These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

MPS (Multiparticle Spectrometer) data acquisition software system  

SciTech Connect

A description of the software for a FASTBUS based data acquisition system in use at the Brookhaven National Laboratory Multiparticle Spectrometer is presented. Data reading and formatting is done by the SLAC Scanner Processors (SSP's) resident in the FASTBUS system. A multiprocess software system on VAX computers is used to communicate with the SSP's, record the data, and monitor on-line the progress of high energy and heavy ion experiments. The structure and the performance of this system are discussed. 4 refs., 1 fig.

Saulys, A.C.; Etkin, A.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Lindenbaum, S.J.; Chan, C.S.

1989-04-04

2

Spectrometers beyond the laboratory  

SciTech Connect

Two new types of miniature Fourier Transform Spectrometers (FTS) presently being built have enabled this technology to be taken out of the laboratory and into the field. Both designs are very rugged, use little power to run, and can be made extremely small and lightweight. They are excellent candidates for airborne use, both in aircraft and satellite applications. One, the Mcro FT, is a mass balanced linear reciprocating scan operating in the 1-2 scan per second speed range. The other, the Turbo FT, uses a rotary scan, enabling it to run at much higher speeds, from 10 to 1000 scans per second. Either type can be built in the visible, near K and thermal IR wavelength ranges, and provide spectral resolution of 1-2 wave-numbers. Results obtained in all these wavelength ranges are presented here. The rotary configuration is more suited to airborne and satellite survey type deployments, due mostly to its rapid scan rate. Either of these sensors will fit into a small, commercially available stabilized pod which can easily be attached to a helicopter or light plane. This results in a very economical flight spectrometer system. 11 figs.

Wadsworth, W. [Designs & Prototypes, West Simsbury, CT (United States)

1996-11-01

3

Advanced Laboratory NMR Spectrometer with Applications.  

ERIC Educational Resources Information Center

A description is given of an inexpensive nuclear magnetic resonance (NMR) spectrometer suitable for use in advanced laboratory courses. Applications to the nondestructive analysis of the oil content in corn seeds and in monitoring the crystallization of polymers are presented. (SK)

Biscegli, Clovis; And Others

1982-01-01

4

Adapting Raman Spectra from Laboratory Spectrometers to Portable Detection Libraries  

SciTech Connect

Raman spectral data collected with high-resolution laboratory spectrometers are processed into a for- mat suitable for importing as a user library on a 1064nm DeltaNu rst generation, eld-deployable spectrometer prototype. The two laboratory systems used are a 1064nm Bruker spectrometer and a 785nm Kaiser spectrometer. The steps taken to compensate for device-dependent spectral resolution, wavenumber shifts between instruments, and wavenumber sensitivity variation are described.

Weatherall, James; Barber, Jeffrey B.; Brauer, Carolyn S.; Johnson, Timothy J.; Su, Yin-Fong; Ball, Christopher D.; Smith, Barry; Cox, Rick; Steinke, Robert; McDaniel, Patricia; Wasserzug, Louis

2013-02-01

5

Transmission Grating Spectrometers in Undergraduate Astronomy Laboratories  

NASA Astrophysics Data System (ADS)

The Iowa Robotic Telescope, located in southern Arizona, has been used in University of Iowa undergraduate laboratories for more than a decade. The addition of a low-resolution transmission grating spectrometer (TGS) to the 0.37 m classical Cassegrain reflector has allowed students to obtain spectra of stars, planets, and nebulae as regular part of the lab curriculum. We discuss the relative efficiency and resolution dependences using different groove spacings, slits, telescope optics, and camera sensor geometries. In addition, we consider the use of beam steering prisms joined with diffraction gratings (grisms). Students may schedule the TGS system using a simple web-based form to observe targets down to approximately 10th magnitude. Some of the TGS observational targets include Wolf-Rayet stars with optically thick winds, novae, as well as main sequence stars over the entire spectral sequence.

Hood, Ryan; Moore, J.; McKinlay, M.; Coffin, D.; Trieweiler, D.; Mutel, R. L.

2012-01-01

6

Portable Remote Imaging Spectrometer (PRISM): Laboratory and Field Calibration Results  

NASA Astrophysics Data System (ADS)

The Portable Remote Imaging Spectrometer (PRISM) is an airborne sensor tailored specifically for the challenges of coastal ocean research. PRISM has high throughput, high-uniformity and low polarization sensitivity. PRISM is an airborne imaging spectrometer sensor that has been developed by the Jet Propulsion Laboratory (JPL) with funding from NASA's Earth Science and Technology Office, Airborne Science Office, and Ocean Biology and Biogeochemistry Office. Development of PRISM started in August 2009. Laboratory measurements of the sensor characteristics as well as measurements over land and water calibration sites will be reported. The objective of the PRISM program is to provide a facility instrument for the community of coastal ocean scientists in order to address specific science questions that have been identified by NASA as critical to the understanding of terrestrial processes. PRISM is a push-broom sensor, and utilizes a Dyson spectrometer, which has 3-nm spectral resolution from 350-1000 nm. The objective of the PRISM 2012 airborne campaign was to a) provide instrument calibration data by overflying specific well-characterized ground targets, and b) perform an investigation into the health of specific seagrass types as indicative of coastal habitat health in the Elkhorn Slough region of Monterey Bay, CA. In May and July of 2012 PRISM flew engineering test flights and an initial science campaign. The initial results from the May and July 2012 flight campaigns will be presented.

Mccubbin, I. B.; Green, R. O.; Mouroulis, P.; Van Gorp, B.; Dierssen, H. M.

2012-12-01

7

Taming multiparticle entanglement.  

PubMed

We present an approach to characterize genuine multiparticle entanglement by using appropriate approximations in the space of quantum states. This leads to a criterion for entanglement which can easily be calculated by using semidefinite programing and improves all existing approaches significantly. Experimentally, it can also be evaluated when only some observables are measured. Furthermore, it results in a computable entanglement monotone for genuine multiparticle entanglement. Based on this, we develop an analytical approach for the entanglement detection in cluster states, leading to an exponential improvement compared with existing schemes. PMID:21668133

Jungnitsch, Bastian; Moroder, Tobias; Gühne, Otfried

2011-05-13

8

Multiparticle Bose-Einstein correlations  

Microsoft Academic Search

Multiparticle symmetrization effects are contributions to the spectra of Bose-symmetrized states which are not the product of pairwise correlations. Usually they are neglected in particle interferometric calculations which aim at determining the geometry of the boson emitting source from the measured momentum distributions. Based on a method introduced by Zajc and Pratt, we give a calculation of all multiparticle symmetrization

Urs Achim Wiedemann

1998-01-01

9

The Los Alamos National Laboratory precision double crystal spectrometer  

SciTech Connect

This report discusses the following topics on the LANL precision double crystal X-ray spectrometer: Motivation for construction of the instrument; a brief history of the instrument; mechanical systems; motion control systems; computer control system; vacuum system; alignment program; scan programs; observations of the copper K{alpha} lines; and characteristics and specifications.

Morgan, D.V.; Stevens, C.J.; Liefield, R.J. [Los Alamos National Lab., NM (United States)

1994-03-01

10

Electron Positron Proton Spectrometer for use at Laboratory for Laser Energetics  

SciTech Connect

The Electron Positron Proton Spectrometer (EPPS) is mounted in a TIM (Ten-Inch Manipulator) system on the Omega-60 or Omega-EP laser facilities at the University of Rochester, Laboratory for Laser Energetics (LLE), when in use, see Fig. 1. The Spectrometer assembly, shown in Fig. 2, is constructed of a steel box containing magnets, surrounded by Lead 6% Antimony shielding with SS threaded insert, sitting on an Aluminum 6061-T6 plate.

Ayers, S L

2010-04-07

11

Multiparticle Bose-Einstein correlations  

Microsoft Academic Search

Multiparticle symmetrization effects are contributions to the spectra of\\u000aBose-symmetrized states which are not the product of pairwise correlations.\\u000aUsually they are neglected in particle interferometric calculations which aim\\u000aat determining the geometry of the boson emitting source from the measured\\u000amomentum distributions. Based on a method introduced by Zajc and Pratt, we give\\u000aa calculation of all multiparticle symmetrization

Urs Achim Wiedemann

1998-01-01

12

GIOVE, a shallow laboratory Ge-spectrometer with 100 ?Bq/kg sensitivity  

SciTech Connect

A new germanium gamma spectrometer called GIOVE (Germanium spectrometer with Inner and Outer Veto) has been set up at the underground/shallow laboratory (15 m w.e.) of MPI-K. Its double plastic scintillator veto system and neutron moderation interlayer lower the background by more than one order of magnitude compared to the other existing spectrometer at this facility. The integral (40-2700 keV) background rate of about 290 counts (day kg){sup ?1} is just a factor 4 to 8 above that of the GeMPI spectrometers operated at LNGS (3800 m w.e.) and thus proves that even under shallow overburden sub mBq/kg sensitivities are achievable. Extended material screening and neutron attenuation studies preceded the final design of the spectrometer. The technical realization of the spectrometer is described in detail with special emphasis on the inner veto system. For its optimisation a simulation model was developed for light collection on small low activity PMT’s under various geometrical conditions. Radon suppression is accomplished by employing a gas tight sample container and a nitrogen flushed glove-box system with an airlock. The active volume of the crystal was modelled by absorption scanning measurements and Monte Carlo simulations. The complete shield is implemented in a Geant4 based simulation framework.

Heusser, G.; Weber, M.; Denz, T.; Hakenmueller, J.; Hofacker, R.; Lackner, R.; Lindner, M.; Maneschg, W.; Reisfelder, M.; Simgen, H.; Schreiner, J.; Stolzenburg, D.; Strecker, H.; Westermann, J. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)] [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

2013-08-08

13

Quantum telecloning and multiparticle entanglement  

NASA Astrophysics Data System (ADS)

A quantum telecloning process combining quantum teleportation and optimal quantum cloning from one input to M outputs is presented. The scheme relies on the establishment of particular multiparticle entangled states, which function as multiuser quantum information channels. The entanglement structure of these states is analyzed and shown to be crucial for this type of information processing.

Murao, M.; Jonathan, D.; Plenio, M. B.; Vedral, V.

1999-01-01

14

Laboratory Astrophysics, QED, and other Measurements using the EBIT Calorimeter Spectrometer at LLNL  

SciTech Connect

We have used the EBIT Calorimeter Spectrometer (ECS), a microcalorimeter instrument built by the calorimeter group at the NASA/Goddard Space Flight Center, to make a variety of measurements since its installation at Lawrence Livermore National Laboratory's EBIT facility. These include measurements of charge exchange between neutral gas and K-and L-shell ions, measurements of the X-ray transmission efficiency of optical blocking filters, high resolution measurements of transition energies for high-Z, highly charged ions, and measurements of M and L-shell emission from highly charged tungsten following on earlier measurements of L-shell gold. Our results will see application in the interpretation of the spectra from the Jovian atmosphere and of the diffuse soft X-ray background, in tests of QED, and in diagnosing inertial and magnetic confinement fusion plasmas. These measurements augment previous laboratory astrophysics, atomic physics, and calibration measurements made using earlier versions of NASA's microcalorimeter spectrometer.

Brown, G. V.; Beiersdorfer, P.; Clementson, J.; Frankel, M.; Traebert, E. [Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550 (United States); Adams, J. S.; Kelly, R. L.; Kilbourne, C. A.; Koutroumpa, D.; Leutenegger, M.; Porter, F. S. [NASA/GSFC Code 662, Greenbelt, MD 21201 (United States); Kahn, S. M. [Stanford University Physics Department, Stanford, CA 94305 (United States); Thorn, D. B. [GSI, Darmstadt (Germany)

2009-12-16

15

Laboratory Astrophysics, QED, and other Measurements using the EBIT Calorimeter Spectrometer at LLNL  

SciTech Connect

We have used the EBIT Calorimeter Spectrometer (ECS), a microcalorimeter instrument built by the calorimeter group at the NASA/Goddard Space Flight Center, to make a variety of measurements since its installation at Lawrence Livermore National Laboratory's EBIT facility. These include measurements of charge exchange between neutral gas and K- and L-shell ions, measurements of the X-ray transmission efficiency of optical blocking filters, high resolution measurements of transition energies for high-Z, highly charged ions, and measurements of M and L-shell emission from highly charged tungsten following on earlier measurements of L-shell gold. Our results will see application in the interpretation of the spectra from the Jovian atmosphere and of the diffuse soft X-ray background, in tests of QED, and in diagnosing inertial and magnetic confinement fusion plasmas. These measurements augment previous laboratory astrophysics, atomic physics, and calibration measurements made using earlier versions of NASA's microcalorimeter spectrometer.

Brown, G V; Adams, J S; Beiersdorfer, P; Clementson, J; Frankel, M; Kahn, S M; Kelley, R L; Kilbourne, C A; Koutroumpa, D; Leutenegger, M; Porter, F S; Thorn, D B; Trabert, E

2009-08-25

16

On multi-particle entanglement  

E-print Network

We build, using group-theoretic methods, a general framework for approaching multi-particle entanglement. As far as entanglement is concerned, two states of n spin-1/2 particles are equivalent if they are on the same orbit of the group of local rotations (U(2)^n). We give a method for finding the number of parameters needed to describe inequivalent n spin-1/2 particles states. We also describe how entanglement of states on a given orbit may be characterized by the stability group of the action of the group of local rotations on any point on the orbit.

N Linden; S Popescu

1997-11-13

17

The Polar Environment Atmospheric Research Laboratory UVvisible Ground-Based Spectrometer: First measurements of O3, NO2, BrO,  

E-print Network

­visible, triple-grating spectrometer and is very similar to the UT-GBS (University of Toronto- GBS), which has of the refurbishment of PEARL, a UV­visible diffraction grating spectrometer, the PEARL-GBS (PEARL-Ground- BasedThe Polar Environment Atmospheric Research Laboratory UV­visible Ground-Based Spectrometer: First

Strong, Kimberly

18

Nuclear astrophysics studies by SAMURAI spectrometer in RIKEN RIBF  

SciTech Connect

SAMURAI is a spectrometer which is now being constructed at RIKEN RI Beam Factory. This spectrometer is characterized by a large angular-and momentum-acceptance enabling, for example, multi-particle coincidence measurements. Here brief descriptions of SAMURAI spectrometer and physics topics relevant to nuclear astrophysics are presented.

Yoneda, K. [RIKEN Nishina Center, 2-1, Hirosawa, Wako, Saitama 351-0198 (Japan)

2012-11-12

19

The characteristics of a low background germanium gamma ray spectrometer at China JinPing Underground Laboratory.  

PubMed

A low background germanium gamma ray spectrometer, GeTHU, has been installed at China JinPing Underground Laboratory (CJPL). The integral background count rate of the spectrometer was 0.629 cpm between 40 and 2700 keV, the origins of which were studied by Monte Carlo simulation. Detection limits and efficiencies were calculated for selected gamma peaks. Some samples of rare event experiments were measured and (137)Cs contamination was found in boric acid. GeTHU will be mainly used to measure environmental samples and screen materials in dark matter and double beta decay experiments. PMID:24950199

Zeng, Zhi; Mi, Yuhao; Ma, Hao; Cheng, Jianping; Su, Jian; Yue, Qian

2014-09-01

20

Extended Chaos Theory and Multiparticle Production  

E-print Network

First, using the method of the soliton-solution, the fermion probability density equation, which corresponds to the Dirac equation, is derived. Next, we extend the chaos theory, in which the period bifurcation is equivalent to the particle production. Then this extended chaos theory can be used for description of the multiparticle production and the extensive air showers at high energy. Let the parameter takes a suitable value, the quantitative results will be obtained, and an approximate formula will be derived. Many properties of the multiparticle production and of the chaos theory are universal.

Yi-Fang Chang

2008-08-02

21

The characteristics of a low background germanium gamma ray spectrometer at China JinPing underground Laboratory  

E-print Network

A low background germanium gamma ray spectrometer, GeTHU, has been installed at China JinPing underground Laboratory. The integral background count rate between 40 and 2700 keV was 0.6 cpm, and the origin was studied by Monte Carlo simulation. Detection limits and efficiencies were calculated for selected gamma peaks. Boric acid and silica sand samples were measured and 137Cs contamination was found in boric acid. GeTHU will be mainly used to measure environmental samples and screen materials in dark matter experiments.

Mi, Yuhao; Zeng, Zhi; Cheng, Jianping; Su, Jian; Yue, Qian

2014-01-01

22

The characteristics of a low background germanium gamma ray spectrometer at China JinPing underground Laboratory  

E-print Network

A low background germanium gamma ray spectrometer, GeTHU, has been installed at China JinPing underground Laboratory. The integral background count rate between 40 and 2700 keV was 0.6 cpm, and the origin was studied by Monte Carlo simulation. Detection limits and efficiencies were calculated for selected gamma peaks. Boric acid and silica sand samples were measured and 137Cs contamination was found in boric acid. GeTHU will be mainly used to measure environmental samples and screen materials in dark matter experiments.

Yuhao Mi; Hao Ma; Zhi Zeng; Jianping Cheng; Jian Su; Qian Yue

2014-03-07

23

[Central wavelength shift analysis between laboratory and field spectral calibrations of grating based imaging spectrometer].  

PubMed

Spectral calibration must be carried out in order to determine its central wavelength and half-wave band width of each pixel before the usage of imaging spectrometer. But it was found out that these parameters vary as environment changes. The present paper studies the effect based on test field data. The authors analyzed the optical structure and compared the working environmental parameters. Then a theoretical model is established and the influences of vibration, distortion and temperature parameters are evaluated. The theoretical model and the caculation results are in good consistency, which testifies the theoretical model. This research will shed some light on the high accuracy spectral calibration of the grating based imaging spectrometer and its manufacture. PMID:24159894

Wang, Ming-Zhi; Yan, Lei; Yang, Bin; Gou, Zhi-Yang

2013-08-01

24

Airborne and laboratory remote sensing applications of the CSIRO CO2 laser spectrometer MIRACO2LAS  

Microsoft Academic Search

The mid-infrared airborne CO2 laser spectrometer (MIRACO2LAS) was developed by CSIRO Division of Exploration and Mining to investigate the potential role of high spectral resolution thermal infrared (TIR) remote sensing for improved remote sensing of minerals, especially those silicate minerals that do not have diagnostic features at shorter wavelengths, such as quartz, feldspars, pyroxenes and garnets. Other objectives include testing

L. B. Whitbourn; T. J. Cudahy; J. F. Huntington; P. M. Connor; P. Mason; R. N. Phillips; Peter Hausknecht

1997-01-01

25

Comparison of laboratory calibrations of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) at the beginning and end of the first flight season  

NASA Technical Reports Server (NTRS)

Spectral and radiometric calibrations of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) were performed in the laboratory in June and November, 1987, at the beginning and end of the first flight season. Those calibrations are described along with changes in instrument characteristics that occurred during the flight season as a result of factors such as detachment of the optical fibers to two of the four AVIRIS spectrometers, degradation in the optical alignment of the spectrometers due to thermally-induced and mechanical warpage, and breakage of a thermal blocking filter in one of the spectrometers. These factors caused loss of signal in three spectrometers, loss of spectral resolution in two spectrometers, and added uncertainty in the radiometry of AVIRIS. Results from in-flight assessment of the laboratory calibrations are presented. A discussion is presented of improvements made to the instrument since the end of the first flight season and plans for the future. Improvements include: (1) a new thermal control system for stabilizing spectrometer temperatures, (2) kinematic mounting of the spectrometers to the instrument rack, and (3) new epoxy for attaching the optical fibers inside their mounting tubes.

Vane, Gregg; Chrien, Thomas G.; Reimer, John H.; Green, Robert O.; Conel, James E.

1988-01-01

26

LABORATORY EVALUATION OF TUNABLE ATOMIC LINE MOLECULAR SPECTROMETERS FOR BENZENE ANALYSIS  

EPA Science Inventory

Tunable Atomic Line Molecular Spectroscopy (TALMS) is a high resolution, differential absorption technique used in the ultraviolet region. Under Interagency Agreements EPA-80-D-X1014 and AD-89-F-2A008 with Lawrence Berkeley Laboratory, two prototype TALMS instruments were designe...

27

HISS spectrometer  

SciTech Connect

This talk describes the Heavy Ion Spectrometer System (HISS) facility at the Lawrence Berkeley Laboratory's Bevalac. Three completed experiments and their results are illustrated. The second half of the talk is a detailed discussion of the response of drift chambers to heavy ions. The limitations of trajectory measurement over a large range in incident particle charge are presented.

Greiner, D.E.

1984-11-01

28

Nuclear evaporation process with simultaneous multiparticle emission  

E-print Network

The nuclear evaporation process is reformulated by taking into account simultaneous multiparticle emission from a hot compound nucleus appearing as an intermediate state in many nuclear reaction mechanisms. The simultaneous emission of many particles is particularly relevant for high excitation energy of the compound nucleus.These channels are effectively open in competition with the single particle emissions and fission in this energy regime. Indeed, the inclusion of these channels along the decay evaporating chain shows that the yield of charged particles and occurrence of fission are affected by these multiparticle emission processes of the compounded nucleus, when compared to the single sequential emission results. The effect also shows a qualitative change in the neutron multiplicity of different heavy compound nucleus considered. This should be an important aspect for the study of spallation reaction in Acceleration Driven System (ADS) reactors. The majority of neutrons generated in these reactions come from the evaporation stage of the reaction, the source of neutron for the system. A Monte Carlo simulation is employed to determine the effect of these channels on the particle yield and fission process. The relevance of the simultaneous particle emission with the increasing of excitation energy of the compound nucleus is explicitly shown.

Leonardo P. G. De Assis; Sergio B. Duarte; Bianca M. Santos

2012-08-07

29

Solar X-ray Spectrometer (SoXS) development at Physical Research Laboratory\\/ISRO  

Microsoft Academic Search

Physical Research Laboratory (PRL), an institute of Indian Space Research Organisation\\/Dept. of Space, Govt. of India, is a premier institute to pioneer space research programmes in India. PRL has vast experience in designing and developing rocket, balloon and satellite-borne experiments. PRL has state-of-the-art observatories for conducting research in the fields of solar physics, astrophysics and aeronomy. One of the current

Rajmal Jain; Hemant Dave; M. R. Deshpande

2001-01-01

30

Developing improved nuclear magnetic resonance marginal oscillator spectrometers for advanced teaching laboratories  

E-print Network

magnetization has a transverse component which, as it rotates, will induce an EMF in a. "pickoff coil. " This coil acts as a receiver of the NMR signal. Such an ar- rangement with a. separate "transmitter coil" to impose the oscillating (effectively ro... representation of the magnetization M fixed in the Y' ? Z' plane of the rotating frame. The indicated "left ? handed" rotation about the Z'-axis causes the Y' component of M to induce an EMF in a, pickoff' coil with axis lying in the transverse laboratory...

Willingham, Frank Phillip

2012-06-07

31

Reversibility of local transformations of multiparticle entanglement  

E-print Network

We consider the transformation of multisystem entangled states by local quantum operations and classical communication. We show that, for any reversible transformation, the relative entropy of entanglement for two parties must remain constant. This shows, for example, that it is not possible to convert 2N three party GHZ states into 3N singlets, even in an asymptotic sense. Thus there is true three-party non-locality (i.e., not all three-party entanglement is equivalent to two-party entanglement). Our results also allow us to make {\\em quantitative} statements about concentrating multi-particle entanglement. Finally, we show that there is true n-party entanglement for all n.

N. Linden; S. Popescu; B. Schumacher; M. Westmoreland

1999-12-08

32

Update on multiparticle effects in Bose-Einstein correlations  

E-print Network

Multiparticle effects in Bose-Einstein correlations are reviewed. It is shown that for a broad class of models they can be ignored in the low density limit, but often are significant (typically at the 10% level) for realistic denisties.

Zalewski, K

2006-01-01

33

Update on multiparticle effects in Bose-Einstein correlations  

E-print Network

Multiparticle effects in Bose-Einstein correlations are reviewed. It is shown that for a broad class of models they can be ignored in the low density limit, but often are significant (typically at the 10% level) for realistic denisties.

K. Zalewski

2004-09-21

34

A Wegner estimate for multi-particle random Hamiltonians  

E-print Network

We prove a Wegner estimate for a large class of multiparticle Anderson Hamiltonians on the lattice. These estimates will allow us to prove Anderson localization for such systems. A detailed proof of localization will be given in a subsequent paper.

Werner Kirsch

2007-04-20

35

Anderson Localization for a Multi-Particle Quantum Graph  

NASA Astrophysics Data System (ADS)

We study a multi-particle quantum graph with random potential. Taking the approach of multiscale analysis, we prove exponential and strong dynamical localization of any order in the Hilbert-Schmidt norm near the spectral edge. Apart from the results on multi-particle systems, we also prove Lifshitz-type asymptotics for single-particle systems. This shows in particular that localization for single-particle quantum graphs holds under a weaker assumption on the random potential than previously known.

Sabri, Mostafa

2014-11-01

36

Multiparticle collision dynamics modeling of viscoelastic fluids.  

PubMed

In order to investigate the rheological properties of viscoelastic fluids by mesoscopic hydrodynamics methods, we develop a multiparticle collision (MPC) dynamics model for a fluid of harmonic dumbbells. The algorithm consists of alternating streaming and collision steps. The advantage of the harmonic interactions is that the integration of the equations of motion in the streaming step can be performed analytically. Therefore, the algorithm is computationally as efficient as the original MPC algorithm for Newtonian fluids. The collision step is the same as in the original MPC method. All particles are confined between two solid walls moving oppositely, so that both steady and oscillatory shear flows can be investigated. Attractive wall potentials are applied to obtain a nearly uniform density everywhere in the simulation box. We find that both in steady and oscillatory shear flows, a boundary layer develops near the wall, with a higher velocity gradient than in the bulk. The thickness of this layer is proportional to the average dumbbell size. We determine the zero-shear viscosities as a function of the spring constant of the dumbbells and the mean free path. For very high shear rates, a very weak "shear thickening" behavior is observed. Moreover, storage and loss moduli are calculated in oscillatory shear, which show that the viscoelastic properties at low and moderate frequencies are consistent with a Maxwell fluid behavior. We compare our results with a kinetic theory of dumbbells in solution, and generally find good agreement. PMID:18412477

Tao, Yu-Guo; Götze, Ingo O; Gompper, Gerhard

2008-04-14

37

Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations  

NASA Astrophysics Data System (ADS)

We present a new generic framework which enables exact and efficient evaluation of all multiparticle azimuthal correlations. The framework can be readily used along with a correction framework for systematic biases in anisotropic flow analyses owing to various detector inefficiencies. A new recursive algorithm has been developed for higher-order correlators for the cases where their direct implementation is not feasible. We propose and discuss new azimuthal observables for anisotropic flow analyses which can be measured for the first time with our new framework. The effect of finite detector granularity on multiparticle correlations is quantified and discussed in detail. We point out the existence of a systematic bias in traditional differential flow analyses which stems solely from the applied selection criteria on particles used in the analyses and is also present in the ideal case when only flow correlations are present. Finally, we extend the applicability of our generic framework to the case of differential multiparticle correlations.

Bilandzic, Ante; Christensen, Christian Holm; Gulbrandsen, Kristjan; Hansen, Alexander; Zhou, You

2014-06-01

38

Poisson solvers for self-consistent multi-particle simulations  

E-print Network

Self-consistent multi-particle simulation plays an important role in studying beam-beam effects and space charge effects in high-intensity beams. The Poisson equation has to be solved at each time-step based on the particle density distribution in the multi-particle simulation. In this paper, we review a number of numerical methods that can be used to solve the Poisson equation efficiently. The computational complexity of those numerical methods will be O(N log(N)) or O(N) instead of O(N2), where N is the total number of grid points used to solve the Poisson equation.

Qiang, J

2014-01-01

39

Laboratory-based micro-X-ray fluorescence setup using a von Hamos crystal spectrometer and a focused beam X-ray tube.  

PubMed

The high-resolution von Hamos bent crystal spectrometer of the University of Fribourg was upgraded with a focused X-ray beam source with the aim of performing micro-sized X-ray fluorescence (XRF) measurements in the laboratory. The focused X-ray beam source integrates a collimating optics mounted on a low-power micro-spot X-ray tube and a focusing polycapillary half-lens placed in front of the sample. The performances of the setup were probed in terms of spatial and energy resolution. In particular, the fluorescence intensity and energy resolution of the von Hamos spectrometer equipped with the novel micro-focused X-ray source and a standard high-power water-cooled X-ray tube were compared. The XRF analysis capability of the new setup was assessed by measuring the dopant distribution within the core of Er-doped SiO2 optical fibers. PMID:24784587

Kayser, Y; B?achucki, W; Dousse, J-Cl; Hoszowska, J; Neff, M; Romano, V

2014-04-01

40

Analytical techniques for retrieval of atmospheric composition with the quadrupole mass spectrometer of the Sample Analysis at Mars instrument suite on Mars Science Laboratory  

NASA Astrophysics Data System (ADS)

The Sample Analysis at Mars (SAM) instrument suite is the largest scientific payload on the Mars Science Laboratory (MSL) Curiosity rover, which landed in Mars' Gale Crater in August 2012. As a miniature geochemical laboratory, SAM is well-equipped to address multiple aspects of MSL's primary science goal, characterizing the potential past or present habitability of Gale Crater. Atmospheric measurements support this goal through compositional investigations relevant to martian climate evolution. SAM instruments include a quadrupole mass spectrometer, a tunable laser spectrometer, and a gas chromatograph that are used to analyze martian atmospheric gases as well as volatiles released by pyrolysis of solid surface materials (Mahaffy et al., 2012). This report presents analytical methods for retrieving the chemical and isotopic composition of Mars' atmosphere from measurements obtained with SAM's quadrupole mass spectrometer. It provides empirical calibration constants for computing volume mixing ratios of the most abundant atmospheric species and analytical functions to correct for instrument artifacts and to characterize measurement uncertainties. Finally, we discuss differences in volume mixing ratios of the martian atmosphere as determined by SAM (Mahaffy et al., 2013) and Viking (Owen et al., 1977; Oyama and Berdahl, 1977) from an analytical perspective. Although the focus of this paper is atmospheric observations, much of the material concerning corrections for instrumental effects also applies to reduction of data acquired with SAM from analysis of solid samples. The Sample Analysis at Mars (SAM) instrument measures the composition of the martian atmosphere. Rigorous calibration of SAM's mass spectrometer was performed with relevant gas mixtures. Calibration included derivation of a new model to correct for electron multiplier effects. Volume mixing ratios for Ar and N2 obtained with SAM differ from those obtained with Viking. Differences between SAM and Viking volume mixing ratios are under investigation.

B. Franz, Heather; G. Trainer, Melissa; H. Wong, Michael; L. K. Manning, Heidi; C. Stern, Jennifer; R. Mahaffy, Paul; K. Atreya, Sushil; Benna, Mehdi; G. Conrad, Pamela; N. Harpold, Dan; A. Leshin, Laurie; A. Malespin, Charles; P. McKay, Christopher; Thomas Nolan, J.; Raaen, Eric

2014-06-01

41

Analysis of Bromination of Ethylbenzene Using a 45 MHz NMR Spectrometer: An Undergraduate Organic Chemistry Laboratory Experiment  

ERIC Educational Resources Information Center

A 45 MHz benchtop NMR spectrometer is used to identify the structures and determine the amount of 1-bromoethylbenzene and 1,1-dibromoethylbenzene produced from free-radical bromination of ethylbenzene. The experiment is designed for nonchemistry majors, specifically B.S. Biology students, in a predominantly undergraduate institution with…

Isaac-Lam, Meden F.

2014-01-01

42

Non-monotonic quantum to classical transition in multiparticle interference  

E-print Network

We experimentally demonstrate the non-monotonic dependence of genuine many-particle interference signals on the particles' mutual distinguishability. Our theoretical analysis shows that such non-monotonicity is a generic feature of the quantum to classical transition in multiparticle correlation functions of more than two particles.

Young-Sik Ra; Malte C. Tichy; Hyang-Tag Lim; Osung Kwon; Florian Mintert; Andreas Buchleitner; Yoon-Ho Kim

2011-09-08

43

The successful implementation of a licensed data management interface between a Sunquest® laboratory information system and an AB SCIEX™ mass spectrometer  

PubMed Central

Background: Interfacing complex laboratory equipment to laboratory information systems (LIS) has become a more commonly encountered problem in clinical laboratories, especially for instruments that do not have an interface provided by the vendor. Liquid chromatography-tandem mass spectrometry is a great example of such complex equipment, and has become a frequent addition to clinical laboratories. As the testing volume on such instruments can be significant, manual data entry will also be considerable and the potential for concomitant transcription errors arises. Due to this potential issue, our aim was to interface an AB SCIEX™ mass spectrometer to our Sunquest® LIS. Materials and Methods: We licensed software for the data management interface from the University of Pittsburgh, but extended this work as follows: The interface was designed so that it would accept a text file exported from the AB SCIEX™ × 5500 QTrap® mass spectrometer, pre-process the file (using newly written code) into the correct format and upload it into Sunquest® via file transfer protocol. Results: The licensed software handled the majority of the interface tasks with the exception of converting the output from the Analyst® software to the required Sunquest® import format. This required writing of a “pre-processor” by one of the authors which was easily integrated with the supplied software. Conclusions: We successfully implemented the data management interface licensed from the University of Pittsburgh. Given the coding that was required to write the pre-processor, and alterations to the source code that were performed when debugging the software, we would suggest that before a laboratory decides to implement such an interface, it would be necessary to have a competent computer programmer available. PMID:23599901

French, Deborah; Terrazas, Enrique

2013-01-01

44

Multiparticle Production in Particle and Nuclear Collisions. II  

NASA Astrophysics Data System (ADS)

The dominant phenomenon in high-energy particle and nuclear collisions is multiple production of hadrons. This had attracted may physicists in 1950's, the period of the first remarkable development of particle physics. Multiparticle production was already observed in cosmic-ray experiments and expected to be explained as a natural consequence of the strong Yukawa interaction. Statistical and hydrodynamical models were then proposed by Fermi, Landau and others. These theories are still surviving even today as a prototype of modern ``fire-ball'' models. After twenty years, a golden age came in this field of physics. It was closely related to the rapid development of accelerator facilities, especially, the invention of colliding-beam machines which yield high enough center-of-mass energies for studying reactions with high multiplicity. Abundant data on final states of multiparticle production have been accumulated mainly by measuring inclusive cross sections and multiplicity distributions. In super high-energy bar{p}p collisions at CERN S pmacr pS Collider, we confirmed the increasing total cross section and found violations of many scaling laws which seemed to be valid at lower energies. This suggests a fundamental complexity of the multiparticle phenomena and offers new materials for further development of theoretical investigations. In the same period, studies of constituent (quark-gluon) structure of hadrons had also been develped. Nowadays, pysicists believe that the quantum chromodynamics (QCD) is the fundamental law of the hadronic world. Multiparticle dynamics should also be described by QCD. We have known that the hard-jet phenomena are well explained by the perturbative QCD. On the other hand, the soft processes are considered to be non-perturbative phenomena which have not yet been solved, and related to the mechanism of the color confinement and formation of strings or color-flux tubes. Multiparticle production would offer useful information on this outstanding problem. Experiments on lepton-induced jet-phenomenology in TRISTAN (KEK) have started already and further development will be expected also at LEP (CERN), SLC (Stanford) and others. For the hadronic and nuclear reactions, we would encounter many new exciting physics, in near future, at Tevatron (Fermi Lab.), the dream facility SSC (under planning), RHIC (Brookhaven) and others. Experiments on proton-antiproton collisions at TeV energies and on relativistic heavy-ion collisions have already started. The latter investigates the possible phase transition of hadronic matter into quark-gluon plasma. Experimental confirmation of this phase transition would give big effects on many branches of physics. As a whole, the future of physics on multiparticle production will be quite promising. Therefore, we especially expect a fresh power by many young theorists in this field of physics. Multiparticle dynamics is related to many branches of particle and nuclear physics, and it utilizes variety of methods and models. It well be therefore a rather troublesome task to grasp the present status of this widely extended physics as a whole. There are many excellent review papers. However, they are concerned with rather restricted topics with current interest. At this situation, it will be useful if there is a comprehensive review which covers a whole domain of multiparticle dynamics. This is the point of the author's motivation for writing the present review article. We hope that this article will contribute to a partial resolution of the above mentioned situation and in particular, young theorists then become more interested in this field. In writing the present article, the authors have put their attention to the following points: It should cover most of important topics of multiparticle dynamics at high energies, including e^+e^- annihilation, lepton-hadron and nuclear reactions; it should be described on the basis of modern viewpoint, especially, of QCD as far as we can; it should also cover good phenomenological models or pictures even though their theoretical foundatio

Kanki, T.; Kinoshita, K.; Sumiyoshi, H.; Takagi, F.

45

Multiparticle Production in Particle and Nuclear Collisions. I  

NASA Astrophysics Data System (ADS)

The dominant phenomenon in high-energy particle and nuclear collisions is multiple production of hadrons. This had attracted may physicists in 1950's, the period of the first remarkable development of particle physics. Multiparticle production was already observed in cosmic-ray experiments and expected to be explained as a natural consequence of the strong Yukawa interaction. Statistical and hydrodynamical models were then proposed by Fermi, Landau and others. These theories are still surviving even today as a prototype of modern ``fire-ball'' models. After twenty years, a golden age came in this field of physics. It was closely related to the rapid development of accelerator facilities, especially, the invention of colliding-beam machines which yield high enough center-of-mass energies for studying reactions with high multiplicity. Abundant data on final states of multiparticle production have been accumulated mainly by measuring inclusive cross sections and multiplicity distributions. In super high-energy bar{p}p collisions at CERN S pmacr pS Collider, we confirmed the increasing total cross section and found violations of many scaling laws which seemed to be valid at lower energies. This suggests a fundamental complexity of the multiparticle phenomena and offers new materials for further development of theoretical investigations. In the same period, studies of constituent (quark-gluon) structure of hadrons had also been develped. Nowadays, pysicists believe that the quantum chromodynamics (QCD) is the fundamental law of the hadronic world. Multiparticle dynamics should also be described by QCD. We have known that the hard-jet phenomena are well explained by the perturbative QCD. On the other hand, the soft processes are considered to be non-perturbative phenomena which have not yet been solved, and related to the mechanism of the color confinement and formation of strings or color-flux tubes. Multiparticle production would offer useful information on this outstanding problem. Experiments on lepton-induced jet-phenomenology in TRISTAN (KEK) have started already and further development will be expected also at LEP (CERN), SLC (Stanford) and others. For the hadronic and nuclear reactions, we would encounter many new exciting physics, in near future, at Tevatron (Fermi Lab.), the dream facility SSC (under planning), RHIC (Brookhaven) and others. Experiments on proton-antiproton collisions at TeV energies and on relativistic heavy-ion collisions have already started. The latter investigates the possible phase transition of hadronic matter into quark-gluon plasma. Experimental confirmation of this phase transition would give big effects on many branches of physics. As a whole, the future of physics on multiparticle production will be quite promising. Therefore, we especially expect a fresh power by many young theorists in this field of physics. Multiparticle dynamics is related to many branches of particle and nuclear physics, and it utilizes variety of methods and models. It well be therefore a rather troublesome task to grasp the present status of this widely extended physics as a whole. There are many excellent review papers. However, they are concerned with rather restricted topics with current interest. At this situation, it will be useful if there is a comprehensive review which covers a whole domain of multiparticle dynamics. This is the point of the author's motivation for writing the present review article. We hope that this article will contribute to a partial resolution of the above mentioned situation and in particular, young theorists then become more interested in this field. In writing the present article, the authors have put their attention to the following points: It should cover most of important topics of multiparticle dynamics at high energies, including e^+e^- annihilation, lepton-hadron and nuclear reactions; it should be described on the basis of modern viewpoint, especially, of QCD as far as we can; it should also cover good phenomenological models or pictures even though their theoretical foundatio

Kanki, T.; Kinoshita, K.; Sumiyoshi, H.; Takagi, F.

46

Spherical grating spectrometers  

NASA Astrophysics Data System (ADS)

We describe designs for spectrometers employing convex dispersers. The Offner spectrometer was the first such instrument; it has almost exclusively been employed on satellite platforms, and has had little impact on ground-based instruments. We have learned how to fabricate curved Volume Phase Holographic (VPH) gratings and, in contrast to the planar gratings of traditional spectrometers, describe how such devices can be used in optical/infrared spectrometers designed specifically for curved diffraction gratings. Volume Phase Holographic gratings are highly efficient compared to conventional surface relief gratings; they have become the disperser of choice in optical / NIR spectrometers. The advantage of spectrometers with curved VPH dispersers is the very small number of optical elements used (the simplest comprising a grating and a spherical mirror), as well as illumination of mirrors off axis, resulting in greater efficiency and reduction in size. We describe a "Half Offner" spectrometer, an even simpler version of the Offner spectrometer. We present an entirely novel design, the Spherical Transmission Grating Spectrometer (STGS), and discuss exemplary applications, including a design for a double-beam spectrometer without any requirement for a dichroic. This paradigm change in spectrometer design offers an alternative to all-refractive astronomical spectrometer designs, using expensive, fragile lens elements fabricated from CaF2 or even more exotic materials. The unobscured mirror layout avoids a major drawback of the previous generation of catadioptric spectrometer designs. We describe laboratory measurements of the efficiency and image quality of a curved VPH grating in a STGS design, demonstrating, simultaneously, efficiency comparable to planar VPH gratings along with good image quality. The stage is now set for construction of a prototype instrument with impressive performance.

O'Donoghue, Darragh; Clemens, J. Christopher

2014-07-01

47

Efficient Anderson localization bounds for large multi-particle systems  

E-print Network

We study multi-particle interactive quantum disordered systems on a polynomially-growing countable connected graph (Z,E). The novelty is to give localization bounds uniform in finite or infinite volumes (subgraphs) in Z^N as well as for the whole of Z^N. Such bounds are proved here by means of a comprehensive fixed-energy multi-particle multi-scale analysis. Another feature of the paper is that we consider -- for the first time in the literature -- an infinite-range (although fast-decaying) interaction between particles. For the models under consideration we establish (1) exponential spectral localization, and (2) strong dynamical localization with sub-exponential rate of decay of the eigenfunction correlators.

Victor Chulaevsky; Yuri Suhov

2014-04-15

48

Multiparticle dynamics in the E-phi tracking code ESME  

SciTech Connect

ESME has developed over a twenty year period from its origins as a program for modeling rf gymnastics to a rather general facility for that fraction of beam dynamics of synchrotrons and storage rings which can be properly treated in the two dimensional longitudinal phase space. The features of this program which serve particularly for multiparticle calculations are described, some underling principles are noted, and illustrative results are given.

James A. MacLachlan

2002-06-21

49

Multiparticle Dynamics in the E-? Tracking Code ESME  

NASA Astrophysics Data System (ADS)

ESME has developed over a twenty year period from its origins as a program for modeling rf gymnastics to a rather general facility for that fraction of beam dynamics of synchrotrons and storage rings which can be properly treated in the two dimensional longitudinal phase space. The features of this program which serve particularly for multiparticle calculations are described, some uderlying principles are noted, and illustrative results are given.

MacLachlan, James A.

2002-12-01

50

Multiparticle SYM equations of motion and pure spinor BRST blocks  

NASA Astrophysics Data System (ADS)

In this paper a multiparticle generalization of linearized ten-dimensional super Yang-Mills superfields is proposed. Their equations of motions are shown to take the same form as in the single-particle case, supplemented by contact terms. A recursive construction of these superfields is inspired by the iterated OPEs among massless vertex operators in the pure spinor formalism. An enlarged set of BRST-covariant pure spinor blocks is then defined in a streamlined fashion and combined to multiparticle vertex operators. The latter can be used to universally describe tree-level subdiagrams in the perturbative open and closed superstring, regardless of the loop order. The inherent symmetries of the multiparticle superfields are reproduced by structure constants of the gauge group, hinting a natural appearance of the BCJ-duality between color and kinematics in the fundamentals of super Yang-Mills theory. We present one-loop applications where known scalar cohomology objects are systematically recomputed and a novel vector cohomology particularly relevant to the closed string is constructed for arbitrary multiplicity.

Mafra, Carlos R.; Schlotterer, Oliver

2014-07-01

51

Monolithic spectrometer  

DOEpatents

A monolithic spectrometer is disclosed for use in spectroscopy. The spectrometer is a single body of translucent material with positioned surfaces for the transmission, reflection and spectral analysis of light rays.

Rajic, Slobodan (Knoxville, TN); Egert, Charles M. (Oak Ridge, TN); Kahl, William K. (Knoxville, TN); Snyder, Jr., William B. (Knoxville, TN); Evans, III, Boyd M. (Oak Ridge, TN); Marlar, Troy A. (Knoxville, TN); Cunningham, Joseph P. (Oak Ridge, TN)

1998-01-01

52

Simulation of background reduction and Compton depression in low-background HPGe spectrometer at a surface laboratory  

E-print Network

High-purity germanium detectors are well suited to analysis the radioactivity of samples. In order to reduce the environmental background, low-activity lead and oxygen free copper are installed outside of the probe to shield gammas, outmost is a plastic scintillator to veto the cosmic rays, and an anti-Compton detector can improve the Peak-to-Compton ratio. Using the GEANT4 tools and taking into account a detailed description of the detector, we optimize the sizes of the detectors to reach the design indexes. A group of experimental data from a HPGe spectrometer in using were used to compare with the simulation. As to new HPGe Detector simulation, considering the different thickness of BGO crystals and anti-coincidence efficiency, the simulation results show that the optimal thickness is 5.5cm, and the Peak-to-Compton ratio of 40K is raised to 1000 when the anti-coincidence efficiency is 0.85. As the background simulation, 15 cm oxygen-free copper plus 10 cm lead can reduce the environmental gamma rays to 0.0...

Niu, ShunLi; Wu, ZhenZhong; Xie, YuGuang; Yu, BoXiang; Wang, ZhiGang; Fang, Jian; Sun, XiLei; Sun, LiJun; Liu, YingBiao; Gao, Long; Zhang, Xuan; Zhao, Hang; Zhou, Li; Lv, JunGuang; Hu, Tao

2014-01-01

53

Simulation of background reduction and Compton depression in low-background HPGe spectrometer at a surface laboratory  

E-print Network

High-purity germanium detectors are well suited to analysis the radioactivity of samples. In order to reduce the environmental background, low-activity lead and oxygen free copper are installed outside of the probe to shield gammas, outmost is a plastic scintillator to veto the cosmic rays, and an anti-Compton detector can improve the Peak-to-Compton ratio. Using the GEANT4 tools and taking into account a detailed description of the detector, we optimize the sizes of the detectors to reach the design indexes. A group of experimental data from a HPGe spectrometer in using were used to compare with the simulation. As to new HPGe Detector simulation, considering the different thickness of BGO crystals and anti-coincidence efficiency, the simulation results show that the optimal thickness is 5.5cm, and the Peak-to-Compton ratio of 40K is raised to 1000 when the anti-coincidence efficiency is 0.85. As the background simulation, 15 cm oxygen-free copper plus 10 cm lead can reduce the environmental gamma rays to 0.0024 cps/100 cm3 Ge (50keV~2.8MeV), which is about 10-5 of environmental background.

ShunLi Niu; Xiao Cai; ZhenZhong Wu; YuGuang Xie; BoXiang Yu; ZhiGang Wang; Jian Fang; XiLei Sun; LiJun Sun; YingBiao Liu; Long Gao; Xuan Zhang; Hang Zhao; Li Zhou; JunGuang Lv; Tao Hu

2014-10-16

54

A comprehensive approach to studies of porous media (rocks) using a laboratory spectrometer and logging tool with similar operating characteristics.  

PubMed

The value of NMR spectrometry as a way to understand the porosity and permeability of rocks is well documented. Other more esoteric parameters, such as restrictive diffusion, grain size distribution, and fluid viscosities have received less notice but are also available from the NMR measurements as laboratory studies have shown. With the introduction of gradient field spin-echo NMR well logging, all of these parameters become available in a routine way. To accomplish the goal of having a well log that systematically provides this complete array of NMR answers requires consideration of the measurement principles that can be applied. Magnetic field strength and the relative merits of gradient versus homogeneous magnetic fields methods, as well as the limitations presented by the well bore and wireline systems are a few examples of the factors that must be considered. As important, to the end user, is being provided a definitive link between the well logging response and laboratory measurements on rock samples that prove the meaning of the log. This is ideally accomplished when the laboratory measurements are attained using an apparatus that has the same operating characteristics as the log. For most well logging systems this is seldom accomplished to the degree desired, but it is readily attainable with NMR technologies. The consideration of these factors and the features and benefits of having such a capability are the focus of this paper. The technical attributes of such a comprehensive system, the Numar Corporation's "MRIL" and "CoreSpec1000", plus actual examples of laboratory and well bore data are provided to show the value of such an approach. PMID:8170320

Taicher, Z; Coates, G; Gitartz, Y; Berman, L

1994-01-01

55

N=4 Multi-Particle Mechanics, WDVV Equation and Roots  

NASA Astrophysics Data System (ADS)

We review the relation of N=4 superconformal multi-particle models on the real line to the WDVV equation and an associated linear equation for two prepotentials, F and U. The superspace treatment gives another variant of the integrability problem, which we also reformulate as a search for closed flat Yang-Mills connections. Three- and four-particle solutions are presented. The covector ansatz turns the WDVV equation into an algebraic condition, for which we give a formulation in terms of partial isometries. Three ideas for classifying WDVV solutions are developed: ortho-polytopes, hypergraphs, and matroids. Various examples and counterexamples are displayed.

Lechtenfeld, Olaf; Schwerdtfeger, Konrad; Thürigen, Johannes

2011-03-01

56

The target asymmetry P_z in {gamma}p-->p{pi}^+{pi}^- with the CLAS spectrometer at Jefferson Laboratory  

SciTech Connect

The study of baryon resonances provides a deeper understanding of the strong interaction because the dynamics and relevant degrees of freedom hidden within them are reflected by the properties of the excited states of baryons. Higher-lying excited states at and above 1.9 GeV/c{sup 2} are generally predicted to have strong couplings to the {pi}{pi}N final states via {pi}{Delta} or {rho}N intermediate states. Double-pion photoproduction is therefore important to find and investigate properties of highmass resonances. The CLAS g9a (FROST) experiment, as part of the N* spectroscopy program at Jefferson Laboratory (JLab), has accumulated photoproduction data using linearly- and circularly-polarized photons incident on a longitudinally-polarized butanol target in the photon energy range 0.3 to 2.4 GeV. In this contribution, the extraction of the target asymmetry for the reaction {gamma}p {yields} p{pi}{sup +}{pi}{sup -} will be described and preliminary results will be presented.

