Science.gov

Sample records for laboratory sewer system

  1. Idaho National Engineering Laboratory Sewer System Upgrade Project. Environmental Assessment

    SciTech Connect

    Not Available

    1994-04-01

    The Department of Energy (DOE) has prepared an environmental assessment for a proposed Sewer System Upgrade Project at the Idaho National Engineering Laboratory (INEL) near Idaho Falls, Idaho. The proposed action would include activities conducted at the Central Facilities Area, Test Reactor Area, and the Containment Test Facility at the Test Area North at INEL. The proposed action would consist of replacing or remodeling the existing sewage treatment plants at the Central Facilities Area, Test Reactor Area, and Containment Test Facility. Also, a new sewage testing laboratory would be constructed at the Central Facilities Area. Finally, the proposed action would include replacing, repairing, and/or adding sewer lines in areas where needed.

  2. Sandia National Laboratories, California sewer system management plan.

    SciTech Connect

    Holland, Robert C.

    2010-02-01

    A Sewer System Management Plan (SSMP) is required by the State Water Resources Control Board (SWRCB) Order No. 2006-0003-DWQ Statewide General Waste Discharge Requirements (WDR) for Sanitary Sewer Systems (General Permit). DOE, National Nuclear Security Administration (NNSA), Sandia Site Office has filed a Notice of Intent to be covered under this General Permit. The General Permit requires a proactive approach to reduce the number and frequency of sanitary sewer overflows (SSOs) within the State. SSMPs must include provisions to provide proper and efficient management, operation, and maintenance of sanitary sewer systems and must contain a spill response plan. Elements of this Plan are under development in accordance with the SWRCB's schedule.

  3. Post-rehabilitation evaluation of the sanitary sewer system at Lawrence Livermore National Laboratory

    SciTech Connect

    Royal, D.

    1995-11-01

    We are updating a CH2M Hill study which found that the sanitary sewer system is sufficient to transport peak dry weather flow. However, under peak wet weather conditions, the system has insufficient capacity to transport the projected flows for existing and future development. This is due to the amount of infiltration/inflow (I/I) that enters the sewer system when it rains. Our goal is to examine the existing system to determine its adequacy to accommodate present and future peak flows, and also to further update and improve the CH2M Hill study. A set of alternatives was also developed to address deficiencies of the existing system.

  4. Post-rehabilitation flow monitoring and analysis of the sanitary sewer system at Lawrence Livermore National Laboratory

    SciTech Connect

    Brandstetter, E.R.; Littlefield, D.C.; Villegas, M.

    1996-03-01

    Lawrence Livermore National Laboratory (LLNL) is operated by the University of California under contract with the U.S. Department of Energy (DOE). The Livermore site, approximately 50 miles southeast of San Francisco, occupies 819 acres. So far, there have been three phases in an assessment and rehabilitation of the LLNL sanitary sewer system. A 1989 study that used data collected from December 1, 1988, to January 6, 1989, to determine the adequacy of the LLNL sewer system to accommodate present and future peak flows. A Sanitary Sewer Rehabilitation (SSR) project, from October of 1991 to March of 1996, in which the system was assessed and rehabilitated. The third study is the post-rehabilitation assessment study that is reported in this document. In this report, the sanitary sewer system is described, and the goals and results of the 1989 study and the SSR project are summarized. The goals of the post-rehabilitation study are given and the analytical procedures and simulation model are described. Results, conclusions, and recommendations for further work or study are given. Field operations are summarized in Appendix A. References are provided in Appendix B.

  5. The hydraulic capacity of deteriorating sewer systems.

    PubMed

    Pollert, J; Ugarelli, R; Saegrov, S; Schilling, W; Di Federico, V

    2005-01-01

    Sewer and wastewater systems suffer from insufficient capacity, construction flaws and pipe deterioration. Consequences are structural failures, local floods, surface erosion and pollution of receiving waters bodies. European cities spend in the order of five billion Euro per year for wastewater network rehabilitation. This amount is estimated to increase due to network ageing. The project CARE-S (Computer Aided RE-habilitation of Sewer Networks) deals with sewer and storm water networks. The final project goal is to develop integrated software, which provides the most cost-efficient system of maintenance, repair and rehabilitation of sewer networks. Decisions on investments in rehabilitation often have to be made with uncertain information about the structural condition and the hydraulic performance of a sewer system. Because of this, decision-making involves considerable risks. This paper presents the results of research focused on the study of hydraulic effects caused by failures due to temporal decline of sewer systems. Hydraulic simulations are usually carried out by running commercial models that apply, as input, default values of parameters that strongly influence results. Using CCTV inspections information as dataset to catalogue principal types of failures affecting pipes, a 3D model was used to evaluate their hydraulic consequences. The translation of failures effects in parameters values producing the same hydraulic conditions caused by failures was carried out through the comparison of laboratory experiences and 3D simulations results. Those parameters could be the input of 1D commercial models instead of the default values commonly inserted. PMID:16477988

