Science.gov

Sample records for laboratory high explosives

  1. Bioremediation of high explosives

    SciTech Connect

    Kitts, C.L.; Alvarez, M.A.; Hanners, J.L.; Ogden, K.L.; Vanderberg-Twary, L.; Unkefer, P.J.

    1995-09-01

    Manufacture and use of high explosives has resulted in contamination of ground water and soils throughout the world. The use of biological methods for remediation of high explosives contamination has received considerable attention in recent years. Biodegradation is most easily studied using organisms in liquid cultures. Thus, the amount of explosive that can be degraded in liquid culture is quite small. However, these experiments are useful for gathering basic information about the biochemical pathways of biodegradation, identifying appropriate organisms and obtaining rates of degradation. The authors` laboratory has investigated all three major areas of explosives bioremediation: explosives in solution, explosives in soil, and the disposal of bulk explosives from demilitarization operations. They investigated the three explosives most commonly used in modern high explosive formulations: 2,4,6-trinitrotoluene (TNT), hexahydro 1,3,5-trinitro-1,3,5-triazine (RDX) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX).

  2. Capabilities for high explosive pulsed power research at Los Alamos National Laboratory

    SciTech Connect

    Goforth, James H; Oona, Henn; Tasker, Douglas G; Kaul, A M

    2008-01-01

    Research on topics requiring high magnetic fields and high currents have been pursued using high explosive pulsed power (HEPP) techniques since the 1950s at Los Alamos National Laboratory. We have developed many sophisticated HEPr systems through the years, and most of them depend on technology available from the nuclear weapons program. Through the 1980s and 1990s, our budgets would sustain parallel efforts in zpinch research using both HEPr and capacitor banks. In recent years, many changes have occurred that are driven by concerns such as safety, security, and environment, as well as reduced budgets and downsizing of the National Nuclear Security Administration (NNSA) complex due to the end of the cold war era. In this paper, we review the teclmiques developed to date, and adaptations that are driven by changes in budgets and our changing complex. One new Ranchero-based solid liner z-pinch experimental design is also presented. Explosives that are cast to shape instead of being machined, and initiation systems that depend on arrays of slapper detonators are important new tools. Some materials that are seen as hazardous to the environment are avoided in designs. The process continues to allow a wide range of research however, and there are few, if any, experiments that we have done in the past that could not be perform today. The HErr firing facility at Los Alamos continues to have a 2000 lb. high explosive limit, and our 2.4 MJ capacitor bank remains a mainstay of the effort. Modem diagnostic and data analysis capabilities allow fewer personnel to achieve better results, and in the broad sense we continue to have a robust capability.

  3. New 100 mm Gun Assembly Installation at Lawrence Livermore National Laboratory High Explosives Applications Facility

    SciTech Connect

    Vandersall, K S; Lee, R A; Chiao, P I; Garcia, F; Travis, J O; Forbes, J W

    2003-10-28

    A new 100mm gun assembly was recently installed and tested at Lawrence Livermore National Laboratories located in the High Explosives Applications Facility (HEAF). Thiot Ingenierie performed the design of the replacement barrel, based on improvements to the initial design. This design incorporated barrel and breech sections forged from CLARM series high-strength alloys obtained from Tecphy Corporation and machined by Manufacture de Forage. Part of the improvement of the design was implementing a laser alignment system for quick and accurate barrel alignment checks. This laser is also used to align the target assembly. This paper will detail the design changes incorporated into the installation, the testing process, and future direction of research for the new gun.

  4. Lightning Protection Certification for High Explosives Facilities at Lawrence Livermore National Laboratory

    SciTech Connect

    Clancy, T J; Brown, C G; Ong, M M; Clark, G A

    2006-01-11

    Presented here is an innovation in lighting safety certification, and a description of its implementation for high explosives processing and storage facilities at Lawrence Livermore National Laboratory. Lightning rods have proven useful in the protection of wooden structures; however, modern structures made of rebar, concrete, and the like, require fresh thinking. Our process involves a rigorous and unique approach to lightning safety for modern buildings, where the internal voltages and currents are quantified and the risk assessed. To follow are the main technical aspects of lightning protection for modern structures and these methods comply with the requirements of the National Fire Protection Association, the National Electrical Code, and the Department of Energy [1][2]. At the date of this release, we have certified over 70 HE processing and storage cells at our Site 300 facility.

  5. Remedial investigation of the High-Explosives (HE) Process Area, Lawrence Livermore National Laboratory Site 300

    SciTech Connect

    Crow, N.B.; Lamarre, A.L.

    1990-08-01

    This report presents the results of a Remedial Investigation (RI) to define the extent of high explosives (HE) compounds and volatile organic compounds (VOCs) found in the soil, rocks, and ground water of the HE Process Area of Lawrence Livermore National Laboratory's (LLNL) Site 300 Facility. The report evaluates potential public health environmental risks associated with these compounds. Hydrogeologic information available before February 15, 1990, is included; however, chemical analyses and water-level data are reported through March 1990. This report is intended to assist the California Regional Water Quality Control Board (RWQCB)--Central Valley Region and the US Environmental Protection Agency (EPA) in evaluating the extent of environmental contamination of the LLNL HE Process Area and ultimately in designing remedial actions. 90 refs., 20 figs., 7 tabs.

  6. High-nitrogen explosives

    SciTech Connect

    Naud, D.; Hiskey, M. A.; Kramer, J. F.; Bishop, R. L.; Harry, H. H.; Son, S. F.; Sullivan, G. K.

    2002-01-01

    The syntheses and characterization of various tetrazine and furazan compounds offer a different approach to explosives development. Traditional explosives - such as TNT or RDX - rely on the oxidation of the carbon and hydrogen atoms by the oxygen carrying nitro group to produce the explosive energy. High-nitrogen compounds rely instead on large positive heats of formation for that energy. Some of these high-nitrogen compounds have been shown to be less sensitive to initiation (e.g. by impact) when compared to traditional nitro-containing explosives of similar performances. Using the precursor, 3,6-bis-(3,5-dimethylpyrazol-1-yl)-s-tetrazine (BDT), several useful energetic compounds based on the s-tetrazine system have been synthesized and studied. The compound, 3,3{prime}-azobis(6-amino-s-tetrazine) or DAAT, detonates as a half inch rate stick despite having no oxygen in the molecule. Using perfluoroacetic acid, DAAT can be oxidized to give mixtures of N-oxide isomers (DAAT03.5) with an average oxygen content of about 3.5. This energetic mixture burns at extremely high rates and with low dependency on pressure. Another tetrazine compound of interest is 3,6-diguanidino-s-tetrazine(DGT) and its dinitrate and diperchlorate salts. DGT is easily synthesized by reacting BDT with guanidine in methanol. Using Caro's acid, DGT can be further oxidized to give 3,6-diguanidino-s-tetrazine-1,4-di-N-oxide (DGT-DO). Like DGT, the di-N-oxide can react with nitric acid or perchloric acid to give the dinitrate and the diperchlorate salts. The compounds, 4,4{prime}-diamino-3,3{prime}-azoxyfurazan (DAAF) and 4,4{prime}-diamino-3,3{prime}-azofurazan (DAAzF), may have important future roles in insensitive explosive applications. Neither DAAF nor DAAzF can be initiated by laboratory impact drop tests, yet both have in some aspects better explosive performances than 1,3,5-triamino-2,4,6-trinitrobenzene TATB - the standard of insensitive high explosives. The thermal stability of DAAzF is

  7. High Explosive Radio Telemetry System

    SciTech Connect

    Bracht, R.R.; Crawford, T.R.; Johnson, R.L.; Mclaughlin, B.M.

    1998-11-04

    This paper overviews the High Explosive Radio Telemetry (HERT) system, under co-development by Los Alamos National Laboratories and Allied Signal Federal Manufacturing & Technologies. This telemetry system is designed to measure the initial performance of an explosive package under flight environment conditions, transmitting data from up to 64 sensors. It features high speed, accurate time resolution (10 ns) and has the ability to complete transmission of data before the system is destroyed by the explosion. In order to affect the resources and performance of a flight delivery vehicle as little as possible, the system is designed such that physical size, power requirements, and antenna demands are as small as possible.

  8. Photographic laboratory studies of explosions.

    NASA Technical Reports Server (NTRS)

    Kamel, M. M.; Oppenheim, A. K.

    1973-01-01

    Description of a series of cinematographic studies of explosions made with a high-speed rotating-mirror streak camera which uses a high-frequency stroboscopic ruby laser as the light source. The results obtained mainly concern explosions initiated by focused laser irradiation from a pulsed neodymium laser in a detonating gas consisting essentially of an equimolar mixture of acetylene and oxygen at an initial pressure of 100 torr at room temperature. Among the most significant observations were observations of a spherical blast wave preceded by a Chapman-Jouguet detonation which is stabilized immediately after initiation, the merging of a spherical flame with a shock front of the blast wave in which the flame is propagating, the division of a spherical detonation front into a shock wave and flame, and the generation of shock waves by a network of spherical flames.

  9. Explosive detection program at Sandia National Laboratories

    SciTech Connect

    Conrad, F.J.

    1983-01-01

    A brief, general description of the Explosive Detection Program at Sandia National Laboratories is given. The six major topics of the program are: (1) Coated or Uncoated Metallic Preconcentrators; (2) a Derivatization Study; (3) a Portable Ion Mobility Spectrometer; (4) an Explosive Screening Portal; (5) Mass Spectrometer Development; and (6) an Explosive Vapor Generator.

  10. Closure plan for the decommissioned high explosives rinse-water lagoons at Lawrence Livermore National Laboratory Site 300

    SciTech Connect

    Carpenter, D.W.; Lamarre, A.L.; Crow, N.B.; Swearengen, P.M.

    1988-05-31

    The High Explosives (HE) Process Area is a major facility at Lawrence Livermore National Laboratory (LLNL) Site 300. Within the Process Area, rinse water from various buildings formerly was discharged to nine relatively small, unlined lagoons where it was disposed of by evaporation and infiltration. In 1985, LLNL decommissioned these lagoons and diverted the rinse waters to two doubly lined surface impoundments. LLNL conducted the hydrogeologic investigations required to support the permanent closure of the none decommissioned lagoons. These studies included drilling ground water monitoring wells and extensively collecting soil and rock samples, which were analyzed for EPA toxic metals, HE compounds, and purgeable and extractable priority organic pollutants. On October 26, 1987, the RWQCB requested that we prepare a comprehensive report to summarize and discuss the findings of the LLNL HE Process Area Investigation. This report is our response to the Board's request. 22 refs., 19 figs. , 45 tabs.

  11. Avian community composition in response to high explosive testing operations at Los Alamos National Laboratory in Northern New Mexico

    DOE PAGESBeta

    Keller, David C.; Fresquez, Philip R.; Hansen, Leslie A.; Kaschube, Danielle R.

    2015-12-28

    Breeding bird abundance, species richness, evenness, diversity, composition, productivity, and survivorship were determined near a high-explosive detonation site at Los Alamos National Laboratory, New Mexico, USA, during pre-operation (1997-1999) and operation (2000-2014) periods. The operation periods consisted of detonations (<23 kg in yield and <3 per breeding season) in open air (2000-2002), within foam containment (2003-2006) and within steel vessel containment (2007-2014) systems; the latter two were employed to reduce noise and dispersal of high-explosives residues. A total of 2952 bird captures, representing 80 species, was recorded during 18 years of mist net operations using the Monitoring Avian Productivity andmore » Survivorship protocol. Individuals captured were identified to species, aged, sexed, and banded during May through August of each year. There were no significant differences (p > 0.05) in mean avian abundance and species evenness in any of the operation periods as compared with the pre-operation period. Species richness and diversity were significantly higher (p < 0.05) during the vessel containment period (2007-2014) than the pre-operation period. The time period of this study coincided with a wildfire (2000), a bark beetle infestation (2002), and two periods of drought (Nov 1999-Mar 2004 and Dec 2005-Dec 2014) that affected the study area. Furthermore, analysis of aerial photos determined that the average percent canopy cover of mature ponderosa pines (Pinus ponderosa) within 100 feet of mist net sites declined from 12% to 3% between 1991 and 2014 and the percent cover of shrubs slightly increased.« less

  12. Environmental Assessment for the High Explosives Wastewater Treatment Facility, Los Alamos National Laboratory, Los Alamos, New Mexico

    SciTech Connect

    1995-08-03

    The Department of Energy (DOE) has identified a need to improve the management of wastewater resulting from high explosives (HE) research and development work at Los Alamos National Laboratory (LANL). LANL`s current methods off managing HE-contaminated wastewater cannot ensure that discharged HE wastewater would consistently meet the Environmental Protection Agency`s (EPA`s) standards for wastewater discharge. The DOE needs to enhance He wastewater management to e able to meet both present and future regulatory standards for wastewater discharge. The DOE also proposes to incorporate major pollution prevention and waste reduction features into LANL`s existing HE production facilities. Currently, wastewater from HE processing buildings at four Technical Areas (TAs) accumulates in sumps where particulate HE settles out and barium is precipitated. Wastewater is then released from the sumps to the environment at 15 permitted outfalls without treatment. The released water may contain suspended and dissolved contaminants, such as HE and solvents. This Environmental Assessment (EA) analyzes two alternatives, the Proposed Action and the Alternative Action, that would meet the purpose and need for agency action. Both alternatives would treat all HE process wastewater using sand filters to remove HE particulates and activated carbon to adsorb organic solvents and dissolved HE. Under either alternative, LANL would burn solvents and flash dried HE particulates and spent carbon following well-established procedures. Burning would produce secondary waste that would be stored, treated, and disposed of at TA-54, Area J. This report contains the Environmental Assessment, as well as the Finding of No Significant Impact and Floodplain Statement of Findings for the High Explosives Wastewater Treatment Facility.

  13. Avian community composition in response to high explosive testing operations at Los Alamos National Laboratory in Northern New Mexico

    SciTech Connect

    Keller, David C.; Fresquez, Philip R.; Hansen, Leslie A.; Kaschube, Danielle R.

    2015-12-28

    Breeding bird abundance, species richness, evenness, diversity, composition, productivity, and survivorship were determined near a high-explosive detonation site at Los Alamos National Laboratory, New Mexico, USA, during pre-operation (1997-1999) and operation (2000-2014) periods. The operation periods consisted of detonations (<23 kg in yield and <3 per breeding season) in open air (2000-2002), within foam containment (2003-2006) and within steel vessel containment (2007-2014) systems; the latter two were employed to reduce noise and dispersal of high-explosives residues. A total of 2952 bird captures, representing 80 species, was recorded during 18 years of mist net operations using the Monitoring Avian Productivity and Survivorship protocol. Individuals captured were identified to species, aged, sexed, and banded during May through August of each year. There were no significant differences (p > 0.05) in mean avian abundance and species evenness in any of the operation periods as compared with the pre-operation period. Species richness and diversity were significantly higher (p < 0.05) during the vessel containment period (2007-2014) than the pre-operation period. The time period of this study coincided with a wildfire (2000), a bark beetle infestation (2002), and two periods of drought (Nov 1999-Mar 2004 and Dec 2005-Dec 2014) that affected the study area. Furthermore, analysis of aerial photos determined that the average percent canopy cover of mature ponderosa pines (Pinus ponderosa) within 100 feet of mist net sites declined from 12% to 3% between 1991 and 2014 and the percent cover of shrubs slightly increased.

  14. Simulating intracrater ash recycling during mid-intensity explosive activity: high temperature laboratory experiments on natural basaltic ash

    NASA Astrophysics Data System (ADS)

    D'Oriano, Claudia; Pompilio, Massimo; Bertagnini, Antonella; Cioni, Raffaello; Pichavant, Michel

    2010-05-01

    Direct observations of mid-intensity eruptions, in which a huge amount of ash is generated, indicate that ash recycling is quite common. The recognition of juvenile vs. recycled fragments is not straightforward, and no unequivocal, widely accepted criteria exist to support this. The presence of recycled glassy fragments can hide primary magmatic information, introducing bias in the interpretations of the ongoing magmatic and volcanic activity. High temperature experiments were performed at atmospheric pressure on natural samples to investigate the effects of reheating on morphology, texture and composition of volcanic ash. Experiments simulate the transformation of juvenile glassy fragments that, falling into the crater or in the upper part of the conduit, are recycled by following explosions. Textural and compositional modifications obtained in laboratory are compared with similar features observed in natural samples in order to identify some main general criteria to be used for the discrimination of recycled material. Experiments were carried out on tephra produced during Strombolian activity, fire fountains and continuous ash emission at Etna, Stromboli and Vesuvius. Coarse glassy clasts were crushed in a nylon mortar in order to create an artificial ash, and then sieved to select the size interval of 1-0.71 mm. Ash shards were put in a sealed or open quartz tube, in order to prevent or to reproduce effects of air oxidation. The tube was suspended in a HT furnace at INGV-Pisa and kept at different temperatures (up to to 1110°C) for increasing time (0.5-12 hours). Preliminary experiments were also performed under gas flux conditions. Optical and electron microscope observations indicate that high temperature and exposure to the air induce large modifications on clast surface, ranging from change in color, to incipient plastic deformation till complete sintering. Significant change in color of clasts is strictly related to the presence of air, irrespective of

  15. NEW GUN CAPABILITY WITH INTERCHANGABLE BARRELS TO INVESTIGATE LOW VELOCITY IMPACT REGIMES AT THE LAWRENCE LIVERMORE NATIONAL LABORATORY HIGH EXPLOSIVES APPLICATIONS FACILITY

    SciTech Connect

    Vandersall, K S; Behn, A; Gresshoff, M; Jr., L F; Chiao, P I

    2009-09-16

    A new gas gun capability is being activated at Lawrence Livermore National Laboratories located in the High Explosives Applications Facility (HEAF). The single stage light gas (dry air, nitrogen, or helium) gun has interchangeable barrels ranging from 25.4 mm to 76.2 mm in diameter with 1.8 meters in length and is being fabricated by Physics Applications, Inc. Because it is being used for safety studies involving explosives, the gun is planned for operation inside a large enclosed firing tank, with typical velocities planned in the range of 10-300 m/s. Three applications planned for this gun include: low velocity impact of detonator or detonator/booster assemblies with various projectile shapes, the Steven Impact test that involves impact initiation of a cased explosive target, and the Taylor impact test using a cylindrical explosive sample impacted onto a rigid anvil for fracture studies of energetic materials. A highlight of the gun features, outline on work in progress for implementing this capability, and discussion of the planned areas of research will be included.

  16. Novel high explosive compositions

    DOEpatents

    Perry, D.D.; Fein, M.M.; Schoenfelder, C.W.

    1968-04-16

    This is a technique of preparing explosive compositions by the in-situ reaction of polynitroaliphatic compounds with one or more carboranes or carborane derivatives. One or more polynitroaliphatic reactants are combined with one or more carborane reactants in a suitable container and mixed to a homogeneous reaction mixture using a stream of inert gas or conventional mixing means. Ordinarily the container is a fissure, crack, or crevice in which the explosive is to be implanted. The ratio of reactants will determine not only the stoichiometry of the system, but will effect the quality and quantity of combustion products, the explosive force obtained as well as the impact sensitivity. The test values can shift with even relatively slight changes or modifications in the reaction conditions. Eighteen illustrative examples accompany the disclosure. (46 claims)

  17. Designing for explosive safety'': The Explosive Components Facility at Sandia National Laboratories

    SciTech Connect

    Couch, W.A.

    1990-12-01

    The Explosive Components Facility (ECF) is to be a new major facility in the Sandia National Laboratories (SNL) Weapons Program. The ECF is a self-contained, secure site on SNL property and is surrounded by Kirtland Air Force Base which is located 6-1/2 miles east of downtown Albuquerque, New Mexico. The ECF will be dedicated to research, development, and testing of detonators, neutron generators, batteries, explosives, and other weapon components. It will have capabilities for conducting explosive test fires, gas gun testing, physical analyses, chemical analyses, electrical testing and ancillary explosive storage in magazines. The ECF complex is composed of a building covering an area of approximately 91,000 square feet, six exterior explosive service magazines and a remote test cell. Approximately 50% of the building space will be devoted to highly specialized laboratory and test areas, the other 50% of the building is considered nonhazardous. Critical to the laboratory and test areas are the blast-structural design consideration and operational considerations, particularly those concerning personnel access control, safety and environmental protection. This area will be decoupled from the rest of the building to the extent that routine tests will not be heard or felt in the administrative area of the building. While the ECF is designed in accordance with the DOE Explosives Safety Manual to mitigate any off-site blast effects, potential injuries or death to the ECF staff may result from an accidental detonation of explosive material within the facility. Therefore, reducing the risk of exposing operation personnel to hazardous and energetic material is paramount in the design of the ECF.

  18. High explosive compound

    DOEpatents

    Crawford, Theodore C.

    1976-01-01

    1. A low detonation velocity explosive consisting essentially of a particulate mixture of ortho-boric acid and trinitrotoluene, said mixture containing from about 25 percent to about 65 percent by weight of ortho-boric acid, said ortho-boric acid comprised of from 60 percent to 90 percent of spherical particles having a mean particle size of about 275 microns and 10 percent to 40 percent of spherical particles having a particle size less than about 44 microns.

  19. Phreatic and Hydrothermal Explosions: A Laboratory Approach

    NASA Astrophysics Data System (ADS)

    Scheu, B.; Dingwell, D. B.

    2010-12-01

    Phreatic eruptions are amongst the most common eruption types on earth. They might be precursory to another type of volcanic eruption but often they stand on their one. Despite being the most common eruption type, they also are one of the most diverse eruptions, in appearance as well as on eruption mechanism. Yet steam is the common fuel behind all phreatic eruptions. The steam-driven explosions occur when water beneath the ground or on the surface is heated by magma, lava, hot rocks, or fresh volcanic deposits (such as ignimbrites, tephra and pyroclastic-flow deposits) and result in crater, tuff rings and debris avalanches. The intense heat of such material may cause water to boil and flash to steam, thereby generating an explosion of steam, water, ash, blocks, and bombs. Another wide and important field affected by phreatic explosions are hydrothermal areas; here phreatic explosions occur every few months creating explosion craters and resemble a significant hazard to hydrothermal power plants. Despite of their hazard potential, phreatic explosions have so far been overlooked by the field of experimental volcanology. A part of their hazard potential in owned by the fact that phreatic explosions are hardly predictable in occurrence time and size as they have manifold triggers (variances in groundwater and heat systems, earthquakes, material fatigue, water level, etc..) A new set of experiments has been designed to focus on this phreatic type of steam explosion, whereas classical phreatomagmatic experiments use molten fuel-coolant interaction (e.g., Zimanowski, et al., 1991). The violent transition of the superheated water to vapour adds another degree of explosivity to the dry magmatic fragmentation, driven mostly by vesicle bursting due to internal gas overpressure. At low water fractions the fragmentation is strongly enforced by the mixture of these two effects and a large fraction of fine pyroclasts are produced, whereas at high water fraction in the sample the

  20. Securing Infrastructure from High Explosive Threats

    SciTech Connect

    Glascoe, L; Noble, C; Reynolds, J; Kuhl, A; Morris, J

    2009-03-20

    Lawrence Livermore National Laboratory (LLNL) is working with the Department of Homeland Security's Science and Technology Directorate, the Transportation Security Administration, and several infrastructure partners to characterize and help mitigate principal structural vulnerabilities to explosive threats. Given the importance of infrastructure to the nation's security and economy, there is a clear need for applied research and analyses (1) to improve understanding of the vulnerabilities of these systems to explosive threats and (2) to provide decision makers with time-critical technical assistance concerning countermeasure and mitigation options. Fully-coupled high performance calculations of structural response to ideal and non-ideal explosives help bound and quantify specific critical vulnerabilities, and help identify possible corrective schemes. Experimental validation of modeling approaches and methodologies builds confidence in the prediction, while advanced stochastic techniques allow for optimal use of scarce computational resources to efficiently provide infrastructure owners and decision makers with timely analyses.

  1. Insensitive fuze train for high explosives

    DOEpatents

    Cutting, Jack L.; Lee, Ronald S.; Von Holle, William G.

    1994-01-01

    A generic insensitive fuze train to initiate insensitive high explosives, such as PBXW-124. The insensitive fuze train uses a slapper foil to initiate sub-gram quantities of an explosive, such as HNS-IV or PETN. This small amount of explosive drives a larger metal slapper onto a booster charge of an insensitive explosive, such as UF-TATB. The booster charge initiates a larger charge of an explosive, such as LX-17, which in turn, initiates the insensitive high explosive, such as PBXW-124.

  2. Insensitive fuze train for high explosives

    DOEpatents

    Cutting, J.L.; Lee, R.S.; Von Holle, W.G.

    1994-01-04

    A generic insensitive fuze train to initiate insensitive high explosives, such as PBXW-124 is described. The insensitive fuze train uses a slapper foil to initiate sub-gram quantities of an explosive, such as HNS-IV or PETN. This small amount of explosive drives a larger metal slapper onto a booster charge of an insensitive explosive, such as UF-TATB. The booster charge initiates a larger charge of an explosive, such as LX-17, which in turn, initiates the insensitive high explosive, such as PBXW-124. 3 figures.

  3. Computed tomography experiments of Pantex high explosives

    NASA Astrophysics Data System (ADS)

    Perkins, D. E.; Martz, H. E.; Hester, L. O.; Sobczak, G.; Pratt, C. L.

    1992-04-01

    X-ray computed tomography is an advanced imaging technique which provide three-dimensional nondestructive characterization of materials, components and assemblies. The CT Project group at Lawrence Livermore National Laboratory (LLNL) and the Pantex Plant are cooperating to examine the use of CT technology to inspect and characterize high-explosives pressings (e.g., PBX-9502, LX-10-2). High-explosives pressings manufactured by Pantex must be characterized prior to assembling into weapons systems; a nondestructive examination of all assembly parts would be preferable to the current sampling and destructive testing. The earlier in the processing cycle this can be done the more cost effective it will be. We have performed experiments that show that this characterization can be performed at the pressed billet stage using CT. We have detected 2-mm inclusions in a 15-cm diameter billet and 3.5-mm voids in a 20-cm diameter billet. Based on these results we show calculations that can be used to design production CT systems for characterization of high-explosives.

  4. High temperature two component explosive

    DOEpatents

    Mars, James E.; Poole, Donald R.; Schmidt, Eckart W.; Wang, Charles

    1981-01-01

    A two component, high temperature, thermally stable explosive composition comprises a liquid or low melting oxidizer and a liquid or low melting organic fuel. The oxidizer and fuel in admixture are incapable of substantial spontaneous exothermic reaction at temperatures on the order of 475.degree. K. At temperatures on the order of 475.degree. K., the oxidizer and fuel in admixture have an activation energy of at least about 40 kcal/mol. As a result of the high activation energy, the preferred explosive compositions are nondetonable as solids at ambient temperature, and become detonable only when heated beyond the melting point. Preferable oxidizers are selected from alkali or alkaline earth metal nitrates, nitrites, perchlorates, and/or mixtures thereof. Preferred fuels are organic compounds having polar hydrophilic groups. The most preferred fuels are guanidinium nitrate, acetamide and mixtures of the two. Most preferred oxidizers are eutectic mixtures of lithium nitrate, potassium nitrate and sodium nitrate, of sodium nitrite, sodium nitrate and potassium nitrate, and of potassium nitrate, calcium nitrate and sodium nitrate.

  5. Ignition dynamics of high explosives

    SciTech Connect

    Ali, A.N.; Son, S.F.; Sander, R.K.; Asay, B.W.

    1998-12-31

    Mechanical insults of granular high explosives (HE) can result in localized areas of elevated temperature, or hot spots. The evolution of these hot spots is a central issue of HE science. Because of the complexity involved, it is worthwhile to study mechanical and reaction processes in isolation. Mechanical processes are isolated and studied using inert materials or weak insults where reaction may be minimal. Likewise, purely thermal processes can be considered to isolate HE reaction response. In this work the authors study the radiant ignition of various HEs of interest, including HMX (C{sub 4}H{sub 8}N{sub 8}O{sub 8}), PBX 9501 (95% HMX, 2.5% Estane, 2.5% BDNPA/BDNPF), RDX (C{sub 3}H{sub 6}N{sub 6}O{sub 6}), TATB (C{sub 6}H{sub 6}N{sub 6}O{sub 6}), and PBX 9502 (95% TATB, 5% Kel-F) and aged PBX 9502. Initial work has included unconfined samples at ambient pressure in air. Diagnostics have included photodiodes to record first light emission, high speed photography, microthermocouple and IR emission measurement to obtain surface temperature, IR emission of gases above the pellet, and a novel nonlinear optical technique to characterize the dynamic {beta}-{delta} solid phase transformation and the formation of a liquid layer. The authors find that ignition delays at various power levels is very similar for HMX and RDX; except that the minimum radiant flux needed for RDX ignition is higher. The addition of only 5% binder (PBX 9501) causes significantly longer ignition delays at lower heat fluxes compared with HMX alone. TATB and TATB-based explosives exhibit much longer ignition delays than HMX. In contrast to HMX, however, no measurable difference is observed in TATB by the addition of a binder (PBX 9502, aged or pristine).

  6. PINS Measurements and Simulations for Stand-Off Detection of High Explosives

    SciTech Connect

    E.H. Seabury

    2011-07-01

    There has been some interest in the ability of Idaho National Laboratory's (INL) Portable Isotopic Neutron Spectroscopy System's (PINS) ability to detect high explosives at a distance. In order to assess the system's ability to perform this task, laboratory experiments on simulated or mock explosives and Monte Carlo simulations using MCNP on both mock and real explosives have been performed. The simulations and experiments on mock explosives have essentially identical configurations, allowing the models to be confirmed with experiment. This provides greater confidence in the simulations on real explosives without the need for experiment on live explosives.

  7. Quality assurance testing of an explosives trace analysis laboratory--further improvements to include peroxide explosives.

    PubMed

    Crowson, Andrew; Cawthorne, Richard

    2012-12-01

    The Forensic Explosives Laboratory (FEL) operates within the Defence Science and Technology Laboratory (DSTL) which is part of the UK Government Ministry of Defence (MOD). The FEL provides support and advice to the Home Office and UK police forces on matters relating to the criminal misuse of explosives. During 1989 the FEL established a weekly quality assurance testing regime in its explosives trace analysis laboratory. The purpose of the regime is to prevent the accumulation of explosives traces within the laboratory at levels that could, if other precautions failed, result in the contamination of samples and controls. Designated areas within the laboratory are swabbed using cotton wool swabs moistened with ethanol:water mixture, in equal amounts. The swabs are then extracted, cleaned up and analysed using Gas Chromatography with Thermal Energy Analyser detectors or Liquid Chromatography with triple quadrupole Mass Spectrometry. This paper follows on from two previous published papers which described the regime and summarised results from approximately 14years of tests. This paper presents results from the subsequent 7years setting them within the context of previous results. It also discusses further improvements made to the systems and procedures and the inclusion of quality assurance sampling for the peroxide explosives TATP and HMTD. Monitoring samples taken from surfaces within the trace laboratories and trace vehicle examination bay have, with few exceptions, revealed only low levels of contamination, predominantly of RDX. Analysis of the control swabs, processed alongside the monitoring swabs, has demonstrated that in this environment the risk of forensic sample contamination, assuming all the relevant anti-contamination procedures have been followed, is so small that it is considered to be negligible. The monitoring regime has also been valuable in assessing the process of continuous improvement, allowing sources of contamination transfer into the trace

  8. High-explosive driven crowbar switch

    DOEpatents

    Dike, Robert S.; Kewish, Jr., Ralph W.

    1976-01-13

    The disclosure relates to a compact explosive driven switch for use as a low resistance, low inductance crowbar switch. A high-explosive charge extrudes a deformable conductive metallic plate through a polyethylene insulating layer to achieve a hard current contact with a supportive annular conductor.

