, we present a model for the implementation of laboratory research in the undergraduate teaching laboratory using a culturally relevant approach to engage students. Laboratory modules were implemented in upper-division genetics and cell biology courses using cassava as the central theme. Students were asked to bring cassava samples from their respective towns, which allowed them to compare their field-collected samples against known lineages from agricultural stations at the end of the implementation. Assessment of content and learning perceptions revealed that our novel approach allowed students to learn while engaged in characterizing Puerto Rican cassava. In two semesters, based on the percentage of students who answered correctly in the premodule assessment for content knowledge, there was an overall improvement of 66% and 55% at the end in the genetics course and 24% and 15% in the cell biology course. Our proposed pedagogical model enhances students' professional competitiveness by providing students with valuable research skills as they work on a problem to which they can relate. PMID:21885825

  9. Culturally Relevant Inquiry-Based Laboratory Module Implementations in Upper-Division Genetics and Cell Biology Teaching Laboratories

    PubMed Central

    Siritunga, Dimuth; Montero-Rojas, María; Carrero, Katherine; Toro, Gladys; Vélez, Ana; Carrero-Martínez, Franklin A.

    2011-01-01

    Today, more minority students are entering undergraduate programs than ever before, but they earn only 6% of all science or engineering PhDs awarded in the United States. Many studies suggest that hands-on research activities enhance students’ interest in pursuing a research career. In this paper, we present a model for the implementation of laboratory research in the undergraduate teaching laboratory using a culturally relevant approach to engage students. Laboratory modules were implemented in upper-division genetics and cell biology courses using cassava as the central theme. Students were asked to bring cassava samples from their respective towns, which allowed them to compare their field-collected samples against known lineages from agricultural stations at the end of the implementation. Assessment of content and learning perceptions revealed that our novel approach allowed students to learn while engaged in characterizing Puerto Rican cassava. In two semesters, based on the percentage of students who answered correctly in the premodule assessment for content knowledge, there was an overall improvement of 66% and 55% at the end in the genetics course and 24% and 15% in the cell biology course. Our proposed pedagogical model enhances students’ professional competitiveness by providing students with valuable research skills as they work on a problem to which they can relate. PMID:21885825

  10. 622-Mbps Orthogonal Frequency Division Multiplexing Modulator Developed

    NASA Technical Reports Server (NTRS)

    Nguyen, Na T.

    1999-01-01

    The Communications Technology Division at the NASA Lewis Research Center is developing advanced electronic technologies for the space communications and remote sensing systems of tomorrow. As part of the continuing effort to advance the state-of-the art in satellite communications and remote sensing systems, Lewis is developing a programmable Orthogonal Frequency Division Multiplexing (OFDM) modulator card for high-data-rate communication links. The OFDM modulator is particularly suited to high data-rate downlinks to ground terminals or direct data downlinks from near-Earth science platforms. It can support data rates up to 622 megabits per second (Mbps) and high-order modulation schemes such as 16-ary quadrature amplitude modulation (16-ary QAM) or 8- phase shift keying (8PSK). High order modulations can obtain the bandwidth efficiency over the traditional binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK) modulator schemes. The OFDM modulator architecture can also be precompensated for channel disturbances and alleviate amplitude degradations caused by nonlinear transponder characteristics.

  11. Rocketdyne division annual site environmental report, Santa Susana Field Laboratory and De Soto Sites, 1994

    SciTech Connect

    none,

    1995-09-30

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation (Rocketdyne). These are identified as the Santa Susana Field Laboratory (SSFL) and the De Soto site. These sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto site is essentially light industry with some laboratory-scale R&D and has little potential impact on the environment. The SSFL site, because of its large size (2.668 acres), warrants comprehensive monitoring to assure protection of the environment. The purpose of this report is to present information on environmental and effluent monitoring of DOE-sponsored activities to the regulatory agencies. i.e., the U.S. DOE, the Nuclear Regulatory Commission (NRC), and the California State Department of Health Services (DHS) Radiologic Health Branch (RHB). For that reason, information concentrates on Area IV at SSFL. which is the only area where DOE activities have been performed. While the major focus of attention is radiological, this report also includes a discussion of nonradiological monitoring at SSFL.

  12. Rocketdyne division annual site environmental report, Santa Susana Field Laboratory and De Soto Sites, 1993

    SciTech Connect

    None, None

    1994-10-21

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation. These are identified as the Santa Susana Field Laboratory (SSFL) and the De Soto site. These sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto site is essentially light industry with some laboratory-scale R&D and has little potential impact on the environment. The SSFL site, because of its large size (2,668 acres), warranted comprehensive monitoring to assure protection of the environment. The purpose of this report is to present information on environmental and effluent monitoring primarily for the regulatory agencies involved in controlling environmental remediation, i.e., the U.S. DOE, the Nuclear Regulatory Commission (NRC), and the California State Department of Health Services (DHS) Radiologic Health Branch (RHB). For that reason, information concentrates on Area IV at SSFL as this is the site of the former nuclear operations. While the major area of interest is radiological, this report also includes a discussion of nonoradiological monitoring at SSFL.

  13. Rocketdyne division annual site environmental report, Santa Susana Field Laboratory and De Soto Site, 1991

    SciTech Connect

    none,

    1992-12-03

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation. These are identified as the Santa Susana Field Laboratory (SSFL) and the De Soto site. These sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto site is essentially light industry with some laboratory-scale R&D and has little potential impact on the environment. The SSFL site, because of its large size (2.668 acres), warranted comprehensive monitoring to assure protection of the environment. The purpose of this report is to present information on environmental and effluent monitoring primarily for the regulatory agencies involved in controlling operations with nuclear fuel or nuclear reactors. i.e., the U.S. DOE and the California State Department of Health Services (DHS). Radiologic Health Branch (RHB). For that reason. information concentrates on Area IV at SSFL as this is the site of the former nuclear operations. While the major area of interest is radiological, this report also includes a discussion of nonradiological monitoring at SSFL.

  14. Rocketdyne division environmental monitoring annual report, Santa Susana Field Laboratory, De Soto, and Canoga Sites, 1990

    SciTech Connect

    none,

    1991-06-20

    This annual report discuses environmental monitoring at three manufacturing and test operations sites operated in the Southern California area by the Rocketdyne Division of Rockwell International Corporation. These are identified as the Santa Susana Field Laboratory (SSFL.), the De Soto site, and the Canoga site. These sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto and Canoga sites are essentially light industry with some laboratory-scale R&D and have little potential impact on the environment. The SSFL site, because of its large size (2,668 acres), warranted comprehensive monitoring to assure protection of the environment. The purpose of this report is to present information on environmental and effluent monitoring primarily for the regulatory agencies involved in controlling operations with nuclear and radioactive materials, i.e., the U.S. DOE, the U.S. Nuclear Regulatory Commission (NRC), and the California State Department of Health Services (DHS), Radiologic Health Branch (RHB). For that reason, information concentrates on Area IV at SSFL as this is the site of the former nuclear operations. While the major realm of interest is radiological, this report also includes some discussion of nonradiological monitoring at SSFL

  15. Rocketdyne division annual site environmental report, Santa Susana Field Laboratory and De Soto Sites, 1992

    SciTech Connect

    none,

    1993-12-14

    This annual report discusses environmental monitoring at two manufacturing and test operations sites operated in the Los Angeles area by the Rocketdyne Division of Rockwell International Corporation. These are identified as the Santa Susana Field Laboratory (SSFL) and the De Soto site. These sites have been used for manufacturing, R&D, engineering, and testing in a broad range of technical fields, primarily rocket engine propulsion and nuclear reactor technology. The De Soto site is essentially light industry with some laboratory-scale R&D and has little potential impact on the environment. The SSFL site, because of its large size (2,668 acres), warranted comprehensive monitoring to assure protection of the environment. The purpose of this report is to present information on environmental and effluent monitoring primarily for the regulatory agencies involved in controlling environmental remediation, i.e., the U.S. DOE, the Nuclear Regulatory Commission (NRC), and the California State Department of Health Services (DHS) Radiologic Health Branch (RHB). For that reason, information concentrates on Area IV at SSFL as this is the site of the former nuclear operations. While the major area of interest is radiological, this report also includes a discussion of nonradiological monitoring at SSFL.

  16. Rocketdyne division, environmental monitoring and facility effluent. Annual report, De Soto and Santa Susana Field Laboratories Sites, 1989

    SciTech Connect

    Moore, J. D.

    1990-05-01

    Work in nuclear energy research and development in what has become the Rocketdyne Division of Rockwell International Corporation began in 1946. During the evolution of these operations, small test and demonstration reactors and critical assemblies were operated, reactor fuel elements were fabricated and used reactor fuel elements were disassembled and declad. These projects have been completed and terminated over the past 30 years. Most of this work was performed at the Santa Susana Field Laboratories (SSFL) and is described in detail in Reference 18. No work with nuclear materials has been conducted since 1987, and the only ongoing work during 1989 was the cleanup of the Rockwell International Hot Laboratory (RIHL) and continuing decontamination of the remaining nuclear facilities. In October 1989, the NRC Special Nuclear Materials License was amended to permit only a minor amount of nuclear material for research purposes. Since then, the license has been further amended to permit only decommissioning operations. These operations have been conducted under State and Federal licenses and under contract to DOE and its predecessors at three main locations. identified as the Santa Susana Field Laboratories (SSFL). De Soto (DS), and Canoga (CA).

  17. Development of the Design Laboratory.

    ERIC Educational Resources Information Center

    Silla, Harry

    1986-01-01

    Describes the design laboratory at the Stevens Institute of Technology (SIT). Considers course objectives, design projects, project structure, mechanical design, project management, and laboratory operation. This laboratory complements SIT's course in process design, giving students a complete design experience. (JN)

  18. Measuring Norfloxacin Binding to Trypsin Using a Fluorescence Quenching Assay in an Upper-Division, Integrated Laboratory Course

    ERIC Educational Resources Information Center

    Hicks, Katherine A.

    2016-01-01

    Fluorescence quenching assays are often used to measure dissociation constants that quantify the binding affinity between small molecules and proteins. In an upper-division undergraduate laboratory course, where students work on projects using a guided inquiry-based approach, a binding titration experiment at physiological pH is performed to…

  19. Division XII: Commission 46: Education & Development of Astronomy

    NASA Astrophysics Data System (ADS)

    Ros, Rosa M.; Hearnshaw, John; Stavinschi, Magda; Garcia, Beatriz; Gerbaldi, Michele; Greve, Jean-Pierre De; Guinan, Edward; Haubold, Hans; Jones, Barrie; Marshall, Laurence A.; Pasachoff, Jay

    2015-08-01

    C46 is a Commission of the Executive Committee of the IAU under Division XII Union-Wide Activities. Aiming at improvement of astronomy education and research at all levels worldwide (through the various projects it initiates),maintains, develops, as well as through the dissemination of information. C46 has 332 members and it was managed by the Organizing Committee, formed by the Commission President (Rosa M. Ros, from Spain), the Vice-Presiden (John Hearnshaw, from New Zealand), the Retiring President (Magda Stavinschi, from Romania), the Vice-President of the IAU (George Miley, from Netherland) and the PG chairs: • Worldwide Development of Astronomy WWDA: John Hearnshaw • Teaching Astronomy for Development TAD: Edward Guinan and Laurence A. Marshall • International Schools for Young Astronomers ISYA; chair: Jean-Pierre de Greve • Network for Astronomy School Education NASE: Rosa M. Ros and Beatriz Garcia • Public Understanding at the times of Solar Eclipses and transit Phenomena PUTSE: Jay Pasachoff • National Liaison and Newsletter: Barrie Jones • Collaborative Programs: Hans Haubold

  20. Piezoelectric motor development at AlliedSignal Inc., Kansas City Division

    SciTech Connect

    Pressly, R.B.; Mentesana, C.P.

    1994-11-01

    The Kansas City Division of AlliedSignal Inc. has been investigating the fabrication and use of piezoelectric motors in mechanisms for United States Department of Energy (DOE) weapons applications for about four years. These motors exhibit advantages over solenoids and other electromagnetic actuators. Prototype processes have been developed for complete fabrication of motors from stock materials, including abrasive machining of piezoelectric ceramics and more traditional machining of other motor components, electrode plating and sputtering, electric poling, cleaning, bonding and assembly. Drive circuits have been fabricated and motor controls are being developed. Laboratory facilities have been established for electrical/mechanical testing and evaluation of piezo materials and completed motors. Recent project efforts have focused on the potential of piezoelectric devices for commercial and industrial use. A broad range of various motor types and application areas has been identified, primarily in Japan. The Japanese have been developing piezo motors for many years and have more recently begun commercialization. Piezoelectric motor and actuator technology is emerging in the United States and quickly gaining in commercial interest. The Kansas City Division is continuing development of piezoelectric motors and actuators for defense applications while supporting and participating in the commercialization of piezoelectric devices with private industry through various technology transfer and cooperative development initiatives.

  1. Argonne National Laboratory Physics Division annual report, January--December 1996

    SciTech Connect

    Thayer, K.J.

    1997-08-01

    The past year has seen several of the Physics Division`s new research projects reach major milestones with first successful experiments and results: the atomic physics station in the Basic Energy Sciences Research Center at the Argonne Advanced Photon Source was used in first high-energy, high-brilliance x-ray studies in atomic and molecular physics; the Short Orbit Spectrometer in Hall C at the Thomas Jefferson National Accelerator (TJNAF) Facility that the Argonne medium energy nuclear physics group was responsible for, was used extensively in the first round of experiments at TJNAF; at ATLAS, several new beams of radioactive isotopes were developed and used in studies of nuclear physics and nuclear astrophysics; the new ECR ion source at ATLAS was completed and first commissioning tests indicate excellent performance characteristics; Quantum Monte Carlo calculations of mass-8 nuclei were performed for the first time with realistic nucleon-nucleon interactions using state-of-the-art computers, including Argonne`s massively parallel IBM SP. At the same time other future projects are well under way: preparations for the move of Gammasphere to ATLAS in September 1997 have progressed as planned. These new efforts are imbedded in, or flowing from, the vibrant ongoing research program described in some detail in this report: nuclear structure and reactions with heavy ions; measurements of reactions of astrophysical interest; studies of nucleon and sub-nucleon structures using leptonic probes at intermediate and high energies; atomic and molecular structure with high-energy x-rays. The experimental efforts are being complemented with efforts in theory, from QCD to nucleon-meson systems to structure and reactions of nuclei. Finally, the operation of ATLAS as a national users facility has achieved a new milestone, with 5,800 hours beam on target for experiments during the past fiscal year.

  2. Arctic Energy Technology Development Laboratory

    SciTech Connect

    Sukumar Bandopadhyay; Charles Chamberlin; Robert Chaney; Gang Chen; Godwin Chukwu; James Clough; Steve Colt; Anthony Covescek; Robert Crosby; Abhijit Dandekar; Paul Decker; Brandon Galloway; Rajive Ganguli; Catherine Hanks; Rich Haut; Kristie Hilton; Larry Hinzman; Gwen Holdman; Kristie Holland; Robert Hunter; Ron Johnson; Thomas Johnson; Doug Kame; Mikhail Kaneveskly; Tristan Kenny; Santanu Khataniar; Abhijeet Kulkami; Peter Lehman; Mary Beth Leigh; Jenn-Tai Liang; Michael Lilly; Chuen-Sen Lin; Paul Martin; Pete McGrail; Dan Miller; Debasmita Misra; Nagendra Nagabhushana; David Ogbe; Amanda Osborne; Antoinette Owen; Sharish Patil; Rocky Reifenstuhl; Doug Reynolds; Eric Robertson; Todd Schaef; Jack Schmid; Yuri Shur; Arion Tussing; Jack Walker; Katey Walter; Shannon Watson; Daniel White; Gregory White; Mark White; Richard Wies; Tom Williams; Dennis Witmer; Craig Wollard; Tao Zhu

    2008-12-31

    The Arctic Energy Technology Development Laboratory was created by the University of Alaska Fairbanks in response to a congressionally mandated funding opportunity through the U.S. Department of Energy (DOE), specifically to encourage research partnerships between the university, the Alaskan energy industry, and the DOE. The enabling legislation permitted research in a broad variety of topics particularly of interest to Alaska, including providing more efficient and economical electrical power generation in rural villages, as well as research in coal, oil, and gas. The contract was managed as a cooperative research agreement, with active project monitoring and management from the DOE. In the eight years of this partnership, approximately 30 projects were funded and completed. These projects, which were selected using an industry panel of Alaskan energy industry engineers and managers, cover a wide range of topics, such as diesel engine efficiency, fuel cells, coal combustion, methane gas hydrates, heavy oil recovery, and water issues associated with ice road construction in the oil fields of the North Slope. Each project was managed as a separate DOE contract, and the final technical report for each completed project is included with this final report. The intent of this process was to address the energy research needs of Alaska and to develop research capability at the university. As such, the intent from the beginning of this process was to encourage development of partnerships and skills that would permit a transition to direct competitive funding opportunities managed from funding sources. This project has succeeded at both the individual project level and at the institutional development level, as many of the researchers at the university are currently submitting proposals to funding agencies, with some success.

  3. JOB OPPORTUNITIES (SUBSURFACE PROTECTION AND REMEDIATION DIVISION, ADA, OKLAHOMA, NATIONAL RISK MANAGEMENT RESEARCH LABORATORY)

    EPA Science Inventory

    This page lists job opportunities at NRMRL's Subsurface Protection and Remediation Division (SPRD) located in Ada, Oklahoma. These include both EPA Postdoctoral Positions and National Research Council Postdoctoral Positions.SPRD's research programs include basic studies to enha...

  4. Chemopreventive Agent Development Clinical Trials | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  5. Chemopreventive Agent Development Funding Opportunities | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  6. Chemopreventive Agent Development Staff | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  7. Active Chemopreventive Agent Development Grants | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) conducts and supports research to determine a person's risk of cancer and to find ways to reduce the risk. This knowledge is critical to making progress against cancer because risk varies over the lifespan as genetic and epigenetic changes can transform healthy tissue into invasive cancer.

  8. 77 FR 65582 - Pfizer Therapeutic Research, Pfizer Worldwide Reasearch & Development Division, Formerly Known as...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-29

    ... Division, Formerly Known as Warner Lambert Company, Central Nervous System Research Unit (Currently Known... & Development Division, formerly known as Warner Lambert Company, Central Nervous System Research Unit, Global.... The Department has confirmed that the Central Nervous System Research Unit was renamed...

  9. The History and Development of the Alabama Division of the American Rehabilitation Counseling Association

    ERIC Educational Resources Information Center

    Templeton, Mary Anne

    2007-01-01

    The Alabama Division of the American Rehabilitation Association is an organization committed to representing those counselors who work in the field of rehabilitation across the state. The division is focused on offering leadership within the field of rehabilitation counseling, promoting professional development opportunities for counselors, and…

  10. Getting To Know You: IRA's International Development Division and the RWCT Project.

    ERIC Educational Resources Information Center

    Miller, Larry

    2001-01-01

    Presents an interview with Scott Walter (director of the International Development Division of the International Reading Association) and Wendy Saul (senior editor of "Thinking Classroom") about the division's activities and projects, especially the Reading and Writing for Critical Thinking (RWCT) project, which introduces research-based…

  11. Laboratory Directed Research and Development Program, FY 1992

    SciTech Connect

    Not Available

    1993-01-01

    This report is compiled from annual reports submitted by principal investigators following the close of the 1992 fiscal year. It describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Divisions that report include: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment and Safety and Health, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics and Structural Biology.

  12. COMSOL-Related Activities within the Research Reactors Division of Oak Ridge National Laboratory

    SciTech Connect

    Freels, James D

    2015-01-01

    Our group at Oak Ridge National Laboratory (ORNL) started using COMSOL shortly after version 3.0 was released in the Spring of 2004. Over 11 years later and several new releases of the code, the application usage has grown along with the number of licenses we are responsible for. This paper focuses not on details of results and modeling methods, but instead, takes a look at our past and present applications, and evaluates where we are headed with COMSOL in the future. In doing so, we reveal some lessons learned along our pathway, provide some insight on how best to use COMSOL in a group setting, and perhaps help both users and developers to improve how the code is utilized.

  13. FY03 Engineering Technology Reports Laboratory Directed Research and Development

    SciTech Connect

    Minichino, C

    2004-03-05

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2003, and exemplifies Engineering's 50-year history of researching and developing the engineering technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence, and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow.'' Engineering's investment in technologies is carried out through two programs, the LDRD program and the ''Tech Base'' program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge, or that require a significant level of research, or contain some unknown that needs to be fully understood. Tech Base is used to apply those technologies, or adapt them to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice.'' Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2003, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the science and technology investments for the Directorate. The Centers represent technology areas that have been identified as critical for the present and future work of the Laboratory, and are

  14. The Package-Based Development Process in the Flight Dynamics Division

    NASA Technical Reports Server (NTRS)

    Parra, Amalia; Seaman, Carolyn; Basili, Victor; Kraft, Stephen; Condon, Steven; Burke, Steven; Yakimovich, Daniil

    1997-01-01

    The Software Engineering Laboratory (SEL) has been operating for more than two decades in the Flight Dynamics Division (FDD) and has adapted to the constant movement of the software development environment. The SEL's Improvement Paradigm shows that process improvement is an iterative process. Understanding, Assessing and Packaging are the three steps that are followed in this cyclical paradigm. As the improvement process cycles back to the first step, after having packaged some experience, the level of understanding will be greater. In the past, products resulting from the packaging step have been large process documents, guidebooks, and training programs. As the technical world moves toward more modularized software, we have made a move toward more modularized software development process documentation, as such the products of the packaging step are becoming smaller and more frequent. In this manner, the QIP takes on a more spiral approach rather than a waterfall. This paper describes the state of the FDD in the area of software development processes, as revealed through the understanding and assessing activities conducted by the COTS study team. The insights presented include: (1) a characterization of a typical FDD Commercial Off the Shelf (COTS) intensive software development life-cycle process, (2) lessons learned through the COTS study interviews, and (3) a description of changes in the SEL due to the changing and accelerating nature of software development in the FDD.

  15. Fearful symmetry: Subversion of asymmetric division in cancer development and progression

    PubMed Central

    Bajaj, Jeevisha; Zimdahl, Bryan; Reya, Tannishtha

    2016-01-01

    Asymmetric division is an evolutionarily conserved process that generates daughter cells with different fates through the unequal partitioning of fate determinants. While asymmetric division is particularly important in generating diversity during development, its dysregulation can also promote oncogenesis. In particular, signals that shift the normal balance of symmetric and asymmetric division can lead to a differentiation arrest and trigger cancer progression. Here we discuss the studies that have provided increasing support for this idea: beginning with original work carried out in Drosophila, we trace more recent data in mammalian systems that suggest that the subversion of asymmetric division can contribute significantly to the development and progression of both hematologic malignancies and solid cancers. PMID:25681272

  16. Guidelines for Developing a Mathematics Laboratory.

    ERIC Educational Resources Information Center

    Dittmer, Karen Ann

    The purpose of this study was to determine the current status of mathematics laboratories in secondary schools and to formulate guidelines for their further development. Based on questionnaires returned by 137 teachers and 51 state supervisors, the findings were organized into eight areas: teacher preparation, profile of the laboratory situation,…

  17. Argonne National Laboratory, High Energy Physics Division, semiannual report of research activities, July 1, 1989--December 31, 1989

    SciTech Connect

    Not Available

    1989-01-01

    This report discusses research being conducted at the Argonne National Laboratory in the following areas: Experimental High Energy Physics; Theoretical High Energy Physics; Experimental Facilities Research; Accelerator Research and Development; and SSC Detector Research and Development.

  18. Argonne National Laboratory High Energy Physics Division semiannual report of research activities, January 1, 1989--June 30, 1989

    SciTech Connect

    Not Available

    1989-01-01

    This paper discuss the following areas on High Energy Physics at Argonne National Laboratory: experimental program; theory program; experimental facilities research; accelerator research and development; and SSC detector research and development.

  19. Rocketdyne division, environmental monitoring and facility effluent. Annual Report, De Soto and Santa Susana Field Laboratories Sites 1987

    SciTech Connect

    Moore, J. D.

    1988-03-01

    Environmental and facility effluent radioactivity monitoring at the Rocketdyne Division of Rockwell International is performed by the Radiation and Nuclear Safety Group of the Health, Safety, and Environment Department. Soil and surface water are routinely sampled to a distance of 10 miles from Division sites. Ground water from site supply water wells and other test wells is periodically sampled to measure radioactivity in these waters. Continuous ambient air sampling and direct radiation monitoring by thermoluminescent dosimetry are performed at several on-site and off-site locations for measuring airborne radioactivity concentrations and site ambient radiation levels. Radioactivity in effluents discharged to the atmosphere from nuclear facilities is continually sampled and monitored to ensure that amounts released to uncontrolled areas are below appropriate limited and to identify processes that rnay require additional engineering safeguards to minimize radioactivity in such discharges. In addition, selected nonradioactive chemical constituent concentrations in surface water discharged to uncontrolled areas are determined. The environmental radioactivity reported herein is attributed to natural sources and to residual fallout of radioactive material from past atmospheric testing of nuclear devices. Work in nuclear energy research and development in what has become the Rocketdyne Division of Rockwell International Corporation began in 1946. In addition to a broad spectrum of conventional programs in rocket propulsion, utilization of space, and national defense, Rocketdyne is working on the design, development, and testing of components and systems for central station nuclear power plants, the decladding of irradiated nuclear fuel, and the decontamination and decommissioning of facilities.

  20. The ANL electric vehicle battery R D program for DOE-EHP. [ANL (Argonne National Laboratory); EHP (Electric and Hybrid Propulsion Division)

    SciTech Connect

    Not Available

    1993-06-15

    The Electrochemical Technology Program at Argonne National Laboratory (ANL) provides technical and programmatic support to DOE's Electric and Hybrid Propulsion Division (DOE-EHP). The goal of DOE-EHP is to advance promising electric-vehicle (EV) propulsion technologies to levels where industry will continue their commercial development and thereby significantly reduce air pollution and petroleum consumption due to the transportation sector of the economy. In support of this goal, ANL provides research, development, testing/evaluation, post-test analysis, modeling, and project management on advanced battery technologies for DOE-EHP. This report summarizes the battery-related activities undertaken during the period of January 1, 1993 through March 31, 1993. In this report, the objective, background, technical progress, and status are described for each task. The work is organized into the following task areas: 1.0 Project Management; 2.0 Sodium/Metal Chloride R D; 3.0 Microreference Electrodes for Lithium/Polymer Batteries.

  1. Rocketdyne division, envionmental monitoring and facility effluent. Annual report, De Soto and Santa Susana Field Laboratories Sites, 1988

    SciTech Connect

    Moore, J. D.

    1989-05-01

    Environmental and facility effluent radioactivity monitoring at the Rocketdyne Division of Rockwell International is performed by the Radiation and Nuclear Safety Group of the Health, Safety, and Environment Department. Soil and surface water are routinely sampled to a distance of 16 km from division sites. Groundwater from Santa Susana Field Laboratories (SSFL) supply water wells and other test wells is periodically sampled to measure radioactivity. Continuous ambient air sampling and direct radiation monitoring by thermoluminescent dosimetry are performed at several on-site and off-site locations for measuring airborne radioactivity concentrations and site ambient radiation levels. Radioactivity in effluents discharged to the atmosphere from nuclear facilities is continually sampled and monitored to assure that amounts released to uncontrolled areas are below appropriate limits. These procedures also help identify processes that may require additional engineering safeguards to minimize radioactivity in such discharges. In addition, selected nonradioactive chemical constituent concentrations in surface water discharged to uncontrolled areas are measured. The environmental radioactivity reported herein is attributed to natural sources and to residual fallout of radioactive material from past atmospheric testing of nuclear devices.

  2. Visualization Gallery from the Computational Research Division at Lawrence Berkeley National Laboratory

    DOE Data Explorer

    This excellent collection of visualization vignettes highlights research work done by the LBNL/NERSC Visualization Group and its collaborators from 1993 to the present. Images lead to technical explanations and project details, helping users to branch out to other related sources. Titles of the projects provide clues both to the imaging focus of the research and the scientific discipline for which the visualizations are intended. Only a few of the many titles/images/projects are listed here: 1) Hybrid Parallelism for Volume Rendering at Large Scale Analysis of Laser Wakefield Particle Acceleration Data; 2) Visualization of Microearthquake Data from Enhanced Geothermal Systems; 3) PointCloudXplore: Visualization and Analysis of 3D Gene Expression Data; 4) Visualization of Quantum Monte-Carlo simulations; 5) Global Cloud Resolving Models; 6) Visualization of large-scale GFDL/NOAA climate simulations; 7) Direct Numerical Simulation of Turbulent Flame Quenching by Fine Water Droplets; 8) Visualization of Magneto-rotational instability and turbulent angular momentum transport; 9) Sunfall: Visual Analytics for Astrophysics; 10) Fast Contour Descriptor Algorithm for Supernova Image Classification; 11) Supernova Recognition Using Support Vector Machines; 12) High Performance Visualization - Query-Driven Network Traffic Analysis; 13) Visualization of Magneto-rotational instability and turbulent angular momentum transport; 14) Life Sciences: Cell Division of Caulobacter Crescentus; 15) Electron Cloud Simulations.

  3. E-Division activities report

    SciTech Connect

    Barschall, H.H.

    1983-07-01

    This report describes some of the activities in E (Experimental Physics) Division during the past year. E-division carries out research and development in areas related to the missions of the Laboratory. Many of the activities are in pure and applied atomic and nuclear physics and in materials science. In addition, this report describes development work on accelerators and on instrumentation for plasma diagnostics, nitrogen exchange rates in tissue, and breakdown in gases by microwave pulses.

  4. New methods in mammary gland development and cancer: proteomics, epigenetics, symmetric division and metastasis

    PubMed Central

    2012-01-01

    The European Network for Breast Development and Cancer (ENBDC) meeting on 'Methods in Mammary Gland Development and Cancer' has become an annual international rendezvous for scientists with interests in the normal and neoplastic breast. The fourth meeting in this series, held in April in Weggis, Switzerland, focused on proteomics, epigenetics, symmetric division, and metastasis. PMID:22809213

  5. Laboratory Activities for Developing Process Skills.

    ERIC Educational Resources Information Center

    Institute for Services to Education, Inc., Washington, DC.

    This workbook contains laboratory exercises designed for use in a college introductory biology course. Each exercise helps the student develop a basic science skill. The exercises are arranged in a hierarchical sequence suggesting the scientific method. Each skill facilitates the development of succeeding ones. Activities include Use of the…

  6. Chemical Technology Division annual technical report 1997

    SciTech Connect

    1998-06-01

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials and electrified interfaces. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division`s activities during 1997 are presented.

  7. 1999 LDRD Laboratory Directed Research and Development

    SciTech Connect

    Rita Spencer; Kyle Wheeler

    2000-06-01

    This is the FY 1999 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  8. FY04 Engineering Technology Reports Laboratory Directed Research and Development

    SciTech Connect

    Sharpe, R M

    2005-01-27

    This report summarizes the science and technology research and development efforts in Lawrence Livermore National Laboratory's Engineering Directorate for FY2004, and exemplifies Engineering's more than 50-year history of developing the technologies needed to support the Laboratory's missions. Engineering has been a partner in every major program and project at the Laboratory throughout its existence and has prepared for this role with a skilled workforce and the technical resources developed through venues like the Laboratory Directed Research and Development Program (LDRD). This accomplishment is well summarized by Engineering's mission: ''Enable program success today and ensure the Laboratory's vitality tomorrow''. Engineering's investment in technologies is carried out through two programs, the ''Tech Base'' program and the LDRD program. LDRD is the vehicle for creating those technologies and competencies that are cutting edge. These require a significant level of research or contain some unknown that needs to be fully understood. Tech Base is used to apply technologies to a Laboratory need. The term commonly used for Tech Base projects is ''reduction to practice''. Therefore, the LDRD report covered here has a strong research emphasis. Areas that are presented all fall into those needed to accomplish our mission. For FY2004, Engineering's LDRD projects were focused on mesoscale target fabrication and characterization, development of engineering computational capability, material studies and modeling, remote sensing and communications, and microtechnology and nanotechnology for national security applications. Engineering's five Centers, in partnership with the Division Leaders and Department Heads, are responsible for guiding the long-term science and technology investments for the Directorate. The Centers represent technologies that have been identified as critical for the present and future work of the Laboratory, and are chartered to develop their respective

  9. Technology Development, Evaluation, and Application (TDEA) FY 1999 Progress Report, Environment, Safety, and Health (ESH) Division

    SciTech Connect

    Larry G. Hoffman

    2000-12-01

    This progress report presents the results of 10 projects funded ($500K) in FY99 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Five are new projects for this year; seven projects have been completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published thirty-four papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space, were also provided to TDEA-funded projects by organizations external to ESH Division.

  10. Technology Development, Evaluation, and Application (TDEA) FY 2001 Progress Report Environment, Safety, and Health (ESH) Division

    SciTech Connect

    L.G. Hoffman; K. Alvar; T. Buhl; E. Foltyn; W. Hansen; B. Erdal; P. Fresquez; D. Lee; B. Reinert

    2002-05-01

    This progress report presents the results of 11 projects funded ($500K) in FY01 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division (ESH). Five projects fit into the Health Physics discipline, 5 projects are environmental science and one is industrial hygiene/safety. As a result of their TDEA-funded projects, investigators have published sixteen papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplement funds and in-kind contributions, such as staff time, instrument use, and workspace, were also provided to TDEA-funded projects by organizations external to ESH Divisions.

  11. Development of a laboratory niche Web site.

    PubMed

    Dimenstein, Izak B; Dimenstein, Simon I

    2013-10-01

    This technical note presents the development of a methodological laboratory niche Web site. The "Grossing Technology in Surgical Pathology" (www.grossing-technology.com) Web site is used as an example. Although common steps in creation of most Web sites are followed, there are particular requirements for structuring the template's menu on methodological laboratory Web sites. The "nested doll principle," in which one object is placed inside another, most adequately describes the methodological approach to laboratory Web site design. Fragmentation in presenting the Web site's material highlights the discrete parts of the laboratory procedure. An optimally minimal triad of components can be recommended for the creation of a laboratory niche Web site: a main set of media, a blog, and an ancillary component (host, contact, and links). The inclusion of a blog makes the Web site a dynamic forum for professional communication. By forming links and portals, cloud computing opens opportunities for connecting a niche Web site with other Web sites and professional organizations. As an additional source of information exchange, methodological laboratory niche Web sites are destined to parallel both traditional and new forms, such as books, journals, seminars, webinars, and internal educational materials. PMID:23769601

  12. Stem and progenitor cell division kinetics during postnatal mouse mammary gland development.

    PubMed

    Giraddi, Rajshekhar R; Shehata, Mona; Gallardo, Mercedes; Blasco, Maria A; Simons, Benjamin D; Stingl, John

    2015-01-01

    The cycling properties of mammary stem and progenitor cells is not well understood. To determine the division properties of these cells, we administered synthetic nucleosides for varying periods of time to mice at different stages of postnatal development and monitored the rate of uptake of these nucleosides in the different mammary cell compartments. Here we show that most cell division in the adult virgin gland is restricted to the oestrogen receptor-expressing luminal cell lineage. Our data also demonstrate that the oestrogen receptor-expressing, milk and basal cell subpopulations have telomere lengths and cell division kinetics that are not compatible with these cells being hierarchically organized; instead, our data indicate that in the adult homeostatic gland, each cell type is largely maintained by its own restricted progenitors. We also observe that transplantable stem cells are largely quiescent during oestrus, but are cycling during dioestrus when progesterone levels are high. PMID:26511661

  13. Personnel Development. MAS-111. Waste Isolation Division (WID). Management and Supervisor Training (MAST) Program.

    ERIC Educational Resources Information Center

    Westinghouse Electric Corp., Carlsbad, NM.

    This learning module, which is part of a management and supervisor training program for managers and supervisors employed at the Department of Energy's Waste Isolation Division (WID), is designed to prepare trainees to guide the career development of employees at their plant. The following topics are covered in the module's individual sections:…

  14. Historical Development of the "Insurance Periodicals Index" by the Insurance Division of the Special Libraries Association.

    ERIC Educational Resources Information Center

    Ives, Jean E.

    The Insurance Division of the Special Libraries Association began an index to insurance magazines, the "Insurance Periodicals Index" (IPI), in 1962. This study examines its historical development. The index was published monthly in an insurance trade journal and then cumulated into an annual edition. Part of the background for its development…

  15. E-Division activities report

    SciTech Connect

    Barschall, H.H.

    1981-07-01

    This report describes some of the activities in E (Experimental Physics) Division during the past year. E-Division carries out research and development in areas related to the missions of the Laboratory. Many of the activities are in pure and applied atomic and nuclear physics and in material science. In addition this report describes work on accelerators, microwaves, plasma diagnostics, determination of atmospheric oxygen and of nitrogen in tissue.

  16. Investigative Cases and Student Outcomes in an Upper-Division Cell and Molecular Biology Laboratory Course at a Minority-serving Institution

    PubMed Central

    Fulop, Rebecca M.; Márquez-Magaña, Leticia; Tanner, Kimberly D.

    2008-01-01

    Active-learning strategies are increasingly being integrated into college-level science courses to make material more accessible to all students and to improve learning outcomes. One active-learning pedagogy, case-based learning (CBL), was developed as a way to both enhance engagement in the material and to accommodate diverse learning styles. Yet, adoption of CBL approaches in undergraduate biology courses has been piecemeal, in part because of the perceived investment of time required. Furthermore, few CBL lesson plans have been developed specifically for upper-division laboratory courses. Here, we describe four cases that we developed and implemented for a senior cell and molecular biology laboratory course at San Francisco State University, a minority-serving institution. To evaluate the effectiveness of these modules, we used both written and verbal assessments to gauge learning outcomes and attitudinal responses of students over two semesters. Students responded positively to the new approach and seemed to meet the learning goals for the course. Most said they would take a course using CBL again. These case modules are readily adaptable to a variety of classroom settings. PMID:19047425

  17. Investigative cases and student outcomes in an upper-division cell and molecular biology laboratory course at a minority-serving institution.

    PubMed

    Knight, Jonathan D; Fulop, Rebecca M; Márquez-Magaña, Leticia; Tanner, Kimberly D

    2008-01-01

    Active-learning strategies are increasingly being integrated into college-level science courses to make material more accessible to all students and to improve learning outcomes. One active-learning pedagogy, case-based learning (CBL), was developed as a way to both enhance engagement in the material and to accommodate diverse learning styles. Yet, adoption of CBL approaches in undergraduate biology courses has been piecemeal, in part because of the perceived investment of time required. Furthermore, few CBL lesson plans have been developed specifically for upper-division laboratory courses. Here, we describe four cases that we developed and implemented for a senior cell and molecular biology laboratory course at San Francisco State University, a minority-serving institution. To evaluate the effectiveness of these modules, we used both written and verbal assessments to gauge learning outcomes and attitudinal responses of students over two semesters. Students responded positively to the new approach and seemed to meet the learning goals for the course. Most said they would take a course using CBL again. These case modules are readily adaptable to a variety of classroom settings. PMID:19047425

  18. Laboratory Directed Research and Development Program

    SciTech Connect

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new fundable'' R D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  19. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    SciTech Connect

    2014-04-15

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  20. Development of an Environmental Virtual Field Laboratory

    ERIC Educational Resources Information Center

    Ramasundaram, V.; Grunwald, S.; Mangeot, A.; Comerford, N. B.; Bliss, C. M.

    2005-01-01

    Laboratory exercises, field observations and field trips are a fundamental part of many earth science and environmental science courses. Field observations and field trips can be constrained because of distance, time, expense, scale, safety, or complexity of real-world environments. Our objectives were to develop an environmental virtual field…

  1. Vehicle Systems Integration Laboratory Accelerates Powertrain Development

    ScienceCinema

    None

    2014-06-25

    ORNL's Vehicle Systems Integration (VSI) Laboratory accelerates the pace of powertrain development by performing prototype research and characterization of advanced systems and hardware components. The VSI Lab is capable of accommodating a range of platforms from advanced light-duty vehicles to hybridized Class 8 powertrains with the goals of improving overall system efficiency and reducing emissions.

  2. Technology Development, Evaluation, and Application (TDEA) FY 1995 progress report - Environmental, Safety, and Health (ESH) division

    SciTech Connect

    Andrews, L.L.

    1996-09-01

    This report covers six months of effort, including startup time. Five projects were supported by the division: Pilot Program for the Risk-Based Surveillance of Lung Cancer in Los Alamos National Laboratory Workers, Optimization of Placement of Workplace Continuous Air Monitoring Instrumentation, A Polymeric Barrier Monitor to Protect Workers, Evaluation of a Real-Time Beryllium Detection Instrument and the Implications of Its Use, and High-Energy Dosimetry. A project summary for each is provided. An appendix to the report includes the 1995 Request for Proposals, Committee Members, Priority Technical Areas of Interest for FY95, Relative Prioritization and Weighting Factors, Format for Proposals, and Charter.

  3. Report Briefs: Publications of the Energy Division, Oak Ridge National Laboratory, 1999

    SciTech Connect

    Moser, C.I.

    2000-03-17

    The Bureau of Labor Statistics (BLS) is responsible for collecting data to estimate price indices such as the Consumer Price Index (CPI). BLS accomplishes this task by sending field staff to places of business to price actual products. The field staff are given product checklists to help them determine whether the products found are comparable to products priced the previous month. Prices for noncomparable products are not included in the current month's price index calculations. A serious problem facing BLS is developing product checklists for dynamic product areas, new industries, and the service sector. It is difficult to keep checklists up to date and quite often simply to develop checklists for service industry products. Some people estimate that more than 50% of U.S. economic activity is not accounted for in the CPI. The objective it to provide the results of tests on a method for helping BLS staff build new product checklists quickly and efficiently. The domain chosen for studying the method was the telecommunications industry. The method developed by ORNL is based on behavioral science and knowledge-engineering principles. The method has ten steps, which include developing a sample of domain experts, asking experts to list products in the domain, culling the list of products to a manageable number, asking experts to group the remaining products, identifying product clusters using multidimensional scaling and cluster analysis, asking experts to compare pairs of products within clusters, and, finally, developing checklists with the comparison data. The method performed as expected. Several prototype checklists for products in the telecommunications domain were developed, including checklists for paging services, digital cell phones, web browsers, routers, and LAN modems. It was particularly difficult, however, to find experts to participate in the project. Attending a professional meeting and contacting experts from the conference's mailing list proved to be

  4. Physics division annual report 2006.

    SciTech Connect

    Glover, J.; Physics

    2008-02-28

    This report highlights the activities of the Physics Division of Argonne National Laboratory in 2006. The Division's programs include the operation as a national user facility of ATLAS, the Argonne Tandem Linear Accelerator System, research in nuclear structure and reactions, nuclear astrophysics, nuclear theory, investigations in medium-energy nuclear physics as well as research and development in accelerator technology. The mission of nuclear physics is to understand the origin, evolution and structure of baryonic matter in the universe--the core of matter, the fuel of stars, and the basic constituent of life itself. The Division's research focuses on innovative new ways to address this mission.

  5. Dominant negative mutants of the Cdc2 kinase uncouple cell division from iterative plant development.

    PubMed Central

    Hemerly, A; Engler, J de A; Bergounioux, C; Van Montagu, M; Engler, G; Inzé, D; Ferreira, P

    1995-01-01

    Because plant cells do not move and are surrounded by a rigid cell wall, cell division rates and patterns are believed to be directly responsible for generating new structures throughout development. To study the relationship between cell division and morphogenesis, transgenic tobacco and Arabidopsis plants were constructed expressing dominant mutations in a key regulator of the Arabidopsis cell cycle, the Cdc2a kinase. Plants constitutively overproducing the wild-type Cdc2a or the mutant form predicted to accelerate the cell cycle did not exhibit a significantly altered development. In contrast, a mutation expected to arrest the cell cycle abolished cell division when expressed in Arabidopsis, whereas some tobacco plants constitutively producing this mutant protein were recovered. These plants had a reduced histone H1 kinase activity and contained considerably fewer cells. These cells were, however, much larger and underwent normal differentiation. Morphogenesis, histogenesis and developmental timing were unaffected. The results indicate that, in plants, the developmental controls defining shape can act independently from cell division rates. Images PMID:7664733

  6. Air Force Research Laboratory Cryocooler Technology Development

    NASA Astrophysics Data System (ADS)

    Davis, Thomas M.; Smith, D. Adam; Easton, Ryan M.