  6. EXFILTRATION IN SEWER SYSTEMS

    EPA Science Inventory

    This study focused on the quantification of leakage of sanitary and industrial sewage from sanitary sewer pipes on a national basis. The method for estimating exfiltration amounts utilized groundwater talbe information to identify areas of the country where the hydraulic gradient...

  7. HANDBOOK: SEWER SYSTEM INFRASTRUCTURE ANALYSIS AND REHABILITATION

    EPA Science Inventory

    Many of our Nation's sewer systems date back to the 19th Century when brick sewers were common. hese and more recent sewer systems can be expected to fail in time, but because they are placed underground, signs of accelerated deterioration and capacity limitations are not readily...

  8. Real-time sewer effluent monitoring system

    SciTech Connect

    Koopman, S.; Yamauchi, R.K.

    1990-12-01

    Lawrence Livermore National Laboratory has upgraded its early sewer monitoring system from the 1970's. LLNL must insure that its waste water is of a consistent and acceptable nature for the City of Livermore's community sewer system. The Sewer Monitor UpGrade system (SMUG) is now monitoring the Lab's sewer effluent. SMUG monitors the effluent for pH, flow rate, metals, and alpha, beta and gamma emitting isotopes. It turns on the appropriate alarms if present alarm levels are exceeded. The hardware consists of DEC Micro VAX II/GPX that has been repackaged by Nuclear Data Company as the Genie 9900 Data Acquisition and Display System. The gamma detector, three XRFAs, pH meter, and flow rate meter are commercially available. The metals sample cells are custom built at the Lab. The operating system is the VMS version 5.4. The application software is written in DEC's Fortran-77 and MACRO, and Nuclear Data software library. 3 refs., 3 figs.

  9. Corrosion and odor management in sewer systems.

    PubMed

    Jiang, Guangming; Sun, Jing; Sharma, Keshab R; Yuan, Zhiguo

    2015-06-01

    Sewers emit hydrogen sulfide and various volatile organic sulfur and carbon compounds, which require control and mitigation. In the last 5-10 years, extensive research was conducted to optimize existing sulfide abatement technologies based on newly developed in-depth understanding of the in-sewer processes. Recent advances have also led to low-cost novel solutions targeting sewer biofilms. Online control has been demonstrated to greatly reduce the chemical usage. Dynamic models for both the water, air and solid (concrete) phases have been developed and used for the planning and maintenance of sewer systems. Existing technologies primarily focused on 'hotspots' in sewers. Future research should aim to achieve network-wide corrosion and emission control and management of sewers as an integrated component of an urban water system. PMID:25827114

  10. GATE AND VACUUM FLUSHING OF SEWER SEDIMENT: LABORATORY TESTING

    EPA Science Inventory

    The objective of this study was to test the performance of a traditional gate-flushing device and a newly-designed vacuum-flushing device in removing sediment from combined sewers and CSO storage tanks. A laboratory hydraulic flume was used to simulate a reach of sewer or storag...

  11. SEWER SEDIMENT GATE AND VACUUM FLUSHING TANKS: LABORATORY FLUME STUDIES

    EPA Science Inventory

    The objective of this study was to test the performance of a traditional gate-flushing device and a newly designed vacuum-flushing device in removing sediments from combined sewers and CSO storage tanks. A laboratory hydraulic flune was used to simulate a reach of sewer or storag...

  12. 40 CFR 35.927-2 - Sewer system evaluation survey.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Sewer system evaluation survey. 35.927... § 35.927-2 Sewer system evaluation survey. (a) The sewer system evaluation survey shall identify the... results of the sewer system evaluation survey. In addition, the report shall include: (1) A...

  13. 40 CFR 35.927-2 - Sewer system evaluation survey.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 1 2013-07-01 2013-07-01 false Sewer system evaluation survey. 35.927... § 35.927-2 Sewer system evaluation survey. (a) The sewer system evaluation survey shall identify the... results of the sewer system evaluation survey. In addition, the report shall include: (1) A...