Sungkyun Park, CLAS Collaboration

2012-04-01

57

Measurement of the Helicity Difference in gamma-->p-->-->ppi+pi? with the CLAS Spectrometer at Jefferson Laboratory  

SciTech Connect

The study of the properties of baryon resonances can provide us with hints to help us understand the structure of non-perturbative QCD and the effect of a particular resonance on polarization observables. The investigation of double-pion photoproduction data is needed to discover higher-lying states and their properties at and above W [approximate] 1.8 GeV. Therefore, the analysis of the helicity difference in gp gammap-->ppi+pi? will help us in our understanding of QCD.The CLAS g9a (FROST) experiment, as part of the N* spectroscopy program at Jefferson Laboratory, has accumulated photoproduction data using linearly and circularly polarized photons incident on a longitudinally-polarized butanol target in the photon energy range 0.3 to 2.4 GeV. The FROST experiment provides an important step toward a “complete” experiment for the reaction gammaN-->KY.In this contribution, the method to calculate the helicity difference for the reaction gammap-->ppi+pi? will be described and preliminary results will be discussed.

Sungkyun Park

2010-08-01

58

Multiparticle Higgs and vector boson amplitudes at threshold  

NASA Astrophysics Data System (ADS)

In a spontaneously broken gauge theory we consider (sub)-processes in which one virtual intermediate state (it can be a Higgs or a gauge field) produces many on-shell Higgses and massive vector bosons. In the kinematic regime where all final states are produced on their mass threshold, we show how to compute iteratively all tree-level amplitudes involving an arbitrary number n of Higgs bosons and m of longitudinal vector bosons in the final state, and list the amplitudes coefficients for up to n=32 and m=32. Wefindthattheseamplitudesexhibitfactorialgrowthnotonlyinthenumberof scalar fields, but also in the number of longitudinal gauge fields, ~ n! m!. This growth is not expected to disappear at loop-level in the fixed-order perturbation theory. We conclude that at energies accessible at the next generation of hadron colliders, such as the 50-100 TeV FCC, where is sufficient to produce ?1 /? W of W, Z and H, perturbation theory breaks down when applied to the multiparticle electroweak production, at least near the kinematic multiparticle mass threshold where the electroweak gauge-Higgs sector becomes strongly coupled.

Khoze, Valentin V.

2014-07-01

59

CD Spectrometer  

NSDL National Science Digital Library

In this activity, learners use a compact disc to make a spectrometer, an instrument used to measure properties of light. Learners use their spectrometer to view a continuous spectrum produced by fluorescent light. This lesson guide also includes instructions on how to build a spectroscope from a cereal box.

Doherty, Paul

2000-01-01

60

Comparison of laboratory calibrations of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) at the beginning and end of the first flight season  

NASA Technical Reports Server (NTRS)

Spectral and radiometric calibrations of AVIRIS are described together with changes in instrument characteristics that occurred during the flight season. These changes include detachment of the optical fibers to two of the four AVIRIS spectrometers, degradation in the optical alignment of the spectrometers due to thermally induced and mechanical warpage, and breakage of a thermal blocking filter in one of the spectrometers. Means of improving the instrument are discussed.

Vane, Gregg; Chrien, Thomas G.; Reimer, John H.; Green, Robert O.; Conel, James E.

1988-01-01

61

Multiparticle entanglement in graph-diagonal states: Necessary and sufficient conditions for four qubits  

SciTech Connect

The characterization of genuine multiparticle entanglement is important for entanglement theory as well as experimental studies related to quantum-information theory. Here, we completely characterize genuine multiparticle entanglement for four-qubit states diagonal in the cluster-state basis. In addition, we give a complete characterization of multiparticle entanglement for all five-qubit graph states mixed with white noise, for states diagonal in the basis corresponding to the five-qubit Y-shaped graph, and for a family of graph states with an arbitrary number of qubits.

Guehne, Otfried [Naturwissenschaftlich-Technische Fakultaet, Universitaet Siegen, Walter-Flex-Strasse 3, D-57068 Siegen (Germany); Jungnitsch, Bastian; Moroder, Tobias [Institut fuer Quantenoptik und Quanteninformation, Oesterreichische Akademie der Wissenschaften, Technikerstrasse 21A, A-6020 Innsbruck (Austria); Weinstein, Yaakov S. [Quantum Information Science Group, MITRE, 260 Industrial Way West, Eatontown, New Jersey 07724 (United States)

2011-11-15

62

Simulating strongly correlated multiparticle systems in a truncated Hilbert space  

SciTech Connect

Representing a strongly interacting multiparticle wave function in a finite product basis leads to errors. Simple rescaling of the contact interaction can preserve the low-lying energy spectrum and long-wavelength structure of wave functions in one-dimensional systems and thus correct for the basis set truncation error. The analytic form of the rescaling is found for a two-particle system where the rescaling is exact. A detailed comparison between finite Hilbert space calculations and exact results for up to five particles show that rescaling can significantly improve the accuracy of numerical calculations in various external potentials. In addition to ground-state energies, the low-lying excitation spectrum, density profile, and correlation functions are studied. The results give a promising outlook for numerical simulations of trapped ultracold atoms.

Ernst, Thomas; Hallwood, David W.; Gulliksen, Jake; Brand, Joachim [New Zealand Institute for Advanced Study and Centre for Theoretical Chemistry and Physics, Massey University, Private Bag 102904, North Shore, Auckland 0745 (New Zealand); Meyer, Hans-Dieter [Theoretische Chemie, Physikalisch-Chemisches Institut, Universitaet Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

2011-08-15

63

Backtracking of colloids: a multiparticle collision dynamics simulation study  

E-print Network

The role of sound in the dynamics of mesoscale systems is typically neglected, since frequently the associated time scales are much smaller than all the other time scales of interest. However, for sufficiently small objects embedded in a solvent with a sufficiently small sound velocity, sound can play a crucial role. In particular, behavior resembling viscoelasticity has been theoretically predicted for non-viscoelastic fluids. This effect is due to the interference of the propagation of sound waves caused by the solute particle's motion and hydrodynamic vortex formation. We demonstrate this effect, known as backtracking, in computer simulations employing the method of multiparticle collision dynamics. We systematically study the influence of sound on the dynamics of the solute particle, and find that it disappears in the long-time limit. Thus, we confirm that sonic effects at the single-particle level can be neglected at sufficiently long times.

M. Belushkin; R. G. Winkler; G. Foffi

2011-08-26

64

The LASS (Larger Aperture Superconducting Solenoid) spectrometer  

SciTech Connect

LASS is the acronym for the Large Aperture Superconducting Solenoid spectrometer which is located in an rf-separated hadron beam at the Stanford Linear Accelerator Center. This spectrometer was constructed in order to perform high statistics studies of multiparticle final states produced in hadron reactions. Such reactions are frequently characterized by events having complicated topologies and/or relatively high particle multiplicity. Their detailed study requires a spectrometer which can provide good resolution in momentum and position over almost the entire solid angle subtended by the production point. In addition, good final state particle identification must be available so that separation of the many kinematically-overlapping final states can be achieved. Precise analyses of the individual reaction channels require high statistics, so that the spectrometer must be capable of high data-taking rates in order that such samples can be acquired in a reasonable running time. Finally, the spectrometer must be complemented by a sophisticated off-line analysis package which efficiently finds tracks, recognizes and fits event topologies and correctly associates the available particle identification information. This, together with complicated programs which perform specific analysis tasks such as partial wave analysis, requires a great deal of software effort allied to a very large computing capacity. This paper describes the construction and performance of the LASS spectrometer, which is an attempt to realize the features just discussed. The configuration of the spectrometer corresponds to the data-taking on K and K interactions in hydrogen at 11 GeV/c which took place in 1981 and 1982. This constitutes a major upgrade of the configuration used to acquire lower statistics data on 11 GeV/c K p interactions during 1977 and 1978, which is also described briefly.

Aston, D.; Awaji, N.; Barnett, B.; Bienz, T.; Bierce, R.; Bird, F.; Bird, L.; Blockus, D.; Carnegie, R.K.; Chien, C.Y.

1986-04-01

65

Advanced Mass Spectrometers for Hydrogen Isotope Analyses  

Microsoft Academic Search

This report is a summary of the results of a joint Savannah River Laboratory (SRL) - Savannah River Plant (SRP) ''Hydrogen Isotope Mass Spectrometer Evaluation Program''. The program was undertaken to evaluate two prototype hydrogen isotope mass spectrometers and obtain sufficient data to permit SRP personnel to specify the mass spectrometers to replace obsolete instruments.

Chastagner

2001-01-01

66

Multiparticle Simulation of Intrabeam Scattering for SuperB  

SciTech Connect

In this communication we present the structure of a multiparticle tracking code to investigate intrabeam scattering effects in low emittance colliders. Simulation results obtained with particular reference to the SuperB parameters are compared with those of conventional IBS theories.and with those of a novel semi-analythical model able to predict IBS effect in terms of emittance growths. Intrabeam scattering (IBS) is associated with multiple small angle scattering events leading to emittance growth. In most electron storage rings, the growth rates arising from IBS are usually much longer than damping times due to synchrotron radiation, and its effect is not observed. However, IBS growth rates increase with bunch charge density, and for machines such as SuperB, that operate with high bunch charges and very low emittances, the IBS growth rates can be large enough to observe significant emittance increase. Several formalisms have been developed for calculating IBS growth rates in storage rings, notably those by Piwinski, Bjorken and Mtingwa, and their high energy approximations. Calculations show that IBS should be manageable in both SuperB rings. However these analytical models, based on Gaussian bunch distributions, cannot investigate some interesting aspects of IBS such as its impact during the damping process and its effect on the beam distribution. We developed a multiparticle tracking code, based on the Zenkevich-Bolshakov algorithm, to investigate these effects. In this communication we present the structure of the code and some simulation results obtained with particular reference to the SuperB parameters. Simulation results are compared with those of conventional IBS theories.

Biagini, M.; Boscolo, M.; Demma, T.; /Frascati; Chao, A.W.; Bane, K.L.F.; Pivi, M.T.F.; /SLAC

2012-04-27

67

Bootstrap multiscale analysis and localization for multi-particle continuous Anderson Hamiltonians  

E-print Network

We extend the bootstrap multiscale analysis developed by Germinet and Klein to the multi-particle continuous Anderson Hamiltonian, obtaining Anderson localization with finite multiplicity of eigenvalues, decay of eigenfunction correlations, and a strong form of dynamical localization.

Abel Klein; Son Nguyen

2013-11-17

68

Exploring the Capabilities of the Anti-Coincidence Shield of the International Gamma-Ray Astrophysics Laboratory (INTEGRAL) Spectrometer to Study Solar Flares  

NASA Astrophysics Data System (ADS)

The International Gamma-Ray Astrophysics Laboratory (INTEGRAL) is a European Space Agency hard X-ray/ ?-ray observatory for astrophysics, covering photon energies from 15 keV to 10 MeV. It was launched in 2002, and since then the Bismuth Germanate (BGO) detectors of the Anti-Coincidence Shield (ACS) of the Spectrometer on INTEGRAL (SPI) have detected many hard X-ray (HXR) bursts from the Sun, producing light curves at photon energies above ? 100 keV. The spacecraft has a highly elliptical orbit, providing long uninterrupted observing (about 90 % of the orbital period) with nearly constant background due to the shorter time needed to cross Earth's radiation belts. However, because of technical constraints, INTEGRAL cannot be pointed at the Sun, and high-energy solar photons are always detected in nonstandard observation conditions. To make the data useable for solar studies, we have undertaken a major effort to specify the observing conditions through Monte Carlo simulations of the response of ACS for several selected flares. We checked the performance of the model employed for the Monte Carlo simulations using the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations for the same sample of solar flares. We conclude that although INTEGRAL was not designed to perform solar observations, ACS is a useful instrument for solar-flare research. In particular, its relatively large effective area allows determining good-quality HXR/ ?-ray light curves for X- and M-class solar flares and, in some cases, probably also for C-class flares.

Rodríguez-Gasén, R.; Kiener, J.; Tatischeff, V.; Vilmer, N.; Hamadache, C.; Klein, K.-L.

2014-05-01

69

Efficient localization bounds in a continuous multi-particle Anderson model with long-range interaction  

E-print Network

We establish strong dynamical localization for a class of multi-particle Anderson models in a Euclidean space with an alloy-type random potential and a sub-exponentially decaying interaction of infinite range. For the first time in the mathematical literature, the uniform decay bounds on the eigenfunction correlators at low energies are proved, in the multi-particle continuous configuration space, in the norm-distance and not in the Hausdorff pseudo-metric.

Victor Chulaevsky

2014-07-17

70

On Statistical Mechanics Developments of Clan Concept in Multiparticle Production  

E-print Network

Clan concept has been introduced in multiparticle dynamics in order to interpret the wide occurrence of negative binomial (NB) regularity in n-charged particle multiplicity distributions (MDs) in various high energy collisions. The centrality of clan concept led to the attempt to justify its occurrence within a statistical model of clan formation and evolution. In this framework all thermodynamical potentials have been explicitly calculated in terms of NB parameters. Interestingly it was found that NB parameter k corresponds to the one particle canonical partition function. The goal of this paper is to explore a possible temperature and volume dependence of parameter k in various classes of events in high energy hadron-hadron collisions. It is shown that the existence of a phase transition at parton level from the ideal clan gas associated to the semihard component with k>1 to the ideal clan gas of the hard component with k<1 implies a discontinuity in the average number of particles at hadron level.

M. Brambilla; A. Giovannini; R. Ugoccioni

2006-05-24

71

Multi-particle collision dynamics modeling of viscoelastic fluids  

E-print Network

In order to investigate the rheological properties of viscoelastic fluids by mesoscopic hydrodynamics methods, we develop a multi-particle collision dynamics (MPC) model for a fluid of harmonic dumbbells. The algorithm consists of alternating streaming and collision steps. The advantage of the harmonic interactions is that the integration of the equations of motion in the streaming step can be performed analytically. Therefore, the algorithm is computationally as efficient as the original MPC algorithm for Newtonian fluids. The collision step is the same as in the original MPC method. All particles are confined between two solid walls moving oppositely, so that both steady and oscillatory shear flows can be investigated. Attractive wall potentials are applied to obtain a nearly uniform density everywhere in the simulation box. We find that both in steady and oscillatory shear flow, a boundary layer develops near the wall, with a higher velocity gradient than in the bulk. The thickness of this layer is proportional to the average dumbbell size. We determine the zero-shear viscosities as a function of the spring constant of the dumbbells and the mean free path. For very high shear rates, a very weak ``shear thickening'' behavior is observed. Moreover, storage and loss moduli are calculated in oscillatory shear, which show that the viscoelastic properties at low and moderate frequencies are consistent with a Maxwell fluid behavior. We compare our results with a kinetic theory of dumbbells in solution, and generally find good agreement.

Yu-Guo Tao; Ingo O. Goetze; Gerhard Gompper

2008-02-15

72

Simulation of Pressure-Driven Flows in Nanochannels Using Multiparticle Collision Riyad Chetram Raghu and Jeremy Schofield*  

E-print Network

Simulation of Pressure-Driven Flows in Nanochannels Using Multiparticle Collision Dynamics Riyad ReceiVed: September 14, 2010 A multiparticle collision dynamics algorithm is presented to simulate gas of inlet and outlet regions of the simulated system and the boundary conditions that are appropriate

Schofield, Jeremy

73

Multi-particle assembled porous nanostructured MgO: its application in fluoride removal  

NASA Astrophysics Data System (ADS)

In this article, a simple and economical route based on ethylene glycol mediated process was developed to synthesize one-dimensional (1D) multiparticle assembled nanostructured MgO using magnesium acetate and urea as reactants. Porous multiparticle chain-like MgO has been synthesized by the calcination of a solvothermally derived single nanostructured precursor. The prepared products were characterized by an x-ray diffraction (XRD) pattern, thermogravimetry, scanning/transmission electron microscopy (SEM/TEM) and N2 adsorption (BET). As a proof of concept, the porous multiparticle chain-like MgO has been applied in a water treatment for isolated and rural communities, and it has exhibited an excellent adsorption capability to remove fluoride in waste water. In addition, this method could be generalized to prepare other 1D nanostructures with great potential for various attractive applications.

Gangaiah, Vijayakumar; Siddaramanna, Ashoka; Thimanna Chandrappa, Gujjarahalli

2014-12-01

74

Grille spectrometer (grille)  

NASA Technical Reports Server (NTRS)

The Grille spectrometer was designed and flown on Spaceklab 1 by two organizations: The Office National d'Etudes et de Recherches Aerospatiales in France and the Belgian Institute for Space Aeronomy in Belgium. Its purpose is to study, on a global scale, atmospheric parameters between 15 and 150 km altitude. The investigation uses high-resolution (better than 0.1/cm) spectroscopic observations of the earth's limb in the wavelength range characteristic of the vibrational-rotational lines of the relevant atmospheric constituents. Characteristics and proposed modifications of the grille spectrometer are described. This instrument will be part of the atmospheric science research payload flown on the Atmospheric Laboratory for Applications and Science (ATLAS 1) NASA mission planned for late 1990.

Ackerman, M.; Besson, J.

1988-01-01

75

Program for preparing output data from a flow injection spectrometer for entry into AnaLis data base of the Analytical Chemistry Division, Oak Ridge National Laboratory  

SciTech Connect

The Analytical Chemistry Division (ACD) is attempting to improve the quality of data taken from instruments, recorded, and stored in its data base. One avenue for realizing this goal is to reduce the manipulation of data by hand operations. This report describes the design and implementation of a program, FIS-PARSE, that processes output from Lachat, Inc., flow injection optical spectrometer(FIS) and prepares it for storage in the Analytical Chemistry Division's data base, AnaLis; therefore, provision is made for transmittal of both raw data and selected results to archives. It is necessary to review the data before transmitting them to the data base; therefore, direct transfer of results from the computer used to operate the spectrometer was not selected as the method of choice.

Mueller, T.R.

1990-05-01

76

Detection of massive multi-particle beams by two-particle ionization  

E-print Network

Multi-photon absorption is a well-known phenomenon. With atom lasers a similar process could take place for massive particles, the ionization of an atom or molecule by the successive interaction with various particles. This process would lead to multi-particle detection events for incident multi-particle beams. We show that two-particle detections would introduce a correction (proportional to the fourth power of the wavefunction modulus) to the usual one-particle detection probability (only proportional to the second power).

Pedro Sancho

2007-07-15

77

Nuclear k_T in d+Au Collisions from Multiparticle Jet Reconstruction at STAR  

E-print Network

This paper presents the most recent nuclear k_T measurements from STAR derived from multiparticle jet reconstruction of d+Au and p+p collisions at sqrt(s)=200 GeV. Since jets reconstructed from multiple particles are relatively free of fragmentation biases, nuclear k_T can be measured with greater certainty in this way than with traditional di-hadron correlations. Multi-particle jet reconstruction can also be used for a direct measurement of the fragmentation function.

Thomas Henry

2005-11-01

78

Digital Spectrometers for Interplanetary Science Missions  

NASA Technical Reports Server (NTRS)

A fully digital polyphase spectrometer recently developed by the University of California Berkeley Wireless Research Center in conjunction with the Jet Propulsion Laboratory provides a low mass, power, and cost implementation of a spectrum channelizer for submillimeter spectrometers for future missions to the Inner and Outer Solar System. The digital polyphase filter bank spectrometer (PFB) offers broad bandwidth with high spectral resolution, minimal channel-to-channel overlap, and high out-of-band rejection.

Jarnot, Robert F.; Padmanabhan, Sharmila; Raffanti, Richard; Richards, Brian; Stek, Paul; Werthimer, Dan; Nikolic, Borivoje

2010-01-01

79

On the history of multi-particle production in high energy collisions  

E-print Network

The 60th birthday of Johann Rafelski was celebrated during the Strangeness in Quark Matter 2011 in Krakow. Johann was born in Krakow and he initiated the series of the SQM conferences. This report, which briefly presents my personal view on a history of multi-particle production in high energy collisions, is dedicated to Johann.

M. Gazdzicki

2012-01-02

80

Realization of Probabilistic Identification and Clone of Quantum-States II Multiparticles System  

E-print Network

We realize the probabilistic cloning and identifying linear independent quantum states of multi-particles system, given prior probability, with universal quantum logic gates using the method of unitary representation. Our result is universal for separate state and entanglement. We also provide the realization in the condition given $M$ initial copies for each state.

Chuan-Wei Zhang; Chuan-Feng Li; Guang-Can Guo

1999-07-31

81

High efficiency transfer of quantum information and multiparticle entanglement generation in translation-invariant quantum chains  

Microsoft Academic Search

We demonstrate that a translation-invariant chain of interacting quantum systems can be used for high efficiency transfer of quantum entanglement and the generation of multiparticle entanglement over large distances and between arbitrary sites without the requirement of precise spatial or temporal control. The scheme is largely insensitive to disorder and random coupling strengths in the chain. We discuss harmonic oscillator

Martin B Plenio; Fernando L Semião

2005-01-01

82

A Mass Spectrometer Simulator in Your Computer  

ERIC Educational Resources Information Center

Introduced to study components of ionized gas, the mass spectrometer has evolved into a highly accurate device now used in many undergraduate and research laboratories. Unfortunately, despite their importance in the formation of future scientists, mass spectrometers remain beyond the financial reach of many high schools and colleges. As a result,…

Gagnon, Michel

2012-01-01

83

The effect of a computer-based, spectrometer tutorial on chemistry students' learning in a UV/vis spectroscopy laboratory experiment  

NASA Astrophysics Data System (ADS)

It is common for fairly sophisticated instruments to be used in undergraduate, general chemistry, laboratory courses. Typically, these instruments are treated as incidental to the experiment: students are given extensive operating instructions, but told little or nothing about how they work, because understanding the instruments themselves is not an objective of the course. The implicit assumption is that chemical principles can be deduced simply from accurate data. However, cognitive load theory (Sweller, 1988, 2005) predicts it would be more difficult for students with limited prior knowledge to make sense of their data if they do not know how measurements made with the instruments are actually derived from their physical sample. Therefore, treating laboratory instruments as incidental may actually make it more difficult for students to learn the chemical concepts that underlie the data they collect. This experimental study was intended to determine whether a multimedia tutorial, designed to help students understand how a UV/vis spectrophotometer works, brings about any changes in performance on a laboratory experiment about food dye solutions. Working in pairs, 750 students were randomly assigned to receive either the tutorial (treatment) or an alternative task (comparison) as an introduction to an experiment that was a regular part of an undergraduate, general chemistry, laboratory course. Students' responses to all laboratory questions were collected and scored. The amount of time students spent on each laboratory task was collected as well. On average, treatment students completed many of the laboratory tasks significantly more quickly than comparison students. Treatment students typically also provided more concise responses to many of the laboratory questions. Unfortunately, no differences were found in scores on laboratory questions. Therefore, while there is evidence the tutorial helped students learn more efficiently, evidence could not be found that they learned more deeply. Potential explanations for these results and their implications are discussed.

Wood, Nathan Brent

84

On the partial-wave analysis of mesonic resonances decaying to multiparticle final states produced by polarized photons  

NASA Astrophysics Data System (ADS)

Meson spectroscopy is going through a revival with the advent of high statistics experiments and new advances in the theoretical predictions. The Constituent Quark Model (CQM) is finally being expanded considering more basic principles of field theory and using discrete calculations of Quantum Chromodynamics (lattice QCD). These new calculations are approaching predictive power for the spectrum of hadronic resonances and decay modes. It will be the task of the new experiments to extract the meson spectrum from the data and compare with those predictions. The goal of this report is to describe one particular technique for extracting resonance information from multiparticle final states. The technique described here, partial wave analysis based on the helicity formalism, has been used at Brookhaven National Laboratory (BNL) using pion beams, and Jefferson Laboratory (JLab) using photon beams. In particular this report broadens this technique to include production experiments using linearly polarized real photons or quasi-real photons. This article is of a didactical nature. We describe the process of analysis, detailing assumptions and formalisms, and is directed towards people interested in starting partial wave analysis.

Salgado, Carlos W.; Weygand, Dennis P.

2014-04-01

85

Fully Automated Imaging Spectrometer  

E-print Network

Fully Automated Imaging Spectrometer User Manual Part Number 81092 ­ Revision 2 #12;Copyright................................................................................................................ 12 Installing the Grating)......................................................................................... 15 Installing the USB Spectrometer Utilities Software

Rubloff, Gary W.

86

Obsidian provenance determination using the beam stability controlled BSC-XRF and the PIXE-alpha portable spectrometers of the LANDIS laboratory: the case of the Via Capuana settlement in Licodia Eubea (Sicily)  

NASA Astrophysics Data System (ADS)

In the last decade about 800 obsidian artifacts coming from various archaeological sites of Sicily have been analyzed using the BSC-XRF (beam stability controlled-x-ray fluorescence) and PIXE-alpha (particle induced x-ray emission, using low-energy alpha particles) portable spectrometers developed at the Landis laboratory of the LNS-INFN and IBAM-CNR in Catania (Italy). The portable BSC-XRF system allows the non-destructive analysis of Rb, Sr, Y, Zr and Nb trace concentrations, which are considered to be characteristic of the obsidian samples and consequently are indicative of the provenance quarries. Quantitative data on the above trace-element concentrations were deduced using a method that makes use of a multi-parameter linear regression. The portable PIXE-alpha spectrometer allows the quantitative determination of the matrix major elements, from Na to Zn. In this paper the updated versions of the instrumental devices and methods are presented together with a review of all the obtained data from various Sicilian sites. Results on compositional data for trace elements and major elements allowed us to identify Lipari and Pantelleria islands as the only two sources of the analyzed samples. Recent data about the Via Capuana settlement in Licodia Eubea are also presented and discussed for the first time.

Pappalardo, L.; Romano, F. P.; Bracchitta, D.; Massimino, A.; Palio, O.; Rizzo, F.

2013-12-01

87

Mass spectrometers: instrumentation  

NASA Astrophysics Data System (ADS)

Developments in mass spectrometry instrumentation over the past three years are reviewed. The subject is characterized by an enormous diversity of designs, a high degree of competition between different laboratories working with either different or similar techniques and by extremely rapid progress in improving analytical performance. Instruments can be grouped into genealogical charts based on their physical and conceptual interrelationships. This is illustrated using mass analyzers of different types. The time course of development of particular instrumental concepts is illustrated in terms of the s-curves typical of cell growth. Examples are given of instruments which are at the exponential, linear and mature growth stages. The prime examples used are respectively: (i) hybrid instruments designed to study reactive collisions of ions with surfaces: (ii) the Paul ion trap; and (iii) the triple quadrupole mass spectrometer. In the area of ion/surface collisions, reactive collisions such as hydrogen radical abstraction from the surface by the impinging ion are studied. They are shown to depend upon the chemical nature of the surface through the use of experiments which utilize self-assembled monolayers as surfaces. The internal energy deposited during surface-induced dissociation upon collision with different surfaces in a BEEQ instrument is also discussed. Attention is also given to a second area of emerging instrumentation, namely technology which allows mass spectrometers to be used for on-line monitoring of fluid streams. A summary of recent improvements in the performance of the rapidly developing quadrupole ion trap instrument illustrates this stage of instrument development. Improvements in resolution and mass range and their application to the characterization of biomolecules are described. The interaction of theory with experiment is illustrated through the role of simulations of ion motion in the ion trap. It is emphasized that mature instruments play a dominant role in most work using mass spectrometers. This is illustrated with recent results on the chemistry of C+.60 including the formation of covalent adducts with aromatic compounds. Quantitative analysis of methylated nucleosides and structural studies of the anti-cancer drug taxol are also discussed. A compendium of mass spectrometers constructed over the past three years is provided. This includes a variety of hybrid instruments, combinations of sector mass spectrometers with traps, instruments designed to study collision dynamics, and many more.

Cooks, R. G.; Hoke, S. H., II; Morand, K. L.; Lammert, S. A.

1992-09-01

88

Centre-of-mass motion in multi-particle Schroedinger-Newton dynamics  

E-print Network

We investigate the implication of the non-linear and non-local multi-particle Schroedinger-Newton equation for the motion of the mass centre of an extended multi-particle object, giving self-contained and comprehensible derivations. In particular, we discuss two opposite limiting cases. In the first case, the width of the centre-of-mass wave packet is assumed much larger than the actual extent of the object, in the second case it is assumed much smaller. Both cases result in non-linear deviations from ordinary free Schroedinger evolution for the centre of mass. On a general conceptual level we include some discussion in order to clarify the physical basis and intention for studying the Schroedinger-Newton equation.

Domenico Giulini; Andre Grossardt

2014-04-02

89

Centre-of-mass motion in multi-particle Schrödinger-Newton dynamics  

NASA Astrophysics Data System (ADS)

We investigate the implication of the nonlinear and non-local multi-particle Schrödinger-Newton equation for the motion of the mass centre of an extended multi-particle object, giving self-contained and comprehensible derivations. In particular, we discuss two opposite limiting cases. In the first case, the width of the centre-of-mass wave packet is assumed much larger than the actual extent of the object, in the second case it is assumed much smaller. Both cases result in nonlinear deviations from ordinary free Schrödinger evolution for the centre of mass. On a general conceptual level we include some discussion in order to clarify the physical basis and intention for studying the Schrödinger-Newton equation.

Giulini, Domenico; Großardt, André

2014-07-01

90

The Athena Raman Spectrometer  

NASA Technical Reports Server (NTRS)

Raman spectroscopy provides a powerful tool for in situ mineralogy, petrology, and detection of water and carbon. The Athena Raman spectrometer is a microbeam instrument intended for close-up analyses of targets (rock or soils) selected by the Athena Pancam and Mini-TES. It will take 100 Raman spectra along a linear traverse of approximately one centimeter (point-counting procedure) in one to four hours during the Mars' night. From these spectra, the following information about the target will extracted: (1) the identities of major, minor, and trace mineral phases, organic species (e.g., PAH or kerogen-like polymers), reduced inorganic carbon, and water-bearing phases; (2) chemical features (e.g. Mg/Fe ratio) of major minerals; and (3) rock textural features (e.g., mineral clusters, amygdular filling and veins). Part of the Athena payload, the miniaturized Raman spectrometer has been under development in a highly interactive collaboration of a science team at Washington University and the University of Alabama at Birmingham, and an engineering team at the Jet Propulsion Laboratory. The development has completed the brassboard stage and has produced the design for the engineering model.

Wang, Alian; Haskin, Larry A.; Jolliff, Bradley; Wdowiak, Tom; Agresti, David; Lane, Arthur L.

2000-01-01

91

Energy evolution of the large-t elastic scattering and its correlation with multiparticle production  

SciTech Connect

It is emphasized that the collective dynamics associated with color confinement is dominating over a point-like mechanism related to a scattering of the proton constituents at the currently available values of the momentum transferred in proton elastic scattering at the LHC. Deep-elastic scattering and its role in the dissimilation of the absorptive and reflective asymptotic scattering mechanisms are discussed with emphasis on the experimental signatures associated with the multiparticle production processes.

Troshin, S. M. [Institute for High Energy Physics, Protvino, Moscow Region, 142281 (Russian Federation)

2013-04-15

92

Multi-particle dynamical localization in a continuous Anderson model with an alloy-type potential  

E-print Network

This paper is a complement to our earlier work \\cite{BCSS10b}. With the help of the multi-scale analysis, we derive, from estimates obtained in \\cite{BCSS10b}, dynamical localization for a multi-particle Anderson model in a Euclidean space $\\D{R}^{d}$, $d\\geq 1$, with a short-range interaction, subject to a random alloy-type potential.

Victor Chulaevsky; Anne Boutet de Monvel; Yuri Suhov

2010-07-22

93

Tropospheric Emission Spectrometer and Airborne Emission Spectrometer  

NASA Technical Reports Server (NTRS)

The Tropospheric Emission Spectrometer (TES) is an instrument being developed for the NASA Earth Observing System Chemistry Platform. TES will measure the distribution of ozone and its precursors in the lower atmosphere. The Airborne Emission Spectrometer (AES) is an aircraft precursor to TES. Applicable descriptions are given of instrument design, technology challenges, implementation and operations for both.

Glavich, T.; Beer, R.

1996-01-01

94

Mars Airborne Prospecting Spectrometer  

NASA Astrophysics Data System (ADS)

One novel approach towards addressing the need for innovative instrumentation and investigation approaches is the integration of a suite of four spectrometer systems to form the Mars Airborne Prospecting Spectrometers (MAPS) for prospecting on Mars.

Steinkraus, J. M.; Wright, M. W.; Rheingans, B. E.; Steinkraus, D. E.; George, W. P.; Aljabri, A.; Hall, J. L.; Scott, D. C.

2012-06-01

95

Automated mass spectrometer grows up  

SciTech Connect

In 1980 we reported the development of an automated mass spectrometer for large scale batches of samples enriched in nitrogen-15 as ammonium salts. Since that time significant technical progress has been made in the instrument. Perhaps more significantly, administrative and institutional changes have permitted the entire effort to be transferred to the private sector from its original base at the Los Alamos National Laboratory. This has ensured the continuance of a needed service to the international scientific community as revealed by a development project at a national laboratory, and is an excellent example of beneficial technology transfer to private industry.

McInteer, B.B.; Montoya, J.G.; Stark, E.E.

1984-01-01

96

Measurement of the Helicity Difference in {gamma}{sup {yields}p{yields}{yields}p{pi}+{pi}-} with the CLAS Spectrometer at Jefferson Laboratory  

SciTech Connect

The study of the properties of baryon resonances can provide us with hints to help us understand the structure of non-perturbative QCD and the effect of a particular resonance on polarization observables. The investigation of double-pion photoproduction data is needed to discover higher-lying states and their properties at and above W {approx_equal} 1.8 GeV. Therefore, the analysis of the helicity difference in gp {gamma}p{yields}p{pi}{sup +{pi}-} will help us in our understanding of QCD.The CLAS g9a (FROST) experiment, as part of the N* spectroscopy program at Jefferson Laboratory, has accumulated photoproduction data using linearly and circularly polarized photons incident on a longitudinally-polarized butanol target in the photon energy range 0.3 to 2.4 GeV. The FROST experiment provides an important step toward a ''complete'' experiment for the reaction {gamma}N{yields}KY.In this contribution, the method to calculate the helicity difference for the reaction {gamma}p{yields}p{pi}{sup +{pi}-} will be described and preliminary results will be discussed.

Park, Sungkyun [Florida State University, Tallahassee, FL, 32306 (United States)

2010-08-05

97

Galileo Ultraviolet Spectrometer experiment  

Microsoft Academic Search

The Galileo ultraviolet spectrometer experiment uses data obtained by the Ultraviolet Spectrometer (UVS) mounted on the pointed orbiter scan platform and from the Extreme Ultraviolet Spectrometer (EUVS) mounted on the spinning part of the orbiter with the field of view perpendicular to the spin axis. The UVS is a Ebert-Fastie design that covers the range 113–432 nm with a wavelength

C. W. Hord; A. I. F. Stewart; C. A. Barth; L. W. Esposito; G. E. Thomas; B. R. Sandel; D. M. Hunten; A. L. Broadfoot; D. E. Shemansky; J. M. Ajello; R. A. West

1992-01-01

98

Multi-particle weak-strong simulation of RHIC head-on beam-beam compensation.  

SciTech Connect

To compensate the large tune spread generated by the beam-beam interactions in the polarized proton (pp) run in the Relativistic Heavy Ion Collider (RHIC), a low energy round Gaussian electron beam or electron lens is proposed to collide head-on with the proton beam. Using a weakstrong beam-beam interaction model, we carry out multiparticle simulations to investigate the effects of head-on beam-beam compensation on the proton beam's lifetime and emittance growth. The simplectic 6-D element-by-element tracking code SixTrack is adopted and modified for this study. The code benchmarking and preliminary simulation results are presented.

Luo,Y.; Abreu, N.; Beebe-Wang, J.; FischW; Robert-Demolaize, G.

2008-06-23

99

Effect of multiparticle correlations on the stability of electron-positron clusters  

SciTech Connect

The total energy of electrically neutral electron-positron clusters with closed shells containing different numbers of pairs has been calculated. The inclusion of multiparticle correlations in the random phase approximation with exchange has allowed the reduction of the energy per pair of particles below the energy per dipositronium molecule. The calculations have revealed the region of the minimum of the total energy per pair of particles at the numbers of pairs in the range of 20 to 40, which assumingly correspond to the most stable electron-positron droplets.

Ipatov, A. N., E-mail: Andrei_ipatov@mail.ru; Ivanov, V. K.; Polozkov, R. G. [St. Petersburg State Polytechnic University (Russian Federation)] [St. Petersburg State Polytechnic University (Russian Federation)

2013-10-15

100

{gamma} induced multiparticle emissions of medium mass nuclei at intermediate energies  

SciTech Connect

A comprehensive analysis of multiparticle emissions following photon induced reactions at intermediate energies is provided. Photon induced reaction is described in the energy range of {approx}30-140 MeV with an approach based on the quasideuteron nuclear photoabsorption model followed by the process of competition between light particle evaporation and fission for the excited nucleus. The evaporation-fission process of the compound nucleus is simulated in a Monte-Carlo framework. The study shows almost no fission events for the medium mass nuclei and reproduces the available experimental data of photonuclear reaction cross sections satisfactorily at energies {approx}30-140 MeV.

Mukhopadhyay, Tapan; Basu, D. N. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700 064 (India)

2009-01-15

101

Two-dimensional discrete wavelet analysis of multiparticle event topology in heavy ion collisions  

E-print Network

The event-by-event analysis of multiparticle production in high energy hadron and nuclei collisions can be performed using the discrete wavelet transformation. The ring-like and jet-like structures in two-dimensional angular histograms are well extracted by wavelet analysis. For the first time the method is applied to the jet-like events with background simulated by event generators, which are developed to describe nucleus-nucleus collisions at LHC energies. The jet positions are located quite well by the discrete wavelet transformation of angular particle distribution even in presence of strong background.

I. M. Dremin; G. Kh. Eyyubova; V. L. Korotkikh; L. I. Sarycheva

2007-11-11

102

Prompt muons in multiparticle events from e +e - annihilation at petra  

NASA Astrophysics Data System (ADS)

We have observed the production of prompt muons in e +e - annihilation in the centre of mass energy range 33.0 GeV to 35.8 GeV. The rate of such muons with momentum greater than 1.4 GeV was measured to be 0.069 ± 0.024 per multiparticle event. When compared with currently accepted models, this rate is consistent with that expected from charm and bottom decays, but does not support the production also of a top quark of mass less than about 15 GeV.

Bartel, W.; Cords, D.; Dittmann, P.; Eichler, R.; Felst, R.; Haidt, D.; Kawabata, S.; Krehbiel, H.; Naroska, B.; O'Neill, L. H.; Olsson, J.; Steffen, P.; Yen, W. L.; Elsen, E.; Helm, M.; Petersen, A.; Warming, P.; Weber, G.; Drumm, H.; Heintze, J.; Heinzelmann, G.; Heuer, R. D.; von Krogh, J.; Lennert, P.; Matsumura, H.; Nozaki, T.; Rieseberg, H.; Wagner, A.; Darvill, D. C.; Foster, F.; Hughes, G.; Wriedt, H.; Allison, J.; Armitage, J. C. M.; Ball, A. H.; Duerdoth, I. P.; Hassard, J. F.; King, B. T.; Loebinger, F. K.; Macbeth, A. A.; McCann, H.; Mills, H. E.; Murphy, P. G.; Prosper, H. B.; Stephens, K.; Clarke, D.; Goddard, M. C.; Marshall, R.; Pearce, G. F.; Imori, M.; Kobayashi, T.; Komamiya, S.; Koshiba, M.; Minowa, M.; Orito, S.; Sato, A.; Suda, T.; Takeda, H.; Totsuka, Y.; Watanabe, Y.; Yamada, S.; Yanagisawa, C.

1981-02-01

103

Handheld spectrometers: the state of the art  

NASA Astrophysics Data System (ADS)

"Small" spectrometers fall into three broad classes: small versions of laboratory instruments, providing data, subsequently processed on a PC; dedicated analyzers, providing actionable information to an individual operator; and process analyzers, providing quantitative or semi-quantitative information to a process controller. The emphasis of this paper is on handheld dedicated analyzers. Many spectrometers have historically been large, possible fragile, expensive and complicated to use. The challenge over the last dozen years, as instruments have moved into the field, has been to make spectrometers smaller, affordable, rugged, easy-to-use, but most of all capable of delivering actionable results. Actionable results can dramatically improve the efficiency of a testing process and transform the way business is done. There are several keys to this handheld spectrometer revolution. Consumer electronics has given us powerful mobile platforms, compact batteries, clearly visible displays, new user interfaces, etc., while telecomm has revolutionized miniature optics, sources and detectors. While these technologies enable miniature spectrometers themselves, actionable information has demanded the development of rugged algorithms for material confirmation, unknown identification, mixture analysis and detection of suspicious materials in unknown matrices. These algorithms are far more sophisticated than the `correlation' or `dot-product' methods commonly used in benchtop instruments. Finally, continuing consumer electronics advances now enable many more technologies to be incorporated into handheld spectrometers, including Bluetooth, wireless, WiFi, GPS, cameras and bar code readers, and the continued size shrinkage of spectrometer `engines' leads to the prospect of dual technology or `hyphenated' handheld instruments.

Crocombe, Richard A.

2013-05-01

104

ISLA: An Isochronous Spectrometer with Large Acceptances  

NASA Astrophysics Data System (ADS)

A novel type of recoil mass spectrometer and separator is proposed for the future secondary radioactive beams of the ReA12 accelerator at NSCL/FRIB, inspired from the TOFI spectrometer developed at the Los Alamos National Laboratory for online mass measurements. The Isochronous Spectrometer with Large Acceptances (ISLA) is able to achieve superior characteristics without the compromises that usually plague the design of large acceptance spectrometers. ISLA can provide mass-to-charge ratio (m/q) measurements to better than 1 part in 1000 by using an optically isochronous time-of-flight independent of the momentum vector of the recoiling ions, despite large acceptances of 20% in momentum and 64 msr in solid angle. The characteristics of this unique design are shown, including requirements for auxiliary detectors around the target and the various types of reactions to be used with the re-accelerated radioactive beams of the future ReA12 accelerator.

Bazin, D.; Mittig, W.

2013-12-01

105

Multiparticle Sintering Dynamics: From Fractal-Like Aggregates to Compact Structures  

PubMed Central

Multiparticle sintering is encountered in almost all high temperature processes for material synthesis (titania, silica, and nickel) and energy generation (e.g., fly ash formation) resulting in aggregates of primary particles (hard- or sinter-bonded agglomerates). This mechanism of particle growth is investigated quantitatively by mass and energy balances during viscous sintering of amorphous aerosol materials (e.g., SiO2 and polymers) that typically have a distribution of sizes and complex morphology. This model is validated at limited cases of sintering between two (equally or unequally sized) particles, and chains of particles. The evolution of morphology, surface area and radii of gyration of multiparticle aggregates are elucidated for various sizes and initial fractal dimension. For each of these structures that had been generated by diffusion limited (DLA), cluster–cluster (DLCA), and ballistic particle–cluster agglomeration (BPCA) the surface area evolution is monitored and found to scale differently than that of the radius of gyration (moment of inertia). Expressions are proposed for the evolution of fractal dimension and the surface area of aggregates undergoing viscous sintering. These expressions are important in design of aerosol processes with population balance equations (PBE) and/or fluid dynamic simulations for material synthesis or minimization and even suppression of particle formation. PMID:21488641

Eggersdorfer, Max L.; Kadau, Dirk; Herrmann, Hans J.; Pratsinis, Sotiris E.

2013-01-01

106

The Multiparticle Quantum Arnol'd Cat: a test case for the decoherence approach to quantum chaos  

E-print Network

A multi-particle extension of the Arnol'd Cat Hamiltonian system is defined and examined. We propose to compute its Alicki-Fannes quantum dynamical entropy, to validate (or disprove) the validity of the decoherence approach to quantum chaos. A first set of numerical experiments is presented and discussed.

Giorgio Mantica

2010-07-06

107

New Mass Spectrometers for Hydrogen Isotope Analyses.  

National Technical Information Service (NTIS)

Two advanced mass spectrometers for the accurate analysis of mixtures of the hydrogen isotopes are being evaluated by Du Pont personnel at the Savannah River Laboratory. One is a large double-focusing instrument with a resolution of 2000 at mass 4, an abu...

H. L. Daves, P. Chastagner, W. B. Hess

1981-01-01

108

The Canadian Penning Trap mass spectrometer  

Microsoft Academic Search

The Canadian Penning Trap (CPT) mass spectrometer located at the ATLAS facility of Argonne National Laboratory is an online Penning trap system used for mass measurements of high accuracy on short-lived isotopes. It uses a gas catcher as a novel way to transform radioactive ions efficiently from different sources into cooled beams which are injected into ion traps for further

J. C. Wang; G. Savard; K. S. Sharma; J. A. Clark; Z. Zhou; A. F. Levand; C. Boudreau; F. Buchinger; J. E. Crawford; J. P. Greene; S. Gulick; J. K. P. Lee; G. D. Sprouse; W. Trimble; J. Vaz; B. Z. Zabransky

2004-01-01

109

New uses for ORNL's ultrasensitive mass spectrometer  

Microsoft Academic Search

Oak Ridge National Laboratory has an ultrasensitive instrument that can reduce the cost of monitoring workers for radiation exposure, determine concentrations of trace elements in tree cores to assess the effects of acid rain on soil chemistry and tree growth, and even identify counterfeit bolts that need to be replaced. The inductively coupled plasma mass spectrometer (ICP-MS). May someday demonstrate

1993-01-01

110

JPL D-16479 Tropospheric Emission Spectrometer (TES)  

E-print Network

JPL D-16479 Tropospheric Emission Spectrometer (TES) Level 1B Algorithm Theoretical Basis Document Propulsion Laboratory California Institute of Technology #12;JPL D-16479 Contents 1 Introduction 1 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 ii #12;Version 1.1 TES Level 1B ATBD JPL D-16479 5.2 Calibration phase alignment

Waliser, Duane E.

111

Integrated Grating Spectrometer  

NASA Technical Reports Server (NTRS)

Proposed integrated grating spectrometer made in waveguide layer on silicon wafer. Occupies area of about 2 centimeters to 2nd power on wafer 0.4 mm thick. Operates in visible spectrum (wavelengths of 400 to 700 nm) and blazed to diffract in first order. Array of integrated grating spectrometers performs spectral analysis of picture elements along line. Optical fiber couples light from each picture element into separate integrated spectrometer. Technique enables continous independent variation, along grating, of pitch, curvature, and blaze angle. Grating designed to have large numerical aperture, zero aberration at two selected wavelengths, and very low aberration at intermediate wavelengths.

Lang, Robert J.

1990-01-01

112

Blurring the boundaries: decays of multiparticle isomers at the proton drip line.  

PubMed

A multiparticle spin-trap isomer has been discovered in the proton-unbound nucleus (73)(158)Ta85?. The isomer mainly decays by ?-ray emission with a half-life of 6.1(1) ?s. Analysis of the ?-ray data shows that the isomer lies 2668 keV above the known 9+ state and has a spin 10? higher and negative parity. This 19- isomer also has an 8644(11) keV, 1.4(2)% ?-decay branch that populates the 9+ state in (154)Lu. No proton-decay branch from the isomer was identified, despite the isomer being unbound to proton emission by 3261(14) keV. This remarkable stability against proton emission is compared with theoretical predictions, and the implications for the extent of observable nuclides are considered. PMID:24655248

Carroll, R J; Page, R D; Joss, D T; Uusitalo, J; Darby, I G; Andgren, K; Cederwall, B; Eeckhaudt, S; Grahn, T; Gray-Jones, C; Greenlees, P T; Hadinia, B; Jones, P M; Julin, R; Juutinen, S; Leino, M; Leppänen, A-P; Nyman, M; O'Donnell, D; Pakarinen, J; Rahkila, P; Sandzelius, M; Sarén, J; Scholey, C; Seweryniak, D; Simpson, J

2014-03-01

113

Modern approaches for the theoretical description of multiparticle scattering and nuclear reactions  

SciTech Connect

A review of novel approaches to solution of multiparticle scattering problems in the area above three-body breakup together with the review of new computational technologies which provide very effective and ultrafast realization of the novel approaches with ordinary PC are given. The novel direction presented here is based on two key points: a new formulation of the quantum scattering theory in a discrete Hilbert space of stationary wave packets and the massive-parallel solution of the resulted matrix equations with usage of ultrafast graphic processors (the so called GPU-computations). For the reader's convenience, a short review of the modern GPU calculations for the medicine, physics, military applications etc. is presented.

Kukulin, V. I.; Rubtsova, O. A., E-mail: rubtsova-olga@yandex.ru [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

2012-11-15

114

Multiparticle azimuthal correlations of negative pions in nucleus-nucleus collisions  

SciTech Connect

Multiparticle azimuthal correlations of {pi}{sup -} mesons have been studied in dC, HeC, CC, CNe, MgMg, (d, He)Ta, CCu, CTa, and OPb collisions at momentum of 4.2, 4.5 GeV/c per nucleon within the standard transverse momentum analysis method of P. Danielewicz and G. Odyniec. The data were obtained by SKM-200-GIBS and Propane Bubble Chamber Collaborations of JINR. The axis has been selected in the phase space and with respect to this axis {pi}{sup -} meson correlations were observed. The values of the coefficient of the correlations linearly depend on the mass numbers of projectile (A{sub P}) and target (A{sub T}) nuclei. The Quark-Gluon String Model satisfactorily describes the experimental results.

Chkhaidze, L. V., E-mail: ichkhaidze@yahoo.com; Djobava, T. D.; Kharkhelauri, L. L. [Tbilisi State University, High Energy Physics Institute (Georgia); Kladnitskaya, E. N. [Joint Institute for Nuclear Research (Russian Federation)

2012-07-15

115

Imaging Fourier transform spectrometer  

SciTech Connect

This invention is comprised of an imaging Fourier transform spectrometer having a Fourier transform infrared spectrometer providing a series of images to a focal plane array camera. The focal plane array camera is clocked to a multiple of zero crossing occurrences as caused by a moving mirror of the Fourier transform infrared spectrometer and as detected by a laser detector such that the frame capture rate of the focal plane array camera corresponds to a multiple of the zero crossing rate of the Fourier transform infrared spectrometer. The images are transmitted to a computer for processing such that representations of the images as viewed in the light of an arbitrary spectral ``fingerprint`` pattern can be displayed on a monitor or otherwise stored and manipulated by the computer.

Bennett, C.L.

1993-09-13

116

A Simple Raman Spectrometer.  

ERIC Educational Resources Information Center

Discusses some basic physical ideas about light scattering and describes a simple Raman spectrometer, a single prism monochromator and a multiplier detector. This discussion is intended for British undergraduate physics students. (HM)

Blond, J. P.; Boggett, D. M.

1980-01-01

117

Microbolometer imaging spectrometer.  

PubMed

Newly developed, high-performance, long-wave- and mid-wave-IR Dyson spectrometers offer a compact, low-distortion, broadband, imaging spectrometer design. The design is further accentuated when coupled to microbolometer array technology. This novel coupling allows radiometric and spectral measurements of high-temperature targets. It also serves to be unique since it allows for the system to be aligned warm. This eliminates the need for cryogenic temperature cycling. Proof of concept results are shown for a spectrometer with a 7.5 to 12.0 ?m spectral range and approximately 20 nm per spectral band (~200 bands). Results presented in this Letter show performance for remote hot targets (>200 °C) using an engineering grade spectrometer and IR commercial lens assembly. PMID:22378399

Johnson, William R; Hook, Simon J; Shoen, Steven M

2012-03-01

118

Automated calibration of a flight particle spectrometer  

NASA Technical Reports Server (NTRS)

An automatic calibration system was designed for use in the vacuum facility at the Space Science Laboratory of the Marshall Space Flight Center. That system was developed and used in the intervening winter to calibrate the ion spectrometer that eventually flew in May 1986 aboard the NASA project, CRIT 1. During this summer, it is planned to implement the calibration of both an ion and electron spectrometer of a new design whose basic elements were conceived during the winter of 1985 to 1986. This spectrometer was completed in the summer and successfully mounted in the vacuum tank for calibration. However, the source gate valve malfunctioned, and, at the end of the summer, it still needed a replacement. During the inevitable delays in the experimental research, the numerical model of the Critical Velocity effect was completed and these results were presented.