  9. Detonation in shocked homogeneous high explosives

    SciTech Connect

    Yoo, C.S.; Holmes, N.C.; Souers, P.C.

    1995-11-01

    We have studied shock-induced changes in homogeneous high explosives including nitromethane, tetranitromethane, and single crystals of pentaerythritol tetranitrate (PETN) by using fast time-resolved emission and Raman spectroscopy at a two-stage light-gas gun. The results reveal three distinct steps during which the homogeneous explosives chemically evolve to final detonation products. These are (1) the initiation of shock compressed high explosives after an induction period, (2) thermal explosion of shock-compressed and/or reacting materials, and (3) a decay to a steady-state representing a transition to the detonation of uncompressed high explosives. Based on a gray-body approximation, we have obtained the CJ temperatures: 3800 K for nitromethane, 2950 K for tetranitromethane, and 4100 K for PETN. We compare the data with various thermochemical equilibrium calculations. In this paper we will also show a preliminary result of single-shot time-resolved Raman spectroscopy applied to shock-compressed nitromethane.

  10. Chemical Structure and Accidental Explosion Risk in the Research Laboratory

    ERIC Educational Resources Information Center

    Churchill, David G.

    2006-01-01

    Tips that laboratory researchers and beginning graduate students can use to safeguard against explosion hazard with emphasis on clear illustrations of molecular structure are discussed. Those working with hazardous materials must proceed cautiously and may want to consider alternative and synthetic routes.

  11. Radio frequency overview of the high explosive radio telemetry project

    SciTech Connect

    Bracht, R.; Dimsdle, J.; Rich, D.; Smith, F.

    1998-12-31

    High explosive radio telemetry (HERT) is a project that is being developed jointly by Los Alamos National Laboratory and AlliedSignal Federal Manufacturing and Technologies. The ultimate goal is to develop a small, modular telemetry system capable of high-speed detection of explosive events, with an accuracy on the order of 10 nanoseconds. The reliable telemetry of this data, from a high-speed missile trajectory, is a very challenging opportunity. All captured data must be transmitted in less than 20 microseconds of time duration. This requires a high bits/Hertz microwave telemetry modulation code to insure transmission of the data with the limited time interval available.

  12. Explosive Components Facility at Sandia National Laboratories, Albuquerque, New Mexico

    SciTech Connect

    Not Available

    1992-07-01

    The United States Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Explosive Components Facility (ECF) at the Sandia National Laboratories, Albuquerque (SNL). This facility is needed to integrate, centralize, and enhance many of the explosive, neutron generation, and weapons testing programs currently in progress at SNL. In general, there is insufficient space in existing facilities for the development and testing activities required by modern explosives technologies. The EA examined the potential environmental impacts of the proposed ECF project and discussed potential alternatives. Based on the analyses in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, and CEQ regulations at 40 CFR 1508.18 and 1508.27. Therefore, an environmental impact statement (EIS) is not required, and the DOE is issuing this Finding of No Significant Impact (FONSI).

  13. Explosives detection portal for high-volume personnel screening

    NASA Astrophysics Data System (ADS)

    Parmeter, John E.; Linker, Kevin L.; Rhykerd, Charles L.; Hannum, David W.; Bouchier, Francis A.

    1998-12-01

    We discuss a trace explosive detection portal for high-volume personnel screening, which has been developed recently at Sandia National Laboratories (SNL), using funding provided by the Federal Aviation Administration (FAA) and the Department of Energy (DOE) Office of Safeguards and Security (OSS). This portal screens individuals for explosives using noninvasive means to collect explosive residue in the forms of vapor and particulate contamination. The portal combines a commercially available ion mobility spectrometer (IMS) with a preconcentrator developed at SNL to perform detection of explosives. The prototype portal has undergone one series of tests at the Albuquerque International Airport, and we are now proceeding to develop an improved, second-generation portal, and to find a company to market the portal.

  14. On the Violence of High Explosive Reactions

    SciTech Connect

    Tarver, C M; Chidester, S K

    2004-02-09

    High explosive reactions can be caused by three general energy deposition processes: impact ignition by frictional and/or shear heating; bulk thermal heating; and shock compression. The violence of the subsequent reaction varies from benign slow combustion to catastrophic detonation of the entire charge. The degree of violence depends on many variables, including the rate of energy delivery, the physical and chemical properties of the explosive, and the strength of the confinement surrounding the explosive charge. The current state of experimental and computer modeling research on the violence of impact, thermal, and shock-induced reactions is reviewed.

  15. High explosives skid impact initiation study

    SciTech Connect

    Vigil, A.S.; Bunch, J.M.; Jaeger, D.L.; Smith, P.D.; Abeyta, E.E.

    1990-06-01

    The objective of this study was to develop a better quantitative understanding of explosive behavior under skid impact conditions. We evaluated the effects of sample weight, impact velocity, contact surface area at impact, target surface roughness, and target material on the skid impact HE ignition threshold. We also quantified the effects of two parameters that had never been fully investigated in the standard skid impact sensitivity test: explosive sample size and angle of incidence. These parameters were studied experimentally by conducting a series of tests, and analytical, with a number of one-, two-, and three-dimensional computer models. This study is the first phase in a program to measure the transient heat produced in the ignition of a high explosive sample as it impacts an infrared (IR) transmissive target. We will use the experimentally derived data to enhance our ability to predict the onset of ignition in impact-heated high explosives. 12 refs., 9 figs., 2 tabs.

  16. A laboratory study of explosives malfunction in blasting

    SciTech Connect

    Katsabanis, P.D.; Ghorbani, A.

    1995-12-31

    Explosives malfunction due to shock waves is a serious concern for successful blasting results. Malfunction includes sympathetic detonation and desensitization of explosive charges as well as the modification of firing times of conventional pyrotechnic detonators. Small diameter emulsions and detonators were tested in a laboratory environment to identify the parameters affecting malfunction. The experiments had a donor-acceptor configuration and the charges were detonated in the same sequence. Continuous velocity of detonation monitoring was used as an indicator of explosives performance and for studying the timing of the initiation of the acceptor charge and/or detonator, while distance and delay interval between the donor and acceptor were modified. Fumes from the detonating charges were analyzed in a number of experiments while a few experiments were conducted in rock confinement. It was found that both distance and delay interval are important as far as desensitization is concerned. At certain separation distances temporary desensitization, followed by temporary recovery was observed. Toxicity of the product gases was affected by desensitization although this effect ranged from negligible to pronounced and was not consistent. In many cases desensitized explosives reacted completely as evidenced by the concentration of the fumes in the blasting chamber. Conventional pyrotechnic delay detonators malfunctioned due to a shock produced by a 40mm diameter emulsion explosive at similar distances as the explosives (below 203 mm). Furthermore the experiments in granite showed that 40 mm diameter charges can malfunction at separation distances below 330 mm. This malfunction ranged from sympathetic detonation to shock desensitization; in most cases it was associated with severe loss of performance.

  17. Ignition dynamics of high explosives

    SciTech Connect

    Ali, A.N.; Son, S.F.; Sander, R.K.; Asay, B.W.; Brewster, M.Q.

    1999-04-01

    The laser ignition of the explosives HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine, C{sub 4}H{sub 8}N{sub 8}O{sub 8}), {delta}-phase HMX, PBX 9501 (95% HMX, 2.5% Estane, 2.5% BDNPA/BDNPF), TATB (1,3,5-triamino-2,4,6-trinitrobenzene, C{sub 6}H{sub 6}N{sub 6}O{sub 6}), and PBX 9502 (95% TATB, 5% Kel-F) and aged PBX 9502 has been conducted with the intent to compare the relative sensitivities of those explosives and to investigate the effect of beam profile, binder addition, and porosity. It has been found that there was little difference between a gaussian beam and a top hat profile on the laser ignition of HMX. The authors observe that the addition of binder in the amounts present in PBX 9501 resulted in longer ignition delays than that of HMX. In contrast to HMX, the addition of binder to TATB in PBX 9502 shows no measurable effect. Porosity effects were considered by comparing the ignition of granular HMX and pressed HMX pellets. Porosity appears to increase ignition delay due to an increased effective absorption scale and increased convective heat loss. This porosity effect also resulted in longer ignition delays for {delta}-phase HMX than for {beta}-phase HMX. In order to simulate ignition in voids or cracks, the standard ignition experiment was modified to include a NaCl window placed at variable distances above the sample surface. When ignition experiments were performed at 29 W/cm{sup 2} and 38 W/cm{sup 2} a critical gap distance was observed of 6 {+-} 0.4 mm below which ignition was severely inhibited. This result underscores the importance of gas phase processes in ignition and illustrates that conditions can exist where simple ignition criteria such as surface temperature is inadequate.

  18. Explosive-driven, high speed, arcless switch

    DOEpatents

    Skogmo, P.J.; Tucker, T.J.

    1986-05-02

    An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed.

  19. Explosive-driven, high speed, arcless switch

    DOEpatents

    Skogmo, P.J.; Tucker, T.J.

    1987-07-14

    An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed. 7 figs.

  20. Explosive-driven, high speed, arcless switch

    DOEpatents

    Skogmo, Phillip J.; Tucker, Tillman J.

    1987-01-01

    An explosive-actuated, fast-acting arcless switch contains a highly conductive foil to carry high currents positioned adjacent a dielectric surface within a casing. At one side of the foil opposite the dielectric surface is an explosive which, when detonated, drives the conductive foil against the dielectric surface. A pattern of grooves in the dielectric surface ruptures the foil to establish a rupture path having a pattern corresponding to the pattern of the grooves. The impedance of the ruptured foil is greater than that of the original foil to divert high current to a load. Planar and cylindrical embodiments of the switch are disclosed.

  1. Study on metal foil explosion using high current

    NASA Astrophysics Data System (ADS)

    Mihara, Takayuki; Matsuo, N.; Otsuka, M.; Itoh, S.

    2009-12-01

    In the high energy processing using explosive, there are variety of application examples which is explosion welding of differential metallic plate and powder compaction of diamond. However a rule legal to explosives is severe and needs many efforts for handling qualification acquisition, maintenance, and security. In this research, the metallic foil explosion using high current is paid my attention to the method to obtain linear or planate explosive initiation easily, and the main evaluation of metallic foil explosion was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated from the metallic foil explosion.

  2. Study on metal foil explosion using high current

    NASA Astrophysics Data System (ADS)

    Mihara, Takayuki; Matsuo, N.; Otsuka, M.; Itoh, S.

    2010-03-01

    In the high energy processing using explosive, there are variety of application examples which is explosion welding of differential metallic plate and powder compaction of diamond. However a rule legal to explosives is severe and needs many efforts for handling qualification acquisition, maintenance, and security. In this research, the metallic foil explosion using high current is paid my attention to the method to obtain linear or planate explosive initiation easily, and the main evaluation of metallic foil explosion was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated from the metallic foil explosion.

  3. Mobile laboratoryExplosive destruction of natural materials”: Investigation of the behavior of ice and limestone under explosive loading

    NASA Astrophysics Data System (ADS)

    Orlov, M. Yu; Orlova, Yu N.; Tolkachev, V. F.

    2015-11-01

    In the paper, the behavior of ice and natural limestone under explosion condition was investigated. The objects of study were the river ice and natural limestone quarry on Siberia. The practical significance of research due to the need to increase production of oil and gas in permafrost regions, the fight against ice jams, etc. We organized a mobile laboratory ’’Explosive destruction of the natural materials” at the National Research Tomsk State University. The main purpose of the laboratory is express analyzing of explosive destruction of natural materials. The diameters and depths of explosive craters in the limestone and explosive lane in the ice were obtained. The results can be used to test new models and numerical methods for calculating shock and explosive loading of different materials, including ice.

  4. Criticality safety in high explosives dissolution

    SciTech Connect

    Troyer, S.D.

    1997-06-01

    In 1992, an incident occurred at the Pantex Plant in which the cladding around a fissile material component (pit) cracked during dismantlement of the high explosives portion of a nuclear weapon. Although the event did not result in any significant contamination or personnel exposures, concerns about the incident led to the conclusion that the current dismantlement process was unacceptable. Options considered for redesign, dissolution tooling design considerations, dissolution tooling design features, and the analysis of the new dissolution tooling are summarized. The final tooling design developed incorporated a number of safety features and provides a simple, self-contained, low-maintenance method of high explosives removal for nuclear explosive dismantlement. Analyses demonstrate that the tooling design will remain subcritical under normal, abnormal, and credible accident scenarios. 1 fig.

  5. Contained high explosive firing facility (CHEFF)

    SciTech Connect

    Stacy, H.L.; Seitz, W.L.; Wackerle, J.; Polcyn, M.; Esparza, E.

    1993-08-01

    A cylindrical vessel capable of totally containing the products and shrapnel resulting from the detonation of 10 kg of TNT (or equivalent) has been designed and built by Southwest Research Institute for and according to the requirements of the Detonation Systems Group (M-7) of Los Alamos National Laboratory. The vessel is 6.0-m long by 3.6-m diameter and is manufactured of 50-mm (elliptical end caps) and 38-mm (cylindrical walls) thick high-strength steel (HY-100). The cylindrical walls of the vessel are lined with 13-mm thick replaceable steel plates for shrapnel protection. The floor is made of steel-covered concrete. Ten large-aperture (254 mm) optical ports are available for instrumentation and four ports are provided for cabling and plumbing. Two qualifying detonation tests of 8.8 kg of C-4 explosive (equivalent to 10 kg TNT) have shown that the maximum strain produced is less than 78% of the elastic limit. The vessel is installed in a converted outdoor firing facility that has been modified to include an insulated and heated metal building to house the vessel and additional instrumentation. A computer-based system for data acquisition, firing control, and the monitoring of vessel response is described.

  6. Polymer blends as high explosive binders

    SciTech Connect

    Hoffman, D.M.; Caley, L.E.

    1984-10-05

    One approach to high-density, high-modulus binders for explosives is to blend low-density, high-modulus polymers with high-density, low-modulus polymers. Improved properties, which miscible pairs theoretically should have, are discussed. Two attempts to achieve miscibility between a high-density fluoropolymer (Kel-F 800) and high-modulus thermoplastics (Lucite 130 and Phenoxy PKHJ) were unsuccessful. These blends are immiscible and their physical properties are additive or not significantly enhanced. Anelastic properties of the blends indicate phase separation by the presence of two glass transitions, one associated with each phase. Unfortunately, neither of these pairs has merit as an improved plastic-bonded explosive binder. However, a compatible (miscible) pair would be an improved binder if the appropriate polymer pair could be found.

  7. An evaluation of high pressure coal dust explosions

    SciTech Connect

    Dennison, G.; Welford, G.B.; Sage, P.W.

    1995-12-31

    In the United Kingdom an industry-led consortium has been set up to continue the development of a coal-based advanced power generation system. The program primarily addresses the development of the key components for the Air Blown Gasification Cycle (ABGC), previously known as the British Coal Topping Cycle. One of the main features of the ABGC process is the use of an air blown pressurized fluidized bed gasifier which has the advantage over alternative oxygen blown systems, of not requiring air separation equipment. However, as a consequence the ABGC process does not have an available source of nitrogen for purging and pressurizing. Coal in the ABGC process is fed to the gasifier through lock hoppers pressurized up to 25 bar. The storage of coal in air at elevated pressures is associated with an increased propensity for spontaneous heating and dust explosion. This paper describes the experimental work commissioned by the Coal Technology Development Division of British Coal (and undertaken by TNO Prins Maurits Laboratory, Netherlands) to determine the explosive characteristics of a lignite, an anthracite, and a bituminous coal from UK sources over a range of elevated pressures up to 20 bar. Data on the maximum oxygen content, maximum explosion pressure and dust explosion constant are presented. This information will be used to consider the feasibility of alternatives to expensive nitrogen inerting. This will include partial inertization and high pressure dust explosion suppression systems.

  8. Internal Detonation Velocity Measurements Inside High Explosives

    SciTech Connect

    Benterou, J; Bennett, C V; Cole, G; Hare, D E; May, C; Udd, E

    2009-01-16

    In order to fully calibrate hydrocodes and dynamic chemistry burn models, initiation models and detonation models of high explosives, the ability to continuously measure the detonation velocity within an explosive is required. Progress on an embedded velocity diagnostic using a 125 micron diameter optical fiber containing a chirped fiber Bragg grating is reported. As the chirped fiber Bragg grating is consumed by the moving detonation wave, the physical length of the unconsumed Bragg grating is monitored with a fast InGaAs photodiode. Experimental details of the associated equipment and data in the form of continuous detonation velocity records within PBX-9502 are presented. This small diameter fiber sensor has the potential to measure internal detonation velocities on the order of 10 mm/{micro}sec along path lengths tens of millimeters long.

  9. High pressure-resistant nonincendive emulsion explosive

    DOEpatents

    Ruhe, Thomas C.; Rao, Pilaka P.

    1994-01-01

    An improved emulsion explosive composition including hollow microspheres/bulking agents having high density and high strength. The hollow microspheres/bulking agents have true particle densities of about 0.2 grams per cubic centimeter or greater and include glass, siliceous, ceramic and synthetic resin microspheres, expanded minerals, and mixtures thereof. The preferred weight percentage of hollow microspheres/bulking agents in the composition ranges from 3.0 to 10.0 A chlorinated paraffin oil, also present in the improved emulsion explosive composition, imparts a higher film strength to the oil phase in the emulsion. The emulsion is rendered nonincendive by the production of sodium chloride in situ via the decomposition of sodium nitrate, a chlorinated paraffin oil, and sodium perchlorate. The air-gap sensitivity is improved by the in situ formation of monomethylamine perchlorate from dissolved monomethylamine nitrate and sodium perchlorate. The emulsion explosive composition can withstand static pressures to 139 bars and dynamic pressure loads on the order of 567 bars.

  10. Model testing of a 1-kg high-explosive-cell maze

    SciTech Connect

    Bacigalupi, C.M.; Burton, W.A.

    1981-04-01

    The basement of the proposed High Explosives Applications Facility (Building 353) at the Lawrence Livermore National Laboratory includes several explosive test cells for the assembly and/or storage of up to 10 kg of high explosive (HE). This document reports 1/8-scale and 1/4-scale model tests conducted to confirm maze design criteria, to determine the cell explosive weight limit based on an allowable 10 psi reflected shock pressure at the hallway-maze doorway, and to specify permissible areas for handling HE within the cell. The integrity of cube-root scaling of the explosive charges detonated in the 1/8-scale model was verified by explosive testing in a comparable 1/4-scale model. Reflected shock pressures in the hallway adjacent to the maze and the effect of HE charge orientation were investigated and are also reported.

  11. Characterization Of High Explosives Detonations Via Laser-Induced Plasmas

    SciTech Connect

    Villa-Aleman, E.

    2015-10-08

    One objective of the Department of Energy’s National Security Administration is to develop technologies that can help the United States government to detect foreign nuclear weapons development activities. The realm of high explosive (HE) experiments is one of the key areas to assess the nuclear ambitions of a country. SRNL has participated in the collection of particulates from HE experiments and characterized the material with the purpose to correlate particulate matter with HE. Since these field campaigns are expensive, on-demand simulated laboratory-scale explosion experiments are needed to further our knowledge of the chemistry and particle formation in the process. Our goal is to develop an experimental test bed in the laboratory to test measurement concepts and correlate particle formation processes with the observables from the detonation fireball. The final objective is to use this knowledge to tailor our experimental setups in future field campaigns. The test bed uses pulsed laser-induced plasmas to simulate micro-explosions, with the intent to study the temporal behavior of the fireball observed in field tests. During FY15, a plan was prepared and executed which assembled two laser ablation systems, procured materials for study, and tested a Step-Scan Fourier Transform Infrared Spectrometer (SS-FTIR). Designs for a shadowgraph system for shock wave analysis, design for a micro-particulate collector from ablated pulse were accomplished. A novel spectroscopic system was conceived and a prototype system built for acquisition of spectral/temporal characterization of a high speed event such as from a high explosive detonation. Experiments and analyses will continue into FY16.

  12. Three Decades of Explosive High Energy Transients

    NASA Technical Reports Server (NTRS)

    Kouveliotou, Chryssa

    2013-01-01

    Gamma-Ray Bursts are the most brilliant explosions in space. The first GRB was discovered on 1967, just 40 years ago. It took several years and multiple generations of space and ground instruments to unravel some of the mysteries of this phenomenon. However, many questions remain open today. I will discuss the history, evolution and current status of the GRB field and its contributions in our understanding of the transient high energy sky. Finally, I will describe how GRBs can be utilized in future missions as tools, to probe the cosmic chemical evolution of the Universe and the star formation rates.

  13. Influence of explosive density on mechanical properties of high manganese steel explosion hardened

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoyan; Shen, Zhaowu; Liu, Yingbin; Liu, Tiansheng; Wang, Fengying

    2013-12-01

    The explosion hardening tests of high manganese steel were carried out by using two kinds of explosives of the same composition but different density, respectively. The detonation velocities were tested and the relevant mechanical properties were studied. The results show that the stronger single impulse acting on the specimen, the more hardness of surface increases and the more impact toughness decreases. Compared with the explosive of 1.48 g/cm3 density, the hardness, elongation rate, and impact toughness of the sample for triple explosion with explosive of 1.38 g/cm3 density are larger at the same hardening depth. In addition, the tensile strength of the sample for triple explosion with density of 1.38 g/cm3 is higher from the surface to 15 mm below the surface hardened.

  14. High explosive violent reaction (HEVR) from slow heating conditions

    SciTech Connect

    Vigil, A.S.

    1999-03-01

    The high explosives (HEs) developed and used at the Los Alamos National Laboratory are designed to be insensitive to impact and thermal insults under all but the most extreme conditions. Nevertheless, violent reactions do occasionally occur when HE is involved in an accident. The HE response is closely dependent on the type of external stimulus that initiates the reaction. For example, fast heating of conventional HE will probably result in fairly benign burning, while long-term, slow heating of conventional HE is more likely to produce an HEVR that will do much more damage to the immediate surroundings. An HEVR (High Explosive Violent Reaction) can be defined as the rapid release of energy from an explosive that ranges from slightly faster than a deflagration (very rapid burning) to a reaction that approaches a detonation. A number of thermal analyses have been done to determine slow heat/cook-off conditions that produce HE self-heating that can build up to a catastrophic runaway reaction. The author specifies the conditions that control reaction violence, describes experiments that produced an HEVR, describes analyses done to determine a heating rate threshold for HEVR, and lists possible HEVR situations.

  15. Dynamics of Strombolian explosions: Inferences from field and laboratory studies of erupted bombs from Stromboli volcano

    NASA Astrophysics Data System (ADS)

    Gurioli, L.; Colo', L.; Bollasina, A. J.; Harris, A. J. L.; Whittington, A.; Ripepe, M.

    2014-01-01

    Strombolian activity is characterized by repeated, low energy, explosions and is named after the volcano where such activity has persisted for around 2000 years, i.e., Stromboli (Aeolian Islands, Italy). Stromboli represents an excellent laboratory where measurements of such explosions can be made from safe, but close, distances. During a field campaign in 2008, two 15 cm diameter bombs were quenched and collected shortly after a normal explosion. The bombs were characterized in terms of their textural, chemical, rheological, and geophysical signatures. The vesicle and crystal size distribution of the samples, coupled with the glass chemistry, enabled us to quantify variations in the degassing history and rheology of the magma resident in the shallow (i.e., in last 250 m of conduit length). The different textural facies observed in these bombs showed that fresh magma was mingled with batches of partially to completely degassed, oxidized, high-crystallinity, high-viscosity, evolved magma. This magma sat at the top of the conduit and played only a passive role in the explosive process. The fresh, microlite-poor, vesiculated batch, however, experienced a response to the explosive event, by undergoing rapid decompression. Integration of geophysical measurements with sample analyses indicates that popular bubble-bursting models may not fit this case. We suggest that the degassed, magma forms a plug, or rheological layer, at the top of the conduit, through which the fresh magma bursts. In this model we need to consider the paradox of a slug ascending too fast through a magma of varying viscosity and yield strength.

  16. Multistage reaction pathways in detonating high explosives

    SciTech Connect

    Li, Ying; Kalia, Rajiv K.; Nakano, Aiichiro; Nomura, Ken-ichi; Vashishta, Priya

    2014-11-17

    Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine crystal. Rapid production of N{sub 2} and H{sub 2}O within ∼10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen-rich clusters with fractal geometry. In addition, we found distinct unimolecular and intermolecular reaction pathways, respectively, for the rapid N{sub 2} and H{sub 2}O productions.

  17. Mesoscale modeling of metal-loaded high explosives

    SciTech Connect

    Bdzil, John Bohdan; Lieberthal, Brandon; Srewart, Donald S

    2010-01-01

    We describe a 3D approach to modeling multi-phase blast explosive, which is primarily condensed explosive by volume with inert embedded particles. These embedded particles are uniform in size and placed on the array of a regular lattice. The asymptotic theory of detonation shock dynamics governs the detonation shock propagation in the explosive. Mesoscale hydrodynamic simulations are used to show how the particles are compressed, deformed, and accelerated by the high-speed detonation products flow.

  18. Equation of state of unreacted high explosives at high pressures

    SciTech Connect

    Yoo, C-S

    1998-08-14

    Isotherms of unreacted high explosives (HMX, RDX, and PETN) have been determined to quasi-hydrostatic high pressures below 45 GPa, by using a diamond-anvil cell angle-resolved synchrotron x-ray diffraction method. The equation-of-state parameters (bulk modulus Bo, and its derivatives B' ) are presented for the 3rd-order Birch-Murnaghan formula based on the measured isotherms. The results are also used to retrieve unreacted Hugoniots in these high explosives and to develop the equations of state and kinetic models for composite high explolsivcs such as XTX-8003 and LX-04. The evidence of shear-induced chemistry of HMX in non-hydrostatic conditions is also presented.

  19. Energetic nanocomposites for detonation initiation in high explosives without primary explosives

    NASA Astrophysics Data System (ADS)

    Comet, Marc; Martin, Cédric; Klaumünzer, Martin; Schnell, Fabien; Spitzer, Denis

    2015-12-01

    The mixing of aluminum nanoparticles with a metal containing oxidizer (here, WO3 or Bi2(SO4)3) gives reactive materials called nanothermites. In this research, nanothermites were combined with high explosive nanoparticles (RDX) to prepare energetic nanocomposites. These smart nanomaterials have higher performances and are much less hazardous than primary explosives. Their flame propagation velocity can be tuned from 0.2 to 3.5 km/s, through their explosive content. They were used to initiate the detonation of a high explosive, the pentaerythritol tetranitrate. The pyrotechnic transduction of combustion into detonation was achieved with short length systems (<2 cm) and small amounts of energetic nanocomposites (˜100 mg) in semi-confined systems.

  20. Mechanisms of laser-induced photocatalytic decomposition of high explosives

    NASA Astrophysics Data System (ADS)

    Mitrofanov, Anatoly; Zverev, Anton; Rashkeev, Sergey; Tsyshevsky, Roman; Kuklja, Maija

    Using laser irradiation for triggering explosive decomposition of high density energy materials opens up new opportunities in design of safe optical detonators by removing primary explosive from the devices. Precise tuning of sensitivity to initiation of detonation via photo-excitation appears challenging because all secondary explosives are insulators with the band gap of 4-8 eV. We will discuss our combined experimental and theoretical studies that suggest feasible mechanisms of photocatalytic decomposition of explosives triggered by the laser excitation with the energy of 1.17 - 2.3 eV and the wavelength of 1064-532 nm. The first approach considers tuning the optical absorption via the controlled modification of the electronic structure of the explosive-metal oxide interfaces. The second approach involves incorporating photoactive organic molecules in the crystalline matrix of the explosive material.

  1. CFD modeling of a laboratory-scale underwater explosion created by a spark gap source

    NASA Astrophysics Data System (ADS)

    Esplin, J. James; Kinzel, Michael P.; Kim, Benjamin; Culver, R. Lee

    2015-11-01

    Underwater explosions contain complex physical phenomena that can be difficult to observe. As large-scale tests are expensive, most researchers investigate the physical phenomena using laboratory-scale explosions with hopes that the salient physical phenomena remain similar. Most of the laboratory-scale tests use small amounts of chemical explosive as the explosive source, which have been examined using computational fluid dynamics (CFD) modeling at both large and small-scale. Other tests use a spark gap source (sparker) as the explosive source, which act similarly to chemical explosives on a small scale. Few studies have applied CFD to spark gap sources used to model underwater explosions, and fewer still have dealt with the differences between chemical explosions and spark gap sources. This work will demonstrate CFD simulations for a spark gap source discharged near a free surface. The simulation uses a compressible medium including both a gas and liquid and aims to predict the transient bubble motion and pressure field. The simulations are validated against experimental data. Work supported by the ONR Naval Undersea Research Program.

  2. Behavior of Plastic Bonded Composite Explosives During High Acceleration

    NASA Astrophysics Data System (ADS)

    Lanzerotti, Y.

    1998-03-01

    The mechanical behavior of plastic bonded composite explosives has been studied during high acceleration in an ultracentrifuge. The pressed explosives studied include LX-14 [95% HMX (cyclotetramethylene- tetranitramine), 5% Estane], Composition A3 type II [91% RDX (cyclotrimethylene-trinitramine), 99% BDNPF (bis-dinitropropyl acetal formal), 6% CAB (cellulose acetate butyrate)], and PAX-3 (85% HMX, 9% BDNPF, 6% CAB/25% Aluminum). The fracture strength of LX-14 is greater than all pressed explosives studied to date. The fracture strength of Composition A3 type II is smaller than all pressed explosives studied to date.

  3. A second survey of high explosives traces in public places.

    PubMed

    Cullum, Hazel E; McGavigan, Claire; Uttley, Claire Z; Stroud, Mark A M; Warren, Derek C

    2004-07-01

    This survey was carried out as a follow-up to a 1994 survey carried out by this laboratory (1) in order to determine the background levels of explosives traces in public places. The first survey concentrated on transport areas and police stations in and around London. This second study examines levels in four of the United Kingdom's major cities: Birmingham, Cardiff, Glasgow, and Manchester. Samples were taken at various transport sites and from hotels, private houses, private vehicles, and clothing. The survey showed that traces of the high explosives nitroglycerine (NG), trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), and cyclotrimethylene trinitramine (RDX) are rare within the general public environment. Only one low-level trace of RDX was detected. NG, possibly associated with the use of firearms, was detected at low levels in two samples and 2,4-DNT was detected in a separate sample. No PETN was detected in any of the samples. The results of the survey indicate that it is unlikely that persons visiting public areas could become significantly contaminated with explosives. The analytical procedures employed would also have detected ethylene glycol dinitrate (EGDN) if present at levels greater than 2 ng, nitrobenzene (NB) if present at levels greater than 50 ng, mononitrotoluenes if present at levels greater than 50 ng, and the other common isomers of dinitrotoluene if these had been present at levels in excess of 10 ng. None of these were detected. The relatively high volatility of EGDN, NB, and the mononitrotoluenes would, however, cause traces of these compounds to disperse rapidly. A proportion of the samples (approximately 7%) were analyzed for the presence of HMX. No HMX was detected. PMID:15317181

  4. Multistage reaction pathways in detonating high explosives

    NASA Astrophysics Data System (ADS)

    Li, Ying; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya; CACS Collaboration; ALCF Team

    2015-06-01

    Atomistic mechanisms underlying the reaction time and intermediate reaction products of detonating high explosives far from equilibrium have been elusive. This is because detonation is one of the hardest multiscale physics problems, in which diverse length and time scales play important roles. Here, large spatiotemporal-scale reactive molecular dynamics simulations validated by quantum molecular dynamics simulations reveal a two-stage reaction mechanism during the detonation of cyclotrimethylenetrinitramine crystal. Rapid production of N2 and H2O within 10 ps is followed by delayed production of CO molecules beyond ns. We found that further decomposition towards the final products is inhibited by the formation of large metastable carbon- and oxygen-rich clusters with fractal geometry. In addition, we found distinct uni-molecular and intermolecular reaction pathways, respectively, for the rapid N2 and H2O productions. This work was supported by the Office of Naval Research Grant No. N000014-12-1-0555 and the Basic Research Program of Defense Threat Reduction Agency (DTRA) Grant No. HDTRA1-08-1-0036. All the simulations were performed at USC and Argonne LCF.