  14. 40 CFR 35.927-2 - Sewer system evaluation survey.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Sewer system evaluation survey. 35.927... § 35.927-2 Sewer system evaluation survey. (a) The sewer system evaluation survey shall identify the... results of the sewer system evaluation survey. In addition, the report shall include: (1) A...

  15. Handbook: Sewer system infrastructure analysis and rehabilitation

    SciTech Connect

    Not Available

    1991-10-01

    The Handbook provides guidance on the evaluation and rehabilitation of existing sewers. It presents information on typical problems, procedures and methods for rehabilitation, case study information, budgetary costs, advantages and disadvantages of rehabilitation techniques, and application of these techniques and materials/equipment used in rehabilitation. It also guides the reader in understanding the importance of, and ways for, conducting the sewer system evaluation and identifying the rehabilitation procedure that best suits a particular problem.

  16. Groundwater intrusion into leaky sewer systems.

    PubMed

    Wittenberg, H; Aksoy, H

    2010-01-01

    Vast volumes of groundwater are drained by urban sewer systems. This unwanted flow component intrudes into sewer systems through leaky joints or connected house drains. However, unlike urban storm drainage, it has a high seasonal variation corresponding to groundwater storage and long slow recessions similar to baseflow in rivers also fed by shallow groundwater exfiltrating into the surface waters. By applying the nonlinear reservoir algorithm as used for baseflow separation from total flow in a river, groundwater flow is separated from daily measured influents to treatment plants in Lower Saxony and Baden-Württemberg, Germany and in the Terkos Lake watershed near Istanbul, Turkey. While waste water flows vary only moderately within a year, separated intruded groundwater flows show recessions and seasonal variations correlated to baseflow in neighbouring rivers. It is possible to conclude that recession characteristics of treatment plant influents allow quantification and prediction of groundwater intrusion into sewer systems. PMID:20595758

  17. OPTIMIZATION OF COMBINED SEWER OVERFLOW CONTROL SYSTEMS

    EPA Science Inventory

    The highly variable and intermittent pollutant concentrations and flowrates associated with wet-weather events in combined sewersheds necessitates the use of storage-treatment systems to control pollution.An optimized combined-sewer-overflow (CSO) control system requires a manage...

  18. OPIMIZATION OF COMBINED SEWER OVERFLOW CONTROL SYSTEMS

    EPA Science Inventory

    The highly variable and intermittent pollutant concentrations and flowrates associated with wet-weather events in combined sewersheds necessitates the use of storage-treatment systems to control pollution. A strategy should be adopted to develop an optimized combined sewer overfl...

  19. Demonstration of Innovative Sewer System Inspection Technology SewerBatt

    EPA Science Inventory

    The overall objective of this EPA-funded study was to demonstrate innovative a sewer line assessment technology that is designed for rapid deployment using portable equipment. This study focused on demonstration of a technology that is suitable for smaller diameter pipes (less th...

  20. Sanitary sewer rehabilitation at Lawrence Livermore National Laboratory

    SciTech Connect

    Vellinger, R. J.; Burton, R.; Fritschy, B.

    1995-04-01

    The objectives of this paper are the following: to present LLNL`s collection system and innovative approach to sanitary sewer rehabilitation; share issues identified and lessons learned from over four (4) years of rehabilitation work; and discuss proposed system standards for ongoing maintenance and repair activities.

  1. Changes in Microbial Biofilm Communities during Colonization of Sewer Systems.

    PubMed

    Auguet, O; Pijuan, M; Batista, J; Borrego, C M; Gutierrez, O

    2015-10-01

    The coexistence of sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) in anaerobic biofilms developed in sewer inner pipe surfaces favors the accumulation of sulfide (H2S) and methane (CH4) as metabolic end products, causing severe impacts on sewerage systems. In this study, we investigated the time course of H2S and CH4 production and emission rates during different stages of biofilm development in relation to changes in the composition of microbial biofilm communities. The study was carried out in a laboratory sewer pilot plant that mimics a full-scale anaerobic rising sewer using a combination of process data and molecular techniques (e.g., quantitative PCR [qPCR], denaturing gradient gel electrophoresis [DGGE], and 16S rRNA gene pyrotag sequencing). After 2 weeks of biofilm growth, H2S emission was notably high (290.7±72.3 mg S-H2S liter(-1) day(-1)), whereas emissions of CH4 remained low (17.9±15.9 mg COD-CH4 liter(-1) day(-1)). This contrasting trend coincided with a stable SRB community and an archaeal community composed solely of methanogens derived from the human gut (i.e., Methanobrevibacter and Methanosphaera). In turn, CH4 emissions increased after 1 year of biofilm growth (327.6±16.6 mg COD-CH4 liter(-1) day(-1)), coinciding with the replacement of methanogenic colonizers by species more adapted to sewer conditions (i.e., Methanosaeta spp.). Our study provides data that confirm the capacity of our laboratory experimental system to mimic the functioning of full-scale sewers both microbiologically and operationally in terms of sulfide and methane production, gaining insight into the complex dynamics of key microbial groups during biofilm development. PMID:26253681