Torbert, Roy B.

1986-01-01

119

Spectrometer technology recommendations  

NASA Astrophysics Data System (ADS)

A typical heterodyne remote sensing system contains three major elements: the antenna, the radiometer, and the spectrometer. The radiometer consists of the local oscillator, the mixer, and the intermediate frequency amplifiers. This subsystem performs the function of down converting the high frequency incident thermal emission signal to a lower intermediate frequency. The spectrometer measures the power spectrum of the down-converted signal simultaneously in many contiguous frequency channels. Typical spectrum analysis requirements involve measurement of signal bandwidths of 100 to 1000 MHz with a channel resolution of 0.5 to 10 MHz. Three general approaches are used for spectrometers: (1) filter banks, (2) Acousto-Optic Spectrometers (AOS's), and (3) digital autocorrelators. In contrast to the two frequency domain techniques, an autocorrelator works in the time domain. The autocorrelation function (ACF) of the incoming signal is computed and averaged over the integration time. The averaged ACF is then Fourier transformed to obtain the signal power spectrum. Significant progress was made in the development of sub mm antennas and radiometers. It is now time to begin research in the development of low power spaceborne spectrometers and to reduce their size and weight. The near-term research goal will be to develop a prototype digital autocorrelation spectrometer, using VLSI gate array technology, which will have a small size, low power requirements, and can be used in spacecraft mm and sub mm radiometer systems. The long-range objective of this technology development is to make extremely low power, less than 10 mW/channel, small and stable wideband spectrometers which can be used in future mm and sub mm wavelength space missions such as the Large Deployable Reflector.

Wilson, William J.

1988-08-01

120

Implementation of Japanese Male and Female Tomographic Phantoms to Multiparticle Monte Carlo Code for Ionizing Radiation Dosimetry  

Microsoft Academic Search

Japanese male and female tomographic phantoms, which have been developed for radio-frequency electromagnetic-field dosimetry, were implemented into multi-particle Monte Carlo transport code to evaluate realistic dose distribution in human body exposed to radiation field. Japanese tomographic phantoms, which were developed from the whole body magnetic resonance images of Japanese average adult male and female, were processed as follows to be

Choonsik LEE; Tomoaki NAGAOKA; Jai-Ki LEE

2006-01-01

121

Electron-proton spectrometer  

NASA Technical Reports Server (NTRS)

An electron-proton spectrometer was designed to measure the geomagnetically trapped radiation in a geostationary orbit at 6.6 earth radii in the outer radiation belt. This instrument is to be flown on the Applications Technology Satellite-F (ATS-F). The electron-proton spectrometer consists of two permanent magnet surface barrier detector arrays and associated electronics capable of selecting and detecting electrons in three energy ranges: (1) 30-50 keV, (2) 150-200 keV, and (3) 500 keV and protons in three energy ranges. The electron-proton spectrometer has the capability of measuring the fluxes of electrons and protons in various directions with respect to the magnetic field lines running through the satellite. One magnet detector array system is implemented to scan between EME north and south through west, sampling the directional flux in 15 steps. The other magnet-detector array system is fixed looking toward EME east.

Winckler, J. R.

1973-01-01

122

National Laboratory Dorene Price  

E-print Network

. COMPETITIVE ADVANTAGE This spectrometer is an important addition to the currently available particle sizeBrookhaven National Laboratory Dorene Price Office of Intellectual Property and Sponsored Research: price@bnl.gov MEASUREMENT OF AEROSOL SIZE DISTRIBUTION Brookhaven National Laboratory is a multi

123

The GRIFFIN spectrometer  

NASA Astrophysics Data System (ADS)

Gamma-Ray Infrastructure For Fundamental Investigations of Nuclei (GRIFFIN) is an advanced new high-efficiency ?-ray spectrometer being developed for use in decay spectroscopy experiments with low-energy radioactive ion beams provided by TRIUMF's Isotope Separator and Accelerator (ISAC-I) radioactive ion beam facility. GRIFFIN will be comprised of sixteen large-volume clover-type high-purity germanium (HPGe) ?-ray detectors coupled to custom digital signal processing electronics and used in conjunction with a suite of auxiliary detection systems. This article provides an overview of the GRIFFIN spectrometer and its expected performance characteristics.

Svensson, C. E.; Garnsworthy, A. B.

2014-01-01

124

Broad band waveguide spectrometer  

DOEpatents

A spectrometer for analyzing a sample of material utilizing a broad band source of electromagnetic radiation and a detector. The spectrometer employs a waveguide possessing an entry and an exit for the electromagnetic radiation emanating from the source. The waveguide further includes a surface between the entry and exit portions which permits interaction between the electromagnetic radiation passing through the wave guide and a sample material. A tapered portion forms a part of the entry of the wave guide and couples the electromagnetic radiation emanating from the source to the waveguide. The electromagnetic radiation passing from the exit of the waveguide is captured and directed to a detector for analysis.

Goldman, Don S. (Folsom, CA)

1995-01-01

125

The Apollo Alpha Spectrometer.  

NASA Technical Reports Server (NTRS)

Located in the Science Instrument Module of Apollo 15 and 16, the Alpha Particle Spectrometer was designed to detect and measure the energy of alpha particles emitted by the radon isotopes and their daughter products. The spectrometer sensor consisted of an array of totally depleted silicon surface barrier detectors. Biased amplifier and linear gate techniques were utilized to reduce resolution degradation, thereby permitting the use of a single 512 channel PHA. Sensor identification and in-flight radioactive calibration were incorporated to enhance data reduction.

Jagoda, N.; Kubierschky, K.; Frank, R.; Carroll, J.

1973-01-01

126

The Geostationary Fourier Transform Spectrometer  

NASA Technical Reports Server (NTRS)

The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for an earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. The GeoFTS instrument is a half meter cube size instrument designed to operate in geostationary orbit as a secondary "hosted" payload on a commercial geostationary satellite mission. The advantage of GEO is the ability to continuously stare at a region of the earth, enabling frequent sampling to capture the diurnal variability of biogenic fluxes and anthropogenic emissions from city to continental scales. The science goal is to obtain a process-based understanding of the carbon cycle from simultaneous high spatial resolution measurements of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) many times per day in the near infrared spectral region to capture their spatial and temporal variations on diurnal, synoptic, seasonal and interannual time scales. The GeoFTS instrument is based on a Michelson interferometer design with a number of advanced features incorporated. Two of the most important advanced features are the focal plane arrays and the optical path difference mechanism. A breadboard GeoFTS instrument has demonstrated functionality for simultaneous measurements in the visible and IR in the laboratory and subsequently in the field at the California Laboratory for Atmospheric Remote Sensing (CLARS) observatory on Mt. Wilson overlooking the Los Angeles basin. A GeoFTS engineering model instrument is being developed which will make simultaneous visible and IR measurements under space flight like environmental conditions (thermal-vacuum at 180 K). This will demonstrate critical instrument capabilities such as optical alignment stability, interferometer modulation efficiency, and high throughput FPA signal processing. This will reduce flight instrument development risk and show that the GeoFTS design is mature and flight ready.

Key, Richard; Sander, Stanley; Eldering, Annmarie; Miller, Charles; Frankenberg, Christian; Natra, Vijay; Rider, David; Blavier, Jean-Francois; Bekker, Dmitriy; Wu, Yen-Hung

2012-01-01

127

Spectrometer, Spectronic 20 (ChemPages Lab)  

NSDL National Science Digital Library

Spectrometer, Spectronic 20?: this is a resource in the collection "ChemPages Laboratory Resources". The Spectronic 20? is used to measure the absorbance (or transmittance) of solutions. A Spectronic 20? is capable of measuring % transmittance and absorbance over the range of 340 to 950 nm (the range 600 to 950 nm requires a special infrared filter and a different lamp). The ChemPages Laboratory Resources are a set of web pages that include text, images, video, and self check questions. The topics included are those that are commonly encountered in the first-year chemistry laboratory. They have been put together for use as both a pre-laboratory preparation tool and an in-laboratory reference source.

128

New mass spectrometers for hydrogen isotope analyses  

Microsoft Academic Search

Two advanced mass spectrometers for the accurate analysis of mixtures of the hydrogen isotopes are being evaluated by Du Pont personnel at the Savannah River Laboratory. One is a large double-focusing instrument with a resolution of 2000 at mass 4, an abundance sensitivity of > 100,000 for the HT-Dâ doublet, and a sophisticated electronic control and data collection system. The

P. Chastagner; H. L. Daves; W. B. Hess

1981-01-01

129

Miniature time-of-flight mass spectrometer  

Microsoft Academic Search

The Johns Hopkins University Applied Physics Laboratory (JHU\\/APL) is designing, fabricating and testing a small, high resolution, time-of-flight mass spectrometer (TOFMS) suitable for biomedical applications requiring lightweight, low-powered and portable instrumentation. This instrument can be used to identify solids, liquids and gases of both chemical and biological origins to quantify the habitat environment and support biomedical research and medical care.

Michael P. McLoughlin; Charles W. Anderson; Wayne A. Bryden; Micah A. Carlson; Scott A. Ecelberger; Harvey W. Ko

1998-01-01

130

Mass Spectrometer Simulator  

NSDL National Science Digital Library

From the Colby College Chemistry Department, this tutorial will help visitors understand what happens inside a mass spectrometer. Users are able to select various parts of the instrument to learn and see what happens inside: the vaporization chamber, the ionization chamber, the accelerator plates, the curved chamber, and the detector. Shockwave is required to use the learning activity.

Mundy, Bradford P., 1938-; Poon, Thomas, 1968-

2013-07-25

131

Galileo Probe Mass Spectrometer  

NASA Technical Reports Server (NTRS)

During the past year, the Principal Investigator's research carried out under this contract has focused on an analysis of the implications of Galileo Probe Mass Spectrometer (GPMS) results for the origin of Jupiter's atmosphere and the origin of the ice and other possible volatiles on the Galilean satellites.

Owen, Tobias C.

1998-01-01

132

Mass spectrometer mixture calibrations  

Microsoft Academic Search

Mass spectrometric analyses of hydrogen isotope mixtures can be difficult to make for a number of reasons. The most difficult problem is the possibility of confronting extremely great and extremely small relative mass differences in the same analysis. Commercial mass spectrometers are now available that can overcome these problems. The analytical capabilities and limitations of these instruments will be discussed.

Hicks

1986-01-01

133

Fourier Transform Spectrometer  

NASA Technical Reports Server (NTRS)

Understanding the global atmospheric changes is difficult with today's current technology. However, with high resolution and nearly continuous observations from a satellite, it's possible to transform our understanding of the atmosphere. To enable the next generation of atmospheric science, a new class of orbiting atmospheric sensors is being developed. The foundation of this advanced concept is the Fourier Transform Spectrometer, or FTS.

1998-01-01

134

Miniaturized Electron Magnetic Spectrometer  

Microsoft Academic Search

The characterization of energetic electrons in space plasmas is fundamental to the scientific understanding of those plasmas their magnetic topology and the electric fields and waves which may be modifying the plasma High time resolution is often very important as is high-energy resolution clean separation of ions and electrons and comprehensive angular coverage Traditionally magnetic electron spectrometers provide the most

G. C. Ho; G. B. Andrews; D. G. Mitchell; S. A. Livi

2006-01-01

135

Miniaturized electron magnetic spectrometer  

Microsoft Academic Search

Traditionally magnetic electron spectrometers provide the most reliable electron measurements in space at energies above ?10 keV. However, the inclusion of powerful magnets presents problems for spacecraft with stringent magnetic cleanliness requirements, and the magnetic yoke required to close the instrument is bulky and heavy. To mediate the aforementioned shortcomings, we report a preliminary conceptual design on a new miniature

G. C. Ho; D. G. Mitchell; S. Livi; D. K. Haggerty; B. H. Mauk

2003-01-01

136

Miniaturized electron magnetic spectrometer  

Microsoft Academic Search

Traditionally magnetic electron spectrometers provide the most reliable electron measurements in space at energies above ~10 keV. However, the inclusion of powerful magnets presents problems for spacecraft with stringent magnetic cleanliness requirements, and the magnetic yoke required to close the instrument is bulky and heavy. To mediate the aforementioned shortcomings, we report a preliminary conceptual design on a new miniature

G. C. Ho; D. G. Mitchell; S. Livi; D. K. Haggerty; B. H. Mauk

2003-01-01

137

Miniaturized Electron Magnetic Spectrometer  

Microsoft Academic Search

The characterization of energetic electrons in space plasmas is fundamental to the scientific understanding of those plasmas, their magnetic topology, and the electric fields and waves which may be modifying the plasma. High time resolution is often very important as is high-energy resolution, clean separation of ions and electrons, and comprehensive angular coverage. Traditionally magnetic electron spectrometer provides the most

G. Ho; D. Mitchell; S. Livi; B. Mauk

2002-01-01

138

Dual Beam Spectrometer  

NSDL National Science Digital Library

This Quick Time movie describes the operation of a dual beam spectrometer using an optical wedge to improve the accuracy of the absorbance measurement. The movie includes narration and graphs which explain the technological concepts involved. Running time for the movie is 3 minutes and 55 seconds.

Chasteen, Thomas G.

2011-04-06

139

The GREAT spectrometer  

Microsoft Academic Search

The GREAT spectrometer is designed to measure the decay properties of reaction products transported to the focal plane of a recoil separator. GREAT comprises a system of silicon, germanium and gas detectors optimised for detecting the arrival of the reaction products and correlating with any subsequent radioactive decay involving the emission of protons, ? particles, ? particles, ? rays, X-rays

R. D. Page; A. N. Andreyev; D. E. Appelbe; P. A. Butler; S. J. Freeman; P. T. Greenlees; R.-D. Herzberg; D. G. Jenkins; G. D. Jones; P. Jones; D. T. Joss; R. Julin; H. Kettunen; M. Leino; P. Rahkila; P. H. Regan; J. Simpson; J. Uusitalo; S. M. Vincent; R. Wadsworth

2003-01-01

140

Cyclotrons as mass spectrometers  

SciTech Connect

The principles and design choices for cyclotrons as mass spectrometers are described. They are illustrated by examples of cyclotrons developed by various groups for this purpose. The use of present high energy cyclotrons for mass spectrometry is also described. 28 references, 12 figures.

Clark, D.J.

1984-04-01

141

Searching for low-lying multi-particle thresholds in lattice spectroscopy  

E-print Network

We explore the Euclidean-time tails of odd-parity nucleon correlation functions in a search for the S-wave pion-nucleon scattering-state threshold contribution. The analysis is performed using 2+1 flavor 32^3 x 64 PACS-CS gauge configurations available via the ILDG. Correlation matrices composed with various levels of fermion source/sink smearing are used to project low-lying states. The consideration of 25,600 fermion propagators reveals the presence of more than one state in what would normally be regarded as an eigenstate-projected correlation function. This observation is in accord with the scenario where the eigenstates contain a strong mixing of single and multi-particle states but only the single particle component has a strong coupling to the interpolating field. Employing a two-exponential fit to the eigenvector-projected correlation function, we are able to confirm the presence of two eigenstates. The lower-lying eigenstate is consistent with a N-pi scattering threshold and has a relatively small coupling to the three-quark interpolating field. We discuss the impact of this small scattering-state contamination in the eigenvector projected correlation function on previous results presented in the literature.

M. Selim Mahbub; Waseem Kamleh; Derek B. Leinweber; Anthony G. Williams

2013-10-25

142

Hydrodynamics of discrete-particle models of spherical colloids: A multiparticle collision dynamics simulation study  

NASA Astrophysics Data System (ADS)

We investigate the hydrodynamic properties of a spherical colloid model, which is composed of a shell of point particles by hybrid mesoscale simulations, which combine molecular dynamics simulations for the sphere with the multiparticle collision dynamics approach for the fluid. Results are presented for the center-of-mass and angular velocity correlation functions. The simulation results are compared with theoretical results for a rigid colloid obtained as a solution of the Stokes equation with no-slip boundary conditions. Similarly, analytical results of a point-particle model are presented, which account for the finite size of the simulated system. The simulation results agree well with both approaches on appropriative time scales; specifically, the long-time correlations are quantitatively reproduced. Moreover, a procedure is proposed to obtain the infinite-system-size diffusion coefficient based on a combination of simulation results and analytical predictions. In addition, we present the velocity field in the vicinity of the colloid and demonstrate its close agreement with the theoretical prediction. Our studies show that a point-particle model of a sphere is very well suited to describe the hydrodynamic properties of spherical colloids, with a significantly reduced numerical effort.

Poblete, Simón; Wysocki, Adam; Gompper, Gerhard; Winkler, Roland G.

2014-09-01

143

Variational multiparticle-multihole configuration mixing method applied to pairing correlations in nuclei  

E-print Network

Applying a variational multiparticle-multihole configuration mixing method whose purpose is to include correlations beyond the mean field in a unified way without particle number and Pauli principle violations, we investigate pairing-like correlations in the ground states of $ ^{116}$Sn,$ ^{106}$Sn and $ ^{100}$Sn. The same effective nucleon-nucleon interaction namely, the D1S parameterization of the Gogny force is used to derive both the mean field and correlation components of nuclear wave functions. Calculations are performed using an axially symetric representation. The structure of correlated wave functions, their convergence with respect to the number of particle-hole excitations and the influence of correlations on single-particle level spectra and occupation probabilities are analyzed and compared with results obtained with the same two-body effective interaction from BCS, Hartree-Fock-Bogoliubov and particle number projected after variation BCS approaches. Calculations of nuclear radii and the first theoretical excited $0^+$ states are compared with experimental data.

N. Pillet; J. -F. Berger; E. Caurier

2008-07-22

144

Educational Multiwavelength Atomic Emission Spectrometer  

E-print Network

Educational Multiwavelength Atomic Emission Spectrometer Alexander Y. Nazarenko* Chemistry multiwavelength emission instrument utilizing a commercial grating monochromator, a fiber optic sensor to collect visualization makes the spectrometer a useful educational tool. Key Words: Atomic emission spectroscopy; CCD

Nazarenko, Alexander

145

Tropospheric and Airborne Emission Spectrometers  

NASA Technical Reports Server (NTRS)

X This paper describes the development of two related instruments, the Tropospheric Emission Spectrometer (TES) and the Airborne Emission Spectrometer (AES). Both instruments are infrared imaging Fourier Transform Spectrometers, used for measuring the state of the lower atmosphere, and in particular the measurement of ozone and ozone sources and sinks.

Glavich, Thomas; Beer, Reinhard

1996-01-01

146

Pulsed Nozzle Fourier Transform Microwave Spectrometer: Advances and Applications  

Microsoft Academic Search

The pulsed nozzle Fourier transform microwave (PNFTMW) spectrometer was developed by Balle and Flygare [A new method for observing the rotational spectra of weak molecular complexes: KrHCl. J. Chem. Phys. 1979, 71 (6), 2723–2724 and 1980, 72 (2), 922–932] in 1979. The design, fabrication, and operation of this spectrometer are complicated and it has largely remained a research laboratory tool

E. Arunan; Sagarika Dev; Pankaj K. Mandal

2004-01-01

147

Multilaser Herriott cell for planetary tunable laser spectrometers.  

PubMed

Geometric optics and matrix methods are used to mathematically model multilaser Herriott cells for tunable laser absorption spectrometers for planetary missions. The Herriott cells presented accommodate several laser sources that follow independent optical paths but probe a single gas cell. Strategically placed output holes located in the far mirrors of the Herriott cells reduce the size of the spectrometers. A four-channel Herriott cell configuration is presented for the specific application as the sample cell of the tunable laser spectrometer instrument selected for the sample analysis at Mars analytical suite on the 2009 Mars Science Laboratory mission. PMID:17906720

Tarsitano, Christopher G; Webster, Christopher R

2007-10-01

148

Imaging Fourier Transform Spectrometer  

SciTech Connect

The operating principles of an Imaging Fourier Transform Spectrometer (IFTS) are discussed. The advantages and disadvantages of such instruments with respect to alternative imaging spectrometers are discussed. The primary advantages of the IFTS are the capacity to acquire more than an order of magnitude more spectral channels than alternative systems with more than an order of magnitude greater etendue than for alternative systems. The primary disadvantage of IFTS, or FTS in general, is the sensitivity to temporal fluctuations, either random or periodic. Data from the IRIFTS (ir IFTS) prototype instrument, sensitive in the infrared, are presented having a spectral sensitivity of 0.01 absorbance units, a spectral resolution of 6 cm{sup {minus}1} over the range 0 to 7899 cm{sup {minus}1}, and a spatial resolution of 2.5 mr.

Bennett, C.L.; Carter, M.R.; Fields, D.J.; Hernandez, J.

1993-04-14

149

HyTES: Thermal Imaging Spectrometer Development  

NASA Technical Reports Server (NTRS)

The Jet Propulsion Laboratory has developed the Hyperspectral Thermal Emission Spectrometer (HyTES). It is an airborne pushbroom imaging spectrometer based on the Dyson optical configuration. First low altitude test flights are scheduled for later this year. HyTES uses a compact 7.5-12 micrometer m hyperspectral grating spectrometer in combination with a Quantum Well Infrared Photodetector (QWIP) and grating based spectrometer. The Dyson design allows for a very compact and optically fast system (F/1.6). Cooling requirements are minimized due to the single monolithic prism-like grating design. The configuration has the potential to be the optimal science-grade imaging spectroscopy solution for high altitude, lighter-than-air (HAA, LTA) vehicles and unmanned aerial vehicles (UAV) due to its small form factor and relatively low power requirements. The QWIP sensor allows for optimum spatial and spectral uniformity and provides adequate responsivity which allows for near 100mK noise equivalent temperature difference (NEDT) operation across the LWIR passband. The QWIP's repeatability and uniformity will be helpful for data integrity since currently an onboard calibrator is not planned. A calibration will be done before and after eight hour flights to gage any inconsistencies. This has been demonstrated with lab testing. Further test results show adequate NEDT, linearity as well as applicable earth science emissivity target results (Silicates, water) measured in direct sunlight.

Johnson, William R.; Hook, Simon J.; Mouroulis, Pantazis; Wilson, Daniel W.; Gunapala, Sarath D.; Realmuto, Vincent; Lamborn, Andy; Paine, Chris; Mumolo, Jason M.; Eng, Bjorn T.

2011-01-01

150

The 8 ? spectrometer  

NASA Astrophysics Data System (ADS)

The 8 ? spectrometer installed at the TRIUMF-ISAC radioactive beam facility provides a powerful and versatile detection system for radioactive decay, allowing measurements of ? rays and conversion electrons with high resolution, tagging on ? particles, and fast-timing measurements. The facility supports a wide program of research in the fields of nuclear structure, nuclear astrophysics and fundamental symmetries with low-energy radioactive beams.

Garnsworthy, A. B.; Garrett, P. E.

2014-01-01

151

Demonstration AOTF Imaging Spectrometer  

NASA Technical Reports Server (NTRS)

Spectral images of high quality obtained. Acousto-optical-tunable-filter (AOTF) imaging spectrometer is optical system in which AOTF serves as spectrally dispersive element causing image on final focal plane to be shifted on plane by distance depending on wavelength of light emanating from scene. Useful in several applications involving identification, via characteristic spectras, of substances in observed scenes: examples include prospecting for minerals and detecting chemical pollutants.

Chao, Tien-Hsin; Yu, Jeffrey; Cheng, Li-Jen

1993-01-01

152

The Cryogenic Grating Spectrometer  

NASA Technical Reports Server (NTRS)

The Cryogenic Grating Spectrometer (CGS) first flew on the KAO in 1982 December and has been open to guest investigators since 1984 October. In the past 12 years it has completed over 100 research flights supporting 13 different principal investigators studying a variety of objects. We briefly describe the instrument, its capabilities and accomplishments, and acknowledge the people who have contributed to its development and operation.

Erickson, Edwin F.; Haas, Michael R.; Colgan, Sean W. J.; Simpson, Janet P.; Rubin, Robert H.

1995-01-01

153

Expert overseer for mass spectrometer system  

DOEpatents

An expert overseer for the operation and real-time management of a mass spectrometer and associated laboratory equipment. The overseer is a computer-based expert diagnostic system implemented on a computer separate from the dedicated computer used to control the mass spectrometer and produce the analysis results. An interface links the overseer to components of the mass spectrometer, components of the laboratory support system, and the dedicated control computer. Periodically, the overseer polls these devices and as well as itself. These data are fed into an expert portion of the system for real-time evaluation. A knowledge base used for the evaluation includes both heuristic rules and precise operation parameters. The overseer also compares current readings to a long-term database to detect any developing trends using a combination of statistical and heuristic rules to evaluate the results. The overseer has the capability to alert lab personnel whenever questionable readings or trends are observed and provide a background review of the problem and suggest root causes and potential solutions, or appropriate additional tests that could be performed. The overseer can change the sequence or frequency of the polling to respond to an observation in the current data.

Filby, Evan E. (Idaho Falls, ID); Rankin, Richard A. (Ammon, ID)

1991-01-01

154

The BFKL Pomeron Calculus in zero transverse dimensions: summation of Pomeron loops and generating functional for the multiparticle production processes  

E-print Network

In this paper we address two problems in the BFKL Pomeron calculus in zero transverse dimensions: the summation of the Pomeron loops and the calculation of the processes of multiparticle generation. We introduce a new generating functional for these processes and obtain the evolution equation for it. We argue that in the kinematic range given by $ 1 \\ll \\ln(1/\\as^2) \\ll \\as Y \\ll \\frac{1}{\\as}$, we can reduce the Pomeron calculus to exchange of non-interacting Pomerons with the renormalized amplitude of their interaction with the target. Therefore, the summation of the Pomeron loops can be performed using Mueller, Patel, Salam and Iancu approximation.

E. Levin; A. Prygarin

2007-01-22

155

ADVANCED METHODS FOR THE COMPUTATION OF PARTICLE BEAM TRANSPORT AND THE COMPUTATION OF ELECTROMAGNETIC FIELDS AND MULTIPARTICLE PHENOMENA  

SciTech Connect

Since 1980, under the grant DEFG02-96ER40949, the Department of Energy has supported the educational and research work of the University of Maryland Dynamical Systems and Accelerator Theory (DSAT) Group. The primary focus of this educational/research group has been on the computation and analysis of charged-particle beam transport using Lie algebraic methods, and on advanced methods for the computation of electromagnetic fields and multiparticle phenomena. This Final Report summarizes the accomplishments of the DSAT Group from its inception in 1980 through its end in 2011.

Alex J. Dragt

2012-08-31

156

A versatile photoelectron spectrometer for pressures up to 30 mbar  

NASA Astrophysics Data System (ADS)

High-pressure photoelectron spectroscopy is a rapidly developing technique with applications in a wide range of fields ranging from fundamental surface science and catalysis to energy materials, environmental science, and biology. At present the majority of the high-pressure photoelectron spectrometers are situated at synchrotron end stations, but recently a small number of laboratory-based setups have also emerged. In this paper we discuss the design and performance of a new laboratory based high pressure photoelectron spectrometer equipped with an Al K? X-ray anode and a hemispherical electron energy analyzer combined with a differentially pumped electrostatic lens. The instrument is demonstrated to be capable of measuring core level spectra at pressures up to 30 mbar. Moreover, valence band spectra of a silver sample as well as a carbon-coated surface (graphene) recorded under a 2 mbar nitrogen atmosphere are presented, demonstrating the versatility of this laboratory-based spectrometer.

Eriksson, Susanna K.; Hahlin, Maria; Kahk, Juhan Matthias; Villar-Garcia, Ignacio J.; Webb, Matthew J.; Grennberg, Helena; Yakimova, Rositza; Rensmo, Hâkan; Edström, Kristina; Hagfeldt, Anders; Siegbahn, Hans; Edwards, Mârten O. M.; Karlsson, Patrik G.; Backlund, Klas; Åhlund, John; Payne, David J.

2014-07-01

157

EXTENDING THE USEFUL LIFE OF OLDER MASS SPECTROMETERS  

SciTech Connect

Thermal ionization and gas mass spectrometers are widely used across the Department of Energy (DOE) Complex and contractor laboratories. These instruments support critical missions, where high reliability and low measurement uncertainty are essential. A growing number of these mass spectrometers are significantly older than their original design life. The reality is that manufacturers have declared many of the instrument models obsolete, with direct replacement parts and service no longer available. Some of these obsolete models do not have a next generation, commercially available replacement. Today's budget conscious economy demands for the use of creative funds management. Therefore, the ability to refurbish (or upgrade) these valuable analytical tools and extending their useful life is a cost effective option. The Savannah River Site (SRS) has the proven expertise to breathe new life into older mass spectrometers, at a significant cost savings compared to the purchase and installation of new instruments. A twenty-seven year old Finnigan MAT-261{trademark} Thermal Ionization Mass Spectrometer (TIMS), located at the SRS F/H Area Production Support Laboratory, has been successfully refurbished. Engineers from the Savannah River National Laboratory (SRNL) fabricated and installed the new electronics. These engineers also provide continued instrument maintenance services. With electronic component drawings being DOE Property, other DOE Complex laboratories have the option to extend the life of their aged Mass Spectrometers.

Johnson, S.; Cordaro, J.; Holland, M.; Jones, V.

2010-06-17

158

The transition-edge EBIT microcalorimeter spectrometer  

NASA Astrophysics Data System (ADS)

The Transition-edge EBIT Microcalorimeter Spectrometer (TEMS) is a 1000-pixel array instrument to be delivered to the Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory (LLNL) in 2015. It will be the first fully operational array of its kind. The TEMS will utilize the unique capabilities of the EBIT to verify and benchmark atomic theory that is critical for the analysis of high-resolution data from microcalorimeter spectrometers aboard the next generation of x-ray observatories. We present spectra from the present instrumentation at EBIT, as well as our latest results with time-division multiplexing using the current iteration of the TEMS focal plane assembly in our test platform at NASA/GSFC.

Betancourt-Martinez, Gabriele L.; Adams, Joseph; Bandler, Simon; Beiersdorfer, Peter; Brown, Gregory; Chervenak, James; Doriese, Randy; Eckart, Megan; Irwin, Kent; Kelley, Richard; Kilbourne, Caroline; Leutenegger, Maurice; Porter, F. S.; Reintsema, Carl; Smith, Stephen; Ullom, Joel

2014-07-01

159

Neutron spectrometer for improved SNM search.  

SciTech Connect

With the exception of large laboratory devices with very low sensitivities, a neutron spectrometer have not been built for fission neutrons such as those emitted by special nuclear materials (SNM). The goal of this work was to use a technique known as Capture Gated Neutron Spectrometry to develop a solid-state device with this functionality. This required modifications to trans-stilbene, a known solid-state scintillator. To provide a neutron capture signal we added lithium to this material. This unique triggering signal allowed identification of neutrons that lose all of their energy in the detector, eliminating uncertainties that arise due to partial energy depositions. We successfully implemented a capture gated neutron spectrometer and were able to distinguish an SNM like fission spectrum from a spectrum stemming from a benign neutron source.

Vance, Andrew L.; Aigeldinger, Georg

2007-03-01

160

Portable gas chromatograph-mass spectrometer  

SciTech Connect

A gas chromatograph-mass spectrometer (GC-MS) for use as a field portable organic chemical analysis instrument. The GC-MS is designed to be contained in a standard size suitcase, weighs less than 70 pounds, and requires less than 600 watts of electrical power at peak power (all systems on). The GC-MS includes: a conduction heated, forced air cooled small bore capillary gas chromatograph, a small injector assembly, a self-contained ion/sorption pump vacuum system, a hydrogen supply, a dual computer system used to control the hardware and acquire spectrum data, and operational software used to control the pumping system and the gas chromatograph. This instrument incorporates a modified commercial quadrupole mass spectrometer to achieve the instrument sensitivity and mass resolution characteristic of laboratory bench top units.

Andresen, B.D.; Eckels, J.D.; Kimmins, J.F.; Myers, D.W.

1994-12-31

161

Neutron range spectrometer  

DOEpatents

A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are colliminated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. 1 fig.

Manglos, S.H.

1988-03-10

162

Water Mass Map from Neutron Spectrometer  

NASA Technical Reports Server (NTRS)

December 8, 2003

This map shows the estimated lower limit of the water content of the upper meter of Martian soil. The estimates are derived from the hydrogen abundance measured by the neutron spectrometer component of the gamma ray spectrometer suite on NASA's Mars Odyssey spacecraft.

The highest water-mass fractions, exceeding 30 percent to well over 60 percent, are in the polar regions, beyond about 60 degrees latitude north or south. Farther from the poles, significant concentrations are in the area bound in longitude by minus 10 degrees to 50 degrees and in latitude by 30 degrees south to 40 degrees north, and in an area to the south and west of Olympus Mons (30 degrees to 0 degrees south latitude and minus 135 degrees to 110 degrees longitude).

NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the 2001 Mars Odyssey mission for the NASA Office of Space Science in Washington. Investigators at Arizona State University in Tempe, the University of Arizona in Tucson and NASA's Johnson Space Center, Houston, operate the science instruments. The gamma-ray spectrometer was provided by the University of Arizona in collaboration with the Russian Aviation and Space Agency, which provided the high-energy neutron detector, and the Los Alamos National Laboratories, New Mexico, which provided the neutron spectrometer. Lockheed Martin Space Systems, Denver, is the prime contractor for the project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL.

2003-01-01

163

Impacts of Limestone Multi-particle Size on Production Performance, Egg Shell Quality, and Egg Quality in Laying Hens  

PubMed Central

This experiment was conducted to evaluate the effects of single or multi-particle size limestone on the egg shell quality, egg production, egg quality and feed intake in laying hens. A total of 280 laying hens (ISA brown) were used in this 10-wk trial. Laying hens were randomly assigned to 4 treatments with 14 replications per treatment and 5 adjacent cages as a replication (hens were caged individually). The experimental treatments were: i) L, basal diet+10% large particle limestone; ii) LS1, basal diet+8% large particle limestone+2% small particle limestone; iii) LS2, basal diet+6% large particle limestone+4% small particle limestone; iv) S, basal diet+10% small particle limestone. The egg production was unaffected by dietary treatments. The egg weight in S treatment was lighter than other treatments (p<0.05). The egg specific gravity in S treatment was lower than other treatments (p<0.05). The eggshell strength and eggshell thickness in S treatment were decreased when compared with other dietary treatments (p<0.05). The laying hens in LS1 and LS2 treatment had a higher average feed intake than the other two treatments (p<0.05). Collectively, the dietary multi-particle size limestone supplementation could be as efficient as large particle size limestone. PMID:25049635

Guo, X. Y.; Kim, I. H.

2012-01-01

164

A microwave transmission spectrometer  

NASA Astrophysics Data System (ADS)

The design and performance of a microwave transmission spectrometer operating in the 12.4-18 GHz frequency range is described. This spectrometer measures the microwave power passing through a magnetic, metallic sample as a function of temperature and applied magnetic field. Significant features of the apparatus are the use of a solid state microwave amplifier as the homodyne receiver's front end and the inclusion of a calibration signal which is injected into the receiver simultaneously with the signal to be measured. The excellent noise figure (<2 dB) and gain (?34 dB) of the amplifier yield a receiver sensitivity of ?10-20 W in a 1 Hz bandwidth. The present microwave source is a dielectric resonant oscillator which generates 100 mW at 16.95 GHz, although the system can also operate with a klystron or microwave sweep oscillator locked to any frequency between 12.4 and 18 GHz. The first use of the system was to measure the transmission through the amorphous ferromagnet Metglas(R) 2605SC (Allied Chemical Corporation). A peak in the transmission was observed at ferromagnetic resonance. This transmission peak was contaminated by a signal going around, not through, the sample which we tentatively identify with surface acoustic waves.

Waldfried, Carlo; Wadewitz, Scott; Dewar, G.

1994-05-01

165

GRIS: The grating infrared spectrometer  

Microsoft Academic Search

The grating infrared spectrometer (GRIS) is an echelle grating, prism cross-dispersed, spectrometer designed for the 2.3-m Steward Observatory telescope. The cross-dispersed format utilizes a Near Infrared Camera and Multi-Object Spectrometer 3 (NICMOS 3) HgCdTe detector array for observations in the 0.86-2.5 micrometer spectral region. An echelle grating, ruled on both sides, provides resolutions of 3449 and 9439 per slit width,

Rodger I. Thompson; Harland W. Epps; Greg Winters; William Womack; Eric Mentzell

1994-01-01

166

[Small imaging spectrometer for the inspection of fruit quality].  

PubMed

Imaging spectrometer can acquire spatial and spectral information of the target at the same time, achieve high-precision, non-destructive, non-contamination and large area instantaneous inspection of the fruit. In order to get the imaging spectrum of the fruit, compact imaging spectrometer with convex grating produced by self was designed, it has the advantages of good performance, small volume and low weight, its resolution at 578 nm is 2.1 nm, and spectral line bend and chromatic distortion are both smaller than 0.6%. Laboratory test of the imaging spectrometer and the experiment of getting the imaging spectrum of apple were done, and the result shows that the imaging spectrometer satisfies the design requirement and can acquire the imaging spectrum of apple rapidly with high precision for inspection of fruit quality. PMID:22497177

Liu, Yu-juan; Tang, Yu-guo; Cui, Ji-cheng; Bayanheshig

2012-01-01

167

Calibration of a High Resolution Soft X-ray Spectrometer  

SciTech Connect

A high resolution grating spectrometer (HRGS) with 2400 line/mm variable line spacing grating for the 10-50 {angstrom} wavelength range has been designed for laser-produced plasma experiments at the Lawrence Livermore National Laboratory (LLNL). The spectrometer has a large radius of curvature, R=44.3 m, is operated at a 2{sup o} grazing angle and can record high signal-to-noise spectra when used with a low-noise, cooled, charge-coupled device detector. The instrument can be operated with a 10-25 {micro}m wide slit to achieve the best spectral resolving power on laser plasma sources, approaching 2000, or in slitless mode with a small symmetrical emission source. Results will be presented for the spectral response of the spectrometer cross-calibrated at the LLNL Electron Beam Ion Trap facility using the broadband x-ray energy EBIT Calorimeter Spectrometer (ECS).

Dunn, J; Beiersdorfer, P; Brown, G V; Magee, E W

2010-01-26

168

ISS Update: Alpha Magnetic Spectrometer  

NASA Video Gallery

NASA Public Affairs Officer Kelly Humphries interviews Trent Martin, Johnson Space Center project manager for the Alpha Magnetic Spectrometer (AMS) aboard the International Space Station. Questions...

169

Comparison of a transmission grating spectrometer to a reflective grating spectrometer for standoff laser-induced breakdown spectroscopy measurements  

SciTech Connect

We evaluate a new transmission grating spectrometer for standoff laser-induced breakdown spectroscopy (LIBS) measurements. LIBS spectra collected from standoff distances are often weak, with smaller peaks blending into the background and noise. Scattered light inside the spectrometer can also contribute to poor signal-to-background and signal-to-noise ratios for smaller emission peaks. Further, collecting standoff spectra can be difficult because most spectrometers are designed for laboratory environments and not for measurements in the field. To address these issues, a custom-designed small, lightweight transmission grating spectrometer with no moving parts was built that is well suited for standoff LIBS field measurements. The performance of the spectrometer was quantified through 10 m standoff LIBS measurements collected from aluminum alloy samples and measurements from spectra of a Hg-Ar lamp. The measurements were compared to those collected using a Czerny-Turner reflective grating spectrometer that covered a similar spectral range and used the same ICCD camera. Measurements using the transmission grating spectrometer had a 363% improved signal-to-noise ratio when measured using the 669 nm aluminum emission peak.

Weisberg, Arel; Craparo, Joseph; De Saro, Robert; Pawluczyk, Romuald

2010-05-01

170

Modeling of Dose Distribution for a Proton Beam Delivering System with the use of the MultiParticle Transport Code ``Fluka''  

Microsoft Academic Search

We have developed a new delivering system for hadron therapy which uses a multileaf collimator and a range shifter. We simulate our delivering beam system with the multi-particle transport code ``Fluka''. From these simulations we obtained information about the dose distributions, about stars generated in the delivering system elements and also information about the neutron flux. All the informations obtained

Marta Mumot; Alexey Agapov

2007-01-01

171

Photo ion spectrometer  

DOEpatents

A charged particle spectrometer for performing ultrasensitive quantitative analysis of selected atomic components removed from a sample. Significant improvements in performing energy and angular refocusing spectroscopy are accomplished by means of a two dimensional structure for generating predetermined electromagnetic field boundary conditions. Both resonance and non-resonance ionization of selected neutral atomic components allow accumulation of increased chemical information. A multiplexed operation between a SIMS mode and a neutral atomic component ionization mode with EARTOF analysis enables comparison of chemical information from secondary ions and neutral atomic components removed from the sample. An electronic system is described for switching high level signals, such as SIMS signals, directly to a transient recorder and through a charge amplifier to the transient recorder for a low level signal pulse counting mode, such as for a neutral atomic component ionization mode.

Gruen, Dieter M. (Downers Grove, IL); Young, Charles E. (Westmont, IL); Pellin, Michael J. (Naperville, IL)

1989-01-01

172

Flue gas analysis with a multicomponent IR-spectrometer  

NASA Astrophysics Data System (ADS)

The performance of a multi-component IR-spectrometer (Perkin-Elmer, mode. MCS 100) has been evaluated with regard to the influence of possible interferences from the gaseous compounds present in a flue gas. The spectrometer is configurated for measurement of NO, NO2, CO, CO2, N2O, NH3 and H2O. A theoretical examination of the absorption spectra of possible interfering hydrocarbons has been carried out together with a theoretical estimation of the errors introduced during the compensation for interferences due to incorrectly measured absorbances. The accuracy of the automatic compensation routines for interferences used by the spectrometer has been investigated by laboratory test runs including potential interferences from components not measured by the analyzer. The response time of ammonia has been studied in the laboratory and during field measurements.

Johansson, Annika; Brunstrom, Christer

1993-03-01

173

Multislit optimized spectrometer: flight-like environment test results  

NASA Astrophysics Data System (ADS)

The NASA ESTO funded Multislit Optimized Spectrometer (MOS) Instrument Incubator Program advances a spatial multiplexing spectrometer for coastal ocean remote sensing from laboratory demonstration to flight-like environment testing. The multiple slit design reduces the required telescope aperture leading to mass and volume reductions over conventional spectrometers when applied to the GEO-CAPE oceans mission. This paper discusses the performance and characterization of the MOS instrument from laboratory and thermal vacuum testing. It also presents the current technology readiness level and possible future applications. Results of an ocean color data product simulation study using flight-like performance data from MOS are also covered. The MOS instrument implementation for GEO-CAPE provides system benefits that may lead to measurable cost savings and reductions in risks while meeting its science objectives.

Good, William S.; Valle, Tim; Davis, Curtiss O.; Tufillaro, Nicholas; Spuhler, Peter; Hardesty, Chuck; Staples, Conor

2014-09-01

174

Spectrometer Observations Near Mawrth Vallis  

NASA Technical Reports Server (NTRS)

This targeted image from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) shows a region of heavily altered rock in Mars' ancient cratered highlands. The featured region is just south of Mawrth Vallis, a channel cut by floodwaters deep into the highlands.

CRISM acquired the image at 1216 UTC (8:16 a.m. EDT) on Oct. 2, 2006, near 25.4 degrees north latitude, 340.7 degrees east longitude. It covers an area about 13 kilometers (8 miles) long and, at the narrowest point, about 9 kilometers (5.6 miles) wide. At the center of the image, the spatial resolution is as good as 35 meters (115 feet) per pixel. The image was taken in 544 colors covering 0.36-3.92 micrometers.

This image includes four renderings of the data, all map-projected. At top left is an approximately true-color representation. At top right is false color showing brightness of the surface at selected infrared wavelengths. In the two bottom views, brightness of the surface at different infrared wavelengths has been compared to laboratory measurements of minerals, and regions that match different minerals have been colored. The bottom left image shows areas high in iron-rich clay, and the bottom right image shows areas high in aluminum-rich clay.

Clay minerals are important to understanding the history of water on Mars because their formation requires that rocks were exposed to liquid water for a long time. Environments where they form include soils, cold springs, and hot springs. There are many clay minerals, and which ones form depends on the composition of the rock, and the temperature, acidity, and salt content of the water. CRISM's sister instrument on the Mars Express spacecraft, OMEGA, has spectrally mapped Mars at lower spatial resolution and found several regions rich in clay minerals. The Mawrth Vallis region, in particular, was found to contain iron-rich clay. CRISM is observing these regions at several tens of times higher spatial resolution, to correlate the minerals with different rock formations and to search for new minerals not resolved by OMEGA.

CRISM has found that the iron-rich clays (lower left image) correspond with a layer of rock that is dark red in the true color view (upper left) and bright gray in the infrared (upper right). In addition, it has found previously undetected exposures of aluminum-rich clay, in a rock unit that is buff-colored in the true color view, and bluish in the infrared. Both types of rocks formed early in Mars' history, about 3.8 billion years ago. The difference in clay mineralogy reveals differences in the environment either over time or over a distance of kilometers. CRISM will be taking many more images of the Mawrth Vallis region to piece together the geologic history of this fascinating area that was once a wet oasis on Mars.

The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad.

CRISM's mission: Find the spectral fingerprints of aqueous and hydrothermal deposits and map the geology, composition and stratigraphy of surface features. The instrument will also watch the seasonal variations in Martian dust and ice aerosols, and water content in surface materials -- leading to new understanding of the climate.

NASA's Jet Propulsion Laboratory, a division of the Califonia Institute of Technology, Pasadena, manages the Mars Reconnaissance Orbiter for the NASA Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, is the prime contractor and built the spacecraft.

2006-01-01

175

DIRECT TRACE ANALYSIS OF VOLATILE ORGANIC COMPOUNDS IN AIR USING ION TRAP MASS SPECTROMETERS WITH FILTERED NOISE FIELDS  

EPA Science Inventory

Two ion trap mass spectrometers and direct air sampling interfaces are being evaluated in the laboratory for monitoring toxic air pollutants in real time. he mass spectrometers are the large, laboratory-based Finnigan MAT ion trap (ITMS) and the compact, field-deployable Teledyne...

176

Associated Particle Tagging (APT) in Magnetic Spectrometers  

SciTech Connect

Summary In Brief The Associated Particle Tagging (APT) project, a collaboration of Pacific Northwest National Laboratory (PNNL), Idaho National Laboratory (INL) and the Idaho State University (ISU)/Idaho Accelerator Center (IAC), has completed an exploratory study to assess the role of magnetic spectrometers as the linchpin technology in next-generation tagged-neutron and tagged-photon active interrogation (AI). The computational study considered two principle concepts: (1) the application of a solenoidal alpha-particle spectrometer to a next-generation, large-emittance neutron generator for use in the associated particle imaging technique, and (2) the application of tagged photon beams to the detection of fissile material via active interrogation. In both cases, a magnetic spectrometer momentum-analyzes charged particles (in the neutron case, alpha particles accompanying neutron generation in the D-T reaction; in the tagged photon case, post-bremsstrahlung electrons) to define kinematic properties of the relevant neutral interrogation probe particle (i.e. neutron or photon). The main conclusions of the study can be briefly summarized as follows: Neutron generator: • For the solenoidal spectrometer concept, magnetic field strengths of order 1 Tesla or greater are required to keep the transverse size of the spectrometer smaller than 1 meter. The notional magnetic spectrometer design evaluated in this feasibility study uses a 5-T magnetic field and a borehole radius of 18 cm. • The design shows a potential for 4.5 Sr tagged neutron solid angle, a factor of 4.5 larger than achievable with current API neutron-generator designs. • The potential angular resolution for such a tagged neutron beam can be less than 0.5o for modest Si-detector position resolution (3 mm). Further improvement in angular resolution can be made by using Si-detectors with better position resolution. • The report documents several features of a notional generator design incorporating the alpha-particle spectrometer concept, and outlines challenges involved in the magnetic field design. Tagged photon interrogation: • We investigated a method for discriminating fissile from benign cargo-material response to an energy-tagged photon beam. The method relies upon coincident detection of the tagged photon and a photoneutron or photofission neutron produced in the target material. The method exploits differences in the shape of the neutron production cross section as a function of incident photon energy in order to discriminate photofission yield from photoneutrons emitted by non-fissile materials. Computational tests of the interrogation method as applied to material composition assay of a simple, multi-layer target suggest that the tagged-photon information facilitates precise (order 1% thickness uncertainty) reconstruction of the constituent thicknesses of fissile (uranium) and high-Z (Pb) constituents of the test targets in a few minutes of photon-beam exposure. We assumed an 18-MeV endpoint tagged photon beam for these simulations. • The report addresses several candidate design and data analysis issues for beamline infrastructure required to produce a tagged photon beam in a notional AI-dedicated facility, including the accelerator and tagging spectrometer.

Jordan, David V.; Baciak, James E.; Stave, Sean C.; Chichester, David; Dale, Daniel; Kim, Yujong; Harmon, Frank

2012-10-16

177

A large solid angle high resolution recoil mass spectrometer for use with radioactive beams at GAMMASPHERE  

Microsoft Academic Search

A large solid angle, high resolution, recoil mass spectrometer has been designed for use with heavy ion beams from the Holifield Heavy Ion Facility at Oak Ridge National Laboratory. The design has been coordinated with the GAMMASPHERE detector project such that the spectrometer will operate with this 110-element germanium detector array at its target or focal plane positions with minimum

T. M. Cormier; J. D. Cole; J. H. Hamilton; A. V. Ramayya

1991-01-01

178

Initial tests of the magnetic spectrometer at the TANDAR accelerator  

Microsoft Academic Search

A new magnetic spectrometer has started operating at the 20 UD tandem accelerator of the TANDAR laboratory. A large acceptance angle and the ability to handle a broad range of energies and masses are its main characteristics. The associated detection system consists of a multiwire vertical drift chamber, an ionization chamber and a plastic scintillator. The complete device was tested

E. Achterberg; A. J Pacheco; M di Tada; J. O Fernández Niello; R. Liberman; G. V. Martí; M. Ramírez; J. E Testoni; K. Koide

1995-01-01

179

A practical Hadamard transform spectrometer for astronomical application  

NASA Technical Reports Server (NTRS)

The mathematical properties of Hadamard matrices and their application to spectroscopy are discussed. A comparison is made between Fourier and Hadamard transform encoding in spectrometry. The spectrometer is described and its laboratory performance evaluated. The algorithm and programming of inverse transform are given. A minicomputer is used to recover the spectrum.

Tai, M. H.