  5. Investigation Of Vapor Explosion Mechanisms Using High Speed Photography

    NASA Astrophysics Data System (ADS)

    Armstrong, Donn R.; Anderson, Richard P.

    1983-03-01

    The vapor explosion, a physical interaction between hot and cold liquids that causes the explosive vaporization of the cold liquid, is a hazard of concern in such diverse industries as metal smelting and casting, paper manufacture, and nuclear power generation. Intensive work on this problem worldwide, for the past 25 years has generated a number of theories and mechanisms proposed to explain vapor explosions. High speed photography has been the major instrument used to test the validity of the theories and to provide the observations that have lead to new theories. Examples are given of experimental techniques that have been used to investigate vapor explosions. Detailed studies of specific mechanisms have included microsecond flash photograph of contact boiling and high speed cinematography of shock driven breakup of liquid drops. Other studies looked at the explosivity of various liquid pairs using cinematography inside a pulsed nuclear reactor and x-ray cinematography of a thermite-sodium interaction.

  6. Turbulent mixing in high-altitude explosions

    SciTech Connect

    Kuhl, A.L.; Bell, J.B. ); Ferguson, R.E. ); White, W.W.; McCartor, T.H. )

    1992-09-01

    Numerical simulations of a high-altitude explosion were performed using a Godunov code with Adaptive Mesh Refinement (AMR). The code solves the two-dimensional (2-D), time-dependent conservation laws of inviscid gas dynamics while AMR is used to focus the computational effort in the mixing regions. The calculations revealed that a spherical density interface embedded in this flow was unstable and rolled up into a turbulent mixing layer. The shape of the interface was qualitatively similar to experimental photographs. Initially, the mixing layer width grew as a linear function of time, but eventually it reached an asymptotically-constant value. The flow field was azimuthally-averaged to evaluate the mean-flow profiles and the R.M.S. fluctuation profiles across the mixing layer. The mean kinetic energy rapidly approached zero as the blast wave decayed, but the fluctuating kinetic energy asymptotically approached a small constant value (a fraction of a percent of the maximum kinetic energy). This represents the rotational kinetic energy driven by the vorticity field, that continued to mix the fluid indefinitely. It was shown that the vorticity field corresponds to a function that fluctuates between plus and minus values -- with a volume-averaged mean of zero. The amplitude of the vorticity fluctuations decayed as t[sup [minus]1]. The corresponding enstrophy increased linearly with time because of a cascade process for the mean-squared vorticity. This result is in good agreement with the 2-D calculations of turbulent flow as reported by G.K. Batchelor. The problem should be recalculated in 3-D to study the decay of turbulent mixing for spherical interfaces.

  7. Turbulent mixing in high-altitude explosions

    SciTech Connect

    Kuhl, A.L.; Bell, J.B.; Ferguson, R.E.; White, W.W.; McCartor, T.H.

    1992-09-01

    Numerical simulations of a high-altitude explosion were performed using a Godunov code with Adaptive Mesh Refinement (AMR). The code solves the two-dimensional (2-D), time-dependent conservation laws of inviscid gas dynamics while AMR is used to focus the computational effort in the mixing regions. The calculations revealed that a spherical density interface embedded in this flow was unstable and rolled up into a turbulent mixing layer. The shape of the interface was qualitatively similar to experimental photographs. Initially, the mixing layer width grew as a linear function of time, but eventually it reached an asymptotically-constant value. The flow field was azimuthally-averaged to evaluate the mean-flow profiles and the R.M.S. fluctuation profiles across the mixing layer. The mean kinetic energy rapidly approached zero as the blast wave decayed, but the fluctuating kinetic energy asymptotically approached a small constant value (a fraction of a percent of the maximum kinetic energy). This represents the rotational kinetic energy driven by the vorticity field, that continued to mix the fluid indefinitely. It was shown that the vorticity field corresponds to a function that fluctuates between plus and minus values -- with a volume-averaged mean of zero. The amplitude of the vorticity fluctuations decayed as t{sup {minus}1}. The corresponding enstrophy increased linearly with time because of a cascade process for the mean-squared vorticity. This result is in good agreement with the 2-D calculations of turbulent flow as reported by G.K. Batchelor. The problem should be recalculated in 3-D to study the decay of turbulent mixing for spherical interfaces.

  8. High Resolution Laboratory Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brünken, S.; Schlemmer, S.

    2016-05-01

    In this short review we will highlight some of the recent advancements in the field of high-resolution laboratory spectroscopy that meet the needs dictated by the advent of highly sensitive and broadband telescopes like ALMA and SOFIA. Among these is the development of broadband techniques for the study of complex organic molecules, like fast scanning conventional absorption spectroscopy based on multiplier chains, chirped pulse instrumentation, or the use of synchrotron facilities. Of similar importance is the extension of the accessible frequency range to THz frequencies, where many light hydrides have their ground state rotational transitions. Another key experimental challenge is the production of sufficiently high number densities of refractory and transient species in the laboratory, where discharges have proven to be efficient sources that can also be coupled to molecular jets. For ionic molecular species sensitive action spectroscopic schemes have recently been developed to overcome some of the limitations of conventional absorption spectroscopy. Throughout this review examples demonstrating the strong interplay between laboratory and observational studies will be given.

  9. Flying-plate detonator using a high-density high explosive

    DOEpatents

    Stroud, John R.; Ornellas, Donald L.

    1988-01-01

    A flying-plate detonator containing a high-density high explosive such as benzotrifuroxan (BTF). The detonator involves the electrical explosion of a thin metal foil which punches out a flyer from a layer overlying the foil, and the flyer striking a high-density explosive pellet of BTF, which is more thermally stable than the conventional detonator using pentaerythritol tetranitrate (PETN).

  10. Method for enhancing stability of high explosives, for purposes of transport or storage, and the stabilized high explosives

    DOEpatents

    Nutt, Gerald L.

    1991-01-01

    The stability of porous solid high explosives, for purposes of transport or storage, is enhanced by reducing the sensitivity to shock initiation of a reaction that leads to detonation. The pores of the explosive down to a certain size are filled under pressure with a stable, low melt temperature material in liquid form, and the combined material is cooled so the pore filling material solidifies. The stability can be increased to progressively higher levels by filling smaller pores. The pore filling material can be removed, at least partially, by reheating above its melt temperature and drained off so that the explosive is once more suitable for detonation.

  11. Acoustic analysis of explosions in high noise environment

    NASA Astrophysics Data System (ADS)

    Man, Hong; Desai, Sachi

    2008-04-01

    Explosion detection and recognition is a critical capability to provide situational awareness to the war-fighters in battlefield. Acoustic sensors are frequently deployed to detect such events and to trigger more expensive sensing/sensor modalities (i.e. radar, laser spectroscope, IR etc.). Acoustic analysis of explosions has been intensively studied to reliably discriminate mortars, artillery, round variations, and type of blast (i.e. chemical/biological or high-explosive). One of the major challenges is high level of noise, which may include non-coherent noise generated from the environmental background and coherent noise induced by possible mobile acoustic sensor platform. In this work, we introduce a new acoustic scene analysis method to effectively enhance explosion classification reliability and reduce the false alarm rate at low SNR and with high coherent noise. The proposed method is based on acoustic signature modeling using Hidden Markov Models (HMMs). Special frequency domain acoustic features characterizing explosions as well as coherent noise are extracted from each signal segment, which forms an observation vector for HMM training and test. Classification is based on a unique model similarity measure between the HMM estimated from the test observations and the trained HMMs. Experimental tests are based on the acoustic explosion dataset from US ARMY ARDEC, and experimental results have demonstrated the effectiveness of the proposed method.

  12. Design of a hypersonic waterjet apparatus driven by high explosives

    SciTech Connect

    Weeks, Brandon L.; Klosterman, John; Worsey, Paul N.

    2001-08-01

    The design and construction of a hypersonic waterjet apparatus is described. Jet velocities from 0.5 to 5 km/s have been achieved using a high explosive charge. Images are obtained in situ on various target substrates using a high-speed framing camera. Experimental results are shown for the impact of high velocity waterjets on propellants and high explosive samples. By observing the impact of the waterjet at a wide range of velocities a safety threshold can be determined where no reaction takes place.

  13. A rapid method for the identification of nitrocellulose in high explosives and smokeless powders using GC-EI-MS.

    PubMed

    Chajistamatiou, Aikaterini S; Bakeas, Evangelos B

    2016-05-01

    Nitrocellulose (NC) is one of the most common ingredients in explosive mixtures, however because of its non-volatility, its detection using Gas Chromatography-Electron Ionization-Mass Spectrometry (GC-EI-MS) has not been achieved until today. A rapid method for the identification of NC in bulk explosives using GC-EI-MS was developed. The sample preparation is simple and takes place in a test tube, employing standard equipment of a forensics laboratory. The protocol was optimized and applied to seven, both high and low, commercial explosives, which contained the substance of interest. Moreover, three explosives in the absence of NC were tested to cross check for false positives. Fourteen different standard explosive substances that are usually found in explosive mixtures were then employed in order to monitor the effect of the method on these compounds and check for interferences. Results showed that NC was detected, by its trimethylsilyl (TMS) derivatives, in all the explosive mixtures analyzed and no false positives were observed. The proposed method showed selectivity for NC, as it had no interference coming from other ingredients of explosive mixtures. The protocol introduced offers considerable improvement in identifying the individual components of an explosive mixture and contributes in successful classification of explosives. PMID:26946027

  14. High-explosive-driven delay line pulse generator

    SciTech Connect

    Shearer, J.W.

    1982-11-15

    The inclusion of a delay line circuit into the design of a high-explosive-driven generator shortens the time constant of the output pulse. After a brief review of generator concepts and previously described pulse-shortening methods, a geometry is presented which incorporates delay line circuit techcniques into a coil generator. The circuit constants are adjusted to match the velocity of the generated electromagnetic wave to the detonation velocity of the high explosive. The proposed generator can be modeled by adding a variable inductance term to the telegrapher's equation. A particular solution of this equation is useful for exploring the operational parameters of the generator. The duration of the electromagnetic pulse equals the radial expansion time of the high-explosive-driven armature until it strikes the coil. Because the impedance of the generator is a constant, the current multiplication factor is limited only by nonlinear effects such as voltage breakdown, diffusion, and compression at high energies.

  15. An Orientation to Explosive Safety.

    ERIC Educational Resources Information Center

    Harris, Betty W.

    1987-01-01

    Provides an overview of various types of explosives. Classifies and describes explosives as initiating or primary explosives, low explosives, and high (secondary explosives). Discusses detonating devices, domestic explosive systems, the sensitivity of explosives, explosive reactions, and emergency responses. (TW)

  16. High-Yield Magnetized Liner Fusion Explosions and Blast Mitigation

    NASA Astrophysics Data System (ADS)

    Slutz, Stephen; Vesey, Roger; Cuneo, Michael

    2011-10-01

    Cylindrical liner implosions with preheated and magnetized deuterium-tritium (DT) are predicted to reach fusion conditions on present pulsed power machines [S.A. Slutz et al Phys. Plasmas 17, 056303 (2010)]. We present simulations indicating that high yields (1-10 GJ) and gains (100-1000) may be possible at currents of about 60-70 MA if a cryogenic layer of solid DT is provided on the inside surface of the metal liner. A hot spot is formed from the central preheated magnetized low-density gas and a burn wave propagates radially into the surrounding cold dense fuel. These yields and gains are more than adequate for inertial fusion energy. However, the pulsed-power driver must be protected from the blast of these high-yield explosions. Numerical simulations are presented which show that the blast can be deflected and the fusion neutrons absorbed by a blanket that partially surrounds the liner. Thus a modest length transmission line can be used to deliver power to the liner. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  17. Drill-pipe severing tool with high-temperature explosive

    SciTech Connect

    Koczan, S.P.; Patterson, W.W.; Rochester. R.H.

    1982-08-01

    A special-purpose borehole explosive tool designed to meet a need of the Los Alamos National laboratory Hot Dry Rock (HDR) Geothermal Energy Development Program is described. This tool's particular purpose is to sever stuck drill pipe in deep (> 4500 m), hot (> 320/sup 0/C), water-filled wellbores. No commercial severing tools are known to us that can be operated at temperatures above 260/sup 0/C.

  18. Tool force evaluation of lathe machined high explosives

    SciTech Connect

    Flowers, G.L.

    1980-04-01

    The purpose of this study was to develop a better understanding of the effects of machining properties upon tool forces encountered during lathe machining of high explosives, in order to optimize machining conditions for mechanical properties test specimens. Monetary considerations dictated that the tooling either already exist or be fabricated in-house using limited machine shop capability. The design chosen which fit between the tool holder and the tool post and interfaced to existing signal conditioners was easily fabricated. The study evaluated all forces on the cutter during machining of two types of high explosives at four cutter radii, four feed rates, three depths of cut and two cutting speeds. The study pointed out design problems, instrumentation drift, tool chatter and detection levels. It also showed that the type of high explosive was more significant than first thought toward influencing tool force levels.

  19. Explosive Components Facility at Sandia National Laboratories, Albuquerque, New Mexico. Environmental assessment

    SciTech Connect

    Not Available

    1992-07-01

    The United States Department of Energy (DOE) has prepared an environmental assessment (EA) on the proposed Explosive Components Facility (ECF) at the Sandia National Laboratories, Albuquerque (SNL). This facility is needed to integrate, centralize, and enhance many of the explosive, neutron generation, and weapons testing programs currently in progress at SNL. In general, there is insufficient space in existing facilities for the development and testing activities required by modern explosives technologies. The EA examined the potential environmental impacts of the proposed ECF project and discussed potential alternatives. Based on the analyses in the EA, DOE has determined that the proposed action does not constitute a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969, and CEQ regulations at 40 CFR 1508.18 and 1508.27. Therefore, an environmental impact statement (EIS) is not required, and the DOE is issuing this Finding of No Significant Impact (FONSI).

  20. Are amino groups advantageous to insensitive high explosives (IHEs)?

    PubMed

    Cao, Xia; Wen, Yushi; Xiang, Bin; Long, Xinping; Zhang, Chaoyang

    2012-10-01

    There is usually a contradiction between increasing energy densities and reducing sensitivities of explosives. The explosives with both high energy densities and low sensitivities, or the so-called insensitive high explosives (IHEs), are desirable in most cases. It seems from applied explosives that amino groups are advantageous to IHE but the amount of amino groups contained IHEs is very limited. To make this clear, we present systemic examinations of the effects on the two properties stressed in IHEs after introducing amino groups to different molecular skeletons. As a result, the amino groups on resonant sites to nitro groups in conjugated systems can improve distinctly sensitivities and change energy densities in terms of oxygen balance; while the amino groups in unconjugated systems can hardly increase energy densities and usually cause increased sensitivities. It agrees well with a fact that almost all the molecules of applied amino group contained explosives possess conjugated skeletons. We therefore confirm that if amino groups are introduced resonantly to a nitro group in a conjugated system and the introduction improves OB, they are advantageous to IHEs. PMID:22660963

  1. High-Energy Processing of Materials Using Explosives

    NASA Astrophysics Data System (ADS)

    Ribeiro, J. B.; Mendes, R. L.; Farinha, A. R.; Plaksin, I. Ye.; Campos, J. A.; Góis, J. C.

    2009-12-01

    The overall field of application of the explosives substances for material processing and synthesis include: Cladding/welding of dissimilar materials; the compaction/consolidation of nanocrystalline, super-hard, high-Tc superconducting composites, metastable highly-alloyed or amorphous powdered materials; the forming of small-series of very special shape and/or very special materials plates; the cutting of metal and/or concrete structures and the synthesis of nanocrystalline, ultra-dispersed, spherical shaped, single component or multicomponent (binary and/or ternary) metal oxide particles. Pretending to be a contribution for the widespread use of explosives for material processing, this paper depicted the particular cases of the explosive welding and consolidation, presenting examples of the research activity developed recently in the Department of Mechanical Engineering of the University of Coimbra.

  2. Mechanisms of formation of trace decomposition products in complex high explosive mixtures

    SciTech Connect

    Woodyard, J.D.; Burgess, C.E.; Rainwater, K.A.

    1999-03-01

    A significant concern in the nation`s stockpile surveillance program in prediction of the lifetimes of the high explosives (HE) and their components as the weapons age. The Department of Energy`s Core Surveillance and Enhanced Surveillance programs specifically target issues of degradation of HE, binders, and plastic-bonded explosives (PBX) for determination of component lifetimes and handling procedures. These material science topics are being addressed at the DOE national laboratories and production plants, including Pantex. The principal goal of this project is to identify the mechanisms of decomposition of HE, plasticizers, plastic polymer binders, and radical stabilizers resulting from exposures to ionizing radiation, heat, and humidity. The following reports the work completed for 1998, including a comprehensive literature review about some of the materials examined and the laboratory work completed to date. The materials focused on in the laboratory are TATB, Estane 5301, and Irganox 1010.

  3. Sensitivity of once-shocked, weathered high explosives

    SciTech Connect

    Williams, K.L.; Harris, B.W.

    1998-07-01

    Effects caused by stimulating once-shocked, weathered high explosives (OSW-HE) are investigated. The sensitivity of OSW-HE to mechanical stimuli was determined using standard industry tests. Some initial results are given. Pieces of OSW-HE were collected from active and inactive firing sites and from an area surrounding a drop tower at Los Alamos where skid and spigot tests were done. Samples evaluated were cast explosives or plastic bonded explosive (PBX) formulations containing cyclotrimethylenetrinitramine (RDX), cyclotetramethylene tetranitramine (HMX), 2,4,6-trinitrotoluene (TNT), mock or inert HE [tris(beta-chloroethyl)phosphate (CEF)], barium nitrate, cyanuric acid, talc, and Kel-F. Once-shocked, weathered LX-10 Livermore explosive [HMX/Viton A, (95/5 wt %)], PBX 9011 [HMX/Estane, (90/10 wt %)], PBX 9404 [HMX/nitrocellulose, tris(beta-chloroethyl) phosphate, (94/3/3 wt %)], Composition B or cyclotol (TNT/RDX explosives), and PBX 9007 (90% RDX, 9.1% styrene, 0.5% dioctyl phthalate, and 0.45 resin) were subjected to the hammer test, the drop-weight impact sensitivity test, differential thermal analysis (DTA), the spark test, the Henkin`s critical temperature test, and the flame test. Samples were subjected to remote, wet cutting and drilling; remote, liquid-nitrogen-cooled grinding and crushing; and scanning electron microscope (SEM) surface analyses for morphological changes.

  4. Equations of State and High-Pressure Phases of Explosives

    NASA Astrophysics Data System (ADS)

    Peiris, Suhithi M.; Gump, Jared C.

    Energetic materials, being the collective name for explosives, propellants, pyrotechnics, and other flash-bang materials, span a wide range of composite chemical formulations. Most militarily used energetics are solids composed of particles of the pure energetic material held together by a binder. Commonly used binders include various oils, waxes, and polymers or plasticizers, and the composite is melt cast, cured, or pressed to achieve the necessary mechanical properties (gels, putties, sheets, solid blocks, etc.) of the final energetic material. Mining, demolition, and other industries use liquid energetics that are similarly composed of an actual energetic material or oxidizer together with a fuel, that is to be mixed and poured for detonation. Pure energetic materials that are commonly used are nitroglycerine, ammonium nitrate, ammonium or sodium perchlorate, trinitrotoluene (TNT), HMX, RDX, and TATB. All of them are molecular materials or molecular ions that when initiated or insulted undergoes rapid decomposition with excessive liberation of heat resulting in the formation of stable final products. When the final products are gases, and they are rapidly produced, the sudden pressure increase creates a shock wave. When decomposition is so rapid that the reaction moves through the explosive faster than the speed of sound in the unreacted explosive, the material is said to detonate. Typically, energetic materials that undergo detonation are known as high explosives (HEs) and energetic materials that burn rapidly or deflagrate are known as low explosives and/or propellants.

  5. Seismic characteristics of cavity decoupled explosions in limestone: An analysis of Soviet high explosive test data

    NASA Astrophysics Data System (ADS)

    Murphy, J. R.; Kitov, I. O.; Rimer, N.; Adushkin, V. V.; Barker, B. W.

    1997-12-01

    During the summer of 1960, Soviet scientists conducted a series of high-explosive, cavity decoupling tests in a mine in Kirghizia. These decoupled tests were carried out in a variety of mined cavities in limestone, including spherical cavities with diameters ranging from 3.5 to 10 m as well as nonspherical cavities with volumes of about 25 m3. The experiments of this test series consisted of 10 tamped and 12 decoupled explosions having yields of 0.1, 1.0, and 6.0 t, and seismic data were recorded at locations in the mine over a distance range extending from about 10 to 250 m from the sources. These data provide valuable new insight into the dependence of decoupling effectiveness on variables such as cavity volume, cavity shape, and charge emplacement geometry. In particular, analyses indicate that chemical explosions at a depth of 290 m in limestone are essentially fully decoupled in spherical cavities with scaled cavity radii larger than about 27 m/kt⅓ and that the low-frequency decoupling effectiveness under such conditions is approximately independent of cavity shape for roughly cylindrical cavities with length-to-width ratios of as much as 6-12. These results suggest that the possibility of cavity decoupling in nonspherical cavities in hard rock media will have to be carefully evaluated in establishing the seismic verification regime for the Comprehensive Test Ban Treaty.

  6. Nuclear explosive safety study process

    SciTech Connect

    1997-01-01

    Nuclear explosives by their design and intended use require collocation of high explosives and fissile material. The design agencies are responsible for designing safety into the nuclear explosive and processes involving the nuclear explosive. The methodology for ensuring safety consists of independent review processes that include the national laboratories, Operations Offices, Headquarters, and responsible Area Offices and operating contractors with expertise in nuclear explosive safety. A NES Study is an evaluation of the adequacy of positive measures to minimize the possibility of an inadvertent or deliberate unauthorized nuclear detonation, high explosive detonation or deflagration, fire, or fissile material dispersal from the pit. The Nuclear Explosive Safety Study Group (NESSG) evaluates nuclear explosive operations against the Nuclear Explosive Safety Standards specified in DOE O 452.2 using systematic evaluation techniques. These Safety Standards must be satisfied for nuclear explosive operations.

  7. High and low velocity detonation in a highly insensitive explosive

    NASA Astrophysics Data System (ADS)

    Sandusky, H. W.; Hayden, H. F.

    2014-05-01

    Low-velocity detonation (LVD) in a solid explosive from input shocks below the threshold for high-velocity detonation (HVD) had been previously reported for PBXN-109 in two gap tests with sample diameters of 36.5 and 73.0 mm. Similar phenomenon has now been observed for the highly insensitive PBXIH-140, whose critical diameter of ~100 mm required an even larger gap test with a sample diameter of 178 mm. When just exceeding the critical gap for HVD, LVD propagated at similar velocities as in PBXN-109 and would punch clean holes in a witness plate like HVD. For somewhat greater gaps, there was enough shock reaction to drive LVD at constant but reduced velocities as the input shock decreased to ~ ½ of critical. With a different formulation now exhibiting LVD, it may be more prevalent than previously realized. It is speculated to occur in various confinements when small percentages of easily detonable ingredients fail to initiate the remainder of less shock sensitive ingredients.

  8. Modeling of high-current devices with explosive electron emission

    NASA Astrophysics Data System (ADS)

    Anishchenko, S. V.; Gurinovich, A. A.

    2014-01-01

    Based on a detailed analysis of explosive electron emission in high-current electronic devices, we formulate a system of equations that describes the expansion of cathode plasma and the generation of high-current electron beams. The system underlies the numerical algorithm for the hybrid code which enables the simulation of the charged particles’ dynamics in high-current vircators with open resonators. Using the Gabor-Morlet transform, we perform a time-frequency analysis of vircator radiation.

  9. Development of a Laboratory Scale Test Facility (LSTF) to investigate Armor solutions against buried explosive threats

    NASA Astrophysics Data System (ADS)

    Garcia, Felipe; Sinibaldi, Jose

    2009-11-01

    This LSTF will address the effects of High Velocity Sand Blast Impact; massive overpressures, impulsive effects, kinetic energy and momentum, from developing the type of flat sand- loading profile required for code validation purposes. The background of this study is to generate a planar shock-wave profile and a flat-loading profile from high velocity sand and air blast onto intended flat-plate targets, to properly characterize the codes under development; to do this we propose to use a flyer plate, which is explosively driven, so, we end with a design in which a slanted flyer plate, with an explosive layer underneath it, is set-up and detonated from one end, as the detonation wave runs through the explosive layer, it pushes the flyer plate. If all the geometry is carefully designed and the flyer plate/explosive layers are precisely positioned, in theory we should be able to produce a flat flyer plate that travels on the order of 1 to 2 km/s towards a layer of sand, therefore generating a shock wave within the sand that will eventually accelerate the sand with a flat top-hat profile towards the intended target, thus achieving a flat sand loading profile onto the target. Success in this domain will allow ease of testing of advanced armor concepts against simulate buried explosive threats, thus providing validation for numerical codes that will be used to perform optimization of novel armor designs at low costs.

  10. Modeling Hot-Spot Contributions in Shocked High Explosives at the Mesoscale

    SciTech Connect

    Harrier, Danielle

    2015-08-12

    When looking at performance of high explosives, the defects within the explosive become very important. Plastic bonded explosives, or PBXs, contain voids of air and bonder between the particles of explosive material that aid in the ignition of the explosive. These voids collapse in high pressure shock conditions, which leads to the formation of hot spots. Hot spots are localized high temperature and high pressure regions that cause significant changes in the way the explosive material detonates. Previously hot spots have been overlooked with modeling, but now scientists are realizing their importance and new modeling systems that can accurately model hot spots are underway.

  11. High-Energy-Rate Processing of Materials Using Explosives

    NASA Astrophysics Data System (ADS)

    Ribeiro, J.; Mendes, R.; Farinha, R.; Plaksin, I.; Campos, J.; Gois, J.

    2009-06-01

    The overall field of application of explosives substances for material processing and synthesis include: Cladding/welding of dissimilar materials; the compaction/consolidation of nanocrystalline, super-hard, high-Tc superconducting composites, metastable highly-alloyed or amorphous powdered materials; the forming of small-series of very special shape and/or very special materials plates; the cutting of metal and/or concrete structures and the synthesis of nanocrystalline, ultra-dispersed, spherical shaped, single component or multicomponent (binary and/or ternary) metal oxide particles. The very special characteristic features of this technique makes it, sometimes, the only route available to achieve singular results and a promising widespread use can be envisaged for it in a near future. Pretending to contribute for that widespread use, this paper depicted the particular cases of the explosive welding and consolidation, presenting examples of the research activity developed recently at the Department of Mechanical Engineering of the University of Coimbra.

  12. Shock response of the commercial high explosive Detasheet

    NASA Astrophysics Data System (ADS)

    Asay, B. W.; Ramsay, J. B.; Anderson, M. U.; Graham, R. A.

    1994-12-01

    The mechanical and chemical response of the flexible commercial high explosive DetasheetR is studied under controlled impact and plane-wave, high explosive loading. Results on nonreactive material behavior, sound speed, shock-initiation sensitivity and detonation pressure are presented. The material is found to respond in a viscous manner reminiscent of viscoelastic response of polymeric materials. Time-resolved pressure and pressure-rate measurements with PVDF piezoelectric polymer gauges are presented along with Manganin pressure and plate-dent test measurements of detonation pressure. Detonation pressures of 18GPa are indicated. Pressure measurements show initiation of reaction between 3 and 8 mm for an impact stress of 3.1 GPa. Plane wave loading wedge tests show run distances to detonation consistent with the pressure measurements, and with behavior like that of XTX8003 (80 % PETN/20 % Sylgard 182R).

  13. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory

    SciTech Connect

    Gallegos, G; Daniels, J; Wegrecki, A

    2007-10-01

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showing the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as 'high explosives' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the onsite test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and

  14. Imaging High Speed Particles in Explosive Driven Blast Waves

    NASA Astrophysics Data System (ADS)

    Jenkins, Charles; Horie, Yasuyuki

    2009-06-01

    Researchers Mr. Charles Jenkins and Dr. Yasuyuki Horie at the High Explosive Research & Development (HERD) facility at Eglin AFB with sponsorship from DTRA has successfully imaged high speed explosively driven metallic particles. The process uses an adapted, commercially available Particle Image Velocimetry (PIV) instrument. Regional and particle flow vectors are determined from particle displacement between two images taken in rapid succession. The instrument consists of a 120 mJ, pulsed Nd:YAG laser, camera system, synchronizer, and proprietary imaging software. The new PIV capability provides the ability for scientists and engineers to map explosively driven metallic particles in a blast wave. Characteristics of particle motion, interaction and dispersion can be determined by this method, providing measurements of key parameters such as particle size, shape, velocity, and concentration. This new capability to image and track small (from a few microns to as large as several hundred microns) high-speed particles without direct intervention by physical means, ensures that the particles are unchanged in their environment and provides greater measurement accuracy of particle dynamics in very short time scales. The capability can also be used to map large areas (square feet) or to zoom down at higher magnifications to study particle features such as particle agglomeration.

  15. Investigating the dynamics of Vulcanian explosions: scaled laboratory experiments of particle-laden puffs

    NASA Astrophysics Data System (ADS)

    Clarke, A. B.; Phillips, J. C.; Chojnicki, K. N.

    2006-12-01

    Scaled laboratory experiments analogous to Vulcanian eruptions were conducted, producing particle-laden jets and plumes. A reservoir of a mixture of water and isopropanol plus solid particles (kaolin or Ballotini glass spheres) was pressurized and suddenly released via a rapid-release valve into a 2 ft by 2 ft by 4 ft plexiglass tank containing fresh water. The duration of the subsequent flow was limited by the potential energy associated with the pressurized fluid rather than by the available volume of fluid or by the duration of the valve opening. Particle size (4 &45 microns) and concentration (0 to 10 vol%) were varied in order to change particle settling characteristics and control bulk mixture density (960 kg m-3 to 1060 kg m-3). Water and isopropanol in varying proportions created a light interstitial fluid to simulate buoyant volcanic gases in erupted mixtures. Variations in reservoir pressure and vent size allowed exploration of controlling source parameters; total momentum injected (M) and total buoyancy injected (B). Mass flux at the vent was measured by an in-line Coriolis flowmeter sampling at 100 Hz, allowing rapidly varying M and B to be recorded. The velocity-height relationship of each experiment was measured from high-speed video footage, permitting classification into the following groups: long continuously accelerating jets; accelerating jets transitioning to plumes; and collapsing fountains which generated density currents. Field-documented Vulcanian explosions exhibit this same wide range of behavior, demonstrating that regimes obtained in the laboratory are relevant to natural systems. A generalized framework of results was defined as follows. Increasing M/B for small particles (4 microns; settling time>>experiment duration) pushes the system from collapsing fountains to low-energy plumes to high-energy, continuously accelerating jets; increasing M/B for large particles (45 microns; settling time < experiment duration) pushes the system from

  16. Integrated Experiment and Modeling of Insensitive High Explosives

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott; Lambert, David E.; Yoo, Sunhee; Lieber, M.; Holman, Steven

    2009-06-01

    New design paradigms for insensitive high explosives are being sought for use in munitions applications that require enhanced, safety, reliability and performance. We describe recent work of our group that uses an integrated approach to develop predictive models, guided by experiments. Insensitive explosive can have relatively longer detonation reaction zones and slower reaction rates than their sensitive counterparts. We employ reactive flow models that are constrained by detonation shock dynamics to pose candidate predictive models. We discuss variation of the pressure dependent reaction rate exponent and reaction order, on the length of the supporting reaction zone, the detonation velocity curvature relation, computed critical energy required for initiation, the relation between the diameter effect curve and the corresponding normal detonation velocity curvature relation. We discuss representative characterization experiments carried out at Eglin, AFB and the constraints imposed on models by a standardized experimental characterization sequence.