  2. Changes in Microbial Biofilm Communities during Colonization of Sewer Systems

    PubMed Central

    Auguet, O.; Pijuan, M.; Batista, J.; Gutierrez, O.

    2015-01-01

    The coexistence of sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) in anaerobic biofilms developed in sewer inner pipe surfaces favors the accumulation of sulfide (H2S) and methane (CH4) as metabolic end products, causing severe impacts on sewerage systems. In this study, we investigated the time course of H2S and CH4 production and emission rates during different stages of biofilm development in relation to changes in the composition of microbial biofilm communities. The study was carried out in a laboratory sewer pilot plant that mimics a full-scale anaerobic rising sewer using a combination of process data and molecular techniques (e.g., quantitative PCR [qPCR], denaturing gradient gel electrophoresis [DGGE], and 16S rRNA gene pyrotag sequencing). After 2 weeks of biofilm growth, H2S emission was notably high (290.7 ± 72.3 mg S-H2S liter−1 day−1), whereas emissions of CH4 remained low (17.9 ± 15.9 mg COD-CH4 liter−1 day−1). This contrasting trend coincided with a stable SRB community and an archaeal community composed solely of methanogens derived from the human gut (i.e., Methanobrevibacter and Methanosphaera). In turn, CH4 emissions increased after 1 year of biofilm growth (327.6 ± 16.6 mg COD-CH4 liter−1 day−1), coinciding with the replacement of methanogenic colonizers by species more adapted to sewer conditions (i.e., Methanosaeta spp.). Our study provides data that confirm the capacity of our laboratory experimental system to mimic the functioning of full-scale sewers both microbiologically and operationally in terms of sulfide and methane production, gaining insight into the complex dynamics of key microbial groups during biofilm development. PMID:26253681

  3. STORM-SEWER FLOW MEASUREMENT AND RECORDING SYSTEM.

    USGS Publications Warehouse

    Kilpatrick, Frederick A.; Kaehrle, William R.

    1986-01-01

    A comprehensive study and development of instruments and techniques for measuring all components of flow in a storm-sewer drainage system were undertaken by the U. S. Geological Survey under the sponsorship of FHWA. The study involved laboratory and field calibration and testing of measuring flumes, pipe insert meters, weirs, and electromagnetic velocity meters as well as the development and calibration of pneumatic bubbler and pressure transducer head-measuring systems. Tracer dilution and acoustic-flowmeter measurements were used in field verification tests. A single micrologger was used to record data from all the instruments and also to activate on command the electromagnetic velocity meter and tracer dilution systems.

  4. COMPUTER TOOLS FOR SANITARY SEWER SYSTEM CAPACITY ANALYSIS AND PLANNING

    EPA Science Inventory

    Rainfall-derived infiltration and inflow (RDII) into sanitary sewer systems has long been recognized as a major source of operating problems, causing poor performance of many sewer systems. RDII is the main cause of SSOs to customer basements, streets, or nearby streams and can a...

  5. 40 CFR 35.927 - Sewer system evaluation and rehabilitation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... environmental factors. (b) A sewer system evaluation will generally be used to determine whether or not... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Sewer system evaluation and rehabilitation. 35.927 Section 35.927 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND...

  6. Characterization of Washoff Behavior of In-Sewer Deposits in Combined Sewer Systems.

    PubMed

    Kim, WeonJae; Furumai, Hiroaki

    2016-06-01

    In-sewer deposits in combined sewer systems (CSSs) are closely related with the behavior of first foul flush and combined sewer overflows. The artificial flushing experiment separating the washoff of in-sewer deposits from the inflow of surface pollutants was carried out to simulate first foul flush in a CSS. The washoff behaviors of each pollutant including chemical pollutants, bacterial indicators, and enteric viruses were intensively investigated. By using several morphological analyses, some of which were suggested through this study, the characteristics of first foul flush were examined. As a result, the washoff behaviors of each pollutant were characterized according to their (i) event load ratios (ELRs), (ii) time-series concentration and load curves, (iii) concentration vs. flow rate curves, and (iv) dimensionless runoff concentrations (DRCs). The first foul flush patterns of each parameter were categorized into 3 typical groups: the strong-, partial-, and no first foul flush group. The order of these groups signifies their different physicochemical properties of in-sewer deposits in CSSs, their strength of first foul flush phenomena, and the washoff priority as well. PMID:27225785