1977-01-01

180

Calibration Of Airborne Visible/IR Imaging Spectrometer  

NASA Technical Reports Server (NTRS)

Paper describes laboratory spectral and radiometric calibration of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) applied to all AVIRIS science data collected in 1987. Describes instrumentation and procedures used and demonstrates that calibration accuracy achieved exceeds design requirements. Developed for use in remote-sensing studies in such disciplines as botany, geology, hydrology, and oceanography.

Vane, G. A.; Chrien, T. G.; Miller, E. A.; Reimer, J. H.

1990-01-01

181

HEAVY ION FUSION SCIENCE VIRTUAL NATIONAL LABORATORY2nd QUARTER 2010 MILESTONE REPORTDevelop the theory connecting pyrometer and streak camera spectrometer data to the material properties of beam heatedtargets and compare to the data  

SciTech Connect

This milestone has been accomplished. We have extended the theory that connects pyrometer and streak spectrometer data to material temperature on several fronts and have compared theory to NDCX-I experiments. For the case of NDCX-I, the data suggests that as the metallic foils are heated they break into droplets (cf. HIFS VNL Milestone Report FY 2009 Q4). Evaporation of the metallic surface will occur, but optical emission should be directly observable from the solid or liquid surface of the foil or from droplets. However, the emissivity of hot material may be changed from the cold material and interference effects will alter the spectrum emitted from small droplets. These effects have been incorporated into a theory of emission from droplets. We have measured emission using streaked spectrometry and together with theory of emission from heated droplets have inferred the temperature of a gold foil heated by the NDCX-I experiment. The intensity measured by the spectrometer is proportional to the emissivity times the blackbody intensity at the temperature of the foil or droplets. Traditionally, a functional form for the emissivity as a function of wavelength (such as a quadratic) is assumed and the three unknown emissivity parameters (for the case of a quadratic) and the temperature are obtained by minimizing the deviations from the fit. In the case of the NDCX-I experiment, two minima were obtained: at 7200 K and 2400 K. The best fit was at 7200 K. However, when the actual measured emissivity of gold was used and when the theoretical corrections for droplet interference effects were made for emission from droplets having radii in the range 0.2 to 2.0 microns, the corrected emissivity was consistent with the 2400 K value, whereas the fit emissivity at 7200 K shows no similarity to the corrected emissivity curves. Further, an estimate of the temperature obtained from beam heating is consistent with the lower value. This exercise proved to be a warning to be skeptical of assuming functional forms when they are unknown, and also represents a first success of the droplet emission theory. The thermal optical emission from a hot metal surface is polarized (for observation angles that are not normal to the surface). By observing the intensity of both polarizations at two or more observation angles the emissivity can be inferred directly, and the temperature at the surface unambiguously determined. Emission from the spolarization (where the E-field is parallel to the surface and normal to the wave vector) is generally less intense than emission from the p-polarization (E-field that is normal to the s-polarization E-field and the wave vector.) The emissivity and temperature may be inferred directly without assuming any specific functional form for the emissivity or resorting to published data tables (which usually do not apply when temperatures reach the WDM regime). We have derived the theory of polarized emission from hot metals, and consider an improved method of temperature determination that takes advantage of polarization measurements, which we call polarization pyrometry. Thus far we have successfully applied the theory to electrically heated metallic filaments, and will apply the theory to beam heated targets when chamber space constraints are removed that will make it feasible to observe the targets at multiple angles. For the case of experiments on NDCX-II, hydrodynamic expansion on a nanosecond timescale that is comparable to the heating time will result in an expanding fluid, with a strong (but finite) density and temperature gradient. Emission will be observed from positions in the foil near the critical density (where the observation photon frequency is equal to the local plasma frequency). By assuming a brightness temperature equal to the local fluid temperature at the critical frequency, a time history of the emission spectrum from an expanding foil can be synthesized from a hydrodynamic simulation of the target. We find that observations from the ultraviolet to the infrared will allow a probing of the target at dif

More, R.M.; Barnard, J. J.; Bieniosek, F.M.; Henestroza, E.; Lidia, S. M.; Ni, P. A.

2010-04-01

182

A High Resolution Fourier-Transform Spectrometer for the Measurement of Atmospheric Column Abundances  

NASA Technical Reports Server (NTRS)

A compact, high resolution Fourier-transform spectrometer for atmospheric near ultraviolet spectroscopy has been installed at the Jet Propulsion Laboratory's Table Mountain Facility (34.4N, 117.7 W, elevation 2290m).

Cageao, R.; Sander, S.; Blavier, J.; Jiang, Y.; Nemtchinov, V.

2000-01-01

183

A time-of-flight backscattering spectrometer at the Spallation Neutron Source, BASIS  

SciTech Connect

We describe the design and current performance of the backscattering silicon spectrometer (BASIS), a time-of-flight backscattering spectrometer built at the spallation neutron source (SNS) of the Oak Ridge National Laboratory (ORNL). BASIS is the first silicon-based backscattering spectrometer installed at a spallation neutron source. In addition to high intensity, it offers a high-energy resolution of about 3.5 {mu}eV and a large and variable energy transfer range. These ensure an excellent overlap with the dynamic ranges accessible at other inelastic spectrometers at the SNS.

Mamontov, E.; Herwig, K. W. [Neutron Scattering Science Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831 (United States)

2011-08-15

184

Preliminary testing of a prototype portable X-ray fluorescence spectrometer  

NASA Technical Reports Server (NTRS)

A portable X-ray fluorescence spectrometer for use as an analyzer in mineral resource investigative work was built and tested. The prototype battery powered spectrometer, measuring 11 by 12 by 5 inches and weighing only about 15 pounds, was designed specifically for field use. The spectrometer has two gas proportional counters and two radioactive sources, Cd (10a) and Fe (55). Preliminary field and laboratory tests on rock specimens and rock pulps have demonstrated the capability of the spectrometer to detect 33 elements to date. Characteristics of the system present some limitations, however, and further improvements are recommended.

Patten, L. L.; Anderson, N. B.; Stevenson, J. J.

1982-01-01

185

Neutron range spectrometer  

DOEpatents

A neutron range spectrometer and method for determining the neutron energy spectrum of a neutron emitting source are disclosed. Neutrons from the source are collimnated along a collimation axis and a position sensitive neutron counter is disposed in the path of the collimated neutron beam. The counter determines positions along the collimation axis of interactions between the neutrons in the neutron beam and a neutron-absorbing material in the counter. From the interaction positions, a computer analyzes the data and determines the neutron energy spectrum of the neutron beam. The counter is preferably shielded and a suitable neutron-absorbing material is He-3. The computer solves the following equation in the analysis: ##EQU1## where: N(x).DELTA.x=the number of neutron interactions measured between a position x and x+.DELTA.x, A.sub.i (E.sub.i).DELTA.E.sub.i =the number of incident neutrons with energy between E.sub.i and E.sub.i +.DELTA.E.sub.i, and C=C(E.sub.i)=N .sigma.(E.sub.i) where N=the number density of absorbing atoms in the position sensitive counter means and .sigma. (E.sub.i)=the average cross section of the absorbing interaction between E.sub.i and E.sub.i +.DELTA.E.sub.i.

Manglos, Stephen H. (East Syracuse, NY)

1989-06-06

186

Aerosol mobility size spectrometer  

DOEpatents

A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

Wang, Jian (Port Jefferson, NY); Kulkarni, Pramod (Port Jefferson Station, NY)

2007-11-20

187

Multiple order common path spectrometer  

NASA Technical Reports Server (NTRS)

The present invention relates to a dispersive spectrometer. The spectrometer allows detection of multiple orders of light on a single focal plane array by splitting the orders spatially using a dichroic assembly. A conventional dispersion mechanism such as a defraction grating disperses the light spectrally. As a result, multiple wavelength orders can be imaged on a single focal plane array of limited spectral extent, doubling (or more) the number of spectral channels as compared to a conventional spectrometer. In addition, this is achieved in a common path device.

Newbury, Amy B. (Inventor)

2010-01-01

188

Method for calibrating mass spectrometers  

DOEpatents

A method whereby a mass spectra generated by a mass spectrometer is calibrated by shifting the parameters used by the spectrometer to assign masses to the spectra in a manner which reconciles the signal of ions within the spectra having equal mass but differing charge states, or by reconciling ions having known differences in mass to relative values consistent with those known differences. In this manner, the mass spectrometer is calibrated without the need for standards while allowing the generation of a highly accurate mass spectra by the instrument.

Anderson, Gordon A [Benton City, WA; Brands, Michael D [Richland, WA; Bruce, James E [Schwenksville, PA; Pasa-Tolic, Ljiljana [Richland, WA; Smith, Richard D [Richland, WA

2002-12-24

189

The JPL Field Emission Spectrometer  

NASA Technical Reports Server (NTRS)

The Jet Propulsion Laboratory (JPL) Field Emission Spectrometer (FES) was built by Designs and Prototypes based on a set of functional requirements supplied by JPL. The instrument has a spectral resolution of 6 wavenumbers (wn) and can acquire spectra from either the Mid Infrared (3-5 mu m) or the Thermal Infrared (8-12 pm) depending on whether the InSb or HgCdTe detector is installed respectively. The instrument consists of an optical head system unit and battery. The optical head which is tripod mounted includes the interferometer and detector dewar assembly. Wavelength calibration of the interferometer is achieved using a Helium-Neon laser diode. The dewar needs replenishing with liquid Nitrogen approximately every four hours. The system unit includes the controls for operation and the computer used for acquiring viewing and processing spectra. Radiometric calibration is achieved with an external temperature-controlled blackbody that mounts on the fore-optics of the instrument. The blackbody can be set at 5 C increments between 10 and 55 C. The instrument is compact and weighs about 33 kg. Both the wavelength calibration and radiometric calibration of the instrument have been evaluated. The wavelength calibration was checked by comparison of the position of water features in a spectrum of the sky with their position in the output from a high resolution atmospheric model. The results indicatethat the features in the sky spectrum are within 6-8 wn of their position ill the model spectrum. The radiometric calibration was checked by first calibrating the instrument using the external blackbody supplied with the instrument and then measuring the radiance from another external blackbody at a series of temperatures. The temperatures of these radiance spectra were then recovered by inventing Planck's law and the recovered temperatures compared lo the measured blackbody temperature. These results indicate that radiometric calibration is good to 0.5 C over the range of temperatures 10 to 55 C. The results also indicate that the instrument drifts slowly over time and should be recalibrated every 20 to 30 minutes in the field to ensure good radiometric fidelity. The instrument has now been extensively tested in the field in the United States and Australia. These in situ field measurements are being used to validate emissivity spectra recovered from the Thermal Infrared Multispectral Scanner (TIMS) and also the Australian CO2 Laser. The availability of in situ measurements is proving crucial to validation of the spectra derived from the airborne instruments since many natural surfaces cannot be easily transported back to the laboratory.

Hook, Simon J.; Kahle, Anne B.

1995-01-01

190

A balloon-borne aerosol spectrometer for high altitude low aerosol concentration measurements  

SciTech Connect

Funded by Air Force Wright Aeronautical Laboratory, a new balloon-borne high altitude aerosol spectrometer, for the measurement of cirrus cloud ice crystals, has been developed and successfully flown by Sandia National Laboratories and Radiance Research. This report (1) details the aerosol spectrometer design and construction, (2) discusses data transmission and decoding, (3) presents data collected on three Florida flights in tables and plots. 2 refs., 11 figs., 3 tabs.

Brown, G.S. (Sandia National Labs., Albuquerque, NM (USA)); Weiss, R.E. (Radiance Research, Seattle, WA (USA))

1990-08-01

191

Versatile cluster based photoelectron spectrometer  

SciTech Connect

A recently constructed cluster based photoelectron spectrometer is described. This instrumentation is unique in that it enables the kinetic energy analysis of electrons ejected from both anions and neutral clusters. This capability permits the investigation of discrete electronic levels in all charge states (anionic, neutral, and cationic). A laser vaporization plasma reactor cluster source affixed with a sublimation cell is employed to produce a variety of metal clusters, and the resulting cluster distributions are analyzed with time-of-flight mass spectrometry. The corresponding electronic structure is analyzed with a 'magnetic bottle' photoelectron spectrometer. Examples of instrument performance operating in both anion photodetachment and neutral multiphoton ionization (MPI) modes are provided. In the case of neutral MPI, the corresponding product distribution is collected with a Wiley-McLaren [Rev. Sci. Instrum. 26, 1150 (1955)] mass spectrometer mounted perpendicular to the magnetic bottle photoelectron spectrometer.

Knappenberger, K. L. Jr.; Jones, C. E. Jr.; Sobhy, M. A.; Castleman, A. W. Jr. [Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802 and Department of Physics, Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

2006-12-15

192

Micromachined Slits for Imaging Spectrometers  

NASA Technical Reports Server (NTRS)

Slits for imaging spectrometers can now be fabricated to a precision much greater than previously attainable. What makes this possible is a micromachining process that involves the use of microlithographic techniques.

Wilson, Daniel; Kenny, James; White, Victor

2008-01-01

193

MWPCs for the PINOT spectrometer  

Microsoft Academic Search

Summary  A set of eight MWPCs was designed for PINOT, a two-arm neutral meson spectrometer designed to perform nuclear physics experiments\\u000a in the intermediate energy range. These MWPCs have an active surface of (329×576) mm2 and both anode and cathode wire read-out is performed. A series of tests on some prototype and the behaviour of the chambers\\u000a used in the spectrometer

G. Caviasso; E. Chiavassa; G. Dellacasa; N. De Marco; F. Ferrero; A. Musso; A. Piccotti; A. Poppa; E. Scomparin; E. Vercellin; M. Gallio; F. Brochard; J. M. Durand; R. Bertini

1990-01-01

194

Preliminary Results of an On-Line, Multi-Spectrometer Fission Product Monitoring System to Support Advanced Gas Reactor Fuel Testing and Qualification in the Advanced Test Reactor at the Idaho National Laboratory  

SciTech Connect

The Advanced Gas Reactor -1 (AGR-1) experiment is the first experiment in a series of eight separate low enriched uranium (LEU) oxycarbide (UCO) tri-isotropic (TRISO) particle fuel (in compact form) experiments scheduled for placement in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The experiment began irradiation in the ATR with a cycle that reached full power on December 26, 2006 and will continue irradiation for about 2.5 years. During this time six separate capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The goals of the irradiation experiment is to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. This paper presents the preliminary test details of the fuel performance, as measured by the control and acquisition software.

Dawn M. Scates; John K. Hartwell; John B. Walter; Mark W. Drigert

2007-10-01

195

Coastal Research Imaging Spectrometer  

NASA Technical Reports Server (NTRS)

The Coastal Research Imaging Spectrometer (CRIS) is an airborne remote sensing system designed specifically for research on the physical, chemical, and biological characteristics of coastal waters. The CRIS includes a visible-light hyperspectral imaging subsystem for measuring the color of water, which contains information on the biota, sediment, and nutrient contents of the water. The CRIS also includes an infrared imaging subsystem, which provides information on the temperature of the water. The combination of measurements enables investigation of biological effects of both natural and artificial flows of water from land into the ocean, including diffuse and point-source flows that may contain biological and/or chemical pollutants. Temperature is an important element of such measurements because temperature contrasts can often be used to distinguish among flows from different sources: for example, a sewage outflow could manifest itself in spectral images as a local high-temperature anomaly. Both the visible and infrared subsystems scan in pushbroom mode: that is, an aircraft carrying the system moves along a ground track, the system is aimed downward, and image data are acquired in across-track linear arrays of pixels. Both subsystems operate at a frame rate of 30 Hz. The infrared and visible-light optics are adjusted so that both subsystems are aimed at the same moving swath, which has across-track angular width of 15 . Data from the infrared and visible imaging subsystems are stored in the same file along with aircraft- position data acquired by a Global Positioning System receiver. The combination of the three sets of data is used to construct infrared and hyperspectral maps of scanned areas (see figure). The visible subsystem is based on a grating spectrograph and a rapid-readout charge-coupled-device camera. Images of the swatch are acquired in 256 spectral bands at wavelengths from 400 to 800 nm. The infrared subsystem, which is sensitive in a single wavelength band of 8 to 10 m, is based on a focal-plane array of HgCdTe photodetectors that are cooled to an operating temperature of 77 K by use of a closed-Stirling-cycle mechanical cooler. The nonuniformities of the HgCdTe photodetector array are small enough that the raw pixel data from the infrared subsystem can be used to recognize temperature differences on the order of 1 C. By use of a built-in blackbody calibration source that can be switched into the field of view, one can obtain bias and gain offset terms for individual pixels, making it possible to offset the effects of nonuniformities sufficiently to enable the measurement of temperature differences as small as 0.1 C.

Lucey, Paul G.; Williams, Timothy; Horton, Keith A.

2004-01-01

196

Ray tracing package through a lens system and a spectrometer  

SciTech Connect

To study the light collection optics of the ISX-B two-dimensional (2-D) Thomson scattering system, we have implemented in the Oak Ridge National Laboratory (ORNL) Fusion Energy Division (FED) PDP-10 two computer programs, LENS and SPECT, that trace rays through a lens system and a spectrometer, respectively. The lens package follows the path of any kind of ray (meridional or skew) through a centered optical system formed by an arbitrary number of spherical surfaces. The spectrometer package performs geometrical ray tracing through a Czerney-Turner spectrometer and can be easily modified for studying any other configuration. Contained herein is a description of the procedures followed and a listing of the computer programs.

Zurro, B.; King, P.W.; Lazarus, E.A.

1980-03-01

197

Resolution-enhanced Mapping Spectrometer  

NASA Technical Reports Server (NTRS)

A familiar mapping spectrometer implementation utilizes two dimensional detector arrays with spectral dispersion along one direction and spatial along the other. Spectral images are formed by spatially scanning across the scene (i.e., push-broom scanning). For imaging grating and prism spectrometers, the slit is perpendicular to the spatial scan direction. For spectrometers utilizing linearly variable focal-plane-mounted filters the spatial scan direction is perpendicular to the direction of spectral variation. These spectrometers share the common limitation that the number of spectral resolution elements is given by the number of pixels along the spectral (or dispersive) direction. Resolution enhancement by first passing the light input to the spectrometer through a scanned etalon or Michelson is discussed. Thus, while a detector element is scanned through a spatial resolution element of the scene, it is also temporally sampled. The analysis for all the pixels in the dispersive direction is addressed. Several specific examples are discussed. The alternate use of a Michelson for the same enhancement purpose is also discussed. Suitable for weight constrained deep space missions, hardware systems were developed including actuators, sensor, and electronics such that low-resolution etalons with performance required for implementation would weigh less than one pound.

Kumer, J. B.; Aubrun, J. N.; Rosenberg, W. J.; Roche, A. E.

1993-01-01

198

Micromechanical shutter based mass spectrometers  

NASA Astrophysics Data System (ADS)

New shutter systems based on MEMS technology (Micro-Electro-Mechanical System) allow to build new types of ultra-low weight mass spectrometers for applications in space. Applications include compact particle velocity filters and the replacement of the conventional carbon foil or secondary electrons emitting start surface used in time-of-flight mass spectrometers. The PRIMA instrument (PRIsma Mass Analyzer), a MEMS shutter based time-of-flight mass spectrometer based on the Solar WInd Monitor (SWIM) sensor developed for the Indian Chandrayaan-1 mission, will be used for flight-verification of the MEMS shutter technique. We review the expected performance of this instrument. The PRIMA instrument will be launched on the Swedish Space Corporation's PRISMA satellite in 2008/2009.

Wieser, M.; Barabash, S.; Emanuelsson, M.; Brinkfeldt, K.; Enoksson, P.

2009-06-01

199

Mini ion trap mass spectrometer  

DOEpatents

An ion trap which operates in the regime between research ion traps which can detect ions with a mass resolution of better than 1:10.sup.9 and commercial mass spectrometers requiring 10.sup.4 ions with resolutions of a few hundred. The power consumption is kept to a minimum by the use of permanent magnets and a novel electron gun design. By Fourier analyzing the ion cyclotron resonance signals induced in the trap electrodes, a complete mass spectra in a single combined structure can be detected. An attribute of the ion trap mass spectrometer is that overall system size is drastically reduced due to combining a unique electron source and mass analyzer/detector in a single device. This enables portable low power mass spectrometers for the detection of environmental pollutants or illicit substances, as well as sensors for on board diagnostics to monitor engine performance or for active feedback in any process involving exhausting waste products.

Dietrich, Daniel D. (Livermore, CA); Keville, Robert F. (Valley Springs, CA)

1995-01-01

200

Development of a tritium accelerator mass spectrometer  

SciTech Connect

An accelerator mass spectrometer (AMS) for direct atom counting of tritium ahs been developed using the Crocker Nuclear Laboratory's (CNL) 76 sector-focused cyclotron. Tritons were accelerated to 6.2 MeV and detected in a silicon {Delta}E-E charged particle telescope. An efficiency for detection of 2.4 x 10/sup -5/ was achieved with the smallest sample detected containing 2.6 mBq (70 fCi) of tritium at a T/H ratio of 3.7 x 10/sup 13/. Counting times were 3 to 6 minutes with smaller samples requiring less time. This technique greatly reduces counting times and sample sizes from that required in existing {Beta}-decay detection of ambient levels of tritium.

Cutchin, J.; King, S.; Phillips, G.; August, R.; Gerber, J.; Castaneda, C. (U.S. Naval Research Lab., Washington, DC (US))

1988-02-01

201

Imaging Spectrometer for NEO Mission: Seta Instrument  

NASA Astrophysics Data System (ADS)

NASA, ESA and JAXA have proposed NEO Sample Return Missions to a Near Earth Object. With these missions we will have the opportunity to return for study in Earth-based laboratories a direct sample of the earliest record of how our solar system formed. The landing site and sample selection will be the most important scientific decision to make during the course of the mission. For this reason, powerful on-board remote sensing science instruments are needed to support the selection. Among these instruments, the imaging spectrometer is a key instrument, being capable to: • Characterize the mineralogical composition of the entire object; • Analyze the of the landing site and the returned sample in its own native environment; • Establish the broadest possible scientific context for the target objects within our current understanding of the solar system. Scientific Objectives: Aim of SETA experiment is to perform imaging spectroscopy in the spectral range 400-3300 nm for a complete mapping of the target with a spectral sampling of at least 20 nm and a spatial resolution of the order of meters. SETA shall be able to return a detailed determination of the mineralogical composition for the different geologic units as well as the overall surface mineralogy with a spatial resolution of the order of few meters. These compositional characterizations involve the analysis of spectral parameters that are diagnostic of the presence and composition of various mineral species and materials that may be present on the target body. Most of the interesting minerals have electronic and vibrational absorption features in their VIS-NIR reflectance spectra. Identification of these related mineral phases requires a moderate spectral resolution. The presence of organic materials may be more difficult to identify. The SETA design is based on a pushbroom imaging spectrometer operating in the 400-3300 nm range, using a 2D array HgCdTe detector. This kind of instrument allows a simultaneous measurement of a full spectrum taken across the field of view defined by the slit's axis (samples). The second direction (lines) of the hyperspectral image shall be obtained by using the relative motion of the orbiter with respect to the target or by using a scan mirror. The SETA optical concept is mostly inherited from the SIMBIO-SYS/VIHI (Visible Infrared Hyperspectral Imager) imaging spectrometer aboard Bepi Colombo mission but also from other space flying imaging spectrometers, such as VIRTIS (on Rosetta and Venus Express) and VIR (on DAWN).

de Sanctis, Maria Cristina; Filacchione, Gianrico; Capaccioni, Fabrizio; Ammannito, Eleonora; Capria, Maria Teresa; Coradini, Angioletta; Migliorini, Alessandra

202

JPL Fourier transform ultraviolet spectrometer  

NASA Technical Reports Server (NTRS)

The Fourier Transform Ultraviolet Spectrometer (FTUVS) is a new high resolution interferometric spectrometer for multiple-species detection in the UV, visible and near-IR. As an OH sensor, measurements can be carried out by remote sensing (limb emission and column absorption), or in-situ sensing (long-path absorption or laser-induced fluorescence). As a high resolution detector in a high repetition rate (greater than 10 kHz) LIF system, OH fluorescence can be discriminated against non-resonant background emission and laser scatter, permitting (0, 0) excitation.

Cageao, R. P.; Friedl, R. R.; Sander, Stanley P.; Yung, Y. L.

1994-01-01

203

Ion mobility spectrometer \\/ mass spectrometer (IMS-MS)  

Microsoft Academic Search

The use of Ion Mobility Spectrometry (IMS) in the Detection of Contraband Sandia researchers use ion mobility spectrometers for trace chemical detection and analysis in a variety of projects and applications. Products developed in recent years based on IMS-technology include explosives detection personnel portals, the Material Area Access (MAA) checkpoint of the future, an explosives detection vehicle portal, hand-held detection

Hunka Deborah Elaine; Daniel E. Austin

2005-01-01

204

Interfacing an aspiration ion mobility spectrometer to a triple quadrupole mass spectrometer  

SciTech Connect

This article presents the combination of an aspiration-type ion mobility spectrometer with a mass spectrometer. The interface between the aspiration ion mobility spectrometer and the mass spectrometer was designed to allow for quick mounting of the aspiration ion mobility spectrometer onto a Sciex API-300 triple quadrupole mass spectrometer. The developed instrumentation is used for gathering fundamental information on aspiration ion mobility spectrometry. Performance of the instrument is demonstrated using 2,6-di-tert-butyl pyridine and dimethyl methylphosphonate.

Adamov, Alexey; Viidanoja, Jyrki; Kaerpaenoja, Esko; Paakkanen, Heikki; Ketola, Raimo A.; Kostiainen, Risto; Sysoev, Alexey; Kotiaho, Tapio [Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 University of Helsinki (Finland); Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 (Finland) and Moscow Engineering Physics Institute, State University, Kashirskoe shosse 31, 115409, Moscow (Russian Federation); Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 University of Helsinki (Finland); Environics Ltd., Graanintie 5, P.O. Box 349, FI-50101, Mikkeli (Finland); Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki (Finland) and Drug Discovery and Development Technology Center, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 (Finland); Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 (Finland); Moscow Engineering Physics Institute, State University, Kashirskoe shosse 31, 115409, Moscow (Russian Federation); Laboratory of Analytical Chemistry, Department of Chemistry, University of Helsinki, P.O. Box 55, FI-00014 (Finland) and Division of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 (Finland)

2007-04-15

205

Miniature Time-of-Flight Mass Spectrometer  

NASA Technical Reports Server (NTRS)

Major advances must occur to protect astronauts from prolonged periods in near-zero gravity and high radiation associated with extended space travel. The dangers of living in space must be thoroughly understood and methods developed to reverse those effects that cannot be avoided. Six of the seven research teams established by the National Space Biomedical Research Institute (NSBRI) are studying biomedical factors for prolonged space travel to deliver effective countermeasures. To develop effective countermeasures, each of these teams require identification of and quantitation of complex pharmacological, hormonal, and growth factor compounds (biomarkers) in humans and in experimental animals to develop an in-depth knowledge of the physiological changes associated with space travel. At present, identification of each biomarker requires a separate protocol. Many of these procedures are complicated and the identification of each biomarker requires a separate protocol and associated laboratory equipment. To carry all of this equipment and chemicals on a spacecraft would require a complex clinical laboratory; and it would occupy much of the astronauts time. What is needed is a small, efficient, broadband medical diagnostic instrument to rapidly identify important biomarkers for human space exploration. The Miniature Time-Of- Flight Mass Spectrometer Project in the Technology Development Team is developing a small, high resolution, time-of-flight mass spectrometer (TOFMS) to quantitatively measure biomarkers for human space exploration. Virtues of the JHU/APL TOFMS technologies reside in the promise for a small (less than one cubic ft), lightweight (less than 5 kg), low-power (less than 50 watts), rugged device that can be used continuously with advanced signal processing diagnostics. To date, the JHU/APL program has demonstrated mass capability from under 100 to beyond 10,000 atomic mass units (amu) in a very small, low power prototype for biological analysis. Further, the electronic nature of the TOFMS output makes it ideal for rapid telemetry to earth for in-depth analysis by ground support teams.

Potember, Richard S.

1999-01-01

206

Measuring Breath Alcohol Concentrations with an FTIR Spectrometer  

NASA Astrophysics Data System (ADS)

An FTIR spectrometer equipped with a long-path gas cell can be used to measure breath alcohol concentrations in an instrumental analysis laboratory course. Students use aqueous ethanol solutions to make a calibration curve that relates absorbance signals of breath samples with blood alcohol concentrations. Students use their calibration curve to determine the time needed for their calculated blood alcohol levels to drop below the legal limit following use of a commercial mouthwash. They also calculate their blood alcohol levels immediately after chewing bread. The main goal of the experiment is to provide the students with an interesting laboratory exercise that teaches them about infrared spectrometers. While the results are meant to be only semiquantitative, they have compared well with results from other published studies. A reference is included that describes how to fabricate a long-path gas cell.

Kneisel, Adam; Bellamy, Michael K.

2003-12-01

207

An Advanced Neutron Spectrometer for Future Manned Exploration Missions  

NASA Technical Reports Server (NTRS)

An Advanced Neutron Spectrometer (ANS) is being developed to support future manned exploration missions. This new instrument uses a refined gate and capture technique that significantly improves the identification of neutrons in mixed radiation fields found in spacecraft, habitats and on planetary surfaces. The new instrument is a composite scintillator comprised of PVT loaded with litium-6 glass scintillators. We will describe the detection concept and show preliminary results from laboratory tests and exposures at particle accelerators

Christl, Mark; Apple, Jeffrey A.; Cox, Mark D.; Dietz, Kurtis L.; Dobson, Christopher C.; Gibson, Brian F.; Howard, David E.; Jackson, Amanda C.; Kayatin, Mathew J.; Kuznetsov, Evgeny N.; Norwood, Joseph K.; Merril, Garrick W.; Watts, John W.; Sabra, Mohammad S.; Smith, Dennis A.; Rodriquez-Otero, Miguel A.

2014-01-01

208

Preliminary design and development of a reflectance spectrometer instrument  

NASA Technical Reports Server (NTRS)

An improved design for the reflectance spectrometer is described to be used on various terrestrial body missions. These improvements were made on the original Lunar Polar Orbiter design. These include a larger entrance mirror, rectangular aperture, multiple optical beams, spatial resolution, and a bandwidth extension to 5 microns. In addition, detailed electronic designs were produced for a charge amplifier and an amplifier/demodulator/integrator. Design of a microprocessor driven test system was begun. Laboratory tests were performed on a tuning fork chopper.

Mccord, T. B.

1979-01-01

209

Time of flight mass spectrometer  

DOEpatents

A time-of-flight mass spectrometer is described in which ions are desorbed from a sample by nuclear fission fragments, such that desorption occurs at the surface of the sample impinged upon by the fission fragments. This configuration allows for the sample to be of any thickness, and eliminates the need for complicated sample preparation.

Ulbricht, Jr., William H. (Arvada, CO)

1984-01-01

210

Imaging IR spectrometer, phase 2  

NASA Technical Reports Server (NTRS)

The development is examined of a prototype multi-channel infrared imaging spectrometer. The design, construction and preliminary performance is described. This instrument is intended for use with JPL Table Mountain telescope as well as the 88 inch UH telescope on Mauna Kea. The instrument is capable of sampling simultaneously the spectral region of 0.9 to 2.6 um at an average spectral resolution of 1 percent using a cooled (77 K) optical bench, a concave holographic grating and a special order sorting filter to allow the acquisition of the full spectral range on a 128 x 128 HgCdTe infrared detector array. The field of view of the spectrometer is 0.5 arcsec/pixel in mapping mode and designed to be 5 arcsec/pixel in spot mode. The innovative optical design has resulted in a small, transportable spectrometer, capable of remote operation. Commercial applications of this spectrometer design include remote sensing from both space and aircraft platforms as well as groundbased astronomical observations.

Gradie, Jonathan; Lewis, Ralph; Lundeen, Thomas; Wang, Shu-I

1990-01-01

211

Convex Diffraction Grating Imaging Spectrometer  

NASA Technical Reports Server (NTRS)

A 1:1 Offner mirror system for imaging off-axis objects is modified by replacing a concave spherical primary mirror that is concentric with a convex secondary mirror with two concave spherical mirrors M1 and M2 of the same or different radii positioned with their respective distances d1 and d2 from a concentric convex spherical diffraction grating having its grooves parallel to the entrance slit of the spectrometer which replaces the convex secondary mirror. By adjusting their distances d1 and d2 and their respective angles of reflection alpha and beta, defined as the respective angles between their incident and reflected rays, all aberrations are corrected without the need to increase the spectrometer size for a given entrance slit size to reduce astigmatism, thus allowing the imaging spectrometer volume to be less for a given application than would be possible with conventional imaging spectrometers and still give excellent spatial and spectral imaging of the slit image spectra over the focal plane.

Chrisp, Michael P. (Inventor)

1999-01-01

212

MICE Spectrometer Magnet System Progress  

SciTech Connect

The first magnets for the muon ionization cooling experimentwill be the tracker solenoids that form the ends of the MICE coolingchannel. The primary purpose of the tracker solenoids is to provide auniform 4 T field (to better than +-0.3 percent over a volume that is 1meter long and 0.3 meters in diameter) spectrometer magnet field for thescintillating fiber detectors that are used to analyze the muons in thechannel before and after ionization cooling. A secondary purpose for thetracker magnet is the matching of the muon beam between the rest of theMICE cooling channel and the uniform field spectrometer magnet. Thetracker solenoid is powered by three 300 amp power supplies. Additionaltuning of the spectrometer is provided by a pair of 50 amp power suppliesacross the spectrometer magnet end coils. The tracker magnet will becooled using a pair of 4 K pulse tube coolers that each provide 1.5 W ofcooling at 4.2 K. Final design and construction of the tracker solenoidsbegan during the summer of 2006. This report describes the progress madeon the construction of the tracker solenoids.

Green, Michael A.; Virostek, Steve P.

2007-08-27

213

Inventory Control: Multiport Student Spectrometer.  

ERIC Educational Resources Information Center

Described is a spectrometer that can be used simultaneously by seven students to observe a single spectrum emitted by an element or compound in a single light tube against a calibrated screen. Included is a list of materials, directions for assembly, and procedures for use. (CW)

Bishop, Carl B.

1989-01-01

214

Noble gas abundance and isotope ratios in the atmosphere of Jupiter from the Galileo Probe Mass Spectrometer  

Microsoft Academic Search

The Galileo Probe Mass Spectrometer provided the first data on the noble gas mixing and isotope ratios in the Jovian atmosphere. These measurements and the comparison with solar values constrain models of Jupiter's formation. Significant refinements to the initially reported abundances of argon, krypton, and xenon have been enabled through post-encounter laboratory calibrations using a refurbished engineering unit mass spectrometer

P. R. Mahaffy; H. B. Niemann; A. Alpert; S. K. Atreya; J. Demick; T. M. Donahue; D. N. Harpold; T. C. Owen

2000-01-01

215

Compact real-time birefringent imaging spectrometer  

E-print Network

in detail. Included are reconstruction and spectral calibration procedures, followed by the spectrometer(22), 5453­5469 (2006). 4. R. Glenn Stellar and D. G, Boreman, "Classification of imaging spectrometers

Dereniak, Eustace L.

216

The hot plasma spectrometers on Freja  

Microsoft Academic Search

The hot plasma instrumentation F3H on the Swedish-German Freja satellite due for launch in 1992 will consist of electron and ion spectrometers. The spectrometer Magnetic imaging Two dimensional Electron (MATE) will measure the two dimensional electron distribution in the spin plane in the energy range 0.1 to 120 keV. The ion mass spectrometer Three dimensional Ion Composition Spectrometer (TICS) measures

O. Norberg; L. Eliasson

1991-01-01

217

Measuring Transmission Efficiencies Of Mass Spectrometers  

NASA Technical Reports Server (NTRS)

Coincidence counts yield absolute efficiencies. System measures mass-dependent transmission efficiencies of mass spectrometers, using coincidence-counting techniques reminiscent of those used for many years in calibration of detectors for subatomic particles. Coincidences between detected ions and electrons producing them counted during operation of mass spectrometer. Under certain assumptions regarding inelastic scattering of electrons, electron/ion-coincidence count is direct measure of transmission efficiency of spectrometer. When fully developed, system compact, portable, and used routinely to calibrate mass spectrometers.

Srivastava, Santosh K.

1989-01-01

218

Electron/proton spectrometer certification documentation analyses  

NASA Technical Reports Server (NTRS)

A compilation of analyses generated during the development of the electron-proton spectrometer for the Skylab program is presented. The data documents the analyses required by the electron-proton spectrometer verification plan. The verification plan was generated to satisfy the ancillary hardware requirements of the Apollo Applications program. The certification of the spectrometer requires that various tests, inspections, and analyses be documented, approved, and accepted by reliability and quality control personnel of the spectrometer development program.

Gleeson, P.

1972-01-01

219

MAGNETIC DEFLECTION MASS SPECTROMETER May 6, 1970  

E-print Network

BOARD SCHEMATIC DIAGRAM 3-19 HEATER AND SENSOR CIRCUIT SCHEMATIC DIAGRAM #12;4-1 4-2 5-1 5-2 9-1 9-2 9ALSEP MAGNETIC DEFLECTION MASS SPECTROMETER May 6, 1970 Dr. J. H. HOFFM}u~ Principal Scientist SPECTROMETER B. CURRENT STATUS OF HARDWARE III. TECHNICAL SPECIFICATIONS A. MASS SPECTROMETER B. GROUND SUPPORT

Rathbun, Julie A.

220

Application of the mass-spectrometer MASHA for mass-spectrometry and laser-spectroscopy  

Microsoft Academic Search

We report the present status of the mass-spectrometer MASHA (Mass-Analyzer of Supper Heavy Atoms) designed for determination\\u000a of the masses of superheavy elements. The mass-spectrometer is connected to the U-400M cyclotron of the Flerov Laboratory\\u000a for Nuclear Reactions (FLNR) JINR, Dubna. The first experiments on mass-measurements for 112 and 114 elements will be performed\\u000a in the upcoming 2010. For this

A. M. Rodin; A. V. Belozerov; S. N. Dmitriev; Yu. Ts. Oganessian; R. N. Sagaidak; V. S. Salamatin; S. V. Stepantsov; D. V. Vanin

2010-01-01

221

The EBIT Calorimeter Spectrometer: A New, Permanent User Facility at the LLNL EBIT  

NASA Technical Reports Server (NTRS)

The EBIT Calorimeter Spectrometer (ECS) has recently been completed and is currently being installed at the EBIT facility at the Lawrence Livermore National Laboratory. The ECS will replace the smaller XRS/EBIT spectrometer that has been in almost continuous operation since 2000. The XRS/EBIT was based on a spare laboratory cryostat and an engineering model detector system from the Suzaku/XRS observatory. The new ECS spectrometer was built from the ground up to be a low maintenance, high performance microcalorimeter spectrometer with 4 eV resolution at 6 keV, 32 detector channels, 10 us event timing, and capable of uninterrupted acquisition sessions of over 70 hours at 50 mK. The XRSIEBIT program has been extremely successful, producing over two-dozen refereed publications on topics such as laboratory astrophysics, atomic physics, nuclear physics, and calibration of the spectrometers for the National Ignition Facility, with many more publications in preparation. The ECS spectrometer will continue this work into the future with improved spectral resolution, integration times, and ease-of-use. We designed the ECS instrument with TES detectors in mind by using the same highly successful magnetic shielding as our laboratory TES cryostats. This design will lead to a future TES instrument at the LLNL EBIT. This proposed future instrument would include a hybrid detector system with 0.8 eV resolution in the band from 0.1-1.0 keV, 2 eV from 0.1-10 keV, and 30 eV from 0.5-100 keV, with high quantum efficiency in each band. Here we discuss the legacy of the XRS/EBIT program, the performance of the new ECS spectrometer, and plans for a future TES spectrometer.

Porter, S.

2007-01-01

222

Use of Eutectic Fixed Points to Characterize a Spectrometer for Earth Observations  

Microsoft Academic Search

A small palm-sized, reference spectrometer, mounted on a remote-controlled model helicopter is being developed and tested\\u000a by the National Physical Laboratory (NPL) in conjunction with City University, London. The developed system will be used as\\u000a a key element for field vicarious calibration of optical earth observation systems in the visible-near infrared (VNIR) region.\\u000a The spectrometer is hand held, low weight,

Saber G. R. Salim; Nigel P. Fox; Emma R. Woolliams; Rainer Winkler; Heather M. Pegrum; Tong Sun; Ken T. V. Grattan

2007-01-01

223

Use of Eutectic Fixed Points to Characterize a Spectrometer for Earth Observations  

Microsoft Academic Search

A small palm-sized, reference spectrometer, mounted on a remote-controlled model helicopter is being developed and tested by the National Physical Laboratory (NPL) in conjunction with City University, London. The developed system will be used as a key element for field vicarious calibration of optical earth observation systems in the visible-near infrared (VNIR) region. The spectrometer is hand held, low weight,

Saber G. R. Salim; Nigel P. Fox; Emma R. Woolliams; Rainer Winkler; Heather M. Pegrum; Tong Sun; Ken T. V. Grattan

2007-01-01

224

A high-resolution imaging x-ray crystal spectrometer for high energy density plasmasa)  

NASA Astrophysics Data System (ADS)

Adapting a concept developed for magnetic confinement fusion experiments, an imaging crystal spectrometer has been designed and tested for HED plasmas. The instrument uses a spherically bent quartz [211] crystal with radius of curvature of 490.8 mm. The instrument was tested at the Titan laser at Lawrence Livermore National Laboratory by irradiating titanium slabs with laser intensities of 1019-1020 W/cm2. He-like and Li-like Ti lines were recorded, from which the spectrometer performance was evaluated. This spectrometer provides very high spectral resolving power (E/dE > 7000) while acquiring a one-dimensional image of the source.

Chen, Hui; Bitter, M.; Hill, K. W.; Kerr, S.; Magee, E.; Nagel, S. R.; Park, J.; Schneider, M. B.; Stone, G.; Williams, G. J.; Beiersdorfer, P.

2014-11-01

225

New family of reflective spectrometers  

NASA Astrophysics Data System (ADS)

Three kinds of spectrometers based on off-axis Schmidt and Schmidt-Cassegrain cameras are presented; they have been used for several instruments studies, mainly for European Space Agency and Agenzia Spaziale Italiana. Both dispersive prism and grating based configurations have interesting characteristics, such as: simplicity, low cost, high efficiency, small volume and weight, very low sensitivity to polarization and great flexibility also in multichannel (wavebands) configurations. The image quality is high, even with low relative apertures and great fields of view, allowing a very good correction of smile and keystone. The compensation of the slit curvature induced by a prism disperser is also demonstrated. This family of spectrometers was the topic of three patents, belonging to Selex-Galileo, while the intellectual property belongs to A. Romali et al.

Romoli, Andrea; Simonetti, Francesca; Gambicorti, Lisa; Marchi, Alessandro Zuccaro

2011-01-01

226

Exploiting a transmission grating spectrometer  

SciTech Connect

The availability of compact transmission grating spectrometers now allows an attractive and economical alternative to the more familiar Czerny-Turner configuration for many high-temperature plasma applications. Higher throughput is obtained with short focal length refractive optics and stigmatic imaging. Many more spectra can be obtained with a single spectrometer since smaller, more densely packed optical input fibers can be used. Multiple input slits, along with a bandpass filter, can be used to maximize the number of spectra per detector, providing further economy. Curved slits can correct for the strong image curvature of the short focal length optics. Presented here are the governing grating equations for both standard and high-dispersion transmission gratings, defining dispersion, image curvature, and desired slit curvature, that can be used in the design of improved plasma diagnostics.

Bell, Ronald E. [Princeton Plasma Physics Laboratory, Princeton University, Princeton New Jersey 08543-0451 (United States)

2004-10-01

227

The AXAF CCD imaging spectrometer  

NASA Technical Reports Server (NTRS)

The current status of the instrument design and the status of the CCDs being fabricated for the AXAF CCD Imaging Spectrometer (ACIS) are summarized. The instrument consists of an image recording array of CCDs and a linear arrangement of CCDs to record the spectra formed by the objective grating spectrometer. Both arrays employ CCDs with pixel dimensions which correspond to about 0.5 arcsec samples of the image. The CCDs provide moderate spectral resolution and good detection efficiency over the energy range 0.5 to 10 keV. Spectral resolution of 200 or more is achievable using the objective grating with the grating array. Radiation damage effects are shown to degrade the energy resolution of CCDs. Specially designed CCD pixel architecture is employed together with shielding and low temperature operation to slow the effects of radiation damage.

Garmire, G. P.; Ricker, G. R.; Bautz, M. W.; Burke, B.; Burrows, D. N.; Collins, S. A.; Doty, J. P.; Gendreau, K.; Lumb, D. H.; Nousek, J. A.

1992-01-01

228

Exploiting a Transmission Grating Spectrometer  

SciTech Connect

The availability of compact transmission grating spectrometers now allows an attractive and economical alternative to the more familiar Czerny-Turner configuration for many high-temperature plasma applications. Higher throughput is obtained with short focal length refractive optics and stigmatic imaging. Many more spectra can be obtained with a single spectrometer since smaller, more densely packed optical input fibers can be used. Multiple input slits, along with a bandpass filter, can be used to maximize the number of spectra per detector, providing further economy. Curved slits can correct for the strong image curvature of the short focal length optics. Presented here are the governing grating equations for both standard and high-dispersion transmission gratings, defining dispersion, image curvature, and desired slit curvature, that can be used in the design of improved plasma diagnostics.

Ronald E. Bell

2004-12-08

229

Temporal dispersion of a spectrometer.  

PubMed

The temporal dispersion of an optical spectrometer has been characterized for a variety of conditions related to optical diagnostics to be fielded at the National Ignition Facility (e.g., full-aperture backscatter station, Thomson scattering). Significant time smear is introduced into these systems by the path length difference through the spectrometer. The temporal resolution is shown to depend only on the order of the grating, wavelength, and the number of grooves illuminated. To enhance the temporal resolution, the spectral gratings can be masked limiting the number of grooves illuminated. Experiments have been conducted to verify these calculations. The size and shape of masks are investigated and correlated with the exact shape of the temporal instrument function, which is required when interpreting temporally resolved data. The experiments used a 300 fs laser pulse and a picosecond optical streak camera to determine the temporal dispersion. This was done for multiple spectral orders, gratings, and optical masks. PMID:19044687

Visco, A; Drake, R P; Froula, D H; Glenzer, S H; Pollock, B B

2008-10-01

230

Fabrication, Testing and Modeling of the MICE Superconducting Spectrometer Solenoids  

SciTech Connect

The Muon Ionization Cooling Experiment (MICE), an international collaboration sited at Rutherford Appleton Laboratory in the UK, will demonstrate ionization cooling in a section of realistic cooling channel using a muon beam. A five-coil superconducting spectrometer solenoid magnet will provide a 4 tesla uniform field region at each end of the cooling channel. Scintillating fiber trackers within the 400 mm diameter magnet bore tubes measure the emittance of the beam as it enters and exits the cooling channel. Each of the identical 3-meter long magnets incorporates a three-coil spectrometer magnet section and a two-coil section to match the solenoid uniform field into the other magnets of the MICE cooling channel. The cold mass, radiation shield and leads are currently kept cold by means of three two-stage cryocoolers and one single-stage cryocooler. Liquid helium within the cold mass is maintained by means of a re-condensation technique. After incorporating several design changes to improve the magnet cooling and reliability, the fabrication and acceptance testing of the spectrometer solenoids have proceeded. The key features of the spectrometer solenoid magnets, the development of a thermal model, the results of the recently completed tests, and the current status of the project are presented.

Virostek, S.P.; Green, M.A.; Trillaud, F.; Zisman, M.S.

2010-05-16

231

Miniature spectrometers for biochemical analysis  

Microsoft Academic Search

Miniature spectrometers have been demonstrated by mounting micromachined diffraction gratings onto CCD imaging devices. Two implementations are tested: one for high-dispersion and -sensitivity applications, and the other for low-cost consumer applications. The first system shows a dispersion of 1.7 nm\\/pixel and a resolution of 74.4 for the bandwidth of interest. The free spectral range of the device is designed to

Gaylin M Yee; Nadim I Maluf; Paul A Hing; Michael Albin; Gregory T. A Kovacs

1997-01-01

232

Multiparticle azimuthal correlations in p -Pb and Pb-Pb collisions at the CERN Large Hadron Collider  

NASA Astrophysics Data System (ADS)

Measurements of multiparticle azimuthal correlations (cumulants) for charged particles in p -Pb at ?{sNN}=5.02 TeV and Pb-Pb at ?{sNN}=2.76 TeV collisions are presented. They help address the question of whether there is evidence for global, flowlike, azimuthal correlations in the p -Pb system. Comparisons are made to measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of few-particle correlations in p -Pb collisions. However, when a |? ? | gap is placed to suppress such correlations, the two-particle cumulants begin to rise at high multiplicity, indicating the presence of global azimuthal correlations. The Pb-Pb values are higher than the p -Pb values at similar multiplicities. In both systems, the second harmonic four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The negative values allow for a measurement of v2{4 } to be made, which is found to be higher in Pb-Pb collisions at similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions. In Pb-Pb collisions, we generally find v2{4 } ?v2{6 } ?0 which is indicative of a Bessel-Gaussian function for the v2 distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants become consistent with 0. Finally, third harmonic two-particle cumulants in p -Pb and Pb-Pb are measured. These are found to be similar for overlapping multiplicities, when a |? ? |>1.4 gap is placed.