  17. Integrated Experiment and Modeling of Insensitive High Explosives

    NASA Astrophysics Data System (ADS)

    Stewart, D. Scott; Lambert, David E.; Yoo, Sunhee; Lieber, Mark; Holman, Steven

    2009-12-01

    New design paradigms for insensitive high explosives are being sought for use in munitions applications that require enhanced safety, reliability and performance. We describe recent work of our group that uses an integrated approach to develop predictive models, guided by experiments. Insensitive explosive can have relatively longer detonation reaction zones and slower reaction rates than their sensitive counterparts. We employ reactive flow models that are constrained by detonation shock dynamics (DSD) to pose candidate predictive models. We discuss the variation of the pressure dependent reaction rate exponent and reaction order on the length of the supporting reaction zone, the detonation velocity curvature relation, the computed critical energy required for initiation, the relation between the diameter effect curve and the corresponding normal detonation velocity curvature relation.

  18. Environmental assessment for the Explosive Waste Treatment Facility at Site 300, Lawrence Livermore National Laboratory

    SciTech Connect

    1995-11-01

    Lawrence Livermore National Laboratory proposes to build, permit, and operate the Explosive Waste Treatment Facility (EWTF) to treat explosive waste at LLNL`s Experimental Test Site, Site 300. It is also proposed to close the EWTF at the end of its useful life in accordance with the regulations. The facility would replace the existing Building 829 Open Burn Facility (B829) and would treat explosive waste generated at the LLNL Livermore Site and at Site 300 either by open burning or open detonation, depending on the type of waste. The alternatives addressed in the 1992 sitewide EIS/EIR are reexamined in this EA. These alternatives included: (1) the no-action alternative which would continue open burning operations at B829; (2) continuation of only open burning at a new facility (no open detonation); (3) termination of open burning operations with shipment of explosive waste offsite; and (4) the application of alternative treatment technologies. This EA examines the impact of construction, operation, and closure of the EWTF. Construction of the EWTF would result in the clearing of a small amount of previously disturbed ground. No adverse impact is expected to any state or federal special status plant or animal species (special status species are classified as threatened, endangered, or candidate species by either state or federal legislation). Operation of the EWTF is expected to result in a reduced threat to involved workers and the public because the proposed facility would relocate existing open burning operations to a more remote area and would incorporate design features to reduce the amount of potentially harmful emissions. No adverse impacts were identified for activities necessary to close the EWTF at the end of its useful life.

  19. High-speed imaging of explosive eruptions: applications and perspectives

    NASA Astrophysics Data System (ADS)

    Taddeucci, Jacopo; Scarlato, Piergiorgio; Gaudin, Damien; Capponi, Antonio; Alatorre-Ibarguengoitia, Miguel-Angel; Moroni, Monica

    2013-04-01

    Explosive eruptions, being by definition highly dynamic over short time scales, necessarily call for observational systems capable of relatively high sampling rates. "Traditional" tools, like as seismic and acoustic networks, have recently been joined by Doppler radar and electric sensors. Recent developments in high-speed camera systems now allow direct visual information of eruptions to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Here we summarize the methods employed to gather and process high-speed videos of explosive eruptions, and provide an overview of the several applications of these new type of data in understanding different aspects of explosive volcanism. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High-speed videos reveal multiple, discrete ejection pulses within a single Strombolian

  20. Research and Development of High-performance Explosives

    PubMed Central

    Cornell, Rodger; Wrobel, Erik; Anderson, Paul E.

    2016-01-01

    Developmental testing of high explosives for military applications involves small-scale formulation, safety testing, and finally detonation performance tests to verify theoretical calculations. small-scale For newly developed formulations, the process begins with small-scale mixes, thermal testing, and impact and friction sensitivity. Only then do subsequent larger scale formulations proceed to detonation testing, which will be covered in this paper. Recent advances in characterization techniques have led to unparalleled precision in the characterization of early-time evolution of detonations. The new technique of photo-Doppler velocimetry (PDV) for the measurement of detonation pressure and velocity will be shared and compared with traditional fiber-optic detonation velocity and plate-dent calculation of detonation pressure. In particular, the role of aluminum in explosive formulations will be discussed. Recent developments led to the development of explosive formulations that result in reaction of aluminum very early in the detonation product expansion. This enhanced reaction leads to changes in the detonation velocity and pressure due to reaction of the aluminum with oxygen in the expanding gas products. PMID:26966969

  1. Research and Development of High-performance Explosives.

    PubMed

    Cornell, Rodger; Wrobel, Erik; Anderson, Paul E

    2016-01-01

    Developmental testing of high explosives for military applications involves small-scale formulation, safety testing, and finally detonation performance tests to verify theoretical calculations. small-scale For newly developed formulations, the process begins with small-scale mixes, thermal testing, and impact and friction sensitivity. Only then do subsequent larger scale formulations proceed to detonation testing, which will be covered in this paper. Recent advances in characterization techniques have led to unparalleled precision in the characterization of early-time evolution of detonations. The new technique of photo-Doppler velocimetry (PDV) for the measurement of detonation pressure and velocity will be shared and compared with traditional fiber-optic detonation velocity and plate-dent calculation of detonation pressure. In particular, the role of aluminum in explosive formulations will be discussed. Recent developments led to the development of explosive formulations that result in reaction of aluminum very early in the detonation product expansion. This enhanced reaction leads to changes in the detonation velocity and pressure due to reaction of the aluminum with oxygen in the expanding gas products. PMID:26966969

  2. A case of death from the explosion of a 66mm M72 High Explosive Anti-Tank rocket.

    PubMed

    Ihama, Yoko; Miyazaki, Tetsuji; Fuke, Chiaki; Taira, Zenshin

    2008-07-01

    A 53-year-old male died from an explosion of a 66 mm M72 High Explosive Anti-Tank (HEAT) rocket. He had collected various cast-off military weapons and was selling them. There were numerous explosive injuries on the anterior side of the body, thus especially bilateral hands, left toe and right knee were severely crushed and fractured. The location and severity of the injuries suggest that he was down on his left knee and was manipulating the weapon with both hands at the moment of detonation. We consider that 66 mm M72 HEAT rocket accidentally detonated during his handling. Very rarely are civilians killed by a military weapon, except during wartime. Appropriate investigation of various explosive injuries provide not only evidence of the cause of death, but also the position and posture of the body. PMID:18346924

  3. Engineering support for LLNL Chemistry's High Explosive Technology group. Final report

    SciTech Connect

    Weston, A.M.; James, E.

    1985-12-01

    Support for the Lawrence Livermore National Laboratory (LLNL) High Explosive Technology (HET), part of the Chemistry Division is described. Brief progress reports are presented for the following six tasks: (1) assess mechanical and explosive response of proposed extreme environmental weapon systems; (2) perform a hazard study relating to Trident D-5 motor response; (3) continue development and application of the deflagration to detonation (DDT) computer model (code RDUCT) for the hazard assessment for rocket propellants (HARP) program; (4) perform rocket motor vulnerability calculations for a proposed new air force mobile missile; (5) perform additional analyses relating to radioisotope thermo-electric generator PuO2 containment with possible NASA space shuttle accident scenarios; and (6) develop a relational data base for information pertinent to the hazard studies relating to the Trident D-5 motor response and the associated HARP program. (AT)

  4. Conversion of high explosive chemical energy into energy of powerful nanosecond high-current pulses

    NASA Astrophysics Data System (ADS)

    Gorbachev, K. V.; Mikhaylov, V. M.; Nesterov, E. V.; Stroganov, V. A.; Chernykh, E. V.

    2015-01-01

    This study is a contribution into the development of physicotechnical foundations for generation of powerful nanosecond high-current pulses on the basis of explosively driven magnetic flux compression generators. This problem is solved by using inductive storage of energy for matching comparatively low-voltage explosively driven magnetic flux compression generators and high-impedance loads; short forming lines and vacuum diodes. Experimental data of charging of forming lines are given.

  5. Photoactive High Explosives: Substituents Effects on Tetrazine Photochemistry and Photophysics.

    PubMed

    McGrane, S D; Bolme, C A; Greenfield, M T; Chavez, D E; Hanson, S K; Scharff, R J

    2016-02-18

    High explosives that are photoactive, i.e., can be initiated with light, offer significant advantages in reduced potential for accidental electrical initiation. We examined a series of structurally related tetrazine based photoactive high explosive materials to detail their photochemical and photophysical properties. Using photobleaching infrared absorption, we determined quantum yields of photochemistry for nanosecond pulsed excitation at 355 and 532 nm. Changes in mass spectrometry during laser irradiation in vacuum measured the evolution of gaseous products. Fluorescence spectra, quantum yields, and lifetimes were measured to observe radiative channels of energy decay that compete with photochemistry. For the 6 materials studied, quantum yields of photochemistry ranged from <10(-5) to 0.03 and quantum yield of fluorescence ranged from <10(-3) to 0.33. In all cases, the photoexcitation nonradiatively relaxed primarily to heat, appropriate for supporting photothermal initiation processes. The photochemistry observed was dominated by ring scission of the tetrazine, but there was evidence of more extensive multistep reactions as well. PMID:26797486

  6. Study of high explosives in soil for holding determination

    SciTech Connect

    Tappan, B.C.; Campbell, M.S.

    1997-12-31

    A holding time is a regulated amount of time that a sample can be stored before analysis. The holding times that are now used for high explosives (HE) in soil and extracts are the EPA holding times set for semi-volatile organics. These holding times are 14 days at 4 C before sample extraction and 40 days before extract analysis. A previous study on Eastern U.S. soils found that actual decomposition in storage varies for different compounds and different soils, however, no studies prior to this have been performed on Los Alamos soils. The soil samples were spiked with an HE solution of HMX, RDX, TNT, TNB, 2,4-DNT, 2,6-DNT, 4-Am-2,6-DNT, 2-Am-4,6-DNT, Tetryl, NB, 1,3-DNB, 2-NT, 3-NT, and 4-NT, plus two surrogates 3,4-DNT and MNA. A total of five soil types were studied, four uncontaminated and one field contaminated. From the results of the study, it is clear that the EPA holding time now assigned to soils containing high explosives is much too long when analyzing for nitroaromatics, but sufficient when analyzing for HMX and RDX.

  7. High Explosive Verification and Validation: Systematic and Methodical Approach

    NASA Astrophysics Data System (ADS)

    Scovel, Christina; Menikoff, Ralph

    2011-06-01

    Verification and validation of high explosive (HE) models does not fit the standard mold for several reasons. First, there are no non-trivial test problems with analytic solutions. Second, an HE model depends on a burn rate and the equation of states (EOS) of both the reactants and products. Third, there is a wide range of detonation phenomena from initiation under various stimuli to propagation of curved detonation fronts with non-rigid confining materials. Fourth, in contrast to a shock wave in a non-reactive material, the reaction-zone width is physically significant and affects the behavior of a detonation wave. Because of theses issues, a systematic and methodical approach to HE V & V is needed. Our plan is to build a test suite from the ground up. We have started with the cylinder test and have run simulations with several EOS models and burn models. We have compared with data and cross-compared the different runs to check on the sensitivity to model parameters. A related issue for V & V is what experimental data are available for calibrating and testing models. For this purpose we have started a WEB based high explosive database (HED). The current status of HED will be discussed.

  8. An explosively driven high-power microwave pulsed power system

    NASA Astrophysics Data System (ADS)

    Elsayed, M. A.; Neuber, A. A.; Dickens, J. C.; Walter, J. W.; Kristiansen, M.; Altgilbers, L. L.

    2012-02-01

    The increased popularity of high power microwave systems and the various sources to drive them is the motivation behind the work to be presented. A stand-alone, self-contained explosively driven high power microwave pulsed power system has been designed, built, and tested at Texas Tech University's Center for Pulsed Power and Power Electronics. The system integrates four different sub-units that are composed of a battery driven prime power source utilizing capacitive energy storage, a dual stage helical flux compression generator as the main energy amplification device, an integrated power conditioning system with inductive energy storage including a fast opening electro-explosive switch, and a triode reflex geometry virtual cathode oscillator as the microwave radiating source. This system has displayed a measured electrical source power level of over 5 GW and peak radiated microwaves of about 200 MW. It is contained within a 15 cm diameter housing and measures 2 m in length, giving a housing volume of slightly less than 39 l. The system and its sub-components have been extensively studied, both as integrated and individual units, to further expand on components behavior and operation physics. This report will serve as a detailed design overview of each of the four subcomponents and provide detailed analysis of the overall system performance and benchmarks.

  9. Field-based high-speed imaging of explosive eruptions

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Scarlato, P.; Freda, C.; Moroni, M.

    2012-12-01

    Explosive eruptions involve, by definition, physical processes that are highly dynamic over short time scales. Capturing and parameterizing such processes is a major task in eruption understanding and forecasting, and a task that necessarily requires observational systems capable of high sampling rates. Seismic and acoustic networks are a prime tool for high-frequency observation of eruption, recently joined by Doppler radar and electric sensors. In comparison with the above monitoring systems, imaging techniques provide more complete and direct information of surface processes, but usually at a lower sampling rate. However, recent developments in high-speed imaging systems now allow such information to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High

  10. Laser impingement on bare and encased high explosives: safety limits

    SciTech Connect

    Roeske, F

    1999-03-15

    During the course of experiments involving high explosives, (HE), alignment lasers are often employed where the laser beam impinges upon a metal encased HE sample or on the bare HE itself during manned operations. While most alignment lasers are of low enough power so as not to be of concern, safety questions arise when considering the maximum credible power output of the laser in a failure mode, or when multiple laser spots are focused onto the experiment simultaneously. Safety questions also arise when the focused laser spot size becomes very small, on the order of 100 {micro}m or less. This paper addresses these concerns by describing a methodology for determining safety margins for laser impingement on metal encased HE as well as one for bare HE. A variety of explosives encased in Al, Cu, Ta and stainless steel were tested using the first of these techniques. Additional experiments were performed using the second method where the laser beam was focused directly on eight different samples of pressed-powder HE.

  11. High Resolution Digital Elevation Models of Pristine Explosion Craters

    NASA Technical Reports Server (NTRS)

    Farr, T. G.; Krabill, W.; Garvin, J. B.

    2004-01-01

    In order to effectively capture a realistic terrain applicable to studies of cratering processes and landing hazards on Mars, we have obtained high resolution digital elevation models of several pristine explosion craters at the Nevada Test Site. We used the Airborne Terrain Mapper (ATM), operated by NASA's Wallops Flight Facility to obtain DEMs with 1 m spacing and 10 cm vertical errors of 4 main craters and many other craters and collapse pits. The main craters that were mapped are Sedan, Scooter, Schooner, and Danny Boy. The 370 m diameter Sedan crater, located on Yucca Flat, is the largest and freshest explosion crater on Earth that was formed under conditions similar to hypervelocity impact cratering. As such, it is effectively pristine, having been formed in 1962 as a result of a controlled detonation of a 100 kiloton thermonuclear device, buried at the appropriate equivalent depth of burst required to make a simple crater. Sedan was formed in alluvium of mixed lithology and subsequently studied using a variety of field-based methods. Nearby secondary craters were also formed at the time and were also mapped by ATM. Adjacent to Sedan and also in alluvium is Scooter, about 90 m in diameter and formed by a high-explosive event. Schooner (240 m) and Danny Boy (80 m) craters were also important targets for ATM as they were excavated in hard basalt and therefore have much rougher ejecta. This will allow study of ejecta patterns in hard rock as well as engineering tests of crater and rock avoidance and rover trafficability. In addition to the high resolution DEMs, crater geometric characteristics, RMS roughness maps, and other higher-order derived data products will be generated using these data. These will provide constraints for models of landing hazards on Mars and for rover trafficability. Other planned studies will include ejecta size-frequency distribution at the resolution of the DEM and at finer resolution through air photography and field measurements

  12. Moderate Velocity Ball Impact of a Mock High-Explosive

    SciTech Connect

    Furmanski, Jevan; Rae, Philip; Clements, Bradford E.

    2012-06-05

    Modeling of thermal and mechanical events in high-explosive materials is complicated by the composite nature of the material, which experiences viscoelastic and plastic deformations and sustains damage in the form of microcracks that can dominate its overall behavior. A mechanical event of interest is projectile interaction with the material, which leads to extreme local deformation and adiabatic heating, which can potentially lead to adverse outcomes in an energetic material. Simulations of such an event predicted large local temperature rises near the path of a spherical projectile, but these were experimentally unconfirmed and hence potentially non-physical. This work concerns the experimental verification of local temperatures both at the surface and in the wake of a spherical projectile penetrating a mock (unreactive) high-explosive at {approx}700 m/s. Fast response thermocouples were embedded radially in a mid-plane of a cylindrical target, which was bonded around the thermocouples with epoxy and recorded by an oscilloscope through a low-pass filter with a bandwidth of 500 Hz. A peak temperature rise of 70 K was measured both at the equator of the projectile and in its wake, in good agreement with the temperature predicted in the minimally distorted elements at those locations by a finite element model in ABAQUS employing the ViscoSCRAM constitutive model. Further work is needed to elucidate the extreme temperature rises in material undergoing crushing or fragmentation, which is difficult to predict with meshed finite element methods due to element distortion, and also challenging to quantify experimentally.

  13. High level triggers for explosive mafic volcanism: Albano Maar, Italy

    NASA Astrophysics Data System (ADS)

    Cross, J. K.; Tomlinson, E. L.; Giordano, G.; Smith, V. C.; De Benedetti, A. A.; Roberge, J.; Manning, C. J.; Wulf, S.; Menzies, M. A.

    2014-03-01

    Colli Albani is a quiescent caldera complex located within the Roman Magmatic Province (RMP), Italy. The recent Via dei Laghi phreatomagmatic eruptions led to the formation of nested maars. Albano Maar is the largest and has erupted seven times between ca 69-33 ka. The highly explosive nature of the Albano Maar eruptions is at odds with the predominant relatively mafic (SiO2 = 48-52 wt.%) foiditic (K2O = 9 wt.%) composition of the magma. The deposits have been previously interpreted as phreatomagmatic, however they contain large amounts (up to 30%vol) of deep seated xenoliths, skarns and all pre-volcanic subsurface units. All of the xenoliths have been excavated from depths of up to 6 km, rather than being limited to the depth at which magma and water interaction is likely to have occurred, suggesting an alternative trigger for eruption. High precision geochemical glass and mineral data of fresh juvenile (magmatic) clasts from the small volume explosive deposits indicate that the magmas have evolved along one of two evolutionary paths towards foidite or phonolite. The foiditic melts record ca. 50% mixing between the most primitive magma and Ca-rich melt, late stage prior to eruption. A major result of our study is finding that the generation of Ca-rich melts via assimilation of limestone, may provide storage for significant amounts of CO2 that can be released during a mixing event with silicate magma. Differences in melt evolution are inferred as having been controlled by variations in storage conditions: residence time and magma volume.

  14. PVDF shock sensors: applications to polar materials and high explosives.

    PubMed

    Bauer, F

    2000-01-01

    Ferroelectric polymers (PVDF) with well-defined and precisely known electrical properties are now routinely available from commercial sources. Electrical processing with the Bauer cyclic poling method can produce individual films with well-defined remanent polarization up to 9 /spl mu/C/cm/sup 2/. These polymers provide an unusual opportunity to study the structure and physical properties of materials subjected to shock loading. The behavior of PVDF has been studied over a wide range of pressures using high-pressure shock loading and has yielded well-behaved, reproducible data up to 25 GPa in inert materials. The application of PVDF gauges for recording shock waves induced in polar materials such as Kel-F, PMMA, or in reactive materials is hampered by observations of anomalous responses due to shock-induced polarization or an electrical charge released inside a shock-compressed explosive. A solution using an appropriate electrical shielding has been identified and applied to PVDF for shock measurement studies of Kel-F, and for Hugoniot measurements of high explosives (PH). Furthermore, shock pressure profiles obtained with in situ PVDF gauges in porous HE (Formex) in a detonation regime have been achieved. Typical results of shock pressure profile versus time show a fast superpressure of a few nanoseconds followed by a pressure release down to a plateau level and then by a pressure decay. More accurate measurements are reported with electrically improved PVDF gauges as well as with 0.25 mm/sup 2/ active area PVDF gauges. PMID:18238691

  15. DMSO/base hydrolysis method for the disposal of high explosives and related energetic materials

    DOEpatents

    Desmare, Gabriel W.; Cates, Dillard M.

    2002-05-14

    High explosives and related energetic materials are treated via a DMSO/base hydrolysis method which renders them non-explosive and/or non-energetic. For example, high explosives such as 1,3,5,7-tetraaza-1,3,5,7-tetranitrocyclooctane (HMX), 1,3,5-triaza-1,3,5-trinitrocyclohexane (RDX), 2,4,6-trinitrotoluene (TNT), or mixtures thereof, may be dissolved in a polar, aprotic solvent and subsequently hydrolyzed by adding the explosive-containing solution to concentrated aqueous base. Major hydrolysis products typically include nitrite, formate, and nitrous oxide.

  16. Study of Spatially Resolved Temperature Diagnostics for High Explosives

    SciTech Connect

    Lee, H

    2000-04-05

    The next generation of 2-D and 3-D weapon-simulation codes will require marked advances in the spatial and temporal resolution of the various diagnostics to verify the complex physics predicted from these calculations. This is particularly true for the complicated physics of high-explosive (HE) detonation and burn, of which a detailed understanding is crucial to nuclear weapons performance and integrity. The processes involved in the detonation of HEs occur very rapidly and lead to extremely high pressures (several GPa) and temperatures (several thousand Kelvin). A key diagnostic that has so far eluded experimentalists is a temperature diagnostic for burning HE. Temperature is a basic thermodynamic property that enables a fundamental understanding of important HE physics such as the chemical processes involved in the shock-to-detonation transition, and to assess the thermal part of the equation-of-state of the detonation products. Accurate, spatially localized temperature measurements with high temporal resolution are thus crucial, but are unfortunately lacking. Our work address this important problem.

  17. Systematic approach to verification and validation: High explosive burn models

    SciTech Connect

    Menikoff, Ralph; Scovel, Christina A.

    2012-04-16

    Most material models used in numerical simulations are based on heuristics and empirically calibrated to experimental data. For a specific model, key questions are determining its domain of applicability and assessing its relative merits compared to other models. Answering these questions should be a part of model verification and validation (V and V). Here, we focus on V and V of high explosive models. Typically, model developers implemented their model in their own hydro code and use different sets of experiments to calibrate model parameters. Rarely can one find in the literature simulation results for different models of the same experiment. Consequently, it is difficult to assess objectively the relative merits of different models. This situation results in part from the fact that experimental data is scattered through the literature (articles in journals and conference proceedings) and that the printed literature does not allow the reader to obtain data from a figure in electronic form needed to make detailed comparisons among experiments and simulations. In addition, it is very time consuming to set up and run simulations to compare different models over sufficiently many experiments to cover the range of phenomena of interest. The first difficulty could be overcome if the research community were to support an online web based database. The second difficulty can be greatly reduced by automating procedures to set up and run simulations of similar types of experiments. Moreover, automated testing would be greatly facilitated if the data files obtained from a database were in a standard format that contained key experimental parameters as meta-data in a header to the data file. To illustrate our approach to V and V, we have developed a high explosive database (HED) at LANL. It now contains a large number of shock initiation experiments. Utilizing the header information in a data file from HED, we have written scripts to generate an input file for a hydro code

  18. High Energy Density Laboratory Astrophysics

    SciTech Connect

    Remington, B A

    2004-11-11

    High-energy-density (HED) physics refers broadly to the study of macroscopic collections of matter under extreme conditions of temperature and density. The experimental facilities most widely used for these studies are high-power lasers and magnetic-pinch generators. The HED physics pursued on these facilities is still in its infancy, yet new regimes of experimental science are emerging. Examples from astrophysics include work relevant to planetary interiors, supernovae, astrophysical jets, and accreting compact objects (such as neutron stars and black holes). In this paper, we will review a selection of recent results in this new field of HED laboratory astrophysics and provide a brief look ahead to the coming decade.

  19. Biodegradation of the High Explosive Hexanitrohexaazaiso-wurtzitane (CL-20)

    PubMed Central

    Karakaya, Pelin; Christodoulatos, Christos; Koutsospyros, Agamemnon; Balas, Wendy; Nicolich, Steve; Sidhoum, Mohammed

    2009-01-01

    The aerobic biodegradability of the high explosive CL-20 by activated sludge and the white rot fungus Phanerochaete chrysosporium has been investigated. Although activated sludge is not effective in degrading CL-20 directly, it can mineralize the alkaline hydrolysis products. Phanerochaete chrysosporium degrades CL-20 in the presence of supplementary carbon and nitrogen sources. Biodegradation studies were conducted using various nutrient media under diverse conditions. Variables included the CL-20 concentration; levels of carbon (as glycerol) and ammonium sulfate and yeast extract as sources of nitrogen. Cultures that received CL-20 at the time of inoculation transformed CL-20 completely under all nutrient conditions studied. When CL-20 was added to pre-grown cultures, degradation was limited. The extent of mineralization was monitored by the 14CO2 time evolution; up to 51% mineralization was achieved when the fungus was incubated with [14C]-CL-20. The kinetics of CL-20 biodegradation by Phanerochaete chrysosporium follows the logistic kinetic growth model. PMID:19440524

  20. Tilt Correction of High Explosive Test Data with Examples

    NASA Astrophysics Data System (ADS)

    Hill, Larry; Francois, Elizabeth; Morris, John

    2013-06-01

    Many high-explosive experiments view a nominally-axially-symmetric detonation wave breaking through a charge surface. Emerging waves virtually always exhibit a degree of tilt, which one generally wants to excise from the data whilst quantifying its direction and magnitude. In some cases, such as front-curvature rate sticks and Onionskin (OS)-type tests, the diagnostic is a single-slit streak camera (1D correction). In other cases, such as a Plane-Wave Lens characterization test or a Furball test, multiple slits or fibers provide sparse data over a surface (2D correction). We demonstrate both 1D and 2D corrections, the latter of which is the more challenging. In 2D, we represent the breakout time as the sum of a symmetric component and an asymmetric component (a tilted plane). The two tilt angle components are found that minimize the data scatter associated with the symmetric component. The most compelling example is the Furball test, an OS-variant for which the breakout time over the hemispherical observation surface is measured at many points using optical fibers. Unlike the OS test that looks in one (random) direction, we are able to construct OS-type data in the direction of maximum tilt, even though there are generally no fibers at that direction.

  1. Proton radiography experiments on shocked high explosive products.

    SciTech Connect

    Ferm, Eric N.; Dennsion, Steve; Lopez, Robert; Prestridge, Kathy; Quintana, John P.; Espinoza, Camilo; King, Gary Hogan Nick; Merrill, Frank; Kevin Morley,; Morris, Christopher L.; Pazuchanic, Peter

    2003-07-22

    We studied the propagation of detonation waves and reflections of normal incident detonation waves in explosive products using the 800 MeV proton radiography facility at LANSCE. Using this system, we obtain seven to twenty-one radiographic images of each experiment. We have examined the experimental wave velocity and density of the materials ahead and behind of the shocks as inferred from radiographs and compare them to standard explosive equations of state. Finally we compare the experiments with calculations of the experiments using the MESA hydrodynamics code.

  2. THz Dielectric Properties of High Explosives Calculated by Density Functional Theory for the Design of Detectors

    NASA Astrophysics Data System (ADS)

    Shabaev, A.; Lambrakos, S. G.; Bernstein, N.; Jacobs, V.; Finkenstadt, D.

    2011-12-01

    The current need for better detection of explosive devices has imposed a new necessity for determining the dielectric response properties of energetic materials with respect to electromagnetic wave excitation. Among the range of different frequencies for electromagnetic excitation, the THz frequency range is of particular interest because of its nondestructive nature and ability to penetrate materials that are characteristic of clothing. Typically, the dielectric response properties for electromagnetic wave excitation at THz frequencies, as well as at other frequencies, are determined by means of experimental measurements. The present study, however, emphasizes that density functional theory (DFT), and associated software technology, is sufficiently mature for the determination of dielectric response functions, and actually provides complementary information to that obtained from experiment. In particular, these dielectric response functions provide quantitative initial estimates of spectral response features that can be adjusted with respect to additional information such as laboratory measurements and other types of theory-based calculations, as well as providing for the molecular level interpretation of response structure. This point is demonstrated in the present study by calculations of ground-state resonance structure associated with the high explosives RDX, TNT1, and TNT2 using DFT, which is for the construction of parameterized dielectric response functions for excitation by electromagnetic waves at frequencies within the THz range. The DFT software NRLMOL was used for the calculations of ground-state resonance structure presented here.

  3. LOW OZONE-DEPLETING HALOCARBONS AS TOTAL-FLOOD AGENTS: VOLUME 2. LABORATORY-SCALE FIRE SUPPRESSION AND EXPLOSION PREVENTION TESTING

    EPA Science Inventory

    The report gives results from (1) flame suppression testing of potential Halon-1301 (CF3Br) replacement chemicals in a laboratory cup burner using n-heptane fuel and (2) explosion prevention (inertion) testing in a small-scale explosion sphere using propane and methane as fuels. ...

  4. High explosive corner turning performance and the LANL Mushroom test

    SciTech Connect

    Hill, L.G.; Seitz, W.L.; Forest, C.A.; Harry, H.H.

    1997-09-01

    The Mushroom test is designed to characterize the corner turning performance of a new generation of less insensitive booster explosives. The test is described in detail, and three corner turning figures-of-merit are examined using pure TATB (both Livermore`s Ultrafine and a Los Alamos research blend) and PBX9504 as examples.

  5. High explosive corner turning performance and the LANL mushroom test

    SciTech Connect

    Hill, L.G.; Seitz, W.L.; Forest, C.A.; Harry, H.H.

    1998-07-01

    The Mushroom test is designed to characterize the corner turning performance of a new generation of less sensitive booster explosives. The test is described in detail, and three corner turning figures-of-merit are examined using pure TATB (both Livermore{close_quote}s Ultrafine and a Los Alamos research blend) and PBX9504 as examples. {copyright} {ital 1998 American Institute of Physics.}

  6. Detonation Initiation of Heterogeneous Melt-Cast High Explosives

    NASA Astrophysics Data System (ADS)

    Chuzeville, Vincent; Baudin, Gerard; Lefrancois, Alexandre; Boulanger, Remi; Catoire, Laurent

    2015-06-01

    The melt-cast explosives' shock initiation mechanisms are less investigated than pressed and cast-cured ones. If the existence of hot-spots is widely recognized, their formation mechanism is not yet established. We study here two melt-cast explosives, NTO-TNT 60:40 and RDX-TNT 60:40 in order to establish a relation between the microstructure and the reaction rate using a two-phase model based on a ZND approach. Such a model requires the reaction rate, the equations of state of the unreacted phase and of the detonation products and an interaction model between the two phases to describe the reaction zone thermodynamics. The reaction rate law can be written in a factorized form including the number of initiation sites, the explosive's deflagration velocity around hot spots and a function depending on gas volume fraction produced by the deflagration front propagation. The deflagration velocity mainly depends on pressure and is determined from pop-plot tests using the hypothesis of the single curve build-up. This hypothesis has been verified for our two melt-cast explosives. The function depending on gas volume fraction is deduced from microstructural observations and from an analogy with the solid nucleation and growth theory. It has been established for deflagration fronts growing from grain's surface and a given initial grain size distribution. The model requires only a few parameters, calibrated thanks to an inversion method. A good agreement is obtained between experiments and numerical simulations.