    2004-06-01

    This paper presents an overview of the cryogenic refrigerator and cryogenic integration programs in development and characterization under the Cryogenic Cooling Technology Group, Space Vehicles Directorate of the Air Force Research Laboratory (AFRL). The vision statement for the group is to support the space community as the center of excellence for developing and transitioning space cryogenic thermal management technologies. This paper will describe the range of Stirling, pulse tube; reverse Brayton, and Joule-Thomson cycle cryocoolers currently under development to meet current and future Air Force and Department of Defense requirements. Cooling requirements at 10K, 35K, 60K, 95K, and multistage cooling requirements at 35/85K are addressed. In order to meet these various requirements, the Air Force Research Laboratory, Space Vehicles Directorate is pursuing various strategic cryocooler and cryogenic integration options. The Air Force Research Laboratory, working with industry partners, is also developing several advanced cryogenic integration technologies that will result in the reduction in current cryogenic system integration penalties and design time. These technologies include the continued development of gimbaled transport systems, 35K and 10K thermal storage units, heat pipes, cryogenic straps, and thermal switches.

  7. The Phosphatase PP4c Controls Spindle Orientation to Maintain Proliferative Symmetric Divisions in the Developing Neocortex

    PubMed Central

    Xie, Yunli; Jüschke, Christoph; Esk, Christopher; Hirotsune, Shinji; Knoblich, Juergen A.

    2013-01-01

    Summary In the developing neocortex, progenitor cells expand through symmetric division before they generate cortical neurons through multiple rounds of asymmetric cell division. Here, we show that the orientation of the mitotic spindle plays a crucial role in regulating the transition between those two division modes. We demonstrate that the protein phosphatase PP4c regulates spindle orientation in early cortical progenitor cells. Upon removing PP4c, mitotic spindles fail to orient in parallel to the neuroepithelial surface and progenitors divide with random orientation. As a result, their divisions become asymmetric and neurogenesis starts prematurely. Biochemical and genetic experiments show that PP4c acts by dephosphorylating the microtubule binding protein Ndel1, thereby enabling complex formation with Lis1 to form a functional spindle orientation complex. Our results identify a key regulator of cortical development and demonstrate that changes in the orientation of progenitor division are responsible for the transition between symmetric and asymmetric cell division. PMID:23830831

  8. Microgravity effects during fertilization, cell division, development, and calcium metabolism in sea urchins

    NASA Technical Reports Server (NTRS)

    Schatten, Heide

    1996-01-01

    The overall objectives of this project are to explore the role of microgravity during fertilization, early development, cytoskeletal organization, and skeletal calcium deposition in a model development system: the sea urchin eggs and embryos. While pursuing these objectives, we have also helped to develop, test, and fly the Aquatic Research Facility (ARF) system. Cells were fixed at preselected time points to preserve the structures and organelles of interest with regards to cell biology events during development. The protocols used for the analysis of the results had been developed during the earlier part of this research and were applied for post-flight analysis using light and (immuno)fluorescence microscopy, scanning electron microscopy, and transmission electron microscopy. The structures of interest are: microtubules during fertilization, cell division, and cilia movement; microfilaments during cell surface restructuring and cell division; centrosomes and centrioles during cell division, cell differentiation, and cilia formation and movement; membranes, Golgi, endoplasmic reticulum, mitochondria, and chromosomes at all stages of development; and calcium deposits during spicule formation in late-stage embryos. In addition to further explore aspects important or living in space, several aspects of this research are also aimed at understanding diseases that affect humans on Earth which may be accelerated in space.

  9. Gate road development at Southern Ohio Coal Company-Meigs Division

    SciTech Connect

    Kidder, N.L.; Latham, J.W. III

    1996-12-31

    Southern Ohio Coal Company`s (SOCCo) Meigs Division, a part of American Electric Power`s Fuel Supply Division, is located in the southeastern Ohio counties of Meigs and Vinton, and consists of two large underground mines and a central coal preparation plant. The division began mining the 54-inch Clarion 4A seam in the early 1970`s, with three underground mines, which first used conventional mining, but changed to continuous mining after only a few years. Longwall mining began in 1978 at the Meigs No. 2 Mine. In 1989, Meigs No. 1 and Raccoon No. 3 Mines were interconnected underground, with the combined mine being named Meigs No. 31. A longwall was installed in Meigs No. 31 in September 1989. The Meigs Division operated three longwalls until 1993, but then reduced to two longwalls (one at each mine) and five continuous miner sections, which are used solely to develop main entries and gateroads for the longwalls. Longwall panel size has steadily increased through the years, growing from the initial 500 ft. wide by 5000 ft. long panels to the present panels which range from 900 to 1100 ft. wide by 10,000 to 13,000 ft. long.

  10. Environmental Education and Development Division (EM-522). Annual report, Fiscal year 1993

    SciTech Connect

    Not Available

    1993-12-31

    The Environmental Education and Development Division (EM-522) is one of three divisions within the Office of Technology Integration and Environmental Education and Development (EM-52) in Environmental Restoration and Waste Management`s (EM`s) Office of Technology Development (EM-50). The primary design criterion for EM-522 education activities is directly related to meeting EM`s goal of environmental compliance on an accelerated basis and cleanup of the 1989 inventory of inactive sites and facilities by the year 2019. Therefore, EM-522`s efforts are directed specifically toward stimulating knowledge and capabilities to achieve the goals of EM while contributing to DOE`s overall goal of increasing scientific, mathematical, and technical literacy and competency. This report discusses fiscal year 1993 activities.

  11. Real-time prediction of cell division timing in developing zebrafish embryo.

    PubMed

    Kozawa, Satoshi; Akanuma, Takashi; Sato, Tetsuo; Sato, Yasuomi D; Ikeda, Kazushi; Sato, Thomas N

    2016-01-01

    Combination of live-imaging and live-manipulation of developing embryos in vivo provides a useful tool to study developmental processes. Identification and selection of target cells for an in vivo live-manipulation are generally performed by experience- and knowledge-based decision-making of the observer. Computer-assisted live-prediction method would be an additional approach to facilitate the identification and selection of the appropriate target cells. Herein we report such a method using developing zebrafish embryos. We choose V2 neural progenitor cells in developing zebrafish embryo as their successive shape changes can be visualized in real-time in vivo. We developed a relatively simple mathematical method of describing cellular geometry of V2 cells to predict cell division-timing based on their successively changing shapes in vivo. Using quantitatively measured 4D live-imaging data, features of V2 cell-shape at each time point prior to division were extracted and a statistical model capturing the successive changes of the V2 cell-shape was developed. By applying sequential Bayesian inference method to the model, we successfully predicted division-timing of randomly selected individual V2 cells while the cell behavior was being live-imaged. This system could assist pre-selecting target cells desirable for real-time manipulation-thus, presenting a new opportunity for in vivo experimental systems. PMID:27597656

  12. Real-time prediction of cell division timing in developing zebrafish embryo

    PubMed Central

    Kozawa, Satoshi; Akanuma, Takashi; Sato, Tetsuo; Sato, Yasuomi D.; Ikeda, Kazushi; Sato, Thomas N.

    2016-01-01

    Combination of live-imaging and live-manipulation of developing embryos in vivo provides a useful tool to study developmental processes. Identification and selection of target cells for an in vivo live-manipulation are generally performed by experience- and knowledge-based decision-making of the observer. Computer-assisted live-prediction method would be an additional approach to facilitate the identification and selection of the appropriate target cells. Herein we report such a method using developing zebrafish embryos. We choose V2 neural progenitor cells in developing zebrafish embryo as their successive shape changes can be visualized in real-time in vivo. We developed a relatively simple mathematical method of describing cellular geometry of V2 cells to predict cell division-timing based on their successively changing shapes in vivo. Using quantitatively measured 4D live-imaging data, features of V2 cell-shape at each time point prior to division were extracted and a statistical model capturing the successive changes of the V2 cell-shape was developed. By applying sequential Bayesian inference method to the model, we successfully predicted division-timing of randomly selected individual V2 cells while the cell behavior was being live-imaged. This system could assist pre-selecting target cells desirable for real-time manipulation–thus, presenting a new opportunity for in vivo experimental systems. PMID:27597656

  13. GELCASTING: From laboratory development toward industrial production

    SciTech Connect

    Omatete, O.O.; Janney, M.A.; Nunn, S.D.

    1995-07-01

    Gelcasting, a ceramic forming process, was developed to overcome some of the limitations of other complex-shape forming techniques such as injection molding and slip casting. In gelcasting, a concentrated slurry of ceramic powder in a solution of organic monomers is poured into a mold and then polymerized in-situ to form a green body in the shape of the mold cavity. Thus, it is a combination of polymer chemistry with slip processing and represents minimal departure from standard ceramic processing. The simplicity of the process has attracted industrial partners and by collaboration between them and the developers, the process is being advanced from the laboratory toward industrial production.

  14. 1998 Chemical Technology Division Annual Technical Report.

    SciTech Connect

    Ackerman, J.P.; Einziger, R.E.; Gay, E.C.; Green, D.W.; Miller, J.F.

    1999-08-06

    The Chemical Technology (CMT) Division is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. The Division conducts research and development in three general areas: (1) development of advanced power sources for stationary and transportation applications and for consumer electronics, (2) management of high-level and low-level nuclear wastes and hazardous wastes, and (3) electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, and the chemistry of technology-relevant materials. In addition, the Division operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at Argonne National Laboratory (ANL) and other organizations. Technical highlights of the Division's activities during 1998 are presented.

  15. Laboratory Directed Research and Development FY 2000

    SciTech Connect

    Hansen, Todd; Levy, Karin

    2001-02-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  16. Laboratory Directed Research and Development FY 1992

    SciTech Connect

    Struble, G.L.; Middleton, C.; Anderson, S.E.; Baldwin, G.; Cherniak, J.C.; Corey, C.W.; Kirvel, R.D.; McElroy, L.A.

    1992-12-31

    The Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) funds projects that nurture and enrich the core competencies of the Laboratory. The scientific and technical output from the FY 1992 RD Program has been significant. Highlights include (1) Creating the first laser guide star to be coupled with adaptive optics, thus permitting ground-based telescopes to obtain the same resolution as smaller space-based instruments but with more light-gathering power. (2) Significantly improving the limit on the mass of the electron antineutrino so that neutrinos now become a useful tool in diagnosing supernovas and we disproved the existence of a 17-keV neutrino. (3) Developing a new class of organic aerogels that have robust mechanical properties and that have significantly lower thermal conductivity than inorganic aerogels. (4) Developing a new heavy-ion accelerator concept, which may enable us to design heavy-ion experimental systems and use a heavy-ion driver for inertial fusion. (5) Designing and demonstrating a high-power, diode-pumped, solid-state laser concept that will allow us to pursue a variety of research projects, including laser material processing. (6) Demonstrating that high-performance semiconductor arrays can be fabricated more efficiently, which will make this technology available to a broad range of applications such as inertial confinement fusion for civilian power. (7) Developing a new type of fiber channel switch and new fiber channel standards for use in local- and wide-area networks, which will allow scientists and engineers to transfer data at gigabit rates. (8) Developing the nation`s only numerical model for high-technology air filtration systems. Filter designs that use this model will provide safer and cleaner environments in work areas where contamination with particulate hazardous materials is possible.

  17. DIVISIBILITY TESTS.

    ERIC Educational Resources Information Center

    FOLEY, JACK L.

    THIS BOOKLET, ONE OF A SERIES, HAS BEEN DEVELOPED FOR THE PROJECT, A PROGRAM FOR MATHEMATICALLY UNDERDEVELOPED PUPILS. A PROJECT TEAM, INCLUDING INSERVICE TEACHERS, IS BEING USED TO WRITE AND DEVELOP THE MATERIALS FOR THIS PROGRAM. THE MATERIALS DEVELOPED IN THIS BOOKLET INCLUDE SUCH CONCEPTS AS (1) DIVISIBILITY TESTS, (2) CHECKING THE FUNDAMENTAL…

  18. Technology Development, Evaluation, and Application (TDEA) FY 1998 Progress Report Environment, Safety, and Health (ESH) Division

    SciTech Connect

    Larry G. Hoffman; Kenneth Alvar; Thomas Buhl; Bruce Erdal; Philip Fresquez; Elizabeth Foltyn; Wayne Hansen; Bruce Reinert

    1999-06-01

    This progress report presents the results of 10 projects funded ($504K) in FY98 by the Technology Development, Evaluation, and Application (TDEA) Committee of the Environment, Safety, and Health Division. Nine projects are new for this year; two projects were completed in their third and final TDEA-funded year. As a result of their TDEA-funded projects, investigators have published 19 papers in professional journals, proceedings, or Los Alamos reports and presented their work at professional meetings. Supplemental funds and in-kind contributions, such as staff time, instrument use, and work space were also provided to the TDEA-funded projects by organizations external to ESH Division. Products generated from the projects funded in FY98 included a new extremity dosimeter that replaced the previously used finger-ring dosimeters, a light and easy-to-use detector to measure energy deposited by neutron interactions, and a device that will allow workers to determine the severity of a hazard.

  19. Solanum lycopersicum AUXIN RESPONSE FACTOR 9 regulates cell division activity during early tomato fruit development

    PubMed Central

    de Jong, Maaike; Wolters-Arts, Mieke; Schimmel, Bernardus C. J.; Stultiens, Catharina L. M.; de Groot, Peter F. M.; Powers, Stephen J.; Tikunov, Yury M.; Bovy, Arnoud G.; Mariani, Celestina; Vriezen, Wim H.; Rieu, Ivo

    2015-01-01

    The transformation of the ovary into a fruit after successful completion of pollination and fertilization has been associated with many changes at transcriptomic level. These changes are part of a dynamic and complex regulatory network that is controlled by phytohormones, with a major role for auxin. One of the auxin-related genes differentially expressed upon fruit set and early fruit development in tomato is Solanum lycopersicum AUXIN RESPONSE FACTOR 9 (SlARF9). Here, the functional analysis of this ARF is described. SlARF9 expression was found to be auxin-responsive and SlARF9 mRNA levels were high in the ovules, placenta, and pericarp of pollinated ovaries, but also in other plant tissues with high cell division activity, such as the axillary meristems and root meristems. Transgenic plants with increased SlARF9 mRNA levels formed fruits that were smaller than wild-type fruits because of reduced cell division activity, whereas transgenic lines in which SlARF9 mRNA levels were reduced showed the opposite phenotype. The expression analysis, together with the phenotype of the transgenic lines, suggests that, in tomato, ARF9 negatively controls cell division during early fruit development. PMID:25883382

  20. Developments in laboratory diagnostics for isocyanate asthma

    PubMed Central

    Wisnewski, Adam V.

    2011-01-01

    Purpose of review Isocyanates, reactive chemicals used to generate polyurethane, are a leading cause of occupational asthma worldwide. Workplace exposure is the best-recognized risk factor for disease development, but is challenging to monitor. Clinical diagnosis and differentiation of isocyanates as the cause of asthma can be difficult. The gold-standard test, specific inhalation challenge, is technically and economically demanding, and is thus only available in a few specialized centers in the world. With the increasing use of isocyanates, efficient laboratory tests for isocyanate asthma and exposure are urgently needed. Recent findings The review focuses on literature published in 2005 and 2006. Over 150 articles, identified by searching PubMed using keywords ‘diphenylmethane’, ‘toluene’ or ‘hexamethylene diisocyanate’, were screened for relevance to isocyanate asthma diagnostics. New advances in understanding isocyanate asthma pathogenesis are described, which help improve conventional radioallergosorbent and enzyme-linked immunosorbent assay approaches for measuring isocyanate-specific IgE and IgG. Newer immunoassays, based on cellular responses and discovery science readouts are also in development. Summary Contemporary laboratory tests that measure isocyanate-specific human IgE and IgG are of utility in diagnosing a subset of workers with isocyanate asthma, and may serve as a biomarker of exposure in a larger proportion of occupationally exposed workers. PMID:17351466

  1. Process Development in the Teaching Laboratory

    NASA Astrophysics Data System (ADS)

    Klein, Leonard C.; Dana, Susanne M.

    1998-06-01

    Many experiences in high school and undergraduate laboratories are well-tested cookbook recipes that have already been designed to yield optimal results; the well-known synthesis of aspirin is such an example. In this project for advanced placement or second-year high school chemistry students, students mimic the process development in industrial laboratories by investigating the effect of varying conditions in the synthesis of aspirin. The class decides on criteria that should be explored (quantity of catalyst, temperature of reaction, etc.). The class is then divided into several teams with each team assigned a variable to study. Each team must submit a proposal describing how they will explore the variable before they start their study. After data on yield and purity has been gathered and evaluated, students discuss which method is most desirable, based on their agreed-upon criteria. This exercise provides an opportunity for students to review many topics from the course (rate of reaction, limiting reagents, Beer's Law) while participating in a cooperative exercise designed to imitate industrial process development.

  2. Electric vehicle battery testing and development at Argonne National Laboratory

    SciTech Connect

    Smaga, J.A.; Gillie, K.R.; Webster, C.E.; Tummillo, A.F.; Kulaga, J.K.; Marr, J.J. )

    1992-12-01

    The Electric Vehicle Battery Testing and Development Project for the Electric Power Research Institute (EPRI) does selected electric vehicle (EV) battery performance evaluations and special application tests in support of the EPRI Electric Transportation Program. Overall, this program provides information to aid the design and development of improved components and systems for electric vehicles. The Electrochemical Technology Department in the Chemical Technology Division of the Argonne National Laboratory (ANL) manages the project under the sponsorship and direction of the EPRI Electric Transportation Program. This report summarizes the work in this program from January through December 1991. Technical tasks and activities encompassed battery testing, post-test teardown analyses and special technology/application-related studies. Battery testing activities included evaluation of nickel/iron, lead-acid, nickel/cadmium, and nickel/metal-hydride EV battery technologies. Post-test analyses examined 6Vl60 and 3ET205 lead-acid cells. Special studies/analyses were conducted to examine Ni/Fe battery outgas composition and electrolyte variations, the self-discharge loss of nickel/metal-hydride cells, the effects of partial discharge operation on the available energy of Ni/Cd modules, and the effect of charge method/return/pulse-currents on Ni/Fe battery performance.

  3. Hyperspectral imager development at Army Research Laboratory

    NASA Astrophysics Data System (ADS)

    Gupta, Neelam

    2008-04-01

    Development of robust compact optical imagers that can acquire both spectral and spatial features from a scene of interest is of utmost importance for standoff detection of chemical and biological agents as well as targets and backgrounds. Spectral features arise due to the material properties of objects as a result of the emission, reflection, and absorption of light. Using hyperspectral imaging one can acquire images with narrow spectral bands and take advantage of the characteristic spectral signatures of different materials making up the scene in detection of objects. Traditional hyperspectral imaging systems use gratings and prisms that acquire one-dimensional spectral images and require relative motion of sensor and scene in addition to data processing to form a two-dimensional image cube. There is much interest in developing hyperspectral imagers using tunable filters that acquire a two-dimensional spectral image and build up an image cube as a function of time. At the Army Research Laboratory (ARL), we are developing hyperspectral imagers using a number of novel tunable filter technologies. These include acousto-optic tunable filters (AOTFs) that can provide adaptive no-moving-parts imagers from the UV to the long wave infrared, diffractive optics technology that can provide image cubes either in a single spectral region or simultaneously in different spectral regions using a single moving lens or by using a lenslet array, and micro-electromechanical systems (MEMS)-based Fabry-Perot (FP) tunable etalons to develop miniature sensors that take advantage of the advances in microfabrication and packaging technologies. New materials are being developed to design AOTFs and a full Stokes polarization imager has been developed, diffractive optics lenslet arrays are being explored, and novel FP tunable filters are under fabrication for the development of novel miniature hyperspectral imagers. Here we will brief on all the technologies being developed and present

  4. Meteorological Development Laboratory Student Career Experience Program

    NASA Astrophysics Data System (ADS)

    McCalla, C., Sr.

    2007-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) provides weather, hydrologic, and climate forecasts and warnings for the protection of life and property and the enhancement of the national economy. The NWS's Meteorological Development Laboratory (MDL) supports this mission by developing meteorological prediction methods. Given this mission, NOAA, NWS, and MDL all have a need to continually recruit talented scientists. One avenue for recruiting such talented scientist is the Student Career Experience Program (SCEP). Through SCEP, MDL offers undergraduate and graduate students majoring in meteorology, computer science, mathematics, oceanography, physics, and statistics the opportunity to alternate full-time paid employment with periods of full-time study. Using SCEP as a recruiting vehicle, MDL has employed students who possess some of the very latest technical skills and knowledge needed to make meaningful contributions to projects within the lab. MDL has recently expanded its use of SCEP and has increased the number of students (sometimes called co- ops) in its program. As a co-op, a student can expect to develop and implement computer based scientific techniques, participate in the development of statistical algorithms, assist in the analysis of meteorological data, and verify forecasts. This presentation will focus on describing recruitment, projects, and the application process related to MDL's SCEP. In addition, this presentation will also briefly explore the career paths of students who successfully completed the program.

  5. Laboratory Directed Research and Development Program. FY 1993

    SciTech Connect

    Not Available

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory`s core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology. (GHH)

  6. Development and integration of modern laboratories in aerospace education

    NASA Technical Reports Server (NTRS)

    Desautel, D.; Hunter, N.; Mourtos, N.; Pernicka, H.

    1992-01-01

    This paper describes the development and integration of a suite of laboratories in an aerospace engineering program. The program's approach to undergraduate education is described as the source for the development of the supporting laboratories. Nine laboratories supporting instruction were developed and installed. The nine laboratories include most major flight-vehicle disciplines. The purpose and major equipments/experiments of each laboratory are briefly described, as is the integration of the laboratory with coursework. The laboratory education provided by this program successfully achieves its purpose of producing competitive aerospace engineering graduates and advancing the level of undergraduate education.

  7. Development of a Regional Laboratory Healthcare Network

    PubMed Central

    Huff, Stanley M.; Evans, R. Scott; Gandhi, Santosh; Jensen, Blake

    1988-01-01

    In order to provide cost effective patient care and to provide better information access and exchange capabilities for healthcare providers, a regional healthcare network has been created. The goals of the network are to provide laboratory computer services to 8 hospitals, to provide the decision support capabilities of the HELP system to a group of affiliated hospitals in the intermountain region, and to allow access and exchange of clinical patient data among the various institutions. The network has nodes separated by over 30 miles and includes Tandem, Prime, Data General, and IBM hardware. Problems encountered in creating the network include the lack of appropriate standards, development of strategies for error handling and system isolation, complexities in data translation, and functional overlap between the systems.

  8. Pyrotechnic component development at Sandia National Laboratory

    SciTech Connect

    Wilcox, P.D.

    1987-01-01

    Pyrotechnic and explosive devices are designed at Sandia National Laboratories, SNL, which must satisfy high reliability requirements for reliable function and storage life. Since only a small number of devices may be built, high standards of quality of both the explosive and structural materials are necessary. We have developed special alloys and glass-ceramic seals for headers and structural parts of these devices to satisfy requirements for minimum size and weight but with increased ruggedness and safety. Hermetic sealing is used extensively to aid in the control of corrosion and aging effects. There is an increasing demand for the integration of these devices with safer (less sensitive) materials, better handling methods, and the use of electrical or fiber optic logic input elements. This paper addresses the trends in active materials, structural materials and a new method of ignition which enhances device designs compatible with low voltage and digital electronics.

  9. Laboratory Directed Research and Development Program FY2011

    SciTech Connect

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  10. Los Alamos National Laboratory Facilities, Security and Safeguards Division, Safeguards and Security Program Office, Protective Force Oversight Program

    SciTech Connect

    1995-11-30

    The purpose of this document is to identify and describe the duties and responsibilities of Facility Security and Safeguards (FSS) Safeguards and Security (SS) organizations (groups/offices) with oversight functions over the Protection Force (PF) subcontractor. Responsible organizations will continue their present PF oversight functions under the Cost Plus Award Fee (CPAF) assessment, but now will be required to also coordinate, integrate, and interface with other FSS S and S organizations and with the PF subcontractor to measure performance, assess Department of Energy (DOE) compliance, reduce costs, and minimize duplication of effort. The role of the PF subcontractor is to provide the Laboratory with effective and efficient protective force services. PF services include providing protection for the special nuclear material, government property and classified or sensitive information developed and/or consigned to the Laboratory, as well as protection for personnel who work or participate in laboratory activities. FSS S and S oversight of both performance and compliance standards/metrics is essential for these PF objectives to be met.

  11. Pathfinder radar development at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Castillo, Steven

    2016-05-01

    Since the invention of Synthetic Aperture Radar imaging in the 1950's, users or potential users have sought to exploit SAR imagery for a variety of applications including the earth sciences and defense. At Sandia Laboratories, SAR Research and Development and associated defense applications grew out of the nuclear weapons program in the 1980's and over the years has become a highly viable ISR sensor for a variety of tactical applications. Sandia SAR systems excel where real-­-time, high-­-resolution, all-­-weather, day or night surveillance is required for developing situational awareness. This presentation will discuss the various aspects of Sandia's airborne ISR capability with respect to issues related to current operational success as well as the future direction of the capability as Sandia seeks to improve the SAR capability it delivers into multiple mission scenarios. Issues discussed include fundamental radar capabilities, advanced exploitation techniques and human-­-computer interface (HMI) challenges that are part of the advances required to maintain Sandia's ability to continue to support ever changing and demanding mission challenges.

  12. Mars Science Laboratory Rover Mobility Bushing Development

    NASA Technical Reports Server (NTRS)

    Riggs, Benjamin

    2008-01-01

    NASA s Mars Science Laboratory (MSL) Project will send a six-wheeled rover to Mars in 2009. The rover will carry a scientific payload designed to search for organic molecules on the Martian surface during its primary mission. This paper describes the development and testing of a bonded film lubricated bushing system to be used in the mobility system of the rover. The MSL Rover Mobility System contains several pivots that are tightly constrained with respect to mass and volume. These pivots are also exposed to relatively low temperatures (-135 C) during operation. The combination of these constraints led the mobility team to consider the use of solid film lubricated metallic bushings and dry running polymeric bushings in several flight pivot applications. A test program was developed to mitigate the risk associated with using these materials in critical pivots on the MSL vehicle. The program was designed to characterize bushing friction and wear performance over the expected operational temperature range (-135 C to +70 C). Seven different bushing material / lubricant combinations were evaluated to aid in the selection of the final flight pivot bushing material / lubricant combination.

  13. Transatmospheric vehicle (TAV) research & development at Wright Laboratory{close_quote}s Flight Dynamics Directorate

    SciTech Connect

    Karasopoulos, H.

    1996-03-01

    The Structures and Aeromechanics Divisions of the Flight Dynamics Directorate, Wright Laboratory, Wright-Patterson Air Force Base, Ohio have a long history of activities in transatmospheric vehicle (TAV) technology development. Included in these activities were research and development efforts in thermal protection systems (TPS), cryogenic fuel tanks, and hot structures. Additional efforts existed in the aerodynamics, aerothermodynamics, and performance of transatmospheric, hypersonic, and lifting reentry vehicle configurations. High payoff TAVresearch and development activities in the Flight Dynamics Directorate continue today and are planned for the future. {copyright} {ital 1996 American Institute of Physics.}

  14. Biology Division progress report, October 1, 1993--September 30, 1995

    SciTech Connect

    1995-10-01

    This Progress Report summarizes the research endeavors of the Biology Division of the Oak Ridge National Laboratory during the period October 1, 1993, through September 30, 1995. The report is structured to provide descriptions of current activities and accomplishments in each of the Division`s major organizational units. Lists of information to convey the entire scope of the Division`s activities are compiled at the end of the report. Attention is focused on the following research activities: molecular, cellular, and cancer biology; mammalian genetics and development; genome mapping program; and educational activities.

  15. Developing a Remote Laboratory for Engineering Education

    ERIC Educational Resources Information Center

    Fabregas, E.; Farias, G.; Dormido-Canto, S.; Dormido, S.; Esquembre, F.

    2011-01-01

    New information technologies provide great opportunities for education. One such opportunity is the use of remote control laboratories for teaching students about control systems. This paper describes the creation of interactive remote laboratories (RLs). Two main software tools are used: Simulink and Easy Java Simulations (EJS). The first is a…

  16. Quarterly progress report for the Chemical Development Section of the Chemical Technology Division: July--September 1996

    SciTech Connect

    Jubin, R.T.

    1997-03-01

    This report summarizes the major activities conducted in the Chemical Development Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period July-September 1996. The report describes 12 tasks conducted in 4 major areas of research and development within the section. The name of a contact is included with each task in the report, and readers are encouraged to consult these individuals if they need additional information. The first major research area--Chemical Processes for Waste Management-- includes the following tasks: Comprehensive Supernate Treatment, Partitioning of Sludge Components by Caustic Leaching, Studies on Treatment of Dissolved MVST Sludge Using TRUEX Process, ACT*DE*CON{sup SM} Test Program, Hot Demonstration of Proposed Commercial Nuclide Removal Technology, Sludge Treatment Studies, and Development and Testing of Inorganic Sorbents. Within the third research area--Thermodynamics--efforts continued in the Thermodynamics and Kinetics of Energy-Related Materials task. The fourth major research area--Processes for Waste Management--includes work on these tasks: Ion-Exchange Process for Heavy Metals Removal, Hot Cell Cross-Flow Filtration Studies of Gunite Tank Sludges, and Chemical Conversion of Nitrate Directly to Nitrogen Gas: A Feasibility Study.

  17. Geothermal materials development at Brookhaven National Laboratory

    SciTech Connect

    Kukacka, L.E.

    1997-12-31

    As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R&D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O&M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R&D, most of which is performed as cost-shared efforts with U.S. geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

  18. Geothermal materials development at Brookhaven National Laboratory

    SciTech Connect

    Kukacka, L.E.

    1997-06-01

    As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R and D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O and M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R and D, most of which is performed as cost-shared efforts with US geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

  19. Laboratory Directed Research and Development FY 2000 Annual Report

    SciTech Connect

    Al-Ayat, R

    2001-05-24

    This Annual Report provides an overview of the FY2000 Laboratory Directed Research and Development (LDRD) Program at Lawrence Livermore National Laboratory (LLNL) and presents a summary of the results achieved by each project during the year.

  20. Quarterly progress report for the chemical development section of the Chemical Technology Division: October--December 1995

    SciTech Connect

    Jubin, R.T.

    1996-03-01

    This quarterly report is intended to provide a timely summary of the major activities being conducted in the Chemical Development Section of the Chemical Technology Division at the Oak Ridge National Laboratory (ORNL) during the period September-December 1995. The report summarizes ten major tasks conducted within five major areas of research and development within the section. The first major research area-Chemical Processes for Waste Management-includes the following tasks: Comprehensive Supernate Treatment, Partitioning of Sludge Compounds by Caustic Leaching, Studies on Treatment of Dissolved MVST Sludge Using TRUEX Process, ACT*DE*CON{sup SM} Test Program, Hot Demonstration of Proposed Commercial Nuclide Removal Technology, and Sludge Washing and Dissolution of ORNL Waste: Data for Modeling Sludge Science. The Comprehensive Supernate task is currently evaluating several sorbents in batch tests for removing strontium, technetium, and cesium from ORNL Melton Valley Storage Tank (MVST) supernatant solutions. Nine sorbents have been evaluated for removing strontium from MVST W-29 supernatant, and seven have been tested for technetium removal. All planned batch testing of cesium sorbents has been completed; however, additional cesium tests may be made as new sorbents become available. At the request of Hanford personnel, some batch tests were made to evaluate the effect on cesium distribution of selected sorbents which had been treated with an organic such as tributyl phosphate.

  1. Quarterly progress report for the Chemical Development Section of the Chemical Technology Division: January--March 1996

    SciTech Connect

    Jubin, R.T.

    1996-06-01

    This report provides a timely summary of the major activities conducted in the Chemical Development Section of the Chemical Technology Division at the Oak Ridge National Laboratory (ORNL) during the period January--March 1996. The report summarizes ten major tasks conducted with five major areas of research and development within the section. The first major research area--Chemical Processes for Waste Management--includes the following tasks: Comprehensive Supernate Treatment, Partitioning of Sludge Compounds by Caustic Leaching, Studies on Treatment of Dissolved MVST Sludge Using TRUEX Process, ACT{asterisk}DE{asterisk}CON{sup SM} Test Program, Hot Demonstration of Proposed Commercial Nuclide Removal Technology, and Sludge Washing and Dissolution of ORNL Waste: Data for Modeling Sludge Science. The other four tasks are: Reactor fuel chemistry--Technical assistance in review of advanced reactors; Thermodynamics and kinetics of energy-related materials; Processes for waste management--Ion-exchange process for heavy metals removal; and US Army field artillery liquid propellant stability program.

  2. From Meiosis to Mitosis: The Astonishing Flexibility of Cell Division Mechanisms in Early Mammalian Development.

    PubMed

    Bury, L; Coelho, P A; Glover, D M

    2016-01-01

    The execution of female meiosis and the establishment of the zygote is arguably the most critical stage of mammalian development. The egg can be arrested in the prophase of meiosis I for decades, and when it is activated, the spindle is assembled de novo. This spindle must function with the highest of fidelity and yet its assembly is unusually achieved in the absence of conventional centrosomes and with minimal influence of chromatin. Moreover, its dramatic asymmetric positioning is achieved through remarkable properties of the actin cytoskeleton to ensure elimination of the polar bodies. The second meiotic arrest marks a uniquely prolonged metaphase eventually interrupted by egg activation at fertilization to complete meiosis and mark a period of preparation of the male and female pronuclear genomes not only for their entry into the mitotic cleavage divisions but also for the imminent prospect of their zygotic expression. PMID:27475851

  3. Development of a CMOS integrated zero-crossing discriminator using analog continuous-time division

    SciTech Connect

    Jochmann, M.W.

    1996-12-31

    High resolution time spectroscopy experiments require circuit techniques that accurately mark the time arrival of events regardless of their amplitude. For this purpose zero-crossing techniques are generally used because of their independence of the signal amplitude. Since the output response of real voltage comparators is related to the input signal slope and overdrive, even these time-pickoff methods are burdened by an amplitude dependent time walk. Therefore a new time-pickoff circuit is proposed using analog continuous-time division to eliminate the undesired amplitude information. Based on a standard CMOS technology a first test version has been developed that is still under production. First promising SPICE simulations using the simulation parameters of an inexpensive 1.2 {mu}m CMOS technology have shown a time walk fairly below 200 ps (FWHM) over a 40 dB amplitude range and for input signal risetimes of 2 to 3 ns.

  4. Y-12 Development Division technical progress report, period ending October 1, 1989

    SciTech Connect

    Kosinski, F.E.

    1990-08-30

    Shallow land burial in Bear Creek Burial Ground (BCBG) of depleted uranium and uranium alloy chips was discontinued. These materials are now being processed at the Uranium Chip Oxidation Facility (UCOF). Some of the depleted uranium chips, formerly taken to BCBG, were oxidized in 5-, 10-, 15-, and 20-lb batches to determine the optimal processing weight that would reduce the overall flameout frequency to one that complies with UCOF safety documentation. The goal of the Y-12 Plant Development Division was to reduce the flameout frequency to 1%. Batches of uranium-titanium alloy mill, mixed, and suspect chips were also processed at UCOF using modified operating procedures. Most of the depleted uranium and uranium alloy chips, except for the sawfines, were safely oxidized at UCOF with a minimum number of flameouts. 1 fig., 14 tabs.

  5. Idaho National Laboratory Research & Development Impacts

    SciTech Connect

    Stricker, Nicole

    2015-01-01

    Technological advances that drive economic growth require both public and private investment. The U.S. Department of Energy’s national laboratories play a crucial role by conducting the type of research, testing and evaluation that is beyond the scope of regulators, academia or industry. Examples of such work from the past year can be found in these pages. Idaho National Laboratory’s engineering and applied science expertise helps deploy new technologies for nuclear energy, national security and new energy resources. Unique infrastructure, nuclear material inventory and vast expertise converge at INL, the nation’s nuclear energy laboratory. Productive partnerships with academia, industry and government agencies deliver high-impact outcomes. This edition of INL’s Impacts magazine highlights national and regional leadership efforts, growing capabilities, notable collaborations, and technology innovations. Please take a few minutes to learn more about the critical resources and transformative research at one of the nation’s premier applied science laboratories.

  6. AIR POLLUTION PREVENTION AND CONTROL DIVISION - HOME PAGE

    EPA Science Inventory

    The Air Pollution Prevention and Control Division (APPCD), located in Research Triangle Park, NC, is part of the National Risk Management Research Laboratory (NRMRL), which is headquartered in Cincinnati, OH. APPCD researches, develops, anddemonstrates air pollution prevention a...

  7. Evolutionary development of the space plasma laboratory

    NASA Technical Reports Server (NTRS)

    Roberts, W. T.

    1984-01-01

    In connection with payload definition studies for the Shuttle, one particular study, initiated in 1971, was concerned with the Definition of a Plasma Physics and Environmental Perturbation Laboratory (PPEPL). Possibilities were explored for performing, from a manned Shuttle-borne laboratory, investigations utilizing the natural space plasma environment around the Shuttle, and investigations employing controlled active experiments within the space plasma environment. Special emphasis was placed on employing controlled active experiment techniques using a manned Shuttle for short duration (7 to 30 days) missions and frequent reflights.

  8. Lab Partners: MSOE Develops Industrially Sponsored Laboratories.

    ERIC Educational Resources Information Center

    Gerard, Maureen; Davis, Thomas W.

    1994-01-01

    The Milwaukee School of Engineering (MSOE) in Wisconsin has entered into a partnership with industry to fund continuous upgrading and expansion of its laboratories. The program has succeeded because of industry's need to hire work-ready graduates who have experience with the companies and with the latest technology. (MSE)

  9. Earth Sciences Division

    NASA Astrophysics Data System (ADS)

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division's research deals with the physical and chemical properties and processes in the earth's crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989, a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will, in the coming years, be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  10. Developing a Virtual Rock Deformation Laboratory

    NASA Astrophysics Data System (ADS)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  11. High energy physics division semiannual report of research activities

    SciTech Connect

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R. )

    1991-08-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1991--June 30, 1991. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  12. Identification of Process Hazards and Accident Scenarios for Site 300 B-Division Firing Areas, Lawrence Livermore National Laboratory

    SciTech Connect

    Lambert, H; Johnson, G

    2001-05-04

    This report describes a hazard and accident analysis conducted for Site 300 operations to support update of the ''Site 300 B-Division Firing Areas Safety Analysis Report'' (SAR) [LLNL 1997]. A significant change since the previous SAR is the construction and the new Contained Firing Facility (CFF). Therefore, this hazard and accident analysis focused on the hazards associated with bunker operations to ensure that the hazards at CFF are properly characterized in the updated SAR. Hazard tables were created to cover both the CFF and the existing bunkers with ''open air'' firing tables.

  13. Post-remedial-action radiological survey of the Westinghouse Advanced Reactors Division Plutonium Fuel Laboratories, Cheswick, Pennsylvania, October 1-8, 1981

    SciTech Connect

    Flynn, K.F.; Justus, A.L.; Sholeen, C.M.; Smith, W.H.; Wynveen, R.A.

    1984-01-01

    The post-remedial-action radiological assessment conducted by the ANL Radiological Survey Group in October 1981, following decommissioning and decontamination efforts by Westinghouse personnel, indicated that except for the Advanced Fuels Laboratory exhaust ductwork and north wall, the interior surfaces of the Plutonium Laboratory and associated areas within Building 7 and the Advanced Fuels Laboratory within Building 8 were below both the ANSI Draft Standard N13.12 and NRC Guideline criteria for acceptable surface contamination levels. Hence, with the exceptions noted above, the interior surfaces of those areas within Buildings 7 and 8 that were included in the assessment are suitable for unrestricted use. Air samples collected at the involved areas within Buildings 7 and 8 indicated that the radon, thoron, and progeny concentrations within the air were well below the limits prescribed by the US Surgeon General, the Environmental Protection Agency, and the Department of Energy. The Building 7 drain lines are contaminated with uranium, plutonium, and americium. Radiochemical analysis of water and dirt/sludge samples collected from accessible Low-Bay, High-Bay, Shower Room, and Sodium laboratory drains revealed uranium, plutonium, and americium contaminants. The Building 7 drain lines hence are unsuitable for release for unrestricted use in their present condition. Low levels of enriched uranium, plutonium, and americium were detected in an environmental soil coring near Building 8, indicating release or spillage due to Advanced Reactors Division activities or Nuclear Fuel Division activities undr NRC licensure. /sup 60/Co contamination was detected within the Building 7 Shower Room and in soil corings from the environs of Building 7. All other radionuclide concentrations measured in soil corings and the storm sewer outfall sample collected from the environs about Buildings 7 and 8 were within the range of normally expected background concentrations.

  14. Mitotic spindle rotation and mode of cell division in the developing telencephalon.

    PubMed

    Haydar, Tarik F; Ang, Eugenius; Rakic, Pasko

    2003-03-01

    The mode of neural stem cell division in the forebrain proliferative zones profoundly influences neocortical growth by regulating the number and diversity of neurons and glia. Long-term time-lapse multiphoton microscopy of embryonic mouse cortex reveals new details of the complex three-dimensional rotation and oscillation of the mitotic spindle before stem cell division. Importantly, the duration and amplitude of spindle movement predicts and specifies the eventual mode of mitotic division. These technological advances have provided dramatic data and insights into the kinetics of neural stem cell division by elucidating the involvement of spindle rotation in selection of the cleavage plane and the mode of neural stem cell division that together determine the size of the mammalian neocortex. PMID:12589023

  15. Microgravity Effecs During Fertilization, Cell Division, Development, and Calcium Metabolism in Sea Urchins

    NASA Technical Reports Server (NTRS)

    Schatten, Heide

    1999-01-01

    Calcium loss and muscle atrophy are two of the main metabolic changes experienced by astronauts and crew members during exposure to microgravity in space. For long-term exposure to space it is crucial to understand the underlying mechanisms for altered physiological functions. Fundamental occurrences in cell biology which are likely to depend on gravity include cytoskeletal dynamics, chromatin and centrosome cycling, and ion immobilization. These events can be studied during fertilization and embryogenesis within invertebrate systems. We have chosen the sea urchin system to study the effects of microgravity on cytoskeletal processes and calcium metabolism during fertilization, cell division, development, and embryogenesis. Experiments during an aircraft parabolic flight (KC-135) demonstrated: (1) the viability of sea urchin eggs prior to fertilization, (2) the suitability of our specimen containment system, (3) the feasibility of fertilization in a reduced gravity environment (which was achieved during 25 seconds of reduced gravity under parabolic flight conditions). Two newly developed pieces of spaceflight hardware made further investigations possible on a spaceflight (STS-77); (1) the Aquatic Research Facility (ARF), and (2) the Fertilization Syringe Unit (FSU). The Canadian Space Agency developed ARF to conduct aquatic spaceflight experiments requiring controlled conditions of temperature, humidity, illumination, and fixation at predetermined time points. It contained a control centrifuge which simulated the 1 g environment of earth during spaceflight. The FSU was developed at the Kennedy Space Center (KSC) by the Bionetics Corporation specifically to enable the crew to perform sea urchin fertilization operations in space.

  16. 25. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, Natick, Mass. Climatic Building, First Floor Plan, Refrigeration and Engineering. Drawing No. 35-07-01, Sheet 52 of 72, 1952. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  17. 24. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. PHOTOCOPY OF PLAN DRAWING. Quartermaster Research and Development Laboratory, Natick, Mass, Climatic Building, First Floor Plan, Architectural. Drawing No. 35-07-01, Sheet 2 of 72, 1952, updated to 1985. (Source: NRDEC). - Natick Research & Development Laboratories, Climatic Chambers Building, U.S. Army Natick Research, Development & Engineering Center (NRDEC), Natick, Middlesex County, MA

  18. An Examination of the Effect of Coach Leadership Behaviors on the Psychosocial Development of Division III College Football Players

    ERIC Educational Resources Information Center

    Williams, Gary P.