  7. First flush in a combined sewer system.

    PubMed

    Barco, Janet; Papiri, Sergio; Stenstrom, Michael K

    2008-03-01

    Pollutant first flush was examined in an urban catchment with area of 12.7 ha and drained by a combined sewer system located in northern Italy. A total of 23 rainfall-runoff events were monitored and 281 samples were analyzed. The selected quality parameters were biochemical oxygen demand, chemical oxygen demand, suspended solids, settleable solids, total phosphorus, total nitrogen, ammonium nitrogen, lead, and zinc, specific conductivity and hydrocarbons. A subset of representative storms was selected for first flush analysis. The catchment presented a strong first flush for almost all storms and most constituents. The analysis shows that treating the maximum amount of the early part of the runoff is a better strategy than treating a constant flow rate. Best management practices that can treat or store the first runoff are favored in this kind of system for these water quality parameters. PMID:18191441

  8. HYDRAULIC CHARACTERISTICS OF SEWER SEDIMENT GATE FLUSHING TANKS: LABORATORY FLUME STUDIES

    EPA Science Inventory

    The objective of this study was to test the performance of gate flushing tanks, simulated in a laboratory flume, to remove sediments from combined sewers and storage tanks. A significant amount of sediment/debris/sludge may accumulate at the bottom of a sewer during dry weather o...

  9. HYDRAULIC CHARACTERISTICS OF SEWER SEDIMENT GATE-FLUSHING TANKS: LABORATORY FLUME STUDIES

    EPA Science Inventory

    The objective of this study was to test the performance of gate-flushing tanks, simulated in a laboratory flume, to remove sediments from combined sewers and storage tanks. A significant amount of sediment/debris/sludge may accumulate at the bottom of a sewer during dry weather o...

  10. Use of sanitary sewers as wastewater pre-treatment systems

    SciTech Connect

    Warith, M.A.; Kennedy, K.; Reitsma, R.

    1998-12-31

    As wastewater travels through a sewer system it undergoes changes in composition. The changes in composition may be caused by chemical, physical and/or biological processes. At present engineers do not take into consideration the impacts of these processes on the wastewater quality when designing wastewater treatment systems. However, the impact of these processes on the chemical oxygen demand, biochemical oxygen demand, nitrogen and phosphorus content of the wastewater can be significant. In the case of the biological processes, microorganisms present in the water as it travels through the sewer system are similar to those found in an activated sludge process. Given that the microorganism population and the hydraulic retention time often resembles that of an activated sludge process, it would seem only reasonable to look further into the possibility of using sewers as wastewater treatment systems. Furthermore, the plug flow regime of a sanitary sewer is inherently beneficial in terms of wastewater treatment as it is not subject to short-circuiting. The first part of this paper provides a technical review of the processes which take place in a sewer system and the resulting degradation of some of the more significant substances found in wastewater. The contribution of both the suspended biomass and the attached biomass to the degradation of substrate is also examined. The second part of this paper examines the use of the Toxchem computer model to predict the processes which are taking place in the sewer under a variety of conditions. The goal being to determine the magnitude of the degradation of substrate and dissolved oxygen depletion in a sewer system. In obtaining a better understanding of the processes that are taking place in sewer systems, engineers will be able to more accurately predict the degradation of substrates in sanitary sewer systems. This will result in a reduction in the size of wastewater treatment facilities (WWTFs).

  11. SANITARY SEWER SYSTEMS - LAND APPLICATION AREAS, NEUSE RIVER WATERSHED, NC

    EPA Science Inventory

    The North Carolina Rural Economic Development Center (NCREDC) in conjunction with Hobbs, Upchurch & Associates developed the digital Sewer system land applications as mapped by individual system owners as required by contract. The data collected will facilitate planning, siting a...

  12. SANITARY SEWER SYSTEMS - DISCHARGES, NEUSE RIVER WATERSHED, NC

    EPA Science Inventory

    The North Carolina Rural Economic Development Center (NCREDC) in conjunction with Hobbs, Upchurch & Associates developed the digital Sewer system discharges as mapped by individual system owners as required by contract. The data collected will facilitate planning, siting and impa...