  7. Safety Guidelines for Laser Illumination on Exposed High Explosives and Metals in Contact with High Explosives with Calculational Results

    SciTech Connect

    Benterou, J; Roeske, F; Wilkins, P; Carpenter, K H

    2002-04-17

    Experimental tests have been undertaken to determine safe levels of laser exposure on bare high explosive (HE) samples and on common metals used in intimate contact with HE. Laser light is often focused on bare HE and upon metals in contact with HE during alignment procedures and experimental metrology experiments. This paper looks at effects caused by focusing laser beams at high energy densities directly onto the surface of various bare HE samples. Laser energy densities (fluence) exceeding 19 kilowatts/cm{sup 2} using a 5-milliwatt, 670 nm, cw laser diode were generated by focusing the laser down to a spot size diameter of 4 microns. Upon careful inspection, no laser damage was observed in any of the HE samples illuminated at this fluence level. Direct laser exposure of metals directly contacting HE surfaces was also tested. Laser energy densities (fluence) varying from 188 Watts/cm{sup 2} to 12.7 KW/cm{sup 2} were generated using an 11-Watt, 532 nm frequency-doubled Nd:YAG cw laser with focal spot size diameters as small as 100 microns. These measurements look at the temperature rise of the surface of the metal in contact with HE when laser energy is incident on the opposite side of the metal. The temperature rise was experimentally measured as a function of incident laser power, spot size, metal composition and metal thickness. Numerical simulations were also performed to solve the two-dimensional heat flow problem for this experimental geometry. In order to simplify the numerical simulation to allow representation of a large number of physical cases, the equations used in the simulation are expressed in terms of dimensionless variables. The normalized numerical solutions are then compared to the various experimental configurations utilized. Calculations and experiment agree well over the range measured. Safety guidelines for alignment laser illumination upon bare HE are outlined.

  8. Insensitive explosive

    SciTech Connect

    Lee, Kien-yin; Storm, C.B.

    1991-12-31

    This invention relates to the field of chemistry and, more particularly, to explosives. This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36). It is desirable to use explosives in weapons and other applications which are less sensitive than the common explosives RDX, TNT, and HMX, since there have been catastrophic explosions of munitions which use these compounds. In preliminary characterization and sensitivity testing, it has been found that 3-amino-5-nitro-1,2,4-triazole (ANTA) is a promising insensitive high explosive. This report details the safety, production, and physical properties of ANTA.

  9. Initial characterization of a highly contaminated high explosives outfall in preparation for in situ bioremediation

    SciTech Connect

    Betty A. Strietelmeier; Patrick J. Coyne; Patricia A. Leonard; W. Lamar Miller; Jerry R. Brian

    1999-12-01

    In situ bioremediation is a viable, cost-effective treatment for environmental contamination of many kinds. The feasibility of using biological techniques to remediate soils contaminated with high explosives (HE) requires laboratory evaluation before proceeding to a larger scale field operation. Laboratory investigations have been conducted at pilot scale which indicate that an anaerobic process could be successful at reducing levels of HE, primarily HMX, RDX and TNT, in contaminated soils. A field demonstration project has been designed to create an anaerobic environment for the degradation of HE materials. The first step in this project, initial characterization of the test area, was conducted and is the subject of this report. The levels of HE compounds found in the samples from the test area were higher than the EPA Method 8330 was able to extract without subsequent re-precipitation; therefore, a new method was developed using a superior extractant system. The test area sampling design was relatively simple as one might expect in an initial characterization. A total of 60 samples were each removed to a depth of 4 inches using a 1 inch diameter corer. The samples were spaced at relatively even intervals across a 20 foot cross-section through the middle of four 7-foot-long adjacent plots which are designed to be a part of an in situ bioremediation experiment. Duplicate cores were taken from each location for HE extraction and analysis in order to demonstrate and measure the heterogeneity of the contamination. Each soil sample was air dried and ball-milled to provide a homogeneous solid for extraction and analysis. Several samples had large consolidated pieces of what appeared to be solid HE. These were not ball-milled due to safety concerns, but were dissolved and the solutions were analyzed. The new extraction method was superior in that results obtained for several of the contaminants were up to 20 times those obtained with the EPA extraction method. The

  10. Biodegradation of high explosives on granular activated carbon [GAC]: Enhanced desorption of high explosives from GAC -- Batch studies

    SciTech Connect

    Morley, M.C.; Speitel, G.E. Jr.

    1999-03-01

    Adsorption to GAC is an effective method for removing high explosives (HE) compounds from water, but no permanent treatment is achieved. Bioregeneration, which treats adsorbed contaminants by desorption and biodegradation, is being developed as a method for reducing GAC usage rates and permanently degrading RDX and HMX. Because desorption is often the limiting mass transfer mechanism in bioregeneration systems, several methods for increasing the rate and extent of desorption of RDX and HMX are being studied. These include use of cosolvents (methanol and ethanol), surfactants (both anionic and nonionic), and {beta}- and {gamma}-cyclodextrins. Batch experiments to characterize the desorption of these HEs from GAC have been completed using Northwestern LB-830, the GAC being used at Pantex. Over a total of 11 days of desorption, about 3% of the adsorbed RDX was desorbed from the GAC using buffered water as the desorption fluid. In comparison, about 96% of the RDX was extracted from the GAC by acetonitrile over the same desorption period. Ethanol and methanol were both effective in desorbing RDX and HMX; higher alcohol concentrations were able to desorb more HE from the GAC. Surfactants varied widely in their abilities to enhance desorption of HEs. The most effective surfactant that was studied was sodium dodecyl sulfate (SDS), which desorbed 56.4% of the adsorbed RDX at a concentration of 500 mg SDS/L. The cyclodextrins that were used were marginally more effective than water. Continuous-flow column tests are underway for further testing the most promising of these methods. These results will be compared to column experiments that have been completed under baseline conditions (using buffered water as the desorption fluid). Results of this research will support modeling and design of further desorption and bioregeneration experiments.

  11. High-resolution optical signatures of fresh and aged explosives in the 420nm to 620nm illumination range

    NASA Astrophysics Data System (ADS)

    Lunsford, Robert; Grun, Jacob; Gump, Jared

    2012-06-01

    Optical signatures of fresh and aged explosives are measured and compared to determine whether there exist differences in the signatures that can be exploited for detection. The explosives examined are RDX, TNT, and HMX, which have been heated for two weeks at 75 degrees centigrade or irradiated for two weeks with a 15-Watt ultraviolet lamp (254nm). The optical signatures are obtained by illuminating the samples with a sequence of laser wavelengths between 420nm and 620nm in 10 nm steps and measuring the spectra of light scattered from the sample at each laser wavelength. The measurements are performed on the Naval Research Laboratory's SWOrRD instrument. SWOrRD is capable of illuminating a sample with laser wavelength between 210nm and 2000nm, in steps of 0.1nm, and measuring the spectrum of light scattered from the sample at each wavelength. SWOrRD's broad tuning range, high average power (1- 300mW), narrow line width (< 4cm-1), and rapid wavelength tunability enable these measurements. Results, based on more than 80 measurements - each at 21 sequential laser wavelengths, indicate that the variation in spectral line amplitude observed when altering laser illumination wavelength differs between fresh and aged explosives. Thus, an instrument for rapid and reagent-less differentiation between aged and fresh explosives, based on illumination with a few appropriately chosen laser wavelengths appears feasible.

  12. Optically measured explosive impulse

    NASA Astrophysics Data System (ADS)

    Biss, Matthew M.; McNesby, Kevin L.

    2014-06-01

    An experimental technique is investigated to optically measure the explosive impulse produced by laboratory-scale spherical charges detonated in air. Explosive impulse has historically been calculated from temporal pressure measurements obtained via piezoelectric transducers. The presented technique instead combines schlieren flow visualization and high-speed digital imaging to optically measure explosive impulse. Prior to an explosive event, schlieren system calibration is performed using known light-ray refractions and resulting digital image intensities. Explosive charges are detonated in the test section of a schlieren system and imaged by a high-speed digital camera in pseudo-streak mode. Spatiotemporal schlieren intensity maps are converted using an Abel deconvolution, Rankine-Hugoniot jump equations, ideal gas law, triangular temperature decay profile, and Schardin's standard photometric technique to yield spatiotemporal pressure maps. Temporal integration of individual pixel pressure profiles over the positive pressure duration of the shock wave yields the explosive impulse generated for a given radial standoff. Calculated explosive impulses are shown to exhibit good agreement between optically derived values and pencil gage pressure transducers.

  13. High explosive safety manual. Final technical report, September 1978-May 1980

    SciTech Connect

    Albaugh, L.R.; McBride, D.A.

    1980-06-01

    A Safety Manual for High Explosive Processing, Handling, and Testing has been prepared for the Department of Energy. Background on the preparation and recommendations for manual implementation and augmentation are provided. The Manual is provided as a separate document.

  14. IMAGING HIGH SPEED PARTICLES IN EXPLOSIVE DRIVEN BLAST WAVES

    SciTech Connect

    Jenkins, C. M.; Horie, Y.; Ripley, R. C.; Wu, C.-Y.

    2009-12-28

    This research describes a new application of a commercially available particle image velocimetry (PIV) instrument adapted for imaging particles in a blast wave. Powder was dispersed through the PIV light sheet using a right circular cylindrical charge containing aluminum powder filled in the annular space between the explosive core and exterior paper tube wall of the charge. Images acquired from each shot showed particle agglomeration and unique structures with the smaller particle diameters having developed structured appearances.

  15. Explosion of heterogeneous water droplet in a high-temperature gaseous region

    NASA Astrophysics Data System (ADS)

    Piskunov, M. V.; Shcherbinina, A. A.

    2015-11-01

    Using high-speed video recording tools (up to 105 frames per second) and «TEMA Automotive» and «Phantom Camera Control» software packages the experimental features of explosive disintegration, boiling and evaporation of water droplets with comparably sized solid inclusions heated in high-temperature (more than 650 K) gaseous region were determined. The necessary and sufficient conditions of explosive vapor formation achievement with the next heterogeneous water droplet disintegration were found.

  16. An explicit model of expanding cylindrical shells subjected to high explosive detonations

    SciTech Connect

    Martineau, R.L.; Prime, M.B.; Anderson, C.A.; Smith, F.W.

    1999-04-01

    A viscoplastic constitutive model was formulated to model the high strain-rate expansion of thin cylindrical shells subjected to internal explosive detonations. This model provides insight into the development of plastic instabilities, which occur on the surface of the shells prior to failure. The effects of shock heating and damage in the form of microvoid nucleation, growth, and coalescence were incorporated using the Johnson-Cook strength model with the Mie-Grueneisen equation of state and a modified Gurson yield surface. This model was implemented into ABAQUS/Explicit as a user material subroutine. A cylindrical copper shell was modeled using both axisymmetric and plane strain elements. The high explosive material inside of the cylinder was simulated using the high explosive burn model in ABAQUS/Explicit. Two experiments were conducted involving explosive-filled, copper cylinders and good agreement was obtained between the numerical results and experimental data.

  17. Characterization of high-explosive initiation and safety at Los Alamos

    SciTech Connect

    McAfee, J.M.

    1994-10-01

    The Chapman-Jouget and ZND models of steady detonation have proved most useful for engineering estimation of the propagation of near-planar, steady detonation in short-reaction-zone explosives. However, even in well characterized systems, the purposeful initiation of detonation is not described by these models. The highly divergent and microscopic nature of point initiation require discerning experiments, modeling, and theoretical analysis. Recently, safety considerations in complex or damaged systems, possibly containing long-reaction-zone (insensitive) high explosives, have dominated the author`s thinking. These situations are rarely planar or steady, the physical state of the explosive may not be easily characterized, and there is a wide range of potential stimuli. The high-explosive reaction may range from none, to deflagration, to partial detonation, or to full detonation. Techniques and data applicable to estimating the level of response are needed.

  18. Human Health and Ecological Risk Assessment for the Operation of the Explosives Waste Treatment Facility at Site 300 of the Lawrence Livermore National Laboratory Volume 1: Report of Results

    SciTech Connect

    Gallegos, G; Daniels, J; Wegrecki, A

    2006-04-24

    This document contains the human health and ecological risk assessment for the Resource Recovery and Conservation Act (RCRA) permit renewal for the Explosives Waste Treatment Facility (EWTF). Volume 1 is the text of the risk assessment, and Volume 2 (provided on a compact disc) is the supporting modeling data. The EWTF is operated by the Lawrence Livermore National Laboratory (LLNL) at Site 300, which is located in the foothills between the cities of Livermore and Tracy, approximately 17 miles east of Livermore and 8 miles southwest of Tracy. Figure 1 is a map of the San Francisco Bay Area, showing the location of Site 300 and other points of reference. One of the principal activities of Site 300 is to test what are known as ''high explosives'' for nuclear weapons. These are the highly energetic materials that provide the force to drive fissionable material to criticality. LLNL scientists develop and test the explosives and the integrated non-nuclear components in support of the United States nuclear stockpile stewardship program as well as in support of conventional weapons and the aircraft, mining, oil exploration, and construction industries. Many Site 300 facilities are used in support of high explosives research. Some facilities are used in the chemical formulation of explosives; others are locations where explosive charges are mechanically pressed; others are locations where the materials are inspected radiographically for such defects as cracks and voids. Finally, some facilities are locations where the machined charges are assembled before they are sent to the on-site test firing facilities, and additional facilities are locations where materials are stored. Wastes generated from high-explosives research are treated by open burning (OB) and open detonation (OD). OB and OD treatments are necessary because they are the safest methods for treating explosives wastes generated at these facilities, and they eliminate the requirement for further handling and

  19. Role of explosive instabilities in high-β disruptions in tokamaks

    NASA Astrophysics Data System (ADS)

    Aydemir, A. Y.; Lee, H. H.; Lee, S. G.; Seol, J.; Park, B. H.; In, Y. K.

    2016-05-01

    Intrinsically explosive growth of a ballooning finger is demonstrated in nonlinear magnetohydrodynamic calculations of high-β disruptions in tokamaks. The explosive finger is formed by an ideally unstable n  =  1 mode, dominated by an m/n  =  2/1 component. The quadrupole geometry of the 2/1 perturbed pressure field provides a generic mechanism for the formation of the initial ballooning finger and its subsequent transition from exponential to explosive growth, without relying on secondary processes. The explosive ejection of the hot plasma from the core and stochastization of the magnetic field occur on Alfvénic time scales, accounting for the extremely fast growth of the precursor oscillations and the rapidity of the thermal quench in some high-β disruptions.

  20. Hot-spot contributions in shocked high explosives from mesoscale ignition models

    NASA Astrophysics Data System (ADS)

    Levesque, G.; Vitello, P.; Howard, W. M.

    2013-06-01

    High explosive performance and sensitivity is strongly related to the mesoscale defect densities. Bracketing the population of mesoscale hot spots that are active in the shocked ignition of explosives is important for the development of predictive reactive flow models. By coupling a multiphysics-capable hydrodynamics code (ale3d) with a chemical kinetics solver (cheetah), we can parametrically analyze different pore sizes undergoing collapse in high pressure shock conditions with evolving physical parameter fields. Implementing first-principles based decomposition kinetics, burning hot spots are monitored, and the regimes of pore sizes that contribute significantly to burnt mass faction and those that survive thermal conduction on the time scales of ignition are elucidated. Comparisons are drawn between the thermal explosion theory and the multiphysics models for the determination of nominal pore sizes that burn significantly during ignition for the explosive 1,3,5-triamino-2,4,6-trinitrobenzene.

  1. Invited Article: Quantitative imaging of explosions with high-speed cameras.

    PubMed

    McNesby, Kevin L; Homan, Barrie E; Benjamin, Richard A; Boyle, Vincent M; Densmore, John M; Biss, Matthew M

    2016-05-01

    The techniques presented in this paper allow for mapping of temperature, pressure, chemical species, and energy deposition during and following detonations of explosives, using high speed cameras as the main diagnostic tool. This work provides measurement in the explosive near to far-field (0-500 charge diameters) of surface temperatures, peak air-shock pressures, some chemical species signatures, shock energy deposition, and air shock formation. PMID:27250366

  2. Pressure loading of aluminum and quartz using spray deposited light-initiated high explosive

    SciTech Connect

    Benham, R. A.

    1980-02-01

    A series of experiments was conducted for the purpose of evaluating the impulsive pressure loading generated at a material surface by the detonation of light-initiated high explosive on that surface. The explosive was sprayed and then detonated directly on both carbon and quartz pressure transducers. The output was recorded to allow determination of the characteristics of the pressure loading, as well as to evaluate the variability of this loading.

  3. Microbiological changes during bioremediation of explosives-contaminated soils in laboratory and pilot-scale bioslurry reactors.

    SciTech Connect

    Fuller, M. E.; Manning, J. F., Jr.; Environmental Research

    2004-01-01

    Changes in the microbial community during bioremediation of explosives-contaminated soil in a molasses-fed bioslurry process were examined. Upon addition of molasses to laboratory-scale reactors, total culturable heterotrophs increased rapidly by three to four orders of magnitude. However, heat-shocked heterotrophs and the percentage of gram-positive bacterial isolates did not increase until the soluble concentrations of 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrobenzene (TNB) began to decrease. The number of identified phospholipid fatty acids (PLFA) and the total PLFA concentration also exhibited an immediate increase in response to molasses addition, while the concentration of branched PLFA, indicative of the gram-positive population, remained low until soluble TNT and TNB concentrations had significantly decreased. This same general relationship between explosives degradation and gram-positive-specific PLFA was observed during an experiment with a large field-scale bioslurry lagoon reactor. These results indicate that the gram-positive organisms, which have been shown to be severely impacted by even low concentrations of TNT and TNB [Current Microbiol. 35 (1997) 77; Environ. Toxicol. Chem. 17 (1998) 2185], are able to increase in concentrations after explosives compounds are reduced to non-inhibitory levels, and should therefore be able to reestablish themselves in remediated soils.

  4. Particle size analysis of prepared solutions and fingerprint deposits of high explosive materials

    SciTech Connect

    Carmack, W.J.; Hembree, P.B.

    1998-03-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) managed and operated by Lockheed Martin Idaho Technologies Company (LMITCO) was tasked via the Federal Aviation Administration (FAA) and US Department of Energy (DOE) to conduct various studies involving the detection and measurement of explosive materials and their associated residues. This report details the results of an investigation to determine the particle size characteristics of the explosive materials used in the design, development, and testing of trace explosives detection systems. These materials, in the form of water suspensions of plastic explosives, are used to provide a quantitative means of monitoring the performance characteristics of the detection systems. The purpose of this investigation is to provide data that allows a comparison between the particles deposited using the suspension standards and the particles deposited from fingerprints. This information may support the development of quality control aids, measurement methods, or performance criteria specifications for the use of trace explosives detection systems. For this report, particle size analyses were completed on explosives standard suspensions/solutions for composition C-4, Semtex-H, and Detasheet and fingerprints for C-4, Detasheet, and pentolite. Because of the difficulty in collecting microscopic images of the particles in the suspensions from test protocol surfaces, this paper discusses the characteristics of the particles as they are found on metal, glass, and paper. The results of the particle characterization analyses indicate that the water suspensions contain particulate composed of binder materials and dissolved portions of the explosive compounds. Upon drying of the water suspensions, significant particle nucleation and growth is observed. The nucleated particulate is comparable to the particulate deposited by fingerprints.

  5. A simple approach for determining detonation velocity of high explosive at any loading density.

    PubMed

    Keshavarz, Mohammad Hossein

    2005-05-20

    A simple empirical relationship is introduced between detonation velocity at any loading density and chemical composition of high explosive as well as its gas phase heat of formation, which is calculated by group additivity rules. The present work may be applied to any explosive that contains the elements of carbon, hydrogen, nitrogen and oxygen with no difficulties. The new correlation can easily be applied for determining detonation velocity of explosives with loading densities less than 1g/cm3 as well as greater than 1g/cm3. Calculated detonation velocities by this procedure for both pure and explosive formulations show good agreement with respect to measured detonation velocity over a wide range of loading density. PMID:15885403

  6. Computer code to predict the heat of explosion of high energy materials.

    PubMed

    Muthurajan, H; Sivabalan, R; Pon Saravanan, N; Talawar, M B

    2009-01-30

    The computational approach to the thermochemical changes involved in the process of explosion of a high energy materials (HEMs) vis-à-vis its molecular structure aids a HEMs chemist/engineers to predict the important thermodynamic parameters such as heat of explosion of the HEMs. Such a computer-aided design will be useful in predicting the performance of a given HEM as well as in conceiving futuristic high energy molecules that have significant potential in the field of explosives and propellants. The software code viz., LOTUSES developed by authors predicts various characteristics of HEMs such as explosion products including balanced explosion reactions, density of HEMs, velocity of detonation, CJ pressure, etc. The new computational approach described in this paper allows the prediction of heat of explosion (DeltaH(e)) without any experimental data for different HEMs, which are comparable with experimental results reported in literature. The new algorithm which does not require any complex input parameter is incorporated in LOTUSES (version 1.5) and the results are presented in this paper. The linear regression analysis of all data point yields the correlation coefficient R(2)=0.9721 with a linear equation y=0.9262x+101.45. The correlation coefficient value 0.9721 reveals that the computed values are in good agreement with experimental values and useful for rapid hazard assessment of energetic materials. PMID:18513863

  7. Composting of soils/sediments and sludges containing toxic organics including high energy explosives. Final report

    SciTech Connect

    Doyle, R.C.; Kitchens, J.F.

    1993-07-01

    Laboratory and pilot-scale experimentation were conducted to evaluate composting as an on-site treatment technology to remediate soils contaminated with hazardous waste at DOE`s PANTEX Plant. Suspected contaminated sites within the PANTEX Plant were sampled and analyzed for explosives, other organics, and inorganic wastes. Soils in drainage ditches and playas at PANTEX Plant were found to be contaminated with low levels of explosives (including RDX, HMX, PETN and TATB). Additional sites previously used for solvent disposal were heavily contaminated with solvents and transformation products of the solvent, as well as explosives and by-products of explosives. Laboratory studies were conducted using {sup 14}C-labeled explosives and {sup 14}C-labeled diacetone alcohol contaminated soil loaded into horse manure/hay composts at three rates: 20, 30, and 40%(W/W). The composts were incubated for six weeks at approximately 60{degree}C with continuous aeration. All explosives degraded rapidly and were reduced to below detection limits within 3 weeks in the laboratory studies. {sup 14}C-degradates from {sup 14}C-RDX, {sup 14}C-HMX and {sup 14}C-TATB were largely limited to {sup 14}CO{sub 2} and unextracted residue in the compost. Volatile and non-volatile {sup 14}C-degradates were found to result from {sup 14}C-PETN breakdown, but these compounds were not identified. {sup 14}C-diacetone alcohol concentrations were significantly reduced during composting. However, most of the radioactivity was volatilized from the compost as non-{sup 14}CO{sub 2} degradates or as {sup 14}C-diacetone alcohol. Pilot scale composts loaded with explosives contaminated soil at 30% (W/W) with intermittent aeration were monitored over six weeks. Data from the pilot-scale study generally was in agreement with the laboratory studies. However, the {sup 14}C-labeled TATB degraded much faster than the unlabeled TATB. Some formulations of TATB may be more resistant to composting activity than others.

  8. A novel method for the measurement of the von Neumann spike in detonating high explosives

    NASA Astrophysics Data System (ADS)

    Sollier, A.; Bouyer, V.; Hébert, P.; Doucet, M.

    2016-06-01

    We present detonation wave profiles measured in T2 (97 wt. % TATB) and TX1 (52 wt. % TATB and 45 wt. % HMX) high explosives. The experiments consisted in initiating a detonation wave in a 15 mm diameter cylinder of explosive using an explosive wire detonator and an explosive booster. Free surface velocity wave profiles were measured at the explosive/air interface using a Photon Doppler Velocimetry system. We demonstrate that a comparison of these free surface wave profiles with those measured at explosive/window interfaces in similar conditions allows to bracket the von Neumann spike in a narrow range. For T2, our measurements show that the spike pressure lies between 35.9 and 40.1 GPa, whereas for TX1, it lies between 42.3 and 47.0 GPa. The numerical simulations performed in support to these measurements show that they can be used to calibrate reactive burn models and also to check the accuracy of the detonation products equation of state at low pressure.

  9. On the high fidelity simulation of chemical explosions and their interaction with solid particle clouds

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Kaushik

    The flow field behind chemical explosions in multiphase environments is investigated using a robust, state-of-the-art simulation strategy that accounts for the thermodynamics, gas dynamics and fluid mechanics of relevance to the problem. Focus is laid on the investigation of blast wave propagation, growth of hydrodynamic instabilities behind explosive blasts, the mixing aspects behind explosions, the effects of afterburn and its quantification, and the role played by solid particles in these phenomena. In particular, the confluence and interplay of these different physical phenomena are explored from a fundamental perspective, and applied to the problem of chemical explosions. A solid phase solver suited for the study of high-speed, two-phase flows has been developed and validated. This solver accounts for the inter-phase mass, momentum and energy transfer through empirical laws, and ensures two-way coupling between the two phases, viz. solid particles and gas. For dense flow fields, i.e., when the solid volume fraction becomes non-negligible (˜60%), the finite volume method with a Godunov type shock-capturing scheme requires modifications to account for volume fraction gradients during the computation of cell interface gas fluxes. To this end, the simulation methodology is extended with the formulation of an Eulerian gas, Lagrangian solid approach, thereby ensuring that the so developed two-phase simulation strategy can be applied for both flow conditions, dilute and dense alike. Moreover, under dense loading conditions the solid particles inevitably collide, which is accounted for in the current research effort with the use of an empirical collision/contact model from literature. Furthermore, the post-detonation flow field consists of gases under extreme temperature and pressure conditions, necessitating the use of real gas equations of state in the multiphase model. This overall simulation strategy is then extended to the investigation of chemical explosions in

  10. Project laboratory in a high school

    NASA Astrophysics Data System (ADS)

    Gluck, Paul

    2010-09-01

    We describe our experience in guiding a physics laboratory in the eleventh grade of a high school, in which regular laboratory classes are replaced by an experimental project carried out throughout the year. Some didactic suggestions and hints are given for those wishing to adopt such an undertaking. Outlines are given for a few of the recent projects.

  11. Project Laboratory in a High School

    ERIC Educational Resources Information Center

    Gluck, Paul

    2010-01-01

    We describe our experience in guiding a physics laboratory in the eleventh grade of a high school, in which regular laboratory classes are replaced by an experimental project carried out throughout the year. Some didactic suggestions and hints are given for those wishing to adopt such an undertaking. Outlines are given for a few of the recent…

  12. In-field assessment of chemical high explosives using immunoassay techniques

    SciTech Connect

    Hardy, D.J.; Crossley, D.B.; O`Connell, M.S.

    1995-12-31

    Base realignment and weapons complex reconfiguration have prompted closure of former military related properties. As a result, chemical high explosives in environmental media are encountered with greater frequency during accelerated site characterization activities. The DOE`s Pantex nuclear weapons production/disassembly facility in Amarillo, Texas has observed nitroaromatic and nitramine compounds in soil and groundwater. Recognizing that phases characterization programs are time consuming and expensive, Pantex has employed compound specific immunoassay screening techniques to semi-quantitatively assess high explosive contamination in environmental media. As a result of using immunoassay techniques at over 500 sample locations, Pantex has achieved significant benefits corollary to reduced analytical expenses and timeframes, waste generation and management expenditures, field mobilization, and site characterization timeframes. Pantex Plant concludes that the use of immunoassay field screening of samples for chemical high explosives results in accelerated site characterization at a decreased expense while maintaining quality protocols and worker protection.

  13. A working man`s analysis of incidents and accidents with explosives at the Los Alamos National Laboratory, 1946--1997

    SciTech Connect

    Ramsay, J.B.; Goldie, R.H.

    1998-12-31

    At the inception of the Laboratory hectic and intense work was the norm during the development of the atomic bombs. After the war the development of other weapons for the Cold War again contributed to an intense work environment. Formal Standard Operating Procedures (SOPs) were not required at that time. However, the occurrence of six fatalities in 1959 during the development of a new high-energy plastic bonded explosive (94% HMX) forced the introduction SOPs. After an accident at the Department of Energy (DOE) plant at Amarillo, TX in 1977, the DOE promulgated the Department wide DOE Explosives Safety Manual. Table 1 outlines the history of the introduction of SOPs and the DOE Explosives Safety Manual. Many of the rules and guidelines presented in these documents were developed and introduced as the result of an incident or accident. However, many of the current staff are not familiar with the background of the development. To preserve as much of this knowledge as possible, they are collecting documentation on incidents and accidents involving energetic materials at Los Alamos. Formal investigations of serious accidents elucidate the multiple causes that contributed to accidents. These reports are generally buried in a file and, and are not read by more recent workers. Reports involving fatalities at Los Alamos before 1974 were withheld from the general employee. Also, these documents contain much detail and analysis that is not of interest to the field worker. The authors have collected the documents describing 116 incidents and have analyzed the contributing factors as viewed from the standpoint of the individual operator. All the incidents occurred at the Los Alamos National Laboratory and involved energetic materials in some manner, though not all occurred within the explosive handling groups. Most accidents are caused by multiple contributing factors. They have attempted to select the one or two factors that they consider as the most important relative to the

  14. Identification of high explosive RDX using terahertz imaging and spectral fingerprints

    NASA Astrophysics Data System (ADS)

    Liu, Jia; Fan, Wen-Hui; Chen, Xu; Xie, Jun

    2016-01-01

    We experimentally investigated the spectral fingerprints of high explosive cyclo-1,3,5- trimethylene-2,4,6-trinitramine (RDX) in terahertz frequency region. A home-made terahertz time-domain spectroscopy ranging from 0.2 THz∼ 3.4 THz was deployed. Furthermore, two sample pellets (RDX pellet and polyethylene pellet), which were concealed in an opaque envelop, could be identified by using terahertz pulse imaging system. For the purpose of distinguishing the RDX between two pellets, we further calculated the THz frequency -domain map using its spectral fingerprints. It is demonstrated that the high explosive RDX could similarly be identified using terahertz frequency-domain imaging.

  15. A verification and validation effort for high explosives at Los Alamos National Lab (u)

    SciTech Connect

    Scovel, Christina A; Menikoff, Ralph S

    2009-01-01

    We have started a project to verify and validate ASC codes used to simulate detonation waves in high explosives. Since there are no non-trivial analytic solutions, we are going to compare simulated results with experimental data that cover a wide range of explosive phenomena. The intent is to compare both different codes and different high explosives (HE) models. The first step is to test the products equation of state used for the HE models, For this purpose, the cylinder test, flyer plate and plate-push experiments are being used. These experiments sample different regimes in thermodynamic phase space: the CJ isentrope for the cylinder tests, the isentrope behind an overdriven detonation wave for the flyer plate experiment, and expansion following a reflected CJ detonation for the plate-push experiment, which is sensitive to the Gruneisen coefficient. The results of our findings for PBX 9501 are presented here.

  16. Ecological surveys of the proposed high explosives wastewater treatment facility region

    SciTech Connect

    Haarmann, T.

    1995-07-01

    Los Alamos National Laboratory (LANL) proposes to improve its treatment of wastewater from high explosives (HE) research and development activities. The proposed project would focus on a concerted waste minimization effort to greatly reduce the amount of wastewater needing treatment. The result would be a 99% decrease in the HE wastewater volume, from the current level of 6,760,000 L/mo (1,786,000 gal./mo) to 41,200 L/mo (11,000 gal./mo). This reduction would entail closure of HE wastewater outfalls, affecting some wetland areas that depend on HE wastewater effluents. The outfalls also provide drinking water for many wildlife species. Terminating the flow of effluents at outfalls would represent an improvement in water quality in the LANL region but locally could have a negative effect on some wetlands and wildlife species. None of the affected species are protected by any state or federal endangered species laws. The purpose of this report is to briefly discuss the different biological studies that have been done in the region of the project area. This report is written to give biological information and baseline data and the biota of the project area.