    2010-01-01

    This study explores the relationship between student athlete development and coach leadership behaviors in NCAA Division III football players. Three key elements support this study. The first, Thelma Horn's model of coaching effectiveness, provided the framework for the impact of coaching behaviors on student athlete development. The second,…

  19. Transition: The Transition of Youth with Disabilities to Adult Life: A Position Statement of the Division on Career Development.

    ERIC Educational Resources Information Center

    Council for Exceptional Children, Reston, VA. Div. on Career Development.

    The document presents a position statement of the Division on Career Development of the Council for Exceptional Children concerning the transition of youth with disabilities to adult life. Stages of career development from awareness through exploration, preparation, assimilation, and continuing education are explained. The crucial element in…

  20. Rocketdyne division, environmental monitoring and facility effluent. Annual report, De Soto and Santa Susana Field Laboratories Sites, 1986

    SciTech Connect

    Moore, J. D.

    1987-03-01

    Environmental and facility effluent radioactivity monitoring at the Rocketdyne Division of Rockwell International is performed by the Radiation and Nuclear Safety Group of the Health, Safety, and Environment Department. Soil and surface water are routinely sampled to a distance of 10 miles from Division sites. Ground water from site supply water wells and other test wells is periodically sampled to measure radioactivity in these waters. Continuous ambient air sampling and direct radiation monitoring by thermoluminescent dosimetry are performed at several on=site and off-site locations for measuring airborne radioactivity concentrations and site ambient radiation levels. Radioactivity in effluents discharged to the atmosphere from nuclear facilities is continuously sampled and monitored to ensure that amounts released to uncontrolled areas are below appropriate limits and to identify processes that may require additional engineering safeguards to minimize radioactivity in such discharges. In addition, selected nonradioactive chemical constituent concentrations in surface water discharged to uncontrolled areas are determined. The environmental radioactivity reported herein is attributed to natural sources, to local fallout of radioactive debris from the Chernobyl reactor accident, and to residual fallout of radioactive material from past atmospheric testing of nuclear devices.

  1. Health, Safety, and Environment Division

    SciTech Connect

    Wade, C

    1992-01-01

    The primary responsibility of the Health, Safety, and Environmental (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting these responsibilities requires expertise in many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The results of these programs help develop better practices in occupational health and safety, radiation protection, and environmental science.

  2. POLLUTION PREVENTION OPPORTUNITY ASSESSMENT - U.S. POSTAL INSPECTION SERVICE FORENSIC & TECHNICAL SERVICES DIVISION - NATIONAL FORENSIC LABORATORY, DULLES, VIRGINIA

    EPA Science Inventory

    The United States Postal Service (USPS) in cooperation with EPA's National Risk Management Research Laboratory (NRMRL) is engaged in an effort to integrate waste prevention and recycling activities into the waste management programs at Postal facilities. This report describes the...

  3. Physics division. Progress report, January 1, 1995--December 31, 1996

    SciTech Connect

    Stewart, M.; Bacon, D.S.; Aine, C.J.; Bartsch, R.R.

    1997-10-01

    This issue of the Physics Division Progress Report describes progress and achievements in Physics Division research during the period January 1, 1995-December 31, 1996. The report covers the five main areas of experimental research and development in which Physics Division serves the needs of Los Alamos National Laboratory and the nation in applied and basic sciences: (1) biophysics, (2) hydrodynamic physics, (3) neutron science and technology, (4) plasma physics, and (5) subatomic physics. Included in this report are a message from the Division Director, the Physics Division mission statement, an organizational chart, descriptions of the research areas of the five groups in the Division, selected research highlights, project descriptions, the Division staffing and funding levels for FY95-FY97, and a list of publications and presentations.

  4. Laboratory Directed Research and Development annual report, fiscal year 1997

    SciTech Connect

    1998-03-01

    The Department of Energy Order 413.2(a) establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 413.2, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. DOE Order 413.2 requires that each laboratory submit an annual report on its LDRD activities to the cognizant Secretarial Officer through the appropriate Operations Office Manager. The report provided in this document represents Pacific Northwest National Laboratory`s LDRD report for FY 1997.

  5. Quarterly progress report for the Chemical Development Section of the Chemical Technology Division: April--June 1996

    SciTech Connect

    Jubin, R.T.

    1996-11-01

    This report summarizes the major activities conducted in the Chemical Development Section of the Chemical Technology Division at Oak Ridge National Laboratory (ORNL) during the period April--June 1996. The report describes 12 tasks conducted in 4 major areas of research and development within the section. The first major research area--Chemical Processes for Waste Management--includes the following tasks: Comprehensive Supernate Treatment, Partitioning of Sludge Components by Caustic Leaching, Studies on Treatment of Dissolved MVST Sludge Using TRUEX Process, ACT*DE*CON{sup SM} Test Program, Hot Demonstration of Proposed Commercial Nuclide Removal Technology, Sludge Treatment Studies, and Development and Testing of Inorganic Sorbents. Within the second research area--Reactor Fuel Chemistry--a new scope of work for the Technical Assistance in Review of Advanced Reactors task has been established to include assessments of iodine behavior nd pH control in operating nuclear reactor containments as well as in advanced reactor systems. This task is on hold, awaiting finalization of the revised proposal and receipt of the necessary information from Westinghouse to permit the start of the study. Within the third research area--Thermodynamics--the Thermodynamics and Kinetics of Energy-Related Materials task has used a differential thermal analysis (DTA)/thermogravimetric analysis (TGA) to study the phase transitions of phase-pure YBa{sub 2}Cu{sub 3}O{sub 6+x} (123). The fourth major research area--Processes for Waste Management--includes work on these tasks: Ion Exchange Process for Heavy Metals Removal, Hot Cell Cross-Flow Filtration Studies of Gunite Tank Sludges, and Chemical Conversion of Nitrate Directly to Nitrogen Gas: A Feasibility Study.

  6. Environmental Sciences Division annual progress report for period ending September 30, 1992

    SciTech Connect

    Van Hook, R. I.; Hildebrand, S. G.; Gehrs, C. W.; Sharples, F. E.; Shriner, D. S.; Stow, S. H.; Cushman, J. H.; Kanciruk, P.

    1993-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during fiscal year (FY) 1992, which which extended from October 1, 1991, through September 30, 1992. This report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Section activities are described in the Earth and Atmospheric sciences, ecosystem studies, Environmental analysis, environmental biotechnology, and division operations.

  7. Photovoltaic module certification/laboratory accreditation criteria development

    SciTech Connect

    Osterwald, C.R.; Hammond, R.L.; Wood, B.D.; Backus, C.E.; Sears, R.L.; Zerlaut, G.A.; D`Aiello, R.V.

    1995-04-01

    This document provides an overview of the structure and function of typical product certification/laboratory accreditation programs. The overview is followed by a model program which could serve as the basis for a photovoltaic (PV) module certification/laboratory accreditation program. The model covers quality assurance procedures for the testing laboratory and manufacturer, third-party certification and labeling, and testing requirements (performance and reliability). A 30-member Criteria Development Committee was established to guide, review, and reach a majority consensus regarding criteria for a PV certification/laboratory accreditation program. Committee members represented PV manufacturers, end users, standards and codes organizations, and testing laboratories.

  8. 2002 Chemical Engineering Division annual report.

    SciTech Connect

    Lewis, D.; Graziano, D.; Miller, J. F.

    2003-05-22

    The Chemical Engineering Division is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. The Division is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory; Environment, Safety, and Health Analytical Chemistry services; and Dosimetry and Radioprotection services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors. Our wide-ranging expertise finds ready application in solving energy and environmental problems. Division personnel are frequently called on by

  9. Aircraft wire system laboratory development : phase I progress report.

    SciTech Connect

    Dinallo, Michael Anthony; Lopez, Christopher D.

    2003-08-01

    An aircraft wire systems laboratory has been developed to support technical maturation of diagnostic technologies being used in the aviation community for detection of faulty attributes of wiring systems. The design and development rationale of the laboratory is based in part on documented findings published by the aviation community. The main resource at the laboratory is a test bed enclosure that is populated with aged and newly assembled wire harnesses that have known defects. This report provides the test bed design and harness selection rationale, harness assembly and defect fabrication procedures, and descriptions of the laboratory for usage by the aviation community.

  10. Developments in Time-Division Multiplexing of X-ray Transition-Edge Sensors

    NASA Astrophysics Data System (ADS)

    Doriese, W. B.; Morgan, K. M.; Bennett, D. A.; Denison, E. V.; Fitzgerald, C. P.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Irwin, K. D.; Joe, Y. I.; Mates, J. A. B.; O'Neil, G. C.; Reintsema, C. D.; Robbins, N. O.; Schmidt, D. R.; Swetz, D. S.; Tatsuno, H.; Vale, L. R.; Ullom, J. N.

    2016-07-01

    Time-division multiplexing (TDM) is a mature scheme for the readout of arrays of transition-edge sensors (TESs). TDM is based on superconducting-quantum-interference-device (SQUID) current amplifiers. Multiple spectrometers based on gamma-ray and X-ray microcalorimeters have been operated with TDM readout, each at the scale of 200 sensors per spectrometer, as have several astronomical cameras with thousands of sub-mm or microwave bolometers. Here we present the details of two different versions of our TDM system designed to read out X-ray TESs. The first has been field-deployed in two 160-sensor (8 columns × 20 rows) spectrometers and four 240-sensor (8 columns × 30 rows) spectrometers. It has a three-SQUID-stage architecture, switches rows every 320 ns, and has total readout noise of 0.41 μ Φ 0 / surd Hz. The second, which is presently under development, has a two-SQUID-stage architecture, switches rows every 160 ns, and has total readout noise of 0.19 μ Φ 0 / surd Hz. Both quoted noise values are non-multiplexed and referred to the first-stage SQUID. In a demonstration of this new architecture, a multiplexed 1-column × 32-row array of NIST TESs achieved average energy resolution of 2.55± 0.01 eV at 6 keV.

  11. Developments in Time-Division Multiplexing of X-ray Transition-Edge Sensors

    NASA Astrophysics Data System (ADS)

    Doriese, W. B.; Morgan, K. M.; Bennett, D. A.; Denison, E. V.; Fitzgerald, C. P.; Fowler, J. W.; Gard, J. D.; Hays-Wehle, J. P.; Hilton, G. C.; Irwin, K. D.; Joe, Y. I.; Mates, J. A. B.; O'Neil, G. C.; Reintsema, C. D.; Robbins, N. O.; Schmidt, D. R.; Swetz, D. S.; Tatsuno, H.; Vale, L. R.; Ullom, J. N.

    2015-12-01

    Time-division multiplexing (TDM) is a mature scheme for the readout of arrays of transition-edge sensors (TESs). TDM is based on superconducting-quantum-interference-device (SQUID) current amplifiers. Multiple spectrometers based on gamma-ray and X-ray microcalorimeters have been operated with TDM readout, each at the scale of 200 sensors per spectrometer, as have several astronomical cameras with thousands of sub-mm or microwave bolometers. Here we present the details of two different versions of our TDM system designed to read out X-ray TESs. The first has been field-deployed in two 160-sensor (8 columns × 20 rows) spectrometers and four 240-sensor (8 columns × 30 rows) spectrometers. It has a three-SQUID-stage architecture, switches rows every 320 ns, and has total readout noise of 0.41 μ Φ 0 / surd Hz. The second, which is presently under development, has a two-SQUID-stage architecture, switches rows every 160 ns, and has total readout noise of 0.19 μ Φ 0 / surd Hz. Both quoted noise values are non-multiplexed and referred to the first-stage SQUID. In a demonstration of this new architecture, a multiplexed 1-column × 32-row array of NIST TESs achieved average energy resolution of 2.55± 0.01 eV at 6 keV.

  12. Going MAD: development of a "matrix academic division" to facilitate translating research to personalized medicine.

    PubMed

    Whitcomb, David C

    2011-11-01

    Personalized medicine integrates an individual's genetic and other information for the prevention or treatment of complex disorders, and translational research seeks to identify those data most important to disease processes based on observations at the bench and the bedside. To understand complex disorders such as chronic pancreatitis, inflammatory bowel disease, liver cirrhosis, and other idiopathic chronic inflammatory diseases, physician-scientists must systematically collect data on relevant risks, clinical status, biomarkers, and outcomes. The author describes a "matrix academic division" (MAD), a highly effective academic program created at the University of Pittsburgh School of Medicine and the University of Pittsburgh Medical Center using translational research to rapidly develop personalized medicine for digestive diseases. MAD is designed to capture patient-specific data and biologic samples for analysis of steps in a complex process (reverse engineering), reconstructing the system conceptually and mathematically (disease modeling), and deciphering disease mechanism in individual patients to predict the effects of interventions (personalized medicine). MAD draws on the expertise of the medical school's and medical center's physician-scientists to translate essential disease information between the bed and the bench and to communicate with researchers from multiple domains, including epidemiology, genetics, cell biology, immunology, regenerative medicine, neuroscience, and oncology. The author illustrates this approach by describing its successful application to the reverse engineering of chronic pancreatitis. PMID:21952059

  13. Y-12 Development Division technical progress report, period ending January 1, 1990

    SciTech Connect

    Kosinsik, F.E.

    1990-09-28

    This report contains highlights on activities conducted at Y-12 Development Division for the period ending January 1, 1990. Ozone treatment removes trace amounts of organics and chloride ions from recycled acid. Heating significantly reduces this reaction time for removing these impurities. A new heater design was reinstalled on the recycle system, reducing the ozonation time from 70 to 100 hours to 30 to 40 hours. This reduction in ozonation time resulted in increased acid recovery and reduced acid wastes that had to be discarded. Shallow land burial in Bear Creek Burial Ground (BCBG) of depleted uranium and uranium alloy chips has been discontinued, and these materials will now be processed at the Uranium Chip Oxidation Facility (UCOF). A series of chip burns was made to reduce the overall flameout frequency to 1% to comply with UCOF safety documentation. This testing phase reduced the flameout frequency to 2 per 2,959 burns (<0.1%), which is a 92% decrease of flameouts over last quarter. This work successfully demonstrated that all of the uranium and uranium alloy chips (except sawfines) can be safely oxidized at UCOF with a flameout frequency of 1% or less. 2 refs., 3 figs., 1 tab.

  14. Structures Division

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NASA Lewis Research Center Structures Division is an international leader and pioneer in developing new structural analysis, life prediction, and failure analysis related to rotating machinery and more specifically to hot section components in air-breathing aircraft engines and spacecraft propulsion systems. The research consists of both deterministic and probabilistic methodology. Studies include, but are not limited to, high-cycle and low-cycle fatigue as well as material creep. Studies of structural failure are at both the micro- and macrolevels. Nondestructive evaluation methods related to structural reliability are developed, applied, and evaluated. Materials from which structural components are made, studied, and tested are monolithics and metal-matrix, polymer-matrix, and ceramic-matrix composites. Aeroelastic models are developed and used to determine the cyclic loading and life of fan and turbine blades. Life models are developed and tested for bearings, seals, and other mechanical components, such as magnetic suspensions. Results of these studies are published in NASA technical papers and reference publication as well as in technical society journal articles. The results of the work of the Structures Division and the bibliography of its publications for calendar year 1995 are presented.

  15. CONTROL ASSAY DEVELOPMENT: METHODOLOGY AND LABORATORY VERIFICATION

    EPA Science Inventory

    The report describes Control Assay Development (CAD), a data acquisition program designed to evaluate the potential applicability of various treatment processes for the control of solid, liquid, and gaseous emissions from coal conversion plants. The CAD program described could be...

  16. The SLMTA programme: Transforming the laboratory landscape in developing countries

    PubMed Central

    Yao, Katy; Maruta, Talkmore; Luman, Elizabeth T.; Nkengasong, John N.

    2015-01-01

    Background Efficient and reliable laboratory services are essential to effective and well-functioning health systems. Laboratory managers play a critical role in ensuring the quality and timeliness of these services. However, few laboratory management programmes focus on the competencies required for the daily operations of a laboratory in resource-limited settings. This report provides a detailed description of an innovative laboratory management training tool called Strengthening Laboratory Management Toward Accreditation (SLMTA) and highlights some challenges, achievements and lessons learned during the first five years of implementation (2009–2013) in developing countries. Programme SLMTA is a competency-based programme that uses a series of short courses and work-based learning projects to effect immediate and measurable laboratory improvement, while empowering laboratory managers to implement practical quality management systems to ensure better patient care. A SLMTA training programme spans from 12 to 18 months; after each workshop, participants implement improvement projects supported by regular supervisory visits or on-site mentoring. In order to assess strengths, weaknesses and progress made by the laboratory, audits are conducted using the World Health Organization’s Regional Office for Africa (WHO AFRO) Stepwise Laboratory Quality Improvement Process Towards Accreditation (SLIPTA) checklist, which is based on International Organization for Standardization (ISO) 15189 requirements. These internal audits are conducted at the beginning and end of the SLMTA training programme. Conclusion Within five years, SLMTA had been implemented in 617 laboratories in 47 countries, transforming the laboratory landscape in developing countries. To our knowledge, SLMTA is the first programme that makes an explicit connection between the performance of specific management behaviours and routines and ISO 15189 requirements. Because of this close relationship, SLMTA is

  17. Development of a virtual mobile robot laboratory

    NASA Astrophysics Data System (ADS)

    Singh, Harpreet; Singh, Hardarshan; Raj, Jyoti; Gerhart, Grant R.

    2004-09-01

    There is an increasing interest in developing new Mobile Robots because of their applications in a variety of areas. Mobile robots can reach places, which are either inaccessible or unsafe for human beings. TACOM has developed a lab where new mobile robots can be tested. However to save cost and time it is advisable to test robots in a virtual environment before they are tested in a real Lab. The objective of this paper is to explore techniques whereby mobile robots can be tested in a simulated environment. Different techniques have been studied for such simulations and testing in a virtual environment. In particular, State flow and Zed3d software, VRML and Fuzzy Logic approaches have been exploited for this purpose. Different robots, obstacles and terrains have been simulated. It is hoped that such work will prove useful in the study of development and testing of mobile robots.

  18. [Embrionary development of Strombus pugilis (Mesogastropoda: Strombidae) in the laboratory].

    PubMed

    Brito Manzano, N; Aldana Aranda, D

    2000-12-01

    Stages from oviposition to veliger hatching are described for Strombus pugilis under laboratory conditions. Two egg masses from Playa Seyba, México, (20 degrees 45' N, 91 degrees 45' W) were used (three sub-samples per mass). Each sub-sample was immersed in a 11 container at 29 +/- 1 degrees C. This description is based on stages known from Strombus gigas, which include number of: fertilized eggs, morulae, gastrulae, trochophore larvae with slow movements, larvae with primordium foot, larvae with eyes, larvae with statocyst and veliger larvae. Eggs with first division appeared five hours after oviposition in the three replicates of each mass, although in greatest number in one of the egg masses. Trochophore larvae with slow movements appear after 50-54 hours and veligers hatch after 90 hours. PMID:15266793

  19. Laboratory directed research and development program, FY 1996

    SciTech Connect

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  20. Laboratory Directed Research and Development Program Assessment for FY 2014

    SciTech Connect

    Hatton, D.

    2014-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report fulfills that requirement.

  1. Laboratory Directed Research and Development FY-10 Annual Report

    SciTech Connect

    Dena Tomchak

    2011-03-01

    The FY 2010 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL -- it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development.

  2. Instrumentation and Controls Division Overview: Sensors Development for Harsh Environments at Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Zeller, Mary V.; Lei, Jih-Fen

    2002-01-01

    The Instrumentation and Controls Division is responsible for planning, conducting and directing basic and applied research on advanced instrumentation and controls technologies for aerospace propulsion and power applications. The Division's advanced research in harsh environment sensors, high temperature high power electronics, MEMS (microelectromechanical systems), nanotechnology, high data rate optical instrumentation, active and intelligent controls, and health monitoring and management will enable self-feeling, self-thinking, self-reconfiguring and self-healing Aerospace Propulsion Systems. These research areas address Agency challenges to deliver aerospace systems with reduced size and weight, and increased functionality and intelligence for future NASA missions in advanced aeronautics, economical space transportation, and pioneering space exploration. The Division also actively supports educational and technology transfer activities aimed at benefiting all humankind.

  3. Validation of laboratory-developed molecular assays for infectious diseases.

    PubMed

    Burd, Eileen M

    2010-07-01

    Molecular technology has changed the way that clinical laboratories diagnose and manage many infectious diseases. Excellent sensitivity, specificity, and speed have made molecular assays an attractive alternative to culture or enzyme immunoassay methods. Many molecular assays are commercially available and FDA approved. Others, especially those that test for less common analytes, are often laboratory developed. Laboratories also often modify FDA-approved assays to include different extraction systems or additional specimen types. The Clinical Laboratory Improvement Amendments (CLIA) federal regulatory standards require clinical laboratories to establish and document their own performance specifications for laboratory-developed tests to ensure accurate and precise results prior to implementation of the test. The performance characteristics that must be established include accuracy, precision, reportable range, reference interval, analytical sensitivity, and analytical specificity. Clinical laboratories are challenged to understand the requirements and determine the types of experiments and analyses necessary to meet the requirements. A variety of protocols and guidelines are available in various texts and documents. Many of the guidelines are general and more appropriate for assays in chemistry sections of the laboratory but are applied in principle to molecular assays. This review presents information that laboratories may consider in their efforts to meet regulatory requirements. PMID:20610823

  4. OVERVIEW -- SUBSURFACE PROTECTION AND REMEDIATION DIVISION

    EPA Science Inventory

    NRMRL's Subsurface Protection and Remediation Division located in Ada, Oklahoma, conducts EPA-investigator led laboratory and field research to provide the scientific basis to support the development of strategies and technologies to protect and restore ground and surface water q...

  5. Chemical Technology Division annual technical report, 2001.

    SciTech Connect

    Lewis, D.; Gay, E. C.; Miller, J. C.; Boparai, A. S.

    2002-07-02

    The Chemical Technology Division (CMT) is one of eight engineering research divisions within Argonne National Laboratory, one of the U.S. government's oldest and largest research laboratories. The University of Chicago oversees the laboratory on behalf of the U.S. Department of Energy (DOE). Argonne's mission is to conduct basic scientific research, to operate national scientific facilities, to enhance the nation's energy resources, and to develop better ways to manage environmental problems. Argonne has the further responsibility of strengthening the nation's technology base by developing innovative technology and transferring it to industry. CMT is a diverse early-stage engineering organization, specializing in the treatment of spent nuclear fuel, development of advanced electrochemical power sources, and management of both high- and low-level nuclear wastes. Although this work is often indistinguishable from basic research, our efforts are directed toward the practical devices and processes that are covered by Argonne's mission. Additionally, the Division operates the Analytical Chemistry Laboratory and Environment, Safety, and Health Analytical Chemistry services, which provide a broad range of analytical services to Argonne and other organizations. The Division is multidisciplinary. Its people have formal training as ceramists; physicists; material scientists; electrical, mechanical, chemical, and nuclear engineers; and chemists. They have experience working in academia; urban planning; and the petroleum, aluminum, and automotive industries. Their skills include catalysis, ceramics, electrochemistry, metallurgy, nuclear magnetic resonance spectroscopy, and petroleum refining, as well as the development of nuclear waste forms, batteries, and high-temperature superconductors.

  6. Laboratory Directed Research and Development FY2001 Annual Report

    SciTech Connect

    Al-Ayat, R

    2002-06-20

    Established by Congress in 1991, the Laboratory Directed Research and Development (LDRD) Program provides the Department of Energy (DOE)/National Nuclear Security Administration (NNSA) laboratories, like Lawrence Livermore National Laboratory (LLNL or the Laboratory), with the flexibility to invest up to 6% of their budget in long-term, high-risk, and potentially high payoff research and development (R&D) activities to support the DOE/NNSA's national security missions. By funding innovative R&D, the LDRD Program at LLNL develops and extends the Laboratory's intellectual foundations and maintains its vitality as a premier research institution. As proof of the Program's success, many of the research thrusts that started many years ago under LDRD sponsorship are at the core of today's programs. The LDRD Program, which serves as a proving ground for innovative ideas, is the Laboratory's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. Basic and applied research activities funded by LDRD enhance the Laboratory's core strengths, driving its technical vitality to create new capabilities that enable LLNL to meet DOE/NNSA's national security missions. The Program also plays a key role in building a world-class multidisciplinary workforce by engaging the Laboratory's best researchers, recruiting its future scientists and engineers, and promoting collaborations with all sectors of the larger scientific community.

  7. Laboratory Directed Research and Development Program

    SciTech Connect

    Ogeka, G.J.; Romano, A.J.

    1992-12-01

    This report briefly discusses the following research: Advances in Geoexploration; Transvenous Coronary Angiography with Synchrotron X-Rays; Borehole Measurements of Global Warming; Molecular Ecology: Development of Field Methods for Microbial Growth Rate and Activity Measurements; A New Malaria Enzyme - A Potential Source for a New Diagnostic Test for Malaria and a Target for a New Antimalarial Drug; Basic Studies on Thoron and Thoron Precursors; Cloning of the cDNA for a Human Serine/Threonine Protein Kinase that is Activated Specifically by Double-Stranded DNA; Development of an Ultra-Fast Laser System for Accelerator Applications; Cluster Impact Fusion; Effect of a Bacterial Spore Protein on Mutagenesis; Structure and Function of Adenovirus Penton Base Protein; High Resolution Fast X-Ray Detector; Coherent Synchrotron Radiation Longitudinal Bunch Shape Monitor; High Grain Harmonic Generation Experiment; BNL Maglev Studies; Structural Investigations of Pt-Based Catalysts; Studies on the Cellular Toxicity of Cocaine and Cocaethylene; Human Melanocyte Transformation; Exploratory Applications of X-Ray Microscopy; Determination of the Higher Ordered Structure of Eukaryotic Chromosomes; Uranium Neutron Capture Therapy; Tunneling Microscopy Studies of Nanoscale Structures; Nuclear Techiques for Study of Biological Channels; RF Sources for Accelerator Physics; Induction and Repair of Double-Strand Breaks in the DNA of Human Lymphocytes; and An EBIS Source of High Charge State Ions up to Uranium.

  8. Argonne National Laboratory: Laboratory Directed Research and Development FY 1993 program activities. Annual report

    SciTech Connect

    1993-12-23

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R&D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle`` assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory LDRD Plan for FY 1993.

  9. Laboratory Directed Research and Development Program FY 2006 Annual Report

    SciTech Connect

    Sjoreen, Terrence P

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  10. Laboratory directed research and development 2006 annual report.

    SciTech Connect

    Westrich, Henry Roger

    2007-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2006. In addition to a programmatic and financial overview, the report includes progress reports from 430 individual R&D projects in 17 categories.

  11. Process Development and Integration Laboratory (Revised) (Fact Sheet)

    SciTech Connect

    Not Available

    2011-06-01

    Capabilities fact sheet for the National Center for Photovoltaics: Process Development and Integration Laboratory. One-sided sheet that includes Scope, Core Competencies and Capabilities, and Contact/Web information.

  12. New Developments at NASA's Instrument Synthesis and Analysis Laboratory

    NASA Technical Reports Server (NTRS)

    Wood, H. John; Herring, Ellen L.; Brown, Tammy L.

    2006-01-01

    NASA's Instrument Synthesis and Analysis Laboratory (ISAL) has developed new methods to provide an instrument study in one week's engineering time. The final product is recorded in oral presentations, models and the analyses which underlie the models.

  13. Mission planning and analysis division development plan for STS-2 through STS-4

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The baseline products, schedules, and resource requirements for the Mission Planning and Analysis Division's support of Space Transportation System flights 2, 3, and 4 are presented. Major functions addressed are: orbiter software, Mission Control Center software, flight design, flight operations support, simulation tools, and postflight analysis.

  14. Developing New Views on Taken-for-Granted Assumptions: The Case of Division of Fractions

    ERIC Educational Resources Information Center

    Lee, Ji-Eun

    2013-01-01

    This article outlines a discussion had by a group of prospective teachers regarding questions that remained after their previous experiences as students. The discussion was focused on the rules associated with the division of decimals. Prospective teachers' initial discussion showed a strong tendency to handle the rules as taken-for-granted…

  15. Developing Essential Understanding of Multiplication and Division for Teaching Mathematics in Grades 3-5

    ERIC Educational Resources Information Center

    Otto, Albert; Caldwell, Janet; Hancock, Sarah Wallus; Zbiek, Rose Mary

    2011-01-01

    This book identifies and examines two big ideas and related essential understandings for teaching multiplication and division in grades 3-5. Big Idea 1 captures the notion that multiplication is usefully defined as a scalar operation. Problem situations modeled by multiplication have an element that represents the scalar and an element that…

  16. Development of a Financial Aid Handbook for the Health Professions Division Students at Nova Southeastern University

    ERIC Educational Resources Information Center

    Wynter, Shelley

    2004-01-01

    The problem addressed by this study was that the Health Professions Division (HPD) students at Nova Southeastern University (NSU) were not fully aware of the financial aid process. The issue created frustrated students who were unable to manage their overall debt because they were left financially powerless, resulting in the prospect of being…

  17. Integrated optomechanical analysis and testing software development at MIT Lincoln Laboratory

    NASA Astrophysics Data System (ADS)

    Stoeckel, Gerhard P.; Doyle, Keith B.

    2013-09-01

    Advanced analytical software capabilities are being developed to advance the design of prototypical hardware in the Engineering Division at MIT Lincoln Laboratory. The current effort is focused on the integration of analysis tools tailored to the work flow, organizational structure, and current technology demands. These tools are being designed to provide superior insight into the interdisciplinary behavior of optical systems and enable rapid assessment and execution of design trades to optimize the design of optomechanical systems. The custom software architecture is designed to exploit and enhance the functionality of existing industry standard commercial software, provide a framework for centralizing internally developed tools, and deliver greater efficiency, productivity, and accuracy through standardization, automation, and integration. Specific efforts have included the development of a feature-rich software package for Structural-Thermal-Optical Performance (STOP) modeling, advanced Line Of Sight (LOS) jitter simulations, and improved integration of dynamic testing and structural modeling.

  18. CD8 Memory Cells Develop Unique DNA Repair Mechanisms Favoring Productive Division

    PubMed Central

    Galgano, Alessia; Barinov, Aleksandr; Vasseur, Florence; de Villartay, Jean-Pierre; Rocha, Benedita

    2015-01-01

    Immune responses are efficient because the rare antigen-specific naïve cells are able to proliferate extensively and accumulate upon antigen stimulation. Moreover, differentiation into memory cells actually increases T cell accumulation, indicating improved productive division in secondary immune responses. These properties raise an important paradox: how T cells may survive the DNA lesions necessarily induced during their extensive division without undergoing transformation. We here present the first data addressing the DNA damage responses (DDRs) of CD8 T cells in vivo during exponential expansion in primary and secondary responses in mice. We show that during exponential division CD8 T cells engage unique DDRs, which are not present in other exponentially dividing cells, in T lymphocytes after UV or X irradiation or in non-metastatic tumor cells. While in other cell types a single DDR pathway is affected, all DDR pathways and cell cycle checkpoints are affected in dividing CD8 T cells. All DDR pathways collapse in secondary responses in the absence of CD4 help. CD8 T cells are driven to compulsive suicidal divisions preventing the propagation of DNA lesions. In contrast, in the presence of CD4 help all the DDR pathways are up regulated, resembling those present in metastatic tumors. However, this up regulation is present only during the expansion phase; i.e., their dependence on antigen stimulation prevents CD8 transformation. These results explain how CD8 T cells maintain genome integrity in spite of their extensive division, and highlight the fundamental role of DDRs in the efficiency of CD8 immune responses. PMID:26485718

  19. Photovoltaic module certification and laboratory accreditation criteria development

    SciTech Connect

    Osterwald, C.R.; Hammond, R.; Zerlaut, G.; D`Aiello, R.

    1994-12-31

    This paper presents an overview of a model product certification and test laboratory accreditation program for photovoltaic (PV) modules that was recently developed by the National Renewable Energy Laboratory and Arizona State University. The specific objectives of this project was to produce a document that details the equipment, facilities, quality assurance procedures, and technical expertise an accredited laboratory needs for performance and qualification testing of PV modules, along with the specific tests needed for a module design to be certified. Development of the document was done in conjunction with a criteria development committee consisting of representatives from 30 US PV manufacturers, end users, standards and codes organizations, and testing laboratories. The intent is to lay the groundwork for a future US PV certification and accreditation program that will be beneficial to the PV industry as a whole.

  20. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    SciTech Connect

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  1. AN OVERVIEW OF PATHOGEN RESEARCH IN THE MICROBIOLOGICAL AND CHEMICAL EXPOSURE ASSESSMENT RESEARCH DIVISION

    EPA Science Inventory

    The Microbiological and Chemical Exposure Assessment Research Division of the EPA Office of Research and Development's National Exposure Research Laboratory has a robust in-house research program aimed at developing better occurrence and exposure methods for waterborne pathogens....

  2. Laboratory directed research and development annual report: Fiscal year 1992

    SciTech Connect

    Not Available

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE's policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL's Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our core competencies.'' Currently, PNL's core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL's LDRD program and the management process used for the program and project summaries for each LDRD project.

  3. Laboratory directed research and development annual report: Fiscal year 1992

    SciTech Connect

    Not Available

    1993-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this order. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches to research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as: integrated environmental research; process science and engineering; energy distribution and utilization. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these corecompetencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  4. Laboratory Directed Research and Development Program Assessment for FY 2007

    SciTech Connect

    Newman,L.; Fox, K.J.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining

  5. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    SciTech Connect

    FOX,K.J.

    2006-01-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and

  6. Laboratory Directed Research and Development Program Activities for FY 2007.

    SciTech Connect

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in support of RHIC and the Light Source and any of

  7. 1995 Laboratory-Directed Research and Development Annual report

    SciTech Connect

    Cauffman, D.P.; Shoaf, D.L.; Hill, D.A.; Denison, A.B.

    1995-12-31

    The Laboratory-Directed Research and Development Program (LDRD) is a key component of the discretionary research conducted by Lockheed Idaho Technologies Company (Lockheed Idaho) at the Idaho National Engineering Laboratory (INEL). The threefold purpose and goal of the LDRD program is to maintain the scientific and technical vitality of the INEL, respond to and support new technical opportunities, and enhance the agility and flexibility of the national laboratory and Lockheed Idaho to address the current and future missions of the Department of Energy.

  8. Mammalian Par3 regulates progenitor cell asymmetric division via Notch signaling in the developing neocortex

    PubMed Central

    Bultje, Ronald S.; Castaneda-Castellanos, David R.; Jan, Lily Yeh; Jan, Yuh-Nung; Kriegstein, Arnold R.; Shi, Song-Hai

    2009-01-01

    Asymmetric cell division of radial glial progenitors produces neurons while allowing self-renewal; however, little is known about the mechanism that generates asymmetry in daughter cell fate specification. Here we found that mammalian partition defective protein 3 (mPar3), a key cell polarity determinant, exhibits dynamic distribution in radial glial progenitors. While it is enriched at the lateral membrane domain in the ventricular endfeet during interphase, mPar3 becomes dispersed and shows asymmetric localization as cell cycle progresses. Either removal or ectopic expression of mPar3 prevents radial glial progenitors from dividing asymmetrically yet generates different outcomes in daughter cell fate specification. Furthermore, the expression level of mPar3 affects Notch signaling, and manipulations of Notch signaling or Numb expression suppress mPar3 regulation of radial glial cell division and daughter cell fate specification. These results reveal a critical molecular pathway underlying asymmetric cell division of radial glial progenitors in the mammalian neocortex. PMID:19640478

  9. miR-430 regulates oriented cell division during neural tube development in zebrafish.

    PubMed

    Takacs, Carter M; Giraldez, Antonio J

    2016-01-15

    MicroRNAs have emerged as critical regulators of gene expression. Originally shown to regulate developmental timing, microRNAs have since been implicated in a wide range of cellular functions including cell identity, migration and signaling. miRNA-430, the earliest expressed microRNA during zebrafish embryogenesis, is required to undergo morphogenesis and has previously been shown to regulate maternal mRNA clearance, Nodal signaling, and germ cell migration. The functions of miR-430 in brain morphogenesis, however, remain unclear. Herein we find that miR-430 instructs oriented cell divisions in the neural rod required for neural midline formation. Loss of miR-430 function results in mitotic spindle misorientation in the neural rod, failed neuroepithelial integration after cell division, and ectopic cell accumulation in the dorsal neural tube. We propose that miR-430, independently of canonical apicobasal and planar cell polarity (PCP) pathways, coordinates the stereotypical cell divisions that instruct neural tube morphogenesis. PMID:26658217

  10. [Strategy Development for International Cooperation in the Clinical Laboratory Field].

    PubMed

    Kudo, Yoshiko; Osawa, Susumu

    2015-10-01

    The strategy of international cooperation in the clinical laboratory field was analyzed to improve the quality of intervention by reviewing documents from international organizations and the Japanese government. Based on the world development agenda, the target of action for health has shifted from communicable diseases to non-communicable diseases (NCD). This emphasizes the importance of comprehensive clinical laboratories instead of disease-specific examinations in developing countries. To achieve this goal, the World Health Organization (WHO) has disseminated to the African and Asian regions the Laboratory Quality Management System (LQMS), which is based on the same principles of the International Organization of Standardization (ISO) 15189. To execute this strategy, international experts must have competence in project management, analyze information regarding the target country, and develop a strategy for management of the LQMS with an understanding of the technical aspects of laboratory work. However, there is no appropriate pre- and post-educational system of international health for Japanese international workers. Universities and academic organizations should cooperate with the government to establish a system of education for international workers. Objectives of this education system must include: (1) training for the organization and understanding of global health issues, (2) education of the principles regarding comprehensive management of clinical laboratories, and (3) understanding the LQMS which was employed based on WHO's initiative. Achievement of these objectives will help improve the quality of international cooperation in the clinical laboratory field. PMID:26897850

  11. Division: The Sleeping Dragon

    ERIC Educational Resources Information Center

    Watson, Anne

    2012-01-01

    Of the four mathematical operators, division seems to not sit easily for many learners. Division is often described as "the odd one out". Pupils develop coping strategies that enable them to "get away with it". So, problems, misunderstandings, and misconceptions go unresolved perhaps for a lifetime. Why is this? Is it a case of "out of sight out…

  12. Laboratory Directed Research and Development Program Assessment for FY 2008

    SciTech Connect

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps BNL to respond new scientific opportunities within

  13. Flat panel display development activities at Sandia National Laboratories

    SciTech Connect

    DiBello, E.G.; Worobey, W.; Burchett, S.; Hareland, W.; Felter, T.; Mays, B.

    1994-12-31

    The flat panel display development activities underway at Sandia National Laboratories are described. Research is being conducted in the areas of glass substrates, phosphors, large area processes, and electron emissions. Projects are focused on improving process yield, developing large area processes, and using modeling techniques to predict design performance.

  14. Site Specific Metal Criteria Developed Using Kentucky Division of Water Procedures

    SciTech Connect

    Kszos, L.A.; Phipps, T.L.

    1999-10-09

    Alternative limits for Cu, Ni, Pb, and Zn were developed for treated wastewater from four outfalls at a Gaseous Diffusion Plant. Guidance from the Kentucky Division of Water (KDOW) was used to (1) estimate the toxicity of the effluents using water fleas (Ceriodaphnia dubia) and fathead minnow (Pimephales promelas) larvae; (2) determine total recoverable and dissolved concentrations of Cu, Pb, Ni, and Zn ; (3) calculate ratios of dissolved metal (DM) to total recoverable metal (TRM); and (4) assess chemical characteristics of the effluents. Three effluent samples from each outfall were collected during each of six test periods; thus, a total of 18 samples from each outfall were evaluated for toxicity, DM and TRM. Subsamples were analyzed for alkalinity, hardness, pH, conductivity, and total suspended solids. Short-term (6 or 7 d), static renewal toxicity tests were conducted according to EPA methodology. Ceriodaphnia reproduction was reduced in one test of effluent from Outfall A , and effluent from Outfall B was acutely toxic to both test species during one test. However, the toxicity was not related to the metals present in the effluents. Of the 18 samples from each outfall, more than 65% of the metal concentrations were estimated quantities. With the exception of two total recoverable Cu values in Outfall C, all metal concentrations were below the permit limits and the federal water quality criteria. Ranges of TR for all outfalls were: Cd, ,0.1-0.4 {micro}g/L; Cr,1.07-3.93 {micro}g/L; Cu, 1.59-7.24 {micro}g/L; Pb, <0.1-3.20 {micro}g/L; Ni, 0.82-10.7 {micro}g/L, Zn, 4.75-67.3 {micro}g/L. DM:TRM ratios were developed for each outfall. The proportion of dissolved Cu in the effluents ranged from 67 to 82%; the proportion of dissolved Ni ranged from 84 to 91%; and the proportion of dissolved Zn ranged from 74 to 94%. The proportion of dissolved Pb in the effluents was considerably lower (37-51%). TRM and/or DM concentrations of Cu, Ni, Pb, or Zn differed significantly

  15. Laboratory directed research and development FY98 annual report

    SciTech Connect

    Al-Ayat, R; Holzrichter, J

    1999-05-01

    In 1984, Congress and the Department of Energy (DOE) established the Laboratory Directed Research and Development (LDRD) Program to enable the director of a national laboratory to foster and expedite innovative research and development (R and D) in mission areas. The Lawrence Livermore National Laboratory (LLNL) continually examines these mission areas through strategic planning and shapes the LDRD Program to meet its long-term vision. The goal of the LDRD Program is to spur development of new scientific and technical capabilities that enable LLNL to respond to the challenges within its evolving mission areas. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies and enables the Laboratory to attract the most qualified scientists and engineers. The FY98 LDRD portfolio described in this annual report has been carefully structured to continue the tradition of vigorously supporting DOE and LLNL strategic vision and evolving mission areas. The projects selected for LDRD funding undergo stringent review and selection processes, which emphasize strategic relevance and require technical peer reviews of proposals by external and internal experts. These FY98 projects emphasize the Laboratory's national security needs: stewardship of the U.S. nuclear weapons stockpile, responsibility for the counter- and nonproliferation of weapons of mass destruction, development of high-performance computing, and support of DOE environmental research and waste management programs.

  16. Laboratory directed research and development: FY 1997 progress report

    SciTech Connect

    Vigil, J.; Prono, J.

    1998-05-01

    This is the FY 1997 Progress Report for the Laboratory Directed Research and Development (LDRD) program at Los Alamos National Laboratory. It gives an overview of the LDRD program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principal investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic and molecular physics and plasmas, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  17. Laboratory Directed Research and Development FY 1998 Progress Report

    SciTech Connect

    John Vigil; Kyle Wheeler

    1999-04-01

    This is the FY 1998 Progress Report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes work done on individual research projects, relates the projects to major Laboratory program sponsors, and provides an index to the principle investigators. Project summaries are grouped by their LDRD component: Competency Development, Program Development, and Individual Projects. Within each component, they are further grouped into nine technical categories: (1) materials science, (2) chemistry, (3) mathematics and computational science, (4) atomic, molecular, optical, and plasma physics, fluids, and particle beams, (5) engineering science, (6) instrumentation and diagnostics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) bioscience.

  18. Photovoltaic module certification/laboratory accreditation criteria development: Implementation handbook

    SciTech Connect

    Osterwald, C.R.; Hammond, R.L.; Wood, B.D.; Backus, C.E.; Sears, R.L.; Zerlaut, G.A.; D`Aiello, R.V.

    1996-08-01

    This document covers the second phase of a two-part program. Phase I provided an overview of the structure and function of typical product certification/laboratory accreditation programs. This report (Phase H) provides most of the draft documents that will be necessary for the implementation of a photovoltaic (PV) module certification/laboratory accreditation program. These include organizational documents such as articles of incorporation, bylaws, and rules of procedure, as well as marketing and educational program documents. In Phase I, a 30-member criteria development committee was established to guide, review and reach a majority consensus regarding criteria for a PV certification/laboratory accreditation program. Committee members represented PV manufacturers, end users, standards and codes organizations, and testing laboratories. A similar committee was established for Phase II; the criteria implementation committee consisted of 29 members. Twenty-one of the Phase I committee members also served on the Phase II committee, which helped to provide program continuity during Phase II.