  13. Factors That Influence Properties of FOG Deposits and Their Formation in Sewer Collection Systems.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Understanding the formation of Fat, Oil, and Grease (FOG) deposits in sewer systems is critical to the sustainability of sewer collection systems since they have been implicated in causing sewerage blockages, which eventually lead to sanitary sewer overflows (SSOs). Recently, FOG deposits in sewer ...

  14. Automatic Vacuum Flushing Technology for Combined Sewer Solids: Laboratory Testing and Proposed Improvements (WERF Report INFR7SG09)

    EPA Science Inventory

    This research study included an extensive literature review on existing sewer sediment flushing technologies. An innovative vacuum flush system previously developed by the U.S. EPA was tested under laboratory conditions. The tests revealed a strong correlation between the strengt...

  15. Developments in a methodology for the design of engineered invert traps in combined sewer systems.

    PubMed

    Buxton, A; Tait, S; Stovin, V; Saul, A

    2002-01-01

    Sediments within sewers can have a significant effect on the operation of the sewer system and on the surrounding natural and urban environment. One possible method for the management of sewer sediments is the use of slotted invert traps. Although invert traps can be used to selectively trap only inorganic bedload material, little is known with regard to the design of these structures. This paper presents results from a laboratory investigation comparing the trapping performance of three slot size configurations of a laboratory-scale invert trap. The paper also presents comparative results from a two-dimensional computational model utilising stochastic particle tracking. This investigation shows that particle tracking consistently over-predicts sediment retention efficiencies observed within the laboratory model. PMID:11989888

  16. THE CONSTRUCTION, TECHNICAL EVALUATION, AND FRICTIONAL DETERMINATION OF AN ALUMINUM STORM SEWER SYSTEM

    EPA Science Inventory

    The program consisted of analysis of the effect upon the quantity of sewerage flows in a portion of the existing combined system as a result of the construction of a demonstration aluminum storm sewer system, laboratory testing of flow characteristics of aluminum pipe, design and...

  17. SEWER SYSTEM EVALUATION, REHABILITATION AND NEW CONSTRUCTION. A MANUAL OF PRACTICE

    EPA Science Inventory

    This Manual of Practice has been prepared for use by local authorities and consulting engineers for the investigation of sewer systems for infiltration/inflow. This Manual discusses three areas: sewer system evaluation, sewer rehabilitation, and design of new systems to minimize ...

  18. 40 CFR 35.2208 - Adoption of sewer use ordinance and user charge system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Adoption of sewer use ordinance and user charge system. 35.2208 Section 35.2208 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 35.2208 Adoption of sewer use ordinance and user charge system. The grantee shall adopt its sewer...

  19. 40 CFR 35.2208 - Adoption of sewer use ordinance and user charge system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Adoption of sewer use ordinance and user charge system. 35.2208 Section 35.2208 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 35.2208 Adoption of sewer use ordinance and user charge system. The grantee shall adopt its sewer...

  20. 40 CFR 35.2208 - Adoption of sewer use ordinance and user charge system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Adoption of sewer use ordinance and user charge system. 35.2208 Section 35.2208 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... § 35.2208 Adoption of sewer use ordinance and user charge system. The grantee shall adopt its sewer...

  1. DEMONSTRATE REAL TIME AUTOMATIC CONTROL OF COMBINED SEWER SYSTEMS

    EPA Science Inventory

    The primary objective of this study was to develop a real time automatic control model that could be used in connection with a combined sewer system to minimize overflows during storms. The model was applied to the North Shore Outfall Consolidation Project in San Francisco. This ...

  2. 40 CFR 35.927 - Sewer system evaluation and rehabilitation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... rehabilitation. 35.927 Section 35.927 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER... § 35.927 Sewer system evaluation and rehabilitation. (a) All applicants for step 2 or step 3 grant... evaluation survey and, if appropriate, a program, including an estimate of costs, for rehabilitation of...

  3. 40 CFR 35.927 - Sewer system evaluation and rehabilitation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... rehabilitation. 35.927 Section 35.927 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER... § 35.927 Sewer system evaluation and rehabilitation. (a) All applicants for step 2 or step 3 grant... evaluation survey and, if appropriate, a program, including an estimate of costs, for rehabilitation of...