  17. Full-scale high-speed schlieren imaging of explosions and gunshots

    NASA Astrophysics Data System (ADS)

    Settles, Gary S.; Grumstrup, Torben P.; Dodson, Lori J.; Miller, J. D.; Gatto, Joseph A.

    2005-03-01

    High-speed imaging and cinematography are important in research on explosions, firearms, and homeland security. Much can be learned from imaging the motion of shock waves generated by such explosive events. However, the required optical equipment is generally not available for such research due to the small aperture and delicacy of the optics and the expense and expertise required to implement high-speed optical methods. For example, previous aircraft hardening experiments involving explosions aboard full-scale aircraft lacked optical shock imaging, even though such imaging is the principal tool of explosion and shock wave research. Here, experiments are reported using the Penn State Full-Scale Schlieren System, a lens-and-grid-type optical system with a very large field-of-view. High-speed images are captured by photography using an electronic flash and by a new high-speed digital video camera. These experiments cover a field-of-view of 2x3 m at frame rates up to 30 kHz. Our previous high-speed schlieren cinematography experiments on aircraft hardening used a traditional drum camera and photographic film. A stark contrast in utility is found between that technology and the all-digital high-speed videography featured in this paper.

  18. High explosive spot test analyses of samples from Operable Unit (OU) 1111

    SciTech Connect

    McRae, D.; Haywood, W.; Powell, J.; Harris, B.

    1995-01-01

    A preliminary evaluation has been completed of environmental contaminants at selected sites within the Group DX-10 (formally Group M-7) area. Soil samples taken from specific locations at this detonator facility were analyzed for harmful metals and screened for explosives. A sanitary outflow, a burn pit, a pentaerythritol tetranitrate (PETN) production outflow field, an active firing chamber, an inactive firing chamber, and a leach field were sampled. Energy dispersive x-ray fluorescence (EDXRF) was used to obtain semi-quantitative concentrations of metals in the soil. Two field spot-test kits for explosives were used to assess the presence of energetic materials in the soil and in items found at the areas tested. PETN is the major explosive in detonators manufactured and destroyed at Los Alamos. No measurable amounts of PETN or other explosives were detected in the soil, but items taken from the burn area and a high-energy explosive (HE)/chemical sump were contaminated. The concentrations of lead, mercury, and uranium are given.

  19. A Statistical Hot Spot Reactive Flow Model for Shock Initiation and Detonation of Solid High Explosives

    SciTech Connect

    Nichols, A L; Tarver, C M

    2002-07-01

    A statistical hot spot reactive flow model for shock initiation and detonation of solid high explosives developed in the ALE3D hydrodynamic computer code is presented. This model is intended to evolve into a physically correct description of the physical and chemical mechanisms that control the onset of shock initiation via hotspot formation, the growth (01 failure to grow) of these hotspots into the surrounding explosive particles, the rapid transition to detonation, and self-sustaining detonation. Mesoscale modeling of the shock compression and temperature dependent chemical decomposition of individual explosive particles are currently yielding accurate predictions of hot spot formation and the subsequent growth (or failure) of these hotspot reactions in the surrounding grains. For two- and three-dimensional simulations of larger scale explosive charges, a statistical hotspot model that averages over thousands of individual hotspot dimensions and temperatures and then allows exothermic chemical reactions to grow (or fail to grow) due to thermal conduction is required. This paper outlines a first approach to constructing a probabilistic hot spot formulation based on the number density of potential hotspot sites. These hotspots can then either ignite or die out if they do not exceed certain ignition criteria, which are based on physical properties of the explosive particles. The growing hot spots spread at burn velocities given by experimentally determined deflagration velocity versus pressure relationships. The mathematics and assumptions involved in formulating the model and practical examples of its usefulness are given.

  20. Extrusion cast explosive

    DOEpatents

    Scribner, Kenneth J.

    1985-01-01

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.

  1. Optically detonated explosive device

    NASA Technical Reports Server (NTRS)

    Yang, L. C.; Menichelli, V. J. (Inventor)

    1974-01-01

    A technique and apparatus for optically detonating insensitive high explosives, is disclosed. An explosive device is formed by containing high explosive material in a house having a transparent window. A thin metallic film is provided on the interior surface of the window and maintained in contact with the high explosive. A laser pulse provided by a Q-switched laser is focussed on the window to vaporize the metallic film and thereby create a shock wave which detonates the high explosive. Explosive devices may be concurrently or sequentially detonated by employing a fiber optic bundle to transmit the laser pulse to each of the several individual explosive devices.

  2. Mesoscopic simulations of shock-to-detonation transition in reactive liquid high explosive

    NASA Astrophysics Data System (ADS)

    Maillet, J. B.; Bourasseau, E.; Desbiens, N.; Vallverdu, G.; Stoltz, G.

    2011-12-01

    An extension of the model described in a previous work (see Maillet J. B. et al., EPL, 78 (2007) 68001) based on Dissipative Particle Dynamics is presented and applied to a liquid high explosive (HE), with thermodynamic properties mimicking those of liquid nitromethane. Large scale nonequilibrium simulations of reacting liquid HE with model kinetic under sustained shock conditions allow a better understanding of the shock-to-detonation transition in homogeneous explosives. Moreover, the propagation of the reactive wave appears discontinuous since ignition points in the shocked material can be activated by the compressive waves emitted from the onset of chemical reactions.

  3. Plasma-depleted holes, waves, and energized particles from high-altitude explosive plasma perturbation experiments

    NASA Technical Reports Server (NTRS)

    Wescott, E. M.; Stenbaek-Nielsen, H. C.; Hallinan, T.; Deehr, C.; Romick, J.; Olson, J.; Kelley, M. C.; Pfaff, R.; Torbert, R. B.; Newell, P.

    1985-01-01

    The results of high-explosive shaped charge experiments King Crab and Bubble Machines I and II, intended to perturb the ambient plasma and magnetic field, are discussed. The instrumentation was flown above an altitude of 460 km in March 1980 and 1981 and comprised a single-axis dipole electric field detector, a fixed bias cylindrical Langmuir probe, a three-axis attitude magnetometer, and curved plated energetic ion and electron electrostatic analyzer. Among the effects of the explosion which are detailed, emphasis is placed on the creation of an ion-depleted dark hole during the Bubble Machine II experiment; mechanisms explaining the phenomenon are outlined. The auroral intensity ion beams with energies of up to 6.8 keV, observed following the explosion in the field-aligned ion electrostatic analyzer, are suggested to represent an existing ion conic population pitch angle scattered by the released barium into the view of the detector.

  4. High-speed photography of the first hydrogen-bomb explosion

    SciTech Connect

    Brixner, B.

    1992-09-01

    Obtaining detailed photographs of the early stages of the first hydrogen bomb explosion in 1952 posed a number of problems. First, it was necessary to invent a continuous-access camera which could solve the problem that existing million-picture-per-second cameras were blind most of the time. The solution here was to alter an existing camera design so that two modified cameras could be mounted around a single high-speed rotating mirror. A second problem, acquiring the necessary lenses of precisely specified focal lengths, was solved by obtaining a large number of production lenses from war surplus salvage. A third hurdle to be overcome was to test the new camera at an A-bomb explosion. Finally, it was necessary to solve the almost impossible difficulty of building a safe camera shelter close to a megaton explosion. This paper describes the way these problems were solved. Unfortunately the successful pictures that were taken are sill classified.

  5. High-speed photography of the first hydrogen-bomb explosion

    SciTech Connect

    Brixner, B.

    1992-01-01

    Obtaining detailed photographs of the early stages of the first hydrogen bomb explosion in 1952 posed a number of problems. First, it was necessary to invent a continuous-access camera which could solve the problem that existing million-picture-per-second cameras were blind most of the time. The solution here was to alter an existing camera design so that two modified cameras could be mounted around a single high-speed rotating mirror. A second problem, acquiring the necessary lenses of precisely specified focal lengths, was solved by obtaining a large number of production lenses from war surplus salvage. A third hurdle to be overcome was to test the new camera at an A-bomb explosion. Finally, it was necessary to solve the almost impossible difficulty of building a safe camera shelter close to a megaton explosion. This paper describes the way these problems were solved. Unfortunately the successful pictures that were taken are sill classified.

  6. An Improved Reaction Rate Equation for Simulating the Ignition and Growth of Reaction in High Explosives

    SciTech Connect

    Murphy, M J

    2010-03-08

    We describe an improved reaction rate equation for simulating ignition and growth of reaction in high explosives. It has been implemented into CALE and ALE3D as an alternate to the baseline the Lee-Tarver reactive flow model. The reactive flow model treats the explosive in two phases (unreacted/reactants and reacted/products) with a reaction rate equation to determine the fraction reacted, F. The improved rate equation has fewer parameters, is continuous with continuous derivative, results in a unique set of reaction rate parameters for each explosive while providing the same functionality as the baseline rate equation. The improved rate equation uses a cosine function in the ignition term and a sine function in the growth and completion terms. The improved rate equation is simpler with fewer parameters.

  7. Simulating the Thermal Response of High Explosives on Time Scales of Days to Microseconds

    SciTech Connect

    Yoh, J J; McClelland, M A

    2003-07-16

    We present an overview of computational techniques for simulating the thermal cookoff of high explosives using a multi-physics hydrodynamics code, ALE3D. Recent improvements to the code have aided our computational capability in modeling the response of energetic materials systems exposed to extreme thermal environments, such as fires. We consider an idealized model process for a confined explosive involving the transition from slow heating to rapid deflagration in which the time scale changes from days to hundreds of microseconds. The heating stage involves thermal expansion and decomposition according to an Arrhenius kinetics model while a pressure-dependent burn model is employed during the explosive phase. We describe and demonstrate the numerical strategies employed to make the transition from slow to fast dynamics.

  8. Destruction of peroxide explosives.

    PubMed

    Oxley, Jimmie C; Smith, James L; Huang, Jiaorong; Luo, Wei

    2009-09-01

    Chemicals containing multiple peroxide functionalities, such as triacetone triperoxide (TATP), diacetone diperoxide (DADP), or hexamethylene triperoxide diamine (HMTD), can be explosive. They are impractical and are not used by legitimate military groups because they are shock and heat sensitive compared to military explosives. They are attractive to terrorists because synthesis is straightforward, requiring only a few easily obtained ingredients. Physical removal of these synthesis products is highly hazardous. This paper discusses methods to degrade peroxide explosives chemically, at room temperature. A number of mixtures containing metals (e.g., zinc, copper) and metal salts (e.g., zinc sulfate, copper chloride) were found effective, some capable of destroying TATP solutions in a few hours. Strong acids proved useful against solid peroxide materials; however, on a 1 g scale, addition of concentrated sulfuric acid caused TATP to detonate. Thus, this technique should only be used to destroy small-laboratory quantities. PMID:19737243

  9. A Constitutive Model for Long Time Duration Mechanical Behavior in Insensitive High Explosives

    SciTech Connect

    Darnell, I M; Oh, S; Hrousis, C A; Cunningham, B J; Gagliardi, F J

    2010-03-09

    An anisotropic constitutive model for the long term dimensional stability of insensitive high explosives is proposed. Elastic, creep, thermal, and ratchet growth strains are developed. Pressure and temperature effects are considered. The constitutive model is implemented in an implicit finite element code and compared to a variety of experimental data.

  10. Simple ideal gas model of the Pavlovskii high-explosive opening switch

    NASA Astrophysics Data System (ADS)

    Tucker, T. J.

    1983-08-01

    The behavior of the Pavlovskii type high-explosive opening switch is modeled using an ideal gas formulation. It is shown that this simple 1 dimensional model agrees with experiment during early arc compression but that at later times the process exhibits a more complex behavior, resulting from turbulent mixing.

  11. High explosive safety manual. Fifth quarterly technical progress report, October-December 1979

    SciTech Connect

    Albaugh, L.R.; McBride, D.A.

    1980-01-01

    This is the fifth quarterly technical report on a program to prepare a high explosive safety manual for the Department of Energy. The program is described and progress to date is presented. During this work period, the first draft of the manual was completed and the quantitative risk analysis begun.

  12. Trace detection of explosives using an in-line high-volume sampler, preconcentrator, and Fido explosives detector

    NASA Astrophysics Data System (ADS)

    Ingram, Russ; Sikes, John

    2010-04-01

    This paper shall demonstrate the results of a prototype system to detect explosive objects and obscured contaminated targets. By combining a high volume sampling nozzle with an inline 2-stage preconcentrator and a Fido, greater standoff is achieved than with the Fido alone. The direct application of this system is on the Autonomous Mine Detection System (AMDS) but could be deployed on a large variety of robotic platforms. It is being developed under the auspices of the U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate, Countermine Division. This device is one of several detection tools and technologies to be used on the AMDS. These systems will have multiple, and at times, overlapping objectives. One objective is trace detection on the surface of an unknown potential target. By increasing the standoff capabilities of the detector, the fine manipulation of the robot deploying the detector is less critical. Current detectors used on robotic systems must either be directly in the vapor plume or make direct contact with the target. By increasing the standoff, detection is more easily and quickly achieved. The end result detector must overcome cross-contamination, sample throughput, and environmental issues. The paper will provide preliminary results of the prototype system to include data, and where feasible, video of testing results.

  13. High-speed imaging, acoustic features, and aeroacoustic computations of jet noise from Strombolian (and Vulcanian) explosions

    NASA Astrophysics Data System (ADS)

    Taddeucci, J.; Sesterhenn, J.; Scarlato, P.; Stampka, K.; Del Bello, E.; Pena Fernandez, J. J.; Gaudin, D.

    2014-05-01

    High-speed imaging of explosive eruptions at Stromboli (Italy), Fuego (Guatemala), and Yasur (Vanuatu) volcanoes allowed visualization of pressure waves from seconds-long explosions. From the explosion jets, waves radiate with variable geometry, timing, and apparent direction and velocity. Both the explosion jets and their wave fields are replicated well by numerical simulations of supersonic jets impulsively released from a pressurized vessel. The scaled acoustic signal from one explosion at Stromboli displays a frequency pattern with an excellent match to those from the simulated jets. We conclude that both the observed waves and the audible sound from the explosions are jet noise, i.e., the typical acoustic field radiating from high-velocity jets. Volcanic jet noise was previously quantified only in the infrasonic emissions from large, sub-Plinian to Plinian eruptions. Our combined approach allows us to define the spatial and temporal evolution of audible jet noise from supersonic jets in small-scale volcanic eruptions.

  14. LAPTAG High School Plasma Physics laboratory

    NASA Astrophysics Data System (ADS)

    Layton, William; Gekelman, Walter; Pribyl, Patrick

    1999-11-01

    Six years ago an alliance of about thirty high schools and community colleges, and the UCLA physics department was initiated. LAPTAG (Los Angeles teachers Alliance Group) started with laboratory tours, a Web based astronomy course and a seismology project funded by the Office of the President of the University of California. Laptag has a website: [ http://coke.physics.ucla.edu/laptag] in which these projects as well as websites of the individual schools may be found. Recently we were funded by DOE to construct a plasma physics laboratory, which will reside at UCLA, but used by the high school teachers and their students. The machine is presently under construction by a team of eight high school teachers under the supervision of UCLA plasma physicists. The plasma will be generated by a helicon source, and then drift into a field free test chamber surrounded by confining permanent magnets. The preliminary experiments will be on ion acoustic waves and the mapping of the p! lasma potential. Presently we are giving the teachers a summer course in plasma Physics after which they will write a laboratory manual and lecture notes for a high school laboratory based course. In some schools this will be offered as part of an "AP" course and at others as a special laboratory. The courses will be taught by the high school teachers and offered this Fall semester. We will present pictures of the device, preliminary data, and course material.

  15. Laboratory evaluation of portable and walk-through explosives vapour detectors

    NASA Astrophysics Data System (ADS)

    Elias, Lorne; Neudorfl, Pavel

    1990-03-01

    Thirteen different explosives vapor detectors (EVD) were quantitatively tested for their response to certain nitroorganics, particularly ethylene glycol dinitrate (EGDN), as part of an assessment of their overall efficacy in field use. Eleven of these instruments are housed in carrying cases for portability, two are designed as fixed-installation portals for personal screening. Instruments tested were of two types: (1) continuous, fast acting devices based on electron capture detection (ECD) or ion mobility spectrometry (IMS), usually in conjunction with semi-permeable membranes; and (2) slower, batch sampling, gas chromatographic equipment with ECD using vapor preconcentrators. Sensitivity was measured by subjecting the instrument under test to known controllable levels of exposives vapors from a dynamic vapor source. The continuous EVDs had response times of a few seconds, poor to good selectivity, and a lower detection limit in the 1 to 100 ppb range; the GC based instruments were 100 times more sensitive, considerably more specific, but required 0.5 to 3 minutes per analysis.

  16. Modeling of explosive electron emission and electron beam dynamics in high-current devices

    NASA Astrophysics Data System (ADS)

    Anishchenko, S. V.; Gurinovich, A. A.

    2014-03-01

    Based on a detailed analysis of explosive electron emission in high-current electronic devices, we formulate a system of equations that describes the expansion of the cathode plasma and the generation of high-current electron beams. The system underlies the numerical algorithm for the hybrid code which enables simulating the charged particles' dynamics in high-current vircators with open resonators. Using the Gabor-Morlet transform, we perform the time-frequency analysis of vircator radiation.

  17. Development of an air cleaning system for dissolving high explosives from nuclear warheads

    SciTech Connect

    Bergman, W.; Wilson, K.; Staggs, K.; Wapman, D.

    1997-08-01

    The Department of Energy (DOE) has a major effort underway in dismantling nuclear weapons. In support of this effort we have been developing a workstation for removing the high explosive (HE) from nuclear warheads using hot sprays of dimethyl sulfoxide (DMSO) solvent to dissolve the HE. An important component of the workstation is the air cleaning system that is used to contain DMSO aerosols and vapor and radioactive aerosols. The air cleaning system consists of a condenser to liquefy the hot DMSO vapor, a demister pad to remove most of the DMSO aerosols, a high efficiency particulate air (HEPA) filter to remove the remaining aerosols, an activated carbon filter to remove the DMSO vapor, and a final HEPA filter to meet the redundancy requirement for HEPA filters in radioactive applications. The demister pad is a 4{double_prime} thick mat of glass and steel fibers and was selected after conducting screening tests on promising candidates. We also conducted screening tests on various activated carbons and found that all had a similar performance. The carbon breakthrough curves were fitted to a modified Wheeler`s equation and gave excellent predictions for the effect of different flow rates. After all of the components were assembled, we ran a series of performance tests on the components and system to determine the particle capture efficiency as a function of size for dioctyl sebacate (DOS) and DMSO aerosols using laser particle counters and filter samples. The pad had an efficiency greater than 990% for 0.1 {mu}m DMSO particles. Test results on the prototype carbon filter showed only 70% efficiency, instead of the 99.9% in small scale laboratory tests. Thus further work will be required to develop the prototype carbon filter. 7 refs., 18 figs., 10 tabs.

  18. Calculating the dynamics of High Explosive Violent Response (HEVR) after ignition

    SciTech Connect

    Reaugh, J E

    2008-10-15

    We are developing models to describe the circumstances when molecular and composite explosives undergo a rapid release of energy without detonating, and to describe the evolution of the energy release. The models also apply to the behavior of rocket propellants subject to mechanical insult, whether for accidents (Hazards) or the suite of standardized tests used to assess whether the system can be designated an Insensitive Munition (IM). In the applications described here, we are studying a UK-developed HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane) explosive, which is 91% by weight HMX and 9% binder-plasticizer. Most explosives and propellants, when subjected to a mechanical insult such as a drop or impact that is well below the threshold for detonation, have been observed to react. In some circumstances the reaction can be violent. This behavior is known as High Explosive Violent Response (HEVR). Fundamental to our model is the observation that the mechanical insult produces damage in a volume of the explosive near the trajectory of the impactor. The damage is manifest as surface area through the creation of cracks and fragments, and also as porosity through the separation of crack faces and isolation of the fragments. Open porosity permits a flame to spread easily and so ignite the newly formed surface area. The additional surface area leads to a direct increase in the mass-burning rate. As the kinetic energy and power of the insult increases, the degree of damage and the volume of damage both increase. Upon a localized ignition, the flame spreads to envelop the damaged volume, and the pressure rises at an accelerated rate until neither mechanical strength nor inertial confinement can successfully contain the pressure. The confining structure begins to expand. This reduces the pressure and may even extinguish the flame. Both the mass of explosive involved and the rate at which the gas is produced contribute to each of several different measures of violence

  19. Hydrogen Explosion Analysis for Cold Source Installation at the High Flux Isotope Reactor

    SciTech Connect

    Cook, David Howard

    2008-01-01

    Installation of a cold neutron source in the High Flux Isotope Reactor (HFIR) involved introduction of pressurized, cryogenic hydrogen into the facility and created explosion hazards to reactor safety-related equipment and personnel. Evaluation of potential hydrogen releases and facility/personnel consequences as a result of explosions was a key part of the safety analyses submitted to the DOE to obtain approval for testing and operation with hydrogen. This paper involves a description of the various hydrogen release and explosion consequence analyses that were performed. The range of explosion calculations involved (1) a detonation analysis using a 2D-transient CTH code model, (2) various BLAST/FX code models to estimate structural damage from equivalent point TNT sources, (3) a BLASTX code model to propagate shock and gas flow overpressures from a point TNT source, (4) a spreadsheet that combined a TNT-quivalence model and strong deflagration methods, and (5) a hydrogen jet model to evaluate potential high pressure jet releases.

  20. Explosively driven two-shockwave tools with application to ejecta formation at the Los Alamos National Laboratory Proton Radiography Facility

    NASA Astrophysics Data System (ADS)

    Buttler, William

    2013-06-01

    We present the development of an explosively driven physics tool to generate two mostly uniaxial shockwaves. The tool is being used to extend single shockwave ejecta models to a subsequent shockwave event separated by a time interval on the order of a few microseconds. We explore the possibility of varying the amplitude of both the first and second shockwaves, and we apply the tool in experimental geometries on Sn with a surface roughness of Ra = 0 . 8 μ m. We then evaluate the tool further at the Los Alamos National Laboratory Proton Radiography (pRad) Facility in an application to Sn with larger scale perturbations of wavelength 550 μ m, and various amplitudes that gave wave-number amplitude products of η0 2 π / λ = { 3 / 4 , 1 / 2 , 1 / 4 , 1 / 8 } , where the perturbation amplitude is η0, and the wave-number k = 2 π / λ . The pRad data and velocimetry imply it should be possible to develop a second shock ejecta model based on unstable Richtmyer-Meshkov physics. In collaboration with David Oro, Fesseha Mariam, Alexander Saunders, Malcolm Andrews, Frank Cherne, James Hammerberg. Robert Hixson, Christopher Morris, Russell Olson, Dean Preston, Joseph Stone, Dale Tupa, and Wendy Vogan-McNeil, Los Alamos National Laboratory,

  1. On the quantitative measurement of fracture toughness in high explosive and mock materials

    SciTech Connect

    Liu, Cheng; Cady, Carl M; Rae, Philip J; Lovato, Manuel L

    2010-01-01

    Two approaches in measuring the fracture toughness of heterogeneous high explosives and their mocks are explored in this investigation. One is the global measurement according to the ASTM E 1820-06 standard, which is primarily developed for metallic materials to obtain quantitative measurement of parameters such as the stress intensity factor, the J-integral, and the crack-tip opening displacement (CTOD). The second approach is based on local measurements using digital image correlation (DIC). Detailed results and comparisons of the two strategies will be presented for the Mock 900-21, a mechanical simulant of the PBX 9501 high explosive. Cracking is the most dominant mechanical failure mechanism in high explosives (HE) and a key parameter for describing and predicting crack initiation and extension is the fracture toughness. Quantitative measurement of such material property poses challenges, and this is mainly because that the material is highly heterogeneous with a very complicated microstructure and the contrast of the mechanical properties of the constituents is also remarkably high. In this investigation, we explore two strategies in measuring the fracture toughness of heterogeneous high explosives and their mocks. The first approach is based on the global measurement according to the ASTM E 1820-06 standard, which is primarily developed for metallic materials to obtain quantitative measurement of parameters such as the stress intensity factor, the J-integral, and the crack-tip opening displacement (CTOD). However, there are difficulties in applying the ASTM standard on energetic solids that include identifying the moment of crack initiation and pinpointing exact crack length at each instant of time. The second approach is based on local measurements. We developed a technique for quantitatively identifying the location and extent of macroscopic cracks in heterogeneous high explosive and mock material. By combining such a technique with the displacement field

  2. Infrasonic observations and modeling of the Minor Uncle High Explosive event

    SciTech Connect

    Whitaker, R.; Noel, S.D.; Meadows, W.R.

    1994-09-01

    Minor Uncle was a Department of Defense sponsored explosive test of 2440 tons of ammonium nitrate and fuel oil (ANFO) executed on June 10, 1993, at White Sands Missile Range, NM. Los Alamos National Laboratory made infrasonic observations of this event at three stations: Los Alamos, NM, 250 km range; St. George, UT, 750 km range; and the Nevada Test Site, NV, 928 km range. All three stations obtained positive results and had very low background noise levels. Data from all stations will be presented, and normal mode calculations of the wave propagation, including upper atmospheric winds, to St. George will be compared to the data.

  3. Response of standard and high-capacity HEPA filters to simulated tornado and explosive transients

    SciTech Connect

    Gregory, W.S.; Smith, P.R.

    1982-03-01

    An investigation was performed to determine the response of standard and high-capacity high-efficiency particulate air filters to simulated tornado and explosive transients. Most of the tests were directed toward evaluating the structural response of high-capacity filters to explosive transients. Selected tests were performed to evaluate the effects of particulate loading on filtration efficiencies. Also, several of the high-capacity filters were subjected to simulated toronado transients. The results indicate that the upper structural limits of high-capacity filters for explosive loading is 6.89-kPa (1-psi) peak pressure and 100-kPa-ms (14.51-psi-ms) impulse. These limits are below the approximately 13.78-kPa (2-psi) peak pressure loadings found for standard HEPA filters. Tests of high-capacity filters preloaded with aerosol indicated that the structural limits were further degraded by approximately 40%. The filtration efficiencies were degraded to approximately 70% when the filters were subjected to aerosol entrained within the shock pulse. The effect of simulated tornado transients on high-capacity filters resulted in an upper structural limit of 11.02 kPa (1.6 psi) for peak pressure.

  4. On the high fidelity simulation of chemical explosions and their interaction with solid particle clouds

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Kaushik

    The flow field behind chemical explosions in multiphase environments is investigated using a robust, state-of-the-art simulation strategy that accounts for the thermodynamics, gas dynamics and fluid mechanics of relevance to the problem. Focus is laid on the investigation of blast wave propagation, growth of hydrodynamic instabilities behind explosive blasts, the mixing aspects behind explosions, the effects of afterburn and its quantification, and the role played by solid particles in these phenomena. In particular, the confluence and interplay of these different physical phenomena are explored from a fundamental perspective, and applied to the problem of chemical explosions. A solid phase solver suited for the study of high-speed, two-phase flows has been developed and validated. This solver accounts for the inter-phase mass, momentum and energy transfer through empirical laws, and ensures two-way coupling between the two phases, viz. solid particles and gas. For dense flow fields, i.e., when the solid volume fraction becomes non-negligible (˜60%), the finite volume method with a Godunov type shock-capturing scheme requires modifications to account for volume fraction gradients during the computation of cell interface gas fluxes. To this end, the simulation methodology is extended with the formulation of an Eulerian gas, Lagrangian solid approach, thereby ensuring that the so developed two-phase simulation strategy can be applied for both flow conditions, dilute and dense alike. Moreover, under dense loading conditions the solid particles inevitably collide, which is accounted for in the current research effort with the use of an empirical collision/contact model from literature. Furthermore, the post-detonation flow field consists of gases under extreme temperature and pressure conditions, necessitating the use of real gas equations of state in the multiphase model. This overall simulation strategy is then extended to the investigation of chemical explosions in

  5. Low amplitude impact testing and analysis of pristine and aged solid high explosives

    SciTech Connect

    Chidester, S K; Garza, R; Tarver, C M

    1998-08-17

    The critical impact velocities of 60.1 mm diameter blunt steel projectiles required for ignition of exothermic chemical reaction were determined for heavily confined charges of new and aged (15-30 years) solid HMX-based high explosives. The explosives in order of decreasing impact sensitivity were: PBX 9404; LX-lo; LX-14; PBX 9501; and LX-04. Embedded pressure gauges measured the interior pressure histories. Stockpile aged LX-04 and PBX 9501 from dismantled units were tested and compared to freshly pressed charges. The understanding of explosive aging on impact ignition and other hazards must improve as systems are being deployed longer than their initial estimated lifetimes. The charges that did not react on the first impact were subjected to multiple impacts. While the violence of reaction increased with impact velocity, it remained much lower than that produced by an intentional detonation. Ignition and Growth reactive flow models were developed to predict HMX-based explosive impact sensitivity in other geometries and scenarios.

  6. Shock-to-detonation transition of RDX and NTO based composite high explosives: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Baudin, Gerard; Roudot, Marie; Genetier, Marc

    2013-06-01

    Composite HMX and NTO based high explosives (HE) are widely used in ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside HE. Comparing to a pressed HE, a composite HE is not porous and the hot-spots are mainly located at the grain - binder interface leading to a different behavior during shock-to-detonation transition. An investigation of how shock-to-detonation transition occurs inside composite HE containing RDX and NTO is proposed in this lecture. Two composite HE have been studied. The first one is HMX - HTPB 82:18. The second one is HMX - NTO - HTPB 12:72:16. These HE have been submitted to plane sustained shock waves at different pressure levels using a laboratory powder gun. Pressure signals are measured using manganin gauges inserted at several distances inside HE. The corresponding run-distances to detonation are determined using wedge test experiments where the plate impact is performed using a powder gun. Both HE exhibit a single detonation buildup curve in the distance - time diagram of shock-to-detonation transition. This feature seems a common shock-to-detonation behavior for composite HE without porosity. This behavior is also confirmed for a RDX - HTPB 85:15 based composite HE. Such a behavior is exploited to determine the heterogeneous reaction rate versus the shock pressure using a method based on the Cauchy-Riemann problem inversion. The reaction rate laws obtained allow to compute both run-distance to detonation and pressure signals.

  7. LABORATORY EXERCISES IN OCEANOGRAPHY FOR HIGH SCHOOLS.

    ERIC Educational Resources Information Center

    National Science Foundation, Washington, DC.

    DESCRIBED ARE LABORATORY EXERCISES IN OCEANOGRAPHY DEVELOPED FOR USE IN HIGH SCHOOLS BY THE SECONDARY SCHOOL TEACHERS IN THE 1967 NATIONAL SCIENCE FOUNDATION (NSF) SUMMER INSTITUTE IN OCEANOGRAPHY AT FLORIDA STATE UNIVERSITY. INCLUDED ARE SUCH ACTIVITIES AS (1) THE MEASUREMENT OF TEMPERATURE, WATER VAPOR, PRESSURE, SALINITY, DENSITY, AND OTHERS,…

  8. Development, testing and practical use of two special containment vessels for storage and transportation of high explosives

    SciTech Connect

    Dikken, H. den

    1995-12-31

    The storage and transportation of high explosives gives many logistic managers a headache, especially when it comes to forwarding of small quantities. Air transport is limited to 1.4 explosives on cargo aircraft and 1.4S classified explosives on passenger aircraft, so most samples cannot be transported by air. Ocean transport is a possibility, but due to stowage and segregation regulations of the IMDG code, a very expensive one. Road transport is often the only solution, but high explosives require special trucks with licensed drivers. The solution to these logistic problems is solved by creating a 1.4S (Class C) classification for all high explosives, when packed in special containment vessels.