  19. SUSTAINABLE TECHNOLOGY DIVISION - HOME PAGE

    EPA Science Inventory

    The mission of the Sustainable Technology Division is to advance the scientific understanding, development and application of technologies and methods for prevention, removal and control of environmental risks to human health and ecology. The Division is organized into four bra...

  20. Quantitative x-ray diffraction analyses of samples used for sorption studies by the Isotope and Nuclear Chemistry Division, Los Alamos National Laboratory

    SciTech Connect

    Chipera, S.J.; Bish, D.L.

    1989-09-01

    Yucca Mountain, Nevada, is currently being investigated to determine its suitability to host our nation`s first geologic high-level nuclear waste repository. As part of an effort to determine how radionuclides will interact with rocks at Yucca Mountain, the Isotope and Nuclear Chemistry (INC) Division of Los Alamos National Laboratory has conducted numerous batch sorption experiments using core samples from Yucca Mountain. In order to understand better the interaction between the rocks and radionuclides, we have analyzed the samples used by INC with quantitative x-ray diffraction methods. Our analytical methods accurately determine the presence or absence of major phases, but we have not identified phases present below {approximately}1 wt %. These results should aid in understanding and predicting the potential interactions between radionuclides and the rocks at Yucca Mountain, although the mineralogic complexity of the samples and the lack of information on trace phases suggest that pure mineral studies may be necessary for a more complete understanding. 12 refs., 1 fig., 1 tab.

  1. Recent Developments in the Management of Cameco Corporation's Fuel Services Division Waste - 13144

    SciTech Connect

    Smith, Thomas P.

    2013-07-01

    Cameco Corporation is a world leader in uranium production. Headquartered in Saskatoon, Saskatchewan our operations provide 16% of the world uranium mine production and we have approximately 435 million pounds of proven and probable uranium reserves. Cameco mining operations are located in Saskatchewan, Wyoming, Nebraska and Kazakhstan. Cameco is also a major supplier of uranium processing services required to produce fuel for the generation of clean energy. These operations are based in Blind River, Cobourg and Port Hope, Ontario and are collectively referred to as the Fuel Services Division. The Fuel Services Division produces uranium trioxide from uranium ore concentrate at the Blind River Refinery. Cameco produces uranium hexafluoride and uranium dioxide at the Port Hope Conversion Facility. Cameco operates a fuel manufacturing facility in Port Hope, Ontario and a metal fabrication facility located in Cobourg, Ontario. The company manufactures fuel bundles utilized in the Candu reactors. Cameco's Fuel Services Division produces several types of low-level radioactively contaminated wastes. Internal processing capabilities at both the Blind River Refinery and Port Hope Conversion Facility are extensive and allow for the recycling of several types of waste. Notwithstanding these capabilities there are certain wastes that are not amenable to the internal processing capabilities and must be disposed of appropriately. Disposal options for low-level radioactively contaminated wastes in Canada are limited primarily due to cost considerations. In recent years, Cameco has started to ship marginally contaminated wastes (<500 ppm uranium) to the United States for disposal in an appropriate landfill. The landfill is owned by US Ecology Incorporated and is located near Grand View, Idaho 70 miles southeast of Boise in the Owyhee Desert. The facility treats and disposes hazardous waste, non-hazardous industrial waste and low-activity radioactive material. The site's arid

  2. [Development of novel laboratory technology--Chairmen's introductory remarks].

    PubMed

    Maekawa, Masato; Ando, Yukio

    2012-07-01

    The theme of the 58th annual meeting is, "Mission and Challenge of Laboratory Medicine". This symposium is named, "Development of Novel Laboratory Technology" and is held under the joint sponsorship of the Japanese Society of Clinical Chemistry and the Japanese Electrophoresis Society. Both societies have superior skills at developing methodology and technology. The tools used in the lectures are a carbon nanotube sensor, immunochromatography, direct measurement using polyanions and detergents, epigenomic analysis and fluorescent two-dimensional electrophoresis. All of the lectures will be very helpful and interesting. PMID:22973721

  3. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    SciTech Connect

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  4. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    SciTech Connect

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  5. Micromachined sensor and actuator research at the Microelectronics Development Laboratory

    SciTech Connect

    Smith, J.H.; Barron, C.C.; Fleming, J.G.; Montague, S.; Rodriguez, J.L.; Smith, B.K.; Sniegowski, J.J.

    1994-12-31

    An overview of the major sensor and actuator projects using the micromachining capabilities of the Microelectronics Development Laboratory at Sandia National Laboratories is presented. Development efforts are underway for a variety of micromechanical devices and control electronics for those devices. Surface micromachining is the predominant technology under development. Pressure sensors based on silicon nitride diaphragms have been developed. Hot polysilicon filaments for calorimetric gas sensing have been developed. Accelerometers based upon high-aspect ratio surface micromachining are under development. Actuation mechanisms employing either electrostatic or steam power are being combined with a three-level active (plus an additional passive level) polysilicon surface micromachining process to couple these actuators to external devices. Results of efforts toward integration of micromechanics with the driving electronics for actuators or the amplification/signal processing electronics for sensors is also described. This effort includes a tungsten metallization process to allow the CMOS electronics to withstand high-temperature micromechanical processing.

  6. Laboratory Directed Research and Development Program FY 2004 Annual Report

    SciTech Connect

    Sjoreen, Terrence P

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing

  7. Laboratory Directed Research and Development Program FY 2007 Annual Report

    SciTech Connect

    Sjoreen, Terrence P

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science

  8. Laboratory Directed Research and Development Program FY 2005 Annual Report

    SciTech Connect

    Sjoreen, Terrence P

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing

  9. Monolithic circuit development for RHIC at Oak Ridge National Laboratory

    SciTech Connect

    Alley, G.T.; Britton, C.L. Jr.; Kennedy, E.J.; Newport, D.F.; Wintenberg, A.L.; Young, G.R.

    1991-12-31

    The work performed for RHIC at Oak Ridge National Laboratory during FY 91 is presented in this paper. The work includes preamplifier, analog memory, and analog-digital converter development for Dimuon Pad Readout, and evaluation and development of preamplifier-shapers for silicon strip readout. The approaches for implementation are considered as well as measured data for the various circuits that have been developed.

  10. A survey of geographical information systems applications for the Earth Science and Applications Division, Space Sciences Laboratory, Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Rickman, D.; Butler, K. A.; Laymon, C. A.

    1994-01-01

    The purpose of this document is to introduce Geographical Information System (GIS) terminology and summarize interviews conducted with scientists in the Earth Science and Applications Division (ESAD). There is a growing need in ESAD for GIS technology. With many different data sources available to the scientists comes the need to be able to process and view these data in an efficient manner. Since most of these data are stored in vastly different formats, specialized software and hardware are needed. Several ESAD scientists have been using a GIS, specifically the Man-computer Interactive Data Access System (MCIDAS). MCIDAS can solve many of the research problems that arise, but there are areas of research that need more powerful tools; one such example is the multispectral image analysis which is described in this document. Given the strong need for GIS in ESAD, we recommend that a requirements analysis and implementation plan be developed using this document as a basis for further investigation.

  11. Laboratory Directed Research and Development annual report, Fiscal year 1993

    SciTech Connect

    Not Available

    1994-01-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. As described in 5000.4A, LDRD is ``research and development of a creative and innovative nature which is selected by the Laboratory Director or his or her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory and to respond to scientific and technological opportunities in conformance with the guidelines in this Order. LDRD includes activities previously defined as ER&D, as well as other discretionary research and development activities not provided for in a DOE program.`` Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our ``core competencies.`` Currently, PNL`s core competencies have been identified as integrated environmental research; process technology; energy systems research. In this report, the individual summaries of Laboratory-level LDRD projects are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. The projects are described in Section 2.0. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides an overview of PNL`s LDRD program and the management process used for the program and project summaries for each LDRD project.

  12. Life Sciences Division annual report, 1988

    SciTech Connect

    Marrone, B.L.; Cram, L.S.

    1989-04-01

    This report summarizes the research and development activities of Los Alamos National Laboratory's Life Sciences Division for the calendar year 1988. Technical reports related to the current status of projects are presented in sufficient detail to permit the informed reader to assess their scope and significance. Summaries useful to the casual reader desiring general information have been prepared by the Group Leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  13. QA RESOURCE MATERIALS TO ASSIST IN DEVELOPING AND WRITING RESEARCH PLANS AT A USEPA OFFICE OF RESEARCH AND DEVELOPMENT DIVISION

    EPA Science Inventory

    In the process of adapting the Agency's Data Quality Objectives Workshop for presentation at an ORD Research Facility, ownership and consensus approval of the presentation by the Division's research staff was sought. Three groups of researchers, at various levels of responsibilit...

  14. Solid State Division

    SciTech Connect

    Green, P.H.; Watson, D.M.

    1989-08-01

    This report contains brief discussions on work done in the Solid State Division of Oak Ridge National Laboratory. The topics covered are: Theoretical Solid State Physics; Neutron scattering; Physical properties of materials; The synthesis and characterization of materials; Ion beam and laser processing; and Structure of solids and surfaces. (LSP)

  15. Developing an integrated optics laboratory at minimum cost

    NASA Astrophysics Data System (ADS)

    Wagner, Jerome F.

    1995-10-01

    A little over ten years ago, the physics department at Rose-Hulman Institute of Technology introduced an applied optics program at the graduate level. Included among the five core courses required for the Master's degree, was a four credit hour course in integrated optics which consisted of both lecture and laboratory. Such a course offering required not only a working knowledge of the lecture material but also the acquisition of appropriate equipment and material to develop a laboratory for demonstrating principles presented in class. Suitable experiments would consist of the fabrication of and the coupling into such elements as planar and channel waveguides. Other experiments would involve the study of phase modulation and amplitude modulation in integrated optical devices. Expertise for offering the course was obtained through a sabbatical taken in the electrical engineering department at the University of Cincinnati in 1983. An important feature available at the university was its microelectronics fabrication laboratory. This experience provided the necessary practical knowledge required to develop an integrated optics course with a laboratory component. Because of the expense of much of the equipment required to fabricate the devices, alternative approaches had to be taken. Some of these approaches included in-house fabrication of large scale equipment, donations of older equipment and integrated optical devices from sister institutions, government educational programs, and corporate funding programs. Although, a laboratory, as originally envisioned, has not yet been fully completed, what is available at present fulfills some of the intended goals.

  16. Laboratory directed research and development. FY 1995 progress report

    SciTech Connect

    Vigil, J.; Prono, J.

    1996-03-01

    This document presents an overview of Laboratory Directed Research and Development Programs at Los Alamos. The nine technical disciplines in which research is described include materials, engineering and base technologies, plasma, fluids, and particle beams, chemistry, mathematics and computational science, atmic and molecular physics, geoscience, space science, and astrophysics, nuclear and particle physics, and biosciences. Brief descriptions are provided in the above programs.

  17. Laboratory Directed Research and Development Program. Annual report

    SciTech Connect

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new ``fundable`` R&D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  18. New Developments at NASA's Instrument Synthesis & Analysis Laboratory (ISAL)

    NASA Technical Reports Server (NTRS)

    Wood, H. John; Brown, Tammy L.; Herring, Ellen L.

    2006-01-01

    This viewgraph document reviews the work of NASA's Instrument Synthesis and Analysis Laboratory (ISAL). The work of the ISAL has substantially reduced the time required to develop an instrument concept. The document reviews the design process in detail and planned interaction with the end user of the instrument.

  19. Development of Sensorial Experiments and Their Implementation into Undergraduate Laboratories

    ERIC Educational Resources Information Center

    Bromfield Lee, Deborah Christina

    2009-01-01

    "Visualization" of chemical phenomena often has been limited in the teaching laboratories to the sense of sight. We have developed chemistry experiments that rely on senses other than eyesight to investigate chemical concepts, make quantitative determinations, and familiarize students with chemical techniques traditionally designed using only…

  20. The Development and Deployment of a Virtual Unit Operations Laboratory

    ERIC Educational Resources Information Center

    Vaidyanath, Sreeram; Williams, Jason; Hilliard, Marcus; Wiesner, Theodore

    2007-01-01

    Computer-simulated experiments offer many benefits to engineering curricula in the areas of safety, cost, and flexibility. We report our experience in developing and deploying a computer-simulated unit operations laboratory, driven by the guiding principle of maximum fidelity to the physical lab. We find that, while the up-front investment in…

  1. Laboratory directed research and development fy1999 annual report

    SciTech Connect

    Al-Ayat, R A

    2000-04-11

    The Lawrence Livermore National Laboratory (LLNL) was founded in 1952 and has been managed since its inception by the University of California (UC) for the U.S. Department of Energy (DOE). Because of this long association with UC, the Laboratory has been able to recruit a world-class workforce, establish an atmosphere of intellectual freedom and innovation, and achieve recognition in relevant fields of knowledge as a scientific and technological leader. This environment and reputation are essential for sustained scientific and technical excellence. As a DOE national laboratory with about 7,000 employees, LLNL has an essential and compelling primary mission to ensure that the nation's nuclear weapons remain safe, secure, and reliable and to prevent the spread and use of nuclear weapons worldwide. The Laboratory receives funding from the DOE Assistant Secretary for Defense Programs, whose focus is stewardship of our nuclear weapons stockpile. Funding is also provided by the Deputy Administrator for Defense Nuclear Nonproliferation, many Department of Defense sponsors, other federal agencies, and the private sector. As a multidisciplinary laboratory, LLNL has applied its considerable skills in high-performance computing, advanced engineering, and the management of large research and development projects to become the science and technology leader in those areas of its mission responsibility. The Laboratory Directed Research and Development (LDRD) Program was authorized by the U.S. Congress in 1984. The Program allows the Director of each DOE laboratory to fund advanced, creative, and innovative research and development (R&D) activities that will ensure scientific and technical vitality in the continually evolving mission areas at DOE and the Laboratory. In addition, the LDRD Program provides LLNL with the flexibility to nurture and enrich essential scientific and technical competencies, which attract the most qualified scientists and engineers. The LDRD Program also

  2. Chemical Technology Division annual technical report, 1996

    SciTech Connect

    1997-06-01

    CMT is a diverse technical organization with principal emphases in environmental management and development of advanced energy sources. It conducts R&D in 3 general areas: development of advanced power sources for stationary and transportation applications and for consumer electronics, management of high-level and low-level nuclear wastes and hazardous wastes, and electrometallurgical treatment of spent nuclear fuel. The Division also performs basic research in catalytic chemistry involving molecular energy resources, mechanisms of ion transport in lithium battery electrolytes, materials chemistry of electrified interfaces and molecular sieves, and the theory of materials properties. It also operates the Analytical Chemistry Laboratory, which conducts research in analytical chemistry and provides analytical services for programs at ANL and other organizations. Technical highlights of the Division`s activities during 1996 are presented.

  3. Laboratory directed research development annual report. Fiscal year 1996

    SciTech Connect

    1997-05-01

    This document comprises Pacific Northwest National Laboratory`s report for Fiscal Year 1996 on research and development programs. The document contains 161 project summaries in 16 areas of research and development. The 16 areas of research and development reported on are: atmospheric sciences, biotechnology, chemical instrumentation and analysis, computer and information science, ecological science, electronics and sensors, health protection and dosimetry, hydrological and geologic sciences, marine sciences, materials science and engineering, molecular science, process science and engineering, risk and safety analysis, socio-technical systems analysis, statistics and applied mathematics, and thermal and energy systems. In addition, this report provides an overview of the research and development program, program management, program funding, and Fiscal Year 1997 projects.

  4. Development and pilot demonstration program of a waste minimization plan at Argonne National Laboratory

    SciTech Connect

    Peters, R.W.; Wentz, C.A.; Thuot, J.R.

    1991-01-01

    In response to US Department of Energy directives, Argonne National Laboratory (ANL) has developed a waste minimization plan aimed at reducing the amount of wastes at this national research and development laboratory. Activities at ANL are primarily research- oriented and as such affect the amount and type of source reduction that can be achieved at this facility. The objective of ANL's waste minimization program is to cost-effectively reduce all types of wastes, including hazardous, mixed, radioactive, and nonhazardous wastes. The ANL Waste Minimization Plan uses a waste minimization audit as a systematic procedure to determine opportunities to reduce or eliminate waste. To facilitate these audits, a computerized bar-coding procedure is being implemented at ANL to track hazardous wastes from where they are generated to their ultimate disposal. This paper describes the development of the ANL Waste Minimization Plan and a pilot demonstration of the how the ANL Plan audited the hazardous waste generated within a selected divisions of ANL. It includes quantitative data on the generation and disposal of hazardous waste at ANL and describes potential ways to minimize hazardous wastes. 2 refs., 5 figs., 8 tabs.

  5. 2015 Fermilab Laboratory Directed Research & Development Program Plan

    SciTech Connect

    Wester, W., editor

    2015-05-26

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab.

  6. Laboratory Directed Research and Development Annual Report - Fiscal Year 2000

    SciTech Connect

    Fisher, Darrell R.; Hughes, Pamela J.; Pearson, Erik W.

    2001-04-01

    The projects described in this report represent the Laboratory's investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. In accordance with DOE guidelines, the report provides, a) a director's statement, b) an overview of the laboratory's LDRD program, including PNNL's management process and a self-assessment of the program, c) a five-year project funding table, and d) project summaries for each LDRD project.

  7. Development plan for the Nucleon Physics Laboratory Facility at LAMPF

    SciTech Connect

    McClelland, J.B.; Bacher, A.; Boudrie, R.L.; Carey, T.A.; Donahue, J.; Goodman, C.D.; McNaufhton, M.W.; Tanaka, N.; van Dyck, O.B.; Werbeck, R.

    1986-02-01

    A 3- to 4-year plan is described for upgrading the LAMPF Nucleon Physics Laboratory including a neutron time-of-flight facility for the (p,n) reaction, a medium-resolution spectrometer for (p,p') and n,p) studies, and a dedicated facility for atomic beam studies. Development of these facilities and relationships to other ongoing developments are detailed. The scope of the new physics programs supported by such a facility is discussed.

  8. EDC RESEARCH AT EPA ATLANTIC ECOLOGY DIVISION: DO ENVIRONMENTAL EDCS IMPACT FISH POPULATIONS

    EPA Science Inventory

    The Atlantic Ecology Division, Office of Research and Development, EP A is a marine laboratory situated on Narragansett Bay, Rhode Island. Researchers at AED are investigating the effects endocrine disrupting chemicals (EDCs) in the aquatic environment might have on reproductive ...

  9. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    SciTech Connect

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to

  10. Laboratory Directed Research and Development Program Activities for FY 2008.

    SciTech Connect

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts

  11. The relationship between cell division and elongation during development of the nectar-yielding petal spur in Centranthus ruber (Valerianaceae)

    PubMed Central

    Mack, Jaimie-Lee K.; Davis, Arthur R.

    2015-01-01

    Background and Aims Floral spurs are hollow, tubular outgrowths that typically conceal nectar. By their involvement in specialized pollinator interactions, spurs have ecological and evolutionary significance, often leading to speciation. Despite their importance and diversity in shape and size among angiosperm taxa, detailed investigations of the mechanism of spur development have been conducted only recently. Methods Initiation and growth of the nectar-yielding petal spur of Centranthus ruber ‘Snowcloud’ was investigated throughout seven stages, based on bud size and developmental events. The determination of the frequency of cell division, quantified for the first time in spurs, was conducted by confocal microscopy following 4',6-diamidino-2-phenylindole (DAPI) staining of mitotic figures. Moreover, using scanning electron microscospy of the outer petal spur surface unobstructed by trichomes, morphometry of epidermal cells was determined throughout development in order to understand the ontogeny of this elongate, hollow tube. Key Results Spur growth from the corolla base initially included diffuse cell divisions identified among epidermal cells as the spur progressed through its early stages. However, cell divisions clearly diminished before a petal spur attained 30 % of its final length of 4·5 mm. Thereafter until anthesis, elongation of individual cells was primarily responsible for the spur’s own extension. Consequently, a prolonged period of anisotropy, wherein epidermal cells elongated almost uniformly in all regions along the petal spur’s longitudinal axis, contributed principally to the spur’s mature length. Conclusions This research demonstrates that anisotropic growth of epidermal cells – in the same orientation as spur elongation – chiefly explains petal spur extension in C. ruber. Representing the inaugural investigation of the cellular basis for spur ontogeny within the Euasterids II clade, this study complements the patterns in

  12. Environmental Sciences Division annual progress report for period ending September 30, 1992

    SciTech Connect

    Van Hook, R. I.; Hildebrand, S. G.; Gehrs, C. W.; Sharples, F. E.; Shriner, D. S.; Stow, S. H.; Cushman, J. H.; Kanciruk, P.

    1993-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during fiscal year (FY) 1992, which which extended from October 1, 1991, through September 30, 1992. This report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Section activities are described in the Earth and Atmospheric sciences, ecosystem studies, Environmental analysis, environmental biotechnology, and division operations.

  13. Laboratory directed research and development annual report. Fiscal year 1994

    SciTech Connect

    1995-02-01

    The Department of Energy Order DOE 5000.4A establishes DOE`s policy and guidelines regarding Laboratory Directed Research and Development (LDRD) at its multiprogram laboratories. This report represents Pacific Northwest Laboratory`s (PNL`s) LDRD report for FY 1994. During FY 1994, 161 LDRD projects were selected for support through PNL`s LDRD project selection process. Total funding allocated to these projects was $13.7 million. Consistent with the Mission Statement and Strategic Plan provided in PNL`s Institutional Plan, the LDRD investments are focused on developing new and innovative approaches in research related to our {open_quotes}core competencies.{close_quotes} Currently, PNL`s core competencies have been identified as integrated environmental research; process science and engineering; energy systems development. In this report, the individual summaries of LDRD projects (presented in Section 1.0) are organized according to these core competencies. The largest proportion of Laboratory-level LDRD funds is allocated to the core competency of integrated environmental research. Projects within the three core competency areas were approximately 91.4 % of total LDRD project funding at PNL in FY 1994. A significant proportion of PNL`s LDRD funds are also allocated to projects within the various research centers that are proposed by individual researchers or small research teams. Funding allocated to each of these projects is typically $35K or less. The projects described in this report represent PNL`s investment in its future and are vital to maintaining the ability to develop creative solutions for the scientific and technical challenges faced by DOE and the nation. The report provides an overview of PNL`s LDRD program, the management process used for the program, and project summaries for each LDRD project.

  14. Research and development of network virtual instrument laboratory

    NASA Astrophysics Data System (ADS)

    Cui, Hongmei; Pei, Xichun; Ma, Hongyue; Ma, Shuoshi

    2006-11-01

    A software platform of the network virtual instrument test laboratory has been developed to realize the network function of the test and signal analysis as well as the share of the hardware based on the data transmission theory and the study of the present technologies of the network virtual instrument. The whole design procedure was also presented in this paper. The main work of the research is as follows. 1. A suitable scheme of the test system with B/S mode and the virtual instrument laboratory with BSDA (Browser/Server/Database/Application) mode was determined. 2. The functions were classified and integrated by adopting the multilayer structure. The application for the virtual instruments running in the client terminal and the network management server managing the multiuser in the test laboratory according to the "Concurrent receival, sequential implementation" strategy in Java as well as the code of the test server application responding the client's requests of test and signal analysis in LabWindows/CVI were developed. As the extending part of network function of the original virtual test and analysis instruments, a software platform of network virtual instrument test laboratory was built as well. 3. The communication of the network data between Java and the LabWindows/CVI was realized. 4. The database was imported to store the data as well as the correlative information acquired by the server and help the network management server to manage the multiuser in the test laboratory. 5. A website embedding Java Applet of virtual instrument laboratory with the on-line help files was designed.

  15. Studies of acute and chronic radiation injury at the Biological and Medical Research Division, Argonne National Laboratory, 1970-1992: The JANUS Program Survival and Pathology Data

    SciTech Connect

    Grahn, D.; Wright, B.J.; Carnes, B.A.; Williamson, F.S.; Fox, C.

    1995-02-01

    A research reactor for exclusive use in experimental radiobiology was designed and built at Argonne National Laboratory in the 1960`s. It was located in a special addition to Building 202, which housed the Division of Biological and Medical Research. Its location assured easy access for all users to the animal facilities, and it was also near the existing gamma-irradiation facilities. The water-cooled, heterogeneous 200-kW(th) reactor, named JANUS, became the focal point for a range of radiobiological studies gathered under the rubic of {open_quotes}the JANUS program{close_quotes}. The program ran from about 1969 to 1992 and included research at all levels of biological organization, from subcellular to organism. More than a dozen moderate- to large-scale studies with the B6CF{sub 1} mouse were carried out; these focused on the late effects of whole-body exposure to gamma rays or fission neutrons, in matching exposure regimes. In broad terms, these studies collected data on survival and on the pathology observed at death. A deliberate effort was made to establish the cause of death. This archieve describes these late-effects studies and their general findings. The database includes exposure parameters, time of death, and the gross pathology and histopathology in codified form. A series of appendices describes all pathology procedures and codes, treatment or irradiation codes, and the manner in which the data can be accessed in the ORACLE database management system. A series of tables also presents summaries of the individual experiments in terms of radiation quality, sample sizes at entry, mean survival times by sex, and number of gross pathology and histopathology records.

  16. Development of Frequency-Division Multiplexing Readout System for Large-Format TES X-ray Microcalorimeter Arrays

    NASA Astrophysics Data System (ADS)

    Sakai, K.; Yamamoto, R.; Takei, Y.; Mitsuda, K.; Yamasaki, N. Y.; Hidaka, M.; Nagasawa, S.; Kohjiro, S.; Miyazaki, T.

    2016-07-01

    We are developing the frequency-division multiplexing (FDM) readout system aimed to realize the 400-pixel transition edge sensor (TES) microcalorimeter array for the DIOS mission as well as large-format arrays with more than a thousand of TES for future space missions such as the ATHENA mission. The developed system consists of the low-power superconducting quantum interference device (SQUID), the digital FDM electronics, and the analog front-end to bridge the SQUID and the digital electronics. Using the developed readout system, we performed a TES readout experiment and succeeded to multiplex four TES signals with the single-staged cryogenic setup. We have experienced two issues during the experiment: an excess noise and crosstalk. The brief overview of the developed system and the details, results, and issues of the TES multiplexing readout experiment is discussed.

  17. Development of Frequency-Division Multiplexing Readout System for Large-Format TES X-ray Microcalorimeter Arrays

    NASA Astrophysics Data System (ADS)

    Sakai, K.; Yamamoto, R.; Takei, Y.; Mitsuda, K.; Yamasaki, N. Y.; Hidaka, M.; Nagasawa, S.; Kohjiro, S.; Miyazaki, T.

    2016-03-01

    We are developing the frequency-division multiplexing (FDM) readout system aimed to realize the 400-pixel transition edge sensor (TES) microcalorimeter array for the DIOS mission as well as large-format arrays with more than a thousand of TES for future space missions such as the ATHENA mission. The developed system consists of the low-power superconducting quantum interference device (SQUID), the digital FDM electronics, and the analog front-end to bridge the SQUID and the digital electronics. Using the developed readout system, we performed a TES readout experiment and succeeded to multiplex four TES signals with the single-staged cryogenic setup. We have experienced two issues during the experiment: an excess noise and crosstalk. The brief overview of the developed system and the details, results, and issues of the TES multiplexing readout experiment is discussed.

  18. High Energy Physics division semiannual report of research activities, January 1, 1998--June 30, 1998.

    SciTech Connect

    Ayres, D. S.; Berger, E. L.; Blair, R.; Bodwin, G. T.; Drake, G.; Goodman, M. C.; Guarino, V.; Klasen, M.; Lagae, J.-F.; Magill, S.; May, E. N.; Nodulman, L.; Norem, J.; Petrelli, A.; Proudfoot, J.; Repond, J.; Schoessow, P. V.; Sinclair, D. K.; Spinka, H. M.; Stanek, R.; Underwood, D.; Wagner, R.; White, A. R.; Yokosawa, A.; Zachos, C.

    1999-03-09

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1998 through June 30, 1998. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of Division publications and colloquia are included.

  19. High Energy Physics Division. Semiannual report of research activities, January 1, 1995--June 30, 1995

    SciTech Connect

    Wagner, R.; Schoessow, P.; Talaga, R.

    1995-12-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1995-July 31, 1995. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  20. High Energy Physics Division semiannual report of research activities, July 1, 1992--December 30, 1992

    SciTech Connect

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1993-07-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1992--December 30, 1992. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  1. High Energy Physics Division semiannual report of research activities, January 1, 1996--June 30, 1996

    SciTech Connect

    Norem, J.; Rezmer, R.; Wagner, R.

    1997-07-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1 - June 30, 1996. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. List of Division publications and colloquia are included.

  2. High Energy Physics Division semiannual report of research activities, January 1, 1994--June 30, 1994

    SciTech Connect

    Not Available

    1994-09-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1994-June 30, 1994. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  3. High Energy Physics Division semiannual report of research activities, January 1, 1992--June 30, 1992

    SciTech Connect

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1992-11-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1992--June 30, 1992. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  4. High Energy Physics Division semiannual report of research activities, July 1, 1994--December 31, 1994

    SciTech Connect

    Wagner, R.; Schoessow, P.; Talaga, R.

    1995-04-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1994--December 31, 1994. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  5. High Energy Physics Division semiannual report of research activities, January 1, 1993--June 30, 1993

    SciTech Connect

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1993-12-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of January 1, 1993--June 30, 1993. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  6. High Energy Physics Division semiannual report of research activities, July 1, 1993--December 31, 1993

    SciTech Connect

    Wagner, R.; Moonier, P.; Schoessow, P.; Talaga, R.

    1994-05-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1993--December 31, 1993. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  7. High Energy Physics Division semiannual report of research activities July 1, 1997 - December 31, 1997.

    SciTech Connect

    Norem, J.; Rezmer, R.; Schuur, C.; Wagner, R.

    1998-08-11

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period July 1, 1997--December 31, 1997. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of Division publications and colloquia are included.

  8. Summary Report of the Atmospheric Modeling and Analysis Division's Research Activities for 2010

    EPA Science Inventory

    The research presented here was performed by the Atmospheric Modeling and Analysis Division (AMAD) of the National Exposure Research Laboratory in the U.S. Environmental Protection Agency’s (EPA’s) Office of Research and Development in Research Triangle Park, NC. The Division lea...

  9. Summary Report of the Atmospheric Modeling and Analysis Division's Research Activities for 2009

    EPA Science Inventory

    The research presented here was performed by the Atmospheric Modeling and Analysis Division (AMAD) under the National Exposure Research Laboratory in the U.S. Environmental Protection Agency’s (EPA’s) Office of Research and Development in Research Triangle Park, NC. The Division ...

  10. High Energy Physics Division semiannual report of research activities, July 1, 1991--December 31, 1991

    SciTech Connect

    Schoessow, P.; Moonier, P.; Talaga, R.; Wagner, R.

    1992-04-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period of July 1, 1991--December 31, 1991. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  11. Physics division annual report 2000.

    SciTech Connect

    Thayer, K., ed.

    2001-10-04

    This report summarizes the research performed in 2000 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory and medium energy physics research, and accelerator research and development. As the Nuclear Science Advisory Committee and the nuclear science community create a new long range plan for the field in 2001, it is clear that the research of the Division is closely aligned with and continues to help define the national goals of our field. The NSAC 2001 Long Range Plan recommends as the highest priority for major new construction the Rare Isotope Accelerator (RIA), a bold step forward for nuclear structure and nuclear astrophysics. The accelerator R&D in the Physics Division has made major contributions to almost all aspects of the RIA design concept and the community was convinced that this project is ready to move forward. 2000 saw the end of the first Gammasphere epoch at ATLAS, One hundred Gammasphere experiments were completed between January 1998 and March 2000, 60% of which used the Fragment Mass Analyzer to provide mass identification in the reaction. The experimental program at ATLAS then shifted to other important research avenues including proton radioactivity, mass measurements with the Canadian Penning Trap and measurements of high energy gamma-rays in nuclear reactions with the MSU/ORNL/Texas A&M BaF{sub 2} array. ATLAS provided 5460 beam-research hours for user experiments and maintained an operational reliability of 95%. Radioactive beams accounted for 7% of the beam time. ATLAS also provided a crucial test of a key RIA concept, the ability to accelerate multiple charge states in a superconducting heavy-ion linac. This new capability was immediately used to increase the performance for a scheduled experiment. The medium energy program continued to make strides in examining how the quark-gluon structure of matter

  12. Laboratory Directed Research and Development Program FY98

    SciTech Connect

    Hansen, T.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  13. The Jet Propulsion Laboratory Electric and Hybrid Vehicle System Research and Development Project, 1977-1984: A Review

    NASA Technical Reports Server (NTRS)

    Kurtz, D.; Roan, V.

    1985-01-01

    The JPL Electric and Hybrid Vehicle System Research and Development Project was established in the spring of 1977. Originally administered by the Energy Research and Development Administration (ERDA) and later by the Electric and Hybrid Vehicle Division of the U.S. Department of Energy (DOE), the overall Program objective was to decrease this nation's dependence on foreign petroleum sources by developing the technologies and incentives necessary to bring electric and hybrid vehicles successfully into the marketplace. The ERDA/DOE Program structure was divided into two major elements: (1) technology research and system development and (2) field demonstration and market development. The Jet Propulsion Laboratory (JPL) has been one of several field centers supporting the former Program element. In that capacity, the specific historical areas of responsibility have been: (1) Vehicle system developments (2) System integration and test (3) Supporting subsystem development (4) System assessments (5) Simulation tool development.

  14. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    SciTech Connect

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which becomes a major factor in achieving and maintaining staff excellence

  15. Laboratory Directed Research and Development FY2011 Annual Report

    SciTech Connect

    Craig, W; Sketchley, J; Kotta, P

    2012-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has earned the reputation as a leader in providing science and technology solutions to the most pressing national and global security problems. The LDRD Program, established by Congress at all DOE national laboratories in 1991, is LLNL's most important single resource for fostering excellent science and technology for today's needs and tomorrow's challenges. The LDRD internally directed research and development funding at LLNL enables high-risk, potentially high-payoff projects at the forefront of science and technology. The LDRD Program at Livermore serves to: (1) Support the Laboratory's missions, strategic plan, and foundational science; (2) Maintain the Laboratory's science and technology vitality; (3) Promote recruiting and retention; (4) Pursue collaborations; (5) Generate intellectual property; and (6) Strengthen the U.S. economy. Myriad LDRD projects over the years have made important contributions to every facet of the Laboratory's mission and strategic plan, including its commitment to nuclear, global, and energy and environmental security, as well as cutting-edge science and technology and engineering in high-energy-density matter, high-performance computing and simulation, materials and chemistry at the extremes, information systems, measurements and experimental science, and energy manipulation. A summary of each project was submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to DOE/NNSA and LLNL mission areas, the technical progress achieved in FY11, and a list of publications that resulted from the research. The projects are: (1) Nuclear Threat Reduction; (2) Biosecurity; (3) High-Performance Computing and Simulation; (4) Intelligence; (5) Cybersecurity; (6) Energy Security; (7) Carbon Capture; (8) Material Properties, Theory, and Design; (9) Radiochemistry; (10) High-Energy-Density Science; (11) Laser Inertial

  16. Laboratory-directed research and development: FY 1996 progress report

    SciTech Connect

    Vigil, J.; Prono, J.

    1997-05-01

    This report summarizes the FY 1996 goals and accomplishments of Laboratory-Directed Research and Development (LDRD) projects. It gives an overview of the LDRD program, summarizes work done on individual research projects, and provides an index to the projects` principal investigators. Projects are grouped by their LDRD component: Individual Projects, Competency Development, and Program Development. Within each component, they are further divided into nine technical disciplines: (1) materials science, (2) engineering and base technologies, (3) plasmas, fluids, and particle beams, (4) chemistry, (5) mathematics and computational sciences, (6) atomic and molecular physics, (7) geoscience, space science, and astrophysics, (8) nuclear and particle physics, and (9) biosciences.

  17. Pellet fueling development at Oak Ridge National Laboratory

    SciTech Connect

    Foster, C.A.; Milora, S.L.; Schuresko, D.D.; Combs, S.K.; Lunsford, R.V.

    1982-01-01

    A pellet injector development program has been under way at the Oak Ridge National Laboratory (ORNL) since 1976 with the goals of developing D/sub 2/, T/sub 2/ pellet fuel injectors capable of reliable repetitive fueling of reactors and of continued experimentation on contemporary plasma devices. The development has focused primarily on two types of injectors that show promise. One of these injectors is the centrifuge-type injector, which accelerates pellets in a high speed rotating track. The other is the gas or pneumatic gun, which accelerates pellets in a gun barrel using compressed helium of H/sub 2/ gas.

  18. Development of Biological Movement Recognition by Interaction between Active Basis Model and Fuzzy Optical Flow Division

    PubMed Central

    Loo, Chu Kiong

    2014-01-01

    Following the study on computational neuroscience through functional magnetic resonance imaging claimed that human action recognition in the brain of mammalian pursues two separated streams, that is, dorsal and ventral streams. It follows up by two pathways in the bioinspired model, which are specialized for motion and form information analysis (Giese and Poggio 2003). Active basis model is used to form information which is different from orientations and scales of Gabor wavelets to form a dictionary regarding object recognition (human). Also biologically movement optic-flow patterns utilized. As motion information guides share sketch algorithm in form pathway for adjustment plus it helps to prevent wrong recognition. A synergetic neural network is utilized to generate prototype templates, representing general characteristic form of every class. Having predefined templates, classifying performs based on multitemplate matching. As every human action has one action prototype, there are some overlapping and consistency among these templates. Using fuzzy optical flow division scoring can prevent motivation for misrecognition. We successfully apply proposed model on the human action video obtained from KTH human action database. Proposed approach follows the interaction between dorsal and ventral processing streams in the original model of the biological movement recognition. The attained results indicate promising outcome and improvement in robustness using proposed approach. PMID:24883361

  19. Development of biological movement recognition by interaction between active basis model and fuzzy optical flow division.

    PubMed

    Yousefi, Bardia; Loo, Chu Kiong

    2014-01-01

    Following the study on computational neuroscience through functional magnetic resonance imaging claimed that human action recognition in the brain of mammalian pursues two separated streams, that is, dorsal and ventral streams. It follows up by two pathways in the bioinspired model, which are specialized for motion and form information analysis (Giese and Poggio 2003). Active basis model is used to form information which is different from orientations and scales of Gabor wavelets to form a dictionary regarding object recognition (human). Also biologically movement optic-flow patterns utilized. As motion information guides share sketch algorithm in form pathway for adjustment plus it helps to prevent wrong recognition. A synergetic neural network is utilized to generate prototype templates, representing general characteristic form of every class. Having predefined templates, classifying performs based on multitemplate matching. As every human action has one action prototype, there are some overlapping and consistency among these templates. Using fuzzy optical flow division scoring can prevent motivation for misrecognition. We successfully apply proposed model on the human action video obtained from KTH human action database. Proposed approach follows the interaction between dorsal and ventral processing streams in the original model of the biological movement recognition. The attained results indicate promising outcome and improvement in robustness using proposed approach. PMID:24883361

  20. The TORMOZ Gene Encodes a Nucleolar Protein Required for Regulated Division Planes and Embryo Development in Arabidopsis[W

    PubMed Central

    Griffith, Megan E.; Mayer, Ulrike; Capron, Arnaud; Ngo, Quy A.; Surendrarao, Anandkumar; McClinton, Regina; Jürgens, Gerd; Sundaresan, Venkatesan

    2007-01-01

    Embryogenesis in Arabidopsis thaliana is marked by a predictable sequence of oriented cell divisions, which precede cell fate determination. We show that mutation of the TORMOZ (TOZ) gene yields embryos with aberrant cell division planes and arrested embryos that appear not to have established normal patterning. The defects in toz mutants differ from previously described mutations that affect embryonic cell division patterns. Longitudinal division planes of the proembryo are frequently replaced by transverse divisions and less frequently by oblique divisions, while divisions of the suspensor cells, which divide only transversely, appear generally unaffected. Expression patterns of selected embryo patterning genes are altered in the mutant embryos, implying that the positional cues required for their proper expression are perturbed by the misoriented divisions. The TOZ gene encodes a nucleolar protein containing WD repeats. Putative TOZ orthologs exist in other eukaryotes including Saccharomyces cerevisiae, where the protein is predicted to function in 18S rRNA biogenesis. We find that disruption of the Sp TOZ gene results in cell division defects in Schizosaccharomyces pombe. Previous studies in yeast and animal cells have identified nucleolar proteins that regulate the exit from M phase and cytokinesis, including factors involved in pre-rRNA processing. Our study suggests that in plant cells, nucleolar functions might interact with the processes of regulated cell divisions and influence the selection of longitudinal division planes during embryogenesis. PMID:17616738

  1. Laboratory Directed Research and Development FY2008 Annual Report

    SciTech Connect

    Kammeraad, J E; Jackson, K J; Sketchley, J A; Kotta, P R

    2009-03-24

    The Laboratory Directed Research and Development (LDRD) Program, authorized by Congress in 1991 and administered by the Institutional Science and Technology Office at Lawrence Livermore, is our primary means for pursuing innovative, long-term, high-risk, and potentially high-payoff research that supports the full spectrum of national security interests encompassed by the missions of the Laboratory, the Department of Energy, and National Nuclear Security Administration. The accomplishments described in this annual report demonstrate the strong alignment of the LDRD portfolio with these missions and contribute to the Laboratory's success in meeting its goals. The LDRD budget of $91.5 million for fiscal year 2008 sponsored 176 projects. These projects were selected through an extensive peer-review process to ensure the highest scientific quality and mission relevance. Each year, the number of deserving proposals far exceeds the funding available, making the selection a tough one indeed. Our ongoing investments in LDRD have reaped long-term rewards for the Laboratory and the nation. Many Laboratory programs trace their roots to research thrusts that began several years ago under LDRD sponsorship. In addition, many LDRD projects contribute to more than one mission area, leveraging the Laboratory's multidisciplinary team approach to science and technology. Safeguarding the nation from terrorist activity and the proliferation of weapons of mass destruction will be an enduring mission of this Laboratory, for which LDRD will continue to play a vital role. The LDRD Program is a success story. Our projects continue to win national recognition for excellence through prestigious awards, papers published in peer-reviewed journals, and patents granted. With its reputation for sponsoring innovative projects, the LDRD Program is also a major vehicle for attracting and retaining the best and the brightest technical staff and for establishing collaborations with universities

  2. Federal laboratory nondestructive testing research and development applicable to industry

    SciTech Connect

    Smith, S.A.; Moore, N.L.

    1987-02-01

    This document presents the results of a survey of nondestructive testing (NDT) and related sensor technology research and development (R and D) at selected federal laboratories. Objective was to identify and characterize NDT activities that could be applied to improving energy efficiency and overall productivity in US manufacturing. Numerous federally supported R and D programs were identified in areas such as acoustic emissions, eddy current, radiography, computer tomography and ultrasonics. A Preliminary Findings Report was sent to industry representatives, which generated considerable interest.

  3. A Radiation Laboratory Curriculum Development at Western Kentucky University

    SciTech Connect

    Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C.

    2009-03-10

    We present the latest developments for the radiation laboratory curriculum at the Department of Physics and Astronomy of Western Kentucky University. During the last decade, the Applied Physics Institute (API) at WKU accumulated various equipment for radiation experimentation. This includes various neutron sources (computer controlled d-t and d-d neutron generators, and isotopic 252 Cf and PuBe sources), the set of gamma sources with various intensities, gamma detectors with various energy resolutions (NaI, BGO, GSO, LaBr and HPGe) and the 2.5-MeV Van de Graaff particle accelerator. XRF and XRD apparatuses are also available for students and members at the API. This equipment is currently used in numerous scientific and teaching activities. Members of the API also developed a set of laboratory activities for undergraduate students taking classes from the physics curriculum (Nuclear Physics, Atomic Physics, and Radiation Biophysics). Our goal is to develop a set of radiation laboratories, which will strengthen the curriculum of physics, chemistry, geology, biology, and environmental science at WKU. The teaching and research activities are integrated into real-world projects and hands-on activities to engage students. The proposed experiments and their relevance to the modern status of physical science are discussed.