  4. 40 CFR 35.927 - Sewer system evaluation and rehabilitation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... rehabilitation. 35.927 Section 35.927 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER... § 35.927 Sewer system evaluation and rehabilitation. (a) All applicants for step 2 or step 3 grant... evaluation survey and, if appropriate, a program, including an estimate of costs, for rehabilitation of...

  5. LAWRENCE AVENUE UNDERFLOW SEWER SYSTEM: MONITORING AND EVALUATION

    EPA Science Inventory

    A new and bold concept in design of urban drainage systems was developed as a step forward in the solution of combined sewer overflow problems. A deep tunnel in bed rock about 200 to 250 feet (61 to 76 m) below the surface was designed and constructed for the Lawrence Avenue drai...

  6. 40 CFR 35.927-2 - Sewer system evaluation survey.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FEDERAL ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works-Clean Water Act... transportation and treatment for each defined source of infiltration/inflow. (b) A report shall summarize the... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Sewer system evaluation survey....

  7. EXFILTRATION IN SANITARY SEWER SYSTEMS IN THE U.S.

    EPA Science Inventory

    Many municipalities throughout the US have sewerage systems (separate and combined) that may experience exfiltration of untreated wastewater. This study was conducted to focus on the magnitude of the exfiltration problem from sewer pipes on a national basis. The method for estima...

  8. EXFILTRATION IN SEWER SYSTEMS: IS IT A NATIONAL PROBLEM?

    EPA Science Inventory

    Many municipalities throughout the US have sewerage systems (separate and combined) that may experience exfiltration of untreated wastewater. This study was conducted to focus on the magnitude of the exfiltration problem from sewer pipes on a national basis. The method for estima...

  9. Using data from monitoring combined sewer overflows to assess, improve, and maintain combined sewer systems.

    PubMed

    Montserrat, A; Bosch, Ll; Kiser, M A; Poch, M; Corominas, Ll

    2015-02-01

    Using low-cost sensors, data can be collected on the occurrence and duration of overflows in each combined sewer overflow (CSO) structure in a combined sewer system (CSS). The collection and analysis of real data can be used to assess, improve, and maintain CSSs in order to reduce the number and impact of overflows. The objective of this study was to develop a methodology to evaluate the performance of CSSs using low-cost monitoring. This methodology includes (1) assessing the capacity of a CSS using overflow duration and rain volume data, (2) characterizing the performance of CSO structures with statistics, (3) evaluating the compliance of a CSS with government guidelines, and (4) generating decision tree models to provide support to managers for making decisions about system maintenance. The methodology is demonstrated with a case study of a CSS in La Garriga, Spain. The rain volume breaking point from which CSO structures started to overflow ranged from 0.6 mm to 2.8 mm. The structures with the best and worst performance in terms of overflow (overflow probability, order, duration and CSO ranking) were characterized. Most of the obtained decision trees to predict overflows from rain data had accuracies ranging from 70% to 83%. The results obtained from the proposed methodology can greatly support managers and engineers dealing with real-world problems, improvements, and maintenance of CSSs. PMID:25461106

  10. Life cycle assessment of urban wastewater systems: Quantifying the relative contribution of sewer systems.

    PubMed

    Risch, Eva; Gutierrez, Oriol; Roux, Philippe; Boutin, Catherine; Corominas, Lluís

    2015-06-15

    This study aims to propose a holistic, life cycle assessment (LCA) of urban wastewater systems (UWS) based on a comprehensive inventory including detailed construction and operation of sewer systems and wastewater treatment plants (WWTPs). For the first time, the inventory of sewers infrastructure construction includes piping materials and aggregates, manholes, connections, civil works and road rehabilitation. The operation stage comprises energy consumption in pumping stations together with air emissions of methane and hydrogen sulphide, and water emissions from sewer leaks. Using a real case study, this LCA aims to quantify the contributions of sewer systems to the total environmental impacts of the UWS. The results show that the construction of sewer infrastructures has an environmental impact (on half of the 18 studied impact categories) larger than both the construction and operation of the WWTP. This study highlights the importance of including the construction and operation of sewer systems in the environmental assessment of centralised versus decentralised options for UWS. PMID:25839834