Abelev, B.; Adam, J.; Adamová, D.; Aggarwal, M. M.; Aglieri Rinella, G.; Agnello, M.; Agostinelli, A.; Agrawal, N.; Ahammed, Z.; Ahmad, N.; Ahmed, I.; Ahn, S. U.; Ahn, S. A.; Aimo, I.; Aiola, S.; Ajaz, M.; Akindinov, A.; Alam, S. N.; Aleksandrov, D.; Alessandro, B.; Alexandre, D.; Alici, A.; Alkin, A.; Alme, J.; Alt, T.; Altinpinar, S.; Altsybeev, I.; Alves Garcia Prado, C.; Andrei, C.; Andronic, A.; Anguelov, V.; Anielski, J.; Anti?i?, T.; Antinori, F.; Antonioli, P.; Aphecetche, L.; Appelshäuser, H.; Arcelli, S.; Armesto, N.; Arnaldi, R.; Aronsson, T.; Arsene, I. C.; Arslandok, M.; Augustinus, A.; Averbeck, R.; Awes, T. C.; Azmi, M. D.; Bach, M.; Badalà, A.; Baek, Y. W.; Bagnasco, S.; Bailhache, R.; Bala, R.; Baldisseri, A.; Baltasar Dos Santos Pedrosa, F.; Baral, R. C.; Barbera, R.; Barile, F.; Barnaföldi, G. G.; Barnby, L. S.; Barret, V.; Bartke, J.; Basile, M.; Bastid, N.; Basu, S.; Bathen, B.; Batigne, G.; Batista Camejo, A.; Batyunya, B.; Batzing, P. C.; Baumann, C.; Bearden, I. G.; Beck, H.; Bedda, C.; Behera, N. K.; Belikov, I.; Bellini, F.; Bellwied, R.; Belmont-Moreno, E.; Belmont, R.; Belyaev, V.; Bencedi, G.; Beole, S.; Berceanu, I.; Bercuci, A.; Berdnikov, Y.; Berenyi, D.; Berger, M. E.; Bertens, R. A.; Berzano, D.; Betev, L.; Bhasin, A.; Bhat, I. R.; Bhati, A. K.; Bhattacharjee, B.; Bhom, J.; Bianchi, L.; Bianchi, N.; Bianchin, C.; Biel?ík, J.; Biel?íková, J.; Bilandzic, A.; Bjelogrlic, S.; Blanco, F.; Blau, D.; Blume, C.; Bock, F.; Bogdanov, A.; Bøggild, H.; Bogolyubsky, M.; Böhmer, F. V.; Boldizsár, L.; Bombara, M.; Book, J.; Borel, H.; Borissov, A.; Bossú, F.; Botje, M.; Botta, E.; Böttger, S.; Braun-Munzinger, P.; Bregant, M.; Breitner, T.; Broker, T. A.; Browning, T. A.; Broz, M.; Bruna, E.; Bruno, G. E.; Budnikov, D.; Buesching, H.; Bufalino, S.; Buncic, P.; Busch, O.; Buthelezi, Z.; Caffarri, D.; Cai, X.; Caines, H.; Calero Diaz, L.; Caliva, A.; Calvo Villar, E.; Camerini, P.; Carena, F.; Carena, W.; Castillo Castellanos, J.; Casula, E. A. R.; Catanescu, V.; Cavicchioli, C.; Ceballos Sanchez, C.; Cepila, J.; Cerello, P.; Chang, B.; Chapeland, S.; Charvet, J. L.; Chattopadhyay, S.; Chattopadhyay, S.; Chelnokov, V.; Cherney, M.; Cheshkov, C.; Cheynis, B.; Chibante Barroso, V.; Chinellato, D. D.; Chochula, P.; Chojnacki, M.; Choudhury, S.; Christakoglou, P.; Christensen, C. H.; Christiansen, P.; Chujo, T.; Chung, S. U.; Cicalo, C.; Cifarelli, L.; Cindolo, F.; Cleymans, J.; Colamaria, F.; Colella, D.; Collu, A.; Colocci, M.; Conesa Balbastre, G.; Conesa Del Valle, Z.; Connors, M. E.; Contreras, J. G.; Cormier, T. M.; Corrales Morales, Y.; Cortese, P.; Cortés Maldonado, I.; Cosentino, M. R.; Costa, F.; Crochet, P.; Cruz Albino, R.; Cuautle, E.; Cunqueiro, L.; Dainese, A.; Dang, R.; Danu, A.; Das, D.; Das, I.; Das, K.; Das, S.; Dash, A.; Dash, S.; de, S.; Delagrange, H.; Deloff, A.; Dénes, E.; D'Erasmo, G.; de Caro, A.; de Cataldo, G.; de Cuveland, J.; de Falco, A.; de Gruttola, D.; De Marco, N.; de Pasquale, S.; de Rooij, R.; Diaz Corchero, M. A.; Dietel, T.; Dillenseger, P.; Divià, R.; di Bari, D.; di Liberto, S.; di Mauro, A.; di Nezza, P.; Djuvsland, Ø.; Dobrin, A.; Dobrowolski, T.; Domenicis Gimenez, D.; Dönigus, B.; Dordic, O.; Dørheim, S.; Dubey, A. K.; Dubla, A.; Ducroux, L.; Dupieux, P.; Dutta Majumdar, A. K.; Hilden, T. E.; Ehlers, R. J.; Elia, D.; Engel, H.; Erazmus, B.; Erdal, H. A.; Eschweiler, D.; Espagnon, B.; Esposito, M.; Estienne, M.; Esumi, S.; Evans, D.; Evdokimov, S.; Fabris, D.; Faivre, J.; Falchieri, D.; Fantoni, A.; Fasel, M.; Fehlker, D.; Feldkamp, L.; Felea, D.; Feliciello, A.; Feofilov, G.; Ferencei, J.; Fernández Téllez, A.; Ferreiro, E. G.; Ferretti, A.; Festanti, A.; Figiel, J.; Figueredo, M. A. S.; Filchagin, S.; Finogeev, D.; Fionda, F. M.; Fiore, E. M.; Floratos, E.; Floris, M.; Foertsch, S.; Foka, P.; Fokin, S.; Fragiacomo, E.; Francescon, A.; Frankenfeld, U.; Fuchs, U.; Furget, C.; Furs, A.; Fusco Girard, M.; Gaardhøje, J. J.; Gagliardi, M.; Gago, A. M.; Gallio, M.; Gangadharan, D. R.; Ganoti, P.; Garabatos, C.; Garcia-Solis, E.; Gargiulo, C.; Garishvili, I.; Gerhard, J.; Germain, M.; Gheata, A.; Gheata, M.; Ghidini, B.; Ghosh, P.; Ghosh, S. K.; Gianotti, P.; Giubellino, P.; Gladysz-Dziadus, E.; Glässel, P.; Gomez Ramirez, A.; González-Zamora, P.; Gorbunov, S.; Görlich, L.; Gotovac, S.; Graczykowski, L. K.; Grelli, A.; Grigoras, A.; Grigoras, C.; Grigoriev, V.; Grigoryan, A.; Grigoryan, S.; Grinyov, B.; Grion, N.; Grosse-Oetringhaus, J. F.; Grossiord, J.-Y.; Grosso, R.; Guber, F.; Guernane, R.; Guerzoni, B.; Guilbaud, M.; Gulbrandsen, K.; Gulkanyan, H.; Gumbo, M.; Gunji, T.; Gupta, A.; Gupta, R.; Khan, K. H.; Haake, R.; Haaland, Ø.; Hadjidakis, C.; Haiduc, M.; Hamagaki, H.; Hamar, G.

2014-11-01

233

Modeling of Dose Distribution for a Proton Beam Delivering System with the use of the Multi-Particle Transport Code 'Fluka'  

SciTech Connect

We have developed a new delivering system for hadron therapy which uses a multileaf collimator and a range shifter. We simulate our delivering beam system with the multi-particle transport code 'Fluka'. From these simulations we obtained information about the dose distributions, about stars generated in the delivering system elements and also information about the neutron flux. All the informations obtained were analyzed from the point of view of radiation protection, homogeneity of beam delivery to patient body, and also in order to improve some modifiers used.

Mumot, Marta [Medico-Technical Complex of Laboratory for Nuclear Problems, Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 141980 Dubna (Russian Federation); Department of Medical Physic, Great Poland Cancer Center, 15 Garbary Str., 61-866 Poznan (Poland); Agapov, Alexey [Medico-Technical Complex of Laboratory for Nuclear Problems, Joint Institute for Nuclear Research, 6 Joliot-Curie Str., 141980 Dubna (Russian Federation)

2007-11-26

234

The BFKL Pomeron Calculus in zero transverse dimension: summation of the Pomeron loops and the generating functional for the multiparticle production processes  

E-print Network

In this paper we address two problems in the BFKL Pomeron calculus in zero transverse dimension: the summation of the Pomeron loops and the calculation of the processes of multiparticle generation. We introduce a new generating functional for these processes and obtain the evolution equation for it. We argue that in the kinematic range given by $ 1 \\ll \\ln(1/\\as^2) \\ll \\as Y \\ll \\frac{1}{\\as}$, we can reduce the Pomeron calculus to exchange of non-interacting Pomerons with the renormalized amplitude of their interaction with the target. Therefore, the summation of the Pomeron loops can be performed using Mueller, Patel, Salam and Iancu approximation.

Levin, E

2007-01-01

235

A novel dual-detector micro-spectrometer  

NASA Astrophysics Data System (ADS)

Infrared analysis is a well-established tool for measuring composition and purity of various materials in industrial-, medical- and environmental applications. Traditional spectrometers, for example Fourier Transform Infrared (FTIR) Instruments are mainly designed for laboratory use and are generally, too large, heavy, costly and delicate to handle for remote applications. With important advances in the miniaturization, ruggedness and cost efficiency we have designed and created a new type of a micromirror spectrometer that can operate in harsh temperature and vibrating environments This device is ideally suited for environmental monitoring, chemical and biological applications as well as detection of biological warfare agents and sensing in important security locations In order to realize such compact, portable and field-deployable spectrometers we have applied MOEMS technology. Thus our novel dual detector micro mirror system is composed of a scanning micro mirror combined with a diffraction grating and other essential optical components in order to miniaturize the basic modular set-up. Especially it periodically disperses polychromatic radiation into its spectral components, which are measured by a combination of a visible (VIS) and near infrared (NIR) single element detector. By means of integrated preamplifiers high-precise measurements over a wide dynamic wavelength range are possible. In addition the spectrometer, including the radiation source, detectors and electronics can be coupled to a minimum-volume liquid or gas-flow cell. Furthermore a SMA connector as a fiber optical input allows easy attachment of fiber based probes. By utilizing rapid prototyping techniques, where all components are directly integrated, the micro mirror spectrometer is manufactured for the 700-1700 nm spectral range. In this work the advanced optical design and integration of the electronic interface will be reviewed. Furthermore we will demonstrate the performance of the system and present characteristic measurement results. Finally advanced packaging issues and test results of the device will be discussed.

Otto, Thomas; Saupe, Ray; Stock, Volker; Bruch, Reinhard; Gruska, Bernd; Gessner, Thomas

2005-01-01

236

Commercial cryogenic Fourier transform spectrometer for emission measurements of materials  

NASA Astrophysics Data System (ADS)

The cryogenic interferometer is an optimized sensor for low level infrared spectral measurements. An ideal application is emissivity measurements of low-temperature samples, since room temperature spectrometers become background limited by instrument self-emission in such cases. For a cryogenic instrument, operation near background limited performance for targets at 220 K with emissivity of 0.05 is possible by cooling the complete instrument to around 77 K. This instrument has been designed for operation in the laboratory, and most of the parameters are remote controlled by the data processing PC. Spectral resolution is variable from 4 cm-1 to 128 cm-1. The spectral range covered is from 600 cm-1 to 4000 cm-1. The system is built into an Infrared Lab Cryostat, providing a holding time of 48 hours. This instrument is the second cryogenic spectrometer built by Bomem, the first being the balloon-borne SIRIS, a high resolution system for atmospheric research.

Giroux, Jean; Lamarre, Daniel; McKinnon, J.; Buijs, Henry L.

1992-03-01

237

An FIR cooled grating spectrometer for the Kuiper Airborne Observatory  

NASA Technical Reports Server (NTRS)

The design and performance of a liquid-He-cooled spectrometer being developed for the Kuiper Airborne Observatory (KAO) to study FIR lines originating in the interstellar medium are discussed. Currently, the spectrometer contains six Ge:Ga photoconductor detectors mounted in integrating cavities and cooled to about 3 K; the collimator focal plane has space for 39 such detectors. The instrument achieves a maximum resolving power of 6000 by means of a 45-cm long echelle grating and is optically capable of operating in the spectral range 25-300 microns. A laboratory spectrum of water vapor, an atmospheric water absorption feature measured from the KAO with Mars as a source, and the forbidden O(2+) emission from W51-IRS1 are shown.

Erickson, E. F.; Haas, M. R.; Hollenbach, D. J.; Simpson, J. P.; Augason, G. C.; Houck, J. R.; Harwit, M. O.; Rank, D. M.

1985-01-01

238

A Computer-based Tutorial on Double-Focusing Spectrometers  

NASA Astrophysics Data System (ADS)

WhistleSoft is developing a set of computer-based, self-paced tutorials on particle accelerators that targets a broad audience, including undergraduate science majors and industrial technicians. (See http://www.whistlesoft.com/s~ilbar/.) We use multimedia techniques to enhance the student's rate of learning and retention of the material. The tutorials feature interactive On-Screen Laboratories and use hypertext, colored graphics, two- and three-dimensional animations, video, and sound. Parts of our Dipoles module deal with the double-focusing spectrometer and occur throughout the piece. Radial focusing occurs in the section on uniform magnets, while vertical focusing is in the non-uniform magnets section. The student can even understand the ?2? bend angle on working through the (intermediate-level) discussion on the Kerst-Serber equations. This talk will present our discussion of this spectrometer, direct to you from the computer screen.

Silbar, Richard R.; Browman, Andrew A.; Mead, William C.; Williams, Robert A.

1998-10-01

239

High-Resolution Imaging Spectrometer  

NASA Technical Reports Server (NTRS)

Earth resources observed in greater detail. High-Resolution Imaging Spectrometer, undergoing development for use in NASA's Earth Observing System, measures reflectance of Earth's surface in visible and near-infrared wavelengths. From an orbit around Earth, instrument scans surface of Earth in 200 wavelength bands simultaneously. Produces images enabling identification of minerals in rocks and soils, important algal pigments in oceans and inland waters, changes in spectra associated with biochemistry of plant canopies, compositions of atmospheric aerosols, sizes of grains in snow, and contamination of snow by impurities that absorb visible light.

Dozier, Jeff; Goetz, Alexander F. H.

1990-01-01

240

Experiment M408: Beta spectrometer  

NASA Technical Reports Server (NTRS)

The beta spectrometer functioned as planned throughout the Gemini 10 mission. The cool temperatures that were recorded from the instrument during the mission were indicative that the evaporative cooler, coupled with apparently lower-than-expected spacecraft-adapter temperatures, maintained ideal operating conditions. The data facilitate a good analysis of the electron directional distribution. The omnidirectional flux that was calculated is apparently consistent with previous measurements. Representative electron spectra, measured during the Gemini 12 mission, established the apparent decay of the artificially injected electrons (from the Starfish high altitude nuclear test) to such low levels that natural trapped electrons were becoming detectable.

Marbach, J. R.

1971-01-01

241

Alpha-particle spectrometer experiment  

NASA Technical Reports Server (NTRS)

Mapping the radon emanation of the moon was studied to find potential areas of high activity by detection of radon isotopes and their daughter products. It was felt that based on observation of regions overflown by Apollo spacecraft and within the field of view of the alpha-particle spectrometer, a radon map could be constructed, identifying and locating lunar areas of outgassing. The basic theory of radon migration from natural concentrations of uranium and thorium is discussed in terms of radon decay and the production of alpha particles. The preliminary analysis of the results indicates no significant alpha emission.

Gorenstein, P.; Bjorkholm, P.

1972-01-01

242

Imaging spectrometer/camera having convex grating  

NASA Technical Reports Server (NTRS)

An imaging spectrometer has fore-optics coupled to a spectral resolving system with an entrance slit extending in a first direction at an imaging location of the fore-optics for receiving the image, a convex diffraction grating for separating the image into a plurality of spectra of predetermined wavelength ranges; a spectrometer array for detecting the spectra; and at least one concave sperical mirror concentric with the diffraction grating for relaying the image from the entrance slit to the diffraction grating and from the diffraction grating to the spectrometer array. In one embodiment, the spectrometer is configured in a lateral mode in which the entrance slit and the spectrometer array are displaced laterally on opposite sides of the diffraction grating in a second direction substantially perpendicular to the first direction. In another embodiment, the spectrometer is combined with a polychromatic imaging camera array disposed adjacent said entrance slit for recording said image.

Reininger, Francis M. (Inventor)

2000-01-01

243

Pupil aberrations in Offner spectrometers.  

PubMed

The light path function (LPF) of an Offner spectrometer is presented. The evaluation of the LPF of this spectrometer enables its imaging properties to be studied for arbitrary object and image positions, while avoiding the more complicated analysis of intermediate images generated by the diffraction grating, which is often involved. A power series expansion of the LPF on the grating coordinates directly determines pupil aberrations of the generated spectrum and facilitates the search for configurations with small low-order aberrations. This analysis not only confirms the possibility of reducing low-order aberrations in Rowland-type mounts, namely astigmatism and coma, as predicted in previous studies, but also proves that all third-order terms in the series expansion of the aberration function can be canceled at the image of the design point and for the corresponding design wavelength, when the design point is located on a plane orthogonal to the optical axis. Furthermore, fourth-order terms are computed and shown to represent the most relevant contribution to image blurring. Third- and fourth-order aberrations are also evaluated for Rowland mounts with the design point located outside the aforementioned plane. The study described in this manuscript is not restricted to small angles of incidence, and, therefore, it goes beyond Seidel and Buchdahl aberrations. PMID:22472819

González-Núñez, Héctor; Prieto-Blanco, Xesús; de la Fuente, Raúl

2012-04-01

244

The GRAVITY spectrometers: optical design  

NASA Astrophysics Data System (ADS)

Operating on 6 interferometric baselines, i.e. using all 4 unit telescopes (UTs) of the Very Large Telescope Interferometer (VLTI) simultaneously, the 2nd generation VLTI instrument GRAVITY will deliver narrow-angle astrometry with 10?as accuracy at the infrared K-band. At this angular resolution, GRAVITY will be able to detect the positional shift of the photo-center of a flare at the Galactic Center within its orbital timescale of about 20 minutes, using the observed motion of the flares as dynamical probes of the gravitational field around the supermassive black hole Sgr A*. Within the international GRAVITY consortium, the 1. Physikalische Institut of the University of Cologne is responsible for the development and construction of the two spectrometers of the camera system: one for the science object, and one for the fringe tracking object, both being operated at cryo-vacuum. In this paper we present the phase-C final optical design of the two spectrometers as it got derived from the scientific and technical requirements and as it was presented and reviewed successfully at the Final Design Review (FDR) at the European Southern Observatory (ESO) in October 2011.

Straubmeier, Christian; Fischer, Sebastian; Araujo-Hauck, Constanza; Wiest, Michael; Yazici, Senol; Wank, Imke; Eisenhauer, Frank; Perrin, Guy; Brandner, Wolfgang; Perraut, Karine; Amorim, António; Schöller, Markus; Eckart, Andreas

2012-07-01

245

Direct detection submillimeter spectrometer for CCAT  

Microsoft Academic Search

We present a trade study for a submillimeter direct-detection spectrometer operating at the background limit for the Cornell Caltech Atacama Telescope (CCAT). In this study we compare the classical echelle spectrometer ZEUS with the waveguide grating spectrometer Z-Spec. The science driver for this instrument is spectroscopic investigation of high redshift galaxies as their far-IR fine structure line emission is redshifted

Thomas Nikola; Gordon J. Stacey; C. Matt Bradford

2008-01-01

246

A high-resolution compact Johann crystal spectrometer with the Livermore electron beam ion trap.  

SciTech Connect

A compact high-resolution ({lambda}/{Delta}{lambda} {approx} 10000) spherically bent crystal spectrometer in the Johann geometry was recently installed and tested on the Lawrence Livermore National Laboratory SuperEBIT electron beam ion trap. The curvature of the mica (002) crystal grating allows for higher collection efficiency compared to the flat and cylindrically bent crystal spectrometers commonly used on the Livermore electron beam ion traps. The spectrometer's Johann configuration enables orientation of its dispersion plane to be parallel to the electron beam propagation. Used in concert with a crystal spectrometer, whose dispersion plane is perpendicular to the electron beam propagation, the polarization of x-ray emission lines can be measured.

Robbins, D L; Chen, H; Beiersdorfer, P; Faenov, A Y; Pikuz, T A; May, M J; Dunn, J; Smith, A J

2004-04-14

247

High-resolution compact Johann crystal spectrometer with the Livermore electron beam ion trap  

SciTech Connect

A compact high-resolution ({lambda}/{delta}{lambda}{approx_equal}10 000) spherically bent crystal spectrometer in the Johann geometry was recently installed and tested on the Lawrence Livermore National Laboratory SuperEBIT electron beam ion trap. The curvature of the mica (002) crystal grating allows for higher collection efficiency compared to the flat and cylindrically bent crystal spectrometers commonly used on the Livermore electron beam ion traps. The spectrometer's Johann configuration enables orientation of its dispersion plane to be parallel to the electron beam propagation. Used in concert with a crystal spectrometer, whose dispersion plane is perpendicular to the electron beam propagation, the polarization of x-ray emission lines can be measured.

Robbins, D.L.; Chen, H.; Beiersdorfer, P.; Faenov, A.Ya.; Pikuz, T.A.; May, M.J.; Dunn, J.; Smith, A.J. [Department of Physics, Morehouse College, Atlanta, Georgia 30314 (United States); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo, Moscow Region, 141570 (Russian Federation); Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Department of Physics, Morehouse College, Atlanta, Georgia 30314 (United States)

2004-10-01

248

Instrumental background in gamma-ray spectrometers flown in low earth orbit  

NASA Technical Reports Server (NTRS)

Techniques are presented for calculating the instrumental continuum background in gamma-ray spectrometers flown in low earth orbit (LEO), with special attention given to simple methods developed for scaling from the better-understood measurements and calculations of background in balloon-borne instruments to LEO (Gehrels, 1985). Results are presented in the form of predictions of the background and its components for spectrometers in LEO. These predictions are compared to the measured background for the HEAO 3 gamma-ray spectrometer (Mahoney et al., 1980), and predictions are made for the International Gamma-Ray Astrophysics Laboratory mission and the Nuclear Astrophysics Explorer (Matteson et al., 1990) spectrometers. A comparison is made of various orbit options. It is shown that a critical factor is the number of times the instrument passes through the South Atlantic Anomaly (which is the region of enhanced trapped particle fluxes in LEO) and the depth of penetration on each pass.

Gehrels, Neil

1992-01-01

249

Progress on the Design and Fabircation of the MICE SpectrometerSolenoids  

SciTech Connect

The Muon Ionization Cooling Experiment (MICE) willdemonstrate ionization cooling in a short section of a realistic coolingchannel using a muon beam at Rutherford Appleton Laboratory (RAL) in theUK. A five-coil, superconducting spectrometer solenoid magnet at each endof the cooling channel will provide a 4 T uniform field region for thescintillating fiber tracker within the magnet bore tubes. The trackermodules are used to measure the muon beam emittance as it enters andexits the cooling channel. The cold mass for the 400 mm warm bore magnetconsists of two sections: a three-coil spectrometer magnet and a two-coilmatching section that matches the uniform field of the solenoid into theMICE cooling channel. The spectrometer solenoid detailed designandanalysis has been completed, and the fabrication of the magnets is wellunder way. The primary features of the spectrometer solenoid magnet andmechanical designs are presented along with a summary of key fabricationissues and photos of the construction.

Virostek, S.P.; Green, M.A.; Lia, D.; Sizman, M.S.

2007-06-20

250

The APX Spectrometer for Martian Missions  

NASA Technical Reports Server (NTRS)

Obtaining the chemical composition of any planetary body should be a prime science objective of each planetary mission. The APX spectrometer has been designed to provide a detailed and complete chemical composition of all major (except H) and minor elements with high accuracy, in situ and remotely. From such complete analyses a first-order mineralogy of analyzed samples can be deduced. Laboratory studies in the past have shown that rock types (e.g., dunites, basalts, Philippinate 300 sample) were a uniquely in blind test analyses. Such identification is more accurate than can be obtained from any other remote spectroscopic technique. The APX technique is based on three modes of nuclear and atomic interactions of alpha particles with matter resulting in three different energy spectra containing the compositional information. The instrument uses 50 to 100 mCi of Cm-242 or Cm-244 transuranium radioisotopes to provide a monoenergetic beam of alpha particles (6.01 MeV and 5.80 MeV respectively) and solid-state detectors for acquiring the energy spectra.

Economou, T.

1993-01-01

251

Frequency-scanning particle size spectrometer  

NASA Technical Reports Server (NTRS)

A particle size spectrometer having a fixed field of view within the forward light scattering cone at an angle .theta..sub.s between approximately 100 and 200 minutes of arc (preferably at 150 minutes), a spectral range extending approximately from 0.2 to 4.0 inverse micrometers (.mu.m.sup.-1), and a spectral resolution between about 0.1 and 0.2 .mu.m.sup.-1 (preferably toward the lower end of this range of spectral resolution), is employed to determine the distribution of particle sizes, independently of the chemical composition of the particles, from measurements of incident light, I.sub.o, at each frequency, .sigma. (=1/.lambda.), and scattered light, I(.sigma.), according to the equation: ##EQU1## where l=2.pi.sin.theta., .theta. being the fixed viewing angle .theta..sub.s at which scattered light is measured, r is particle size, .sigma. is the reciprocal of wavelength, J.sub.1 is a Bessel function of first kind and order unity, Y.sub.1 is a Bessel function of second kind and order unity. The quantity, I.sub..sigma., is the ratio of scattered light to incident light at each frequency interval. The apparatus is a passive remote sensor that can be used in laboratories, field stations, flying aircrafts and airships, and on board an orbiting satellite.

Fymat, Alain L. (Inventor)

1982-01-01

252

Calibration of Xray CCDs with an ErectField Grating Spectrometer in the 0.2 1.5 keV band.  

E-print Network

Calibration of X­ray CCDs with an Erect­Field Grating Spectrometer in the 0.2 ­ 1.5 keV band. G been calibrated in the 0.25­1.5 keV spectral range using an erect­field grating spectrometer X­ray CCDs developed at MIT Lincoln Laboratories for the AXAF CCD Imaging Spectrometer (ACIS) have

253

SWEPP Gamma-Ray Spectrometer System software design description  

SciTech Connect

To assist in the characterization of the radiological contents of contract-handled waste containers at the Stored Waste Examination Pilot Plant (SWEPP), the SWEPP Gamma-Ray Spectrometer (SGRS) System has been developed by the Radiation Measurements and Development Unit of the Idaho National Engineering Laboratory. The SGRS system software controls turntable and detector system activities. In addition to determining the concentrations of gamma-ray-emitting radionuclides, this software also calculates attenuation-corrected isotopic mass ratios of-specific interest. This document describes the software design for the data acquisition and analysis software associated with the SGRS system.

Femec, D.A.; Killian, E.W.

1994-08-01

254

Chemical detection using the airborne thermal infrared imaging spectrometer (TIRIS)  

SciTech Connect

A methodology is described for an airborne, downlooking, longwave infrared imaging spectrometer based technique for the detection and tracking of plumes of toxic gases. Plumes can be observed in emission or absorption, depending on the thermal contrast between the vapor and the background terrain. While the sensor is currently undergoing laboratory calibration and characterization, a radiative exchange phenomenology model has been developed to predict sensor response and to facilitate the sensor design. An inverse problem model has also been developed to obtain plume parameters based on sensor measurements. These models, the sensors, and ongoing activities are described.

Gat, N.; Subramanian, S.; Sheffield, M.; Erives, H. [Opto-Knowledge Systems, Inc. (United States); Barhen, J. [Oak Ridge National Lab., TN (United States)

1997-04-01

255

Clementine RRELAX SRAM particle spectrometer  

SciTech Connect

The Clementine RRELAX radiation monitor chip consists of a p-FET total dose monitor and a 4-kbit SRAM particle spectrometer. Eight of these chips were included in the RRELAX and used to detect the passage of the Clementine (S/C) and the innerstage adapter (ISA) through the earth's radiation belts and the 21-Feb 1994 solar flare. This is the first space flight for this 1.2-[mu]m rad-soft custom CMOS radiation monitor. This paper emphasizes results from the SRAM particle detector which showed that it (a) has a detection range of five orders of magnitude relative to the 21-Feb solar flare, (b) is not affected by electrons, and (c) detected microflares occurring with a 26.5-day period.

Buehler, M.G.; Soli, G.A.; Blaes, B.R.; Ratliff, J.M.; Garrett, H.B. (California Inst. of Technology, Pasadena, CA (United States). Jet Propulsion Lab.)

1994-12-01

256

Clementine RRELAX SRAM Particle Spectrometer  

NASA Technical Reports Server (NTRS)

The Clementine RRELAX radiation monitor chip consists of a p-FET total dose monitor and a 4-kbit SRAM particle spectrometer. Eight of these chips were included in the RRELAX and used to detect the passage of the Clementine (S/C) and the innerstage adapter (ISA) through the earth's radiation belts and the 21-Feb 1994 solar flare. This is the first space flight for this 1.2 micron rad-soft custom CMOS radiation monitor. This paper emphasizes results from the SRAM particle detector which showed that it a) has a detection range of five orders of magnitude relative to the 21-Feb solar flare, b) is not affected by electrons, and c) detected microflares occurring with a 26.5 day period.

Buehler, M.; Soli, G.; Blaes, B.; Ratliff, J.; Garrett, H.

1994-01-01

257

Mariner Mars 1969 infrared spectrometer.  

PubMed

The infrared spectrometer that recorded spectra of the atmosphere and surface of Mars during the Mariner 6 and 7 flyby missions is described. The instrument continuously scanned the 1.9-micro to 14.4-micro spectral region at 10 see per scan. Approximately 1% spectral resolution was furnished by two rotating, circular, variable interference filters. The spectral region 1.9-6.0 micro was recorded with a PbSe detector cooled to 175 K by radiation to deep space. The spectral region 3.9-14.4 micro was modulated by a cold (175 K) tuning fork chopper and recorded with a mercury-doped germanium detector cooled to 22 K by a Joule-Thomson two-stage (N(2) and H(2)) cryostat. The total weight of the instrument was 17.4 kg (monochromator plus electronics, 11.5 kg; gas delivery system, 5.9 kg), and it consumed 11 W of power. PMID:20111539

Herr, K C; Forney, P B; Pimentel, G C

1972-03-01

258

Multimode optical fiber based spectrometers  

E-print Network

A standard multimode optical fiber can be used as a general purpose spectrometer after calibrating the wavelength dependent speckle patterns produced by interference between the guided modes of the fiber. A transmission matrix was used to store the calibration data and a robust algorithm was developed to reconstruct an arbitrary input spectrum in the presence of experimental noise. We demonstrate that a 20 meter long fiber can resolve two laser lines separated by only 8 pm. At the other extreme, we show that a 2 centimeter long fiber can measure a broadband continuous spectrum generated from a supercontinuum source. We investigate the effect of the fiber geometry on the spectral resolution and bandwidth, and also discuss the additional limitation on the bandwidth imposed by speckle contrast reduction when measuring dense spectra. Finally, we demonstrate a method to reduce the spectrum reconstruction error and increase the bandwidth by separately imaging the speckle patterns of orthogonal polarizations. The mu...

Redding, Brandon; Cao, Hui

2013-01-01

259

Geostationary Environment Monitoring Spectrometer (GEMS)  

NASA Astrophysics Data System (ADS)

GEMS(Geostationary Environment Monitoring Spectrometer) is a scanning UV-visible spectrometer to be onboard the GeoKOMPSAT-2B in geostationary orbit in 2018. The main objective of the mission is to measure concentration of ozone and aerosol with their precursors including NO2, SO2 and HCHO in high temporal and spatial resolution. Recently, GEMS passed the governmental mid-term technical review, thus is in main phase of the mission. System design review(SDR) of GEMS was completed successfully and preliminary design review(PDR) is planned in March, 2014. Spectral coverage of GEMS is 300 to 500 nm with resolution of 0.6 nm and 3 samples/band. The mission covers most of the interesting region in Asia, with occasional coverage out to Pacific for clear sector method. Algorithms are under the development. Error analysis was carried out using the optimal estimation method with TOMS climatology, GEOS-Chem and VLIDORT. For the analysis, randomly generated conditions were extracted for different time of day in 12 months with actual viewing geometry from a GEO satellite at 128.2 oE. Through the spatial and spectral coadding and flexible E-W scan to increase the SNR, the performance of GEMS is predicted to satisfy the science requirements in most of the cases. Measurements of SO2 in winter season is very challenging but can be resolved if 4 pixels are coadded and the E-W scan is reduced half to increase SNR. GEMS is a part of GEO air quality(AQ) constellation with the Sentinel-4 of ESA and the TEMPO of NASA. Harmonized efforts for the GEO AQ Constellation are underway in terms of common basic requirements, standards, data product quality and cross participation of meetings under the framework of CEOS ACC.

Kim, Jhoon

260

The Geostationary Fourier Transform Spectrometer  

NASA Technical Reports Server (NTRS)

The Geostationary Fourier Transform Spectrometer (GeoFTS) is an imaging spectrometer designed for a geostationary orbit (GEO) earth science mission to measure key atmospheric trace gases and process tracers related to climate change and human activity. GEO allows GeoFTS to continuously stare at a region of the earth for frequent sampling to capture the variability of biogenic fluxes and anthropogenic emissions from city to continental spatial scales and temporal scales from diurnal, synoptic, seasonal to interannual. The measurement strategy provides a process based understanding of the carbon cycle from contiguous maps of carbon dioxide (CO2), methane (CH4), carbon monoxide (CO), and chlorophyll fluorescence (CF) collected many times per day at high spatial resolution (2.7kmx2.7km at nadir). The CO2/CH4/CO/CF measurement suite in the near infrared spectral region provides the information needed to disentangle natural and anthropogenic contributions to atmospheric carbon concentrations and to minimize uncertainties in the flow of carbon between the atmosphere and surface. The half meter cube size GeoFTS instrument is based on a Michelson interferometer design that uses all high TRL components in a modular configuration to reduce complexity and cost. It is self-contained and as independent of the spacecraft as possible with simple spacecraft interfaces, making it ideal to be a "hosted" payload on a commercial communications satellite mission. The hosted payload approach for measuring the major carbon-containing gases in the atmosphere from the geostationary vantage point will affordably advance the scientific understating of carbon cycle processes and climate change.

Key, Richard; Sander, Stanley; Eldering, Annmarie; Blavier, Jean-Francois; Bekker, Dmitriy; Manatt, Ken; Rider, David; Wu, Yen-Hung

2012-01-01

261

Development of a Submillimeter-Wavelength Immersion Grating Spectrometer  

NASA Technical Reports Server (NTRS)

The broad goal of this project was to develop a broadband, moderate-resolution spectrometer for submillimeter wavelengths. Our original approach was to build an immersion grating spectrometer, and as such, the first step was to identify the best material (lowest loss, highest index) for the grating medium, and to characterize its properties at the foreseen optical-bench operating temperature of 1.5 K. To this end, we put our initial efforts into upgrading an existing laboratory submillimeter Fourier transform spectrometer, which allowed us to carry out the requisite materials measurements. The associated cryogenic detector dewar was also redesigned and rebuilt to carry out this work. This dewar houses the 1.5 K detector and the filter wheel used in the materials characterization. Our goal was to have the beam propagate through the samples as uniformly as possible, so the optics were redesigned to allow for the samples to be traversed by a well-defined collimated beam. The optics redesign also placed the samples at an image of the aperture stop located within the FTS. After the rebuild, we moved into the testing phase.

Phillips, T. G.

2001-01-01

262

Birefringent Fourier-transform imaging spectrometer  

E-print Network

Birefringent Fourier-transform imaging spectrometer Andrew Robert Harvey and David William Fletcher.r.Harvey@hw.ac.uk http://www.ece.eps.hw.ac.uk/~arharvey Abstract: Fourier-transform imaging spectrometers offer important, for application in harsh environments, deployment of Fourier-transform instruments based on traditional moving

Harvey, Andy

263

Spin Spectrometer at the ALS and APS  

SciTech Connect

A spin-resolving photoelectron spectrometer, the"Spin Spectrometer," has been designed and built. It has been utilized at both the Advanced Light Source in Berkeley, CA, and the Advanced Photon Source in Argonne, IL. Technical details and an example of experimental results are presented here.

Lawrence Livermore National Laboratory; University of Missouri-Rolla; Boyd Technologies; Morton, Simon A; Morton, Simon A; Tobin, James G; Yu, Sung Woo; Komesu, Takashi; Waddill, George D; Boyd, Peter

2007-04-20

264

A Compton scatter attenuation gamma ray spectrometer  

NASA Technical Reports Server (NTRS)

Compton attenuation technique, utilizing semiconductor sum-Compton detectors, has been proposed for gamma ray spectrometer capable of gamma spectral measurements in radition fields of 100 R/hr to one million R/hr. Spectrometer consists of two or more separate detectors, with only primary detector exposed to primary incident photon flux.

Austin, W. E.

1972-01-01

265

A multicollector, cycloidal focusing, magnetic mass spectrometer  

Microsoft Academic Search

The design and appraisal of a mass spectrometer, based on the focusing properties of mutually perpendicular electric and magnetic fields, is described. This field geometry spatially separates ions as a linear function of mass along a focal plane. This allows the spectrometer to be used in applications requiring the simultaneous monitoring of many ion species of independently varying intensities, such

N. G. Adams; D. Smith

1974-01-01

266

[The integrative design for imaging spectrometer].  

PubMed

The hyperspectrum imaging spectrometer will achieve miniaturization and high spectrum resolution and high space resolution along with development of the hyperspectrum imaging technology that is becoming a trend. This trend requires the designers to improve and optimize their designing constantly in designing the instruments. The present paper carried out a method of integrative design for imaging spectrometer. This method suggested that the design and optimization work of the disperse systems of imaging spectrometers would take into account the whole systems, but not consider themselves only. It would get a perfect result by using this method. This paper also explained in details how the method can be used in the design course of imaging spectrometer with convex grating which has been used widely recently. Finally, this paper validated the method by testing the imaging spectrometer with convex grating, which was developed using this method. PMID:22582665

Cui, Ji-cheng; Liu, Yu-juan; Pan, Ming-zhong; Tang, Yu-guo

2012-03-01

267

Stationary Wave Integrated Fourier Transform Spectrometer (SWIFTS)  

NASA Astrophysics Data System (ADS)

The size and the weight of current spectrometers is a serious issue regarding various applications, however the technologies used in existing spectrometers prevent them from substantial improvement. SWIFTS (Stationary Wave Integrated Fourier Transform Spectrometer) is a new familyof spectrometers based on a verypromising technology. It is based on an original wayto fully sample the Fourier interferogram obtained in a waveguide byeither a reflection (SWIFTS Lippmann) or counter-propagative (SWIFTS Gabor) interference phenomenon. The sampling can be simultaneouslydone without anymo ving part thanks to "nano-detectors" located in the evanescent field of the waveguide. It allows a dramatic reduction of the size and the weight of spectrometers while improving their performances (high stabilityand high resolution ?? < 1cm-1). Here, we present the development status of the SWIFTS Gabor and the results obtained (resolution of 4cm-1) with existing technical solutions for the "nano-detectors" in visible and near infrared.

Ferrand, Jérôme; Custillon, Guillaume; Leblond, Gregory; Thomas, Fabrice; Moulin, Thibault; le Coarer, Etienne; Morand, Alain; Blaize, Sylvain; Gonthiez, Thierry; Benech, Pierre

2010-02-01

268

The Solar Spectral Irradiance from 200 to 2400  nm as Measured by the SOLSPEC Spectrometer from the Atlas and Eureca Missions  

Microsoft Academic Search

The SOLar SPECtrum (SOLSPEC) and the SOlar SPectrum (SOSP) spectrometers are two twin instruments built to carry out solar spectral irradiance measurements. They are made of three spectrometers dedicated to observations in the ultraviolet, visible and infrared domains. SOLSPEC flew with the ATmospheric Laboratory for Applications and Science (ATLAS) while SOSP flew on the EUropean Retrieval CArrier (EURECA) missions. ATLAS 1

G. Thuillier; M. Hersé; D. Labs; T. Foujols; W. Peetermans; D. Gillotay; P. C. Simon; H. Mandel

2003-01-01

269

Study and evaluation of impulse mass spectrometers for ion analysis in the D and E regions of the ionosphere  

NASA Technical Reports Server (NTRS)

Theoretical and numerical analyses were made of planar, cylindrical and spherical electrode time-of-flight mass spectrometers in order to optimize their operating conditions. A numerical analysis of potential barrier gating in time-of-flight spectrometers was also made. The results were used in the design of several small mass spectrometers. These were constructed and tested in a laboratory space simulator. Detailed experimental studies of a miniature cylindrical electrode time of flight mass spectrometer and of a miniature hemispherical electrode time of flight mass spectrometer were made. The extremely high sensitivity of these instruments and their ability to operate at D region pressures with an open source make them ideal instruments for D region ion composition measurements.

Kendall, B. R.

1979-01-01

270

HYSPEC : A CRYSTAL TIME OF FLIGHT HYBRID SPECTROMETER FOR THE SPALLATION NEUTRON SOURCE  

Microsoft Academic Search

This document lays out a proposal by the Instrument Development Team (IDT) composed of scientists from leading Universities and National Laboratories to design and build a conceptually new high-flux inelastic neutron spectrometer at the pulsed Spallation Neutron Source (SNS) at Oak Ridge. This instrument is intended to supply users of the SNS and scientific community, of which the IDT is

S. M. SHAPIRO; I. A. ZALIZNYAK

2002-01-01

271

Magnetic Fields1 Increasingly, instruments that generate large static magnetic fields (e.g., NMR spectrometers,  

E-print Network

Magnetic Fields1 Increasingly, instruments that generate large static magnetic fields (e.g., NMR spectrometers, MRI) are present in research laboratories. Such magnets typically have fields of 14,000 to 235,000 G (1.4 to 23.5 T), far above that of Earth's magnetic field, which is approximately 0.5 G

Shull, Kenneth R.

272

Balloon-borne, He-cooled Fourier transform spectrometer for far infrared astronomy  

Microsoft Academic Search

Mounting a prototype version of the helium cooled German Infrared Laboratory (GIRL) spacelab Fourier transform spectrometer (FTS) on a balloon borne 1 m infrared telescope, and on a three-axis stabilized platform is proposed. The Michelson FTS utilizes both outputs. A Fabry-Perot masking filter passes radiation to the FTS only in bands containing lines of astrophysical interest. The reduction of the

M. F. Campbell; S. Drapatz

1985-01-01

273

Recent Results from the Commissioning of the HRIBF Recoil Mass Spectrometer  

Microsoft Academic Search

The Recoil Mass Spectrometer (RMS) at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory (Managed by Lockheed Martin Energy Research Corporation for the U.S. Department of Energy.) is designed (Cole, J. D., et al.) al., Nucl. Instrum. Methods B70 (1992), 343. to transmit ions with rigidities of up to K = 100 resulting from fusion-evaporation and other

T. N. Ginter; J. H. Hamilton; A. V. Ramayya; C. J. Gross; J. W. Johnson; D. Shapira; Y. A. Akovali; M. J. Brinkman; J. Mas; J. W. McConnell; W. T. Milner; A. N. James

1997-01-01

274

Investigating the rp-process with the Canadian Penning trap mass spectrometer  

Microsoft Academic Search

The Canadian Penning trap (CPT) mass spectrometer at the Argonne National Laboratory makes precise mass measurements of nuclides with short half-lives. Since the previous ENAM conference, many significant modifications to the apparatus were implemented to improve both the precision and efficiency of measurement, and now more than 60 radioactive isotopes have been measured with half-lives as short as one second

J. A. Clark; R. C. Barber; B. Blank; C. Boudreau; F. Buchinger; J. E. Crawford; J. P. Greene; S. Gulick; J. C. Hardy; A. A. Hecht; A. Heinz; J. K. P. Lee; A. F. Levand; B. F. Lundgren; R. B. Moore; G. Savard; N. D. Scielzo; D. Seweryniak; K. S. Sharma; G. D. Sprouse; W. Trimble; J. Vaz; J. C. Wang; Y. Wang; B. J. Zabransky; Z. Zhou

2005-01-01

275

Characterization of a New Lead Slowing Down Spectrometer  

SciTech Connect

There is considerable interest in developing direct measurement methods to determine the plutonium content of spent nuclear fuel within a fuel assembly. One technique that may prove successful is lead slowing-down spectroscopy. Lead Slowing Down Spectroscopy (LSDS) has been used for decades to make cross-section measurements on relatively small isotopic samples of well know masses. For spent fuel assembly measurements, LSDS will be applied in reverse; unknown masses will be determined using well-know cross-sections. In the LSDS, a pulse of neutrons (on the order of 10-100 MeV) is injected into a large lead stack (~ 1m3). The neutrons quickly down-scatter but exhibit little spread in energy about the average, continually-decreasing neutron energy making for a strong correlation between the elapsed time from the initial pulse and the average energy of the neutron. By measuring this elapsed time, it is possible to measure interactions of the neutrons with the fuel in the 0.1 to 1,000 eV range. Many of the actinides have strong resonances in this region, making it possible, through careful measurements and analysis, to extract isotopic masses from LSDS measurements. Pacific Northwest National Laboratory is actively conducting research on both LSDS measurement and data analysis techniques. This paper will present results of the effort to construct and characterize a new lead slowing down spectrometer. The spectrometer was designed to begin testing both experimental measurement and data analysis techniques for determining the plutonium content of spent fuel. To characterize the spectrometer, a series of (n,?) experiments were conducted to measure the correlation between the time after the neutrons enter the lead and the energy of the interaction. Results from these measurements as well as plans for future development of the spectrometer will be discussed.

Casella, Andrew M.; Warren, Glen A.; Cantaloub, Michael G.; Mace, Emily K.; McDonald, Benjamin S.; Overman, Cory T.; Pratt, Sharon L.; Smith, Leon E.; Stave, Sean C.; Wittman, Richard S.

2011-10-01

276

Multiparticle Quantum Cosmology  

E-print Network

Fock space quantization of Dirac Hamiltonian constraints of General Relativity for case the flat open/closed Friedmann--Lemaitre--Robertson--Walker metric is presented. Thermodynamics of quantum states of the metrics and new role of radiation is deduced and discussed.

Glinka, L A

2008-01-01

277

Measurements of neutron energy spectra from 7Li(p,n)7Be reaction with Bonner sphere spectrometer, Nested Neutron Spectrometer and ROSPEC.  

PubMed

Neutron spectrometry measurements were carried out at the McMaster Accelerator Laboratory (MAL), which is equipped with a 3-MV Van de Graaff-type accelerator. Protons were accelerated onto a thick natural lithium target inducing the (7)Li(p,n)(7)Be threshold reaction. Depending on the proton energy, slightly different poly-energetic neutron fields were produced. Neutron spectra were measured at two incident proton energies: 2.15 and 2.24 MeV, which produced poly-energetic neutrons with maximum kinetic energies of 401 and 511 keV, respectively. Measurements were performed at a distance of 1.5 m from the target in the forward direction with three different instruments: Bonner sphere spectrometer, Nested Neutron Spectrometer and ROtational proton recoil SPECtrometer. PMID:24298169

Atanackovic, J; Matysiak, W; Witharana, S; Dubeau, J; Waker, A J

2014-10-01

278

Miniature Ion-Mobility Spectrometer  

NASA Technical Reports Server (NTRS)

The figure depicts a proposed miniature ion-mobility spectrometer that would be fabricated by micromachining. Unlike prior ion-mobility spectrometers, the proposed instrument would not be based on a time-of-flight principle and, consequently, would not have some of the disadvantageous characteristics of prior time-of-flight ion-mobility spectrometers. For example, one of these characteristics is the need for a bulky carrier-gas-feeding subsystem that includes a shutter gate to provide short pulses of gas in order to generate short pulses of ions. For another example, there is need for a complex device to generate pulses of ions from the pulses of gas and the device is capable of ionizing only a fraction of the incoming gas molecules; these characteristics preclude miniaturization. In contrast, the proposed instrument would not require a carrier-gas-feeding subsystem and would include a simple, highly compact device that would ionize all the molecules passing through it. The ionization device in the proposed instrument would be a 0.1-micron-thick dielectric membrane with metal electrodes on both sides. Small conical holes would be micromachined through the membrane and electrodes. An electric potential of the order of a volt applied between the membrane electrodes would give rise to an electric field of the order of several megavolts per meter in the submicron gap between the electrodes. An electric field of this magnitude would be sufficient to ionize all the molecules that enter the holes. Ionization (but not avalanche arcing) would occur because the distance between the ionizing electrodes would be less than the mean free path of gas molecules at the operating pressure of instrument. An accelerating grid would be located inside the instrument, downstream from the ionizing membrane. The electric potential applied to this grid would be negative relative to the potential on the inside electrode of the ionizing membrane and would be of a magnitude sufficient to generate a moderate electric field. Positive ions leaving the membrane holes would be accelerated in this electric field. The resulting flux of ions away from the ionization membrane would create a partial vacuum that would draw more of the gas medium through the membrane. The figure depicts a filter electrode and detector electrodes located along the sides of a drift tube downstream from the accelerator electrode. These electrodes would apply a transverse AC electric field superimposed on a ramped DC electric field. The AC field would effect differential transverse dispersal of ions. At a given instant of time, the trajectories of most of the ions would be bent toward the electrodes, causing most of the ions to collide with the electrodes and thereby become neutralized. The DC field would partly counteract the dispersive effect of the AC field, straightening the trajectories of a selected species of ions; the selection would vary with the magnitude of the applied DC field. The straightening of the trajectories of the selected ions would enable them to pass into the region between the detector electrodes. Depending on the polarity of the voltage applied to the detector electrodes, the electric field between the detector electrodes would draw the selected ions to one of these electrodes. Hence, the current collected by one of the detector electrodes would be a measure of the abundance of ions of the selected species. The ramping of the filter- electrode DC voltage would sweep the selection of ions through the spectrum of ionic species.

Hartley, Frank T.

2006-01-01

279

Shortcuts to adiabatic passage for multiparticles in distant cavities: applications to fast and noise-resistant quantum population transfer, entangled states' preparation and transition  

NASA Astrophysics Data System (ADS)

In this paper, we study the fast and noise-resistant population transfer, quantum entangled states preparation, and quantum entangled states' transition by constructing the shortcuts to adiabatic passage (STAP) for multiparticle based on the approach of "Lewis-Riesenfeld invariants" in distant cavity quantum electronic dynamics (QED) system. Numerical simulation demonstrates that all of the schemes are fast and robust against the decoherence caused by atomic spontaneous emission and photon leakage. Moreover, not only the total operation time but also the robustness in each scheme against decoherence is irrelevant to the number of qubits. This might lead to a useful step toward realizing the fast and noise-resistant quantum information processing in current technology.

Chen, Ye-Hong; Xia, Yan; Chen, Qing-Qin; Song, Jie

2014-11-01

280

Comparison of COSPEC and two miniature ultraviolet spectrometer systems for SO2 measurements using scattered sunlight  

USGS Publications Warehouse

The correlation spectrometer (COSPEC), the principal tool for remote measurements of volcanic SO2, is rapidly being replaced by low-cost, miniature, ultraviolet (UV) spectrometers. We compared two of these new systems with a COSPEC by measuring SO2 column amounts at Ki??lauea Volcano, Hawaii. The two systems, one calibrated using in-situ SO2 cells, and the other using a calibrated laboratory reference spectrum, employ similar spectrometer hardware, but different foreoptics and spectral retrieval algorithms. Accuracy, signal-to-noise, retrieval parameters, and precision were investigated for the two configurations of new miniature spectrometer. Measurements included traverses beneath the plumes from the summit and east rift zone of Ki??lauea, and testing with calibration cells of known SO2 concentration. The results obtained from the different methods were consistent with each other, with <8% difference in estimated SO2 column amounts up to 800 ppm m. A further comparison between the COSPEC and one of the miniature spectrometer configurations, the 'FLYSPEC', spans an eight month period and showed agreement of measured emission rates to within 10% for SO2 column amounts up to 1,600 ppm m. The topic of measuring high SO2 burdens accurately is addressed for the Ki??lauea measurements. In comparing the foreoptics, retrieval methods, and resultant implications for data quality, we aim to consolidate the various experiences to date, and improve the application and development of miniature spectrometer systems. ?? Springer-Verlag 2006.