  4. A Radiation Laboratory Curriculum Development at Western Kentucky University

    NASA Astrophysics Data System (ADS)

    Barzilov, Alexander P.; Novikov, Ivan S.; Womble, Phil C.

    2009-03-01

    We present the latest developments for the radiation laboratory curriculum at the Department of Physics and Astronomy of Western Kentucky University. During the last decade, the Applied Physics Institute (API) at WKU accumulated various equipment for radiation experimentation. This includes various neutron sources (computer controlled d-t and d-d neutron generators, and isotopic 252 Cf and PuBe sources), the set of gamma sources with various intensities, gamma detectors with various energy resolutions (NaI, BGO, GSO, LaBr and HPGe) and the 2.5-MeV Van de Graaff particle accelerator. XRF and XRD apparatuses are also available for students and members at the API. This equipment is currently used in numerous scientific and teaching activities. Members of the API also developed a set of laboratory activities for undergraduate students taking classes from the physics curriculum (Nuclear Physics, Atomic Physics, and Radiation Biophysics). Our goal is to develop a set of radiation laboratories, which will strengthen the curriculum of physics, chemistry, geology, biology, and environmental science at WKU. The teaching and research activities are integrated into real-world projects and hands-on activities to engage students. The proposed experiments and their relevance to the modern status of physical science are discussed.

  5. Laboratory Directed Research and Development FY2010 Annual Report

    SciTech Connect

    Jackson, K J

    2011-03-22

    A premier applied-science laboratory, Lawrence Livermore National Laboratory (LLNL) has at its core a primary national security mission - to ensure the safety, security, and reliability of the nation's nuclear weapons stockpile without nuclear testing, and to prevent and counter the spread and use of weapons of mass destruction: nuclear, chemical, and biological. The Laboratory uses the scientific and engineering expertise and facilities developed for its primary mission to pursue advanced technologies to meet other important national security needs - homeland defense, military operations, and missile defense, for example - that evolve in response to emerging threats. For broader national needs, LLNL executes programs in energy security, climate change and long-term energy needs, environmental assessment and management, bioscience and technology to improve human health, and for breakthroughs in fundamental science and technology. With this multidisciplinary expertise, the Laboratory serves as a science and technology resource to the U.S. government and as a partner with industry and academia. This annual report discusses the following topics: (1) Advanced Sensors and Instrumentation; (2) Biological Sciences; (3) Chemistry; (4) Earth and Space Sciences; (5) Energy Supply and Use; (6) Engineering and Manufacturing Processes; (7) Materials Science and Technology; Mathematics and Computing Science; (8) Nuclear Science and Engineering; and (9) Physics.

  6. 77 FR 34974 - Solicitation for Comments on the Proposed Realignment of the Division of Workforce Development...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... Workforce Development From the Office of Indian Energy and Economic Development to the Office of the Deputy... located in the Office of Indian Energy and Economic Development (IEED) within AS-IA, to the Bureau of... Development, Office of Indian Energy and Economic Development, U.S. Department of the Interior, Room...

  7. Laboratory Directed Research and Development 1998 Annual Report

    SciTech Connect

    Pam Hughes; Sheila Bennett eds.

    1999-07-14

    The Laboratory's Directed Research and Development (LDRD) program encourages the advancement of science and the development of major new technical capabilities from which future research and development will grow. Through LDRD funding, Pacific Northwest continually replenishes its inventory of ideas that have the potential to address major national needs. The LDRD program has enabled the Laboratory to bring to bear its scientific and technical capabilities on all of DOE's missions, particularly in the arena of environmental problems. Many of the concepts related to environmental cleanup originally developed with LDRD funds are now receiving programmatic support from DOE, LDRD-funded work in atmospheric sciences is now being applied to DOE's Atmospheric Radiation Measurement Program. We also have used concepts initially explored through LDRD to develop several winning proposals in the Environmental Management Science Program. The success of our LDRD program is founded on good management practices that ensure funding is allocated and projects are conducted in compliance with DOE requirements. We thoroughly evaluate the LDRD proposals based on their scientific and technical merit, as well as their relevance to DOE's programmatic needs. After a proposal is funded, we assess progress annually using external peer reviews. This year, as in years past, the LDRD program has once again proven to be the major enabling vehicle for our staff to formulate new ideas, advance scientific capability, and develop potential applications for DOE's most significant challenges.

  8. Aligning Transition Services with Secondary Educational Reform: A Position Statement of the Division on Career Development and Transition

    PubMed Central

    Morningstar, Mary E.; Bassett, Diane S.; Cashman, Joanne; Kochhar-Bryant, Carol; Wehmeyer, Michael L.

    2014-01-01

    Society has witnessed significant improvements in the lives of students receiving transition services over the past 30 years. The field of transition has developed an array of evidence-based interventions and promising practices, however, secondary school reform efforts have often overlooked these approaches for youth without disabilities. If we are to see improvements in postsecondary outcomes for all youth, reform efforts must begin with active participation of both general and special educators and critical home, school, and community stakeholders. In the Division on Career Development for Exceptional Individuals’ position paper, we discuss the evolution of transition in light of reform efforts in secondary education. We review and identify secondary educational initiatives that embrace transition principles. Finally, recommendations are provided for advancing alignment of transition services with secondary education reforms. PMID:25221733

  9. Development of flammable liquid storage wooden cabinets for chemical laboratories

    SciTech Connect

    Staggs, K.J.; Hasegawa, H.K.; Doughty, S.M.; Barr, J.G.

    1993-11-01

    A fire hardened wooden cabinet was developed for the storage of flammable liquids for LLNL Bldg. 151 nuclear chemistry laboratories. The new cabinet requirements were to fit into existing cabinet spaces, match existing cabinets in appearance, and meet the National Fire Protection Association Flammable and Combustible Liquids Code. A standard test apparatus was developed to produce the required fire exposure necessary to evaluate existing cabinets and new designs. The final design was a cabinet insert that could be prefabricated and installed into the appropriate storage area of the existing cabinets.

  10. E-Division activities report

    SciTech Connect

    Barschall, H.H.

    1984-07-01

    E (Experimental Physics) Division carries out basic and applied research in atomic and nuclear physics, in materials science, and in other areas related to the missions of the Laboratory. Some of the activities are cooperative efforts with other divisions of the Laboratory, and, in a few cases, with other laboratories. Many of the experiments are directly applicable to problems in weapons and energy, some have only potential applied uses, and others are in pure physics. This report presents abstracts of papers published by E (Experimental Physics) Division staff members between July 1983 and June 1984. In addition, it lists the members of the scientific staff of the division, including visitors and students, and some of the assignments of staff members on scientific committees. A brief summary of the budget is included.

  11. Development of a Portable Motor Learning Laboratory (PoMLab)

    PubMed Central

    Shinya, Masahiro

    2016-01-01

    Most motor learning experiments have been conducted in a laboratory setting. In this type of setting, a huge and expensive manipulandum is frequently used, requiring a large budget and wide open space. Subjects also need to travel to the laboratory, which is a burden for them. This burden is particularly severe for patients with neurological disorders. Here, we describe the development of a novel application based on Unity3D and smart devices, e.g., smartphones or tablet devices, that can be used to conduct motor learning experiments at any time and in any place, without requiring a large budget and wide open space and without the burden of travel on subjects. We refer to our application as POrtable Motor learning LABoratory, or PoMLab. PoMLab is a multiplatform application that is available and sharable for free. We investigated whether PoMLab could be an alternative to the laboratory setting using a visuomotor rotation paradigm that causes sensory prediction error, enabling the investigation of how subjects minimize the error. In the first experiment, subjects could adapt to a constant visuomotor rotation that was abruptly applied at a specific trial. The learning curve for the first experiment could be modeled well using a state space model, a mathematical model that describes the motor leaning process. In the second experiment, subjects could adapt to a visuomotor rotation that gradually increased each trial. The subjects adapted to the gradually increasing visuomotor rotation without being aware of the visuomotor rotation. These experimental results have been reported for conventional experiments conducted in a laboratory setting, and our PoMLab application could reproduce these results. PoMLab can thus be considered an alternative to the laboratory setting. We also conducted follow-up experiments in university physical education classes. A state space model that was fit to the data obtained in the laboratory experiments could predict the learning curves

  12. Development of a Portable Motor Learning Laboratory (PoMLab).

    PubMed

    Takiyama, Ken; Shinya, Masahiro

    2016-01-01

    Most motor learning experiments have been conducted in a laboratory setting. In this type of setting, a huge and expensive manipulandum is frequently used, requiring a large budget and wide open space. Subjects also need to travel to the laboratory, which is a burden for them. This burden is particularly severe for patients with neurological disorders. Here, we describe the development of a novel application based on Unity3D and smart devices, e.g., smartphones or tablet devices, that can be used to conduct motor learning experiments at any time and in any place, without requiring a large budget and wide open space and without the burden of travel on subjects. We refer to our application as POrtable Motor learning LABoratory, or PoMLab. PoMLab is a multiplatform application that is available and sharable for free. We investigated whether PoMLab could be an alternative to the laboratory setting using a visuomotor rotation paradigm that causes sensory prediction error, enabling the investigation of how subjects minimize the error. In the first experiment, subjects could adapt to a constant visuomotor rotation that was abruptly applied at a specific trial. The learning curve for the first experiment could be modeled well using a state space model, a mathematical model that describes the motor leaning process. In the second experiment, subjects could adapt to a visuomotor rotation that gradually increased each trial. The subjects adapted to the gradually increasing visuomotor rotation without being aware of the visuomotor rotation. These experimental results have been reported for conventional experiments conducted in a laboratory setting, and our PoMLab application could reproduce these results. PoMLab can thus be considered an alternative to the laboratory setting. We also conducted follow-up experiments in university physical education classes. A state space model that was fit to the data obtained in the laboratory experiments could predict the learning curves

  13. Laboratory directed research and development program FY 1999

    SciTech Connect

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  14. Laboratory Directed Research and Development Program FY 2001

    SciTech Connect

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  15. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY

    SciTech Connect

    Glenn A. Moore; Francine J. Rice; Nicolas E. Woolstenhulme; W. David SwanK; DeLon C. Haggard; Jan-Fong Jue; Blair H. Park; Steven E. Steffler; N. Pat Hallinan; Michael D. Chapple; Douglas E. Burkes

    2008-10-01

    Within the Reduced Enrichment for Research and Test Reactors (RERTR) program directed by the US Department of Energy (DOE), UMo fuel-foils are being developed in an effort to realize high density monolithic fuel plates for use in high-flux research and test reactors. Namely, targeted are reactors that are not amenable to Low Enriched Uranium (LEU) fuel conversion via utilization of high density dispersion-based fuels, i.e. 8-9 gU/cc. LEU conversion of reactors having a need for >8-9 gU/cc fuel density will only be possible by way of monolithic fuel forms. The UMo fuel foils under development afford fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. Two primary challenges have been established with respect to UMo monolithic fuel development; namely, fuel element fabrication and in-reactor fuel element performance. Both issues are being addressed concurrently at the Idaho National Laboratory. An overview is provided of the ongoing monolithic UMo fuel development effort at the Idaho National Laboratory (INL); including development of complex/graded fuel foils. Fabrication processes to be discussed include: UMo alloying and casting, foil fabrication via hot rolling, fuel-clad interlayer application via co-rolling and thermal spray processes, clad bonding via Hot Isostatic Pressing (HIP) and Friction Bonding (FB), and fuel plate finishing.

  16. Energize Your Photovoltaics: NREL's Process Development and Integration Laboratory (PDIL)

    SciTech Connect

    Not Available

    2008-04-01

    The Process Development and Integration Laboratory (PDIL) at the National Renewable Energy Laboratory (NREL) is a unique collaborative facility where industry and universities can work closely with NREL scientists on integrated equipment to answer pressing questions related to photovoltaics (PV). The integrated equipment includes deposition, processing, and characterization tools. We work with a wide range of PV materials, from crystalline silicon to thin-films (amorphous, nano- and microcrystalline silicon, copper indium gallium diselenide, cadmium telluride) to organic PV. The PDIL integrates all the data to: Automate control via recipes; Share data easily and securely; and Facilitate analysis. The PDIL integrates all the tools to: Eliminate air exposure between steps; Sequence steps in any order ; and Incorporate combinatorial techniques. The PDIL integrates all the materials to: Provide greater device flexibility; Allow diverse experts to work together; and Better support industry and universities.

  17. Laboratory Directed Research and Development Program FY 2006

    SciTech Connect

    Hansen , Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  18. Laboratory Directed Research and Development FY 2000 Annual Progress Report

    SciTech Connect

    Los Alamos National Laboratory

    2001-05-01

    This is the FY00 Annual Progress report for the Laboratory Directed Research and Development (LDRD) Program at Los Alamos National Laboratory. It gives an overview of the LDRD Program, summarizes progress on each project conducted during FY00, characterizes the projects according to their relevance to major funding sources, and provides an index to principal investigators. Project summaries are grouped by LDRD component: Directed Research and Exploratory Research. Within each component, they are further grouped into the ten technical categories: (1) atomic, molecular, optical, and plasma physics, fluids, and beams, (2) bioscience, (3) chemistry, (4) computer science and software engineering, (5) engineering science, (6) geoscience, space science, and astrophysics, (7) instrumentation and diagnostics, (8) materials science, (9) mathematics, simulation, and modeling, and (10) nuclear and particle physics.

  19. Investigating the Molecular Mechanism of TSO1 Function in Arabidopsis cell division and meristem development

    SciTech Connect

    Zhongchi Liu

    2004-10-01

    Unlike animals, plants are constantly exposed to environmental mutagens including ultraviolet light and reactive oxygen species. Further, plant cells are totipotent with highly plastic developmental programs. An understanding of molecular mechanisms underlying the ability of plants to monitor and repair its DNA and to eliminate damaged cells are of great importance. Previously we have identified two genes, TSO1 and TSO2, from a flowering plant Arabidopsis thaliana. Mutations in these two genes cause callus-like flowers, fasciated shoot apical meristems, and abnormal cell division, indicating that TSO1 and TSO2 may encode important cell cycle regulators. Previous funding from DOE led to the molecular cloning of TSO1, which was shown to encode a novel nuclear protein with two CXC domains suspected to bind DNA. This DOE grant has allowed us to characterize and isolate TSO2 that encodes the small subunit of the ribonucleotide reductase (RNR). RNR comprises two large subunits (R1) an d two small subunits (R2), catalyzes a rate-limiting step in the production of deoxyribonucleotides needed for DNA replication and repair. Previous studies in yeast and mammals indicated that defective RNR often led to cell cycle arrest, growth retardation and p53-dependent apoptosis while abnormally elevated RNR activities led to higher mutation rates. Subsequently, we identified two additional R2 genes, R2A and R2B in the Arabidopsis genome. Using reverse genetics, mutations in R2A and R2B were isolated, and double and triple mutants among the three R2 genes (TSO2, R2A and R2B) were constructed and analyzed. We showed that Arabidopsis tso2 mutants, with reduced dNTP levels, were more sensitive to UV-C. While r2a or r2b single mutants did not exhibit any phenotypes, tso2 r2b double mutants were embryonic lethal and tso2 r2a double mutants were seedling lethal indicating redundant functions among the three R2 genes. Furthermore, tso2 r2a double mutants exhibited increased DNA dam age

  20. Development of sensorial experiments and their implementation into undergraduate laboratories

    NASA Astrophysics Data System (ADS)

    Bromfield Lee, Deborah Christina

    "Visualization" of chemical phenomena often has been limited in the teaching laboratories to the sense of sight. We have developed chemistry experiments that rely on senses other than eyesight to investigate chemical concepts, make quantitative determinations, and familiarize students with chemical techniques traditionally designed using only eyesight. Multi-sensory learning can benefit all students by actively engaging them in learning through stimulation or an alternative way of experiencing a concept or ideas. Perception of events or concepts usually depends on the information from the different sensory systems combined. The use of multi-sensory learning can take advantage of all the senses to reinforce learning as each sense builds toward a more complete experience of scientific data. Research has shown that multi-sensory representations of scientific phenomena is a valuable tool for enhancing understanding of chemistry as well as displacing misconceptions through experience. Multi-sensory experiences have also been shown to enrich memory performance. There are few experiments published which utilize multiple senses in the teaching laboratory. The sensorial experiments chosen were conceptually similar to experiments currently performed in undergraduate laboratories; however students collect different types of data using multi-sensory observations. The experiments themselves were developed by using chemicals that would provide different sensory changes or capitalizing on sensory observations that were typically overlooked or ignored and obtain similar and precise results as in traditional experiments. Minimizing hazards and using safe practices are especially essential in these experiments as students utilize senses traditionally not allowed to be used in the laboratories. These sensorial experiments utilize typical equipment found in the teaching laboratories as well as inexpensive chemicals in order to aid implementation. All experiments are rigorously tested

  1. 75 FR 57833 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-22

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit..., 2010......... Crowne Plaza Neurobiology-D November 19, 2010......... Crowne Plaza Pulmonary...

  2. 76 FR 66367 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... Medicine. City. Surgery November 22, 2011... The Sheraton Crystal City. Endocrinology-A November...

  3. 77 FR 64598 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-22

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Biomedical Laboratory Research and Development and Clinical Science Research and Development Services..., 2012...... *VA Central Office. Cellular and Molecular Medicine...... November 19, 2012.........

  4. 75 FR 23847 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-04

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and ] Development Services Scientific Merit... & Molecular Medicine........ June 7, 2010 Hotel Palomar. Surgery June 7, 2010 Crowne Plaza....

  5. Considerations in the Development of a Computer Mapping Laboratory.

    ERIC Educational Resources Information Center

    Hepner, George F.

    1985-01-01

    Presents tips to help geography educators at all levels set up a computer mapping laboratory. Discusses what a computer mapping laboratory is, needs and planning, software, hardware selection, and laboratory operation. (RM)

  6. Custom software development for use in a clinical laboratory

    PubMed Central

    Sinard, John H.; Gershkovich, Peter

    2012-01-01

    In-house software development for use in a clinical laboratory is a controversial issue. Many of the objections raised are based on outdated software development practices, an exaggeration of the risks involved, and an underestimation of the benefits that can be realized. Buy versus build analyses typically do not consider total costs of ownership, and unfortunately decisions are often made by people who are not directly affected by the workflow obstacles or benefits that result from those decisions. We have been developing custom software for clinical use for over a decade, and this article presents our perspective on this practice. A complete analysis of the decision to develop or purchase must ultimately examine how the end result will mesh with the departmental workflow, and custom-developed solutions typically can have the greater positive impact on efficiency and productivity, substantially altering the decision balance sheet. Involving the end-users in preparation of the functional specifications is crucial to the success of the process. A large development team is not needed, and even a single programmer can develop significant solutions. Many of the risks associated with custom development can be mitigated by a well-structured development process, use of open-source tools, and embracing an agile development philosophy. In-house solutions have the significant advantage of being adaptable to changing departmental needs, contributing to efficient and higher quality patient care. PMID:23372985

  7. Combined velocity and depth mapping on developing laboratory alluvial fans

    NASA Astrophysics Data System (ADS)

    Hamilton, P.; Strom, K. B.; Hoyal, D. C.

    2011-12-01

    Large-scale particle image velocimetry (LSPIV) is a nonintrusive method for measuring free-surface velocities using tracer patterns in a sequence of images. This method has been applied in both natural rivers and large-scale hydraulic models (Muste et al., 2008). Here the method is used to map channel and sheet flow velocity during the development of laboratory-scale alluvial fans. Measuring the time and space varying hydraulics on laboratory fans by traditional methods is not practical since flows are quite shallow (~1 cm). Additionally, the highly dynamic environment makes positioning of traditional probe-type instruments difficult and their physical presence could alter autogenic fan evolution. These difficulties can be overcome by using particle image velocimetry techniques. Furthermore, images collected in the LSPIV method can be used to extract flow depth using a calibrated dye-intensity method (Gran and Paola, 2001). This allows for simultaneous measurement of flow velocity and depth everywhere over the fan at any point in time. To validate the method, a set of controlled small-scale experiments were run for depths ranging from 0.2-1.5 cm and velocities from 10-100 cm/sec. Comparison of the LSPIV and dye-intensity method measurements to the known values indicated that the methodology was able to accurately capture simultaneous flow velocity and depth in this range of conditions, i.e., those encountered during the development of laboratory-scale alluvial fans and streams. The method is then used to map the hydraulics associated with various fan processes during development as demonstrated in figure 1. The ability to measure hydraulic properties during fan development is important since physical models provide an arena for observing the time evolution and morphodynamic feedback in depositional systems such as alluvial fans.

  8. About the Chemopreventive Agent Development Research Group | Division of Cancer Prevention

    Cancer.gov

    The Chemopreventive Agent Development Research Group promotes and supports research on early chemopreventive agent development, from preclinical studies to phase I clinical trials. The group’s projects aim to identify and develop prevention agents with the potential to block, reverse, or delay the early stages of cancer. The overarching goal is to determine positive and negative predictive values of preclinical models for clinical development. |

  9. Development and Application of a Two-Tier Multiple-Choice Diagnostic Test for High School Students' Understanding of Cell Division and Reproduction

    ERIC Educational Resources Information Center

    Sesli, Ertugrul; Kara, Yilmaz

    2012-01-01

    This study involved the development and application of a two-tier diagnostic test for measuring students' understanding of cell division and reproduction. The instrument development procedure had three general steps: defining the content boundaries of the test, collecting information on students' misconceptions, and instrument development.…

  10. FY2007 Laboratory Directed Research and Development Annual Report

    SciTech Connect

    Craig, W W; Sketchley, J A; Kotta, P R

    2008-03-20

    The Laboratory Directed Research and Development (LDRD) annual report for fiscal year 2007 (FY07) provides a summary of LDRD-funded projects for the fiscal year and consists of two parts: An introduction to the LDRD Program, the LDRD portfolio-management process, program statistics for the year, and highlights of accomplishments for the year. A summary of each project, submitted by the principal investigator. Project summaries include the scope, motivation, goals, relevance to Department of Energy (DOE)/National Nuclear Security Administration (NNSA) and Lawrence Livermore National Laboratory (LLNL) mission areas, the technical progress achieved in FY07, and a list of publications that resulted from the research in FY07. Summaries are organized in sections by research category (in alphabetical order). Within each research category, the projects are listed in order of their LDRD project category: Strategic Initiative (SI), Exploratory Research (ER), Laboratory-Wide Competition (LW), and Feasibility Study (FS). Within each project category, the individual project summaries appear in order of their project tracking code, a unique identifier that consists of three elements. The first is the fiscal year the project began, the second represents the project category, and the third identifies the serial number of the proposal for that fiscal year.

  11. The History of Metals and Ceramics Division

    SciTech Connect

    Craig, D.F.

    1999-01-01

    The division was formed in 1946 at the suggestion of Dr. Eugene P. Wigner to attack the problem of the distortion of graphite in the early reactors due to exposure to reactor neutrons, and the consequent radiation damage. It was called the Metallurgy Division and assembled the metallurgical and solid state physics activities of the time which were not directly related to nuclear weapons production. William A. Johnson, a Westinghouse employee, was named Division Director in 1946. In 1949 he was replaced by John H Frye Jr. when the Division consisted of 45 people. He was director during most of what is called the Reactor Project Years until 1973 and his retirement. During this period the Division evolved into three organizational areas: basic research, applied research in nuclear reactor materials, and reactor programs directly related to a specific reactor(s) being designed or built. The Division (Metals and Ceramics) consisted of 204 staff members in 1973 when James R. Weir, Jr., became Director. This was the period of the oil embargo, the formation of the Energy Research and Development Administration (ERDA) by combining the Atomic Energy Commission (AEC) with the Office of Coal Research, and subsequent formation of the Department of Energy (DOE). The diversification process continued when James O. Stiegler became Director in 1984, partially as a result of the pressure of legislation encouraging the national laboratories to work with U.S. industries on their problems. During that time the Division staff grew from 265 to 330. Douglas F. Craig became Director in 1992.

  12. Renewable energy technology development at Sandia National Laboratories

    SciTech Connect

    Klimas, P.C.

    1994-03-01

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earths present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing many of these technologies over the last two decades. This paper describes innovative solar, wind and geothermal energy systems and components that Sandia is helping to bring to the marketplace. A common but special aspect of all of these activities is that they are conducted in partnership with non-federal government entities. A number of these partners are from New Mexico.

  13. Laboratory Directed Research and Development LDRD-FY-2011

    SciTech Connect

    Dena Tomchak

    2012-03-01

    This report provides a summary of the research conducted at the Idaho National Laboratory (INL) during Fiscal Year (FY) 2011. This report demonstrates the types of cutting edge research the INL is performing to help ensure the nation's energy security. The research conducted under this program is aligned with our strategic direction, benefits the Department of Energy (DOE) and is in compliance with DOE order 413.2B. This report summarizes the diverse research and development portfolio with emphasis on the DOE Office of Nuclear Energy (DOE-NE) mission, encompassing both advanced nuclear science and technology and underlying technologies.

  14. 1996 Laboratory directed research and development annual report

    SciTech Connect

    Meyers, C.E.; Harvey, C.L.; Lopez-Andreas, L.M.; Chavez, D.L.; Whiddon, C.P.

    1997-04-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1996. In addition to a programmatic and financial overview, the report includes progress reports from 259 individual R&D projects in seventeen categories. The general areas of research include: engineered processes and materials; computational and information sciences; microelectronics and photonics; engineering sciences; pulsed power; advanced manufacturing technologies; biomedical engineering; energy and environmental science and technology; advanced information technologies; counterproliferation; advanced transportation; national security technology; electronics technologies; idea exploration and exploitation; production; and science at the interfaces - engineering with atoms.

  15. 1997 Laboratory directed research and development. Annual report

    SciTech Connect

    Meyers, C.E.; Harvey, C.L.; Chavez, D.L.; Whiddon, C.P.

    1997-12-31

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 1997. In addition to a programmatic and financial overview, the report includes progress reports from 218 individual R&D projects in eleven categories. Theses reports are grouped into the following areas: materials science and technology; computer sciences; electronics and photonics; phenomenological modeling and engineering simulation; manufacturing science and technology; life-cycle systems engineering; information systems; precision sensing and analysis; environmental sciences; risk and reliability; national grand challenges; focused technologies; and reserve.

  16. Renewable energy technology development at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Klimas, P. C.

    1994-02-01

    The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earth's present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing many of these technologies over the last two decades. This paper describes innovative solar, wind and geothermal energy systems and components that Sandia is helping to bring to the marketplace. A common but special aspect of all of these activities is that they are conducted in partnership with non-federal government entities. A number of these partners are from New Mexico.

  17. Development of a laboratory extreme-ultraviolet lithography tool

    SciTech Connect

    Tichenor, D.A.; Kubiak, G.D.; Malinowski, M.E.; Stulen, R.H.; Haney, S.J.; Berger, K.W.; Nissen, R.P.; Wilkerson, G.A.; Paul, P.H.; Birtola, S.R.; Jin, P.S.; Arling, R.W.; Ray-Chaudhuri, A.K.; Sweatt, W.C.; Chow, W.W.; Bjorkholm, J.E.; Freeman, R.R.; Himel, M.D.; MacDowell, A.A.; Tennant, D.M.; Fetter, L.A.; Wood, O.R. II; Waskiewicz, W.K.; White, D.L.; Windt, D.L.; Jewell, T.E.

    1994-04-01

    The development of a laboratory EUV lithography tool based on a laser plasma source, a 10x Schwarzchild camera, and a magnetically levitated wafer stage is presented. Interferometric measurements of the camera aberrations are incorporated into physical-optics simulations to estimate the EUV imaging performance of the camera. Experimental results demonstrate the successful matching of five multilayer reflecting surfaces, coated to specification for a wide range of figure and incidence angle requirements. High-resolution, 10x-reduction images of a reflection mask are shown.

  18. Laboratory directed research and development annual report 2004.

    SciTech Connect

    Not Available

    2005-03-01

    This report summarizes progress from the Laboratory Directed Research and Development (LDRD) program during fiscal year 2004. In addition to a programmatic and financial overview, the report includes progress reports from 352 individual R and D projects in 15 categories. The 15 categories are: (1) Advanced Concepts; (2) Advanced Manufacturing; (3) Biotechnology; (4) Chemical and Earth Sciences; (5) Computational and Information Sciences; (6) Differentiating Technologies; (7) Electronics and Photonics; (8) Emerging Threats; (9) Energy and Critical Infrastructures; (10) Engineering Sciences; (11) Grand Challenges; (12) Materials Science and Technology; (13) Nonproliferation and Materials Control; (14) Pulsed Power and High Energy Density Sciences; and (15) Corporate Objectives.

  19. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    SciTech Connect

    Soloiu, Valentin A.

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Direct Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.

  20. DEVELOPMENT OF AN ENVIRONMENTAL QUALITY TEACHING LABORATORY AND SUPPLEMENTARY EXPERIENTIAL LEARNING ACTIVITIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In an effort to improve the ability of agriculturally and environmentally oriented graduates to work in interdisciplinary teams to solve problems, an environmental quality teaching laboratory was developed. In this laboratory, virtual, field, and laboratory experiences provide the experiential and ...

  1. Laboratory Directed Research and Development Program FY2004

    SciTech Connect

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also supports the strategic directions

  2. Division I Student Athletes' Perceptions: How Well Does the Athletic Department Promote Student Athlete Development in an Urban-Serving University?

    ERIC Educational Resources Information Center

    Vermillion, Mark

    2014-01-01

    The purpose of the research was to identify student athletes' perceptions of their athletic department regarding student development. Student athletes from a Division I athletic department were surveyed (n = 369) in order to monitor their development. Regression analyses, which included respondent's sport, gender, classification, reports of abuse,…

  3. Fiber optic gyro development at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Goss, Willis C.

    1987-01-01

    A low-level, but continuing, fiber-gyro development activity has been carried on at the Jet Propulsion Laboratory since 1977. The activity was originated because of a recognition of the potential for low-cost high-performance gyros suitable for interplanetary spacecraft. An early decision was made to concentrate available resources on supporting the development of electrooptically active channel waveguide components which could be fabricated by mask diffusion processes. Titanium-indiffused lithium niobate waveguide components used at 0.83 micron wavelength were first tested and then abandoned because of instabilities caused by so-called optical damage. Components fabricated for use at 1.3-micron wavelength have proven to be stable. A gyro configuration concept based upon 1.3 micron channel waveguide components has evolved, and a baseline 1.3-micron all-fiber gyro has been assembled and tested.

  4. Holographic Grating Development at Lockheed Palo Alto Research Laboratory

    NASA Astrophysics Data System (ADS)

    Smithson, R. C.; Pope, T. P.

    1981-02-01

    During the past several years the Lockheed Palo Alto Research Laboratory has developed a capability to produce holographic optical elements using a variety of production techniques. Gratings produced have included reflective gratings using both overcoated photoresist and ion etched substrates up to 15 cm. in diameter. Conventional bleached photographic transmission gratings have also been produced for some applications. Methods in use at Lockheed are capable of producing extremely rugged gratings which can withstand both physical abuse and high incident flux levels. Photoresist coating techniques have been developed which are sufficiently precise that optical quality obtained with reflective gratings is limited primarily by the quality of the construction optics. Both high and low efficiency gratings have been produced for a variety of applications. This paper presents an overview of Lockheed holographic grating technology.

  5. ENGINEERING TRADE-OFFS (ETO) METHODOLOGY DEVELOPMENT (SYSTEMS ANALYSIS BRANCH, SUSTAINABLE TECHNOLOGY DIVISION, NRMRL)

    EPA Science Inventory

    The development of the Engineering Trade-Offs (ETO) methodology is occurring as an in-house effort in 2000. While the conceptual model of ETO has been completed, the practical means of applying the concept requires crafting a reliable tool while testing it in stages to ensure tha...

  6. 76 FR 10403 - Western Digital Technologies, Inc., Coporate Headquaters/Hard Drive Development Division, Lake...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-24

    ... Notice was published in the Federal Register on October 25, 2010 (75 FR 65517). The subject workers supply engineering (development) services in support of hard drive (also known as disk drive... Employment and Training Administration Western Digital Technologies, Inc., Coporate Headquaters/Hard...

  7. Laboratory Directed Research and Development Program, FY 1994

    SciTech Connect

    1995-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. It describes the projects supported and summarizes their accomplishments. Divisions whose work are covered include: accelerator/fusion, chemical sciences, earth sciences, energy/environment, engineering, environment/health/safety, information/computing sciences, life sciences, materials sciences, nuclear science, physics, structural biology.

  8. Incremental development and prototyping in current laboratory software development projects: Preliminary analysis

    NASA Technical Reports Server (NTRS)

    Griesel, Martha Ann

    1988-01-01

    Several Laboratory software development projects that followed nonstandard development processes, which were hybrids of incremental development and prototyping, are being studied. Factors in the project environment leading to the decision to use a nonstandard development process and affecting its success are analyzed. A simple characterization of project environment based on this analysis is proposed, together with software development approaches which have been found effective for each category. These approaches include both documentation and review requirements.

  9. How to improve the clinical development paradigm and its division into phases I, II and III.

    PubMed

    Bamberger, Marion; Moore, Nicholas; Lechat, Philippe

    2011-01-01

    Based on the observation that over the last 30 years the cost of development has risen regularly as the number of new chemical entities reaching the market has fallen, how can "savings" be made in terms of clinical development, the objective being more rapid access to a drug for medical needs that are not covered? Several instruments exist to enable innovative products to be made available more quickly: temporary use authorisations, which are not concerned by this work (ATUs), conditional marketing authorisations (MAs) and MAs under exceptional circumstances. These aspects have been taken up in the European medicines agency (EMA)'s "Road Map", which states "A key issue for Regulators will be if a more "staggered" approval should be envisaged, characterised by a better defined/more restricted population of good responders, followed by a broadening of the population post-authorisation when more "real life" data are available. In addition, maximising the value of information generated in the post-authorisation phase should be developed through the use of cohorts and other prospectively collected use data, especially in the case of conditional marketing authorisations." The rules of procedure of the Transparency Commission for their part provide for the notion of preliminary examination: in order to prepare as best as possible the examination of dossiers of products assumed to be innovative and to limit delays, the office can undertake a preliminary study as soon as the dossier has been filed at the Committee for medicinal products for human use (CHMP). It may, at this time, request the firm to provide further information and may call on external experts. The implementation of this preliminary study does not exonerate the firm of the obligation of filing a complete dossier. The post inscription studies requested by the Transparency Commission (ISPEP - public health benefit and post-marketing studies) are usually requested in the case of hesitations regarding the level

  10. Development of space simulation / net-laboratory system

    NASA Astrophysics Data System (ADS)

    Usui, H.; Matsumoto, H.; Ogino, T.; Fujimoto, M.; Omura, Y.; Okada, M.; Ueda, H. O.; Murata, T.; Kamide, Y.; Shinagawa, H.; Watanabe, S.; Machida, S.; Hada, T.

    A research project for the development of space simulation / net-laboratory system was approved by Japan Science and Technology Corporation (JST) in the category of Research and Development for Applying Advanced Computational Science and Technology(ACT-JST) in 2000. This research project, which continues for three years, is a collaboration with an astrophysical simulation group as well as other space simulation groups which use MHD and hybrid models. In this project, we develop a proto type of unique simulation system which enables us to perform simulation runs by providing or selecting plasma parameters through Web-based interface on the internet. We are also developing an on-line database system for space simulation from which we will be able to search and extract various information such as simulation method and program, manuals, and typical simulation results in graphic or ascii format. This unique system will help the simulation beginners to start simulation study without much difficulty or effort, and contribute to the promotion of simulation studies in the STP field. In this presentation, we will report the overview and the current status of the project.

  11. High Energy Physics Division semiannual report of research activities. Semi-annual progress report, July 1, 1995--December 31, 1995

    SciTech Connect

    Norem, J.; Bajt, D.; Rezmer, R.; Wagner, R.

    1996-10-01

    This report describes the research conducted in the High Energy Physics Division of Argonne National Laboratory during the period July 1, 1995 - December 31, 1995. Topics covered here include experimental and theoretical particle physics, advanced accelerator physics, detector development, and experimental facilities research. Lists of division publications and colloquia are included.

  12. Laboratory Directed Research and Development Program FY 2008 Annual Report

    SciTech Connect

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the

  13. COMSAT Laboratories' on-board baseband switch development

    NASA Technical Reports Server (NTRS)

    Pontano, B. A.; Redman, W. A.; Inukai, Thomas; Razdan, R.; Paul, D. K.

    1991-01-01

    Work performed at COMSAT Laboratories to develop a prototype on-board baseband switch is summarized. The switch design is modular to accommodate different service types, and the architecture features a high-speed optical ring operating at 1 Gbit/s to route input (up-link) channels to output (down-link) channels. The switch is inherently a packet switch, but can process either circuit-switched or packet-switched traffic. If the traffic arrives at the satellite in a circuit-switched mode, the input processor packetizes it and passes it on to the switch. The main advantage of the packet approach lies in its simplified control structure. Details of the switch architecture and design, and the status of its implementation, are presented.

  14. Developing Underground Research at DUSEL: Lessons from Other Laboratories (Invited)

    NASA Astrophysics Data System (ADS)

    Doe, T. W.

    2009-12-01

    The Deep Underground and Science and Engineering Laboratory (DUSEL) should provide a significant venue for advancing our understanding of groundwater processes in fractured, basement rocks. As the planning for experimentation goes forward, it is important to recognize that underground experimentation has been going through a true golden age stimulated mainly by radioactive waste research, but also by needs in contaminant transport and oil and gas exploration. A complete discussion of the advances of fractured-rock hydrogeology is beyond the scope a short presentation. One area of investigation that has some transfer value from other test facilities is the importance of pressure and flow monitoring in the development of new areas of underground space. Each borehole and underground opening has the potential for changing the flow system. Monitoring and measuring these changes is essential for developing hydrostructural models of the significant conductors and their properties. The employment of multipoint monitoring systems has shown that fractured rock masses may be highly compartmentalized. Results of block-scale experiments at the Kamaishi Mine in Japan and the Äspö hard Rock Laboratory in Sweden have demonstrate that there can be a significant level of isolation between conducting features based on pressure, flow, and geochemical responses. Similar compartmentalization effects are well documented at the USGS’s Mirror Lake facility and the Hungarian research site at Bátaapáti (Üveghuta). The DUSEL site at the Homestake Mine is not well-characterized, other than a recognition that it is largely a dry mine. That said, there has been evidence of large inflows at deep levels that may indicate a level of isolation of the mine from conducting features. The connectivity of the mine to the large flow system will be very important to understanding how mine operations have or have not influenced the hydrogeology of the surrounding rock masses, as some of the most

  15. Laboratory directed research and development program FY 2003

    SciTech Connect

    Hansen, Todd

    2004-03-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

  16. The Development of A Human Systems Simulation Laboratory: Strategic Direction

    SciTech Connect

    Jacques Hugo; Katya le Blanc; David Gertman

    2012-07-01

    The Human System Simulation Laboratory (HSSL) at the Idaho National Laboratory is one of few facilities of its kind that allows human factors researchers to evaluate various aspects of human performance and human system interaction for proposed reactor designs and upgrades. A basic system architecture, physical configuration and simulation capability were established to enable human factors researchers to support multiple, simultaneous simulations and also different power plant technologies. Although still evolving in terms of its technical and functional architecture, the HSSL is already proving its worth in supporting current and future nuclear industry needs for light water reactor sustainability and small modular reactors. The evolution of the HSSL is focused on continual physical and functional refinement to make it a fully equipped, reconfigurable facility where advanced research, testing and validation studies can be conducted on a wider range of reactor technologies. This requires the implementation of additional plant models to produce empirical research data on human performance with emerging human-system interaction technologies. Additional beneficiaries of this information include system designers and HRA practitioners. To ensure that results of control room crew studies will be generalizable to the existing and evolving fleet of US reactors, future expansion of the HSSL may also include other SMR plant models, plant-specific simulators and a generic plant model aligned to the current generation of pressurized water reactors (PWRs) and future advanced reactor designs. Collaboration with industry partners is also proving to be a vital component of the facility as this helps to establish a formal basis for current and future human performance experiments to support nuclear industry objectives. A long-range Program Plan has been developed for the HSSL to ensure that the facility will support not only the Department of Energy’s Light Water Reactor

  17. Earth Sciences Division annual report 1990

    SciTech Connect

    1991-06-01

    This Annual Report presents summaries of selected representative research activities grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrogeology, Geology and Geochemistry, and Geophysics and Geomechanics. Much of the Division`s research deals with the physical and chemical properties and processes in the earth`s crust, from the partially saturated, low-temperature near-surface environment to the high-temperature environments characteristic of regions where magmatic-hydrothermal processes are active. Strengths in laboratory and field instrumentation, numerical modeling, and in situ measurement allow study of the transport of mass and heat through geologic media -- studies that now include the appropriate chemical reactions and the hydraulic-mechanical complexities of fractured rock systems. Of particular note are three major Division efforts addressing problems in the discovery and recovery of petroleum, the application of isotope geochemistry to the study of geodynamic processes and earth history, and the development of borehole methods for high-resolution imaging of the subsurface using seismic and electromagnetic waves. In 1989 a major DOE-wide effort was launched in the areas of Environmental Restoration and Waste Management. Many of the methods previously developed for and applied to deeper regions of the earth will in the coming years be turned toward process definition and characterization of the very shallow subsurface, where man-induced contaminants now intrude and where remedial action is required.

  18. Pellet injector development at ORNL (Oak Ridge National Laboratory)

    SciTech Connect

    Gouge, M.J.; Argo, B.E.; Baylor, L.R.; Combs, S.K.; Fehling, D.T.; Fisher, P.W.; Foster, C.A.; Foust, C.R.; Milora, S.L.; Qualls, A.L.; Schechter, D.E.; Simmons, D.W.; Sparks, D.O.; Tsai, C.C.

    1990-01-01

    Advanced plasma fueling systems for magnetic confinement experiments are under development at Oak Ridge National Laboratory (ORNL). The general approach is that of producing and accelerating frozen hydrogenic pellets to speeds in the kilometer-per-second range by either pneumatic (light-gas gun) or mechanical (centrifugal force) techniques. ORNL has recently provided a centrifugal pellet injector for the Tore Supra tokamak and a new, simplified, eight-shot pneumatic injector for the Advanced Toroidal Facility stellarator at ORNL. Hundreds of tritium and DT pellets were accelerated at the Tritium Systems Test Assembly facility at Los Alamos in 1988--89. These experiments, done in a single-shot pipe-gun system, demonstrated the feasibility of forming and accelerating tritium pellets at low {sup 3}He levels. A new, tritium-compatible extruder mechanism is being designed for longer-pulse DT applications. Two-stage light-gas guns and electron beam rocket accelerators for speeds of the order of 2--10 km/s are also under development. Recently, a repeating, two-stage light-gas gun accelerated 10 surrogate pellets at a 1-Hz repetition rate to speeds in the range of 2--3 km/s; and the electron beam rocket accelerator completed initial feasibility and scaling experiments. ORNL has also developed conceptual designs of advanced plasma fueling systems for the Compact Ignition Tokamak and the International Thermonuclear Experimental Reactor.

  19. Low-Speed Active Flow Control Laboratory Developed

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.; Bright, Michelle M.

    2005-01-01

    The future of aviation propulsion systems is increasingly focused on the application of control technologies to significantly enhance the performance of a new generation of air vehicles. Active flow control refers to a set of technologies that manipulate the flow of air and combustion gases deep within the confines of an engine to dynamically alter its performance during flight. By employing active flow control, designers can create engines that are significantly lighter, are more fuel efficient, and produce lower emissions. In addition, the operating range of an engine can be extended, yielding safer transportation systems. The realization of these future propulsion systems requires the collaborative development of many base technologies to achieve intelligent, embedded control at the engine locations where it will be most effective. NASA Glenn Research Center s Controls and Dynamics Technology Branch has developed a state-of-the-art low-speed Active Flow Control Laboratory in which emerging technologies can be integrated and explored in a flexible, low-cost environment. The facility allows the most promising developments to be prescreened and optimized before being tested on higher fidelity platforms, thereby reducing the cost of experimentation and improving research effectiveness.