  9. Numerical Modeling of Impact Initiation of High Explosives

    SciTech Connect

    Wu, C J; Piggott, T; Yoh, J; Reaugh, J

    2006-05-31

    We performed continuum mechanics simulations to examine the behavior of energetic materials in Ballistic Chamber Impact (BIC) experiments, using an Arbitrary Lagrangian-Eulerian code (ALE3D). Our simulations revealed that interface friction plays an important role in inducing the formation of shear bands, which result in 'hot spots' for ignition. The temperature localization during BIC impact was found to be significant in materials with high yield strength. In those materials, there are multiple locations inside shear bands can achieve temperatures exceeding the threshold temperature for reaction. In addition, we investigated the relevant parameters influencing the pressure profile of a BIC test by numerical analysis from a simple phenomenological model. To our surprise, we found that the peaks of BIC pressure profiles not only can be a result of multi-center chemical reactions, but can also arise from factors associated apparatus configuration.

  10. High Temperature Materials Laboratory third annual report

    SciTech Connect

    Tennery, V.J.; Foust, F.M.

    1990-12-01

    The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

  11. Modeling thermally driven energetic response of high explosives

    SciTech Connect

    Sharp, R; Couch, R; McCallen, R C; Nichols III, A L; Otero, I

    1998-02-01

    We have improved our ability to model the response of energetic materials to thermal stimuli and the processes involved in the energetic response. Traditionally, the analyses of energetic materials have involved coupled thermal transport/chemical reaction codes. This provides only a reasonable estimate of the time and location of ensuing rapid reaction. To predict the violence of the reaction, the mechanical motion must be included in the wide range of time scales associated with the thermal hazard. The ALE3D code has been modified to assess the hazards associated with heating energetic materials in weapons by coupling to thermal transport model and chemistry models. We have developed an implicit time step option to efficiently and accurately compute the hours of heating to reaction of the energetic material. Since, on these longer time scales materials can be expected to have significant motion, it is even more important to provide high-order advection for all components, including the chemical species. We show two examples of coupled thermal/mechanical/chemical models of energetic materials in thermal environments.

  12. Modeling thermally driven energetic response of high explosives

    SciTech Connect

    Couch, R; McCallen, R C; Nichols III, A L; Otero, I; Sharp, R

    1998-08-17

    We have improved our ability to model the response of energetic materials to thermal stimuli and the processes involved in the energetic response. Traditionally, the analyses of energetic materials have involved coupled thermal transport/chemical reaction codes. This provides only a reasonable estimate of the time and location of ensuing rapid reaction. To predict the violence of the reaction, the mechanical motion must be included in the wide range of time scales associated with the thermal hazard. The ALE3D code has been modified to assess the hazards associated with heating energetic materials in weapons by coupling to thermal transport model and chemistry models. We have developed an implicit time step option to efficiently and accurately compute the hours of heating to reaction of the energetic material. Since, on these longer time scales materials can be expected to have significant motion, it is even more important to provide high-order advection for all components, including the chemical species. We show two examples of coupled thermal/mechanical/chemical models of energetic materials in thermal environments.

  13. On the effect of grain size on shock sensitivity of heterogeneous high explosives

    NASA Astrophysics Data System (ADS)

    Khasainov, B. A.; Ermolaev, B. S.; Presles, H.-N.; Vidal, P.

    Analysis of available data on dependence of the critical detonation diameter dcr of various heterogeneous condensed explosives on mean size of grains and voids demonstrated that in many cases surprising correlations between dcr and the initial specific surface area of heterogeneous explosives Ao exist, namely, dcr=α 1+α 2/A_o or 1/dcr=β 1+β 2A_o. The run distance to detonation in wedge test with sustained strong shock of constant amplitude also linearly correlates with 1/Ao, i.e. L{P= Const}=γ 1+γ 2/A_o. At the same time, the shock sensitivity reversal effect is often observed when grain size of HE is reduced. Apart from that Moulard (1989) found that detonation critical diameter of plastic bonded explosive with mono- and bimodal RDX grain size distribution depends nonmonotonously on mean grain size. Complicated dependence of shock sensitivity of heterogeneous explosives on their specific surface area can be explained based on comparison of the critical hot spot size a*(P) at given characteristic pressure behind shock wave P with the mean heterogeneity size /line{a}. At high characteristic pressure (relative to the critical ignition pressure) a* is small compared with /line{a} and all specific surface area of heterogeneous explosive is available for the hot spot growth process in accordance with the grain burn concept. However, when characteristic pressure of shock wave decreases, a*(P) increases and can become comparable with /line{a}. In this case only relatively large potential hot spots (with size a>a*) can result in self-supported hot spot growth process and shock sensitivity is controlled by the specific surface area which corresponds to only larger heterogeneities and can be significantly smaller than initial specific surface area.

  14. Compact submicrosecond, high current generator for wire explosion experiments

    NASA Astrophysics Data System (ADS)

    Aranchuk, L. E.; Chuvatin, A. S.; Larour, J.

    2004-01-01

    The PIAF generator was designed for low total energy and high energy density experiments with liners, X-pinch or fiber Z-pinch loads. These studies are of interest for such applications as surface and material science, microscopy of biological specimens, lithography of x-ray sensitive resists, and x-ray backlighting of pulsed-power plasmas. The generator is based on an RLC circuit that includes six NWL 180 nF-50 kV capacitors that store up to 1.3 kJ. The capacitors are connected in parallel to a single multispark switch designed to operate at atmospheric pressure. The switch allows reaching a time delay between the trigger pulse and the current pulse of less than 80 ns and has jitter of 6 ns. The total inductance without a load compartment was optimized to be as low as 16 nH, which leads to extremely low impedance of ˜0.12 Ω. A 40 kV initial voltage provides 250 kA maximum current in a 6 nH inductive load with a 180 ns current rise time. PIAF has dimensions of 660×660×490 mm and weight of less than 100 kg, thus manifesting itself as robust, simple to operate, and cost effective. A description of the PIAF generator and the initial experimental results on PIAF with an X-pinch type load are reported. The generator was demonstrated to operate successfully with an X-pinch type load. The experiments first started with investigation of the previously unexplored X-pinch conduction time range, 100 ns-1 μs. A single short radiation pulse was obtained that came from a small, point-like plasma. The following x-ray source characteristics were achieved: typical hot spot size of 50-100 μm, radiation pulse duration of 1.5-2 ns, and radiation yield of about 250-500 mJ in the softer spectral range (hν⩾700 eV) and 50-100 mJ in the harder one (hν⩾1 keV). These results provide the potential for further application of this source, such as use as a backlight diagnostic tool.

  15. Progress in model development to quantify High Explosive Violent Response (HEVR) to mechancial insult

    SciTech Connect

    Reaugh, J E

    2008-07-29

    The rapid release of chemical energy has found application for industrial and military purposes since the invention of gunpowder. Black powder, smokeless powder of various compositions, and pyrotechnics all exhibit the rapid release of energy without detonation when they are being used as designed. The rapidity of energy release for these materials is controlled by adjustments to the particle surface area (propellant grain configuration or powder particle size) in conjunction with the measured pressure-dependent burning rate, which is very subsonic. In this way a manufacturing process can be used to engineer the desired violence of the explosion. Detonations in molecular explosives, in contrast, propagate with a supersonic velocity that depends on the loading density, but is independent of the surface area. In ideal detonations, the reaction is complete within a small distance of the propagating shock front. Non-ideal detonations in molecular and composite explosives proceed with a slower velocity, and the reaction may continue well behind the shock front. We are developing models to describe the circumstances when molecular and composite explosives undergo a rapid release of energy without detonating. The models also apply to the behavior of rocket propellants subject to mechanical insult, whether for accidents (Hazards) or the suite of standardized tests used to assess whether the system can be designated an Insensitive Munition (IM). In the application described here, we are studying an HMX (1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane) explosive developed in the UK, which is 91% by weight HMX and 9% binder-plasticizer. Most explosives and propellants, when subjected to a mechanical insult, drop or impact that is well below the threshold for detonation have been observed to react violently. This behavior is known as High Explosive Violent Reaction (HEVR). The basis of our model is the observation that the mechanical insult produces damage in a volume of the

  16. Ground motion analyses: OSSY (a high explosive experiment) and MERLIN (a nuclear event)

    SciTech Connect

    Swift, R.P.

    1991-10-01

    We have analyzed recorded data and conducted numerical simulations of the seismic-calibration high explosive experiment OSSY and of the underground nuclear event MERLIN to determine if there is any physical correlation in their ground motion response. Waveforms recorded on OSSY and MERLIN show a distinct similarity in the form of a dual-pulse structure, with the second pulse as large or larger than the first pulse. Results with 1D and 2D simulations show that there is no correlation. The dual-pulse structure for OSSY can best be accounted for by a dilatancy feature resulting from pore recovery during unloading. There is also a notable influence on the pulse shape caused by the large length-to-diameter ratio of the high explosive charge. The dual-pulse structure recorded in MERLIN is most likely due to refraction from a higher-impedance layer about 60 m below the workout. 15 refs., 26 figs.

  17. Single and multiple impact ignition of new and aged high explosives in the Steven Impact Test

    SciTech Connect

    Chidester, S K; DePiero, A H; Garza, R G; Tarver, C M

    1999-06-01

    Threshold impact velocities for ignition of exothermic reaction were determined for several new and aged HMX-based solid high explosives using three types of projectiles in the Steven Test. Multiple impact threshold velocities were found to be approximately 10% lower in damaged charges that did not react in one or more prior impacts. Projectiles with protrusions that concentrate the friction work in a small volume of explosive reduced the threshold velocities by approximately 30%. Flat projectiles required nearly twice as high velocities for ignition as rounded projectiles. Blast overpressure gauges were used for both pristine and damaged charges to quantitatively measure reaction violence. Reactive flow calculations of single and multiple impacts with various projectiles suggest that the ignition rates double in damaged charges.

  18. Implementation of a High Explosive Equation of State into an Eulerian Hydrocode

    NASA Astrophysics Data System (ADS)

    Littlefield, David L.; Baker, Ernest L.

    2004-07-01

    The implementation of a high explosive equation of state into the Eulerian hydrocode CTH is described. The equation of state is an extension to JWL referred to as JWLB, and is intended to model the thermodynamic state of detonation products from a high explosive reaction. The EOS was originally cast in a form p = p(ρ, e), where p is the pressure, ρ is the density and e is the internal energy. However, the target application code requires an EOS of the form p = p(ρ, T), where T is the temperature, so it was necessary to reformulate the EOS in a thermodynamically consistent manner. A Helmholtz potential, developed from the original EOS, insures this consistency. Example calculations are shown that illustrate the veracity of this implementation.

  19. A Multipathway Model for High Explosives and Barium Transport Using GoldSim

    NASA Astrophysics Data System (ADS)

    Newman, B. D.; Hickmott, D. D.; Keating, E. H.; Robinson, B. A.; Gard, M. O.

    2002-05-01

    Outfalls from High Explosives (HE) production sites at Los Alamos National Laboratory (LANL) discharged RDX, TNT, HMX, and barium contaminated waters onto a mesa /canyon system on the western edge of the Pajarito Plateau from 1944 to 1996. HE concentrations in surface soils ranged to over 20 wt.%, and HE in waters range to over 800 ug/L. HE in water is present in springs, surface waters, alluvial waters and deep perched (> 700 ft. depth) and possibly regional (> 1200 ft depth) groundwaters. Barium concentrations range to over 4 wt.% in sediments, and to over 5000 ug/L in spring and alluvial waters. Because of the size of contaminant inventories and observations of HE in the perched zone and possibly deeper, there has been concern that there may be a long-term risk at a downgradient drinking water supply well. To address this concern, a GoldSim multipathway model was developed to simulate transport of HE and barium from source areas to the supply well. The objectives of the modeling effort were to generate a preliminary assessment of potential concentrations at the supply well and to identify any model components/parameters that require additional characterization based on model sensitivity and uncertainty. The model evaluates two main source areas, one is controlled by flow through the mesa vadose zone, and the other by flow through the canyon vadose zone. The two vadose zone modules feed into a saturated zone module that terminates at a pumping well (drinking water) module. The hydrogeology of the site is extremely complex and includes a heterogeneous, unfractured/fractured tuff vadose zone geology, ponds, springs, alluvial aquifers, a perennial stream reach, and two deep aquifers. Because of this complexity, and limited characterization and contaminant inventory information, we used a stochastic approach to quantitatively represent model/parameter uncertainties. Model parameters were developed using a variety of information including flow and transport modeling

  20. A Comparison of Neutron-Based Non-Destructive Assessment Methods for Chemical Warfare Materiel and High Explosives

    NASA Astrophysics Data System (ADS)

    Seabury, E. H.; Chichester, D. L.; Wharton, C. J.; Caffrey, A. J.

    2009-03-01

    Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory's PINS Chemical Assay System has traditionally used a 252Cf isotopic neutron source, but recently a deuterium-tritium (DT) electronic neutron generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) and high explosive (HE) filled munitions.

  1. A Comparison of Neutron-Based Non-Destructive Assessment Methods for Chemical Warfare Material and High Explosives

    SciTech Connect

    Seabury, E. H.; Chichester, D. L.; Wharton, C. J.; Caffrey, A. J.

    2009-03-10

    Prompt Gamma Neutron Activation Analysis (PGNAA) systems employ neutrons as a probe to interrogate items, e.g. chemical warfare materiel-filled munitions. The choice of a neutron source in field-portable systems is determined by its ability to excite nuclei of interest, operational concerns such as radiological safety and ease-of-use, and cost. Idaho National Laboratory's PINS Chemical Assay System has traditionally used a {sup 252}Cf isotopic neutron source, but recently a deuterium-tritium (DT) electronic neutron generator (ENG) has been tested as an alternate neutron source. This paper presents the results of using both of these neutron sources to interrogate chemical warfare materiel (CWM) and high explosive (HE) filled munitions.

  2. Generation of Electric and Magnetic Fields During Detonation of High Explosive Charges in Boreholes

    SciTech Connect

    Soloviev, S; Sweeney, J

    2004-06-04

    We present experimental results of a study of electromagnetic field generation during underground detonation of high explosive charges in holes bored in sandy loam and granite. Test conditions and physico-mechanical properties of the soil exert significant influence on the parameters of electromagnetic signals generated by underground TNT charges with masses of 2 - 200 kg. The electric and magnetic field experimental data are satisfactorily described by an electric dipole model with the source embedded in a layered media.

  3. High-throughput baggage scanning employing x-ray diffraction for accurate explosives detection

    NASA Astrophysics Data System (ADS)

    Green, Michael C.; Partain, Larry D.

    2003-07-01

    X-ray systems dominate the installed base of airport baggage scanning systems for explosives detection. The majority are conveyer systems with projection line scanners. These systems can achieve a high throughput but exhibit a high false positive rate and require significant operator involvement. Systems employing computed tomography (CT) are currently being installed at a rapid rate. These can provide good discrimination of levels of xray absorption coefficient and can largely circumvent superimposition effects. Nonetheless CT measures only x-ray absorption coefficient per voxel which does not provide a means of specific material identification resulting in many false positives, and it is relatively straightforward to configure explosive materials so that they are undetectable by CT systems. Diffraction-based x-ray systems present a solution to this problem. They detect and measure atomic layer spacings in crystalline and microcrystalline materials with high sensitivity. This provides a means of specific material identification. The majority of explosive compounds are well crystallized solids at room temperature. X-ray diffraction systems using both conventional wavelength-dispersive diffraction and fixed-angle, multi-wavelength diffraction for improved throughput are described. Large-area, flat-panel x-ray detector technology coupled with an extended x-ray source will permit a full 3D volumetric x-ray diffraction scan of a bag in a single pass, (patent pending).

  4. A legacy of the ""megagoule committee,"" thirty years of explosive pulsed power research and development at Los Alamos National Laboratory

    SciTech Connect

    Goforth, James H; Oona, Henn; Herrera, Dennis H; Torres, David T; Tasker, D. G.; Meyer, R. K.; Atchison, W. L.; Rousculp, C. L.; Reinovsky, R. E.; Sheppard, M.; Turchi, P. J.; Watt, R. G.

    2010-10-29

    In 1980, Los Alamos formed the 'Megajoule Committee' with the expressed goal of developing a one Megajoule plasma radiation source. The ensuing research and development has given rise to a wide variety of high explosive pulsed power accomplishments, and there is a continuous stream of work that continues to the present. A variety of flux compression generators (FCGs or generators) have been designed and tested, and a number of pulse shortening schemes have been investigated. Supporting computational tools have been developed in parallel with experiments. No fewer that six unique systems have been developed and used for experiments. This paper attempts to pull together the technical details, achievements, and wisdom amassed during the intervening thirty years, and notes how we would push for increased performance in the future.

  5. Prospects of High Energy Laboratory Astrophysics

    SciTech Connect

    Ng, J.S.T.; Chen, P.; /SLAC

    2006-09-21

    Ultra high energy cosmic rays (UHECR) have been observed but their sources and production mechanisms are yet to be understood. We envision a laboratory astrophysics program that will contribute to the understanding of cosmic accelerators with efforts to: (1) test and calibrate UHECR observational techniques, and (2) elucidate the underlying physics of cosmic acceleration through laboratory experiments and computer simulations. Innovative experiments belonging to the first category have already been done at the SLAC FFTB. Results on air fluorescence yields from the FLASH experiment are reviewed. Proposed future accelerator facilities can provided unprecedented high-energy-densities in a regime relevant to cosmic acceleration studies and accessible in a terrestrial environment for the first time. We review recent simulation studies of nonlinear plasma dynamics that could give rise to cosmic acceleration, and discuss prospects for experimental investigation of the underlying mechanisms.

  6. Identification of Explosives from Porous Materials: Applications Using Reverse Phase High Performance Liquid Chromatography and Gas Chromatography

    SciTech Connect

    C.J. Miller; G. Elias; N.C. Schmitt; C. Rae

    2010-06-01

    High performance liquid chromatography and gas chromatography techniques are well documented and widely used for the detection of trace explosives from organic solvents. These techniques were modified to specifically identify and quantify explosives extracted from various materials taken from people who had recently handled explosives. Documented techniques were modified to specifically detect and quantify RDX, TNT, and PETN from denim, colored flannel, vinyl, and canvas extracted in methanol using no sample cleanup prior to analysis. The methanol extracts were injected directly into several different column types and analyzed by HPLC-UV and/or GC-ECD. This paper describes general screening methods that were used to determine the presence of explosives in unknown samples and techniques that have been optimized for quantification of each explosive from the substrate extracts.

  7. Effect of slow energy releasing on divergent detonation of Insensitive High Explosives

    NASA Astrophysics Data System (ADS)

    Hu, Xiaomian; Pan, Hao; Huang, Yong; Wu, Zihui

    2014-03-01

    There exists a slow energy releasing (SER) process in the slow reaction zone located behind the detonation wave due to the carbon cluster in the detonation products of Insensitive High Explosives (IHEs), and the process will affect the divergent detonation wave's propagation and the driving process of the explosives. To study the potential effect, a new artificial burn model including the SER process based on the programmed burn model is proposed in the paper. Quasi-steady analysis of the new model indicates that the nonlinearity of the detonation speed as a function of front curvature owes to the significant change of the reaction rate and the reaction zone length at the sonic state. What's more, in simulating the detonation of IHE JB-9014, the new model including the slow reaction can predict a slower jump-off velocity, in good agreement with the result of the test.

  8. Transmission and Reflection Terahertz Spectroscopy of Insensitive Melt-Cast High-Explosive Materials

    NASA Astrophysics Data System (ADS)

    Palka, Norbert; Szala, Mateusz

    2016-05-01

    Currently, artillery shells and grenades that are introduced into the market are based on melt-castable insensitive high explosives (IHEs), which do not explode while they run a risk of impact, heat or shrapnel. Particles of explosives (such as hexogen, nitroguanidine and nitrotriazolone) are suspended in different proportions in a matrix of 2.4-dinitroanisole. In this paper, we investigated samples of commonly used IHEs: PAX-41, IMX-104 and IMX-101, whose internal structures were determined by a scanning electron microscope. Terahertz time domain spectroscopy was applied in both transmission and reflection configurations. At first, the complex refraction indices of four pure constituents creating IHEs were determined and became the basis of further calculations. Next, the experimentally determined transmission and reflection spectra of IHEs and pure constituents were compared with theoretical considerations. The influence of the grain size of constituent material and scattering on the reflection spectra was analysed, and good agreement between the experimental and theoretical data was achieved.

  9. Micro- and nano- second time scale, high power electrical wire explosions in water.

    NASA Astrophysics Data System (ADS)

    Grinenko, Alon; Efimov, Sergey; Sayapin, Arkadii; Fedotov, Alexander; Gurovich, Viktor; Krasik, Yakov

    2006-10-01

    Experimental and magneto-hydro-dynamic simulation results of micro- and nanosecond time scale underwater electrical Al, Cu and W wires explosions are presented. A capacitor bank with stored energy up to 6 kJ (discharge current up to 80 kA with 2.5 μs quarter period) was used in microsecond time scale experiments and water forming line generator with current amplitude up to 100 kA and pulse duration of 100 ns were used in nanosecond time scale experiments. Extremely high energy deposition of up to 60 times the atomization enthalpy was registered in nanosecond time scale explosions. A discharge channel evolution and surface temperature were analyzed by streak shadow imaging and using fast photo-diode with a set of interference filters, respectively. Microsecond time scale electrical explosion of cylindrical wire array showed extremely high pressure of converging shock waves at the axis, up to 0.2 MBar. A 1D and 2D magneto-hydro-dynamic simulation demonstrated good agreement with such experimental parameters as discharge channel current, voltage, radius, and temperature.

  10. Hydrodynamic Modeling of Air Blast Propagation from the Humble Redwood Chemical High Explosive Detonations Using GEODYN

    SciTech Connect

    Chipman, V D

    2011-09-20

    Two-dimensional axisymmetric hydrodynamic models were developed using GEODYN to simulate the propagation of air blasts resulting from a series of high explosive detonations conducted at Kirtland Air Force Base in August and September of 2007. Dubbed Humble Redwood I (HR-1), these near-surface chemical high explosive detonations consisted of seven shots of varying height or depth of burst. Each shot was simulated numerically using GEODYN. An adaptive mesh refinement scheme based on air pressure gradients was employed such that the mesh refinement tracked the advancing shock front where sharp discontinuities existed in the state variables, but allowed the mesh to sufficiently relax behind the shock front for runtime efficiency. Comparisons of overpressure, sound speed, and positive phase impulse from the GEODYN simulations were made to the recorded data taken from each HR-1 shot. Where the detonations occurred above ground or were shallowly buried (no deeper than 1 m), the GEODYN model was able to simulate the sound speeds, peak overpressures, and positive phase impulses to within approximately 1%, 23%, and 6%, respectively, of the actual recorded data, supporting the use of numerical simulation of the air blast as a forensic tool in determining the yield of an otherwise unknown explosion.

  11. Individual contributions of friction and impact on non-shock initiation of high explosives

    NASA Astrophysics Data System (ADS)

    Peterson, Paul; Avilucea, Gabe; Bishop, Robert; Sanchez, John

    2007-06-01

    Throughout the years a variety of tests have been designed which provide insight into the sensitivity of high explosives (HE) to non-shock initiation. Various standard tests such as the LANL drop weight impact, LLNL drop hammer, drop tower and skid tests have been developed to measure energetic response of explosives subjected to a combination of friction and oblique impact. In addition, the BAM test (for HE powders on roughened ceramic) and ABL friction test (powders or solids on roughened metal) have been developed for testing HE under frictional loading. In an effort to understand first principles of non-shock initiation, we have designed a series of tests to try to isolate friction and impact during the insult of HE. An initial series of tests have been completed with PETN, HMX, and as-pressed pellets of PBX 9501 (95 wt. percent HMX, 5 wt. percent inert binder), PBX 9502 (95 wt. percent TATB, wt. percent inert binder), Cyclotol (75 wt. percent RDX/25, wt. percent TNT), and Comp B3 (60 wt. percent RDX, 40 wt. percent TNT). The results suggest that some types of high explosives are relatively insensitive to pure impact and pure friction but relatively sensitive to insults involving a combination of impact and friction.

  12. Individual Contributions of Friction and Impact on Non-Shock Initiation of High Explosives

    NASA Astrophysics Data System (ADS)

    Peterson, P. D.; Avilucea, G. R.; Bishop, R. L.; Sanchez, J. A.

    2007-12-01

    Throughout the years a variety of tests have been designed which provide insight into the sensitivity of high explosives (HE) to non-shock initiation. Various standard tests such as the LANL drop weight impact, LLNL drop hammer, drop tower and skid tests have been developed to measure energetic response of explosives subjected to a combination of friction and oblique impact. In addition, the BAM test (for HE powders on roughened ceramic) and ABL friction test (powders or solids on roughened metal) have been developed for testing HE under frictional loading. In an effort to understand first principles of non-shock initiation, we have designed a series of tests to try to isolate friction and impact during the insult of HE. An initial series of tests have been completed with PETN, HMX, and as-pressed pellets of PBX 9501 (95 wt% HMX, wt% inert binder), PBX 9502 (95 wt% TATB, 5 wt% inert binder), Cyclotol (75 wt% RDX/25, wt% TNT), and Comp B3 (60 wt% RDX, 40 wt% TNT). The results suggest that some types of high explosives are relatively insensitive to pure impact and pure friction but relatively sensitive to insults involving a combination of impact and friction.

  13. High-performance laboratories and cleanrooms

    SciTech Connect

    Tschudi, William; Sartor, Dale; Mills, Evan; Xu, Tengfang

    2002-07-01

    The California Energy Commission sponsored this roadmap to guide energy efficiency research and deployment for high performance cleanrooms and laboratories. Industries and institutions utilizing these building types (termed high-tech buildings) have played an important part in the vitality of the California economy. This roadmap's key objective to present a multi-year agenda to prioritize and coordinate research efforts. It also addresses delivery mechanisms to get the research products into the market. Because of the importance to the California economy, it is appropriate and important for California to take the lead in assessing the energy efficiency research needs, opportunities, and priorities for this market. In addition to the importance to California's economy, energy demand for this market segment is large and growing (estimated at 9400 GWH for 1996, Mills et al. 1996). With their 24hr. continuous operation, high tech facilities are a major contributor to the peak electrical demand. Laboratories and cleanrooms constitute the high tech building market, and although each building type has its unique features, they are similar in that they are extremely energy intensive, involve special environmental considerations, have very high ventilation requirements, and are subject to regulations--primarily safety driven--that tend to have adverse energy implications. High-tech buildings have largely been overlooked in past energy efficiency research. Many industries and institutions utilize laboratories and cleanrooms. As illustrated, there are many industries operating cleanrooms in California. These include semiconductor manufacturing, semiconductor suppliers, pharmaceutical, biotechnology, disk drive manufacturing, flat panel displays, automotive, aerospace, food, hospitals, medical devices, universities, and federal research facilities.

  14. VISAR Validation Test Series at the Light Initiated High Explosive (LIHE) facility.

    SciTech Connect

    Covert, Timothy Todd

    2007-02-01

    A velocity interferometer system for any reflector (VISAR) was recently deployed at the light initiated high explosive facility (LIHE) to measure the velocity of an explosively accelerated flyer plate. The velocity data from the flyer plate experiments, using the vendor's fringe constant of 100m/s/fringe, were consistently lower than model predictions. The goal of the VISAR validation test series was to confirm the VISAR system fringe constant. A low velocity gas gun was utilized to impact and accelerate a target at the LIHE facility. VISAR velocity data from the accelerated target was compared against an independent velocity measurement. The data from this test series did in fact reveal the fringe constant was significantly higher than the vendor's specification. The correct fringe constant for the LIHE VISAR system has been determined to be 123 m/s/fringe. The Light Initiated High Explosive (LIHE) facility recently completed a Phase I test series to develop an explosively accelerated flyer plate (X-Flyer). The X-Flyer impulse technique consists of first spraying a thin layer of silver acetylide silver nitrate explosive onto a thin flyer plate. The explosive is then initiated using an intense flash of light. The explosive detonation accelerates the flyer across a small air gap towards the test item. The impact of the flyer with the test item creates a shock pulse and an impulsive load in the test unit. The goal of Phase I of the X-Flyer development series was to validate the technique theory and design process. One of the key parameters that control the shock pulse and impulsive load is the velocity of the flyer at impact. To measure this key parameter, a velocity interferometer system for any reflector (VISAR) was deployed at the LIHE facility. The VISAR system was assembled by Sandia personnel from the Explosive Projects and Diagnostics department. The VISAR was a three leg, push-pull system using a fixed delay cavity. The primary optical components consisted of

  15. Characterisation and modification of thermally stable high explosives for laser flyer applications

    SciTech Connect

    Parker, A.; Claridge, R. P.; Johnson, N. A.; Proud, W. G.

    2007-12-12

    Laser initiation offers improved weapon survivability, versatility and greater Insensitive Munitions (IM) compliance. Detonators based on laser-driven flyers are less vulnerable to electrical initiation and can be based on insensitive secondary explosives. Additionally, this technology will offer advantages in terms of improved flexibility and reliability. Hexanitrostilbene (HNS) and nonanitro-m-terphenyl (NONA) were selected for investigation at QinetiQ as their increased thermal stability over conventional explosives makes them ideal candidates for use in insensitive munition compliant applications. The response of these materials to short duration high-amplitude shock impulses provided by exploding foil initiators (EFI), the electrical equivalent of a laser-driven flyer system, was investigated. Preparation techniques including sonication and the incorporation of additives were used to sensitize the materials to flyer impact, yet maintain their insensitivity to external hazards. Sonication significantly reduced the particle size of both HNS and NONA. The reduced-size explosives exhibited increased sensitivity to EFI impact than the starting materials.

  16. The NASA High Intensity Radiated Fields Laboratory

    NASA Technical Reports Server (NTRS)

    Williams, Reuben A.

    1997-01-01

    High Intensity Radiated Fields (HIRF) are the result of a multitude of intentional and nonintentional electromagnetic sources that currently exists in the world. Many of today's digital systems are susceptible to electronic upset if subjected to certain electromagnetic environments (EME). Modern aerospace designers and manufacturers increasingly rely on sophisticated digital electronic systems to provide critical flight control in both military, commercial, and general aviation aircraft. In an effort to understand and emulate the undesired environment that high energy RF provides modern electronics, the Electromagnetics Research Branch (ERB) of the Flight Electronics and Technology Division (FETD) conducts research on RF and microwave measurement methods related to the understanding of HIRF. In the High Intensity Radiated Fields Laboratory, the effects of high energy radiating electromagnetic fields on avionics and electronic systems are tested and studied.

  17. Nanoengineered explosives

    DOEpatents

    Makowiecki, D.M.

    1996-04-09

    A complex modulated structure is described for reactive elements that have the capability of considerably more heat than organic explosives while generating a working fluid or gas. The explosive and method of fabricating same involves a plurality of very thin, stacked, multilayer structures, each composed of reactive components, such as aluminum, separated from a less reactive element, such as copper oxide, by a separator material, such as carbon. The separator material not only separates the reactive materials, but it reacts therewith when detonated to generate higher temperatures. The various layers of material, thickness of 10 to 10,000 angstroms, can be deposited by magnetron sputter deposition. The explosive detonates and combusts a high velocity generating a gas, such as CO, and high temperatures. 2 figs.

  18. Nanoengineered explosives

    DOEpatents

    Makowiecki, Daniel M.