Elias, T.; Sutton, A.J.; Oppenheimer, C.; Horton, K.A.; Garbeil, H.; Tsanev, V.; McGonigle, A.J.S.; Williams-Jones, G.

2006-01-01

281

Identification of hydrothermal alteration assemblages using airborne imaging spectrometer data  

NASA Technical Reports Server (NTRS)

Airborne Imaging Spectrometer (AIS) data, field and laboratory spectra and samples for X-ray diffraction analysis were collected in argillically altered Tertiary volcanic rocks in the Hot Creek Range, Nevada. From laboratory and field spectral measurements in the 2.0 to 2.4 micron range and using a spectroradiometer with a 4 nm sampling interval, the absorption band centers for kaolinite were loacted at 2.172 and 2.215 microns, for montmorillonite at 2.214 micron and for illite at 2.205. Based on these values and the criteria for resolution and separtion of spectral features, a spectral sampling interval of less than 4 nm is necessary to separate the clays. With an AIS spectral sampling interval of 9.3 nm, a spectral matching algorithm is more effective for separating kaolinite, montmorillonite, ad illite in Hot Creek Range than using the location of absorption minima alone.

Feldman, S. C.; Taranik, J. V.

1986-01-01

282

Direct Sun measurements of NO2 column abundances from Table Mountain, California: Intercomparison of low- and high-resolution spectrometers  

Microsoft Academic Search

The NO2 total column abundance, CNO2, was measured with a direct Sun viewing technique using three different instruments at NASA Jet Propulsion Laboratory's (JPL) Table Mountain Facility in California during an instrument intercomparison campaign in July 2007. The instruments are a high-resolution (?0.001 nm) Fourier transform ultraviolet spectrometer (FTUVS) from JPL and two moderate-resolution grating spectrometers, multifunction differential optical absorption

Shuhui Wang; Thomas J. Pongetti; Stanley P. Sander; Elena Spinei; George H. Mount; Alexander Cede; Jay Herman

2010-01-01

283

Feasability of using a graphite slowing-down-time spectrometer in the nondestructive assay of nuclear materials  

Microsoft Academic Search

A slowing-down-time spectrometer (SDTS), constructed for the study of nondestructive assay of fissile nuclear materials, is in its early stages of operation at the Nuclear Engineering Teaching Laboratory of the University of Texas at Austin. The spectrometer is made of a 101×105×122cm3 graphite rectangular parallelepiped and is based on injecting pulses of 14MeV neutrons into the pile. The neutron source

Ayman Ibrahim Hawari; Bernard W. Wehring; Horia R. Radulescu; Naeem M. Abdurrahman

1999-01-01

284

Miniature quadrupole mass spectrometer array  

NASA Technical Reports Server (NTRS)

The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

1998-01-01

285

Miniature quadrupole mass spectrometer array  

NASA Technical Reports Server (NTRS)

The present invention provides a minature quadrupole mass spectrometer array for the separation of ions, comprising a first pair of parallel, planar, nonmagnetic conducting rods each having an axis of symmetry, a second pair of planar, nonmagnetic conducting rods each having an axis of symmetry parallel to said first pair of rods and disposed such that a line perpendicular to each of said first axes of symmetry and a line perpendicular to each of said second axes of symmetry bisect each other and form a generally 90 degree angle. A nonconductive top positioning plate is positioned generally perpendicular to the first and second pairs of rods and has an aperture for ion entrance along an axis equidistant from each axis of symmetry of each of the parallel rods, a nonconductive bottom positioning plate is generally parallel to the top positioning plate and has an aperture for ion exit centered on an axis equidistant from each axis of symmetry of each of the parallel rods, means for maintaining a direct current voltage between the first and second pairs of rods, and means for applying a radio frequency voltage to the first and second pairs of rods.

Chutjian, Ara (Inventor); Hecht, Michael H. (Inventor); Orient, Otto J. (Inventor)

1997-01-01

286

High-Resolution Mass Spectrometers  

NASA Astrophysics Data System (ADS)

Over the past decade, mass spectrometry has been revolutionized by access to instruments of increasingly high mass-resolving power. For small molecules up to ˜400 Da (e.g., drugs, metabolites, and various natural organic mixtures ranging from foods to petroleum), it is possible to determine elemental compositions (CcHhNnOoSsPp…) of thousands of chemical components simultaneously from accurate mass measurements (the same can be done up to 1000 Da if additional information is included). At higher mass, it becomes possible to identify proteins (including posttranslational modifications) from proteolytic peptides, as well as lipids, glycoconjugates, and other biological components. At even higher mass (˜100,000 Da or higher), it is possible to characterize posttranslational modifications of intact proteins and to map the binding surfaces of large biomolecule complexes. Here we review the principles and techniques of the highest-resolution analytical mass spectrometers (time-of-flight and Fourier transform ion cyclotron resonance and orbitrap mass analyzers) and describe some representative high-resolution applications.

Marshall, Alan G.; Hendrickson, Christopher L.

2008-07-01

287

Acousto-optic tunable filter imaging spectrometers  

NASA Technical Reports Server (NTRS)

A remote sensing multispectral imaging instrument is being developed that uses a high resolution, fast programmable acoustooptic tunable filter (AOTF) as the spectral bandpass filter. A compact and fully computer controllable AOTF-based imaging spectrometer that operates in the visible wavelength range (0.5-0.8 microns) has been built and tested with success. A second imaging spectrometer operating in the near-infrared wavelength range (1.2-2.4 microns) is also under experimental investigation. The design criteria meeting various system issues, such as imaging quality, spectral response, and field of view (FOV), are discussed. An experiment using this AOTF imaging spectrometer breadboard is described.

Chao, Tien-Hsin; Yu, Jeffrey; Reyes, George; Rider, David; Cheng, Li-Jen

1991-01-01

288

Mariner 10 ultraviolet spectrometer - Airglow experiment  

NASA Technical Reports Server (NTRS)

An extreme ultraviolet airglow spectrometer was flown on Mariner 10 to examine the atmosphere of Venus and Mercury. An objective grating spectrometer was used with channel electron multipliers at fixed positions in the image plane to continuously monitor the resonance-scattered emission rate of expected atomic atmospheric constituents He, H, A, Ne, O and C. A mechanical collimator placed in the entrance aperture of the spectrometer provided spectral separation of 19 A over the wavelength range from He/+/ at 304 A to C at 1657 A and provided spatial separation of 0.125 deg consistent with the spacecraft and trajectory capabilities. The calibration techniques are discussed.

Broadfoot, A. L.; Clapp, S. S.; Stuart, F. E.

1977-01-01

289

Direct detection submillimeter spectrometer for CCAT  

NASA Astrophysics Data System (ADS)

We present a trade study for a submillimeter direct-detection spectrometer operating at the background limit for the Cornell Caltech Atacama Telescope (CCAT). In this study we compare the classical echelle spectrometer ZEUS with the waveguide grating spectrometer Z-Spec. The science driver for this instrument is spectroscopic investigation of high redshift galaxies as their far-IR fine structure line emission is redshifted into the telluric submillimeter windows. The baseline detector consists of SQUID multiplexed TES bolometers and the ideal spectrometer to detect weak lines from distant extragalactic sources is a grating with a resolution of ~103 and a large bandwidth, covering an entire telluric submillimeter window instantaneously. Since the density of high-z sources on the sky is ~100 within a 10'×10' field of view and a redshift range of ?z~0.2 we also explore multi-object (~50 objects) capability, including articulated mirrors and flexible waveguide fibers.

Nikola, Thomas; Stacey, Gordon J.; Bradford, C. Matt

2008-07-01

290

Electro-optic Imaging Fourier Transform Spectrometer  

NASA Technical Reports Server (NTRS)

JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-0IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 pm (1000 -4000 cm-') to allow high-resolution, high-speed hyperspectral imaging applications [l-51. One application will be theremote sensing of the measurement of a large number of different atmospheric gases simultaneously in the sameairmass. Due to the use of a combination of birefiingent phase retarders and multiple achromatic phase switches toachieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventionalFourier transform spectrometer but without any moving parts. In this paper, the principle of operations, systemarchitecture and recent experimental progress will be presen.

Chao, Tien-Hsin

2005-01-01

291

Electro-optic Imaging Fourier Transform Spectrometer  

NASA Technical Reports Server (NTRS)

JPL is developing an innovative compact, low mass, Electro-Optic Imaging Fourier Transform Spectrometer (E-O IFTS) for hyperspectral imaging applications. The spectral region of this spectrometer will be 1 - 2.5 micron (1000-4000/cm) to allow high-resolution, high-speed hyperspectral imaging applications. One application will be the remote sensing of the measurement of a large number of different atmospheric gases simultaneously in the same airmass. Due to the use of a combination of birefringent phase retarders and multiple achromatic phase switches to achieve phase delay, this spectrometer is capable of hyperspectral measurements similar to that of the conventional Fourier transform spectrometer but without any moving parts. In this paper, the principle of operations, system architecture and recent experimental progress will be presented.

Chao, Tien-Hsin

2005-01-01

292

AVIRIS Spectrometer Maps Total Water Vapor Column  

NASA Technical Reports Server (NTRS)

Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) processes maps of vertical-column abundances of water vapor in atmosphere with good precision and spatial resolution. Maps provide information for meteorology, climatology, and agriculture.

Conel, James E.; Green, Robert O.; Carrere, Veronique; Margolis, Jack S.; Alley, Ronald E.; Vane, Gregg A.; Bruegge, Carol J.; Gary, Bruce L.

1992-01-01

293

Ultraviolet spectrometer experiment for the Voyager mission  

NASA Technical Reports Server (NTRS)

An objective grating spectrometer covering the wavelength range of 500 to 1700 A with a 10-A resolution is employed for the Voyager ultraviolet spectrometer experiment. In determining the composition and structure of the atmospheres of Saturn, Jupiter and several satellites, the ultraviolet spectrometer will rely on airglow mode observations to measure radiation from the atmospheres due to resonant scattering of solar flux, and the occultation mode for assessments of the atmospheric extinction of solar or stellar radiation as the spacecraft enters shadow zones. Since it is capable of prolonged stellar observations in the 500 to 1000 A wavelength range, the spectrometer is expected to make important contributions to exploratory studies of UV sources.

Broadfoot, A. L.; Sandel, B. R.; Shemansky, D. E.; Atreya, S. K.; Donahue, T. M.; Moos, H. W.; Bertaux, J. L.; Blamont, J. E.; Ajello, J. M.; Strobel, D. F.

1977-01-01

294

System simulation of digital pulse spectrometer  

NASA Astrophysics Data System (ADS)

Benefiting from digitalization techniques, new-generation pulse spectrometers are characterized by better energy resolution, higher throughput, and improved stability and flexibility. MATLAB/SIMULINK, a platform for dynamic system simulation, was used to simulate such a digital pulse spectrometer. Each processing unit in the whole signal processing procedure was modeled with the relevant mathematical function and simulated with the abundant tools provided in SIMULINK. The simulation was implemented with sample input including noise, and the results verified that the system was all correctly simulated. The simulation system can be used to demonstrate the operating principles of a digital pulse spectrometer, to investigate key pulse processing algorithms, and as a computer-aided design tool for developing digital multi-channel analyzers (MCAs) or digital nuclear spectrometers.

Xiao, Wuyun; Wei, Yixiang; Ai, Xianyun; Ao, Qi

2005-12-01

295

The Mars Microbeam Raman Spectrometer (MMRS)  

NASA Technical Reports Server (NTRS)

The Mars Microbeam Raman Spectrometer can identify minerals in situ, determine rock types and textures, provide some mineral chemistry, detect organic and biogenic materials, and identify bound water. Additional information is contained in the original extended abstract.

Haskin, L. A.; Wang, A.; Jolliff, B. L.; Wdowiak, T.; Agresti, D.; Lane, A.; Squyres, S. W.

2001-01-01

296

LCLS Injector Straight-Ahead Spectrometer  

SciTech Connect

The spectrometer design was modified to allow the measurement of uncorrelated energy spread for the nominal lattice. One bunch from every 120 each second would be sent to the straight ahead spectrometer while the transverse cavity is on. The implementation of this 'stealing mode' will not be available for the LCLS commissioning and the early stage of operation. However, the spectrometer was redesigned to retain that option. The energy feedback relies independently on the beam position of the beam in the dispersive section of dogleg 1 (DL1). The main modification of the spectrometer design is the Pole face rotation of 7.5 degrees on both entrance and exit faces. The location and range of operation of the 3 quadrupoles remains unchanged relative to those of the earlier design.

Limborg-Deprey , C.

2010-12-10

297

Calibration of a photomultiplier array spectrometer  

NASA Technical Reports Server (NTRS)

A systematic approach to the calibration of a photomultiplier array spectrometer is presented. Through this approach, incident light radiance derivation is made by recognizing and tracing gain characteristics for each photomultiplier tube.

Bailey, Steven A.; Wright, C. Wayne; Piazza, Charles R.

1989-01-01

298

NEREUS Nemertes : embedded mass spectrometer control system  

E-print Network

In this thesis, I present Nemertes System, a software suite to control an embedded autonomous mass spectrometer. I first evaluate previous control systems for the hard- ware and evaluate a set of software design goals. The ...

Champy, Adam Samuel

2005-01-01

299

Visible spectrometer utilizing organic thin film absorption  

E-print Network

In this thesis, I modeled and developed a spectrometer for the visible wavelength spectrum, based on absorption characteristics of organic thin films. The device uses fundamental principles of linear algebra to reconstruct ...

Tiefenbruck, Laura C. (Laura Christine)

2004-01-01

300

AUTOMATION OF AN ULTRAVIOLET-VISIBLE SPECTROMETER  

EPA Science Inventory

This report is an overview of the functional description and major features of an automated ultraviolet-visible spectrometer system intended for environmental measurements application. As such, it defines functional specifications and requirements which are divided into the chlor...

301

A preliminary design study for a cosmic X-ray spectrometer  

NASA Technical Reports Server (NTRS)

The results are described of theoretical and experimental investigations aimed at the development of a curved crystal cosmic X-ray spectrometer to be used at the focal plane of the large orbiting X-ray telescope on the third High Energy Astronomical Observatory. The effort was concentrated on the development of spectrometer concepts and their evaluation by theoretical analysis, computer simulation, and laboratory testing with breadboard arrangements of crystals and detectors. In addition, a computer-controlled facility for precision testing and evaluation of crystals in air and vacuum was constructed. A summary of research objectives and results is included.

1972-01-01

302

Investigations of 2β decay measured by low background HPGe spectrometer OBELIX  

NASA Astrophysics Data System (ADS)

A low background high sensitive HPGe spectrometer OBELIX was installed at the Modane Underground Laboratory (LSM, France, 4800 m w.e.). The detector was designed to measure a contamination of enriched isotopes and radio-impurities in construction materials, to investigate rare nuclear processes such as resonance neutrinoless double electron capture and two-neutrino double beta decay to excited states of daughter nuclei. Spectrometer sensitivity, contamination of NEMO-3 sources and results of 2?2?- decay of 100Mo to the 0+ (1130 keV) and 2+ (540 keV) excited states as well as future plans for OBELIX detector are given.

Rukhadze, Ekaterina; Obelix Collaboration, Supernemo Collaboration

2013-12-01

303

Calibration of a high resolution grating soft x-ray spectrometer  

SciTech Connect

The calibration of the soft x-ray spectral response of a large radius of curvature, high resolution grating spectrometer (HRGS) with a back-illuminated charge-coupled device detector is reported. The instrument is cross-calibrated for the 10-50 A waveband at the Lawrence Livermore National Laboratory electron beam ion trap (EBIT) x-ray source with the EBIT calorimeter spectrometer. The HRGS instrument is designed for laser-produced plasma experiments and is important for making high dynamic range measurements of line intensities, line shapes, and x-ray sources.

Magee, E. W.; Dunn, J.; Brown, G. V.; Beiersdorfer, P. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); Cone, K. V.; Park, J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 (United States); Department of Applied Sciences, University of California, Davis, California 95616 (United States); Porter, F. S.; Kilbourne, C. A.; Kelley, R. L. [Goddard Space Flight Center, NASA, Greenbelt, Maryland 20770 (United States)

2010-10-15

304

SETA-Hyperspectral Imaging Spectrometer for Marco Polo mission.  

NASA Astrophysics Data System (ADS)

The Marco Polo NEO sample return M-class mission has been selected for assessment study within the ESA Cosmic Vision 2015-2025 program. The Marco Polo mission proposes to do a sample return mission to Near Earth Asteroid. With this mission we have the opportunity to return for study in Earth-based laboratories a direct sample of the earliest record of how our solar system formed. The landing site and sample selection will be the most important scientific decision to make during the course of the entire mission. The imaging spectrometer is a key instrument being capable to characterize the mineralogical composition of the entire asteroid and to analyze the of the landing site and the returned sample in its own native environment. SETA is a Hyperspectral Imaging Spectrometer able to perform imaging spectroscopy in the spectral range 400-3300 nm for a complete mapping of the target in order to characterize the mineral properties of the surface. The spectral sampling is of at least 20 nm and the spatial resolution of the order of meter. SETA shall be able to return a detailed determination of the mineralogical composition for the different geologic units as well as the overall surface mineralogy with a spatial resolution of the order of few meters. These compositional characterizations involve the analysis of spectral parameters that are diagnostic of the presence and composition of various mineral species and materials that may be present on the target body. Most of the interesting minerals have electronic and vibrational absorption features in their VIS-NIR reflectance spectra. The SETA design is based on a pushbroom imaging spectrometer operating in the 400-3300 nm range, using a 2D array HgCdTe detector. This kind of instrument allows a simultaneous measurement of a full spectrum taken across the field of view defined by the slit's axis (samples). The second direction (lines) of the hyperspectral image shall be obtained by using the relative motion of the orbiter with respect to the target or by using a scan mirror. The SETA optical concept is mostly inherited from the SIMBIO-SYS/VIHI (Visible Infrared Hyperspectral Imager) imaging spectrometer aboard Bepi Colombo mission but also from other space flying imaging spectrometers, such as VIRTIS (on Rosetta and Venus Express, VIR on DAWN).

de Sanctis, M. Cristina; Filacchione, Gianrico; Capaccioni, Fabrizio; Piccioni, Giuseppe; Ammannito, Eleonora; Capria, M. Teresa; Coradini, Angioletta; Migliorini, Alessandra; Battistelli, Enrico; Preti, Giampaolo

2010-05-01

305

Compact hydrogen\\/helium isotope mass spectrometer  

Microsoft Academic Search

The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently,

Herbert O. Funsten; David J. McComas; Earl E. Scime

1996-01-01

306

Fluorescence spectrometer-on-a-fluidic-chip.  

PubMed

A chip-size spectrometer is realized by combining a linear variable band-pass filter with a CMOS camera. The filter converts the spectral information of the incident light into a spatially dependent signal that is analyzed by the camera. A fluidic platform is integrated onto the spectrometer for analyzing the fluorescence from moving objects. The target is continuously excited within an anti-resonant waveguide, and its fluorescence spectrum is recorded as the object traverses the detection area. PMID:17476382

Schmidt, Oliver; Bassler, Michael; Kiesel, Peter; Knollenberg, Clifford; Johnson, Noble

2007-05-01

307

Design of a transuranic VUV spectrometer  

SciTech Connect

Most of our present knowledge about the physics of 5f systems derives from studies of uranium and its compounds. This is particularly true in the case of photoemission measurements where the intense radioactivity has prevented studies at synchrotron sources. The development of a transuranic VUV spectrometer capable of safe operation at a synchrotron source would represent a giant step in 5f research. This paper describes the conceptual design of such a spectrometer.

Arko, A.J.

1987-01-01

308

Spectrometer and scanner with optofluidic configuration.  

PubMed

We present a spectrometer and scanner based on optofluidic configurations. The main optical component of the spectrometer is a compound optical element consisting of an optofluidic lens and standard blazed diffraction grating. The spectrum size can be changed by filling the lens cavity with different liquids. The scanner comprises two hollow 45° angle prisms oriented at 90° to each other. By changing the liquid inside the prisms, two-dimensional light beam scanning can be performed. PMID:23338199

Calixto, Sergio; Rosete-Aguilar, Martha; Sanchez-Morales, Maria Eugenia; Calixto-Solano, Margarita

2013-01-20

309

Gas plasma analysis using an emission spectrometer  

SciTech Connect

Techniques and methods for using an optical emission spectrometer were developed. The spectrometer was effective in identifying species of gas plasma and was used to determine the end-of-process for chlorine contaminated diodes, silicone nitride removal, and the removal of organic contamination. Methods of data collection and manipulation were developed and a spectral library program was obtained to assist in identifying the spectral peaks or heads. 14 refs., 19 figs.

Hester, M.D.

1990-01-01

310

Integrated millimeter\\/submillimeter superconducting digital spectrometer  

Microsoft Academic Search

Compact mm\\/submm integrated spectrometers are required for radio-astronomical research, remote monitoring of the Earth atmosphere and environmental monitoring for hazardous materials of chemical and biological origin. Assembled on a multi-chip module the all superconducting integrated spectrometer offers integration of thin film analog components such as a mixer, superconducting local oscillator and an intermediate frequency SQUID amplifier together with superconducting digital

Igor V. Vernik; Dmitri E. Kirichenko; Saad Sarwana; Darren K. Brock

2005-01-01

311

Optical Calibration For Jefferson Lab HKS Spectrometer  

E-print Network

In order to accept very forward angle scattering particles, Jefferson Lab HKS experiment uses an on-target zero degree dipole magnet. The usual spectrometer optics calibration procedure has to be modified due to this on-target field. This paper describes a new method to calibrate HKS spectrometer system. The simulation of the calibration procedure shows the required resolution can be achieved from initially inaccurate optical description.

L. Yuan; L. Tang

2005-11-04

312

1987 calibration of the TFTR neutron spectrometers  

SciTech Connect

The {sup 3}He neutron spectrometer used for measuring ion temperatures and the NE213 proton recoil spectrometer used for triton burnup measurements were absolutely calibrated with DT and DD neutron generators placed inside the TFTR vacuum vessel. The details of the detector response and calibration are presented. Comparisons are made to the neutron source strengths measured from other calibrated systems. 23 refs., 19 figs., 6 tabs.

Barnes, C.W.; Strachan, J.D. (Los Alamos National Lab., NM (USA); Princeton Univ., NJ (USA). Plasma Physics Lab.)

1989-12-01

313

Investigations of Physical Processes in Solar Flare Plasma on the Basis of RESIK Spectrometer Observations  

NASA Astrophysics Data System (ADS)

Simultaneous registration of spectra of quickly varying sources may be obtained through the use of curved fixed crystals instead of the scanning flat crystals spectrometer. Illuminating such a curved crystal with parallel X-ray beam allows to obtain, after the reflection, the whole spectrum covering certain wavelengths range, as the incidence angle at curved crystal surface represents a monotonous function of incidence point position measured along the crystal. The RESIK bent crystal spectrometer was developed in Poland with the help from experts of Naval Research Laboratory (USA), Rutherford Appleton Laboratory (UK), and Mullard Space Science Laboratory (MSSL, UK). The development work was also supported by scientists of Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Waves Propagation of the Russian Academy of Sciences. Unique RESIK spectra and the results obtained are presented and discussed.

Kordylewski, Z.; Sylwester, J.; Sylwester, B.; K?pa, A.; Kowali?ski, M.; Trzebi?ski, W.

314

Automated extraction of absorption features from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and Geophysical and Environmental Research Imaging Spectrometer (GERIS) data  

NASA Technical Reports Server (NTRS)

Automated techniques were developed for the extraction and characterization of absorption features from reflectance spectra. The absorption feature extraction algorithms were successfully tested on laboratory, field, and aircraft imaging spectrometer data. A suite of laboratory spectra of the most common minerals was analyzed and absorption band characteristics tabulated. A prototype expert system was designed, implemented, and successfully tested to allow identification of minerals based on the extracted absorption band characteristics. AVIRIS spectra for a site in the northern Grapevine Mountains, Nevada, have been characterized and the minerals sericite (fine grained muscovite) and dolomite were identified. The minerals kaolinite, alunite, and buddingtonite were identified and mapped for a site at Cuprite, Nevada, using the feature extraction algorithms on the new Geophysical and Environmental Research 64 channel imaging spectrometer (GERIS) data. The feature extraction routines (written in FORTRAN and C) were interfaced to the expert system (written in PROLOG) to allow both efficient processing of numerical data and logical spectrum analysis.

Kruse, Fred A.; Calvin, Wendy M.; Seznec, Olivier

1988-01-01

315

Spectrometer Images of Candidate Landing Sites for Next Mars Rover  

NASA Technical Reports Server (NTRS)

This composite shows four examples of 'browse' products the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) instrument obtained of areas on Mars near proposed landing sites for NASA's 2009 Mars Science Laboratory. These examples are from two of more than 30 candidate sites. They are enhanced color images of West Candor chasm (A) and Nili Fossae trough (B); and false color images indicating the presence of hydrated (water-containing) minerals in West Candor (C); and clay-like (phyllosilicate) minerals in Nili Fossae (D).

CRISM is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and the Mars Science Laboratory for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

2007-01-01

316

Noise analysis of spectrometers based on speckle pattern reconstruction  

E-print Network

compare the accuracy of a speckle-based spectrometer to a traditional grating-based spectrometer comparable performance to a grating-based spectrometer when measuring intense or narrowband probe signals Traditional spectrometers rely on a grating or prism to provide one-to-one spectral to spatial mapping

Cao, Hui

317

Modulated optical solid-state spectrometer applications in plasma diagnostics  

E-print Network

, and inexpensive and offers a number of advantages over conventional grating based spectrometers. Most importantly the MOSS spectrometer is an inexpensive and powerful alternative to multichannel grating spectrometersModulated optical solid-state spectrometer applications in plasma diagnostics John Howard Plasma

Howard, John

318

The LINUS UV imaging spectrometer  

NASA Astrophysics Data System (ADS)

We present an overview of the Naval Postgraduate School's new LINUS instrument. This is a spectral imager designed to observe atmospheric gas plumes by means of absorption spectroscopy, using background Rayleigh-scattered daylight as an illumination source. It is a pushbroom instrument, incorporating a UV-intensified digital camera, interchangeable gratings and filters, and a DC servo-controlled image scanning system. LINUS has been developed to operate across both the near-ultraviolet and the short visible wavelength portions of the spectrum in overlapping passbands. This paper provides an outline of LINUS's design, operation and capabilities, and it summarizes results from initial laboratory and field trials.

Davis, D. S.; Harkins, Richard M.; Olsen, Richard C.

2003-09-01

319

A small gas inlet system for orbital mass-spectrometer calibrations  

NASA Technical Reports Server (NTRS)

A gas inlet system is described for generating precise gas pressures that are to be used as calibration references for the mass spectrometers aboard the dual air density Explorer satellites. This gas inlet system was developed as an inflight calibration technique in which a known amount of onboard gas is released in the satellite cavity and is detected by the mass spectrometer. Although several flight mass spectrometer experiments have been proposed, none make use of the inflight calibration technique described in this report. Laboratory measurements and calibration of the metering leak technique for the gas inlet systems are discussed. The systems tested have metering leak rates between 2 and 4 microliters/sec at 298 K for argon-40, and they produce molecular flow up to 100 torr, which is the highest test pressure in this experiment. Test data show that metering leak rates are reproducible within 1 percent of established means for helium-3, helium-4, and argon-40.

Smith, A.; Stell, R. E.

1978-01-01

320

Neutron spectrometer based on a proton telescope with electronic collimation of recoil protons  

NASA Astrophysics Data System (ADS)

A prototype of a neutron spectrometer based on a gas proportional counter with recoil-proton registration is created at the Frank Laboratory of Neutron Physics at the Joint Institute for Nuclear Research (FLNP JINR) in Dubna. The spectrometer is developed to measure the kinetic energy of protons scattered elastically at small angles that are produced by ( n, p) reaction in an environment containing hydrogen. The elaborated prototype consists of two cylindrical proportional counters used as cathodes. They are placed in a gas environment with a common centrally situated anode wire. Studies on the characteristics of the neutron spectrometer were conducted using 252Cf and 239Pu-Be radioisotope neutron sources. Measurements were made with monoenergetic neutrons produced by the 7Li( p, n)7Be reaction when a thin lithium target was bombarded with a proton beam from an EG-5 electrostatic accelerator, as well as with neutrons from the reaction D( d, n) 3He with a gas deuterium target.

Milkov, V. M.; Panteleev, Ts. Ts.; Bogdzel, A.; Shvetsov, V. N.; Kutuzov, S.; Borzakov, S. B.; Sedyshev, P. V.

2012-11-01

321

An imaging proton spectrometer for short-pulse laser plasma experiments  

SciTech Connect

Ultra intense short pulse laser pulses incident on solid targets can generate energetic protons. In additions to their potentially important applications such as in cancer treatments and proton fast ignition, these protons are essential to understand the complex physics of intense laser plasma interaction. To better understand these laser-produced protons, we designed and constructed a novel, spatially imaging proton spectrometer that will not only provide at high-resolution the energy distribution, but also the protons angular characteristics. The information obtained from this spectrometer compliments those from other methods using radiochromic film packs, CR39 films and other protons spectrometers. The basic characterizations and example data from this diagnostics will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344, as part of the Cimarron project funded by LDRD-09SI11.

Chen, H; Hazi, A; van Maren, R; Chen, S; Fuchs, J; Gauthier, M; Rygg, J R; Shepherd, R

2010-02-09

322

Wide-field imaging spectrometer for the Hyperspectral Infrared Imager (HyspIRI) mission  

NASA Astrophysics Data System (ADS)

We report on the design, tolerancing, and laboratory breadboard of an imaging spectrometer for the Earth Science Decadal Survey Hyperspectral and Infrared Imager (HyspIRI) mission. The spectrometer is of the Offner type but with a much longer slit than typical designs, with 1600 resolvable spatial elements along the slit for a length of 48 mm. Two such spectrometers cover more than the required swath while maintaining high throughput and signal-to-noise thanks to the large pixel size (30 ?m), relatively high speed (F/2.8) and small number of reflections. We also demonstrate a method for measuring smile using a linear array, and use the method to prove the achievement of negligible smile of less than 2% of a pixel over the entire 48 mm slit. Thus we show that this high-heritage, all-spherical mirror design can serve the requirements of the HyspIRI mission.

Bender, Holly A.; Mouroulis, Pantazis; Korniski, Ronald J.; Green, Robert O.; Wilson, Daniel W.

2014-09-01

323

Panoramic Imaging Spectroscopy with the Ultra Compact Imaging Spectrometer (UCIS)  

NASA Astrophysics Data System (ADS)

In Situ imaging spectroscopy provides a way to address complex questions of geological evolution for aqueous, volcanic, and impact processes by mapping mineral composition at the spatial scale of rocks and outcrops. Spectroscopy from 500-2600 nm is an established technique for measuring the mineralogy of sedimentary and igneous rocks, outcrops, and regoliths. Minerals such as olivine, pyroxene, carbonates, clays, and sulfates exhibit absorption features that are highly diagnostic of their structure and composition in this wavelength range. Imaging spectroscopy allows for mineralogy to be mapped at geological important special scales thus allowing for the investigation of the spatial relationship between minerals and compositions and of the geologic and geochemical processes of planets, asteroids, comets, and moons. The Ultra Compact Imaging Spectrometer (UCIS) is a JPL developed imaging spectrometer suitable for inclusion on a Mars or lunar rover or asteroid lander but packaged for operation at terrestrial ambient conditions. UCIS is an Offner spectrometer using JPL e-beam gratings, HgCdTe detectors with many components having direct heritage from the Moon Mineralogy Mapper (M3). UCIS covers the wavelength range from 500-2600 nm with 10 nm sampling/resolution with a 30 deg. field of view with and instantaneous field of view 1.4 mrad (spatial sampling of 4.2 mm at 3 m.) The optical head of the instrument has a mass of < 2 kg on the mass and takes 5.2 W of power (Van Gorp et al. 2011). The instrument has completed calibration and has begun field trials. Initial trials were carried out in the JPL "Mars Yard" robotic testbed. The Mars Yard contains a large number of basaltic boulders and other rocks/soils. Additional rocks and spectrally interesting materials were place in the Mars Yard to fully assess the ability of the instrument to identify spectrally distinct material. To collect data the instrument was mounted with the spectrometer slit oriented in elevation on a precision controlled stage. The slit was then scanned in azimuth to build up a spatial image. Telluric absorption features were calibrated out using Spectralon® calibration target taken before and after the scan of the Mars Yard. Spectra of selected materials in the Mars Yard were collected with an Analytical Spectral Devices Field Spectrometer to compare to the UCIS spectrometer. Initial results show clear spectral features consistent with the mineralogies present. Additional field trials are planned in September in geologically interesting locations. Reference: Van Gorp et al., Optical design and performance of the Ultra-Compact Imaging Spectrometer, SPIE Optics and Photonics, San Diego, Aug 21-25, 2011. Acknowledgements: This work has been conducted at the Jet Propulsion Laboratory, California Institute of Technology under a contract with the National Aeronautics and Space Administration. Work was carried out with JPL Research and Technology Development Funding. False color (RGB) image reconstruction of part of the Mars Yard Panorma

Blaney, D. L.; Mouroulis, P.; Van Gorp, B.; Green, R. O.; Borden, M.; Smith-Dryden, S. D.; Bender, H.; Sellar, R. G.; Rodriguez, J.; Wilson, D.

2012-12-01

324

IR Spectrometer Using 90-Degree Off-Axis Parabolic Mirrors  

SciTech Connect

A gated spectrometer has been designed for real-time, pulsed infrared (IR) studies at the National Synchrotron Light Source at the Brookhaven National Laboratory. A pair of 90-degree, off-axis parabolic mirrors are used to relay the light from an entrance slit to an output recording camera. With an initial wavelength range of 1500–4500 nm required, gratings could not be used in the spectrometer because grating orders would overlap. A magnesium oxide prism, placed between these parabolic mirrors, serves as the dispersion element. The spectrometer is doubly telecentric. With proper choice of the air spacing between the prism and the second parabolic mirror, any spectral region of interest within the InSb camera array’s sensitivity region can be recorded. The wavelengths leaving the second parabolic mirror are collimated, thereby relaxing the camera positioning tolerance. To set up the instrument, two different wavelength (visible) lasers are introduced at the entrance slit and made collinear with the optical axis via flip mirrors. After dispersion by the prism, these two laser beams are directed to tick marks located on the outside housing of the gated IR camera. This provides first-order wavelength calibration for the instrument. Light that is reflected off the front prism face is coupled into a high-speed detector to verify steady radiance during the gated spectral imaging. Alignment features include tick marks on the prism and parabolic mirrors. This instrument was designed to complement single-point pyrometry, which provides continuous time histories of a small collection of spots from shock-heated targets.

Robert M. Malone, Ian J. McKenna

2008-03-01

325

IR Spectrometer Using 90-degree Off-axis Parabolic Mirrors  

SciTech Connect

A gated spectrometer has been designed for real-time, pulsed infrared (IR) studies at the National Synchrotron Light ource at the Brookhaven National Laboratory. A pair of 90-degree, off-axis parabolic mirrors are used to relay the light from an entrance slit to an output IR recording camera. With an initial wavelength range of 1500–4500 nm required, gratings could not be used in the spectrometer because grating orders would overlap. A magnesium oxide prism, placed between these parabolic mirrors, serves as the dispersion element. The spectrometer is doubly telecentric. With proper choice of the air spacing between the prism and the second parabolic mirror, any spectral region of interest within the InSb camera array’s sensitivity region can be recorded. The wavelengths leaving the second parabolic mirror are collimated, thereby relaxing the camera positioning tolerance. To set up the instrument, two different wavelength (visible) lasers are introduced at the entrance slit and made collinear with the optical axis via flip mirrors. After dispersion by the prism, these two laser beams are directed to tick marks located on the outside housing of the gated IR camera. This provides first-order wavelength calibration for the instrument. Light that is reflected off the front prism face is coupled into a high-speed detector to verify steady radiance during the gated spectral imaging. Alignment features include tick marks on the prism and parabolic mirrors. This instrument was designed to complement singlepoint pyrometry, which provides continuous time histories of a small collection of spots from shock-heated targets.

Robert M. Malone, Richard, G. Hacking, Ian J. McKenna, and Daniel H. Dolan

2008-09-02

326

A Miniature Spectrometer for the Detection of Organics and Identification of their Mineral Context  

NASA Astrophysics Data System (ADS)

On future landed missions to Mars and small solar system bodies, efficient sample pre-screening will be necessary to select interesting targets for further analysis by analytical instruments with very limited time and power resources. Near infrared spectroscopy is well suited for rapid and non-invasive identification of mineral classes, and the possible presence of organic molecules. A small spectrometer on the surface also enables ground-truth for orbiting reflectance spectrometers operating at overlapping wavelengths. Here we describe a miniature acousto-optic tunable filter (AOTF) point spectrometer that is tunable from 1.6-3.6 microns. It identifies minerals associated with aqueous environments at sample scales of 1 mm, as well as organic molecules and volatiles, where they are present. Our low-power AOTF point spectrometer can be combined with other diagnostic instruments as part of a landed instrument package. It was recently integrated with a laser desorption time-of-flight (LDTOF) mass spectrometer developed at GSFC. The integration of the two instruments allows for coincident spectral measurements of a geologic sample. The LDTOF mass spectrometer shares an optical axis with the AOTF; follow-up measurements from the LDTOF are taken from an identical region on a sample of interest, allowing for a direct comparison between the two complementary data sets. The AOTF point spectrometer could be deployed in a variety of configurations, either as a stand-alone instrument or paired with the LDTOF, depending on the nature of the mission. The addition of AOTF technology to an in situ instrumentation suite could enable significant near-IR spectroscopic diagnostic capability without exceeding the resources of a small surface laboratory. This work was supported by NASA's ASTID and EPSCoR programs through grant numbers NNX08AY44G and NNX08AV85A, respectively.

Chanover, Nancy J.; Uckert, K.; Glenar, D.; Voelz, D.; Xiao, X.; Tawalbeh, R.; Boston, P.; Getty, S.; Brinckerhoff, W.; Mahaffy, P.

2012-10-01

327

Imaging Spectrometers Using Concave Holographic Gratings  

NASA Technical Reports Server (NTRS)

Imaging spectroscopy combines the spatial attributes of imaging with the compositionally diagnostic attributes of spectroscopy. For spacebased remote sensing applications, mass, size, power, data rate, and application constrain the scanning approach. For the first three approaches, substantial savings in mass and size of the spectrometer can be achieved in some cases with a concave holographic grating and careful placement of an order-sorting filter. A hologram etched on the single concave surface contains the equivalent of the collimating, dispersing, and camera optics of a conventional grating spectrometer and provides substantial wavelength dependent corrections for spherical aberrations and a flat focal field. These gratings can be blazed to improve efficiency when used over a small wavelength range or left unblazed for broadband uniform efficiency when used over a wavelength range of up to 2 orders. More than 1 order can be imaged along the dispersion axis by placing an appropriately designed step order-sorting filter in front of the one- or two-dimensional detector. This filter can be shaped for additional aberration corrections. The VIRIS imaging spectrometer based on the broadband design provides simultaneous imaging of the entrance slit from lambda = 0.9 to 2.6 microns (1.5 orders) onto a 128 x 128 HgCdTe detector (at 77 K). The VIRIS spectrometer was used for lunar mapping with the UH 24.in telescope at Mauna Kea Observatory. The design is adaptable for small, low mass, space based imaging spectrometers.

Gradie, J.; Wang, S.

1993-01-01

328

Variable filter array spectrometer of VPD PbSe  

NASA Astrophysics Data System (ADS)

MWIR spectroscopy shows a large potential in the current IR devices market, due to its multiple applications (gas detection, chemical analysis, industrial monitoring, combustion and flame characterization, food packaging etc) and its outstanding performance (good sensitivity, NDT method, velocity of response, among others), opening this technique to very diverse fields of application, such as industrial monitoring and control, agriculture, medicine and environmental monitoring. However, even though a big interest on MWIR spectroscopy technique has been present in the last years, two major barriers have held it back from its widespread use outside the laboratory: the complexity and delicateness of some popular techniques such as Fourier-transform IR (FT-IR) spectrometers, and the lack of affordable specific key elements such a MWIR light sources and low cost (real uncooled) detectors. Recent developments in electrooptical components are helping to overcome these drawbacks. The need for simpler solutions for analytical measurements has prompted the development of better and more affordable uncooled MWIR detectors, electronics and optics. In this paper a new MWIR spectrometry device is presented. Based on linear arrays of different geometries (64, 128 and 256 elements), NIT has developed a MWIR Variable Filter Array Spectrometer (VFAS). This compact device, with no moving parts, based on a rugged and affordable detector, is suitable to be used in applications which demand high sensitivity, good spectral discrimination, reliability and compactness, and where an alternative to the traditional scanning instrument is desired. Some measurements carried out for several industries will be also presented.

Linares-Herrero, R.; Vergara, G.; Gutiérrez-Álvarez, R.; Fernández-Montojo, C.; Gómez, L. J.; Villamayor, V.; Baldasano-Ramírez, A.; Montojo, M. T.

2012-06-01

329

The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS): noise performance  

NASA Astrophysics Data System (ADS)

The NASA New Millennium Program (NMP) Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) instrument was designed to demonstrate new and emerging technologies and provide immense improvements in satellite based remote sensing of the atmosphere from a geostationary orbit [1]. Combining a Fourier Transform Spectrometer (FTS) and Large Area Focal Plane Arrays, GIFTS measures incident infrared radiance with an extraordinary combination of spectral, temporal, and spatial resolution and coverage. Thermal vacuum testing of the GIFTS Engineering Development Unit (EDU) was performed at the Space Dynamics Laboratory and completed in May 2006 [2,3]. The GIFTS noise performance measured during EDU thermal vacuum testing indicates that threshold performance has been realized, and that goal performance (or better) has been achieved over much of both the Longwave Infrared (LWIR) and Short/Midwave Infrared (SMWIR) detector bands. An organizational structure for the division of the noise sources and effects for the GIFTS instrument is presented. To comprehensively characterize and predict the effects of measurement noise on expected instrument performance, the noise sources are categorically divided and a method of combining the independent effects is defined. Within this architecture, the total noise is principally decomposed into spectrally correlated noise and random (spectrally uncorrelated) noise. The characterization of the spectrally correlated noise sources specified within the structure is presented in detail.

Taylor, Joe K.; Revercomb, Henry E.; Tobin, David C.; Best, Fred A.; Knuteson, Robert O.; Elwell, John D.; Cantwell, Gregory W.; Scott, Deron K.; Bingham, Gail E.; Smith, William L.; Zhou, Daniel K.; Reisse, Robert A.

2006-12-01

330

Proceedings of the Airborne Imaging Spectrometer Data Analysis Workshop  

NASA Technical Reports Server (NTRS)

The Airborne Imaging Spectrometer (AIS) Data Analysis Workshop was held at the Jet Propulsion Laboratory on April 8 to 10, 1985. It was attended by 92 people who heard reports on 30 investigations currently under way using AIS data that have been collected over the past two years. Written summaries of 27 of the presentations are in these Proceedings. Many of the results presented at the Workshop are preliminary because most investigators have been working with this fundamentally new type of data for only a relatively short time. Nevertheless, several conclusions can be drawn from the Workshop presentations concerning the value of imaging spectrometry to Earth remote sensing. First, work with AIS has shown that direct identification of minerals through high spectral resolution imaging is a reality for a wide range of materials and geological settings. Second, there are strong indications that high spectral resolution remote sensing will enhance the ability to map vegetation species. There are also good indications that imaging spectrometry will be useful for biochemical studies of vegetation. Finally, there are a number of new data analysis techniques under development which should lead to more efficient and complete information extraction from imaging spectrometer data. The results of the Workshop indicate that as experience is gained with this new class of data, and as new analysis methodologies are developed and applied, the value of imaging spectrometry should increase.

Vane, G. (editor); Goetz, A. F. H. (editor)

1985-01-01

331

The Extreme Ultraviolet Imaging Spectrometer on Solar-B  

NASA Astrophysics Data System (ADS)

The Extreme Ultraviolet Imaging Spectrometer (EIS) is currently under development for flight on the Japanese Solar-B satellite. EIS uses a multilayer-coated off-axis telescope mirror and a multilayer-coated toroidal grating spectrometer to produce stigmatic spectra of solar regions isolated by a 1024 arcsec high slit. The instrument produces monochromatic images either by rastering the solar image across a narrow entrance slit or by using a very wide slit. Half of each optic is coated to optimize reflectance at 19.5 nm, and the other half to optimize reflectance at 27.0 nm, with each wavelength range imaged onto a separate CCD detector. EIS can provide key dynamical and density diagnostic information. Combining EIS data with observations from the other instruments on Solar-B should provide a detailed picture of solar atmospheric processes from the visible surface into the corona. In this presentation, we provide details of the instrument's expected performance based on calibration of the individual flight optics and end-to-end testing at the Rutherford Appleton Laboratory in the UK.

Mariska, J. T.; Brown, C. M.; Doschek, G. A.; Korendyke, C. M.; Myers, S. H.; Seely, J. F.; Dere, K. P.; Lang, J.; Culhane, J. L.; Watanabe, T.

2005-05-01

332

A personal computer-based nuclear magnetic resonance spectrometer  

NASA Astrophysics Data System (ADS)

Nuclear magnetic resonance (NMR) spectroscopy using personal computer-based hardware has the potential of enabling the application of NMR methods to fields where conventional state of the art equipment is either impractical or too costly. With such a strategy for data acquisition and processing, disciplines including civil engineering, agriculture, geology, archaeology, and others have the possibility of utilizing magnetic resonance techniques within the laboratory or conducting applications directly in the field. Another aspect is the possibility of utilizing existing NMR magnets which may be in good condition but unused because of outdated or nonrepairable electronics. Moreover, NMR applications based on personal computer technology may open up teaching possibilities at the college or even secondary school level. The goal of developing such a personal computer (PC)-based NMR standard is facilitated by existing technologies including logic cell arrays, direct digital frequency synthesis, use of PC-based electrical engineering software tools to fabricate electronic circuits, and the use of permanent magnets based on neodymium-iron-boron alloy. Utilizing such an approach, we have been able to place essentially an entire NMR spectrometer console on two printed circuit boards, with the exception of the receiver and radio frequency power amplifier. Future upgrades to include the deuterium lock and the decoupler unit are readily envisioned. The continued development of such PC-based NMR spectrometers is expected to benefit from the fast growing, practical, and low cost personal computer market.

Job, Constantin; Pearson, Robert M.; Brown, Michael F.

1994-11-01

333

Recent Development of a 36 meter Small-Angle Neutron Scattering BATAN Spectrometer (SMARTer) in Serpong Indonesia  

NASA Astrophysics Data System (ADS)

The 36 meter small-angle neutron scattering (SANS) spectrometer BATAN (SMARTer) in Serpong, Indonesia has been revitalised for several years. The work on replacing, upgrading and improving the control system and the experimental method were conducted in order to setup the spectrometer back in operation. Two main personal computers, one for handling and controlling the mechanical system and another one for acquiring neutron data were employed at the spectrometer. The standard and established SANS data reduction and analysis programs, such as GRASP and NIST Igor have been implemented to subtract the raw scattered neutron data with the backgrounds and then analyse the corrected data. The scattering data of ferrofluids samples, Fe3O4 and MnZnFe2O4 have been obtained using SANS spectrometers in BATAN Serpong, Indonesia and HANARO-KAERI, Republic of Korea for inter-laboratory comparison and investigation of proposed research interest. The results were comparable from both scattering data analysis.

Giri Rachman Putra, Edy; Bharoto; Seong, Baek Seok

2010-10-01

334

Fast Neutron Detection with a Segmented Spectrometer  

E-print Network

A fast neutron spectrometer consisting of segmented plastic scintillator and He-3 proportional counters was constructed for the measurement of neutrons in the energy range 1 MeV to 200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulse-shape discrimination The spectrometer was characterized for energy resolution and efficiency in fast neutron fields of 2.5 MeV, 14 MeV, and fission spectrum neutrons, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130 deg. N, 77.218 deg. W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

Langford, T J; Beise, E J; Breuer, H; Erwin, D K; Heimbach, C R; Nico, J S

2014-01-01

335

Portable instant display and analysis reflectance spectrometer  

NASA Technical Reports Server (NTRS)

A portable analysis spectrometer (10) for field mineral identification is coupled to a microprocessor (11) and memory (12) through a bus (13) and A/D converter (14) to display (16) a spectrum of reflected radiation in a band selected by an adjustable band spectrometer (20) and filter (23). A detector array (21) provides output signals at spaced frequencies within the selected spectrometer band which are simultaneously converted to digital form for display. The spectrum displayed is compared with a collection of spectra for known minerals. That collection is stored in memory and selectively displayed with the measured spectrum, or stored in a separate portfolio. In either case, visual comparison is made. Alternatively, the microprocessor may use an algorithm to make the comparisons in search for the best match of the measured spectrum with one of the stored spectra to identify the mineral in the target area.

Goetz, Alexander F. H. (Inventor)

1985-01-01

336

A compact multichannel spectrometer for Thomson scattering.  

PubMed

The availability of high-efficiency volume phase holographic (VPH) gratings and intensified CCD (ICCD) cameras have motivated a simplified, compact spectrometer for Thomson scattering detection. Measurements of T(e) < 100 eV are achieved by a 2971 l?mm VPH grating and measurements T(e) > 100 eV by a 2072 l?mm VPH grating. The spectrometer uses a fast-gated (~2 ns) ICCD camera for detection. A Gen III image intensifier provides ~45% quantum efficiency in the visible region. The total read noise of the image is reduced by on-chip binning of the CCD to match the 8 spatial channels and the 10 spectral bins on the camera. Three spectrometers provide a minimum of 12 spatial channels and 12 channels for background subtraction. PMID:23126988

Schoenbeck, N L; Schlossberg, D J; Dowd, A S; Fonck, R J; Winz, G R

2012-10-01

337

Compact hydrogen/helium isotope mass spectrometer  

DOEpatents

The compact hydrogen and helium isotope mass spectrometer of the present invention combines low mass-resolution ion mass spectrometry and beam-foil interaction technology to unambiguously detect and quantify deuterium (D), tritium (T), hydrogen molecule (H.sub.2, HD, D.sub.2, HT, DT, and T.sub.2), .sup.3 He, and .sup.4 He concentrations and concentration variations. The spectrometer provides real-time, high sensitivity, and high accuracy measurements. Currently, no fieldable D or molecular speciation detectors exist. Furthermore, the present spectrometer has a significant advantage over traditional T detectors: no confusion of the measurements by other beta-emitters, and complete separation of atomic and molecular species of equivalent atomic mass (e.g., HD and .sup.3 He).

Funsten, Herbert O. (Los Alamos, NM); McComas, David J. (Los Alamos, NM); Scime, Earl E. (Morgantown, WV)

1996-01-01

338

Fast Neutron Detection with a Segmented Spectrometer  

E-print Network

A fast neutron spectrometer consisting of segmented plastic scintillator and He-3 proportional counters was constructed for the measurement of neutrons in the energy range 1 MeV to 200 MeV. We discuss its design, principles of operation, and the method of analysis. The detector is capable of observing very low neutron fluxes in the presence of ambient gamma background and does not require scintillator pulseshape discrimination. The spectrometer was characterized for its energy response in fast neutron fields of 2.5 MeV and 14 MeV, and the results are compared with Monte Carlo simulations. Measurements of the fast neutron flux and energy response at 120 m above sea-level (39.130 deg. N, 77.218 deg. W) and at a depth of 560 m in a limestone mine are presented. Finally, the design of a spectrometer with improved sensitivity and energy resolution is discussed.