  20. Update on Ultrasonic Thermometry Development at Idaho National Laboratory

    SciTech Connect

    Joshua Daw; Joy Rempe; John Crepeau

    2012-07-01

    The Idaho National Laboratory (INL) has initiated an effort to evaluate the viability of using ultrasonic thermometry technology as an improved sensor for detecting temperature during irradiation testing of advanced fuels proposed within the Fuel Cycle Research and Development (FCR&D) program sponsored by the U.S. Department of Energy (US DOE). Ultrasonic thermometers (UTs) work on the principle that the speed at which sound travels through a material (acoustic velocity) is dependent on the temperature of the material. UTs have several advantages over other types of temperature sensors . UTs can be made very small, as the sensor consists only of a small diameter rod which may or may not require a sheath. Measurements may be made up to very high temperature (near the melting point of the sensor material) and, as no electrical insulation is required, shunting effects observed in traditional high temperature thermocouple applications are avoided. Most attractive, however, is the ability to introduce multiple acoustic discontinuities into the sensor, as this enables temperature profiling with a single sensor. The current paper presents initial results from FCR&D UT development efforts. These developments include improved methods for fabricating magnetostrictive transducers and joining them to waveguides, characterization of candidate sensor materials appropriate for use in FCR&D fuels irradiations (both ceramic fuels in inert gas and sodium bonded metallic fuels), enhanced signal processing techniques, and tests to determine potential accuracy and resolution.

  1. Surface concrete decontamination equipment developed by Pacific Northwest Laboratory

    SciTech Connect

    Halter, J M; Sullivan, R G; Bevan, J L

    1982-08-01

    This report documents a project that the Pacific Northwest Laboratory conducted to identify and develop techniques for removing contaminated concrete surfaces. A major problem associated with nuclear facility decontamination and decommissioning is how to economically demolish and dispose of contaminated concrete. Removing only the contaminated portion of the concrete can substantially reduce costs. Evaluation of various methods for removing concrete surfaces shows that several techniques presently used require excessive manpower, time, and energy. Many times more material is removed than necessary, increasing the quantity of waste that must be handled under controlled conditions. These evaluations generated the basic criteria for developing a suitable concrete removal technique: provide a convenient method for cleaning surfaces (such as those contaminated by a small spill); reduce the contaminated waste volume that has to be placed into controlled storage; remove surfaces quickly; and minimize personal exposure to potentially harmful radiation or toxic materials. Removal to 1/4 to 1/2 in. of contaminated surface layer is sufficient for cleanup of most facilities. Two unique decontamination methods have been developed: the concrete spaller and the water cannon. The concrete spaller is the most efficient technique: it removes the concrete surface faster than the water cannons and at a lower cost (as little as $3.00/ft/sup 2/ of concrete surface). However, the .458 magnum water cannon may be well suited for small or hard-to-reach locations.

  2. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper C.; Durkin, Robert; Marak, Ralph J.; Sipila, Stepahnie A.; Ney, Zane A.; Parazynski, Scott E.; Thomason, Arthur H.

    2012-01-01

    As an early step in the preparation for future Extravehicular Activities (EVAs), astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. Neutral buoyancy demonstrations at NASA Johnson Space Center's Sonny Carter Training Facility to date have primarily evaluated assembly and maintenance tasks associated with several elements of the International Space Station (ISS). With the retirement of the Shuttle, completion of ISS assembly, and introduction of commercial players for human transportation to space, evaluations at the Neutral Buoyancy Laboratory (NBL) will take on a new focus. Test objectives are selected for their criticality, lack of previous testing, or design changes that justify retesting. Assembly tasks investigated are performed using procedures developed by the flight hardware providers and the Mission Operations Directorate (MOD). Orbital Replacement Unit (ORU) maintenance tasks are performed using a more systematic set of procedures, EVA Concept of Operations for the International Space Station (JSC-33408), also developed by the MOD. This paper describes the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated.

  3. EFFECTS OF FENVALERATE ON FIELD- AND LABORATORY-DEVELOPED ESTUARINE BENTHIC COMMUNITIES

    EPA Science Inventory

    Macrobenthic animal communities developed in laboratory and in field aquaria during 8 weeks were exposed to various concentrations of the pyrethroid insecticide, fenvalerate. Laboratory communities, developed from planktonic larvae in unfiltered seawater, were continuously expose...

  4. Identifying and Promoting Transition Evidence-Based Practices and Predictors of Success: A Position Paper of the Division on Career Development and Transition

    ERIC Educational Resources Information Center

    Mazzotti, Valerie L.; Rowe, Dawn A.; Cameto, Renee; Test, David W.; Morningstar, Mary E.

    2013-01-01

    This position paper describes the Division of Career Development and Transition's stance and recommendations for identifying and promoting secondary transition evidence-based practices and predictors of postschool success for students with disabilities. Recommendations for experimental research, correlational research, and secondary analysis…

  5. An Analysis of How Participating in a NCAA Division I-A Football Program Impacts the Christian Faith Development of Student Athletes

    ERIC Educational Resources Information Center

    Epting, James B., Jr.

    2013-01-01

    The current study described and analyzed the perspectives of traditional-aged college student-athletes who participated in National Collegiate Athletic Association (NCAA) Division I football regarding the impact the sport had on Christian faith development. The study entailed a qualitative research method approach using in-depth semi-structured…

  6. Modification of Experimental Protocols for a Space Shuttle Flight and Applications for the Analysis of Cytoskeletal Structures During Fertilization, Cell Division , and Development in Sea Urchin Embryos

    NASA Technical Reports Server (NTRS)

    Chakrabarti, Amitabha; Stoecker, Andrew; Schatten, Heide

    1995-01-01

    To explore the role of microgravity on cytoskeletal organization and skeletal calcium deposition during fertilization, cell division, and early development, the sea urchin was chosen as a model developmental system. Methods were developed to employ light, immunofluorescence, and electron microscopy on cultures being prepared for flight on the Space Shuttle. For analysis of microfilaments, microtubules, centrosomes, and calcium-requiring events, our standard laboratory protocols had to be modified substantially for experimentation on the Space Shuttle. All manipulations were carried out in a closed culture chamber containing 35 ml artificial sea water as a culture fluid. Unfertilized eggs stored for 24 hours in these chambers were fertilized with sperm diluted in sea water and fixed with concentrated fixatives for final fixation in formaldehyde, taxol, EGTA, and MgCl2(exp -6)H2O for 1 cell to 16 cell stages to preserve cytoskeletal structures for simultaneous analysis with light, immunofluorescence, and electron microscopy, and 1.5 percent glutaraldehyde and 0.4 percent formaldehyde for blastula and plueus stages. The fixed samples wre maintained in chambers without degradation for up to two weeks after which the specimens were processed and analyzed with routine methods. Since complex manipulations are not possible in the closed chambers, the fertilization coat was removed from fixation using 0.5 percent freshly prepared sodium thioglycolate solution at pH 10.0 which provided reliable immunofluorescence staining for microtubules. Sperm/egg fusion, mitosis, cytokinesis, and calcium deposition during spicule formatin in early embryogenesis were found to be without artificial alterations when compared to cells fixed fresh and processed with conventional methods.

  7. Grounded theory in medical laboratory science expert practice development.

    PubMed

    Leibach, Elizabeth Kenimer

    2011-01-01

    Grounded theory and methods related to expert practice development in medical laboratory science were described using data from a large national survey of medical laboratory scientists (MLS) overlaid on findings from analysis of expert practice domains reported in nursing literature. An extensive focus group/expert review iterative process followed by a survey of MLS practitioners produced 25 critical thinking (CT) behaviors important in expert practice. Factor analysis was applied to discern common threads or themes linking the CT behaviors. The 25 important CT behaviors were reduced to a 7-factor structure representing constructs underlying the individual, observable CT behaviors. This 7-factor structure in MLS was compared to the 7 practice domains identified in expert nursing practice. The comparison yielded commonality between MLS and nursing in CT behaviors observed in the 7 expert practice domains of both professions: professional techniques, caring communication, growing professionally, setting priorities, practicing with judgment, anticipating/revising, and creating unique meaning. Emergent grounded theory is that (1) critical thinking is a metaprocess that facilitates learning by interlinking the more basic processes associated with different learning orientations: cognitivist, behaviorist, humanist (affective), and situated/contextual learning, (2) CT behaviors are observable events following from the CT metaprocess, and (3) observations of CT behaviors increase as practice advances from novice to expert. Identification and definition of CT behaviors, i.e., practice competencies, along the continuum of novice to expert can serve as the foundation for MLS curriculum and instructional design as well as measurement and evaluation in both formal and continuing education settings. PMID:22420229

  8. Development of hollow anode penning ion source for laboratory application

    NASA Astrophysics Data System (ADS)

    Das, B. K.; Shyam, A.; Das, R.; Rao, A. D. P.

    2012-03-01

    The research work presented here focuses for the development of miniature penning type ion source. One hollow anode penning type ion source was developed in our laboratory. The size of the ion source is 38 mm diameter and 55 mm length. The ion source consists of two cathodes, a hollow anode and one piece of rare earth permanent magnet. The plasma was created in the plasma region between cathodes and the hollow anode. The J × B force in the region helps for efficient ionization of the gas even in the high vacuum region˜1×10 -5 Torr. The ions were extracted in the axial direction with help of the potential difference between the electrodes and the geometry of the extraction angle. The effect of the extraction electrode geometry for efficient extraction of the ions from the plasma region was examined. This ion source is a self extracted ion source. The self extracted phenomena reduce the cost and the size of the ion source. The extracted ion current was measured by a graphite probe. An ion current of more than 200 μA was observed at the probe placed 70 mm apart from the extraction electrode. In this paper, the structure of the ion source, effect of operating pressure, potential difference and the magnetic field on the extracted ion current is reported.

  9. Development of Wave Turbine Emulator in a Laboratory Environment

    NASA Astrophysics Data System (ADS)

    Vinatha, U.; Vittal K, P.

    2013-07-01

    Wave turbine emulator (WTE) is an important equipment for developing wave energy conversion system. The emulator reflects the actual behavior of the wave turbine by reproducing the characteristics of real wave turbine without reliance on natural wave resources and actual wave turbine. It offers a controllable test environment that allows the evaluation and improvement of control schemes for electric generators. The emulator can be used for research applications to drive an electrical generator in a similar way as a practical wave turbine. This article presents the development of a WTE in a laboratory environment and studies on the behavior of electrical generator coupled to the emulator. The structure of a WTE consists of a PC where the characteristics of the turbine are implemented, ac drive to emulate the turbine rotor, feedback mechanism from the drive and power electronic equipment to control the drive. The feedback signal is acquired by the PC through an A/D converter, and the signal for driving the power electronic device comes from the PC through a D/A converter.

  10. Frequency selective bolometer development at Argonne National Laboratory

    NASA Astrophysics Data System (ADS)

    Datesman, Aaron; Pearson, John; Wang, Gensheng; Yefremenko, Volodymyr; Divan, Ralu; Downes, Thomas; Chang, Clarence; McMahon, Jeff; Meyer, Stephan; Carlstrom, John; Logan, Daniel; Perera, Thushara; Wilson, Grant; Novosad, Valentyn

    2008-07-01

    We discuss the development, at Argonne National Laboratory, of a four-pixel camera suitable for photometry of distant dusty galaxies located by Spitzer and SCUBA, and for study of other millimeter-wave sources such as ultra-luminous infrared galaxies, the Sunyaev-Zeldovich (SZ) effect in clusters, and galactic dust. Utilizing Frequency Selective Bolometers (FSBs) with superconducting Transition-Edge Sensors (TESs), each of the camera's four pixels is sensitive to four colors, with frequency bands centered approximately at 150, 220, 270, and 360 GHz. The current generation of these devices utilizes proximity effect superconducting bilayers of Mo/Au or Ti/Au for TESs, along with frequency selective circuitry on membranes of silicon nitride 1 cm across and 1 micron thick. The operational properties of these devices are determined by this circuitry, along with thermal control structures etched into the membranes. These etched structures do not perforate the membrane, so that the device is both comparatively robust mechanically and carefully tailored in terms of its thermal transport properties. In this paper, we report on development of the superconducting bilayer TES technology and characterization of the FSB stacks. This includes the use of new materials, the design and testing of thermal control structures, the introduction of desirable thermal properties using buried layers of crystalline silicon underneath the membrane, detector stability control, and optical and thermal test results. The scientific motivation, FSB design, FSB fabrication, and measurement results are discussed.

  11. Frequency selective bolometer development at Argonne National Laboratory.

    SciTech Connect

    Datesman, A.; Pearson, J.; Wang, G.; Yefremenko, V.; Divan, R.; Downes, T.; Chang, C.; McMahon, J.; Meyer, S.; Carlstrom, J.; Logan, D.; Perera, T.; Wilson, G.; Novosad, V.; Univ. of Chicago; Univ. of Massachusetts

    2008-07-01

    We discuss the development, at Argonne National Laboratory, of a four-pixel camera suitable for photometry of distant dusty galaxies located by Spitzer and SCUBA, and for study of other millimeter-wave sources such as ultra-luminous infrared galaxies, the Sunyaev-Zeldovich (SZ) effect in clusters, and galactic dust. Utilizing Frequency Selective Bolometers (FSBs) with superconducting Transition-Edge Sensors (TESs), each of the camera's four pixels is sensitive to four colors, with frequency bands centered approximately at 150, 220, 270, and 360 GHz. The current generation of these devices utilizes proximity effect superconducting bilayers of Mo/Au or Ti/Au for TESs, along with frequency selective circuitry on membranes of silicon nitride 1 cm across and 1 micron thick. The operational properties of these devices are determined by this circuitry, along with thermal control structures etched into the membranes. These etched structures do not perforate the membrane, so that the device is both comparatively robust mechanically and carefully tailored in terms of its thermal transport properties. In this paper, we report on development of the superconducting bilayer TES technology and characterization of the FSB stacks. This includes the use of new materials, the design and testing of thermal control structures, the introduction of desirable thermal properties using buried layers of crystalline silicon underneath the membrane, detector stability control, and optical and thermal test results. The scientific motivation, FSB design, FSB fabrication, and measurement results are discussed.

  12. International Space Station: National Laboratory Education Concept Development Report

    NASA Technical Reports Server (NTRS)

    2006-01-01

    The International Space Station (ISS) program has brought together 16 spacefaring nations in an effort to build a permanent base for human explorers in low-Earth orbit, the first stop past Earth in humanity's path into space. The ISS is a remarkably capable spacecraft, by significant margins the largest and most complex space vehicle ever built. Planned for completion in 2010, the ISS will provide a home for laboratories equipped with a wide array of resources to develop and test the technologies needed for future generations of space exploration. The resources of the only permanent base in space clearly have the potential to find application in areas beyond the research required to enable future exploration missions. In response to Congressional direction in the 2005 National Aeronautics and Space Administration (NASA) Authorization Act, NASA has begun to examine the value of these unique capabilities to other national priorities, particularly education. In early 2006, NASA invited education experts from other Federal agencies to participate in a Task Force charged with developing concepts for using the ISS for educational purposes. Senior representatives from the education offices of the Department of Defense, Department of Education, Department of Energy, National Institutes of Health, and National Science Foundation agreed to take part in the Task Force and have graciously contributed their time and energy to produce a plan that lays out a conceptual framework for potential utilization of the ISS for educational activities sponsored by Federal agencies as well as other future users.

  13. Developing an online chemistry laboratory for non-chemistry majors

    NASA Astrophysics Data System (ADS)

    Poole, Jacqueline H.

    Distance education, also known as online learning, is student-centered/self-directed educational opportunities. This style of learning is expanding in scope and is increasingly being accepted throughout the academic curriculum as a result of its flexibility for the student as well as the cost-effectiveness for the institution. Nevertheless, the introduction of online science courses including chemistry and physics have lagged behind due to the challenge of re-creation of the hands-on laboratory learning experience. This dissertation looks at the effectiveness of the design of a series of chemistry laboratory experiments for possible online delivery that provide students with simulated hands-on experiences. One class of college Chemistry 101 students conducted chemistry experiments inside and outside of the physical laboratory using instructions on Blackboard and Late Nite Labs(TM). Learning outcomes measured by (a) pretests, (b) written laboratory reports, (c) posttest assessments, (d) student reactions as determined by a questionnaire, and (e) a focus group interview were utilized to compare both types of laboratory experiences. The research findings indicated learning outcomes achieved by students outside of the traditional physical laboratory were statistically greater than the equivalent face-to-face instruction in the traditional laboratory. Evidence from student reactions comparing both types of laboratory formats (online and traditional face-to-face) indicated student preference for the online laboratory format. The results are an initial contribution to the design of a complete sequence of experiments that can be performed independently by online students outside of the traditional face-to-face laboratory that will satisfy the laboratory requirement for the two-semester college Chemistry 101 laboratory course.

  14. High Energy Physics Division semiannual report of research activities, July 1, 1990--December 31, 1990

    SciTech Connect

    Berger, E.; Moonier, P.; May, E.; Norem, J.

    1991-02-01

    A report is presented of research and development activities conducted in the High Energy Physics Division at Argonne National Laboratory during the six month period July 1 through December 31, 1990. Analyses of data from experiments performed by members of the Division are summarized, and the status of experiments taking data and of those being prepared is reviewed. Descriptions are included of research on theoretical and phenomenological topics in particle physics. Progress reports are provided on accelerator research and development, detector research and development, and experimental facilities research. Lists are presented of publications, of colloquia and conference talks, and of significant external community activities of members of the Division.

  15. Hazards and controls at the Sandia National Laboratories microelectronics development laboratory

    SciTech Connect

    Benton, M.A.

    1997-03-01

    The Microelectronics Development Laboratory (MDL) contains 3,000 m{sup 2}, Which includes 1,000 m{sup 2}of Class I clean room space. There are 20 laminar flow Class I clean room bays. The MDL supplies several, full-flow process technologies which produce complementary metal oxide semiconductor (CMOS) integrated circuits using 150 nun diameter silicon wafers. All gases, chemicals and physical hazards used in the fabrication processes are controlled to levels well below regulatory requirements. Facility engineering controls in the MDL include toxic and pyrophoric gas monitoring, interlocks, ventilation, substitution and chemical segregation. Toxic and pyrophoric gases are monitored continuously inside processing tools as well as through the exhaust lines, gas cabinets, the valve boxes, and in general work areas. The toxic gas monitoring systems are interlocked to gas shutoff valves and have both low and high level alarms. In-use process gases are stored in exhausted cabinets. All chemicals and gases are segregated by chemical type. The processes are organized into eight sector areas that consist of photolithography, wet processes, dry etch, ion implant, metals, diffusion, chemical vapor deposition (CVD) and chemical mechanical polishing (CW). Each morning, engineering, safety and facilities personnel meet to review the equipment and wafer lot status and discuss processing issues. Hazards are assessed in the MDL with periodic walkthroughs, continuous toxic and pyrophoric gas monitoring and personal monitoring. All chemicals and gases proposed for use in the MDL are reviewed by the industrial hygienist and must be approved by a manager before they are purchased. All new equipment and processes are reviewed by a hazard and barrier committee and cannot be used in the MDL without the committee`s approval and an IH hazard assessment. Overall risk of operating the MDL has been reduced to a level that is as low as reasonable achievable for this research facility.

  16. Developing Knowledge and Skills in Engineers: A Learning Laboratory

    ERIC Educational Resources Information Center

    Platts, K.W.

    2004-01-01

    This paper discusses the knowledge and skill requirements for manufacturing system design and describes an innovative "learning laboratory" approach to educating graduate level manufacturing engineers. The laboratory provides a mechanism that gives engineers a wide range of knowledge and skills in design and implementation, much of which cannot be…

  17. Experimental Stage Separation Tool Development in NASA Langley's Aerothermodynamics Laboratory

    NASA Technical Reports Server (NTRS)

    Murphy, Kelly J.; Scallion, William I.

    2005-01-01

    As part of the research effort at NASA in support of the stage separation and ascent aerothermodynamics research program, proximity testing of a generic bimese wing-body configuration was conducted in NASA Langley's Aerothermodynamics Laboratory in the 20-Inch Mach 6 Air Tunnel. The objective of this work is the development of experimental tools and testing methodologies to apply to hypersonic stage separation problems for future multi-stage launch vehicle systems. Aerodynamic force and moment proximity data were generated at a nominal Mach number of 6 over a small range of angles of attack. The generic bimese configuration was tested in a belly-to-belly and back-to-belly orientation at 86 relative proximity locations. Over 800 aerodynamic proximity data points were taken to serve as a database for code validation. Longitudinal aerodynamic data generated in this test program show very good agreement with viscous computational predictions. Thus a framework has been established to study separation problems in the hypersonic regime using coordinated experimental and computational tools.

  18. Idaho National Laboratory Directed Research and Development FY-2009

    SciTech Connect

    Not Available

    2010-03-01

    The FY 2009 Laboratory Directed Research and Development (LDRD) Annual Report is a compendium of the diverse research performed to develop and ensure the INL's technical capabilities can support the future DOE missions and national research priorities. LDRD is essential to the INL - it provides a means for the laboratory to pursue novel scientific and engineering research in areas that are deemed too basic or risky for programmatic investments. This research enhances technical capabilities at the laboratory, providing scientific and engineering staff with opportunities for skill building and partnership development. Established by Congress in 1991, LDRD proves its benefit each year through new programs, intellectual property, patents, copyrights, publications, national and international awards, and new hires from the universities and industry, which helps refresh the scientific and engineering workforce. The benefits of INL's LDRD research are many as shown in the tables below. Last year, 91 faculty members from various universities contributed to LDRD research, along with 7 post docs and 64 students. Of the total invention disclosures submitted in FY 2009, 7 are attributable to LDRD research. Sixty three refereed journal articles were accepted or published, and 93 invited presentations were attributable to LDRD research conducted in FY 2009. The LDRD Program is administered in accordance with requirements set in DOE Order 413.2B, accompanying contractor requirements, and other DOE and federal requirements invoked through the INL contract. The LDRD Program is implemented in accordance with the annual INL LDRD Program Plan, which is approved by the DOE, Nuclear Energy Program Secretarial Office. This plan outlines the method the laboratory uses to develop its research portfolio, including peer and management reviews, and the use of other INL management systems to ensure quality, financial, safety, security and environmental requirements and risks are appropriately

  19. Laboratory-developed contact models controlling instability on frictional faults

    NASA Astrophysics Data System (ADS)

    Selvadurai, Paul A.; Glaser, Steven D.

    2015-06-01

    Laboratory experiments were performed on a polymethyl methacrylate (PMMA)-PMMA frictional interface in a direct shear apparatus in order to gain understanding of fault dynamics leading to gross rupture. Actual asperity sizes and locations along the interface were characterized using a pressure-sensitive film. Slow aseismic slip accumulated nonuniformly along the fault and showed dependency on the applied normal force—increased normal force resulted in higher slip gradients. The slow slip front propagated from the trailing (pushed) edge into a region of more densely distributed asperities at rates between 1 and 9.5 mm/s. Foreshocks were detected and displayed impulsive signals with source radii ranging between 0.21 and 1.09 mm; measurements made using the pressure-sensitive film were between 0.05 and 1.2 mm. The spatiotemporal clustering of foreshocks and their relation to the elastodynamic energy released was dependent on the normal force. In the region where foreshocks occurred, qualitative optical measurements of the asperities along the interface were used to visualize dynamic changes occurring during the slow slip phase. To better understand the nucleation process, a quasi-static asperity finite element (FE) model was developed and focused in the region where foreshocks clustered. The FE model consisted of 172 asperities, located and sized based on pressure-sensitive film measurements. The numerical model provides a plausible explanation as to why foreshocks cluster in space and observed a normal force dependency and lend credence to Ohnaka's nucleation model.

  20. Current radar responsive tag development activities at Sandia National Laboratories.

    SciTech Connect

    Plummer, Kenneth W.; Ormesher, Richard C.

    2003-09-01

    Over the past ten years, Sandia has developed RF radar responsive tag systems and supporting technologies for various government agencies and industry partners. RF tags can function as RF transmitters or radar transponders that enable tagging, tracking, and location determination functions. Expertise in tag architecture, microwave and radar design, signal analysis and processing techniques, digital design, modeling and simulation, and testing have been directly applicable to these tag programs. In general, the radar responsive tag designs have emphasized low power, small package size, and the ability to be detected by the radar at long ranges. Recently, there has been an interest in using radar responsive tags for Blue Force tracking and Combat ID (CID). The main reason for this interest is to allow airborne surveillance radars to easily distinguish U.S. assets from those of opposing forces. A Blue Force tracking capability would add materially to situational awareness. Combat ID is also an issue, as evidenced by the fact that approximately one-quarter of all U.S. casualties in the Gulf War took the form of ground troops killed by friendly fire. Because the evolution of warfare in the intervening decade has made asymmetric warfare the norm rather than the exception, swarming engagements in which U.S. forces will be freely intermixed with opposing forces is a situation that must be anticipated. Increasing utilization of precision munitions can be expected to drive fires progressively closer to engaged allied troops at times when visual de-confliction is not an option. In view of these trends, it becomes increasingly important that U.S. ground forces have a widely proliferated all-weather radar responsive tag that communicates to all-weather surveillance. The purpose of this paper is to provide an overview of the recent, current, and future radar responsive research and development activities at Sandia National Laboratories that support both the Blue Force Tracking

  1. Laboratory directed research and development annual report 2003.

    SciTech Connect

    Not Available

    2004-03-01

    Science historian James Burke is well known for his stories about how technological innovations are intertwined and embedded in the culture of the time, for example, how the steam engine led to safety matches, imitation diamonds, and the landing on the moon.1 A lesson commonly drawn from his stories is that the path of science and technology (S&T) is nonlinear and unpredictable. Viewed another way, the lesson is that the solution to one problem can lead to solutions to other problems that are not obviously linked in advance, i.e., there is a ripple effect. The motto for Sandia's approach to research and development (R&D) is 'Science with the mission in mind.' In our view, our missions contain the problems that inspire our R&D, and the resulting solutions almost always have multiple benefits. As discussed below, Sandia's Laboratory Directed Research and Development (LDRD) Program is structured to bring problems relevant to our missions to the attention of researchers. LDRD projects are then selected on the basis of their programmatic merit as well as their technical merit. Considerable effort is made to communicate between investment areas to create the ripple effect. In recent years, attention to the ripple effect and to the performance of the LDRD Program, in general, has increased. Inside Sandia, as it is the sole source of discretionary research funding, LDRD funding is recognized as being the most precious of research dollars. Hence, there is great interest in maximizing its impact, especially through the ripple effect. Outside Sandia, there is increased scrutiny of the program's performance to be sure that it is not a 'sandbox' in which researchers play without relevance to national security needs. Let us therefore address the performance of the LDRD Program in fiscal year 2003 and then show how it is designed to maximize impact.

  2. Chemical Technology Division, Annual technical report, 1991

    SciTech Connect

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  3. Chemical Technology Division annual technical report, 1994

    SciTech Connect

    1995-06-01

    Highlights of the Chemical Technology (CMT) Division`s activities during 1994 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion; (3) methods for treatment of hazardous waste and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from waste streams, concentrating radioactive waste streams with advanced evaporator technology, and producing {sup 99}Mo from low-enriched uranium for medical applications; (6) electrometallurgical treatment of the many different types of spent nuclear fuel in storage at Department of Energy sites; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources and novel ceramic precursors; materials chemistry of superconducting oxides, electrified metal/solution interfaces, molecular sieve structures, and impurities in scrap copper and steel; and the geochemical processes involved in mineral/fluid interfaces and water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  4. Catalog of research projects at Lawrence Berkeley Laboratory, 1985

    SciTech Connect

    Not Available

    1985-01-01

    This Catalog has been created to aid in the transfer of technology from the Lawrence Berkeley Laboratory to potential users in industry, government, universities, and the public. The projects are listed for the following LBL groups: Accelerator and Fusion Research Division, Applied Science Division, Biology and Medicine Division, Center for Advanced Materials, Chemical Biodynamics Division, Computing Division, Earth Sciences Division, Engineering and Technical Services Division, Materials and Molecular Research Division, Nuclear Science Division, and Physics Division.

  5. Phytochrome-mediated regulation of cell division and growth during regeneration and sporeling development in the liverwort Marchantia polymorpha.

    PubMed

    Nishihama, Ryuichi; Ishizaki, Kimitsune; Hosaka, Masashi; Matsuda, Yoriko; Kubota, Akane; Kohchi, Takayuki

    2015-05-01

    Light regulates various aspects of development throughout the life cycle of sessile land plants. Photoreceptors, such as the red (R) and far-red (FR) light receptors phytochromes, play pivotal roles in modulating developmental programs. Reflecting high developmental plasticity, plants can regenerate tissues, organs, and whole bodies from varieties of cells. Among land plants, bryophytes exhibit extraordinary competency of regeneration under hormone-free conditions. As an environmental factor, light plays critical roles in regeneration of bryophytes. However, how light regulates regeneration remains unknown. Here we show that using the liverwort Marchantia polymorpha, which contains a single phytochrome gene, the phytochrome regulates re-entry into the cell cycle and cell shape in newly regenerating tissues. Our morphological and cytological observations revealed that S-phase entry of G1-arrested epidermal cells around the midrib on the ventral surface of thallus explants was greatly retarded in the dark or under phytochrome-inactive R/FR cycle irradiation conditions, where, nevertheless, small, laterally narrow regenerants were eventually formed. Thus, consistent with earlier descriptions published over a century ago, light is not essential for, but exerts profound effects on regeneration in M. polymorpha. Ventral cells in regenerants grown under R/FR cycle conditions were longer and narrower than those under R cycle. Expression of a constitutively active mutant of M. polymorpha phytochrome allowed regeneration of well grown, widely expanded thalli even in the dark when sugar was supplied, further demonstrating that the phytochrome signal promotes cell proliferation, which is rate-limited by sucrose availability. Similar effects of R and FR irradiation on cell division and elongation were observed in sporelings as well. Thus, besides activation of photosynthesis, major roles of R in regeneration of M. polymorpha are to facilitate proliferation of rounder cells

  6. Engineering Research Division publication report, calendar year 1980

    SciTech Connect

    Miller, E.K.; Livingston, P.L.; Rae, D.C.

    1980-06-01

    Each year the Engineering Research Division of the Electronics Engineering Department at Lawrence Livermore Laboratory has issued an internal report listing all formal publications produced by the Division during the calendar year. Abstracts of 1980 reports are presented.

  7. [Embrionary and larval development of Lytechinus variegatus (Echinoidea: Toxopneustidae) in laboratory conditions at Isla de Margarita-Venezuela].

    PubMed

    Gómez, Olga; Gómez, Alfredo

    2005-12-01

    The sea urchin Lytechinus variegatus is a promissory species for aquaculture activities in tropical countries. In Venezuela, this species has some economical importance but their embryonic and larval development had not been studied. We collected specimens from seagrass beds in Margarita Island (Venezuela) and kept them in the laboratory, where they spawned naturally. With filtered sea water (temperature 28 degrees C, salinity 37 psu) and moderate aeration, the eggs and sperm were mixed (relation 1:100) and reached a 90% fertilization rate. The fertilization envelope was observed after two minutes, the first cellular division after 45 minutes and the prism larval stage after 13 hours. The echinopluteus larval stage was reached after 17 hours and metamorphosis after 18 days of planktonic life, when the larvae start their benthic phase. PMID:17469261

  8. Consultation and Decision Processes in a Research and Development Laboratory

    ERIC Educational Resources Information Center

    Smith, Clagett G.

    1970-01-01

    Study of relationship between consultation and decision processes in an industrial research laboratory showed the efficacy of multidirectional consultation coupled with a pattern of shared, decentralized decision making. (Author/KJ)

  9. EFFECTS OF CHLORPYRIFOS ON FIELD- AND LABORATORY-DEVELOPED ESTUARINE BENTHIC COMMUNITIES

    EPA Science Inventory

    Macrobenthic animal communities, developed in sand-filled aquaria in the laboratory and in the field, were exposed to various concentrations of the insecticide, chlorpyrifos, and effects on community structure assessed. Laboratory communities were continuously exposed to the toxi...

  10. Overview of Sandia National Laboratories and Antenna Development Department

    SciTech Connect

    Brock, B.C.

    1994-04-01

    Sandia is a multiprogram R & D laboratory. It has responsibilities in the following areas: (1) defense programs; (2) energy and environment; and (3) work for others (DOD, NSA, etc.). In 1989, the National Competitiveness Technology Transfer Act added another responsibility -- contributions to industrial competitiveness. Sandia has two major laboratory locations, New Mexico and California, and two flight testing locations, Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii. The last part of this talk was dedicated to antenna research at Sandia.

  11. Biology Division progress report, October 1, 1991--September 30, 1993

    SciTech Connect

    Hartman, F.C.; Cook, J.S.

    1993-10-01

    This Progress Report summarizes the research endeavors of the Biology Division of the Oak Ridge National Laboratory during the period October 1, 1991, through September 30, 1993. The report is structured to provide descriptions of current activities and accomplishments in each of the Division`s major organizational units. Lists of information to convey the entire scope of the Division`s activities are compiled at the end of the report.

  12. Asymmetric cell division of stem cells in the lung and other systems

    PubMed Central

    Berika, Mohamed; Elgayyar, Marwa E.; El-Hashash, Ahmed H. K.

    2014-01-01

    New insights have been added to identification, behavior and cellular properties of embryonic and tissue-specific stem cells over the last few years. The modes of stem cell division, asymmetric vs. symmetric, are tightly regulated during development and regeneration. The proper choice of a stem cell to divide asymmetrically or symmetrically has great consequences for development and disease because inappropriate asymmetric division disrupts organ morphogenesis, whereas uncontrolled symmetric division induces tumorigenesis. Therefore, understanding the behavior of lung stem cells could identify innovative solutions for restoring normal morphogenesis and/or regeneration of different organs. In this concise review, we describe recent studies in our laboratory about the mode of division of lung epithelial stem cells. We also compare asymmetric cell division (ACD) in the lung stem cells with other tissues in different organisms. PMID:25364740

  13. Heat Pipe Solar Receiver Development Activities at Sandia National Laboratories

    SciTech Connect

    Adkins, D.R.; Andraka, C.E.; Moreno, J.B.; Moss, T.A.; Rawlinson, K.S.; Showalter, S.K.

    1999-01-08

    Over the past decade, Sandia National Laboratories has been involved in the development of receivers to transfer energy from the focus of a parabolic dish concentrator to the heater tubes of a Stirling engine. Through the isothermal evaporation and condensation of sodium. a heat-pipe receiver can efficiently transfer energy to an engine's working fluid and compensate for irregularities in the flux distribution that is delivered by the concentrator. The operation of the heat pipe is completely passive because the liquid sodium is distributed over the solar-heated surface by capillary pumping provided by a wick structure. Tests have shown that using a heat pipe can boost the system performance by twenty percent when compared to directly illuminating the engine heater tubes. Designing heat pipe solar receivers has presented several challenges. The relatively large area ({approximately}0.2 m{sup 2}) of the receiver surface makes it difficult to design a wick that can continuously provide liquid sodium to all regions of the heated surface. Selecting a wick structure with smaller pores will improve capillary pumping capabilities of the wick, but the small pores will restrict the flow of liquid and generate high pressure drops. Selecting a wick that is comprised of very tine filaments can increase the permeability of the wick and thereby reduce flow losses, however, the fine wick structure is more susceptible to corrosion and mechanical damage. This paper provides a comprehensive review of the issues encountered in the design of heat pipe solar receivers and solutions to problems that have arisen. Topics include: flow characterization in the receiver, the design of wick systems. the minimization of corrosion and dissolution of metals in sodium systems. and the prevention of mechanical failure in high porosity wick structures.

  14. Communications and Tracking Development Laboratory/Building 44. Historical Documentation

    NASA Technical Reports Server (NTRS)

    Slovinac, Patricia

    2011-01-01

    As part of this nation-wide study, in September 2006, historical survey and evaluation of NASA-owned and managed facilities was conducted by NASA's Lyndon B. Johnson Space Center (JSC) in Houston, Texas. The results of this study are presented in a report entitled, Survey and Evaluation of NASA-owned Historic Facilities and Properties in the Context of the U.S. Space Shuttle Program, Lyndon B. Johnson Space Center, Houston, Texas, prepared in November 2007 by NASA JSC s contractor, Archaeological Consultants, Inc. As a result of this survey, the Communications and Tracking Development Laboratory (Building 44) was determined eligible for listing in the NRHP, with concurrence by the Texas State Historic Preservation Officer (SHPO). The survey concluded that Building 44 is eligible for the NRHP under Criteria A and C in the context of the U.S. Space Shuttle Program (1969-2010). Because it has achieved significance within the past 50 years, Criteria Consideration G applies. At the time of this documentation, Building 44 was still used to support the SSP as an engineering research facility, which is also sometimes used for astronaut training. This documentation package precedes any undertaking as defined by Section 106 of the NHPA, as amended, and implemented by 36 CFR Part 800, as NASA JSC has decided to proactively pursue efforts to mitigate the potential adverse affects of any future modifications to the facility. It includes a historical summary of the Space Shuttle Program; the history of JSC in relation to the SSP; a narrative of the history of Building 44 and how it supported the SSP; and a physical description of the building. In addition, photographs documenting the construction and historical use of Building 44 in support of the SSP, as well as photographs of the facility documenting the existing conditions, special technological features, and engineering details, are included. A contact sheet printed on archival paper, and an electronic copy of the work

  15. Transition and Skills Development through Education, Training and Work Experiences: A Follow-up Study, Seven Oaks School Division.

    ERIC Educational Resources Information Center

    Taylor, Lynn; Simpson, Wayne; McClure, Karen; Graham, Barbara; Levin, Benjamin

    A Canadian study of the school-to-work transition followed students enrolled in grade 11 in 1990 (n=177), 1992 (n=172), and 1994 (n=347) in Seven Oaks School Division's three high schools. Based largely on questions from the Statistics Canada (SC) School Leavers Survey and SC Graduates Study (1997), the telephone survey focused on these elements:…

  16. Environmental Transport Division: 1979 report

    SciTech Connect

    Murphy, C.E. Jr.; Schubert, J.F.; Bowman, W.W.; Adams, S.E.

    1980-03-01

    During 1979, the Environmental Transport Division (ETD) of the Savannah River Laboratory conducted atmospheric, terrestrial, aquatic, and marine studies, which are described in a series of articles. Separate abstracts were prepared for each. Publications written about the 1979 research are listed at the end of the report.

  17. Chemical and Laser Sciences Division annual report 1989

    SciTech Connect

    Haines, N.

    1990-06-01

    The Chemical and Laser Sciences Division Annual Report includes articles describing representative research and development activities within the Division, as well as major programs to which the Division makes significant contributions.

  18. Development of Laboratory Apparatus for Observation of Chemical Osmosis

    NASA Astrophysics Data System (ADS)

    Miyoshi, S.; Tokunaga, T.; Mogi, K.

    2008-12-01

    Introduction Many studies have suggested that the large-scale phenomena such as fossil brine and abnormally high pore pressure can be produced by the act of rock as semipermeable membrane. However, not many studies indicated quantitative proves for that. According to Neuzil (2000), as a result of nine-year in-situ experiment, the fact that osmotic pressure of maximum twenty megapascals can be produced by Pierre shale was quantitatively indicated. According to Bradley et al. (2001), laboratory experiments indicated that cretaceous clay in southern Saskatchewan acts as a semipermeable membrane. Materials and methods Authors have developed a laboratory apparatus consisting of a cylindrical vessel and upper and lower end caps with 50 millimeters diameter. Rock sample adhered with both end caps can be confined in the vessel. The upper end cap is penetrated by two solution lines: one is connected to back-pressure system and the other to back-pressure system or the atmosphere. The lower end cap is penetrated by a solution line connected to back-pressure system or syringe pump. There is a glass filter in each end cap where a pressure sensor and a four-electrode cell are buried. The four-electrode cells are connected to a frequency response analyzer to simultaneously measure the solution impedance. A ten to twenty millimeters thick sample is put between both end caps. A core sample of tertiary clay in Japan was set up in sodium chloride solution to avoid the solute in the sample from diffusing outside. The pressure of 100 kilopascals was given from the upper end until steady state was obtained, while the lower solution line was closed. Core-preserving solution was supplied by some known rates (around 0.05 cubic centimeters per minute) and pressure was measured to calculate hydraulic conductivity. Then the lower solution line was closed and the syringe pump was stopped. After obtaining steady state, one of the upper solution lines was connected to the syringe pump and one

  19. 77 FR 20489 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-04

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Biomedical Laboratory Research and Development and Clinical Science Research and Development Services... May 24, 2012..... Sheraton Suites--Old Science-B. Town Alexandria. Neurobiology-D May 24-25,...

  20. 78 FR 22622 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-16

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit..., 2013......... U.S. Access Board. Pulmonary Medicine May 30-31, 2013......... Sheraton Crystal...

  1. 76 FR 19188 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-06

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... Crowne Plaza DC/Silver Spring. Pulmonary Medicine June 3, 2011 Crowne Plaza DC/Silver Spring....

  2. 78 FR 66992 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-07

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Laboratory Research and Development and Clinical Science Research and Development Services Scientific Merit... Medicine........ November 25, 2013 *VA Central Office. Neurobiology-F November 26, 2013 *VA Central...

  3. 77 FR 23810 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-20

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Biomedical Laboratory Research and Development and Clinical Science Research and Development Services... May 24, 2012........ Sheraton Suites--Old Town Alexandria. Science-B Neurobiology-D May 24-25,...

  4. How Do Structure and Charge Affect Metal-Complex Binding to DNA? An Upper-Division Integrated Laboratory Project Using Cyclic Voltammetry

    ERIC Educational Resources Information Center

    Kulczynska, Agnieszka; Johnson, Reed; Frost, Tony; Margerum, Lawrence D.

    2011-01-01

    An advanced undergraduate laboratory project is described that integrates inorganic, analytical, physical, and biochemical techniques to reveal differences in binding between cationic metal complexes and anionic DNA (herring testes). Students were guided to formulate testable hypotheses based on the title question and a list of different metal…

  5. Using Raman Spectroscopy and Surface-Enhanced Raman Scattering to Identify Colorants in Art: An Experiment for an Upper-Division Chemistry Laboratory

    ERIC Educational Resources Information Center

    Mayhew, Hannah E.; Frano, Kristen A.; Svoboda, Shelley A.; Wustholz, Kristin L.

    2015-01-01

    Surface-enhanced Raman scattering (SERS) studies of art represent an attractive way to introduce undergraduate students to concepts in nanoscience, vibrational spectroscopy, and instrumental analysis. Here, we present an undergraduate analytical or physical chemistry laboratory wherein a combination of normal Raman and SERS spectroscopy is used to…

  6. Developing Medicare Competitive Bidding: A Study of Clinical Laboratories

    PubMed Central

    Hoerger, Thomas J.; Meadow, Ann

    1997-01-01

    Competitive bidding to derive Medicare fees promises several advantages over administered fee systems. The authors show how incentives for cost savings, quality, and access can be incorporated into bidding schemes, and they report on a study of the clinical laboratory industry conducted in preparation for a bidding demonstration. The laboratory industry is marked by variable concentration across geographic markets and, among firms themselves, by social and economic heterogeneity. The authors conclude that these conditions can be accommodated by available bidding design options and by careful selection of bidding markets. PMID:10180003

  7. SOURCE OF MICROBUNCHING AT BNL NSLS SOURCE DEVELOPMENT LABORATORY

    SciTech Connect

    Seletskiy, S.; Hidaka, Y.; Murphy, J.B.; Podobedov, B.; Qian, H.; Shen, Y.; Wang, J.; Yang, X.