    1996-01-01

    A complex modulated structure of reactive elements that have the capability of considerably more heat than organic explosives while generating a working fluid or gas. The explosive and method of fabricating same involves a plurality of very thin, stacked, multilayer structures, each composed of reactive components, such as aluminum, separated from a less reactive element, such as copper oxide, by a separator material, such as carbon. The separator material not only separates the reactive materials, but it reacts therewith when detonated to generate higher temperatures. The various layers of material, thickness of 10 to 10,000 angstroms, can be deposited by magnetron sputter deposition. The explosive detonates and combusts a high velocity generating a gas, such as CO, and high temperatures.

  19. Italian high altitude laboratories: past and present.

    PubMed

    Cogo, A; Ponchia, A; Pecchio, O; Losano, G; Cerretelli, P

    2000-01-01

    Italy is a mountainous country with a total of 88 huts and bivouacs at altitudes higher than 3,000 m. Starting in the 19th century a great deal of research in high altitude pathophysiology has been carried out in Italy and many Italian physicians have been involved in mountain medicine. Most of the Italian research has been carried out at two locations: the scientific laboratories "Angelo Mosso" on Monte Rosa (Capanna Regina Margherita and Laboratorio Angelo Mosso), and the "Pyramid" in Nepal. The Capanna Regina Margherita, located on the top of Punta Gnifetti (Monte Rosa, 4,559 m), was inaugurated in 1893. With the support of Queen Margherita of Savoy, an Observatory for scientific studies was built beside this hut in 1894. In 1980 the hut was completely rebuilt by the Italian Alpine Club. The Istituto Angelo Mosso at Col d'Olen, at the base of Monte Rosa (at 2,900 m) was inaugurated in 1907. The high altitude laboratory named the "Pyramid" was built in 1990. Made of glass and aluminium, this pyramid-shaped structure is situated in Nepal at 5,050 m. The scientific laboratories "Angelo Mosso" on Monte Rosa (mainly the Capanna Regina Margherita) and the Pyramid form a nucleus for high altitude research: the former is especially devoted to research regarding acute mountain sickness and the response to subacute hypoxia, whereas the latter is a unique facility for research responses to chronic hypoxia, the effect of exposure to very high altitude, and the study of the resident population living in the Himalayas for at least 25,000 years. PMID:11256565

  20. Mid-IR DIAL for high-resolution mapping of explosive precursors

    NASA Astrophysics Data System (ADS)

    Mitev, V.; Babichenko, S.; Bennes, J.; Borelli, R.; Dolfi-Bouteyre, A.; Fiorani, L.; Hespel, L.; Huet, T.; Palucci, A.; Pistilli, M.; Puiu, A.; Rebane, O.; Sobolev, I.

    2013-10-01

    A DIAL instrument on a moving platform is seen as a valuable remote sensing component in a sensor network for area monitoring, targeting sites involved in unauthorised explosive manufacturing. Such instrument will perform the area mapping of the vapour concentration of key substances, known to be used as precursors in explosive fabrication, such as acetone and nitromethane. The IR spectra of acetone and nitromethane vapours have been defined from available spectroscopy databases and from laboratory measurements as showing optimal spectral band for the DIAL operation in the spectral range of 3.0 μm - 3.5 μm. The DIAL operation has been numerically simulated, with inputs based on the HITRAN database, the U.S. Standard Atmosphere and aerosol simulation software package OPAC. A combination of OPO and OPA has been chosen as a transmitter, where the idler wavelength is used for probing, with wavelength tuning in sequence. A scanner mounted on top of the coaxially aligned laser and receiver, is capable of covering almost 360 degrees horizontally and +/-30 degrees vertically. The detection is performed by a photovoltaic photodiode with 4-stage cooling, with a signal digitalisation having 14 bit amplitude resolution and 125 Ms/s sampling rate. Here we present the development and the first test of the DIAL instrument.

  1. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-11-26

    Disclosed is an improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  2. Extrusion cast explosive

    DOEpatents

    Scribner, K.J.

    1985-01-29

    Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.

  3. Long-range seismic recording of the MISTY PICTURE high-explosive test, White Sands Missile Range, New Mexico. Environmental research papers, February 1987-February 1988

    SciTech Connect

    Cipar, J.

    1988-02-04

    The Solid Earth Geophysics Branch of the Air Force Geophysics Laboratory recorded the MISTY PICTURE high-explosive test at nine sites in the Tularosa Basin of southern New Mexico. Each site consisted of a three-component seismometer set and a digital-event recorder. The stations were due south of the explosion between 95 and 127 km. Analysis of P-wave travel times indicates that the crust is 30-32 km thick beneath the Tularosa Basin, a side graben of the Rio Grande Rift. S-wave travel times are consistent with earlier surface-wave results. Polarization analysis indicates complex scattered and converted energy between the P- and S-wave groups.

  4. Understanding highly explosive basaltic eruptions: Evidence from olivine-hosted melt inclusions from Sunset Crater, AZ

    NASA Astrophysics Data System (ADS)

    Allison, C. M.; Roggensack, K.; Clarke, A. B.; Alfano, F.

    2013-12-01

    Basaltic scoria cone volcanoes are the most abundant volcanic landform on Earth and occur in all tectonic settings. Basaltic magmas have lower viscosities, higher temperatures, and lower volatile contents than silicic magmas, and therefore generally have a lower potential for explosive activity. However, basaltic eruptions display great variability, from mild lava flows to more energetic explosions with large plumes. The mechanism controlling highly explosive basaltic eruptions, such as the ca. 1085 AD eruption of Sunset Crater, is poorly understood. Processes or conditions such as high volatile content in the source magma, injection of a compositionally distinct magma at depth, interaction with shallow magma reservoirs, or rapid crystallization and/or bubble nucleation in the shallow subsurface could increase explosivity of basaltic magmas. One method to test these hypotheses is melt inclusion analysis in order to constrain initial melt composition, volatile content and minimum storage depth. The San Francisco Volcanic Field (SFVF) in northern Arizona, active from 6 Ma-present, consists of over 600 volcanoes - mainly alkali basalt scoria cones along with five silicic centers. The eruption of Sunset Crater in the SFVF during the Holocene was an anomalously large basaltic explosive eruption, consisting of >8 explosive phases and 3 lava flows. Typical scoria cone-forming eruptions produce <0.1 km3 DRE of material, while the Sunset Crater tephra deposit is on the order of ~0.3 km3 DRE, with each phase characterized by volumes of 0.02-0.08 km3 DRE. The phases vary in size and style; the beginning stages of explosive activity (phases 1-2) were considerably smaller than phases 3-5, classified as subplinian. Because of the young age and desert setting of the volcano, the eruptive material is fresh and the deposit is well preserved. The bulk composition is an alkali basalt with Mg# 74. We studied 40 primary melt inclusions (MIs) hosted in 36 olivine crystals 0.5-2 mm in

  5. Laser photoacoustic spectroscopy helps fight terrorism: High sensitivity detection of chemical Warfare Agent and explosives

    NASA Astrophysics Data System (ADS)

    Patel, C. K. N.

    2008-01-01

    Tunable laser photoacoustic spectroscopy is maturing rapidly in its applications to real world problems. One of the burning problems of the current turbulent times is the threat of terrorist acts against civilian population. This threat appears in two distinct forms. The first is the potential release of chemical warfare agents (CWA), such as the nerve agents, in a crowded environment. An example of this is the release of Sarin by Aum Shinrikyo sect in a crowded Tokyo subway in 1995. An example of the second terrorist threat is the ever-present possible suicide bomber in crowded environment such as airports, markets and large buildings. Minimizing the impact of both of these threats requires early detection of the presence of the CWAs and explosives. Photoacoustic spectroscopy is an exquisitely sensitive technique for the detection of trace gaseous species, a property that Pranalytica has extensively exploited in its CO2 laser based commercial instrumentation for the sub-ppb level detection of a number of industrially important gases including ammonia, ethylene, acrolein, sulfur hexafluoride, phosphine, arsine, boron trichloride and boron trifluoride. In this presentation, I will focus, however, on our recent use of broadly tunable single frequency high power room temperature quantum cascade lasers (QCL) for the detection of the CWAs and explosives. Using external grating cavity geometry, we have developed room temperature QCLs that produce continuously tunable single frequency CW power output in excess of 300 mW at wavelengths covering 5 μm to 12 μm. I will present data that show a CWA detection capability at ppb levels with false alarm rates below 1:108. I will also show the capability of detecting a variety of explosives at a ppb level, again with very low false alarm rates. Among the explosives, we have demonstrated the capability of detecting homemade explosives such as triacetone triperoxide and its liquid precursor, acetone which is a common household

  6. SUPERFUND TREATABILITY CLEARINGHOUSE: COMPOSITING EXPLOSIVES/ORGANICS CONTAMINATED SOILS

    EPA Science Inventory

    Laboratory scale and pilot scale studies were conducted to evaluate composting to treat sediments and soils containing explosive and organic compounds. Sediment and soil from lagoons at Army ammunition plants, located in Louisiana, Wisconsin and Pennsylvania contained high...

  7. Effects of Various Blowout Panel Configurations on the Structural Response of Los Alamos National Laboratory Building 16-340 to Internal Explosions

    SciTech Connect

    Jason P. Wilke

    2005-09-30

    The risk of accidental detonation is present whenever any type of high explosives processing activity is performed. These activities are typically carried out indoors to protect processing equipment from the weather and to hide possibly secret processes from view. Often, highly strengthened reinforced concrete buildings are employed to house these activities. These buildings may incorporate several design features, including the use of lightweight frangible blowout panels, to help mitigate blast effects. These panels are used to construct walls that are durable enough to withstand the weather, but are of minimal weight to provide overpressure relief by quickly moving outwards and creating a vent area during an accidental explosion. In this study the behavior of blowout panels under various blast loading conditions was examined. External loadings from explosions occurring in nearby rooms were of primary interest. Several reinforcement systems were designed to help blowout panels resist failure from external blast loads while still allowing them to function as vents when subjected to internal explosions. The reinforcements were studied using two analytical techniques, yield-line analysis and modal analysis, and the hydrocode AUTODYN. A blowout panel reinforcement design was created that could prevent panels from being blown inward by external explosions. This design was found to increase the internal loading of the building by 20%, as compared with nonreinforced panels. Nonreinforced panels were found to increase the structural loads by 80% when compared to an open wall at the panel location.

  8. Explosive laser

    DOEpatents

    Robinson, C.P.; Jensen, R.J.; Davis, W.C.; Sullivan, J.A.

    1975-09-01

    This patent relates to a laser system wherein reaction products from the detonation of a condensed explosive expand to form a gaseous medium with low translational temperature but high vibration population. Thermal pumping of the upper laser level and de-excitation of the lower laser level occur during the expansion, resulting in a population inversion. The expansion may be free or through a nozzle as in a gas-dynamic configuration. In one preferred embodiment, the explosive is such that its reaction products are CO$sub 2$ and other species that are beneficial or at least benign to CO$sub 2$ lasing. (auth)

  9. High explosives vapor detection by atmospheric sampling glow discharge ionization/tandem mass spectrometry

    SciTech Connect

    McLuckey, S.A.; Goeringer, D.E.; Asano, K.G.

    1996-02-01

    The combination of atmospheric sampling glow discharge ionization with tandem mass spectrometry for the detection of traces of high explosives is described. Particular emphasis is placed on use of the quadrupole ion trap as the type of tandem mass spectrometer. Atmospheric sampling glow discharge provides a simple, rugged, and efficient means for anion formation while the quadrupole ion trap provides for efficient tandem mass spectrometry. Mass selective ion accumulation and non-specific ion activation methods can be used to overcome deleterious effects arising from ion/ion interactions. Such interactions constitute the major potential technical barrier to the use of the ion trap for real-time monitoring of targeted compounds in uncontrolled and highly variable matrices. Tailored waveforms can be used to effect both mass selective ion accumulation and ion activation. Concatenated tailored waveforms allow for both functions in a single experiment thereby providing the capability for monitoring several targeted species simultaneously. The combination of atmospheric sampling glow discharge ionization with a state-of-the-art analytical quadrupole ion trap is a highly sensitive and specific detector for traces of high explosives. The combination is also small and inexpensive relative to virtually any other form of tandem mass spectrometry. The science and technology underlying the glow discharge/ion trap combination is sufficiently mature to form the basis for an engineering effort to make the detector portable. 85 refs.

  10. Explosive complexes

    DOEpatents

    Huynh, My Hang V.

    2009-09-22

    Lead-free primary explosives of the formula [M.sup.II(A).sub.R(B.sup.X).sub.S](C.sup.Y).sub.T, where A is 1,5-diaminotetrazole, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  11. Explosive complexes

    DOEpatents

    Huynh, My Hang V.

    2011-08-16

    Lead-free primary explosives of the formula [M.sup.II(A).sub.R(B.sup.X).sub.S](C.sup.Y).sub.T, where A is 1,5-diaminotetrazole, and syntheses thereof are described. Substantially stoichiometric equivalents of the reactants lead to high yields of pure compositions thereby avoiding dangerous purification steps.

  12. Isentropic Compression Driven by High-Explosive Application to TI-6AL-4V

    NASA Astrophysics Data System (ADS)

    Voltz, C.; Sollier, A.; Maillet, J.-B.; Bouyer, V.

    2009-12-01

    We report on an isentropic compression experiment of Ti-6Al-4V alloy based on the use of the release of detonation products from a high-explosive to generate a ramp wave compression in a multisteps target. VISAR and DLI measurements of the rear free surface velocities of the different steps allow computing the sound velocity of the material during its compression, which is characteristic of the EOS of the material. The experimental device is described and the sound velocity measurements are analyzed. We obtain Ti-6Al-4V strength along the compression up to 15 GPa. The results are compared with two dimensional elastic-plastic simulations.

  13. A study of the role of homogeneous process in heterogeneous high explosives

    SciTech Connect

    Tang, P.K.

    1993-05-01

    In a new hydrodynamic formulation of shock-induced chemical reaction, we can show formally that the presence of certain homogenous reaction characteristics is becoming more evident as shock pressure increase even in heterogeneous high explosives. The homogeneous reaction pathway includes nonequilibrium excitation and deactivation stages prior to chemical reaction. The excitation process leads to an intermediate state at higher energy level than the equilibrium state, and as a result, the effective activation energy appears to be lower than the value based on thermal experiments. As the pressure goes up higher, the homogeneous reaction can even surpass the heterogeneous process and becomes the dominant mechanism.

  14. A study of the role of homogeneous process in heterogeneous high explosives

    SciTech Connect

    Tang, P.K.

    1993-01-01

    In a new hydrodynamic formulation of shock-induced chemical reaction, we can show formally that the presence of certain homogenous reaction characteristics is becoming more evident as shock pressure increase even in heterogeneous high explosives. The homogeneous reaction pathway includes nonequilibrium excitation and deactivation stages prior to chemical reaction. The excitation process leads to an intermediate state at higher energy level than the equilibrium state, and as a result, the effective activation energy appears to be lower than the value based on thermal experiments. As the pressure goes up higher, the homogeneous reaction can even surpass the heterogeneous process and becomes the dominant mechanism.

  15. Non-detonable explosive simulators

    DOEpatents

    Simpson, R.L.; Pruneda, C.O.

    1994-11-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules. 5 figs.

  16. Non-detonable explosive simulators

    DOEpatents

    Simpson, Randall L.; Pruneda, Cesar O.

    1994-01-01

    A simulator which is chemically equivalent to an explosive, but is not detonable. The simulator has particular use in the training of explosives detecting dogs and calibrating sensitive analytical instruments. The explosive simulants may be fabricated by different techniques, a first involves the use of standard slurry coatings to produce a material with a very high binder to explosive ratio without masking the explosive vapor, and the second involves coating inert beads with thin layers of explosive molecules.

  17. The Plumbing System of a Highly Explosive Basaltic Volcano: Sunset Crater, AZ

    NASA Astrophysics Data System (ADS)

    Allison, C. M.; Roggensack, K.; Clarke, A. B.

    2015-12-01

    We seek to better understand highly explosive basaltic eruptions with specific focus on magmatic volatile solubility in alkali basalts and the magma plumbing system. Sunset Crater, an alkali basalt (~3.7 wt.% alkalis) scoria cone volcano, erupted explosively in 1085 AD. We analyzed 125 primary melt inclusions (MIs) from Sunset Crater tephra deposited by 2 subplinian phases and 1 Strombolian explosion to compare magma volatiles and storage conditions. We picked rapidly quenched free olivine crystals and selected large volume MIs (50-180 μm) located toward crystal cores. MIs are faceted and exhibit little major element composition variability with minor post entrapment crystallization (2-10%). MIs are relatively dry but CO2-rich. Water content varies from 0.4 wt.% to 1.5 wt.% while carbon dioxide abundance ranges between 1,150 ppm and 3,250 ppm. Most MIs contain >1 wt.% H2O and >2,150 ppm CO2. All observed MIs contain a vapor bubble, so we are evaluating MI vapor bubbles with Raman spectroscopy and re-homogenization experiments to determine the full volatile budget. Because knowledge of volatile solubility is critical to accurately interpret results from MI analyses, we measured H2O-CO2 solubility in the Sunset Crater bulk composition. Fluid-saturated experiments at 4 and 6 kbar indicate shallower entrapment pressures for these MIs than values calculated for this composition using existing models. Assuming fluid saturation, MIs record depths from 6 km to 14 km, including groupings suggesting two pauses for longer-term storage at ~6 km and ~10.5 km. We do not observe any significant differences in MIs from phases exhibiting different eruptive styles, suggesting that while a high CO2 content may drive rapid magma ascent and be partly responsible for highly explosive eruptions, shallower processes may govern the final eruptive character. To track shallow processes during magma ascent from depth of MI-entrapment up to the surface, we are examining MI re-entrants.

  18. The Use of Explosive Energy for Joining Advanced High Strength Low Alloy Steels

    NASA Astrophysics Data System (ADS)

    Urbánek, Miroslav; Mašek, Bohuslav; Hronek, Pavel; Nesvadba, Petr

    2013-03-01

    This article deals with an alternative method of joining advanced steels for frame structures. These steels cannot be joined by a conventional process due to the impact of temperature on the base material. Therefore, a simple and cost-effective method of forming a high-strength joint, intended for advanced high-strength materials, was designed using explosive forming. One of its key advantages is that it preserves the microstructure of the high-strength material being joined. At the same time, the design of the joint allows it to undergo further plastic deformation if the yield stress is exceeded, thus preventing the step change in load-carrying capacity and the instability of the structure. The alternative joint was intended for materials with yield stress above 1000 MPa and elongation of 10%, under quasi-static conditions. However, the design is also suitable for materials with ultimate tensile strength higher than 2000 MPa. Testing of the load-carrying capacity of the joint in a mechanical testing shop showed that the larger the flow stress of the material, the higher the load-carrying capacity of the joint. The selected joint designs with good load-bearing capacity values were manufactured by forming using products of detonation of the SEMTEX industrial blasting explosive. In a compression test, the demonstration joints showed the axial load-bearing capacity of 200 kN with up to 20-mm displacement to failure.

  19. Deflagration Behavior of HMX-Based Explosives at High Temperatures and Pressures

    SciTech Connect

    Maienschein, J L; Wardell, J F

    2003-11-20

    We report the deflagration behavior of several HMX-based explosives at pressure from 10-600 MPa and temperatures from 20-180 C. We have made laminar burn rate measurements with the LLNL High Pressure Strand Burner, in which burn wires are used to record the time-of-arrival of the burn front in the cylindrical sample as a function of pressure. The explosive samples are 6.4 mm in diameter and 63 mm long, with ten burn wires embedded at different positions in the sample. Burning on the cylindrical surface is inhibited with an epoxy layer. With this direct measurement we do not have to account for product gas equation of state or heat losses in the system, and the burn wires allow detection of irregular burning. We find that formulation details are very important to overall deflagration behavior - the presence of 10% or less by weight of binder leads to physical deconsolidation and rapid deflagration at high pressures, and a larger particle size distribution leads to slower deflagration. High temperatures have a relatively minor effect on the deflagration rate until the beta-to-delta phase transition temperature is reached, beyond which the deflagration rate increases approximately 40-fold.

  20. Deflagration of HMX-Based Explosives at High Temperatures and Pressures

    SciTech Connect

    Maienschein, J L; Wardell, J F; DeHaven, M R; Black, C K

    2004-05-12

    We measure the deflagration behavior of energetic materials at extreme conditions (up to 520K and 1 GPa) in the LLNL High Pressure Strand Burner, thereby obtaining reaction rate data for prediction of violence of thermal explosions. The apparatus provides both temporal pressure history and flame time-of-arrival information during deflagration, allowing direct calculation of deflagration rate as a function of pressure. Samples may be heated before testing. Here we report the deflagration behavior of several HMX-based explosives at pressures of 10-600 MPa and temperatures of 300-460 K. We find that formulation details are very important to overall deflagration behavior. Formulations with high binder content (>15 wt%) deflagrate smoothly over the entire pressure range regardless of particle size, with a larger particle size distribution leading to a slower reaction. The deflagration follows a power law function with the pressure exponent being unity. Formulations with lower binder content ({le} 10% or less by weight) show physical deconsolidation at pressures over 100-200 MPA, with transition to a rapid erratic deflagration 10-100 times faster. High temperatures have a relatively minor effect on the deflagration rate until the HMX {beta} {yields} {delta} phase transition occurs, after which the deflagration rate increases by more than a factor of 10.

  1. Producing high sugar concentrations from loblolly pine using wet explosion pretreatment.

    PubMed

    Rana, Diwakar; Rana, Vandana; Ahring, Birgitte K

    2012-10-01

    We present quantitative analysis of pretreatment for obtaining high conversion and release of sugars from loblolly pine. We use wet explosion (WEx): wet oxidation followed by steam explosion and enzymatic hydrolysis (EH) at high dry matter to solubilize sugars. WEx was conducted at 25% (w/w) solids in presence of oxygen at pressures 6.5-7.2 bar, temperatures 170-175°C and residence time from 20 to 22.5 min. EH of pretreated samples was performed by Cellic® Ctec2 (60 mg protein/g cellulose) and Cellic® Htec2 enzymes (10% of Ctec2) at 50°C for 72 h. At the optimal WEx condition 96% cellulose and nearly 100% hemicellulose yield were obtained. The final concentrations of monomeric sugars were 152 g/L of glucose, 67 g/L of xylose, and 67 g/L of minor sugars (galactose, arabinose and mannose). Compared to previous work WEx seems to be superior for releasing high concentrations of monomeric sugars. PMID:22854131

  2. Modeling the Structural Response from a Propagating High Explosive Using Smooth Particle Hydrodynamics

    SciTech Connect

    Margraf, J

    2012-06-12

    This report primarily concerns the use of two massively parallel finite element codes originally written and maintained at Lawrence Livermore National Laboratory. ALE3D is an explicit hydrodynamics code commonly employed to simulate wave propagation from high energy scenarios and the resulting interaction with nearby structures. This coupled response ensures that a structure is accurately applied with a blast loading varying both in space and time. Figure 1 illustrates the radial outward propagation of a pressure wave due to a center detonated spherical explosive originating from the lower left. The radial symmetry seen in this scenario is lost when instead a cylindrocal charge is detonated. Figure 2 indicates that a stronger, faster traveling pressure wave occurs in the direction of the normal axis to the cylinder. The ALE3D name is derived because of the use of arbitrary-Lagrange-Eulerian elements in which the mesh is allowed to advect; a process through which the mesh is modified to alleviate tanlging and general mesh distortion often cuased by high energy scenarios. The counterpart to an advecting element is a Lagrange element, whose mesh moves with the material. Ideally all structural components are kept Lagrange as long as possible to preserve accuracy of material variables and minimize advection related errors. Advection leads to mixed zoning, so using structural Lagrange elements also improves the visualization when post processing the results. A simplified representation of the advection process is shown in Figure 3. First the mesh is distorted due to material motion during the Lagrange step. The mesh is then shifted to an idealized and less distorted state to prevent irregular zones caused by the Lagrange motion. Lastly, the state variables are remapped to the elements of the newly constructed mesh. Note that Figure 3 represents a purely Eulerian mesh relaxation because the mesh is relocated back to the pre-Lagrange position. This is the case when the

  3. THE APPLICATION OF SINGLE PARTICLE AEROSOL MASS SPECTROMETRY FOR THE DETECTION AND IDENTIFICATION OF HIGH EXPLOSIVES AND CHEMICAL WARFARE AGENTS

    SciTech Connect

    Martin, A

    2006-10-23

    Single Particle Aerosol Mass Spectrometry (SPAMS) was evaluated as a real-time detection technique for single particles of high explosives. Dual-polarity time-of-flight mass spectra were obtained for samples of 2,4,6-trinitrotoluene (TNT), 1,3,5-trinitro-1,3,5-triazinane (RDX), and pentaerythritol tetranitrate (PETN); peaks indicative of each compound were identified. Composite explosives, Comp B, Semtex 1A, and Semtex 1H were also analyzed, and peaks due to the explosive components of each sample were present in each spectrum. Mass spectral variability with laser fluence is discussed. The ability of the SPAMS system to identify explosive components in a single complex explosive particle ({approx}1 pg) without the need for consumables is demonstrated. SPAMS was also applied to the detection of Chemical Warfare Agent (CWA) simulants in the liquid and vapor phases. Liquid simulants for sarin, cyclosarin, tabun, and VX were analyzed; peaks indicative of each simulant were identified. Vapor phase CWA simulants were adsorbed onto alumina, silica, Zeolite, activated carbon, and metal powders which were directly analyzed using SPAMS. The use of metal powders as adsorbent materials was especially useful in the analysis of triethyl phosphate (TEP), a VX stimulant, which was undetectable using SPAMS in the liquid phase. The capability of SPAMS to detect high explosives and CWA simulants using one set of operational conditions is established.

  4. High performance railgun barrels for laboratory use

    NASA Astrophysics Data System (ADS)

    Bauer, David P.; Newman, Duane C.

    1993-01-01

    High performance low-cost, laboratory railgun barrels are now available, comprised of an inherently stiff containment structure which surrounds the bore components machined from 'off the-shelf' materials. The shape of the containment structure was selected to make the barrel inherently stiff. The structure consists of stainless steel laminations which do not compromise the electrical efficiency of the railgun. The modular design enhances the utility of the barrel, as it is easy to service between shots, and can be 're-cored' to produce different configurations and sizes using the same structure. We have produced barrels ranging from 15 mm to 90 mm square bore, a 30 mm round bore, and in lengths varying from 0.25 meters to 10 meters long. Successful tests with both plasma and solid metal armatures have demonstrated the versatility and performance of this design.

  5. In-situ Raman spectroscopy and high-speed photography of a shocked triaminotrinitrobenzene based explosive

    SciTech Connect

    Saint-Amans, C.; Hébert, P. Doucet, M.; Resseguier, T. de

    2015-01-14

    We have developed a single-shot Raman spectroscopy experiment to study at the molecular level the initiation mechanisms that can lead to sustained detonation of a triaminotrinitrobenzene-based explosive. Shocks up to 30 GPa were generated using a two-stage laser-driven flyer plate generator. The samples were confined by an optical window and shock pressure was maintained for at least 30 ns. Photon Doppler Velocimetry measurements were performed at the explosive/window interface to determine the shock pressure profile. Raman spectra were recorded as a function of shock pressure and the shifts of the principal modes were compared to static high-pressure measurements performed in a diamond anvil cell. Our shock data indicate the role of temperature effects. Our Raman spectra also show a progressive extinction of the signal which disappears around 9 GPa. High-speed photography images reveal a simultaneous progressive darkening of the sample surface up to total opacity at 9 GPa. Reflectivity measurements under shock compression show that this opacity is due to a broadening of the absorption spectrum over the entire visible region.

  6. In-situ Raman spectroscopy and high-speed photography of a shocked triaminotrinitrobenzene based explosive

    NASA Astrophysics Data System (ADS)

    Saint-Amans, C.; Hébert, P.; Doucet, M.; de Resseguier, T.

    2015-01-01

    We have developed a single-shot Raman spectroscopy experiment to study at the molecular level the initiation mechanisms that can lead to sustained detonation of a triaminotrinitrobenzene-based explosive. Shocks up to 30 GPa were generated using a two-stage laser-driven flyer plate generator. The samples were confined by an optical window and shock pressure was maintained for at least 30 ns. Photon Doppler Velocimetry measurements were performed at the explosive/window interface to determine the shock pressure profile. Raman spectra were recorded as a function of shock pressure and the shifts of the principal modes were compared to static high-pressure measurements performed in a diamond anvil cell. Our shock data indicate the role of temperature effects. Our Raman spectra also show a progressive extinction of the signal which disappears around 9 GPa. High-speed photography images reveal a simultaneous progressive darkening of the sample surface up to total opacity at 9 GPa. Reflectivity measurements under shock compression show that this opacity is due to a broadening of the absorption spectrum over the entire visible region.

  7. Multiphysics Simulations of Hot-Spot Initiation in Shocked Insensitive High-Explosive

    NASA Astrophysics Data System (ADS)

    Najjar, Fady; Howard, W. M.; Fried, L. E.

    2010-11-01

    Solid plastic-bonded high-explosive materials consist of crystals with micron-sized pores embedded. Under mechanical or thermal insults, these voids increase the ease of shock initiation by generating high-temperature regions during their collapse that might lead to ignition. Understanding the mechanisms of hot-spot initiation has significant research interest due to safety, reliability and development of new insensitive munitions. Multi-dimensional high-resolution meso-scale simulations are performed using the multiphysics software, ALE3D, to understand the hot-spot initiation. The Cheetah code is coupled to ALE3D, creating multi-dimensional sparse tables for the HE properties. The reaction rates were obtained from MD Quantum computations. Our current predictions showcase several interesting features regarding hot spot dynamics including the formation of a "secondary" jet. We will discuss the results obtained with hydro-thermo-chemical processes leading to ignition growth for various pore sizes and different shock pressures.

  8. Modern Foreign Languages in High School: The Language Laboratory.

    ERIC Educational Resources Information Center

    Hutchinson, Joseph C.

    The high school language laboratory is approached from the standpoint of (1) planning for the laboratory facilities, (2) the function of equipment in relation to student learning activities, and (3) operation of the laboratory facilities. Considered in the section on planning are laboratory rationale, place in the school program, methods and…

  9. Numerical investigation of the density effect in modeling detonation propagation in high explosives

    NASA Astrophysics Data System (ADS)

    Chiquete, Carlos; Meyer, Chad D.; Short, Mark

    2015-11-01

    Detonation Shock Dynamics (DSD) is an asymptotically-derived detonation propagation model used in engineering models of high explosive (HE) performance. The method is based on the limit where the detonation reaction zone length and time scales are small in relation to the much larger geometry in which the HE is embedded. The intrinsic DSD propagation law (functionally relating the surface normal velocity and curvature) for each HE is typically calibrated to simplified geometry tests where steady-state front velocities and shapes are measured. This relationship is necessarily a function of the experimental conditions and is thus limited in scope. For HE's with variable pressing or casting density, a particular need exists for calibrations sensitive to this variability. However, there is little constraint on how the density effect is specifically incorporated into the fitting procedure. To investigate this issue, shock-attached calculations in simple slab or cylindrical geometries are performed for varying initial density for a ``numerical'' explosive model with a realistic equation of state. The steady-state detonation velocities, front shapes and the resulting DSD calibration of this generated data are analyzed as function of the applied HE density.

  10. Safety in the Chemical Laboratory: Group Contribution Method for Predicting the Potential of a Chemical Composition to Cause an Explosion.

    ERIC Educational Resources Information Center

    Seaton, William H.

    1989-01-01

    Provided is an empirical method to train students to avoid physical disaster in their work experience. Discussed is a computer program, CHETAH, which can be used in advance of synthesis to classify the possible explosive nature of the products. Plosophoric and auxoplosive weights of many organic groups are listed. (MVL)