T. J. Langford; C. D. Bass; E. J. Beise; H. Breuer; D. K. Erwin; C. R. Heimbach; J. S. Nico

2014-07-24

339

A portable spectrometer for use from 5 to 15 micrometers  

NASA Technical Reports Server (NTRS)

A field portable spectrometer suitable for collecting data relevant to remote sensing applications in the 8 to 12 micrometer atmospheric window has been built at the Jet Propulsion Laboratory. The instrument employs a single cooled HgCdTe detector and a continuously variable filter wheel analyzer. The spectral range covered is 5 to 14.5 micrometers and the resolution is approximately 1.5 percent of the wavelength. A description of the hardware is followed by a discussion of the analysis of the spectral data leading to finished emissivity and radiance spectra. A section is devoted to the evaluation of the instrument performance with respect to spectral resolution, radiometric precision, and accuracy. Several examples of spectra acquired in the field are included.

Hoover, G.; Kahle, A. B.

1986-01-01

340

Imaging X-ray Thomson Scattering Spectrometer Design and Demonstration  

SciTech Connect

In many laboratory astrophysics experiments, intense laser irradiation creates novel material conditions with large, one-dimensional gradients in the temperature, density, and ionization state. X-ray Thomson scattering is a powerful technique for measuring these plasma parameters. However, the scattered signal has previously been measured with little or no spatial resolution, which limits the ability to diagnose inhomogeneous plasmas. We report on the development of a new imaging x-ray Thomson spectrometer (IXTS) for the Omega laser facility. The diffraction of x-rays from a toroidally-curved crystal creates high-resolution images that are spatially resolved along a one-dimensional profile while spectrally dispersing the radiation. This focusing geometry allows for high brightness while localizing noise sources and improving the linearity of the dispersion. Preliminary results are presented from a scattering experiment that used the IXTS to measure the temperature profile of a shocked carbon foam.

Gamboa, E.J. [University of Michigan; Huntington, C.M. [University of Michigan; Trantham, M.R. [University of Michigan; Keiter, P.A [University of Michigan; Drake, R.P. [University of Michigan; Montgomery, David [Los Alamos National Laboratory; Benage, John F. [Los Alamos National Laboratory; Letzring, Samuel A. [Los Alamos National Laboratory

2012-05-04

341

Improved real-time imaging spectrometer  

NASA Technical Reports Server (NTRS)

An improved AOTF-based imaging spectrometer that offers several advantages over prior art AOTF imaging spectrometers is presented. The ability to electronically set the bandpass wavelength provides observational flexibility. Various improvements in optical architecture provide simplified magnification variability, improved image resolution and light throughput efficiency and reduced sensitivity to ambient light. Two embodiments of the invention are: (1) operation in the visible/near-infrared domain of wavelength range 0.48 to 0.76 microns; and (2) infrared configuration which operates in the wavelength range of 1.2 to 2.5 microns.

Lambert, James L. (inventor); Chao, Tien-Hsin (inventor); Yu, Jeffrey W. (inventor); Cheng, Li-Jen (inventor)

1993-01-01

342

What Is Thermal Emission Spectrometer (TES)?  

NSDL National Science Digital Library

This site from Arizona State University presents information about the Thermal Emission Spectrometer (TES) that was originally developed for use on the Mars Observer spacecraft. The TES is both an instrument and a technique that measures the thermal infrared energy (heat) emitted from Mars. Using this technique, scientists may be able to determine much about the geology and atmosphere of Mars by examining the spectral responses of specific minerals and gases. This site includes information about thermal infrared energy as well as understandable explanations of both the spectrometer itself and the spectroscopy technique.

Ruff, S. W.; Hamilton, V. E.; University, Arizona S.

343

Combined hyperspatial and hyperspectral imaging spectrometer concept  

NASA Technical Reports Server (NTRS)

There is a user need for increasing spatial and spectral resolution in Earth Observation (EO) optical instrumentation. Higher spectral resolution will be achieved by the introduction of spaceborne imaging spectrometers. Higher spatial resolutions of 1 - 3m will be achieved also, but at the expense of sensor redesign, higher communications bandwidth, high data processing volumes, and therefore, at the risk of time delays due to large volume data-handling bottlenecks. This paper discusses a design concept whereby the hyperspectral properties of a spaceborne imaging spectrometer can be used to increase the image spatial resolution, without such adverse cost impact.

Burke, Ian; Zwick, Harold

1995-01-01

344

Beam Shape Effects on Grating Spectrometer Resolution  

NASA Technical Reports Server (NTRS)

The collimated optical beam in a grating spectrometer may be circular or elliptical in cross section, so that different parts of the beam illuminate different numbers of grooves on the grating. Here we estimate the consequent loss in spectral resolution relative to that obtained with a beam which illuminates a fixed number of grooves. For representative diffraction resolution functions, the effect is to reduce the intrinsic resolving power of the spectrometer by about 13%, exclusive of other contributions such as finite entrance slit width.

Erickson, Edwin F.; Rabanus, David; DeVincenzi, Donald L. (Technical Monitor)

2000-01-01

345

The Constellation-X Reflection Grating Spectrometer  

NASA Technical Reports Server (NTRS)

The Reflection Grating Spectrometer on the Constellation-X mission will provide high sensitivity, high-resolution spectra in the soft x-ray band. The RGS performance requirements are specified as a resolving power of greater than 300 and an effective area of greater than 1000 sq cm across most of the 0.25 to 2.0 keV band. These requirements are driven by the science goals of the mission. We will describe the performance requirements and goals, the reference design of the spectrometer, and examples of science cases where we expect data from the RGS to significantly advance our current understanding of the universe.

Allen, Jean C.

2006-01-01

346

The Bragg crystal spectrometer for AXAF  

NASA Technical Reports Server (NTRS)

The goal of MIT's high resolution X-ray spectrometry investigation on the Advanced X-ray Astrophysics Facility is to study the physical conditions in celestial sources by means of detailed measurements of their X-ray spectra. The investigation involves two complimentary dispersive instruments, a Bragg crystal spectrometer (BCS) and a high energy transmission grating spectrometer. Particular attention is given to the BCS which will be used to measure the strengths of individual lines from both point and extended objects in order to apply plasma diagnostic techniques to the study of cosmic X-ray sources.

Canizares, C. R.; Markert, T. H.; Clark, G. W.

1986-01-01

347

Wide size range fast integrated mobility spectrometer  

DOEpatents

A mobility spectrometer to measure a nanometer particle size distribution is disclosed. The mobility spectrometer includes a conduit and a detector. The conduit is configured to receive and provide fluid communication of a fluid stream having a charged nanometer particle mixture. The conduit includes a separator section configured to generate an electrical field of two dimensions transverse to a dimension associated with the flow of the charged nanometer particle mixture through the separator section to spatially separate charged nanometer particles of the charged nanometer particle mixture in said two dimensions. The detector is disposed downstream of the conduit to detect concentration and position of the spatially-separated nanometer particles.

Wang, Jian

2013-10-29

348

Electron-ion-x-ray spectrometer system  

SciTech Connect

The authors describe a spectrometer system developed for electron, ion, and x-ray spectroscopy of gas-phase atoms and molecules following inner-shell excitation by tunable synchrotron radiation. The spectrometer has been used on beamline X-24A at the National Synchrotron Light Source for excitation-dependent studies of Ar L-shell and K-shell photoexcitation and vacancy decay processes. The instrumentation and experimental methods are discussed, and examples are given of electron spectra and coincidence spectra between electrons and fluorescent x-rays.

Southworth, S.H.; Deslattes, R.D. [National Inst. of Standards and Technology, Gaithersburg, MD (United States); MacDonald, M.A. [SERC, Warrington (United Kingdom). Daresbury Lab.; LeBrun, T. [Argonne National Lab., IL (United States)

1993-10-01

349

Acousto-optic spectrometer for radio astronomy  

NASA Astrophysics Data System (ADS)

A prototype acousto-optic spectrometer which uses a discrete bulk acoustic wave Itek Bragg cell, 5 mW Helium Neon laser, and a 1024 element Reticon charge coupled photodiode array is described. The analog signals from the photodiode array are digitized, added, and stored in a very high speed custom built multiplexer board which allows synchronous detection of weak signals to be performed. The experiment is controlled and the data are displayed and stored with an LSI-2 microcomputer system with dual floppy discs. The performance of the prototype acousto-optic spectrometer obtained from initial tests is reported.

Chin, G.; Buhl, D.; Florez, J. M.

1980-08-01

350

Digital optical spectrometer-on-chip  

NASA Astrophysics Data System (ADS)

A concept of digital optical spectrometer-on-chip is proposed and results of their fabrication and characterization are reported. The devices are based on computer-designed digital planar holograms which involves millions of lines specifically located and oriented in order to direct output light into designed focal points according to the wavelength. Spectrometers were fabricated on silicon dioxide and hafnium dioxide planar waveguides using electron beam lithography and dry etching. Optical performances of devices with up to 1000 channels for a central wavelength of 660 nm are reported.

Babin, S.; Bugrov, A.; Cabrini, S.; Dhuey, S.; Goltsov, A.; Ivonin, I.; Kley, E.-B.; Peroz, C.; Schmidt, H.; Yankov, V.

2009-07-01

351

Quality assurance in operating a multielement ICP emission spectrometer  

NASA Astrophysics Data System (ADS)

In the industrial laboratory environment, quality assurance in the operation of a multielement inductively coupled plasma emission spectrometer (ICPES) must often be entrusted to laboratory technicians with little or no technical background in spectrochemical analysis. Therefore, to be successful, a quality assurance program must be reduced to a simple, routine practice. Essential components of the quality assurance program described in this paper are (1) An atom-to-ion emission intensity ratio for multielement optimization and for reproducing optimum analysis conditions. (2) A concise, easily applied specification for sensitivity and for precision. (3) A regimen for monitoring of, and correcting for, calibration and background drift. (4) A set of comprehensive spectral interference calibrations maintained using the emission intensity ratio. (5) A high resolution spectrometer for minimizing spectral interferences. (6) A program of long term performance monitoring and maintenance/record keeping. Each of these components is described in detail. Adherence to this program enhances analytical reliability by helping to ensure that raw concentrations are generated consistently under optimum instrumental conditions, and that corrections for spectral interferences are applied accurately even though interference calibrations may be several months old. The importance of adequate resolution and the proper choice of positions for off-line background measurements is borne out by a detailed study of the determination of toxic trace elements in National Bureau of Standards fly ash samples. As, Be, Cd, Pb, Sb, and Se were determined accurately without isolation/preconcentration from the aluminosilicate matrix. Several determinations required corrections for residual spectral interferences amounting to 100-500% of the resultant concentration, underscoring the accuracy of the interference correction procedures.

Botto, Robert I.

352

Effects of thermal fluctuations and fluid compressibility on hydrodynamic synchronization of microrotors at finite oscillatory Reynolds number: a multiparticle collision dynamics simulation study.  

PubMed

We investigate the emergent dynamical behavior of hydrodynamically coupled microrotors by means of multiparticle collision dynamics (MPC) simulations. The two rotors are confined in a plane and move along circles driven by active forces. Comparing simulations to theoretical results based on linearized hydrodynamics, we demonstrate that time-dependent hydrodynamic interactions lead to synchronization of the rotational motion. Thermal noise implies large fluctuations of the phase-angle difference between the rotors, but synchronization prevails and the ensemble-averaged time dependence of the phase-angle difference agrees well with analytical predictions. Moreover, we demonstrate that compressibility effects lead to longer synchronization times. In addition, the relevance of the inertia terms of the Navier-Stokes equation are discussed, specifically the linear unsteady acceleration term characterized by the oscillatory Reynolds number ReT. We illustrate the continuous breakdown of synchronization with the Reynolds number ReT, in analogy to the continuous breakdown of the scallop theorem with decreasing Reynolds number. PMID:25011003

Theers, Mario; Winkler, Roland G

2014-08-28

353

Conformation and diffusion behavior of ring polymers in solution: a comparison between molecular dynamics, multiparticle collision dynamics, and lattice Boltzmann simulations.  

PubMed

We have studied the effect of chain topology on the structural properties and diffusion of polymers in a dilute solution in a good solvent. Specifically, we have used three different simulation techniques to compare the chain size and diffusion coefficient of linear and ring polymers in solution. The polymer chain is modeled using a bead-spring representation. The solvent is modeled using three different techniques: molecular dynamics (MD) simulations with a particulate solvent in which hydrodynamic interactions are accounted through the intermolecular interactions, multiparticle collision dynamics (MPCD) with a point particle solvent which has stochastic interactions with the polymer, and the lattice Boltzmann method in which the polymer chains are coupled to the lattice fluid through friction. Our results show that the three methods give quantitatively similar results for the effect of chain topology on the conformation and diffusion behavior of the polymer chain in a good solvent. The ratio of diffusivities of ring and linear polymers is observed to be close to that predicted by perturbation calculations based on the Kirkwood hydrodynamic theory. PMID:22088075

Hegde, Govind A; Chang, Jen-fang; Chen, Yeng-long; Khare, Rajesh

2011-11-14

354

Conformation and diffusion behavior of ring polymers in solution: A comparison between molecular dynamics, multiparticle collision dynamics, and lattice Boltzmann simulations  

NASA Astrophysics Data System (ADS)

We have studied the effect of chain topology on the structural properties and diffusion of polymers in a dilute solution in a good solvent. Specifically, we have used three different simulation techniques to compare the chain size and diffusion coefficient of linear and ring polymers in solution. The polymer chain is modeled using a bead-spring representation. The solvent is modeled using three different techniques: molecular dynamics (MD) simulations with a particulate solvent in which hydrodynamic interactions are accounted through the intermolecular interactions, multiparticle collision dynamics (MPCD) with a point particle solvent which has stochastic interactions with the polymer, and the lattice Boltzmann method in which the polymer chains are coupled to the lattice fluid through friction. Our results show that the three methods give quantitatively similar results for the effect of chain topology on the conformation and diffusion behavior of the polymer chain in a good solvent. The ratio of diffusivities of ring and linear polymers is observed to be close to that predicted by perturbation calculations based on the Kirkwood hydrodynamic theory.

Hegde, Govind A.; Chang, Jen-fang; Chen, Yeng-long; Khare, Rajesh

2011-11-01

355

Laboratory 10 Control Systems Laboratory ECE3557 Laboratory 10  

E-print Network

Laboratory 10 Control Systems Laboratory ECE3557 Laboratory 10 State Feedback Controller.87 Ã? 10-7 kg-m2 , and Jl = 3 Ã? 10-5 kg-m2 . Page 1 of 7 #12;Laboratory 10 Control Systems Laboratory ECE;Laboratory 10 Control Systems Laboratory ECE3557 10.3 Laboratory Preparation 1. Write a MATLAB script

356

LANGUAGE LABORATORIES.  

ERIC Educational Resources Information Center

THE USE OF THE LANGUAGE LABORATORY HAS GIVEN MANY THOUSANDS OF INDIVIDUALS GOOD LISTENING AND SPEAKING PRACTICE AND HAS BECOME AN EFFECTIVE LEARNING TOOL. THE BASIC PIECE OF EQUIPMENT OF THE LANGUAGE LABORATORY IS THE TAPE RECORDER-AND-PLAYBACK, DESIGNED TO BE USED WITH AUDIOPASSIVE STUDY, AUDIOACTIVE STUDY, AUDIOACTIVE-COMPARATIVE STUDY, AND…

BRUBAKER, CHARLES WILLIAM

357

Calibration of a flat field soft x-ray grating spectrometer for laser produced plasmas  

SciTech Connect

We have calibrated the x-ray response of a variable line spaced grating spectrometer, known as the VSG, at the Fusion and Astrophysics Data and Diagnostic Calibration Facility at the Lawrence Livermore National Laboratory (LLNL). The VSG has been developed to diagnose laser produced plasmas, such as those created at the Jupiter Laser Facility and the National Ignition Facility at LLNL and at both the Omega and Omega EP lasers at the University of Rochester's Laboratory for Laser Energetics. The bandwidth of the VSG spans the range of {approx}6-60 A. The calibration results presented here include the VSG's dispersion and quantum efficiency. The dispersion is determined by measuring the x rays emitted from the hydrogenlike and heliumlike ions of carbon, nitrogen, oxygen, neon, and aluminum. The quantum efficiency is calibrated to an accuracy of 30% or better by normalizing the x-ray intensities recorded by the VSG to those simultaneously recorded by an x-ray microcalorimeter spectrometer.

Park, J.; Cone, K. V. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); University of California, Davis, One Shields Avenue, Davis, California 95616 (United States); Brown, G. V.; Schneider, M. B.; Beiersdorfer, P.; Magee, E. W.; May, M. J. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551-0808 (United States); Baldis, H. A. [University of California, Davis, One Shields Avenue, Davis, California 95616 (United States); Kelley, R. L.; Kilbourne, C. A.; Porter, F. S. [NASA Goddard Space Flight Center, Greenbelt, Maryland 20770 (United States)

2010-10-15

358

Calibration of a Flat Field Soft X-ray Grating Spectrometer for Laser Produced Plasmas  

SciTech Connect

We have calibrated the x ray response of a variable line spaced grating spectrometer, known as the VSG, at the Fusion and Astrophysics Data and Diagnostic Calibration Facility at the Lawrence Livermore National Laboratory (LLNL). The VSG has been developed to diagnose laser produced plasmas, such as those created at the Jupiter Laser Facility and the National Ignition Facility at LLNL, and at both the Omega and Omega EP lasers at University of Rochester's Laboratory for Laser Energetics. The bandwidth of the VSG spans the range from {approx} 6 to 60 {angstrom}. The calibration results present here include the VSG's dispersion and quantum efficiency. The dispersion is determined by measuring the x rays emitted from hydrogen-like and helium-like ions of carbon, nitrogen, oxygen, neon, and aluminum. The quantum efficiency is calibrated to an accuracy of 30% or better by normalizing the x ray intensities recorded by the VSG to those simultaneously recorded by an x ray microcalorimeter spectrometer.

Park, J; Brown, G V; Schneider, M B; Baldis, H A; Beiersdorfer, P; Cone, K V; Kelley, R L; Kilbourne, C A; Magee, E; May, M J; Porter, F S

2010-05-12

359

Calibration of a flat field soft x-ray grating spectrometer for laser produced plasmasa)  

NASA Astrophysics Data System (ADS)

We have calibrated the x-ray response of a variable line spaced grating spectrometer, known as the VSG, at the Fusion and Astrophysics Data and Diagnostic Calibration Facility at the Lawrence Livermore National Laboratory (LLNL). The VSG has been developed to diagnose laser produced plasmas, such as those created at the Jupiter Laser Facility and the National Ignition Facility at LLNL and at both the Omega and Omega EP lasers at the University of Rochester's Laboratory for Laser Energetics. The bandwidth of the VSG spans the range of ˜6-60 Å. The calibration results presented here include the VSG's dispersion and quantum efficiency. The dispersion is determined by measuring the x rays emitted from the hydrogenlike and heliumlike ions of carbon, nitrogen, oxygen, neon, and aluminum. The quantum efficiency is calibrated to an accuracy of 30% or better by normalizing the x-ray intensities recorded by the VSG to those simultaneously recorded by an x-ray microcalorimeter spectrometer.

Park, J.; Brown, G. V.; Schneider, M. B.; Baldis, H. A.; Beiersdorfer, P.; Cone, K. V.; Kelley, R. L.; Kilbourne, C. A.; Magee, E. W.; May, M. J.; Porter, F. S.

2010-10-01

360

High-energy resolution Thomson Parabola spectrometer for laser plasma diagnostics  

SciTech Connect

Thomson Parabola (TP) spectrometers are widely used devices for laser-driven beam diagnostics as they provide a complete set of information on the accelerated particles. A novel TP has been developed at LNS with a design able to detect protons up to 20 MeV. The layout design and some results obtained during the experimental campaign at PALS laboratory will be reported in the following.

Cirrone, G. A. P.; Schillaci, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic)] [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Carpinelli, M. [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy)] [INFN Sezione di Cagliari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Cuttone, G.; Romano, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy)] [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Maggiore, M. [Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague, Czech Republic and Laboratori Nazionali di Legnaro, INFN, Via Università 2, Legnaro (PD) (Italy)] [Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague, Czech Republic and Laboratori Nazionali di Legnaro, INFN, Via Università 2, Legnaro (PD) (Italy); Ter-Avetisyan, S. [Laboratori Nazionali di Legnaro, INFN, Via Università 2, Legnaro (PD) (Italy)] [Laboratori Nazionali di Legnaro, INFN, Via Università 2, Legnaro (PD) (Italy); Tramontana, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and School of Mathematics and Physics, The Queen's University Belfast, BT7 1NN (United Kingdom)] [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania, Italy and School of Mathematics and Physics, The Queen's University Belfast, BT7 1NN (United Kingdom); Velyhan, A. [Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic)] [Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic)

2013-07-26

361

Implementation of DART and DESI ionization on a fieldable mass spectrometer  

Microsoft Academic Search

A recently developed prototype mobile laboratory mass spectrometer, incorporating an atmospheric pressure ionization (API)\\u000a interface, is described. This system takes advantage of the small size, lower voltage requirements, and tandem MS abilities\\u000a of the cylindrical ion trap mass analyzer. The prototype API MS uses small, low-power pumps to fit into a 0.1-m3 self-contained package weighing <45 kg. This instrument has

J. Mitchell Wells; Michael J. Roth; Adam D. Keil; John W. Grossenbacher; Dina R. Justes; Garth E. Patterson; Dennis J. Barket

2008-01-01

362

Validation of Tropospheric Emission Spectrometer (TES) nadir ozone profiles using ozonesonde measurements  

Microsoft Academic Search

We compare Tropospheric Emission Spectrometer (TES) version 2 (V002) nadir ozone profiles with ozonesonde profiles from the Intercontinental Chemical Transport Experiment Ozonesonde Network Study, the World Ozone and Ultraviolet Data Center, the Global Monitoring Division of the Earth System Research Laboratory, and the Southern Hemisphere Additional Ozonesonde archives. Approximately 1600 coincidences spanning 72.5°S–80.3°N from October 2004 to October 2006 are

Ray Nassar; Jennifer A. Logan; Helen M. Worden; Inna A. Megretskaia; Kevin W. Bowman; Gregory B. Osterman; Anne M. Thompson; David W. Tarasick; Shermane Austin; Hans Claude; Manvendra K. Dubey; Wayne K. Hocking; Bryan J. Johnson; Everette Joseph; John Merrill; Gary A. Morris; Mike Newchurch; Samuel J. Oltmans; Françoise Posny; F. J. Schmidlin; Holger Vömel; David N. Whiteman; Jacquelyn C. Witte

2008-01-01

363

Validation of Tropospheric Emission Spectrometer (TES) nadir ozone profiles using ozonesonde measurements  

Microsoft Academic Search

We compare Tropospheric Emission Spectrometer (TES) version 2 (V002) nadir ozone profiles with ozonesonde profiles from the Intercontinental Chemical Transport Experiment Ozonesonde Network Study, the World Ozone and Ultraviolet Data Center, the Global Monitoring Division of the Earth System Research Laboratory, and the Southern Hemisphere Additional Ozonesonde archives. Approximately 1600 coincidences spanning 72.5°S-80.3°N from October 2004 to October 2006 are

Ray Nassar; Jennifer A. Logan; Helen M. Worden; Inna A. Megretskaia; Kevin W. Bowman; Gregory B. Osterman; Anne M. Thompson; David W. Tarasick; Shermane Austin; Hans Claude; Manvendra K. Dubey; Wayne K. Hocking; Bryan J. Johnson; Everette Joseph; John Merrill; Gary A. Morris; Mike Newchurch; Samuel J. Oltmans; Françoise Posny; F. J. Schmidlin; Holger Vömel; David N. Whiteman; Jacquelyn C. Witte

2008-01-01

364

SPIRE - Herschel's Submillimetre Camera and Spectrometer  

Microsoft Academic Search

SPIRE, the Spectral and Photometric Imaging Receiver, will be an imaging photometer and spectrometer for ESA's Herschel Space Observatory. The main scientific goals and design drivers for SPIRE are deep extragalactic and galactic imaging surveys and spectroscopy of star-forming regions in own and nearby galaxies. It comprises a three-band imaging photometer with bands centred at approximately 250, 360 and 520

Matthew J. Griffin; Bruce M. Swinyard; Laurent G. Vigroux

2003-01-01

365

Instrumentation for the Atmospheric Explorer photoelectron spectrometer  

NASA Technical Reports Server (NTRS)

The photoelectron spectrometer (PES) is part of the complements of scientific instruments aboard three NASA Atmosphere Explorer (AE) satellites. The PES measures the energy spectrum, angular distribution, and intensity of electrons in the earth's thermosphere. Measurements of energies between 2 and 500 eV are made at altitudes as low as 130 km. The design, characteristics, and performance of the instrument are described.

Peletier, D. P.

1973-01-01

366

Matching the Spectrometers on board ISO  

NASA Astrophysics Data System (ADS)

We report on the findings of the Spectral Matching Working Group, the main aim of which was to investigate discontinuities between SWS and LWS in complete ISO spectra from 2 - 200 ?m. In order to check in a quantitative way the agreement between the two spectrometers, a software tool was developed which automatically selected observations made with SWS and LWS on the same coordinates and which calculated the ratio of the fluxes in the overlap region from the browser products. In this way all observations suitable for this cross-calibration exercise could be selected, provided that they were performed with standard Astronomical Observing Templates and covered the wavelength range that SWS and LWS have in common. 95% of those targets which were neither extended nor variable showed an agreement better than 20% between the two spectrometers. Several problems with the data from the instruments, like saturation effects, detector transients and discontinuities between the sub-spectra from different detectors, affect both spectrometers in a similar way and require special processing steps. We show, for some solar system objects, to which extent the spectra taken with ISO from the mid- to the far-infrared agree with theoretical models. Furthermore, we discuss for the example of Neptune how the combined information from both spectrometers can be used to put new constraints on models of objects that are possible calibration standards for future missions.

Burgdorf, M.; Feuchtgruber, H.; Salama, A.; García-Lario, P.; Müller, T.; Lord, S.

367

Tropospheric Emission Spectrometer nadir spectral radiance comparisons  

E-print Network

of the Tropospheric Emission Spectrometer (TES) on board the Aura spacecraft is upwelling infrared spectral radiances selected, nearly coincident spectral radiance measurements from Atmospheric Infrared Sounder (AIRS) on Aqua differences for higher-frequency TES 1A1 filter, which has less upwelling radiance signal. The TES/ AIRS

368

On the multiple grating spectrometer resolving power  

Microsoft Academic Search

The resolution for multiple grating spectrometers is obtained using the transfer function formalism. It is shown that the limiting resolving power for a system of n equal gratings in additive dispersion lambda\\/Delta lambda sub g (n) is overestimated by previous calculations even for low n values. It is also found that when n is increased this quantity reaches a limiting

V. Mazzacurati; G. Ruocco; G. Signorelli

1988-01-01

369

Lens system for a photo ion spectrometer  

DOEpatents

A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component is disclosed. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system. 8 figs.

Gruen, D.M.; Young, C.E.; Pellin, M.J.

1990-11-27

370

Lens system for a photo ion spectrometer  

DOEpatents

A lens system in a photo ion spectrometer for manipulating a primary ion beam and ionized atomic component. The atomic components are removed from a sample by a primary ion beam using the lens system, and the ions are extracted for analysis. The lens system further includes ionization resistant coatings for protecting the lens system.

Gruen, Dieter M. (Downers Grove, IL); Young, Charles E. (Westmont, IL); Pellin, Michael J. (Napersville, IL)

1990-01-01

371

Acousto-optic spectrometer for radio astronomy  

Microsoft Academic Search

A prototype acousto-optic spectrometer which uses a discrete bulk acoustic wave Itek Bragg cell, 5 mW Helium Neon laser, and a 1024 element Reticon charge coupled photodiode array is described. The analog signals from the photodiode array are digitized, added, and stored in a very high speed custom built multiplexer board which allows synchronous detection of weak signals to be

G. Chin; D. Buhl; J. M. Florez

1980-01-01

372

Athena MIMOS II Mössbauer spectrometer investigation  

Microsoft Academic Search

Mössbauer spectroscopy is a powerful tool for quantitative mineralogical analysis of Fe-bearing materials. The miniature Mössbauer spectrometer MIMOS II is a component of the Athena science payload launched to Mars in 2003 on both Mars Exploration Rover missions. The instrument has two major components: (1) a rover-based electronics board that contains power supplies, a dedicated central processing unit, memory, and

G. Klingelhöfer; R. V. Morris; B. Bernhardt; D. Rodionov; P. A. de Souza; S. W. Squyres; J. Foh; E. Kankeleit; U. Bonnes; R. Gellert; C. Schröder; S. Linkin; E. Evlanov; B. Zubkov; O. Prilutski

2003-01-01

373

LUVIMS lunar UV and IR mapping spectrometer  

NASA Astrophysics Data System (ADS)

A new imaging spectrometer particularly designed for the lunar mission MORO (Moon ORbiting Observatory) is presented. This spectrometer, named LUVIMS (Lunar UV and Infrared Mapping Spectrometer), is characterized by high performances - high spectral, high spatial resolution - being at the same time small, light weight and has a low power consumption. An imaging spectrometer, operating in the visible an infrared, is able to provide information about lunar mineralogical composition. By means of LUVIMS it will be possible to identify most of the mineralogical species and to relate their distribution with the surface morphology LUVIMS scientific objectives concerned the geochemical characterization of the Moon's surface in terms of global mapping, identification of different material and their distribution, mineralogical analysis of different terrain observations with high spatial resolution added to high spectral resolution can be the most powerful technique to have information on the lunar material origin and evolution. The spectrometer has been designed in order to work properly on either a tri-axis stabilized or a spinning spacecraft. In fact MORO has being studied as a candidate mission for the third cycle of Medium size missions, M3, in the framework of ESA's Horizon 2000 scientific programme. During the assessment phase, parametric solutions have been evaluated, but it has been shown that LUVIMS can fulfil the scientific requirements in any of the proposed spacecraft configurations. During phase A of the MORO mission the three-axis stabilized option has been selected, however it is thought that the evaluation of the performance of LUVIMS for a spinning spacecraft can be relevant also for other small spinning satellites.

Coradini, A.; De Sanctis, M. C.; Reininger, F.; Bonsignori, R.; Racca, G.; Chicarro, A.

1996-10-01

374

Paleomagnetics Laboratory  

NSDL National Science Digital Library

At this website, the California Institute of Technology's Paleomagnetics Laboratory promotes its research of weakly magnetic geologic and biological materials. Users can learn about the facilities such as the biomagnetics lab and the automatic sampler. The website features the laboratory's recent research on many topics including extraterrestrial magnetism, magnetofossils, and historical geomagnetic field behavior. Visitors can find out more about the many laboratory members' research activities through links to their home pages. Researchers can download a selection of the group's publications. Everyone can enjoy the amazing images from recent geologic field trips across the globe.

375

Monitoring of radioactivity in NW Irish Sea water using a stationary underwater gamma-ray spectrometer with satellite data transmission  

Microsoft Academic Search

Summary  An underground laboratory for low-level gamma- and beta-spectrometry has been constructed at IAEA-MEL, Monaco, for the analysis of environmental radionuclides. The laboratory is situated at a depth of 35 m water equivalent underground and equipped with 4, large volume HPGe detectors placed in a common lead shield with anti-cosmic plastic scintillator shielding. There is also an anti-Compton gamma-spectrometer, comprized of

I. Osvath; P. P. Povinec; H. D. Livingston; T. P. Ryan; S. Mulsow; J.-F. Commanducci

2005-01-01

376

Measurements of Stratospheric Composition Using a Star Pointing Spectrometer.  

National Technical Information Service (NTIS)

Measurements of stratospheric composition have been made with a novel star-pointing spectrometer. The instrument consists of a telescope that focuses light from stars, planets, or the moon onto a spectrometer and two dimensional CCD array detector. Atmosp...

D. J. Fish, R. L. Jones, R. A. Freshwater, H. K. Roscoe, D. J. Oldham

1994-01-01

377

Development and performance of a miniature, low cost mass spectrometer  

E-print Network

A miniature, low cost mass spectrometer has been developed that is capable of unit resolution over a mass range of 10 to 50 AMU. The design of the mass spectrometer incorporates several new features that enhance the ...

Hemond, Brian D. (Brian David Thomson)

2011-01-01

378

Accurate wavelength calibration method for flat-field grating spectrometers.  

PubMed

A portable spectrometer prototype is built to study wavelength calibration for flat-field grating spectrometers. An accurate calibration method called parameter fitting is presented. Both optical and structural parameters of the spectrometer are included in the wavelength calibration model, which accurately describes the relationship between wavelength and pixel position. Along with higher calibration accuracy, the proposed calibration method can provide information about errors in the installation of the optical components, which will be helpful for spectrometer alignment. PMID:21929865

Du, Xuewei; Li, Chaoyang; Xu, Zhe; Wang, Qiuping

2011-09-01

379

Concepts for spaceborne hyperspectral imagery using prism spectrometers  

Microsoft Academic Search

Hughes Danbury Optical Systems (HDOS) has developed several concepts for hyperspectral remote sensing of the earth and major and minor planets. The basic instrument is an imaging prism spectrometer located on an orbiting platform. The spectrometer slit is imaged by a telescope on the planetary surface and pushbroom scanned across it. The prism spectrometer disperses the observed slit image and

Peter R. Silverglate; Ker-Li Shu; Dennis Preston; John T. Stein; Frank R. Sileo

1994-01-01

380

The Constellation-X reflection grating spectrometer Jean Cottama  

E-print Network

The Constellation-X reflection grating spectrometer Jean Cottama , Webster Cashb , Kathryn A University, SLAC, Menlo Park, CA USA 94025 ABSTRACT The Constellation-X Reflection Grating Spectrometer (RGS. Keywords: X-ray, spectrometer, grating, CCD, Constellation-X 1. INTRODUCTION Constellation-X1 is one

381

Engineering of the passband function of a generalized spectrometer  

E-print Network

engineering of a grating spectrometer. Through spatial masking of the input beam and translation of diffraction grating-based spectrometers [1], surprising new be- havior is found to arise in even the simplestEngineering of the passband function of a generalized spectrometer J.D. McKinney and A.M. Weiner

Purdue University

382

Inflight calibration of the XMMNewton Reflection Grating Spectrometers  

E-print Network

In­flight calibration of the XMM­Newton Reflection Grating Spectrometers C. Erd a , M. Audard b , A The Reflection Grating Spectrometer (RGS) 1--3 on European Space Agency's (ESA) X­ray observatory XMM­ Newton 4 is a dispersive spectrometer which, for the first time in X­ray astronomy, uses reflection gratings as dispersive

Audard, Marc

383

The MARTE VNIR Imaging Spectrometer Experiment: Design and Analysis  

Microsoft Academic Search

We report on the design, operation, and data analysis methods employed on the VNIR imaging spectrometer instrument that was part of the Mars Astrobiology Research and Technology Experiment (MARTE). The imaging spectrometer is a hyperspectral scanning pushbroom device sensitive to VNIR wavelengths from 400-1000 nm. During the MARTE project, the spectrometer was deployed to the Río Tinto region of Spain.

Adrian J. Brown; Brad Sutter; Stephen Dunagan

2008-01-01

384

40Ar\\/ 39Ar geochronology using a quadrupole mass spectrometer  

Microsoft Academic Search

Magnetic sector mass spectrometers dominate the field of 40Ar\\/39Ar geochronology. Recent advances in quadrupole mass spectrometer technology, especially improvements in resolution, have increased the performance of these instruments to the extent that they can be used for isotopic determinations. We describe a triple filter quadrupole mass spectrometer (Hiden HAL 3F Series Pulse Ion Counting Triple Filter QMS) linked to an

Björn Schneider; Klaudia Kuiper; Onno Postma; Jan Wijbrans

2009-01-01

385

Development of an ion mass spectrometer for measurements of ionospheric suprathermal ions  

NASA Astrophysics Data System (ADS)

Recent satellite observations show that atomic hydrogen, helium, and oxygen ions escaping from the polar ionosphere are transported to the magnetotail along the geomagnetic field line. However, their escape mechanisms were found to be highly complicated. To know how the respective ion species of thermal energy in the lower ionosphere obtain nonthermal energies is especially important for the understanding of the ion escape mechanisms. Therefore, it is significant to observe suprathermal ions of the respective species using a mass spectrometry technique. The Neutral Mass Spectrometer (NMS) which we developed and installed on the Canadian CASSIOPE satellite will be launched in the winter of 2010. The objective of the NMS in-strument is to observe nonthermal neutral particles that are closely linked to the ion escape mechanisms. We applied the technique used in NMS instrument to a new ion mass spectrometer by improving this instrument. The purpose of this study is to develop a space-borne ion mass spectrometer for observations of the suprathermal ions related to the ion escape from the polar ionosphere. In addition, we newly developed a low energy ion beam generator because ions of suprathermal energy are required for the laboratory calibration of the ion mass spectrometer. The advantage of this ion mass spectrometer is that the high time resolution is achieved because this instrument can simultaneously perform the mass spectrometry using the time-of-flight technique and the velocity measurement using the two-dimensional position detection technique. This advantage will provide the spatial resolution of the ion escape observation that is about ten times higher than those by the conventional suprathermal ion spectrometers. It is very difficult for the conventional ion beam generators used in the laboratory experiments to produce ion beams with energies lower than a few eV. The ion beam generator we developed first produces supersonic neutral beam using a nozzle and then convert it into the ion beam by ionization using an electron gun. In this presentation, we report on development status of the ion mass spectrometer and the low energy ion beam generator.

Koizumi-Kurihara, Yoshiko; Kurihara, Junichi; Hayakawa, Hajime

386

A Prismatic Analyser concept for Neutron Spectrometers  

E-print Network

A development in modern neutron spectroscopy is to avoid the need of large samples. We demonstrate how small samples together with the right choice of analyser and detector components makes distance collimation an important concept in crystal analyser spectrometers. We further show that this opens new possibilities where neutrons with different energies are reflected by the same analyser but counted in different detectors, thus improving both energy resolution and total count rate compared to conventional spectrometers. The technique can be combined with advanced focusing geometries and with multiplexing instrument designs. We present a combination of simulations and data with 3 energies from one analyser. The data was taken on a prototype installed at PSI, Switzerland, and shows excellent agreement with the predictions. Typical improvements will be 2 times finer resolution and a factor 1.9 in flux gain compared to a Rowland geometry or 3 times finer resolution and a factor 3.2 in flux gain compared to a sing...

Birk, Jonas O; Freeman, Paul G; Jacobsen, Johan; Christensen, Niels B; Niedermayer, Christof; Rønnow, Henrik M; Lefmann, Kim

2014-01-01

387

Interface for liquid chromatograph-mass spectrometer  

DOEpatents

A moving belt interface is described for real-time, high-performance liquid chromatograph (HPLC)/mass spectrometer (MS) analysis which strips away the HPLC solvent as it emerges from the end of the HPLC column and leaves a residue suitable for mass-spectral analysis. The interface includes a portable, stand-alone apparatus having a plural stage vacuum station, a continuous ribbon or belt, a drive train magnetically coupled to an external drive motor, a calibrated HPLC delivery system, a heated probe tip and means located adjacent the probe tip for direct ionization of the residue on the belt. The interface is also capable of being readily adapted to fit any mass spectrometer. 8 figs.

Andresen, B.D.; Fought, E.R.

1989-09-19

388

The Canadian Penning Trap Spectrometer at Argonne  

NASA Astrophysics Data System (ADS)

The Canadian Penning Trap (CPT) mass spectrometer is a device used for high-precision mass measurements on short-lived isotopes. It is located at the ATLAS superconducting heavy-ion linac facility where a novel injection system, the RF gas cooler, allows fast reaction products to be decelerated, thermalized and bunched for rapid and efficient injection into the CPT. The CPT spectrometer and its injection system will be described in detail and its unique capabilities with respect to its initial physics program, concentrating on isotopes around the N=Z line with particular emphasis on isotopes of interest to low-energy tests of the electroweak interaction and the rp-process, will be highlighted.

Savard, G.; Barber, R. C.; Boudreau, C.; Buchinger, F.; Caggiano, J.; Clark, J.; Crawford, J. E.; Fukutani, H.; Gulick, S.; Hardy, J. C.; Heinz, A.; Lee, J. K. P.; Moore, R. B.; Sharma, K. S.; Schwartz, J.; Seweryniak, D.; Sprouse, G. D.; Vaz, J.

2001-01-01

389

Data analysis for Skylab proton spectrometer  

NASA Technical Reports Server (NTRS)

The data from a proton spectrometer flown aboard Skylab is examined. The instrument is sensitive to protons in the energy range 18 to 400 MeV. A partial failure of the spectrometer restricted spectral analysis to two energy bands, 18 to 27 MeV and 27 to 400 MeV. The directional data showed that a Gaussian angular distribution parameter of at least 70 degrees is required for the low energy band and at least 40 degrees for the high energy band. The data, integrated over angle, indicate that the AP3 model extrapolated down to 18-27 MeV is high by factors of 2 to 5 over most of the B-L space mapped. In the 27 to 400 MeV range, the AP3 model is 20 to 100 percent low at low and high values of L, and is high at medium L values in the B-L space mapped.

Hill, C. W.

1976-01-01

390

Advanced mass spectrometers for hydrogen isotope analyses  

Microsoft Academic Search

Two advanced prototype mass spectrometers for the accurate analysis of mixtures of the hydrogen isotopes were evaluated. The GAZAB is a large double-focusing instrument with a resolution of 2000 at mass 4 and an abundance sensitivity of greater than 100,000 for the HT-D2 doublet. The MAT 250 HDT is a smaller, simpler, stigmatic focusing instrument with exceptionally high ion intensities

P. Chastagner

1984-01-01

391

Introduction to Subatomic-Particle Spectrometers  

E-print Network

An introductory review, suitable for the beginning student of high-energy physics or professionals from other fields who may desire familiarity with subatomic-particle detection techniques. Subatomic-particle fundamentals and the basics of particle interactions with matter are summarized, after which we review particle detectors. We conclude with two examples that illustrate the variety of subatomic-particle spectrometers and exemplify the combined use of several detection techniques to characterize interaction events more-or-less completely.

Daniel M. Kaplan; Kenneth S. Nelson

1998-05-19

392

Introduction to Subatomic-Particle Spectrometers  

Microsoft Academic Search

An introductory review, suitable for the beginning student of high-energy physics or professionals from other fields who may desire familiarity with subatomic-particle detection techniques. Subatomic-particle fundamentals and the basics of particle interactions with matter are summarized, after which we review particle detectors. We conclude with two examples that illustrate the variety of subatomic-particle spectrometers and exemplify the combined use of

Daniel M. Kaplan; Kenneth S. Nelson

1998-01-01

393

Introduction to Subatomic-Particle Spectrometers  

Microsoft Academic Search

An introductory review, suitable for the beginning student of high-energy\\u000aphysics or professionals from other fields who may desire familiarity with\\u000asubatomic-particle detection techniques. Subatomic-particle fundamentals and\\u000athe basics of particle interactions with matter are summarized, after which we\\u000areview particle detectors. We conclude with two examples that illustrate the\\u000avariety of subatomic-particle spectrometers and exemplify the combined use of

Daniel M. Kaplan; Kenneth S. Nelson

1998-01-01

394

The Constellation-X reflection grating spectrometer  

Microsoft Academic Search

The Constellation-X Reflection Grating Spectrometer (RGS) is designed to provide high-throughput, high-resolution spectra in the long wavelength band of 6 to 50 angstrom. In the nominal design an array of reflection gratings is mounted at the exit of the Spectroscopy X-ray Telescope (SXT) mirror module. The gratings intercept and disperse light to a designated array of CCD detectors. To achieve

Jean Cottam; Webster Cash; Kathryn A. Flanagan; Ralf K. Heilmann; Gregory Y. Prigozhin; Andrew P. Rasmussen; George R. Ricker; Mark L. Schattenburg; Eric Schindhelm

2006-01-01

395

Pioneer Venus large probe neutral mass spectrometer  

NASA Technical Reports Server (NTRS)

The deuterium hydrogen abundance ratio in the Venus atmosphere was measured while the inlets to the Pioneer Venus large probe mass spectrometer were coated with sulfuric acid from Venus' clouds. The ratio is (1.6 + or - 0.2) x 10 to the minus two power. It was found that the 100 fold enrichment of deuterium means that Venus outgassed at least 0.3% of a terrestrial ocean and possibly more.

Hoffman, J.

1982-01-01

396

Spectrometer of high energy gamma quantums  

NASA Technical Reports Server (NTRS)

A detailed description of the apparatus GG-2M is given. The spectrometer contains a Cerenkov and scintillation (including anticoincidence) counter. The energies of the gamma quantums are measured by a shower calorimeter, in which scintillation counters are used in the capacity of detectors. Results are given for tuning the device on mu-mesons of cosmic rays. The data of physical tuning allow more reliable interpretation of the results of measurements which are received on the satellites.

Blokhintsev, I. D.; Melioranskiy, A. S.; Kalinkin, L. F.; Nagornykh, Y. I.; Pryakhin, Y. A.

1979-01-01

397

Liquid helium cooled Fabry-Perot spectrometers  

NASA Technical Reports Server (NTRS)

An account is given of two successful efforts to construct cryogenic Fabry-Perot interferometers that are sufficiently compact and stable for such harsh conditions as those of balloon or space observations, as well as ground-based ones. Attention is given to the design features and performance of a Fabry-Perot interferometer incorporating an electromagnet actuator, the ISAS interferometer, a Fabry-Perot spectrometer with superconducting actuators, and the University of Arizona interferometer.

Okuda, H.; Shibai, H.; Nakagawa, T.; Kobayashi, Y.; Matsumoto, T.

1986-01-01

398

Synchronised Aerosol Mass Spectrometer Measurements across Europe  

Microsoft Academic Search

Up to twelve Aerodyne Aerosol Mass Spectrometers (AMSs) were operated simultaneously at rural and background stations (EMEP and EUSAAR sites) across Europe. Measurements took place during three intensive periods, in collaboration between the European EUCAARI IP and the EMEP monitoring activities under the UNECE Convention for Long-Range Transboundary Air Pollution (CLRTAP) during three contrasting months (May 2008, Sep\\/Oct 2008, Feb\\/Mar

Eiko Nemitz

2010-01-01

399

Some interesting measurements with quadrupole mass spectrometers  

Microsoft Academic Search

Some measurements made with the NZ-850 type quadrupole mass spectrometer of the ATOMKI are reported. The analysis of gases\\u000a in operating rooms showed 1 ppm— 105 ppm concentration of narcotics. Purity control of gases regularly helps the radioactive pollution measurements and radio\\u000a carbon dating technique at our Institute. In an other application evidence of new possibilities is given which arise

S. Bohátka; I. Berecz; G. Langer

1980-01-01

400

Lead Slowing Down Spectrometer Status Report  

Microsoft Academic Search

This report documents the progress that has been completed in the first half of FY2012 in the MPACT-funded Lead Slowing Down Spectrometer project. Significant progress has been made on the algorithm development. We have an improve understanding of the experimental responses in LSDS for fuel-related material. The calibration of the ultra-depleted uranium foils was completed, but the results are inconsistent

Glen A. Warren; Kevin K. Anderson; Eric Bonebrake; Andrew M. Casella; Yaron Danon; M. Devlin; Victor A. Gavron; R. C. Haight; G. R. Imel; Jonathan A. Kulisek; J. M. ODonnell; Adam Weltz

2012-01-01

401

Design of a portable microfiber optic spectrometer  

NASA Astrophysics Data System (ADS)

Spectrum examination is widely used in scientific research and production. With the development of scientific research and production, the trend of spectrum examination is from indoor to outdoor in situ examination and on-line monitor. So the spectrometer is required to be more minimal. A new type of portable micro fiber spectrometer, using CCD, blaze grating, and two spherical mirror, a small dispersing system based on crossing Czerny-Turner structure, is designed based on this kind of requirement. By analyzing optical system structure, the relation among parameters of these components has been found out in order to fix basic parameters for miniaturized spectrometer; its working wavelength is 200-910nm. The entire spectrum is detected by a CCD for one time, the selection of CCD is product of Toshiba Corporation, linear charge coupled device (L.CCD) TCD1304AP, then received light signal is converted to an electrical signal. The system's hardware circuit includes CPLD, MCU, the CCD driving timing circuit, signal conditioning circuits, high-speed A/D sampling and transform timing circuit. A new kind of driving and sampling system which is high integrated for multi-channel has been designed by using CPLD (complex programmable logical device) and MCU. In this system, many function modules can be generated by logic cells inside of the CPLD chip, such as the driving pulse of CCD, the driving timing of high-speed A/D sampling converter and storage system and so on. In the end, the A/D results can be transmitted to computer by MCU for storage, processing and analysis. The CPLD is programmed in VHDL and compiled, synthesized, simulated and burned with the helping of the environment of Quartus II. The design of portable micro fiber spectrometer has the feature of wide spectrum range and high resolving power, so the system is especially suitable in the application of portable filed examination.

Tong, Jian-ping; Yang, Yang; Sui, Cheng-hua; Xu, Dang-yang; Wang, fei

2010-10-01

402

Time Dispersive Spectrometer Using Digital Switching Means  

DOEpatents

Methods and apparatus are described for time dispersive spectroscopy. In particular, a modulated flow of ionized molecules of a sample are introduced into a drift region of an ion spectrometer. The ions are subsequently detected by an ion detector to produce an ion detection signal. The ion detection signal can be modulated to obtain a signal useful in assaying the chemical constituents of the sample.

Tarver, III, Edward E. (Livermore, CA); Siems, William F. (Spokane, WA)

2004-09-07

403

Heterodyne spectrometers with very wide bandwidths  

NASA Astrophysics Data System (ADS)

New astronomical and remote-sensing instruments require microwave spectrometers with modest spectral resolution over many gigahertz of instantaneous bandwidth. Applications include millimeter-wave searches for distant objects with poorly known redshifts, submillimeter and far-infrared observations of Doppler-broadened spectral lines from galaxies, and observations of pressure-broadened atmospheric lines. Wide bandwidths and the consequent stability requirements make it difficult to use general-purpose receiver and spectrometer architectures in these applications. We discuss analog auto- and cross-correlation lag spectrometers that are optimized for these observations. Analog correlators obtain their wide bandwidths by a combination of transmission line delays and direct voltage multiplication in transistor or diode mixers. We show results from a new custom transistor multiplier with bandwidth to 25 GHz. Stability becomes increasingly important as bandwidths broaden. We discuss system requirements for single-dish correlation radiometers, which have intrinsic high stability, and present results showing that analog cross-correlators are suitable backends for these receivers.

Harris, Andrew I.