    2011-03-28

    We report experimental studies of the origins of electron beam microbunching instability at BNL Source Development Laboratory (SDL). We eliminated laser-induced microbunching by utilizing an ultra-short photocathode laser. The measurements of the resulting electron beam led us to conclude that, at SDL, microbunching arising from shot noise is not amplified to any significant level. Our results demonstrated that the only source of microbunching instability at SDL is the longitudinal modulation of the photocathode laser pulse. Our work shows that assuring a longitudinally smoothed photocathode laser pulse allows mitigating microbunching instability at a typical FEL injector with a moderate microbunching gain. In this paper we investigated the source of microbunching instability at the SDL. To distinguish microbunching induced by shot noise from that arising from the longitudinal modulation of the photocathode laser, we studied the beam created by a very short laser pulse, thus eliminating the possibility of laser-induced microbunching. While the measured energy spectra of compressed beam did reveal severe longitudinal fragmentation, an analysis of the beam dynamics proved this to be due to self-fields acting on a beam with an initially smooth longitudinal profile, and not due to microbunching instability. Such fragmentation only was possible with the very short bunch chosen for these studies, and is absent in routine SDL operations. Our experiment shows that in the absence of the initial laser-induced beam modulation, microbunching instability at the SDL is not observed, and must be well below the levels that would limit the FEL performance. This result agrees with assumption of previous SDL studies that (when present under different machine conditions) microbunching instability at the SDL was laser-induced. Microbunching instability gain at the SDL is moderate. This is mainly because the SDL utilizes a single stage bunch compressor as well as due to the small

  8. Division 1137 property control system

    SciTech Connect

    Pastor, D.J.

    1982-01-01

    An automated data processing property control system was developed by Mobile and Remote Range Division 1137. This report describes the operation of the system and examines ways of using it in operational planning and control.

  9. Waste management study: Process development at Lawrence Livermore National Laboratory

    SciTech Connect

    Not Available

    1984-12-01

    This report presents the results of an evaluation of the present Toxic Waste Control Operations at the Lawrence Livermore National Laboratory, evaluates the technologies most applicable to the treatment of toxic and hazardous wastes and presents conceptual designs of processes for the installation of a new decontamination and waste treatment facility (DWTF) for future treatment of these wastes.

  10. A Chemistry Laboratory Project to Develop Thinking and Writing Skills.

    ERIC Educational Resources Information Center

    Goodman, W. Daniel; Bean, John C.

    1983-01-01

    Describes a method for conducting a sophomore organic chemistry laboratory which included integrating projects with a writing task involving peer group interaction. Also includes background/theory, chemistry tasks, writing tasks, and evaluation. Included in appendices are an analytic worksheet and grading scale. (JN)

  11. Field and laboratory root growth and development of Lesquerella germplasm

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lesquerella roots have not been fully characterized as compared to other crop species. There is initial information gathered on root trait variation in young seedling grown in laboratory settings but studies to determine if the results can be extrapolated in field grown plants are lacking. We report...

  12. An Approach to Developing the Laboratory Through Senior Design Projects.

    ERIC Educational Resources Information Center

    Faghri, Amir

    1987-01-01

    Describes a program in which senior engineering students are given the opportunity to design, make, and test apparatus intended for an upper-level teaching laboratory. Discusses such projects as a vapor compressor test stand with refrigerant mass flow measurement, a double-walled concentric annular heat pipe, and a vacuum filling station. (TW)

  13. Development of a Green Fluorescent Protein-Based Laboratory Curriculum

    ERIC Educational Resources Information Center

    Larkin, Patrick D.; Hartberg, Yasha

    2005-01-01

    A laboratory curriculum has been designed for an undergraduate biochemistry course that focuses on the investigation of the green fluorescent protein (GFP). The sequence of procedures extends from analysis of the DNA sequence through PCR amplification, recombinant plasmid DNA synthesis, bacterial transformation, expression, isolation, and…

  14. Development of Facilities for an Ocean Engineering Laboratory. Final Report.

    ERIC Educational Resources Information Center

    Nash, W. A.; And Others

    A collection of seven laboratory facilities and processes dedicated to improving student understanding of the fundamental concepts associated with the structural mechanics of oceanic structures is described. Complete working drawings covering all mechanical and electrical aspects of these systems are presented so that the systems may be reproduced…

  15. Development, Evaluation and Use of a Student Experience Survey in Undergraduate Science Laboratories: The Advancing Science by Enhancing Learning in the Laboratory Student Laboratory Learning Experience Survey

    NASA Astrophysics Data System (ADS)

    Barrie, Simon C.; Bucat, Robert B.; Buntine, Mark A.; Burke da Silva, Karen; Crisp, Geoffrey T.; George, Adrian V.; Jamie, Ian M.; Kable, Scott H.; Lim, Kieran F.; Pyke, Simon M.; Read, Justin R.; Sharma, Manjula D.; Yeung, Alexandra

    2015-07-01

    Student experience surveys have become increasingly popular to probe various aspects of processes and outcomes in higher education, such as measuring student perceptions of the learning environment and identifying aspects that could be improved. This paper reports on a particular survey for evaluating individual experiments that has been developed over some 15 years as part of a large national Australian study pertaining to the area of undergraduate laboratories-Advancing Science by Enhancing Learning in the Laboratory. This paper reports on the development of the survey instrument and the evaluation of the survey using student responses to experiments from different institutions in Australia, New Zealand and the USA. A total of 3153 student responses have been analysed using factor analysis. Three factors, motivation, assessment and resources, have been identified as contributing to improved student attitudes to laboratory activities. A central focus of the survey is to provide feedback to practitioners to iteratively improve experiments. Implications for practitioners and researchers are also discussed.

  16. About DCP | Division of Cancer Prevention

    Cancer.gov

    The Division of Cancer Prevention (DCP) is the primary unit of the National Cancer Institute devoted to cancer prevention research. DCP provides funding and administrative support to clinical and laboratory researchers, community and multidisciplinary teams, and collaborative scientific networks. |

  17. HISTORY OF THE ENGINEERING PHYSICS AND MATHEMATICS DIVISION 1955-1993

    SciTech Connect

    Maskewitz, B.F.

    2001-09-14

    A review of division progress reports noting significant events and findings of the Applied Nuclear Physics, Neutron Physics, Engineering Physics, and then Engineering Physics and Mathematics divisions from 1955 to 1993 was prepared for use in developing a history of the Oak Ridge National Laboratory in celebration of its 50th year. The research resulted in an accumulation of historic material and photographs covering 38 years of effort, and the decision was made to publish a brief history of the division. The history begins with a detailed account of the founding of the Applied Nuclear Physics Division in 1955 and continues through the name change to the Neutron Physics Division in the late 1950s. The material thereafter is presented in decades--the sixties, seventies, and eighties--and ends as we enter the nineties.

  18. 76 FR 1212 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-07

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... areas of biomedical, behavioral and clinical science research. The panel meeting will be open to...

  19. 76 FR 79273 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Eligibility of the Joint Biomedical Laboratory Research and Development and Clinical Science Research and... biomedical, behavioral, and clinical science research. The panel meeting will be open to the public...

  20. 77 FR 26069 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... following three panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... Medicine will meet on June 4, 2012, at the ] Sheraton Suites Old Town Alexandria and not at VA...

  1. 76 FR 24974 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-03

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... following four panels of the Joint Biomedical Laboratory Research and Development and Clinical Science... 5, 2011..... 6 p.m.-10 p.m.... Crowne Plaza DC/Silver Spring. Medicine. June 6, 2011..... 8 a.m.-5...

  2. 77 FR 36277 - Academic Development of a Training Program for Good Laboratory Practices in High Containment...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-18

    ... HUMAN SERVICES Food and Drug Administration Academic Development of a Training Program for Good... the support of a Funding Opportunity Announcement (FOA) entitled ``Academic Development of a Training... Texas Medical Branch (UTMB) Galveston National Laboratory (GNL) for the development and...

  3. Annular Momentum Control Device (AMCD). Volume 1: Laboratory model development

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The annular momentum control device (AMCD) a thin hoop-like wheel with neither shaft nor spokes is described. The wheel floats in a magnetic field and can be rotated by a segmented motor. Potential advantages of such a wheel are low weight, configuration flexibility, a wheel that stiffens with increased speed, vibration isolation, and increased reliability. The analysis, design, fabrication, and testing is described of the laboratory model of the AMCD.

  4. Laboratory Directed Research and Development Annual Report for 2009

    SciTech Connect

    Hughes, Pamela J.

    2010-03-31

    This report documents progress made on all LDRD-funded projects during fiscal year 2009. As a US Department of Energy (DOE) Office of Science (SC) national laboratory, Pacific Northwest National Laboratory (PNNL) has an enduring mission to bring molecular and environmental sciences and engineering strengths to bear on DOE missions and national needs. Their vision is to be recognized worldwide and valued nationally for leadership in accelerating the discovery and deployment of solutions to challenges in energy, national security, and the environment. To achieve this mission and vision, they provide distinctive, world-leading science and technology in: (1) the design and scalable synthesis of materials and chemicals; (2) climate change science and emissions management; (3) efficient and secure electricity management from generation to end use; and (4) signature discovery and exploitation for threat detection and reduction. PNNL leadership also extends to operating EMSL: the Environmental Molecular Sciences Laboratory, a national scientific user facility dedicated to providing itnegrated experimental and computational resources for discovery and technological innovation in the environmental molecular sciences.

  5. Environmental Sciences Division annual progress report for period ending September 30, 1991

    SciTech Connect

    Not Available

    1992-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and the interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD`s accomplishment in these and other areas in FY 1991.

  6. Audit of management of the laboratory directed research and development program at the Lawrence Livermore National Laboratory

    SciTech Connect

    1997-11-14

    The Department`s national laboratories, since their establishment, have been permitted to conduct a limited amount of discretionary research activities. The Department`s Defense Program laboratories, such as the Lawrence Livermore National Laboratory, generate funding for Laboratory Directed Research and Development (LDRD) programs by charging their total laboratory operating and capital equipment budgets a flat surcharge of up to 6 percent. The ceiling was mandated by the Congress in authorization legislation. This audit was performed to determine whether the LDRD program at Lawrence Livermore was managed in accordance with applicable laws and regulations. Audit work was conducted at the Department`s Headquarters and at Lawrence Livermore. Discussions were also held with representatives of the Oakland Operations Office. Department and Lawrence Livermore systems to select and manage LDRD projects were in general compliance with requirements specified in Departmental Orders. However, actions taken in Fiscal Years 1996 and 1997 by the Department and the management and operating contractor had the effect of increasing the $50 million annual level of discretionary research work conducted at Lawrence Livermore by an equivalent of $19 million. This increased level of discretionary research was primarily obtained at the expense of Department directed research.

  7. Health, Safety, and Environment Division annual report 1989

    SciTech Connect

    Wade, C.

    1992-01-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Meeting the responsibilities involves many disciplines, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science and engineering, analytical chemistry, epidemiology, and waste management. New and challenging health, safety, and environmental problems occasionally arise from the diverse research and development work of the Laboratory, and research programs in the HSE Division often stem from these applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy. The result of these programs is to help develop better practices in occupational health and safety, radiation protection, and environmental sciences.

  8. Health, Safety, and Environment Division annual report, 1988

    SciTech Connect

    Rosenthal, M.A.

    1989-10-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environmental protection. These activities are designed to protect the worker, the public, and the environment. Many disciplines are required to meet the responsibilities, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science, epidemiology, and waste management. New and challenging health and safety problems occasionally arise from the diverse research and development work of the Laboratory. Research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed, to study specific problems for the Department of Energy and to help develop better occupational health and safety practices. 52 refs.

  9. Health, Safety, and Environment Division: Annual progress report 1987

    SciTech Connect

    Rosenthal, M.A.

    1988-04-01

    The primary responsibility of the Health, Safety, and Environment (HSE) Division at the Los Alamos National Laboratory is to provide comprehensive occupational health and safety programs, waste processing, and environment protection. These activities are designed to protect the worker, the public, and the environment. Many disciplines are required to meet the responsibilities, including radiation protection, industrial hygiene, safety, occupational medicine, environmental science, epidemiology, and waste management. New and challenging health and safety problems arise occasionally from the diverse research and development work of the Laboratory. Research programs in HSE Division often stem from these applied needs. These programs continue but are also extended, as needed to study specific problems for the Department of Energy and to help develop better occupational health and safety practices.

  10. Technical developments at the NASA Space Radiation Laboratory.

    PubMed

    Lowenstein, D I; Rusek, A

    2007-06-01

    The NASA Space Radiation Laboratory (NSRL) located at Brookhaven National Laboratory (BNL) is a center for space radiation research in both the life and physical sciences. BNL is a multidisciplinary research facility operated for the Office of Science of the US Department of Energy (DOE). The BNL scientific research portfolio supports a large and diverse science and technology program including research in nuclear and high-energy physics, material science, chemistry, biology, medial science, and nuclear safeguards and security. NSRL, in operation since July 2003, is an accelerator-based facility which provides particle beams for radiobiology and physics studies (Lowenstein in Phys Med 17(supplement 1):26-29 2001). The program focus is to measure the risks and to ameliorate the effects of radiation encountered in space, both in low earth orbit and extended missions beyond the earth. The particle beams are produced by the Booster synchrotron, an accelerator that makes up part of the injector sequence of the DOE nuclear physics program's Relativistic Heavy Ion Collider. Ion species from protons to gold are presently available, at energies ranging from <100 to >1,000 MeV/n. The NSRL facility has recently brought into operation the ability to rapidly switch species and beam energy to supply a varied spectrum onto a given specimen. A summary of past operation performance, plans for future operations and recent and planned hardware upgrades will be described. PMID:17211657

  11. Developing Digital Courseware for a Virtual Nano-Biotechnology Laboratory: A Design-Based Research Approach

    ERIC Educational Resources Information Center

    Yueh, Hsiu-Ping; Chen, Tzy-Ling; Lin, Weijane; Sheen, Horn-Jiunn

    2014-01-01

    This paper first reviews applications of multimedia in engineering education, especially in laboratory learning. It then illustrates a model and accreditation criteria adopted for developing a specific set of nanotechnology laboratory courseware and reports the design-based research approach used in designing and developing the e-learning…

  12. Development and Evaluation of an Interactive Electronic Laboratory Manual for Cooperative Learning of Medical Histology

    ERIC Educational Resources Information Center

    Khalil, Mohammed K.; Kirkley, Debbie L.; Kibble, Jonathan D.

    2013-01-01

    This article describes the development of an interactive computer-based laboratory manual, created to facilitate the teaching and learning of medical histology. The overarching goal of developing the manual is to facilitate self-directed group interactivities that actively engage students during laboratory sessions. The design of the manual…

  13. Physics Division annual report, April 1, 1993--March 31, 1994

    SciTech Connect

    Thayer, K.J.; Henning, W.F.

    1994-08-01

    This is the Argonne National Laboratory Physics Division Annual Report for the period April 1, 1993 to March 31, 1994. It summarizes work done in a number of different fields, both on site, and at other facilities. Chapters describe heavy ion nuclear physics research, operation and development of the ATLAS accelerator, medium-energy nuclear physics research, theoretical physics, and atomic and molecular physics research.

  14. Physics division annual report 2005.

    SciTech Connect

    Glover, J.; Physics

    2007-03-12

    This report highlights the research performed in 2005 in the Physics Division of Argonne National Laboratory. The Division's programs include operation of ATLAS as a national user facility, nuclear structure and reaction research, nuclear theory, medium energy nuclear research and accelerator research and development. The mission of Nuclear Physics is to understand the origin, evolution and structure of baryonic matter in the universe--the matter that makes up stars, planets and human life itself. The Division's research focuses on innovative new ways to address this mission and 2005 was a year of great progress. One of the most exciting developments is the initiation of the Californium Rare Ion Breeder Upgrade, CARIBU. By combining a Cf-252 fission source, the gas catcher technology developed for rare isotope beams, a high-resolution isobar separator, and charge breeding ECR technology, CARIBU will make hundreds of new neutron-rich isotope beams available for research. The cover illustration shows the anticipated intensities of low-energy beams that become available for low-energy experiments and for injection into ATLAS for reacceleration. CARIBU will be completed in early 2009 and provide us with considerable experience in many of the technologies developed for a future high intensity exotic beam facility. Notable results in research at ATLAS include a measurement of the isomeric states in {sup 252}No that helps pin down the single particle structure expected for superheavy elements, and a new low-background measurement of {sup 16}N beta-decay to determine the {sup 12}C({alpha},{gamma}){sup 16}O reaction rate that is so important in astrophysical environments. Precise mass measurements shed new light on the unitarity of the quark weak-mixing matrix in the search for physics beyond the standard model. ATLAS operated for 4686 hours of research in FY2005 while achieving 95% efficiency of beam delivery for experiments. In Medium-Energy Physics, radium isotopes were

  15. Crystal imager development at the Laboratory for Laser Energetics

    NASA Astrophysics Data System (ADS)

    Mileham, C.; Stoeckl, C.; Theobald, W.; Fiksel, G.; Guy, D.; Junquist, R. K.; Nilson, P. M.; Sangster, T. C.; Shoup, M. J.

    2012-10-01

    Narrowband x-ray imagers using spherically bent crystals have been implemented on all three laser facilities (MTW, OMEGA EP, and OMEGA) at the University of Rochester's Laboratory for Laser Energetics. These spherical crystal imagers (SCI's) use a 150-μm-thick, 25.4-mm-diam quartz crystal cut either along the 2131 plane to reflect the Cu Kα line at ˜8 keV with a Bragg angle of 88.7° or along the 1011 plane to reflect the Si Heα line at ˜1.865 keV with a Bragg angle of 83.9°. The SCI systems can be set up to either image the self-emission of a laser-heated target or to backlight a high-energy-density plasma object.

  16. Signaling to stomatal initiation and cell division

    PubMed Central

    Le, Jie; Zou, Junjie; Yang, Kezhen; Wang, Ming

    2014-01-01

    Stomata are two-celled valves that control epidermal pores whose opening and spacing optimizes shoot-atmosphere gas exchange. Arabidopsis stomatal formation involves at least one asymmetric division and one symmetric division. Stomatal formation and patterning are regulated by the frequency and placement of asymmetric divisions. This model system has already led to significant advances in developmental biology, such as the regulation of cell fate, division, differentiation, and patterning. Over the last 30 years, stomatal development has been found to be controlled by numerous intrinsic genetic and environmental factors. This mini review focuses on the signaling involved in stomatal initiation and in divisions in the cell lineage. PMID:25002867

  17. Signaling to stomatal initiation and cell division.

    PubMed

    Le, Jie; Zou, Junjie; Yang, Kezhen; Wang, Ming

    2014-01-01

    Stomata are two-celled valves that control epidermal pores whose opening and spacing optimizes shoot-atmosphere gas exchange. Arabidopsis stomatal formation involves at least one asymmetric division and one symmetric division. Stomatal formation and patterning are regulated by the frequency and placement of asymmetric divisions. This model system has already led to significant advances in developmental biology, such as the regulation of cell fate, division, differentiation, and patterning. Over the last 30 years, stomatal development has been found to be controlled by numerous intrinsic genetic and environmental factors. This mini review focuses on the signaling involved in stomatal initiation and in divisions in the cell lineage. PMID:25002867

  18. Chemistry {ampersand} Materials Science program report, Weapons Resarch and Development and Laboratory Directed Research and Development FY96

    SciTech Connect

    Chase, L.

    1997-03-01

    This report is the annual progress report for the Chemistry Materials Science Program: Weapons Research and Development and Laboratory Directed Research and Development. Twenty-one projects are described separately by their principal investigators.

  19. Safety in the Chemical Laboratory: Developing Departmental Safety Procedures.

    ERIC Educational Resources Information Center

    Renfrew, Malcolm M., Ed.; Palladino, George F.

    1980-01-01

    Presents rationale and guidelines for development of Safety Standard Operating Procedures (Safety SOP) specific for local conditions. Includes an outline of a Safety SOP developed for a department primarily focused on undergraduate education with a wide variety of expertise from common laborer to PhD with 20 years experience. (Author/JN)

  20. Auxin Import and Local Auxin Biosynthesis Are Required for Mitotic Divisions, Cell Expansion and Cell Specification during Female Gametophyte Development in Arabidopsis thaliana

    PubMed Central

    Panoli, Aneesh; Martin, Maria Victoria; Alandete-Saez, Monica; Simon, Marissa; Neff, Christina; Swarup, Ranjan; Bellido, Andrés; Yuan, Li; Pagnussat, Gabriela C.; Sundaresan, Venkatesan

    2015-01-01

    The female gametophyte of flowering plants, called the embryo sac, develops from a haploid cell named the functional megaspore, which is specified after meiosis by the diploid sporophyte. In Arabidopsis, the functional megaspore undergoes three syncitial mitotic divisions followed by cellularization to form seven cells of four cell types including two female gametes. The plant hormone auxin is important for sporophytic developmental processes, and auxin levels are known to be regulated by biosynthesis and transport. Here, we investigated the role of auxin biosynthetic genes and auxin influx carriers in embryo sac development. We find that genes from the YUCCA/TAA pathway (YUC1, YUC2, YUC8, TAA1, TAR2) are expressed asymmetrically in the developing ovule and embryo sac from the two-nuclear syncitial stage until cellularization. Mutants for YUC1 and YUC2 exhibited defects in cell specification, whereas mutations in YUC8, as well as mutations in TAA1 and TAR2, caused defects in nuclear proliferation, vacuole formation and anisotropic growth of the embryo sac. Additionally, expression of the auxin influx carriers AUX1 and LAX1 were observed at the micropylar pole of the embryo sac and in the adjacent cells of the ovule, and the aux1 lax1 lax2 triple mutant shows multiple gametophyte defects. These results indicate that both localized auxin biosynthesis and auxin import, are required for mitotic divisions, cell expansion and patterning during embryo sac development. PMID:25970627

  1. Auxin Import and Local Auxin Biosynthesis Are Required for Mitotic Divisions, Cell Expansion and Cell Specification during Female Gametophyte Development in Arabidopsis thaliana.

    PubMed

    Panoli, Aneesh; Martin, Maria Victoria; Alandete-Saez, Monica; Simon, Marissa; Neff, Christina; Swarup, Ranjan; Bellido, Andrés; Yuan, Li; Pagnussat, Gabriela C; Sundaresan, Venkatesan

    2015-01-01

    The female gametophyte of flowering plants, called the embryo sac, develops from a haploid cell named the functional megaspore, which is specified after meiosis by the diploid sporophyte. In Arabidopsis, the functional megaspore undergoes three syncitial mitotic divisions followed by cellularization to form seven cells of four cell types including two female gametes. The plant hormone auxin is important for sporophytic developmental processes, and auxin levels are known to be regulated by biosynthesis and transport. Here, we investigated the role of auxin biosynthetic genes and auxin influx carriers in embryo sac development. We find that genes from the YUCCA/TAA pathway (YUC1, YUC2, YUC8, TAA1, TAR2) are expressed asymmetrically in the developing ovule and embryo sac from the two-nuclear syncitial stage until cellularization. Mutants for YUC1 and YUC2 exhibited defects in cell specification, whereas mutations in YUC8, as well as mutations in TAA1 and TAR2, caused defects in nuclear proliferation, vacuole formation and anisotropic growth of the embryo sac. Additionally, expression of the auxin influx carriers AUX1 and LAX1 were observed at the micropylar pole of the embryo sac and in the adjacent cells of the ovule, and the aux1 lax1 lax2 triple mutant shows multiple gametophyte defects. These results indicate that both localized auxin biosynthesis and auxin import, are required for mitotic divisions, cell expansion and patterning during embryo sac development. PMID:25970627

  2. Development of a corrosion inhibition model. 1: Laboratory studies

    SciTech Connect

    Hausler, R.H.; Martin, T.G.; Stegmann, D.W.; Ward, M.B.

    1999-11-01

    The production of a CO{sub 2} flood in the Oklahoma panhandle led to severe corrosion of the carbon steel production tubing and casing. Traditional approaches to chemical corrosion inhibition were unsuccessful. A laboratory study was initiated to determine first the best corrosion inhibitor, and second the optimum effective inhibitor concentration in the produced fluids as a function of the production rate, CO{sub 2} partial pressure, and water to oil ratio. The tool used was the high speed autoclave test (HSACT) discussed in earlier publications. Statistical experimental designs were used to study the three major parameters. The results were expressed in terms of the inhibitor concentration necessary to achieve a desired corrosion rate (for example 1 mpy), and presented either in the form of response surfaces or linear multiple regression equations. While it was generally known that higher fluid velocities require a higher inhibitor concentration for equal target corrosion rates, it was less well appreciated that the CO{sub 2} partial pressure also has a significant effect on the effective inhibitor concentration. The model as represented either by the response surface or the predictive equations is both inhibitor and field specific.

  3. Physics, Computer Science and Mathematics Division annual report, 1 January-31 December 1983

    SciTech Connect

    Jackson, J.D.

    1984-08-01

    This report summarizes the research performed in the Physics, Computer Science and Mathematics Division of the Lawrence Berkeley Laboratory during calendar year 1983. The major activity of the Division is research in high-energy physics, both experimental and theoretical, and research and development in associated technologies. A smaller, but still significant, program is in computer science and applied mathematics. During 1983 there were approximately 160 people in the Division active in or supporting high-energy physics research, including about 40 graduate students. In computer science and mathematics, the total staff, including students and faculty, was roughly 50. Because of the creation in late 1983 of a Computing Division at LBL and the transfer of the Computer Science activities to the new Division, this annual report is the last from the Physics, Computer Science and Mathematics Division. In December 1983 the Division reverted to its historic name, the Physics Division. Its future annual reports will document high energy physics activities and also those of its Mathematics Department.

  4. Report on the joint meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups

    SciTech Connect

    Wilson, K.L.

    1985-10-01

    This report of the Joint Meeting of the Division of Development and Technology Plasma/Wall Interaction and High Heat Flux Materials and Components Task Groups contains contributing papers in the following areas: Plasma/Materials Interaction Program and Technical Assessment, High Heat Flux Materials and Components Program and Technical Assessment, Pumped Limiters, Ignition Devices, Program Planning Activities, Compact High Power Density Reactor Requirements, Steady State Tokamaks, and Tritium Plasma Experiments. All these areas involve the consideration of High Heat Flux on Materials and the Interaction of the Plasma with the First Wall. Many of the Test Facilities are described as well. (LSP)

  5. MONOLITHIC FUEL FABRICATION PROCESS DEVELOPMENT AT THE IDAHO NATIONAL LABORATORY_

    SciTech Connect

    G. A. Moore; F. J. Rice; N. E. Woolstenhulme; J-F. Jue; B. H. Park; S. E. Steffler; N. P. Hallinan; M. D. Chapple; M. C. Marshall; B. L. Mackowiak; C. R. Clark; B. H. Rabin

    2009-11-01

    Full-size/prototypic U10Mo monolithic fuel-foils and aluminum clad fuel plates are being developed at the Idaho National Laboratory’s (INL) Materials and Fuels Complex (MFC). These efforts are focused on realizing Low Enriched Uranium (LEU) high density monolithic fuel plates for use in High Performance Research and Test Reactors. The U10Mo fuel foils under development afford a fuel meat density of ~16 gU/cc and thus have the potential to facilitate LEU conversions without any significant reactor-performance penalty. An overview is provided of the ongoing monolithic UMo fuel development effort, including application of a zirconium barrier layer on fuel foils, fabrication scale-up efforts, and development of complex/graded fuel foils. Fuel plate clad bonding processes to be discussed include: Hot Isostatic Pressing (HIP) and Friction Bonding (FB).

  6. Firing Room Remote Application Software Development & Swamp Works Laboratory Robot Software Development

    NASA Technical Reports Server (NTRS)

    Garcia, Janette

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is creating a way to send humans beyond low Earth orbit, and later to Mars. Kennedy Space Center (KSC) is working to make this possible by developing a Spaceport Command and Control System (SCCS) which will allow the launch of Space Launch System (SLS). This paper's focus is on the work performed by the author in her first and second part of the internship as a remote application software developer. During the first part of her internship, the author worked on the SCCS's software application layer by assisting multiple ground subsystems teams including Launch Accessories (LACC) and Environmental Control System (ECS) on the design, development, integration, and testing of remote control software applications. Then, on the second part of the internship, the author worked on the development of robot software at the Swamp Works Laboratory which is a research and technology development group which focuses on inventing new technology to help future In-Situ Resource Utilization (ISRU) missions.

  7. Final Report for the 10 to 100 Gigabit/Second Networking Laboratory Directed Research and Development Project

    SciTech Connect

    WITZKE, EDWARD L.; PIERSON, LYNDON G.; TARMAN, THOMAS D.; DEAN, LESLIE BYRON; ROBERTSON, PERRY J.; CAMPBELL, PHILIP L.

    2001-04-01

    The next major performance plateau for high-speed, long-haul networks is at 10 Gbps. Data visualization, high performance network storage, and Massively Parallel Processing (MPP) demand these (and higher) communication rates. MPP-to-MPP distributed processing applications and MPP-to-Network File Store applications already require single conversation communication rates in the range of 10 to 100 Gbps. MPP-to-Visualization Station applications can already utilize communication rates in the 1 to 10 Gbps range. This LDRD project examined some of the building blocks necessary for developing a 10 to 100 Gbps computer network architecture. These included technology areas such as, OS Bypass, Dense Wavelength Division Multiplexing (DWDM), IP switching and routing, Optical Amplifiers, Inverse Multiplexing of ATM, data encryption, and data compression; standards bodies activities in the ATM Forum and the Optical Internetworking Forum (OIF); and proof-of-principle laboratory prototypes. This work has not only advanced the body of knowledge in the aforementioned areas, but has generally facilitated the rapid maturation of high-speed networking and communication technology by: (1) participating in the development of pertinent standards, and (2) by promoting informal (and formal) collaboration with industrial developers of high speed communication equipment.

  8. Life Sciences Division and Center for Human Genome Studies 1994

    SciTech Connect

    Cram, L.S.; Stafford, C.

    1995-09-01

    This report summarizes the research and development activities of the Los Alamos National Laboratory`s Life Sciences Division and the biological aspects of the Center for Human Genome Studies for the calendar year 1994. The technical portion of the report is divided into two parts, (1) selected research highlights and (2) research projects and accomplishments. The research highlights provide a more detailed description of a select set of projects. A technical description of all projects is presented in sufficient detail so that the informed reader will be able to assess the scope and significance of each project. Summaries useful to the casual reader desiring general information have been prepared by the group leaders and appear in each group overview. Investigators on the staff of the Life Sciences Division will be pleased to provide further information.

  9. GCR Simulator Development Status at the NASA Space Radiation Laboratory

    NASA Technical Reports Server (NTRS)

    Slaba, T. C.; Norbury, J. W.; Blattnig, S. R.

    2015-01-01

    There are large uncertainties connected to the biological response for exposure to galactic cosmic rays (GCR) on long duration deep space missions. In order to reduce the uncertainties and gain understanding about the basic mechanisms through which space radiation initiates cancer and other endpoints, radiobiology experiments are performed with mono-energetic ions beams. Some of the accelerator facilities supporting such experiments have matured to a point where simulating the broad range of particles and energies characteristic of the GCR environment in a single experiment is feasible from a technology, usage, and cost perspective. In this work, several aspects of simulating the GCR environment at the NASA Space Radiation Laboratory (NSRL) are discussed. First, comparisons are made between direct simulation of the external, free space GCR field, and simulation of the induced tissue field behind shielding. It is found that upper energy constraints at NSRL limit the ability to simulate the external, free space field directly (i.e. shielding placed in the beam line in front of a biological target and exposed to a free space spectrum). Second, a reference environment for the GCR simulator and suitable for deep space missions is identified and described in terms of fluence and integrated dosimetric quantities. Analysis results are given to justify the use of a single reference field over a range of shielding conditions and solar activities. Third, an approach for simulating the reference field at NSRL is presented. The approach directly considers the hydrogen and helium energy spectra, and the heavier ions are collectively represented by considering the linear energy transfer (LET) spectrum. While many more aspects of the experimental setup need to be considered before final implementation of the GCR simulator, this preliminary study provides useful information that should aid the final design. Possible drawbacks of the proposed methodology are discussed and weighed

  10. Investigative Cases and Student Outcomes in an Upper-Division Cell and Molecular Biology Laboratory Course at a Minority-Serving Institution

    ERIC Educational Resources Information Center

    Knight, Jonathan D.; Fulop, Rebecca M.; Marquez-Magana, Leticia; Tanner, Kimberly D.

    2008-01-01

    Active-learning strategies are increasingly being integrated into college-level science courses to make material more accessible to all students and to improve learning outcomes. One active-learning pedagogy, case-based learning (CBL), was developed as a way to both enhance engagement in the material and to accommodate diverse learning styles.…

  11. Laboratory Astrophysics White Paper

    NASA Technical Reports Server (NTRS)

    Brickhouse, Nancy; Federman, Steve; Kwong, Victor; Salama, Farid; Savin, Daniel; Stancil, Phillip; Weingartner, Joe; Ziurys, Lucy

    2006-01-01

    Laboratory astrophysics and complementary theoretical calculations are the foundations of astronomical and planetary research and will remain so for many generations to come. From the level of scientific conception to that of the scientific return, it is our understanding of the underlying processes that allows us to address fundamental questions regarding the origins and evolution of galaxies, stars, planetary systems, and life in the cosmos. In this regard, laboratory astrophysics is much like detector and instrument development at NASA and NSF; these efforts are necessary for the astronomical research being funded by the agencies. The NASA Laboratory Astrophysics Workshop met at the University of Nevada, Las Vegas (UNLV) from 14-16 February, 2006 to identify the current laboratory data needed to support existing and future NASA missions and programs in the Astrophysics Division of the Science Mission Directorate (SMD). Here we refer to both laboratory and theoretical work as laboratory astrophysics unless a distinction is necessary. The format for the Workshop involved invited talks by users of laboratory data, shorter contributed talks and poster presentations by both users and providers that highlighted exciting developments in laboratory astrophysics, and breakout sessions where users and providers discussed each others' needs and limitations. We also note that the members of the Scientific Organizing Committee are users as well as providers of laboratory data. As in previous workshops, the focus was on atomic, molecular, and solid state physics.

  12. Emerging facets of plastid division regulation.

    PubMed

    Basak, Indranil; Møller, Simon Geir

    2013-02-01

    Plastids are complex organelles that are integrated into the plant host cell where they differentiate and divide in tune with plant differentiation and development. In line with their prokaryotic origin, plastid division involves both evolutionary conserved proteins and proteins of eukaryotic origin where the host has acquired control over the process. The plastid division apparatus is spatially separated between the stromal and the cytosolic space but where clear coordination mechanisms exist between the two machineries. Our knowledge of the plastid division process has increased dramatically during the past decade and recent findings have not only shed light on plastid division enzymology and the formation of plastid division complexes but also on the integration of the division process into a multicellular context. This review summarises our current knowledge of plastid division with an emphasis on biochemical features, the functional assembly of protein complexes and regulatory features of the overall process. PMID:22965912

  13. Chemical Technology Division, Annual technical report, 1991

    SciTech Connect

    Not Available

    1992-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1991 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including advanced batteries and fuel cells; (2) technology for fluidized-bed combustion and coal-fired magnetohydrodynamics; (3) methods for treatment of hazardous and mixed hazardous/radioactive waste; (4) the reaction of nuclear waste glass and spent fuel under conditions expected for an unsaturated repository; (5) processes for separating and recovering transuranic elements from nuclear waste streams; (6) recovery processes for discharged fuel and the uranium blanket in the Integral Fast Reactor (IFR); (7) processes for removal of actinides in spent fuel from commercial water-cooled nuclear reactors and burnup in IFRs; and (8) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also conducts basic research in catalytic chemistry associated with molecular energy resources; chemistry of superconducting oxides and other materials of interest with technological application; interfacial processes of importance to corrosion science, catalysis, and high-temperature superconductivity; and the geochemical processes involved in water-rock interactions occurring in active hydrothermal systems. In addition, the Analytical Chemistry Laboratory in CMT provides a broad range of analytical chemistry support services to the technical programs at Argonne National Laboratory (ANL).

  14. An analysis of microsystems development at Sandia National Laboratories

    NASA Astrophysics Data System (ADS)

    Herrera, Gilbert V.; Myers, David R.

    2011-06-01

    While Sandia initially was motivated to investigate emergent microsystem technology to miniaturize existing macroscale structures, present designs embody innovative approaches that directly exploit the fundamentally different material properties of a new technology at the micro- and nano-scale. Direct, hands-on experience with the emerging technology gave Sandia engineers insights that not only guided the evolution of the technology but also enabled them to address new applications that enlarged the customer base for the new technology. Sandia's early commitment to develop complex microsystems demonstrated the advantages that early adopters gain by developing an extensive design and process tool kit and a shared awareness of multiple approaches to achieve the multiple goals. As with any emergent technology, Sandia's program benefited from interactions with the larger technical community. However, custom development followed a spiral path of direct trial-and-error experience, analysis, quantification of materials properties at the micro- and nano-scale, evolution of design tools and process recipes, and an understanding of reliability factors and failure mechanisms even in extreme environments. The microsystems capability at Sandia relied on three key elements. The first was people: a mix of mechanical and semiconductor engineers, chemists, physical scientists, designers, and numerical analysts. The second was a unique facility that enabled the development of custom technologies without contaminating mainline product deliveries. The third was the arrival of specialized equipment as part of a Cooperative Research And Development Agreement (CRADA) enabled by the National Competitiveness Technology Transfer Act of 1989. Underpinning all these, the program was guided and sustained through the research and development phases by accomplishing intermediate milestones addressing direct mission needs.

  15. Development of a laboratory prototype spraying flash evaporator.

    NASA Technical Reports Server (NTRS)

    Gaddis, J. L.

    1972-01-01

    A functional description of the flash evaporator that is being developed as a candidate for the Space Shuttle Environmental Control System thermal control is presented. A single evaporator configuration uses water as an evaporant to accommodate on-orbit peak heat loads and Freon 22 for terrestrial flight phases below 120,000 ft altitude. Development history, test plans, and operational characteristics are described. Detailed information is included to show: design features, fabrication techniques used for a prototype unit, redundancy considerations, and the control arrangement.

  16. Micromachined sensor and actuator research at Sandia`s Microelectronics Development Laboratory

    SciTech Connect

    Smith, J.H.

    1996-11-01

    An overview of the surface micromachining program at the Microelectronics Development Laboratory of Sandia National Laboratories is presented. Development efforts are underway for a variety of surface micromachined sensors and actuators for both defense and commercial applications. A technology that embeds micromechanical devices below the surface of the wafer prior to microelectronics fabrication has been developed for integrating microelectronics with surface-micromachined micromechanical devices. The application of chemical-mechanical polishing to increase the manufacturability of micromechanical devices is also presented.

  17. Chemical Technology Division annual technical report 1989

    SciTech Connect

    Not Available

    1990-03-01

    Highlights of the Chemical Technology (CMT) Division's activities during 1989 are presented. In this period, CMT conducted research and development in the following areas: (1) electrochemical technology, including high-performance batteries (mainly lithium/iron sulfide and sodium/metal chloride), aqueous batteries (lead-acid and nickel/iron), and advanced fuel cells with molten carbonate and solid oxide electrolytes: (2) coal utilization, including the heat and seed recovery technology for coal-fired magnetohydrodynamics plants and the technology for fluidized-bed combustion; (3) methods for recovery of energy from municipal waste and techniques for treatment of hazardous organic waste; (4) nuclear technology related to a process for separating and recovering transuranic elements from nuclear waste and for producing {sup 99}Mo from low-enriched uranium targets, the recovery processes for discharged fuel and the uranium blanket in a sodium-cooled fast reactor (the Integral Fast Reactor), and waste management; and (5) physical chemistry of selected materials in environments simulating those of fission and fusion energy systems. The Division also has a program in basic chemistry research in the areas of fluid catalysis for converting small molecules to desired products; materials chemistry for superconducting oxides and associated and ordered solutions at high temperatures; interfacial processes of importance to corrosion science, high-temperature superconductivity, and catalysis; and the geochemical processes responsible for trace-element migration within the earth's crust. The Division continued to be administratively responsible for and the major user of the Analytical Chemistry Laboratory at Argonne National Laboratory (ANL).

  18. 300-Watt Power Source Development at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Valdez, Thomas I.

    2005-01-01

    This viewgraph presentation reviews the JPL program to develop a 300 Watt direct methanol fuel cell. The immediate use of the fuel cell is to power test instrumentation on armored vehicles. It reviews the challenges, the system design and the system demonstration.

  19. Divisibility--Another Route.

    ERIC Educational Resources Information Center

    Gardella, Francis J.

    1984-01-01

    Given is an alternative to individual divisibility rules by generating a general process that can be applied to establish divisibility by any number. The process relies on modular arithmetic and the concept of congruence. (MNS)

  20. Developments of Spent Nuclear Fuel Pyroprocessing Technology at Idaho National Laboratory

    SciTech Connect

    Michael F. Simpson

    2012-03-01

    This paper summarizes research in used fuel pyroprocessing that has been published by Idaho National Laboratory over the last decade. It includes work done both on treatment of Experimental Breeder Reactor-II and development of advanced technology for potential scale-up and commercialization. Collaborations with universities and other laboratories is included in the cited work.

  1. A Process for Developing Introductory Science Laboratory Learning Goals to Enhance Student Learning and Instructional Alignment

    ERIC Educational Resources Information Center

    Duis, Jennifer M.; Schafer, Laurel L.; Nussbaum, Sophia; Stewart, Jaclyn J.

    2013-01-01

    Learning goal (LG) identification can greatly inform curriculum, teaching, and evaluation practices. The complex laboratory course setting, however, presents unique obstacles in developing appropriate LGs. For example, in addition to the large quantity and variety of content supported in the general chemistry laboratory program, the interests of…

  2. Development of a Clinical Decision Support System for the Patients of a Laboratory Service.

    PubMed

    Semenov, Ilya; Kopanitsa, Georgy

    2016-01-01

    The paper presents the results of the development and implementation of an expert system that automatically generates doctors' letters based on the results of laboratory tests. Medical knowledge is expressed using a first order predicate logic based language. The system was implemented and evaluated in the Helix laboratory service. PMID:27577348

  3. Inquiry in Development: Efficiency and Effectiveness of Algorithmic Representations in a Laboratory Stituation.

    ERIC Educational Resources Information Center

    Coscarelli, William C.

    This study, part of an instructional development project, explores the effects of three different representations of functional algorithms in an introductory chemistry laboratory. Intact classes were randomly assigned to a flowchart, list, or standard prose representation of the procedures (algorithms). At the completion of 11 laboratory sessions,…

  4. Developing Technical Writing Skills in the Physical Chemistry Laboratory: A Progressive Approach Employing Peer Review

    ERIC Educational Resources Information Center

    Gragson, Derek E.; Hagen, John P.

    2010-01-01

    Writing formal "journal-style" lab reports is often one of the requirements chemistry and biochemistry students encounter in the physical chemistry laboratory. Helping students improve their technical writing skills is the primary reason this type of writing is a requirement in the physical chemistry laboratory. Developing these skills is an…

  5. Development, Implementation, and Analysis of a National Survey of Faculty Goals for Undergraduate Chemistry Laboratory

    ERIC Educational Resources Information Center

    Bruck, Aaron D.; Towns, Marcy

    2013-01-01

    This work reports the development of a survey for laboratory goals in undergraduate chemistry, the analysis of reliable and valid data collected from a national survey of college chemistry faculty, and a synthesis of the findings. The study used a sequential exploratory mixed-methods design. Faculty goals for laboratory emerged across seven…

  6. Development of a Laboratory Course in Nonmajors General Biology for Distance Education

    ERIC Educational Resources Information Center

    Mickle, James E.; Aune, Patricia M.

    2008-01-01

    For distance-education students, the requirement for a laboratory course can present a significant hurdle to completing degree requirements. To better serve these nontraditional students, the authors developed a distance version of the laboratory course to provide a hands-on experience similar to that of on-campus students. In order to make the…

  7. Regional Educational Laboratories 2002 Annual Report: Improving the Lives of Children through Education Research & Development.

    ERIC Educational Resources Information Center

    Northeast and Islands Regional Educational Lab. at Brown Univ., Providence, RI.

    This report, the second annual report of the Regional Educational Laboratory (REL) system's current 5-year contract, shows the progress laboratories have made in meeting regional challenges and establishing national leadership in critical areas. The report also illustrates who the labs are using research and development to gain knowledge about how…

  8. Interface control document between Analytical Services and Solid Waste Disposal Division

    SciTech Connect

    Venetz, T.J.