2003-02-01

404

Cooled grating infrared spectrometer for astronomical observations  

NASA Technical Reports Server (NTRS)

A liquid helium-cooled infrared spectrometer for the 16 to 50 micron range is described. The instrument has six detectors, three each of Si:Sb and Ge:Ga and two diffraction gratings mounted back-to-back. Cold preoptics are used to match the spectrometer to the telescope. In its nominal configuration the system resolution is 0.03 micron from 16 to 30 microns and 0.07 micron from 28 to 50 microns. A cooled filter wheel is used to change order sorting filters. The gratings are driven by a steel band and gear train operating at 4 K. The detector outputs are amplified by a TIA, employing a matched pair of JFETs operating at 70 K inside the dewar. The external warm electronics include a gain stage for the TIA and dc-coupled gating circuit to remove charged-particle (cosmic-ray secondary)-induced noise spikes. The gating circuit reduces the overall system noise by a factor of two when the spectrometer is used on NASA's Kuiper Airborne Observatory. Sample spectra are presented and the deglitcher performance is illustrated.

Houck, J. R.; Gull, G. E.

1983-01-01

405

A geostationary imaging spectrometer TOMS instrument  

NASA Technical Reports Server (NTRS)

One design for a geostationary Total Ozone Mapping Spectrometer (TOMS) with many desirable features is an imaging spectrometer. A preliminary study makes use of a 0.25 m Czerny-Turner spectrometer with which the Earth is imaged on a charge-coupled device (CCD) in dispersed light. The wavelength is determined by a movable grating which can be set arbitrarily by ground control. The signal integration time depends on wavelength but this system allows arbitrary timing by command. Special circumstances such as a requirement to track a low-lying sulfur dioxide cloud or a need to discriminate high level ozone from total ozone at midlatitudes could be obtained by adding a particular wavelength to the normally pre-programmed time sequence. The incident solar irradiance is measured by deploying a diffuser plate in the field of view. Individual detector elements correspond to scene elements in which the several wavelengths are serially sampled and the Earth radiance is compared to the incident sunlight. Thus the problem of uncorrelated drift of multiple detectors is removed.

Krueger, Arlin J.; Maloy, J. Owen; Roeder, H. B.

1987-01-01

406

Multislit optimized spectrometer: fabrication and assembly update  

NASA Astrophysics Data System (ADS)

The NASA ESTO funded Multi-slit Optimized Spectrometer (MOS) Instrument Incubator Program will advance a spatial multiplexing spectrometer for coastal ocean remote sensing from lab demonstration to flight like environment testing. Vibration testing to meet the GEVS requirements for a geostationary orbit launch will be performed. The multiple slit design reduces the required telescope aperture leading to mass and volume reductions over conventional spectrometers when applied to the GEO-CAPE oceans mission. The MOS program is entering year 3 of the 3-year program where assembly and test activities will demonstrate the performance of the MOS concept. This paper discusses the instrument design, fabrication and assembly. It outlines the test plan to realize a technology readiness level of 6. Testing focuses on characterizing radiometric impacts of the multiple slit images multiplexed onto a common focal plane, and assesses the resulting uncertainties imparted to the ocean color data products. The MOS instrument implementation for GEO-CAPE provides system benefits that can lead to cost savings and risk reduction while meeting the science objectives of understanding the dynamic coastal ocean environment.

Valle, Tim; Hardesty, Chuck; Good, William; Seckar, Chris; Shea, Don; Spuhler, Peter; Davis, Curtiss O.; Tufillaro, Nicholas

2013-09-01

407

Advances in miniature spectrometer and sensor development  

NASA Astrophysics Data System (ADS)

Miniaturization and cost reduction of spectrometer and sensor technologies has great potential to open up new applications areas and business opportunities for analytical technology in hand held, mobile and on-line applications. Advances in microfabrication have resulted in high-performance MEMS and MOEMS devices for spectrometer applications. Many other enabling technologies are useful for miniature analytical solutions, such as silicon photonics, nanoimprint lithography (NIL), system-on-chip, system-on-package techniques for integration of electronics and photonics, 3D printing, powerful embedded computing platforms, networked solutions as well as advances in chemometrics modeling. This paper will summarize recent work on spectrometer and sensor miniaturization at VTT Technical Research Centre of Finland. Fabry-Perot interferometer (FPI) tunable filter technology has been developed in two technical versions: Piezoactuated FPIs have been applied in miniature hyperspectral imaging needs in light weight UAV and nanosatellite applications, chemical imaging as well as medical applications. Microfabricated MOEMS FPIs have been developed as cost-effective sensor platforms for visible, NIR and IR applications. Further examples of sensor miniaturization will be discussed, including system-on-package sensor head for mid-IR gas analyzer, roll-to-roll printed Surface Enhanced Raman Scattering (SERS) technology as well as UV imprinted waveguide sensor for formaldehyde detection.

Malinen, Jouko; Rissanen, Anna; Saari, Heikki; Karioja, Pentti; Karppinen, Mikko; Aalto, Timo; Tukkiniemi, Kari

2014-05-01

408

Autonomously Calibrating a Quadrupole Mass Spectrometer  

NASA Technical Reports Server (NTRS)

A computer program autonomously manages the calibration of a quadrupole ion mass spectrometer intended for use in monitoring concentrations and changes in concentrations of organic chemicals in the cabin air of the International Space Station. The instrument parameters calibrated include the voltage on a channel electron multiplier, a discriminator threshold, and an ionizer current. Calibration is achieved by analyzing the mass spectrum obtained while sweeping the parameter ranges in a heuristic procedure, developed by mass spectrometer experts, that involves detection of changes in signal trends that humans can easily recognize but cannot necessarily be straightforwardly codified in an algorithm. The procedure includes calculation of signal-to-noise ratios, signal-increase rates, and background-noise-increase rates; finding signal peaks; and identifying peak patterns. The software provides for several recovery-from-error scenarios and error-handling schemes. The software detects trace amounts of contaminant gases in the mass spectrometer and notifies associated command- and-data-handling software to schedule a cleaning. Furthermore, the software autonomously analyzes the mass spectrum to determine whether the parameters of a radio-frequency ramp waveform are set properly so that the peaks of the mass spectrum are at expected locations.

Lee, Seungwon; Bornstein, Benjamin J.

2009-01-01

409

The HERSCHEL/PACS Spectrometer Pipeline  

NASA Astrophysics Data System (ADS)

ESA's Herschel Space Observatory, to be launched in 2009, is the first space observatory covering the full far-infrared and sub-millimeter wavelength range (60 - 670 micron). The Photodetector Array Camera & Spectrometer (PACS) is one of the three science instruments. It employs two Ge:Ga photoconductor arrays and two bolometer arrays to perform integral field spectroscopy and imaging photometry in the 60 - 210 micron wavelength band. The interactive PACS Spectrometer and Photometer \\citep{wieprecht09} Data Reduction Pipeline is integrated in the Herschel Data Processing System. The DP is implemented using Java technology and written in a common effort by the HERSCHEL Science Center (HSC) and the three instrument teams. We overview the concept and status of the PACS Spectrometer Data Reduction Pipeline. Additionally, we address the instrument mode-dependent data processing and the definition of the products of the different processing levels. Finally, we show first results by applying the pipeline on flight model instrument level test data.

Schreiber, J.; Wieprecht, E.; de Jong, J.; Wetzstein, M.; Jacobson, J.; Huygen, R.; Appleton, P.; Bouwman, J.; Contursi, A.; Fadda, D.; Jean, C.; Klaas, U.; Royer, P.; Vandenbussche, B.

2009-09-01

410

Method of multiplexed analysis using ion mobility spectrometer  

DOEpatents

A method for analyzing analytes from a sample introduced into a Spectrometer by generating a pseudo random sequence of a modulation bins, organizing each modulation bin as a series of submodulation bins, thereby forming an extended pseudo random sequence of submodulation bins, releasing the analytes in a series of analyte packets into a Spectrometer, thereby generating an unknown original ion signal vector, detecting the analytes at a detector, and characterizing the sample using the plurality of analyte signal subvectors. The method is advantageously applied to an Ion Mobility Spectrometer, and an Ion Mobility Spectrometer interfaced with a Time of Flight Mass Spectrometer.

Belov, Mikhail E. (Richland, WA); Smith, Richard D. (Richland, WA)

2009-06-02

411

Laboratory 11 Control Systems Laboratory ECE3557 Laboratory 11  

E-print Network

Laboratory 11 Control Systems Laboratory ECE3557 Laboratory 11 State Feedback Controller of the combined system (i.e., servomotor and flexible joint) introduced in the Laboratory 8 (refer to [1 of the flexible joint: Page 1 of 7 #12;Laboratory 11 Control Systems Laboratory ECE3557 · : motor shaft position

412

Mathematical Simulation for Integrated Linear Fresnel Spectrometer Chip  

NASA Technical Reports Server (NTRS)

A miniaturized solid-state optical spectrometer chip was designed with a linear gradient-gap Fresnel grating which was mounted perpendicularly to a sensor array surface and simulated for its performance and functionality. Unlike common spectrometers which are based on Fraunhoffer diffraction with a regular periodic line grating, the new linear gradient grating Fresnel spectrometer chip can be miniaturized to a much smaller form-factor into the Fresnel regime exceeding the limit of conventional spectrometers. This mathematical calculation shows that building a tiny motionless multi-pixel microspectrometer chip which is smaller than 1 cubic millimter of optical path volume is possible. The new Fresnel spectrometer chip is proportional to the energy scale (hc/lambda), while the conventional spectrometers are proportional to the wavelength scale (lambda). We report the theoretical optical working principle and new data collection algorithm of the new Fresnel spectrometer to build a compact integrated optical chip.

Park, Yeonjoon; Yoon, Hargoon; Lee, Uhn; King, Glen C.; Choi, Sang H.

2012-01-01

413

Reflectance Experiment Laboratory (RELAB) Description and User's Manual  

NASA Technical Reports Server (NTRS)

Spectroscopic data acquired in the laboratory provide the interpretive foundation upon which compositional information about unexplored or unsampled planetary surfaces is derived from remotely obtained reflectance spectra. The RELAB is supported by NASA as a multi-user spectroscopy facility, and laboratory time can be made available at no charge to investigators who are in funded NASA programs. RELAB has two operational spectrometers available to NASA scientists: 1) a near- ultraviolet, visible, and near-infrared bidirectional spectrometer and 2) a near- and mid- infrared FT-IR spectrometer. The overall purpose of the design and operation of the RELAB bidirectional spectrometer is to obtain high precision, high spectral resolution, bidirectional reflectance spectra of earth and planetary materials. One of the key elements of its design is the ability to measure samples using viewing geometries specified by the user. This allows investigators to simulate, under laboratory conditions, reflectance spectra obtained remotely (i.e., with spaceborne, telescopic, and airborne systems) as well as to investigate geometry dependent reflectance properties of geologic materials. The Nicolet 740 FT-IR spectrometer currently operates in reflectance mode from 0.9 to 25 Fm. Use and scheduling of the RELAB is monitored by a 4-member advisory committee. NASA investigators should direct inquiries to the Science Manager or RELAB Operator.

Pieters, Carle M.; Hiroi, Takahiro; Pratt, Steve F.; Patterson, Bill

2004-01-01

414

Appalachian Laboratory  

NSDL National Science Digital Library

Located in Frostburg, Maryland, AL conducts research in aquatic ecology, landscape and watershed ecology, conservation biology and restoration ecology, behavioral and evolutionary ecology, and study both freshwater and terrestrial ecosystems of Maryland and other locations in the United States and the world. Site contains information regarding the facilities, faculty, on going research, education opportunities, and seminars. Also features information on the other UMCES laboratories.

415

BROOKHAVEN LABORATORY  

E-print Network

, and decision-making processes. We will endeavor to support parents in their critical role. 2. Children develop that stimulates academic/cognitive growth, language, social-emotional development and physical developmentBROOKHAVEN NATIONAL LABORATORY Child Development Center Parent Handbook Revised 2009

Ohta, Shigemi

416

Laboratory Buildings.  

ERIC Educational Resources Information Center

The need for flexibility in science research facilities is discussed, with emphasis on the effect of that need on the design of laboratories. The relationship of office space, bench space, and special equipment areas, and the location and distribution of piping and air conditioning, are considered particularly important. This building type study…

Barnett, Jonathan

417

Appalachian Laboratory  

NSDL National Science Digital Library

Located in Frostburg, Maryland, AL conducts research in aquatic ecology, landscape and watershed ecology, conservation biology and restoration ecology, behavioral and evolutionary ecology, and study both freshwater and terrestrial ecosystems of Maryland and other locations in the United States and the world. Site contains information regarding the facilities, faculty, on going research, education opportunities, and seminars. Also features information on the other UMCES laboratories.

2011-06-14

418

Compact snapshot birefringent imaging Fourier transform spectrometer for remote sensing and endoscopy  

NASA Astrophysics Data System (ADS)

The design and implementation of a compact multiple-image Fourier transform spectrometer (FTS) is presented. Based on the multiple-image FTS originally developed by A. Hirai, the presented device offers significant advantages over his original implementation. Namely, its birefringent nature results in a common-path interferometer which makes the spectrometer insensitive to vibration. Furthermore, it enables the potential of making the instrument ultra-compact, thereby improving the portability of the sensor. The theory of the birefringent FTS is provided, followed by details of its specific embodiment. A laboratory proof of concept of the sensor, designed and developed at the Optical Detection Lab, is also presented. Spectral measurements of laboratory sources are provided, including measurements of light-emitting diodes and gas-discharge lamps. These spectra are verified against a calibrated Ocean Optics USB2000 spectrometer. Other data were collected outdoors and of a rat esophagus, demonstrating the sensor's ability to resolve spectral signatures in both standard outdoor lighting and environmental conditions, as well as in fluorescence spectroscopy.

Kudenov, Michael W.; Banerjee, Bhaskar; Chan, Victoria C.; Dereniak, Eustace L.

2012-09-01

419

Multiparticle production on hydrogen, argon, and xenon targets in a streamer chamber by 200-GeV/c proton and antiproton beams  

SciTech Connect

Interactions of 200-GeV protons and antiprotons on hydrogen, argon, and xenon targets were studied with a streamer-chamber vertex spectrometer at the CERN SPS. Results on multiplicities, rapidity distributions, and correlations are presented and compared with predictions of current models.

De Marzo, C.; De Palma, M.; Distante, A.; Favuzzi, C.; Germinario, G.; Lavopa, P.; Maggi, G.; Posa, F.; Ranieri, A.; Selvaggi, G.; Spinelli, P.; Waldner, F.; Bialas, A.; Czyz, W.; Eskreys, A.; Eskreys, K.; Fialkowski, K.; Kisielewska, D.; Madeyski, B.; Malecki, P.; Olkiewicz, K.; Pawlik, B.; Evans, W.H.; Fry, J.R.; Grant, C.; Houlden, M.; Morton, A.; Muirhead, H.; Shiers, J.; Wong, S.L.; Antic, M.; Baker, W.; Coghen, T.; Dengler, F.; Derado, I.; Eckardt, V.; Fent, J.; Freund, P.; Gebauer, H.J.; Kahl, T.; Kalbach, R.; Manz, A.; Polakos, P.; Pretzl, K.P.; Schmitz, N.; Schouten, T.; Seyboth, P.; Seyerlein, J.; Stopa, P.; Vranic, D.; Wolf, G.; Crijns, F.; Metzger, W.J.; Pols, C.; Spuijbroek, T.

1982-09-01

420

Multiparticle production on hydrogen, argon, and xenon targets in a streamer chamber by 200GeV\\/c proton and antiproton beams  

Microsoft Academic Search

Interactions of 200-GeV\\/c protons and antiprotons on hydrogen, argon, and xenon targets were studied with a streamer-chamber vertex spectrometer at the CERN SPS. Results on multiplicities, rapidity distributions, and correlations are presented and compared with predictions of current models.

C. de Marzo; M. de Palma; A. Distante; C. Favuzzi; G. Germinario; P. Lavopa; G. Maggi; F. Posa; A. Ranieri; G. Selvaggi; P. Spinelli; F. Waldner; A. Bialas; W. Czyz; A. Eskreys; K. Eskreys; K. Fialkowski; D. Kisielewska; B. Madeyski; P. Malecki; K. Olkiewicz; B. Pawlik; W. H. Evans; J. R. Fry; C. Grant; M. Houlden; A. Morton; H. Muirhead; J. Shiers; S. L. Wong; M. Antic; W. Baker; T. Coghen; F. Dengler; I. Derado; V. Eckardt; J. Fent; P. Freund; H. J. Gebauer; T. Kahl; R. Kalbach; A. Manz; P. Polakos; K. P. Pretzl; N. Schmitz; T. Schouten; P. Seyboth; J. Seyerlein; P. Stopa; D. Vranic; G. Wolf; F. Crijns; W. J. Metzger; C. Pols; T. Spuijbroek

1982-01-01

421

High Resolution, Non-Dispersive X-Ray Calorimeter Spectrometers on EBITs and Orbiting Observatories  

NASA Technical Reports Server (NTRS)

X-ray spectroscopy is the primary tool for performing atomic physics with Electron beam ion trap (EBITs). X-ray instruments have generally fallen into two general categories, 1) dispersive instruments with very high spectral resolving powers but limited spectral range, limited count rates, and require an entrance slit, generally, for EBITs, defined by the electron beam itself, and 2) non-dispersive solid-state detectors with much lower spectral resolving powers but that have a broad dynamic range, high count rate ability and do not require a slit. Both of these approaches have compromises that limit the type and efficiency of measurements that can be performed. In 1984 NASA initiated a program to produce a non-dispersive instrument with high spectral resolving power for x-ray astrophysics based on the cryogenic x-ray calorimeter. This program produced the XRS non-dispersive spectrometers on the Astro-E, Astro-E2 (Suzaku) orbiting observatories, the SXS instrument on the Astro-H observatory, and the planned XMS instrument on the International X-ray Observatory. Complimenting these spaceflight programs, a permanent high-resolution x-ray calorimeter spectrometer, the XRS/EBIT, was installed on the LLNL EBIT in 2000. This unique instrument was upgraded to a spectral resolving power of 1000 at 6 keV in 2003 and replaced by a nearly autonomous production-class spectrometer, the EBIT Calorimeter Spectrometer (ECS), in 2007. The ECS spectrometer has a simultaneous bandpass from 0.07 to over 100 keV with a spectral resolving power of 1300 at 6 keV with unit quantum efficiency, and 1900 at 60 keV with a quantum efficiency of 30%. X-ray calorimeters are event based, single photon spectrometers with event time tagging to better than 10 us. We are currently developing a follow-on instrument based on a newer generation of x-ray calorimeters with a spectral resolving power of 3000 at 6 keV, and improved timing and measurement cadence. The unique capabilities of the x-ray calorimeter spectrometer, coupled with higher spectral resolution dispersive spectrometers to resolve line blends, has enabled many science investigations, to date mostly in our x-ray laboratory astrophysics program. These include measurements of absolute cross sections for Land K shell emission from Fe and Ni, charge exchange measurements in many astrophysically abundant elements, lifetime measurements, line ratios, and wavelength measurements. In addition, we have performed many additional measurements in nuclear physics, and in support of diagnostics for laser fusion, for example. In this presentation we will give a detailed overview of x-ray calorimeter instruments in general and in our EBIT laboratory astrophysics program in particular. We will also discuss the science yield of our measurements at EBIT over the last decade) prospects for future science enabled by the current generation of spectrometers and that will be expanded in the near future by the next generation of spectrometers starting in 2611.

Porter, Frederick S.

2010-01-01

422

Using Chemistry and Color To Analyze Household Products: A 10-12-Hour Laboratory Project at the General Chemistry Level.  

ERIC Educational Resources Information Center

Describes a set of experiments using a UV-VIS spectrometer to identify food colorings and to measure the pH of soft drinks. The first laboratory component uses locations and shapes of visible absorption peaks as a means of identifying dyes while the second portion uses the spectrometer for determining pH. (PVD)

Bosma, Wayne B.

1998-01-01

423

Simplified methods of design, implementation, and characterization of a spectrometer-based FD-OCT  

NASA Astrophysics Data System (ADS)

In this work, we report simple optical design of a high speed and high spectral resolution spectrometer based on the first order calculation. The spectrometer was design and optimized for high speed detection of spectral interference signal to be used as a detection unit of our developed Frequency Domain Optical Coherence Tomography (FD-OCT). We then detailed the hardware implementation of both the spectrometer and the FD-OCT system in our laboratory at Suranaree University of Technology, Thailand, by utilizing only off-the-shelf optical components. The spectrometer is capable of capturing of the spectral interference fringes at up to the camera limit of 130,000 spectra per second, enabling cross-sectional microscopic imaging of biological sample of more than 100 frames per second (for a 1000 depth scans per frame). In addition, we reported several simple yet robust techniques for characterization of the system performance in the context of FD-OCT 3D imaging, such as an effective lateral resolution, depth scale calibration, and depth penetration limit. The development of this high speed and high resolution spectrometer is part of our ultimate goal to develop a prototype of a research-grade FD-OCT system that provides better imaging speed and resolution in comparing to available commercial OCT systems at relatively lower cost. The design of low-cost, high performance FD-OCT system would make the technology widely accessible to other researchers in the field of biomedical research and related areas in Thailand in the next few years.

Meemon, Panomsak; Palawong, Kunakorn; Pongchalee, Pornthep

2014-03-01

424

Development of a Time-resolved Soft X-ray Spectrometer for Laser Produced Plasma Experiments  

SciTech Connect

A 2400 line/mm variable spaced grating spectrometer (VSG) has been used to measure soft x-ray emission (8-22 {angstrom}) from laser-produced plasma experiments at Lawrence Livermore National Laboratory's Compact Multipulse Terrawatt (COMET) Laser Facility. The spectrometer was coupled to a Kentech x-ray streak camera to study the temporal evolution of soft x-rays emitted from the back of mylar and copper foils irradiated at 10{sup 15} W/cm{sup 2}. The instrument demonstrated a resolving power of {approx} 120 at 19 {angstrom} with a time resolution of 31 ps. The time-resolved copper emission spectrum was consistent with a photodiode monitoring the laser temporal pulse shape and indicated that the soft x-ray emission follows the laser heating of the target. The time and spectral resolution of this diagnostic make it useful for studies of high temperature plasmas.

Cone, K V; Dunn, J; Schneider, M B; Baldis, H A; Brown, G V; Emig, J; James, D L; May, M J; Park, J; Shepherd, R; Widmann, K

2010-05-12

425

Development of a time-resolved soft x-ray spectrometer for laser produced plasma experiments  

SciTech Connect

A 2400 lines/mm variable-spaced grating spectrometer has been used to measure soft x-ray emission (8-22 A) from laser-produced plasma experiments at Lawrence Livermore National Laboratory's Compact Multipulse Terrawatt (COMET) Laser Facility. The spectrometer was coupled to a Kentech x-ray streak camera to study the temporal evolution of soft x rays emitted from the back of the Mylar and the copper foils irradiated at 10{sup 15} W/cm{sup 2}. The instrument demonstrated a resolving power of {approx}120 at 19 A with a time resolution of 31 ps. The time-resolved copper emission spectrum was consistent with a photodiode monitoring the laser temporal pulse shape and indicated that the soft x-ray emission follows the laser heating of the target. The time and spectral resolutions of this diagnostic make it useful for studies of high temperature plasmas.

Cone, K. V.; Park, J. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); University of California at Davis, Davis, California 95616 (United States); Dunn, J.; Schneider, M. B.; Brown, G. V.; Emig, J.; James, D. L.; May, M. J.; Shepherd, R.; Widmann, K. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Baldis, H. A. [University of California at Davis, Davis, California 95616 (United States)

2010-10-15

426

Alpha Particle X-Ray Spectrometer (APXS) on-board Chandrayaan-2 rover  

NASA Astrophysics Data System (ADS)

Alpha Particle X-ray Spectrometer (APXS) payload configuration for Chandrayaan-2 rover has been completed recently and fabrication of mechanical assembly, PCB layout design and fabrication are in progress. Here we present the design and performance evaluation of various subsystems developed for APXS payload. The low energy threshold of <1 keV and the energy resolution of ?150 eV at 5.9 keV, for the Silicon Drift Detector (SDD), as measured from the developed APXS electronics is comparable to the standard spectrometers available off-the-shelf. We have also carried out experiments for measuring fluorescent X-ray spectrum from various standard samples from the USGS catalog irradiated by the laboratory X-ray source 241Am with 1 mCi activity. It is shown that intensities of various characteristic X-ray lines are well correlated with the respective elemental concentrations.

Shanmugam, M.; Murty, S. V. S.; Acharya, Y. B.; Goyal, S. K.; Patel, Arpit R.; Shah, Bhumi; Hait, A. K.; Patinge, Aditya; Subrahmanyam, D.

2014-11-01

427

Development of a time-resolved soft x-ray spectrometer for laser produced plasma experiments.  

PubMed

A 2400 lines/mm variable-spaced grating spectrometer has been used to measure soft x-ray emission (8-22 A?) from laser-produced plasma experiments at Lawrence Livermore National Laboratory's Compact Multipulse Terrawatt (COMET) Laser Facility. The spectrometer was coupled to a Kentech x-ray streak camera to study the temporal evolution of soft x rays emitted from the back of the Mylar and the copper foils irradiated at 10(15)?W/cm(2). The instrument demonstrated a resolving power of ?120 at 19 A? with a time resolution of 31 ps. The time-resolved copper emission spectrum was consistent with a photodiode monitoring the laser temporal pulse shape and indicated that the soft x-ray emission follows the laser heating of the target. The time and spectral resolutions of this diagnostic make it useful for studies of high temperature plasmas. PMID:21034016

Cone, K V; Dunn, J; Schneider, M B; Baldis, H A; Brown, G V; Emig, J; James, D L; May, M J; Park, J; Shepherd, R; Widmann, K

2010-10-01

428

Development of a time-resolved soft x-ray spectrometer for laser produced plasma experimentsa)  

NASA Astrophysics Data System (ADS)

A 2400 lines/mm variable-spaced grating spectrometer has been used to measure soft x-ray emission (8-22 Å) from laser-produced plasma experiments at Lawrence Livermore National Laboratory's Compact Multipulse Terrawatt (COMET) Laser Facility. The spectrometer was coupled to a Kentech x-ray streak camera to study the temporal evolution of soft x rays emitted from the back of the Mylar and the copper foils irradiated at 1015 W/cm2. The instrument demonstrated a resolving power of ˜120 at 19 Å with a time resolution of 31 ps. The time-resolved copper emission spectrum was consistent with a photodiode monitoring the laser temporal pulse shape and indicated that the soft x-ray emission follows the laser heating of the target. The time and spectral resolutions of this diagnostic make it useful for studies of high temperature plasmas.

Cone, K. V.; Dunn, J.; Schneider, M. B.; Baldis, H. A.; Brown, G. V.; Emig, J.; James, D. L.; May, M. J.; Park, J.; Shepherd, R.; Widmann, K.

2010-10-01

429

Impacts of dichroic prism coatings on radiometry of the airborne imaging spectrometer APEX.  

PubMed

The generation of well-calibrated radiometric measurements from imaging spectrometer data requires careful consideration of all influencing factors, as well as an instrument calibration based on a detailed sensor model. Deviations of ambient parameters (i.e., pressure, humidity, temperature) from standard laboratory conditions during airborne operations can lead to biases that should be accounted for and properly compensated by using dedicated instrument models. This study introduces a model for the airborne imaging spectrometer airborne prism experiment (APEX), describing the impact of spectral shifts as well as polarization effects on the radiometric system response due to changing ambient parameters. Key issues are related to changing properties of the dichroic coating applied to the dispersing elements within the optical path. We present a model based on discrete numerical simulations. With the improved modeling approach, we predict radiometric biases with an root mean square error (RMSE) below 1%, leading to a substantial improvement of radiometric stability and predictability of system behavior. PMID:25321104

Hueni, A; Schlaepfer, D; Jehle, M; Schaepman, M

2014-08-20

430

THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): THE NARROW-BAND SPECTROMETER  

SciTech Connect

We have developed a near-infrared spectrometer designed to measure the absolute intensity of the solar 854.2 nm Ca II Fraunhofer line, scattered by interplanetary dust, in the zodiacal light (ZL) spectrum. Based on the known equivalent line width in the solar spectrum, this measurement can derive the zodiacal brightness, testing models of the ZL based on morphology that are used to determine the extragalactic background light in absolute photometry measurements. The spectrometer is based on a simple high-resolution tipped filter placed in front of a compact camera with wide-field refractive optics to provide the large optical throughput and high sensitivity required for rocket-borne observations. We discuss the instrument requirements for an accurate measurement of the absolute ZL brightness, the measured laboratory characterization, and the instrument performance in flight.

Korngut, P. M.; Bock, J. [Jet Propulsion Laboratory (JPL), National Aeronautics and Space Administration (NASA), Pasadena, CA 91109 (United States); Renbarger, T.; Keating, B. [Department of Physics, University of California, San Diego, San Diego, CA 92093 (United States); Arai, T.; Matsumoto, T.; Matsuura, S. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Battle, J.; Hristov, V.; Lanz, A.; Levenson, L. R.; Mason, P. [Department of Physics, California Institute of Technology, Pasadena, CA 91125 (United States); Brown, S. W.; Lykke, K. R.; Smith, A. W. [Sensor Science Division, National Institute of Standards and Technology (NIST), Gaithersburg, MD 20899 (United States); Cooray, A. [Center for Cosmology, University of California, Irvine, Irvine, CA 92697 (United States); Kim, M. G. [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, D. H.; Nam, U. W. [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Shultz, B., E-mail: pkorngut@caltech.edu [Materion Barr Precision Optics and Thin Film Coatings, Westford, MA 01886 (United States); and others

2013-08-15

431

A large aperture spectrometer at Fermilab to study high mass dimuons  

NASA Astrophysics Data System (ADS)

A large acceptance forward spectrometer located in a unique antiproton enriched beam has been used at Fermi National Accelerator Laboratory by Experiment 537 to study the production of high mass muon pairs. When the beam was operated at a momentum of 125 GeV/ c, it had a flux of 1.5 × 10 7 particles per second of which 18% were antiprotons. The spectrometer was of closed geometry design and used drift chambers as the tracking elements. Operating over a relatively short period, the experiment accumulated the largest sample of antiproton-induced high mass dimuons of any experiment to date. The contamination of this data by pion-induced dimuons was less than 0.5%.

Anassontzis, E.; Katsanevas, S.; Kostarakis, P.; Kourkoumelis, C.; Markou, A.; Resvanis, L. K.; Voulgaris, G.; Binkley, M.; Cox, B.; Enagonio, J.; Hale, G.; Hojvat, C.; Judd, D.; Kephart, K.; Kephart, R. D.; Malhotra, P. K.; Mazur, P. O.; Murphy, C. T.; Turkot, F.; Wagner, R. L.; Wagoner, D.; Yang, W.; Areti, H.; Conetti, S.; Lebrun, P.; Ryan, D. G.; Ryan, T.; Schappert, W.; Stairs, D. G.; Akerlof, C.; Cui, X.; Kraushaar, P.; Nitz, D.; Thun, R.; Wang, L.; He, Mao; Zhang, Nai-Jian

1986-01-01

432

Design and prototype tests of the RPC system for the OPERA spectrometers  

NASA Astrophysics Data System (ADS)

The Inner Tracker system of the spectrometers of the OPERA experiment makes use of Resistive Plate Chambers (RPC) in a large-scale application. We present here the definition of the project and the full design of the Inner Tracker. Specific performances for the OPERA-RPC in the spectrometer are also reported. Particle detection, muon identification and trigger capability are discussed, in particular. Some results from test beam (T9 and T7 lines at the CERN PS) and measurements from laboratory test (CERN, Frascati, Padova, Gran Sasso) with prototype detectors are discussed, as well as specific solutions developed for the final set-up in OPERA. Full Monte Carlo simulations of the experimental set-up have been also developed.

Dusini, S.; Autiero, D.; Borsato, E.; Brugnera, R.; Camilleri, L.; Dal Corso, F.; Di Lella, L.; Ereditato, A.; Heritier, C.; Fanin, C.; Garfagnini, A.; Jacovcic, K.; Longhin, A.; Mengucci, S.; Parascandolo, P.; Petti, R.; Sorrentino, G.; Spinetti, M.; Stanco, L.; Turcato, M.; Ventura, M.; Votano, L.

2003-08-01

433

Lunar laboratory  

SciTech Connect

An international research laboratory can be established on the Moon in the early years of the 21st Century. It can be built using the transportation system now envisioned by NASA, which includes a space station for Earth orbital logistics and orbital transfer vehicles for Earth-Moon transportation. A scientific laboratory on the Moon would permit extended surface and subsurface geological exploration; long-duration experiments defining the lunar environment and its modification by surface activity; new classes of observations in astronomy; space plasma and fundamental physics experiments; and lunar resource development. The discovery of a lunar source for propellants may reduce the cost of constructing large permanent facilities in space and enhance other space programs such as Mars exploration. 29 refs.

Keaton, P.W.; Duke, M.B.

1986-01-01

434

Qualification of a high-efficiency, gated spectrometer for x-ray Thomson scattering on the National Ignition Facilitya)  

NASA Astrophysics Data System (ADS)

We have designed, built, and successfully fielded a highly efficient and gated Bragg crystal spectrometer for x-ray Thomson scattering measurements on the National Ignition Facility (NIF). It utilizes a cylindrically curved Highly Oriented Pyrolytic Graphite crystal. Its spectral range of 7.4-10 keV is optimized for scattering experiments using a Zn He-? x-ray probe at 9.0 keV or Mo K-shell line emission around 18 keV in second diffraction order. The spectrometer has been designed as a diagnostic instrument manipulator-based instrument for the NIF target chamber at the Lawrence Livermore National Laboratory, USA. Here, we report on details of the spectrometer snout, its novel debris shield configuration and an in situ spectral calibration experiment with a Brass foil target, which demonstrated a spectral resolution of E/?E = 220 at 9.8 keV.

Döppner, T.; Kritcher, A. L.; Neumayer, P.; Kraus, D.; Bachmann, B.; Burns, S.; Falcone, R. W.; Glenzer, S. H.; Hawreliak, J.; House, A.; Landen, O. L.; LePape, S.; Ma, T.; Pak, A.; Swift, D.

2014-11-01

435

HAND-HELD GAMMA-RAY SPECTROMETER BASED ON HIGH-EFFICIENCY FRISCH-RING CdZnTe DETECTORS.  

SciTech Connect

Frisch-ring CdZnTe detectors have demonstrated good energy resolution, el% FWHM at 662 keV, and good efficiency for detecting gamma rays. This technique facilitates the application of CdZnTe materials for high efficiency gamma-ray detection. A hand-held gamma-ray spectrometer based on Frisch-ring detectors is being designed at Brookhaven National Laboratory. It employs an 8x8 CdZnTe detector array to achieve a high volume of 19.2 cm3, so that detection efficiency is significantly improved. By using the front-end ASICs developed at BNL, this spectrometer has a small profile and high energy resolution. The spectrometer includes signal processing circuit, digitization and storage circuit, high-voltage module, and USB interface. In this paper, we introduce the details of the system structure and report our test results with it.

CUI,Y.

2007-05-01

436

A Micro-Opto-Mechanical Photoacoustic Spectrometer  

SciTech Connect

This report describes progress achieved in a one-year LDRD feasibility study of a Photo Acoustic Spectrometer (PAS). Specifically, this team sought to create an all-optical and very small PhotoAcoustic Spectrometer Sensing system (PASS system). The PASS system includes all the hardware needed within a gas environment to analyze the presence of a large variety of molecules. The all-optical PASS system requires only two optical-fibers to communicate with the opto-electronic power and readout systems that exist outside of the gas environment. These systems can be at any distance from the PASS system as signal loss through the optical fibers is very small. The PASS system is intended to be placed in a small space where gases need to be measured and thus must be very small. The size and all-optical constraints placed on the PASS system demand a new design. The PASS system design includes a novel acoustic chamber, optical sensor, power fiber coupling and sensing fiber coupling. Our collaborators at the Atomic Weapons Establishment (AWE) have proven the capabilities of a complete photoacoustic spectrometer that uses a macro-scale PASS system (first 2 references). It was our goal to miniaturize the PASS system and turn it into an all-optical system to allow for its use in confined spaces that prohibit electrical devices. This goal demanded the study of all the system components, selection of an appropriate optical readout system and the design and integration of the optical sensor to the PASS system. A stretch goal was to fabricate a completed PASS system prototype.

Kotovsky, J

2008-10-17

437

Miniaturized MOEMS spectrometer for NIR applications  

NASA Astrophysics Data System (ADS)

Optical spectroscopy is a common tool for many applications. Micro systems most often use fixed gratings and array detectors. In the infrared wavelength range above the limit for Si-detectors (1100nm) and Ge-detectors (1700nm) respectively, this is either very expensive or almost impossible. Micro opto electro mechanical systems (MOEMS) offer very promising options. A movable grating can be realized by a silicon chip, using the technology of a well established scanner mirror chips in combination with the realization of a reflective grating either through etching of the aluminium mirror layer or even a more sophisticated technology. The patented resonant drive realizes a mechanical angle of +/-7° with CMOS compatible voltages of approximately 20V. This technology leads to the realization of a set up close to a classical Czerny-Turner spectrometer using a single detector only. The device offers the capability to be scaled down to the size of a cigarette box. The spectrometer presented here was adjusted to 900...2500nm range. The scanning grating chip has either 500, 625 or 714 lines/mm. As detector serves a fast InGaAs photodiode, read out through a 12 Bit AD converter. The sinusoidal movement is unfolded by a signal processor (TI TMS320F2812) which also computes the spectrum. Acquired data can be shown by a display or transmitted to a host PC. System tests have been performed using infrared LEDs. Wavelengths have been 1300, 1400 or 1550nm for example. The spectrometer is working accurately. First result of micro shaped grating structures to enhance the sensitivity are presented.

Grueger, Heinrich; Heberer, Andreas; Zimmer, Fabian; Wolter, Alexander; Schenk, Harald

2005-08-01

438

Laboratory accreditation  

SciTech Connect

Accreditation can offer many benefits to a testing or calibration laboratory, including increased marketability of services, reduced number of outside assessments, and improved quality of services. Compared to ISO 9000 registration, the accreditation process includes a review of the entire quality system, but in addition a review of testing or calibration procedures by a technical expert and participation in proficiency testing in the areas of accreditation. Within the DOE, several facilities have recently become accredited in the area of calibration, including Sandia National Laboratories, Oak Ridge, AlliedSignal FM and T; Lockheed Martin Idaho Technologies Co., and Pacific Northwest National Lab. At the national level, a new non-profit organization was recently formed called the National Cooperation for Laboratory Accreditation (NACLA). The goal of NACLA is to develop procedures, following national and international requirements, for the recognition of competent accreditation bodies in the US. NACLA is a voluntary partnership between the public and private sectors with the goal of a test or calibration performed once and accepted world wide. The NACLA accreditation body recognition process is based on the requirements of ISO Guide 25 and Guide 58. A membership drive will begin some time this fall to solicit organizational members and an election of a permanent NACLA Board of Directors will follow later this year or early 1999.

Pettit, R.B.

1998-08-01

439

Submillimeter Laboratory Investigations: Spectroscopy and Collisions  

NASA Technical Reports Server (NTRS)

Currently, millimeter-wave and submillimeter-wave spectroscopy is conducted in our laboratory on several different types of spectrometers. Our standard spectrometer utilizes the output of a phase-locked klystron operating in the 40-60 GHz region, which is sent into a crossed-waveguide harmonic generator, or "multiplier". The high frequency millimeter-and submillimeter-wave radiation is transmitted via quasi-optical techniques through an absorption cell and then onto a detector, which is either an InSb hot electron bolometer cooled to 1.4 K or a Si bolometer cooled to 0.3 K. The detector response is sent to a computer for measurement and analysis. The frequency range produced and detected in this manner goes from 80 GHz to upwards of 1 THz. Spectra are normally taken with source modulation, with line frequencies typically measured to an accuracy of 50-100 kHz. Higher accuracy is available when needed. Recently, we developed a new, broad-band spectrometer in our laboratory based on a free-running backward wave oscillator (BWO) of Russian manufacture as the primary source of radiation. The so-called FASSST (fast-scan submillimeter spectroscopic technique) system uses fast-scan and optical calibration methods rather than the traditional locking techniques. The output power from the BWO is split such that 90% goes into the absorption cell while 10% is coupled to a 40-meter Fabry-Perot cavity, which yields fringe? for frequency measurement. Results from this spectrometer on the spectrum of nitric acid (HNO3) show that 100 GHz of spectral data can be obtained in 5 seconds with a measurement accuracy of 50 kHz. Currently, the frequency range of the FASSST system in our laboratory is roughly 100-700 GHz.

Herbst, Eric; DeLucia, Frank C.

2002-01-01

440

Submillimeter Laboratory Investigations: Spectroscopy and Collisions  

NASA Astrophysics Data System (ADS)

Currently, millimeter-wave and submillimeter-wave spectroscopy is conducted in our laboratory on several different types of spectrometers. Our standard spectrometer utilizes the output of a phase-locked klystron operating in the 40-60 GHz region, which is sent into a crossed-waveguide harmonic generator, or "multiplier". The high frequency millimeter-and submillimeter-wave radiation is transmitted via quasi-optical techniques through an absorption cell and then onto a detector, which is either an InSb hot electron bolometer cooled to 1.4 K or a Si bolometer cooled to 0.3 K. The detector response is sent to a computer for measurement and analysis. The frequency range produced and detected in this manner goes from 80 GHz to upwards of 1 THz. Spectra are normally taken with source modulation, with line frequencies typically measured to an accuracy of 50-100 kHz. Higher accuracy is available when needed. Recently, we developed a new, broad-band spectrometer in our laboratory based on a free-running backward wave oscillator (BWO) of Russian manufacture as the primary source of radiation. The so-called FASSST (fast-scan submillimeter spectroscopic technique) system uses fast-scan and optical calibration methods rather than the traditional locking techniques. The output power from the BWO is split such that 90% goes into the absorption cell while 10% is coupled to a 40-meter Fabry-Perot cavity, which yields fringe? for frequency measurement. Results from this spectrometer on the spectrum of nitric acid (HNO3) show that 100 GHz of spectral data can be obtained in 5 seconds with a measurement accuracy of 50 kHz. Currently, the frequency range of the FASSST system in our laboratory is roughly 100-700 GHz.

Herbst, Eric; DeLucia, Frank C.

2002-10-01

441

Gamma ray spectrometer for Lunar Scout 2  

NASA Technical Reports Server (NTRS)

We review the current status of the Los Alamos program to develop a high-resolution gamma-ray spectrometer for the Lunar Scout-II mission, which is the second of two Space Exploration Initiative robotic precursor missions to study the Moon. This instrument will measure gamma rays in the energy range of approximately 0.1 - 10 MeV to determine the composition of the lunar surface. The instrument is a high-purity germanium crystal surrounded by an CsI anticoincidence shield and cooled by a split Stirling cycle cryocooler. It will provide the abundance of many elements over the entire lunar surface.

Moss, C. E.; Burt, W. W.; Edwards, B. C.; Martin, R. A.; Nakano, George H.; Reedy, R. C.

1993-01-01

442

Recent exploits of the ISOLTRAP mass spectrometer  

NASA Astrophysics Data System (ADS)

The Penning-trap mass spectrometer ISOLTRAP, located at the isotope-separator facility ISOLDE (CERN), is presented in its current form taking into account technical developments since 2007. Three areas of developments are presented. The reference ion sources have been modified to guarantee a sufficient supply of reference ions for mass measurements and systematic studies. Different excitation schemes have been investigated for manipulation of the ion motion in the Penning trap, to enhance either the purification or measurement process. A multi-reflection time-of-flight mass separator has been implemented and can now be routinely used for purification and as a versatile tool for beam analysis.

Kreim, S.; Atanasov, D.; Beck, D.; Blaum, K.; Böhm, Ch.; Borgmann, Ch.; Breitenfeldt, M.; Cocolios, T. E.; Fink, D.; George, S.; Herlert, A.; Kellerbauer, A.; Köster, U.; Kowalska, M.; Lunney, D.; Manea, V.; Minaya Ramirez, E.; Naimi, S.; Neidherr, D.; Nicol, T.; Rossel, R. E.; Rosenbusch, M.; Schweikhard, L.; Stanja, J.; Wienholtz, F.; Wolf, R. N.; Zuber, K.

2013-12-01

443

The Berkeley EUV spectrometer for ORFEUS  

NASA Technical Reports Server (NTRS)

A novel EUV spectrometer is presented for the ORFEUS-SPAS mission. It uses a set of four varied line-space spherical diffraction gratings to obtain high-resolution spectra of point sources at wavelengths between 390 and 1200 A. The spectra are recorded with two detector units, each containing curved-surface microchannel plates and a delay-line anode-readout system. An independent optical system detects the image of the source in the entrance aperture and tracks the source as it drifts during an observation, enabling a reconstruction of the spectra postflight. The overall system performance is discussed and illustrated by synthetic spectra.

Hurwitz, M.; Bowyer, S.

1991-01-01

444

Compact proton spectrometers for measurements of shock  

SciTech Connect

The compact Wedge Range Filter (WRF) proton spectrometer was developed for OMEGA and transferred to the National Ignition Facility (NIF) as a National Ignition Campaign (NIC) diagnostic. The WRF measures the spectrum of protons from D-{sup 3}He reactions in tuning-campaign implosions containing D and {sup 3}He gas; in this work we report on the first proton spectroscopy measurement on the NIF using WRFs. The energy downshift of the 14.7-MeV proton is directly related to the total {rho}R through the plasma stopping power. Additionally, the shock proton yield is measured, which is a metric of the final merged shock strength.

Mackinnon, A; Zylstra, A; Frenje, J A; Seguin, F H; Rosenberg, M J; Rinderknecht, H G; Johnson, M G; Casey, D T; Sinenian, N; Manuel, M; Waugh, C J; Sio, H W; Li, C K; Petrasso, R D; Friedrich, S; Knittel, K; Bionta, R; McKernan, M; Callahan, D; Collins, G; Dewald, E; Doeppner, T; Edwards, M J; Glenzer, S H; Hicks, D; Landen, O L; London, R; Meezan, N B

2012-05-02

445

The GeoTASO airborne spectrometer project  

NASA Astrophysics Data System (ADS)

The NASA ESTO-funded Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) development project demonstrates a reconfigurable multi-order airborne spectrometer and tests the performance of spectra separation and filtering on the sensor spectral measurements and subsequent trace gas and aerosol retrievals. The activities support mission risk reduction for the UV-Visible air quality measurements from geostationary orbit for the TEMPO and GEMS missions1 . The project helps advance the retrieval algorithm readiness through retrieval performance tests using scene data taken with varying sensor parameters. We report initial results of the project.

Leitch, J. W.; Delker, T.; Good, W.; Ruppert, L.; Murcray, F.; Chance, K.; Liu, X.; Nowlan, C.; Janz, S. J.; Krotkov, N. A.; Pickering, K. E.; Kowalewski, M.; Wang, J.

2014-10-01

446

Micro-optical-mechanical system photoacoustic spectrometer  

DOEpatents

All-optical photoacoustic spectrometer sensing systems (PASS system) and methods include all the hardware needed to analyze the presence of a large variety of materials (solid, liquid and gas). Some of the all-optical PASS systems require only two optical-fibers to communicate with the opto-electronic power and readout systems that exist outside of the material environment. Methods for improving the signal-to-noise are provided and enable mirco-scale systems and methods for operating such systems.

Kotovsky, Jack; Benett, William J.; Tooker, Angela C.; Alameda, Jennifer B.

2013-01-01

447

Atmospheric electron x-ray spectrometer  

NASA Technical Reports Server (NTRS)

The present invention comprises an apparatus for performing in-situ elemental analyses of surfaces. The invention comprises an atmospheric electron x-ray spectrometer with an electron column which generates, accelerates, and focuses electrons in a column which is isolated from ambient pressure by a:thin, electron transparent membrane. After passing through the membrane, the electrons impinge on the sample in atmosphere to generate characteristic x-rays. An x-ray detector, shaping amplifier, and multi-channel analyzer are used for x-ray detection and signal analysis. By comparing the resultant data to known x-ray spectral signatures, the elemental composition of the surface can be determined.

Feldman, Jason E. (Inventor); George, Thomas (Inventor); Wilcox, Jaroslava Z. (Inventor)

2002-01-01

448

Spectrometers for fast neutrons from solar flares.  

PubMed

Neutrons with energies exceeding 1 GeV are emitted in the course of solar flares. Suitable dedicated neutron spectrometers with directional characteristics are necessary for a systematic spectroscopy of solar neutrons. We report here a study of instruments based on the detection of proton recoils from hydrogenous media, with double scattering in order to provide directional information, and also a novel scheme based on the detection of radiation from the neutron magnetic dipole moment, permitting also directional detection of neutrons. Specific designs and detection systems are discussed. PMID:11540017

Slobodrian, R J; Potvin, L; Rioux, C

1994-10-01

449

Particulate contamination spectrometer. Volume 1: Technical report  

NASA Technical Reports Server (NTRS)

A laser particulate spectrometer (LPS) system was developed to measure the size and speed distributions of particulate (dusts, aerosols, ice particles, etc.) contaminants. Detection of the particulates was achieved by means of light scattering and extinction effects using a single laser beam to cover a size range of 0.8 to 275 microns diameter and a speed range of 0.2 to 20 meter/second. The LPS system was designed to operate in the high vacuum environment of a space simulation chamber with cold shroud temperatures ranging from 77 to 300 K.

Schmitt, R. J.; Boyd, B. A.; Linford, R. M. F.

1975-01-01

450

Comparison of properties of digital spectrometer systems.  

PubMed

We have tested two digital spectrometer systems, the DSP 9660 and Lynx(®) modules, connected to a HPGe detector. Lynx(®) is a fully integrated 32K channel signal analyzer based on digital signal processing techniques, which offers advanced digital stabilization. The model DSP 9660 digitalizes the signal directly at a very high sampling rate. The evaluated properties were integral nonlinearity, differential linearity, channel profiles, resolution and throughput. We found that the DSP system has slightly inferior resolution and throughput in comparison with the Lynx(®) system. PMID:24342559

Mazanova, Monika; Dryak, Pavel; Kovar, Petr; Auerbach, Pavel

2014-05-01

451

Lead Slowing Down Spectrometer Status Report  

SciTech Connect

This report documents the progress that has been completed in the first half of FY2012 in the MPACT-funded Lead Slowing Down Spectrometer project. Significant progress has been made on the algorithm development. We have an improve understanding of the experimental responses in LSDS for fuel-related material. The calibration of the ultra-depleted uranium foils was completed, but the results are inconsistent from measurement to measurement. Future work includes developing a conceptual model of an LSDS system to assay plutonium in used fuel, improving agreement between simulations and measurement, design of a thorium fission chamber, and evaluation of additional detector techniques.

Warren, Glen A.; Anderson, Kevin K.; Bonebrake, Eric; Casella, Andrew M.; Danon, Yaron; Devlin, M.; Gavron, Victor A.; Haight, R. C.; Imel, G. R.; Kulisek, Jonathan A.; O'Donnell, J. M.; Weltz, Adam

2012-06-07

452

Electro-optic imaging Fourier transform spectrometer  

NASA Technical Reports Server (NTRS)

An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) fo