    1995-01-30

    This interface control document (ICD) between Analytical Services and Solid Waste Disposal (SWD) establishes a baseline description of the support needed and the wastes that will require management as part of the interface between the two divisions. It is important that each division has a clear understanding of the other division`s expectations regarding levels and type of support needed. This ICD deals with the waste sampling support needed by SWD and the waste generated by the specified analytical laboratories. The baseline description of wastes includes waste volumes, characteristics and shipping schedules, which will be used to plan the proper support requirements. The laboratories included in this document are 222-S Laboratory Facility, the Waste Sampling and Characterization Facility (WSCF) and the Chemical Engineering Laboratory. These three facilities provide support to the entire site and are not associated with one major program/facility. The laboratories associated with major facilities or programs such as Engineering/Environmental Development Laboratory at K Basins Operation are not within the scope of this document.

  9. Electric air filtration: theory, laboratory studies, hardware development, and field evaluations

    SciTech Connect

    Bergman, W.; Biermann, A.; Kuhl, W.; Lum, B.; Bogdanoff, A.; Hebard, H.; Hall, M.; Banks, D.; Mazumder, M.; Johnson, J.

    1983-09-01

    We summarize the results of a seven-year research project for the US Department of Energy (DOE) to develop electric air filters that extend the service life of high-efficiency particulate air (HEPA) filters used in the nuclear industry. This project was unique to Lawrence Livermore National Laboratory (LLNL), and it entailed comprehensive theory, laboratory studies, and hardware development. We present our work in three major areas: (1) theory of and instrumentation for filter test methods, (2) theoretical and laboratory studies of electric air filters, and (3) development and evaluation of eight experimental electric air filters.

  10. Infrared Development and Testing Laboratory with Development of Atmospheric CO Imaging Instrument

    NASA Technical Reports Server (NTRS)

    Little, Alan (Technical Monitor); Miles, Jonathan J.

    2004-01-01

    NASA Langley Research Center provided support to the Infrared Development and Thermal Testing Laboratory (IDTTL) to enhance its capabilities with new instrumentation and offer new professional activities. The IDTTL offers an undergraduate research environment that focuses on precision noncontact measurement techniques. The IDTTL supports senior project activities and both funded and non-funded projects that enhance the educational mission of the Department of Integrated Science and Technology. During the term of this support fifteen students benefited directly, several of these students participated in an international conference and were published in conference proceedings. The IDTTL was also successful in proposals to NASA for further support and to NSF for new instrumentation and imaging equipment.

  11. FY 1999 Laboratory Directed Research and Development annual report

    SciTech Connect

    PJ Hughes

    2000-06-13

    A short synopsis of each project is given covering the following main areas of research and development: Atmospheric sciences; Biotechnology; Chemical and instrumentation analysis; Computer and information science; Design and manufacture engineering; Ecological science; Electronics and sensors; Experimental technology; Health protection and dosimetry; Hydrologic and geologic science; Marine sciences; Materials science; Nuclear science and engineering; Process science and engineering; Sociotechnical systems analysis; Statistics and applied mathematics; and Thermal and energy systems.

  12. Development and implications of technology in reform-based physics laboratories

    NASA Astrophysics Data System (ADS)

    Chen, Sufen; Lo, Hao-Chang; Lin, Jing-Wen; Liang, Jyh-Chong; Chang, Hsin-Yi; Hwang, Fu-Kwun; Chiou, Guo-Li; Wu, Ying-Tien; Lee, Silvia Wen-Yu; Wu, Hsin-Kai; Wang, Chia-Yu; Tsai, Chin-Chung

    2012-12-01

    Technology has been widely involved in science research. Researchers are now applying it to science education in an attempt to bring students’ science activities closer to authentic science activities. The present study synthesizes the research to discuss the development of technology-enhanced laboratories and how technology may contribute to fulfilling the instructional objectives of laboratories in physics. To be more specific, this paper discusses the engagement of technology to innovate physics laboratories and the potential of technology to promote inquiry, instructor and peer interaction, and learning outcomes. We then construct a framework for teachers, scientists, and programmers to guide and evaluate technology-integrated laboratories. The framework includes inquiry learning and openness supported by technology, ways of conducting laboratories, and the diverse learning objectives on which a technology-integrated laboratory may be focused.

  13. DOE`s Integrated Performance Evaluation Program (IPEP) Laboratory Performance Reports for Sample Management Offices

    SciTech Connect

    Lindahl, P.C.

    1995-07-01

    This report describes a program by the Analytical Services Division (EM-263) to develope and implement a comprehensive integrated performance evaluation program for laboratories providing analytical data in support of EM programs.

  14. Environmental Sciences Division annual progress report for period ending September 30, 1991

    SciTech Connect

    Not Available

    1992-04-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division of Oak Ridge National Laboratory during the period October 1, 1990, through September 30, 1991. The report is structured to provide descriptions of current activities and accomplishments in each of the division's major organizational units. Following the sections describing the organizational units is a section devoted to lists of information necessary to convey the scope of the work in the division. The Environmental Sciences Division (ESD) at Oak Ridge National Laboratory (ORNL) conducts environmental research and analyses associated with both energy technology development and the interactions between people and the environment. The division engages in basic and applied research for a diverse list of sponsors. While the US Department of Energy (DOE) is the primary sponsor ESD staff also perform research for other federal agencies, state agencies, and private industry. The division works collaboratively with federal agencies, universities, and private organizations in achieving its research objectives and hosts a large number of visiting investigators from these organizations. Given the diverse interdisciplinary specialization of its staff, ESD provides technical expertise on complex environmental problems and renders technical leadership for major environmental issues of national and local concern. This progress report highlights many of ESD's accomplishment in these and other areas in FY 1991.

  15. Development of Facilities Master Plan and Laboratory Renovation Project

    SciTech Connect

    Fox, Andrea D

    2011-10-03

    Funding from this grant has allowed Morehouse School of Medicine to complete its first professionally developed, comprehensive campus master plan that is in alignment with the recently completed strategic plan. In addition to master planning activities, funds were used for programming and designing research renovations, and also to supplement other research facility upgrades by providing lighting and equipment. The activities funded by this grant will provide the catalyst for substantial improvement in the School's overall facilities for biomedical education and research, and will also provide much of the information needed to conduct a successful campaign to raise funds for proposed buildings and renovations.

  16. Laboratory development and field validation of Phormia regina (Diptera: Calliphoridae).

    PubMed

    Núñez-Vázquez, Carolina; Tomberlin, Jeffery K; Cantú-Sifuentes, Mario; García-Martínez, Oswaldo

    2013-03-01

    Immature blow flies (Diptera: Calliphoridae) collected from decomposing human remains are often used to determine the minimum postmortem interval (PMImin). Phormia regina (Meigen) is a common blow fly of cosmopolitan distribution that is often associated in such cases. P. regina development at two different cyclic temperatures was examined in this study. A field validation study was conducted to determine the accuracy of applying these data to determine the PMImin. Minimal total development time was 32.52 d at cyclic 14.0 +/- 2.0 degrees C and 16.60 d at cyclic 20.5 +/- 3.1 degrees C. The minimal larval development was significantly different (P < 0.05) across temperatures. Larval development needed 15.5 d at 14.0 degrees C and 7.5 d at 20.5 degrees C. For the validation study, instar, mean, and maximum of length and weight data of the larvae collected in the field were analyzed with data generated from the 20.5 degrees C treatment, as it more closely reflected the field conditions experienced. Accuracy in estimating PMImin, was highly variable depending on the unit of measurement used and instar of P. regina collected from the field. Using the oldest instar to estimate a PMImin resulted in ranges that always encompassed the true time of colonization. Accuracy in hours when using measurements units as mean length or weight, and maximal length or weight, varied among the larval instars. In the first instar the greatest overestimation was made with maximal weight while the greatest underestimation was made with mean weight. The most accurate estimate produced with first instars was based on maximal length. In the second instar, there was no overestimation and the greatest underestimation was made with mean weight and the most accurate estimate produced was with maximal length. In the third instar, the greatest overestimation was made with maximal length, and the greatest underestimation was made with mean weight. The estimated time of colonization based on maximal

  17. Audio Development Laboratory (ADL) User Test Planning Guide

    NASA Technical Reports Server (NTRS)

    Romero, Andy

    2012-01-01

    Test process, milestones and inputs are unknowns to first-time users of the ADL. The User Test Planning Guide aids in establishing expectations for both NASA and non-NASA facility customers. The potential audience for this guide includes both internal and commercial spaceflight hardware/software developers. It is intended to assist their test engineering personnel in test planning and execution. Material covered includes a roadmap of the test process, roles and responsibilities of facility and user, major milestones, facility capabilities, and inputs required by the facility. Samples of deliverables, test article interfaces, and inputs necessary to define test scope, cost, and schedule are included as an appendix to the guide.

  18. The development of an engineering computer graphics laboratory

    NASA Technical Reports Server (NTRS)

    Anderson, D. C.; Garrett, R. E.

    1975-01-01

    Hardware and software systems developed to further research and education in interactive computer graphics were described, as well as several of the ongoing application-oriented projects, educational graphics programs, and graduate research projects. The software system consists of a FORTRAN 4 subroutine package, in conjunction with a PDP 11/40 minicomputer as the primary computation processor and the Imlac PDS-1 as an intelligent display processor. The package comprises a comprehensive set of graphics routines for dynamic, structured two-dimensional display manipulation, and numerous routines to handle a variety of input devices at the Imlac.

  19. A review of vacuum insulation research and development in the Building Materials Group of the Oak Ridge National Laboratory

    SciTech Connect

    Kollie, T.G.; McElroy, D.L.; Fine, H.A.; Childs, K.W.; Graves, R.S.; Weaver, F.J.

    1991-09-01

    This report is a summary of the development work on flat-vacuum insulation performed by the Building Materials Group (BMG) in the Metals and Ceramics Division of the Oak Ridge National Laboratory (ORNL) during the last two years. A historical review of the technology of vacuum insulation is presented, and the role that ORNL played in this development is documented. The ORNL work in vacuum insulation has been concentrated in Powder-filled Evacuated Panels (PEPs) that have a thermal resistivity over 2.5 times that of insulating foams and seven times that of many batt-type insulations, such as fiberglass. Experimental results of substituting PEPs for chlorofluorocarbon (CFC) foal insulation in Igloo Corporation ice coolers are summarized. This work demonstrated that one-dimensional (1D) heat flow models overestimated the increase in thermal insulation of a foam/PEP-composite insulation, but three-dimensional (3D) models provided by a finite-difference, heat-transfer code (HEATING-7) accurately predicted the resistance of the composites. Edges and corners of the ice coolers were shown to cause the errors in the 1D models as well as shunting of the heat through the foam and around the PEPs. The area of coverage of a PEP in a foam/PEP composite is established as an important parameter in maximizing the resistance of such composites. 50 refs., 27 figs,. 22 tabs.

  20. Laboratory Approach to Secondary Teacher Professional Development: Impacting Teacher Behavior and Student Engagement

    ERIC Educational Resources Information Center

    Haug, Carolyn A.; Sands, Deanna Iceman

    2013-01-01

    The Literacy Lab Professional Development provided a laboratory approach to professional development for 42 high school teachers in two schools. Three main activities included: (1) planning and professional development days, (2) lab and professional development days, and (3) individual coaching. The targets of the Literacy Lab Professional…

  1. 78 FR 28292 - Joint Biomedical Laboratory Research and Development and Clinical Science Research and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-14

    ... AFFAIRS Joint Biomedical Laboratory Research and Development and Clinical Science Research and Development... Research and Development and Clinical Science Research and Development Services Scientific Merit Review..., 2013; Pulmonary Medicine will meet on May 30, 2013, at the Sheraton Crystal City Hotel and not on...

  2. A portable solar adaptive optics system: software and laboratory developments

    NASA Astrophysics Data System (ADS)

    Ren, Deqing; Penn, Matt; Plymate, Claude; Wang, Haimin; Zhang, Xi; Dong, Bing; Brown, Nathan; Denio, Andrew

    2010-07-01

    We present our recent process on a portable solar adaptive Optics system, which is aimed for diffraction-limited imaging in the 1.0 ~ 5.0-μm infrared wavelength range with any solar telescope with an aperture size up to 1.6 meters. The realtime wave-front sensing, image processing and computation are based on a commercial multi-core personal computer. The software is developed in LabVIEW. Combining the power of multi-core imaging processing and LabVIEW parallel programming, we show that our solar adaptive optics can achieve excellent performance that is competitive with other systems. In addition, the LabVIEW's block diagram based programming is especially suitable for rapid development of a prototype system, which makes a low-cost and high-performance system possible. Our adaptive optics system is flexible; it can work with any telescope with or without central obstruction with any aperture size in the range of 0.6~1.6 meters. In addition, the whole system is compact and can be brought to a solar observatory to perform associated scientific observations. According to our knowledge, this is the first adaptive optics that adopts the LabVIEW high-level programming language with a multi-core commercial personal computer, and includes the unique features discussed above.

  3. Laboratory Directed Research and Development Program. Annual report

    SciTech Connect

    Ogeka, G.J.; Romano, A.J.

    1992-12-01

    This report briefly discusses the following research: Advances in Geoexploration; Transvenous Coronary Angiography with Synchrotron X-Rays; Borehole Measurements of Global Warming; Molecular Ecology: Development of Field Methods for Microbial Growth Rate and Activity Measurements; A New Malaria Enzyme - A Potential Source for a New Diagnostic Test for Malaria and a Target for a New Antimalarial Drug; Basic Studies on Thoron and Thoron Precursors; Cloning of the cDNA for a Human Serine/Threonine Protein Kinase that is Activated Specifically by Double-Stranded DNA; Development of an Ultra-Fast Laser System for Accelerator Applications; Cluster Impact Fusion; Effect of a Bacterial Spore Protein on Mutagenesis; Structure and Function of Adenovirus Penton Base Protein; High Resolution Fast X-Ray Detector; Coherent Synchrotron Radiation Longitudinal Bunch Shape Monitor; High Grain Harmonic Generation Experiment; BNL Maglev Studies; Structural Investigations of Pt-Based Catalysts; Studies on the Cellular Toxicity of Cocaine and Cocaethylene; Human Melanocyte Transformation; Exploratory Applications of X-Ray Microscopy; Determination of the Higher Ordered Structure of Eukaryotic Chromosomes; Uranium Neutron Capture Therapy; Tunneling Microscopy Studies of Nanoscale Structures; Nuclear Techiques for Study of Biological Channels; RF Sources for Accelerator Physics; Induction and Repair of Double-Strand Breaks in the DNA of Human Lymphocytes; and An EBIS Source of High Charge State Ions up to Uranium.

  4. Pharmacotherapy in the cardiac catheterization laboratory: evolution and recent developments.

    PubMed

    Thind, Guramrinder S; Parida, Raunak; Gupta, Nishant

    2014-01-01

    Many recent innovations have been made in developing new antiplatelet and anticoagulant drugs in the last few years, with a total of nine new antithrombotic drugs approved by the Food and Drug Administration after the year 2000. This has revolutionized the medical therapy given to manage acute coronary syndrome and support cardiac catheterization. The concept of dual antiplatelet therapy has been emphasized, and clopidogrel has emerged as the most-popular second antiplatelet drug after aspirin. Newer P2Y12 inhibitors like prasugrel and ticagrelor have been extensively studied and compared to clopidogrel. The role of glycoprotein (Gp) IIb/IIIa inhibitors is being redefined. Other alternatives to unfractionated heparin have become available, of which enoxaparin and bivalirudin have been studied the most. Apart from these, many more drugs with novel therapeutic targets are being studied and are currently under development. In this review, current evidence on these drugs is presented and analyzed in a way that would facilitate decision making for the clinician. For this analysis, various high-impact clinical trials, pharmacological studies, meta-analyses, and reviews were accessed through the MEDLINE database. Adopting a unique interdisciplinary approach, an attempt has been made to integrate pharmacological and clinical evidence to better understand and appreciate the pros and cons of each of these classes of drugs. PMID:25364258

  5. Approved IFCC recommendation on reporting results for blood glucose: International Federation of Clinical Chemistry and Laboratory Medicine Scientific Division, Working Group on Selective Electrodes and Point-of-Care Testing (IFCC-SD-WG-SEPOCT).

    PubMed

    D'Orazio, Paul; Burnett, Robert W; Fogh-Andersen, Niels; Jacobs, Ellis; Kuwa, Katsuhiko; Külpmann, Wolf R; Larsson, Lasse; Lewenstam, Andrzej; Maas, Anton H J; Mager, Gerhard; Naskalski, Jerzy W; Okorodudu, Anthony O

    2006-01-01

    In current clinical practice, plasma and blood glucose are used interchangeably with a consequent risk of clinical misinterpretation. In human blood, glucose is distributed, like water, between erythrocytes and plasma. The molality of glucose (amount of glucose per unit water mass) is the same throughout the sample, but the concentration is higher in plasma, because the concentration of water and therefore glucose is higher in plasma than in erythrocytes. Different devices for the measurement of glucose may detect and report fundamentally different quantities. Different water concentrations in the calibrator, plasma, and erythrocyte fluid can explain some of the differences. Results for glucose measurements depend on the sample type and on whether the method requires sample dilution or uses biosensors in undiluted samples. If the results are mixed up or used indiscriminately, the differences may exceed the maximum allowable error for glucose determinations for diagnosing and monitoring diabetes mellitus, thus complicating patient treatment. The goal of the International Federation of Clinical Chemistry and Laboratory Medicine, Scientific Division, Working Group on Selective Electrodes and Point of Care Testing (IFCC-SD-WG-SEPOCT) is to reach a global consensus on reporting results. The document recommends reporting the concentration of glucose in plasma (in the unit mmol/L), irrespective of sample type or measurement technique. A constant factor of 1.11 is used to convert concentration in whole blood to the equivalent concentration in plasma. The conversion will provide harmonized results, facilitating the classification and care of patients and leading to fewer therapeutic misjudgments. PMID:17163827

  6. Ambient Laboratory Coater for Advanced Gas Reactor Fuel Development

    SciTech Connect

    Duane D. Bruns; Robert M. Counce; Irma D. Lima Rojas

    2010-06-09

    this research is targeted at developing improved experimentally-based scaling relationships for the hydrodynamics of shallow, gas-spouted beds of dense particles. The work is motivated by the need to more effctively scale up shallow spouted beds used in processes such as in the coating of nuclear fuel particles where precise control of solids and gas circulation is critically important. Experimental results reported here are for a 50 mm diameter spouted bed containing two different types of bed solids (alumina and zirconia) at different static bed depths and fluidized by air and helium. Measurements of multiple local average pressures, inlet gas pressure fluctuations, and spout height were used to characterize the bed hydrodynamics for each operating condition. Follow-on studies are planned that include additional variations in bed size, particle properties, and fluidizing gas. The ultimate objective is to identify the most important non-dimensional hydrodynamic scaling groups and possible spouted-bed design correlations based on these groups.

  7. BWR plant analyzer development at BNL (Brookhaven National Laboratory)

    SciTech Connect

    Wulff, W.; Cheng, H.S.; Mallen, A.N.

    1986-01-01

    An engineering plant analyzer has been developed at BNL for realistically and accurately simulating transients and severe abnormal events in BWR power plants. Simulations are being carried out routinely with high fidelity, high simulation speed, at low cost and with unsurpassed user convenience. The BNL Plant Analyzer is the only operating facility which (a) simulates more than two orders-of-magnitude faster than the CDC-7600 mainframe computer, (b) is accessible and fully operational in on-line interactive mode, remotely from anywhere in the US, from Europe or the Far East (Korea), via widely available IBM-PC compatible personal computers, standard modems and telephone lines, (c) simulates both slow and rapid transients seven times faster than real-time in direct access, and four times faster in remote access modes, (d) achieves high simulation speed without compromising fidelity, and (e) is available to remote access users at the low cost of $160 per hour.

  8. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper; Durkin, Robert

    2012-01-01

    As an early step in preparing for future EVAs, astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. To date, neutral buoyancy demonstrations at NASA JSC’s Sonny Carter Training Facility have primarily evaluated assembly and maintenance tasks associated with several elements of the ISS. With the retirement of the Space Shuttle, completion of ISS assembly, and introduction of commercial participants for human transportation into space, evaluations at the NBL will take on a new focus. In this session, Juniper Jairala briefly discussed the design of the NBL and, in more detail, described the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated. Robert Durkin discussed the new and potential types of uses for the NBL, including those by non-NASA external customers.

  9. EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory

    NASA Technical Reports Server (NTRS)

    Jairala, Juniper; Durkin, Robert

    2012-01-01

    As an early step in preparing for future EVAs, astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. To date, neutral buoyancy demonstrations at NASA JSC's Sonny Carter Training Facility have primarily evaluated assembly and maintenance tasks associated with several elements of the ISS. With the retirement of the Space Shuttle, completion of ISS assembly, and introduction of commercial participants for human transportation into space, evaluations at the NBL will take on a new focus. In this session, Juniper Jairala briefly discussed the design of the NBL and, in more detail, described the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated. Robert Durkin discussed the new and potential types of uses for the NBL, including those by non-NASA external customers.

  10. Chemical Sciences Division: Annual report 1992

    SciTech Connect

    Not Available

    1993-10-01

    The Chemical Sciences Division (CSD) is one of twelve research Divisions of the Lawrence Berkeley Laboratory, a Department of Energy National Laboratory. The CSD is composed of individual groups and research programs that are organized into five scientific areas: Chemical Physics, Inorganic/Organometallic Chemistry, Actinide Chemistry, Atomic Physics, and Physical Chemistry. This report describes progress by the CSD for 1992. Also included are remarks by the Division Director, a description of work for others (United States Office of Naval Research), and appendices of the Division personnel and an index of investigators. Research reports are grouped as Fundamental Interactions (Photochemical and Radiation Sciences, Chemical Physics, Atomic Physics) or Processes and Techniques (Chemical Energy, Heavy-Element Chemistry, and Chemical Engineering Sciences).

  11. Computing Division two-year operational plan, FY 1981-1982

    SciTech Connect

    Euald, R.H.; Worlton, W.J.; McCormick, M.

    1981-02-01

    This report is a comprehensive planning guide for the Computing Division of the Los Alamos National Laboratory for fiscal years 1981 and 1982. Subjects discussed include critical issues, programmatic requiements, hardware plans, software projects, direct user services, research projects, and projections of future developments.

  12. Water Reactor Safety Research Division quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Romano, A.J.

    1980-06-01

    The Water Reactor Safety Research Programs Quarterly Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: LWR Thermal Hydraulic Development, Advanced Code Evaluation, TRAC Code Assessment, and Stress Corrosion Cracking of PWR Steam Generator Tubing.

  13. Water Reactor Safety Research Division. Quarterly progress report, April 1-June 30, 1980

    SciTech Connect

    Abuaf, N.; Levine, M.M.; Saha, P.; van Rooyen, D.

    1980-08-01

    The Water Reactor Safety Research Programs quarterly report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: LWR Thermal Hydraulic Development, Advanced Code Evlauation, TRAC Code Assessment, and Stress Corrosion Cracking of PWR Steam Generator Tubing.

  14. Advanced Reactor Safety Research Division. Quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Agrawal, A.K.; Cerbone, R.J.; Sastre, C.

    1980-06-01

    The Advanced Reactor Safety Research Programs quarterly progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR Safety Evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  15. Integration of Environmental Analytical Chemistry with Environmental Law: The Development of a Problem-Based Laboratory.

    ERIC Educational Resources Information Center

    Cancilla, Devon A.

    2001-01-01

    Introduces an undergraduate level problem-based analytical chemistry laboratory course integrated with an environmental law course. Aims to develop an understanding among students on the use of environmental indicators for environmental evaluation. (Contains 30 references.) (YDS)

  16. Progress in the Development of Segmented Thermoelectric Unicouples at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Caillat, T.; Fleurial, J-P.; Snyder, G.; Borshchevsky, A.

    2000-01-01

    A new verison of a segmented thermoelectric unicouple incorporating advanced thermoelectric materials with superior thermoelectric figures of merit has been recetly proposed and is currently under development at the Jet Propulsion Laboratory (JPL).

  17. Laboratory Simulation of Shear Band Development in Growth Normal Fault

    NASA Astrophysics Data System (ADS)

    Chu, Sheng-Shin; Lin, Ming-Lang

    2013-04-01

    According to the studies about active faults in metropolitan Taipei area, it has been indicated that Shanchiao Fault at the western rim of Taipei Basin is a highly active normal fault. Slip of the fault can cause deformation of shallower soil layers and lead to the destruction of infrastructures, residential building foundations and utility lines near the influenced area. It was interpreted that Shanchiao Fault is a growth normal fault based on geological drilling and dating information. Therefore in this study, a geological structure similar to growth normal fault (such as Shanchiao Fault) was constructed to simulate the slip induced ground deformation after an additional layer of sedimentation formed above the deformed normal fault. In this study, a sand box under gravity condition was formulated with non-cohesive sands in order to investigate the propagation of shear bands and surface deformation of a growth normal fault. With the presence of sedimentation layer on top of the deformed soil layer due to normal fault, the shear band developed along the previous shear band and propagated upward to the sand surface with a much faster speed comparing to the case when there is no sedimentation layer (i.e. normal fault only). The offset ratio of 1.3~1.5% (defines as the fault tip offset displacement over the thickness of soil layer) for this particular growth fault simulation is required in order to develop a shear band toward the ground surface. Based on the test results, it is concluded that if there is any seismic activity of Shanchiao Fault, with a smaller offset displacement from the fault tip, although the depositional thickness of the upper layer is very thick, the shear band could still be propagated to the ground surface and cause severe damages to the important facilities and infrastructure with Taipei Basin. Therefore, seismic design integrated with the knowledge of near-ground deformation characteristics due to this type of fault need to be emphasized in

  18. Synthetic aperture radar and interferometry development at Sandia National Laboratories

    SciTech Connect

    1993-04-01

    Environmental monitoring, earth-resource mapping, and military systems require broad-area imaging at high resolutions. Many times the imagery must be acquired in inclement weather or during night as well as day. Synthetic aperture radar (SAR) provides such a capability. SAR systems take advantage of the long-range propagation characteristics of radar signals and the complex information processing capability of modern digital electronics to provide high resolution imagery. SAR complements photographic and other optical imaging capabilities because of the minimum constrains on time-of-day and atmospheric conditions and because of the unique responses of terrain and cultural targets to radar frequencies. Interferometry is a method for generating a three-dimensional image of terrain. The height projection is obtained by acquiring two SAR images from two slightly differing locations. It is different from the common method of stereoscopic imaging for topography. The latter relies on differing geometric projections for triangulation to define the surface geometry whereas interferometry relies on differences in radar propagation times between the two SAR locations. This paper presents the capabilities of SAR, explains how SAR works, describes a few SAR applications, provides an overview of SAR development at Sandia, and briefly describes the motion compensation subsystem.

  19. Technical development for production of gene-modified laboratory rats.

    PubMed

    Hirabayashi, Masumi

    2008-04-01

    Transgenic rats have been used as model animals for human diseases and organ transplantation and as animal bioreactors for protein production. In general, transgenic rats are produced by pronuclear microinjection of exogenous DNA. Improvement of post-injection survival has been achieved by micro-vibration of the injection pipette. The promoter region, structural gene, chain length and strand ends of the exogenous DNA are not involved in the production efficiency of transgenic rats. Exogenous DNA prepared at 5 microg/ml seemed to be better integrated than lower and higher concentrations. Intracytoplasmic sperm injection (ICSI) has been successfully achieved in rats using a piezo-driven injection pipette. The ICSI technique has not only been applied to rescue infertile male strains but also to produce transgenic rats. The optimal DNA concentration for the ICSI-tg method (0.1 to 0.5 microg/ml) is lower than that for the conventional pronuclear microinjection. Production efficiency was improved when the membrane structure of the sperm head was partially disrupted by detergent or ultrasonic treatment before exposure to the exogenous DNA solution. For successful production of transgenic rats with a modified endogenous gene, establishment of embryonic stem cell lines or alternatively male germline stem cell lines and technical development of somatic cell nuclear transfer are still necessary for this species. PMID:18446007

  20. Superlattice Barrier Infrared Detector Development at the Jet Propulsion Laboratory

    NASA Technical Reports Server (NTRS)

    Ting, David Z.; Soibel, Alexander; Rafol, Sir B.; Nguyen, Jean; Hoglund, Linda; Khoshakhlagh, Arezou; Keo, Sam A.; Liu, John K.; Mumolo, Jason M.

    2011-01-01

    We report recent efforts in achieving state-of-the-art performance in type-II superlattice based infrared photodetectors using the barrier infrared detector architecture. We used photoluminescence measurements for evaluating detector material and studied the influence of the material quality on the intensity of the photoluminescence. We performed direct noise measurements of the superlattice detectors and demonstrated that while intrinsic 1/f noise is absent in superlattice heterodiode, side-wall leakage current can become a source of strong frequency-dependent noise. We developed an effective dry etching process for these complex antimonide-based superlattices that enabled us to fabricate single pixel devices as well as large format focal plane arrays. We describe the demonstration of a 1024x1024 pixel long-wavelength infrared focal plane array based the complementary barrier infrared detector (CBIRD) design. An 11.5 micron cutoff focal plane without anti-reflection coating has yielded noise equivalent differential temperature of 53 mK at operating temperature of 80 K, with 300 K background and cold-stop. Imaging results from a recent 10 ?m cutoff focal plane array are also presented.

  1. Tailored blast wave formation: Developing experiments pertinent to laboratory astrophysics

    NASA Astrophysics Data System (ADS)

    Moore, Alastair S.; Symes, Daniel R.; Smith, Roland A.

    2005-05-01

    The first production of ``tailored'' blast waves in a cluster media using an intense, 2×1016 W cm-2, laser pulse is reported. This new technique produces cylindrical blast waves with a strong axial modulation of variable spatial frequency as a seed for instability growth. Spherical or cylindrical colliding blast waves can also be produced. Energy deposition in the cluster medium was modified using moderate-power (<1015 W cm-2) ``laser-machining,'' which destroyed clusters in selected regions while keeping the atomic density constant. Electron density profiles track the time evolution showing the production of strongly modulated blast waves and the development of a thin shell after ~6 ns in H2. Similarity parameters suggest that the hydrogen results are hydrodynamically scalable, but instabilities are precluded by the lack of radiation and low Reynolds number. Similar argon and xenon experiments do not form blast waves on the studied time scale, but indicate that radiation might become influential later in the evolution.

  2. Tailored blast wave formation: Developing experiments pertinent to laboratory astrophysics

    SciTech Connect

    Moore, Alastair S.; Symes, Daniel R.; Smith, Roland A.

    2005-05-15

    The first production of 'tailored' blast waves in a cluster media using an intense, 2x10{sup 16} W cm{sup -2}, laser pulse is reported. This new technique produces cylindrical blast waves with a strong axial modulation of variable spatial frequency as a seed for instability growth. Spherical or cylindrical colliding blast waves can also be produced. Energy deposition in the cluster medium was modified using moderate-power (<10{sup 15} W cm{sup -2}) 'laser-machining', which destroyed clusters in selected regions while keeping the atomic density constant. Electron density profiles track the time evolution showing the production of strongly modulated blast waves and the development of a thin shell after {approx_equal}6 ns in H{sub 2}. Similarity parameters suggest that the hydrogen results are hydrodynamically scalable, but instabilities are precluded by the lack of radiation and low Reynolds number. Similar argon and xenon experiments do not form blast waves on the studied time scale, but indicate that radiation might become influential later in the evolution.

  3. Earth Sciences Division annual report 1989

    SciTech Connect

    Not Available

    1990-06-01

    This Annual Report presents summaries of selected representative research activities from Lawrence Berkeley Laboratory grouped according to the principal disciplines of the Earth Sciences Division: Reservoir Engineering and Hydrology, Geology and Geochemistry, and Geophysics and Geomechanics. We are proud to be able to bring you this report, which we hope will convey not only a description of the Division's scientific activities but also a sense of the enthusiasm and excitement present today in the Earth Sciences.

  4. Earth Sciences Division collected abstracts: 1980

    SciTech Connect

    Henry, A.L.; Hornady, B.F.

    1981-10-15

    This report is a compilation of abstracts of papers, reports, and talks presented during 1980 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore National Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract itself is given only under the name of the first author (indicated in capital letters) or the first Earth Sciences Division author.

  5. Philip Morris involvement in the development of an air quality laboratory in El Salvador

    PubMed Central

    Kummerfeldt, C E; Barnoya, J; Bero, L

    2009-01-01

    Background: The tobacco industry has organised research institutions to generate misleading data on indoor air quality, including second-hand smoke exposure and health effects. Objectives: To describe tobacco industry involvement in the organisation and financial support of an air quality research laboratory in El Salvador. Methods: Tobacco industry documents on the internet were systematically searched from August 2007 to February 2008 for air quality studies undertaken in El Salvador, and laboratory personnel were interviewed. Results: Philip Morris sought to establish a network of air quality laboratories throughout Latin America. In El Salvador, in 1997, through Tabacalera de El Salvador (a subsidiary of Philip Morris) and the Salvadoran Foundation for Economic Development (FUSADES), the industry organised an air quality research laboratory. FUSADES was part of the industry’s Latin American Scientific Network, which consisted of doctors hired as consultants who would send air samples from their research to FUSADES. Philip Morris Scientific Affairs personnel hired LabStat, a Canadian-based laboratory, to provide technical assistance to FUSADES (train and assist the laboratory in air quality measurements). In addition, the Washington-based HMS Group successfully implemented a plan to upgrade the laboratory and obtain international certifications. HMS Group also assisted in searching for sustainable funding for FUSADES, including seeking funds from international aid for Hurricane Mitch. Conclusion: Air quality studies that have used the FUSADES laboratory should be carefully interpreted, given the support that this laboratory received from Philip Morris. PMID:19211614

  6. The Impact of Occupational Licensure of Clinical Laboratory Personnel

    ERIC Educational Resources Information Center

    White, William D.

    1978-01-01

    First develops a model of the economic impact of occupational licensure and then estimates the effects of licensure on wages and the division of labor in clinical laboratories. The findings indicate that recent licensure laws have no effect while older, more stringent laws increase the wages and employment of skilled laboratory personnel. (EM)

  7. Origins and development of the National Laboratory System for public health testing.

    PubMed

    Astles, J Rex; White, Vanessa A; Williams, Laurina O

    2010-01-01

    Although not recognized as such, a National Laboratory System (NLS) has existed since the inception of public health laboratory (PHL) testing more than a century ago. The NLS has always relied upon the participation of clinical laboratories, both to report test results that represent public health threats and to submit specimens and isolates to PHLs for additional or confirmatory testing. Historically, a number of factors have hindered the strengthening of the relationships between clinical laboratories and PHLs, but the reality of bioterrorism and subsequent focus on strengthening public-private relationships has stimulated the development of a more robust NLS. Since 2002, there has been substantial strengthening of the NLS through the sharing of lessons learned from several demonstration projects. There is a growing emphasis on defining critical elements of the NLS, including the State Public Health Laboratory System (SPH Laboratory System) and the functions of the Laboratory Program Advisor, a position that every state should have at the center of its laboratory system's capacity-building. Additional strengthening of the NLS is occurring through (1) national biennial measurement of state PHLs' abilities to meet the Core Functions and Capabilities of State PHLs, (2) the new Laboratory System Improvement Program (L-SIP) for the SPH Laboratory System, and (3) sharing ideas to integrate and improve the SPH Laboratory System (e.g., using the L-SIP Online Resource Center). Public health emergencies, such as the recent H1N1 epidemic, illustrate and reinforce the need for a strong NLS within which federal, public health, and clinical (i.e., hospital and private reference) laboratories function in close collaboration. PMID:20518442

  8. Earth Sciences Division collected abstracts: 1979

    SciTech Connect

    Henry, A.L.; Schwartz, L.L.

    1980-04-30

    This report is a compilation of abstracts of papers, internal reports, and talks presented during 1979 at national and international meetings by members of the Earth Sciences Division, Lawrence Livermore Laboratory. The arrangement is alphabetical (by author). For a given report, a bibliographic reference appears under the name of each coauthor, but the abstract iself is given only under the name of the first author or the first Earth Sciences Division author. A topical index at the end of the report provides useful cross references, while indicating major areas of research interest in the Earth Sciences Division.

  9. Development of Distant Learning Laboratory and Creation of Educational Materials

    NASA Technical Reports Server (NTRS)

    Considine, Michelle

    1995-01-01

    proposed four or five possible series that could be developed, each one aimed at a specific age group of students, or group of teachers. I was involved in the design of the series aimed at the youngest children, the Picture Book Science series. My involvement included proposing and researching topics, writing a lesson for the first show, writing the latter portion of the picture book story (the part including the scientific lesson), and illustrating the story. I also designed and collected the materials for the Learning Center's television studio set as well as finished the painting of the main backdrop panels.

  10. Shaping the library of the future: Digital library developments at Los Alamos National Laboratory`s Research Library

    SciTech Connect

    Luce, R. E.

    1994-10-01

    This paper offers an overview of current efforts at the Research Library, Los Alamos National Laboratory, (LANL), to develop digital library services. Current projects of LANL`s Library without Walls initiative are described. Although the architecture of digital libraries generally is experimental and subject to debate, one principle of LANL`s approach to delivering library information is the use of Mosaic as a client for the Research Library`s resources. Several projects under development have significant ramifications for delivering library services over the Internet. Specific efforts via Mosaic include support for preprint databases, providing access to citation databases, and access to a digital image database of unclassified Los Alamos technical reports.

  11. Instrumentation and Controls Division progress report for the period July 1, 1986 to June 30, 1988

    SciTech Connect

    Klobe, L.E.

    1988-12-01

    The Instrumentation and Controls (IandC) Division of Oak Ridge National Laboratory (ORNL) performs basic and applied instrumentation and controls research, development and design engineering, specialized instrument design and fabrication, and maintenance services for instruments, electronics, and computers. The IandC Division is one of the largest RandD organizations of its type among government laboratories, and it exists as the result of an organizational strategy to integrate ORNL's instrumentation and controls-related disciplines into one dedicated functional organization to increase the Laboratory's expertise and capabilities in these rapidly expanding, innovative areas of technology. The Division participates in the programs and projects of ORNL by applying its expertise and capabilities in concert with other divisions to perform basic research and mission-oriented technology development. Many of the Division's RandD tasks that are a part of a larger ORNL program are of sufficient scope that the IandC effort constitutes a separate program element with direct funding and management responsibility within the Division. The activities of IandC include performance of an RandD task in IandC facilities, the participation of from one of many IandC engineers and scientists in a multidisciplinary team working in a specific research area or development project, design and fabrication of a special instrument or instrumentation system, or a few hours of maintenance service. In its support and maintenance work, the role of the IandC Division is to provide a level of expertise appropriate to complete a job successfully at minimum overall cost and time schedule---a role which involves IandC in almost all ORNL activities.

  12. The Materials Division: A case study

    NASA Technical Reports Server (NTRS)

    Grisaffe, Salvatore J.; Lowell, Carl E.

    1989-01-01

    The Materials Division at NASA's Lewis Research Center has been engaged in a program to improve the quality of its output. The division, its work, and its customers are described as well as the methodologies developed to assess and improve the quality of the Division's staff and output. Examples of these methodologies are presented and evaluated. An assessment of current progress is also presented along with a summary of future plans.

  13. Laboratory Directed Research & Development Program. Annual report to the Department of Energy, Revised December 1993

    SciTech Connect

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments.

  14. Environmental Sciences Division annual progress report for period ending September 30, 1994

    SciTech Connect

    1994-12-31

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division (ESD) of Oak Ridge National Laboratory during fiscal year (FY) 1994, which extended from October 1, 1993, through September 30, 1994. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units are sections highlighting ESD Scientific, Technical, and Administrative Achievement awards and listing information necessary to covey the scope of the work in the division. An organizational chart of staff and long-term guests who wee in ESD at the end of FY 1994 is located in the final section of the report.

  15. Environmental Sciences Division annual progress report for period ending September 30, 1993

    SciTech Connect

    Not Available

    1994-05-01

    This progress report summarizes the research and development activities conducted in the Environmental Sciences Division (ESD) of Oak Ridge National Laboratory during fiscal year (FY) 1993, which extended from October 1, 1992, through September 30, 1993. The report is structured to provide descriptions of current activities and accomplishments in each of the division`s major organizational units. Following the sections describing the organizational units are sections highlighting ESD Scientific, Technical, and Administrative Achievement awards and listing information necessary to convey the scope of the work in the division. An organizational chart of staff and long-term guests who were in ESD and the end of FY 1993 is located in the final section of the report.

  16. Chemistry Graduate Teaching Assistants' Experiences in Academic Laboratories and Development of a Teaching Self-image

    NASA Astrophysics Data System (ADS)

    Gatlin, Todd Adam

    Graduate teaching assistants (GTAs) play a prominent role in chemistry laboratory instruction at research based universities. They teach almost all undergraduate chemistry laboratory courses. However, their role in laboratory instruction has often been overlooked in educational research. Interest in chemistry GTAs has been placed on training and their perceived expectations, but less attention has been paid to their experiences or their potential benefits from teaching. This work was designed to investigate GTAs' experiences in and benefits from laboratory instructional environments. This dissertation includes three related studies on GTAs' experiences teaching in general chemistry laboratories. Qualitative methods were used for each study. First, phenomenological analysis was used to explore GTAs' experiences in an expository laboratory program. Post-teaching interviews were the primary data source. GTAs experiences were described in three dimensions: doing, knowing, and transferring. Gains available to GTAs revolved around general teaching skills. However, no gains specifically related to scientific development were found in this laboratory format. Case-study methods were used to explore and illustrate ways GTAs develop a GTA self-image---the way they see themselves as instructors. Two general chemistry laboratory programs that represent two very different instructional frameworks were chosen for the context of this study. The first program used a cooperative project-based approach. The second program used weekly, verification-type activities. End of the semester interviews were collected and served as the primary data source. A follow-up case study of a new cohort of GTAs in the cooperative problem-based laboratory was undertaken to investigate changes in GTAs' self-images over the course of one semester. Pre-semester and post-semester interviews served as the primary data source. Findings suggest that GTAs' construction of their self-image is shaped through the

  17. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT ANNUAL REPORT TO THE DEPARTMENT OF ENERGY - DECEMBER 2006

    SciTech Connect

    FOX, K.J.

    2006-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2006.

  18. The development of systematic quality control method using laboratory information system and unity program.

    PubMed

    Min, Won-Ki; Lee, Woochang; Park, Hyosoon

    2002-01-01

    Quality control (QC) process is performed to detect and correct errors in the laboratory, of which systematic errors are repeated and affect all the laboratory process thereafter. This makes it necessary for all the laboratories to detect and correct errors effectively and efficiently. We developed an on-line quality assurance system for detection and correction of systematic error, and linked it to the Unity Plus/Pro (Bio-Rad Laboratories, Irvine, USA), a commercially available quality management system. The laboratory information system based on the client-server paradigm was developed using NCR3600 (NCR, West Columbia, USA) as the server and database for server was Oracle 7.2 (Oracle, Belmont, USA) and development tool was Powerbuilder (Powersoft Burlignton, UK). Each QC material is registered and gets its own identification number and tested the same way as patient sample. The resulting QC data is entered into the Unity Plus/Pro program by in-house data entering program or by manual input. With the implementation of in-house laboratory information system (LIS) and linking it to Unity Plus/Pro, we could apply Westgard's multi-rule for higher error detection rate, resulting in more systematic and precise quality assurance for laboratory product, as well as complementary to conventional external quality assessment. PMID:12755272

  19. Child Development Laboratory Schools as Generators of Knowledge in Early Childhood Education: New Models and Approaches

    ERIC Educational Resources Information Center

    McBride, Brent A.; Groves, Melissa; Barbour, Nancy; Horm, Diane; Stremmel, Andrew; Lash, Martha; Bersani, Carol; Ratekin, Cynthia; Moran, James; Elicker, James; Toussaint, Susan

    2012-01-01

    Research Findings: University-based child development laboratory programs have a long and rich history of supporting teaching, research, and outreach activities in the child development/early childhood education fields. Although these programs were originally developed in order to conduct research on children and families to inform policy and…

  20. University-Based Child Development Laboratory Programs: Emerging Issues and Challenges.

    ERIC Educational Resources Information Center

    McBride, Brent A.

    Although child development laboratory programs continue to be important players in the child development and early childhood arenas, these programs face a number of emerging issues and challenges as they seek to solidify their support on campuses nationwide. Child development lab programs have been charged to serve as: (1) sites for personnel…