  11. Risk assessment of sewer condition using artificial intelligence tools: application to the SANEST sewer system.

    PubMed

    Sousa, V; Matos, J P; Almeida, N; Saldanha Matos, J

    2014-01-01

    Operation, maintenance and rehabilitation comprise the main concerns of wastewater infrastructure asset management. Given the nature of the service provided by a wastewater system and the characteristics of the supporting infrastructure, technical issues are relevant to support asset management decisions. In particular, in densely urbanized areas served by large, complex and aging sewer networks, the sustainability of the infrastructures largely depends on the implementation of an efficient asset management system. The efficiency of such a system may be enhanced with technical decision support tools. This paper describes the role of artificial intelligence tools such as artificial neural networks and support vector machines for assisting the planning of operation and maintenance activities of wastewater infrastructures. A case study of the application of this type of tool to the wastewater infrastructures of Sistema de Saneamento da Costa do Estoril is presented. PMID:24552736

  12. Model adaptation in a central controller for a sewer system

    NASA Astrophysics Data System (ADS)

    van Nooijen, Ronald; Kolechkina, Alla; Mol, Bart

    2013-04-01

    For small sewer systems that combine foul water and storm water sewer functions in flat terrain, central control of the sewer system may have problems during dry weather. These systems are a combination of local gravity flow networks connected by pumps. Under those conditions the level in the wet well (local storage at the pumping station) should be kept below the entrance pipe but above the top of the intake of the pump. The pumps are dimensioned to cope with the combined flow of foul water and precipitation run off so their capacity is relatively large when compared wityh the volume available in the wet well. Under local control this is not a major problem because the effective controller time step is very short. For central control the control time step can become a problem. Especially when there is uncertainty about the relation between level and volume in the wet well. In this paper we describe a way to dynamically adapt the level to volume relation based on dry weather behaviour. This is important because a better estimate of this volume will reduce the number of on/off cycles for the pumps. It will also allow detection and correction for changes in pump performance due to aging.

  13. Control of sulfide and methane production in anaerobic sewer systems by means of Downstream Nitrite Dosage.

    PubMed

    Auguet, Olga; Pijuan, Maite; Borrego, Carles M; Gutierrez, Oriol

    2016-04-15

    Bioproduction of hydrogen sulfide (H2S) and methane (CH4) under anaerobic conditions in sewer pipes causes detrimental effects on both sewer facilities and surrounding environment. Among the strategies used to mitigate the production of both compounds, the addition of nitrite (NO2(-)) has shown a greater long-term inhibitory effect compared with other oxidants such as nitrate or oxygen. The aim of this study was to determine the effectiveness of a new method, the Downstream Nitrite Dosage strategy (DNO2D), to control H2S and CH4 emissions in sewers. Treatment effectiveness was assessed on H2S and CH4 abatement on the effluent of a laboratory sewer pilot plant that mimics a full-scale anaerobic rising sewer. The experiment was divided in three different periods: system setup (period 1), nitrite addition (period 2) and system recovery (period 3). Different process and molecular methods were combined to investigate the impact of NO2(-) addition on H2S and CH4 production. Results showed that H2S load was reduced completely during nitrite addition when compared to period 1 due to H2S oxidation but increased immediately after nitrite addition stopped. The H2S overproduction during recovery period was associated with the bacterial reduction of different sulfur species (elemental sulfur/thiosulfate/sulfite) accumulated within the sewer biofilm matrix. Oxidation of CH4 was also detected during period 2 but, contrary to sulfide production, re-establishment of methanogenesis was not immediate after stopping nitrite dosing. The analysis of bulk and active microbial communities along experimental treatment showed compositional changes that agreed with the observed dynamics of chemical processes. Results of this study show that DNO2D strategy could significantly reduce H2S and CH4 emissions from sewers during the addition period but also suggest that microbial agents involved in such processes show a high resilience towards chemical stressors, thus favoring the re

  14. Benchmarking laboratory observation uncertainty for in-pipe storm sewer discharge measurements

    NASA Astrophysics Data System (ADS)

    Aguilar, Marcus F.; McDonald, Walter M.; Dymond, Randel L.

    2016-03-01

    The uncertainty associated with discharge measurement in storm sewer systems is of fundamental importance for hydrologic/hydraulic model calibration and pollutant load estimation, although it is difficult to determine as field benchmarks are generally impractical. This study benchmarks discharge uncertainty in several commonly used sensors by laboratory flume testing with and without a woody debris model. The sensors are then installed in a field location where laboratory benchmarked uncertainty is applied to field measurements. Combined depth and velocity uncertainty from the laboratory ranged from ±0.207-0.710 in., and ±0.176-0.631 fps respectively, and when propagated and applied to discharge estimation in the field, resulted in field discharge uncertainties of between 13% and 256% of the observation. Average daily volume calculation based on these observations had uncertainties of between 58% and 99% of the estimated value, and the uncertainty bounds of storm flow volume and peak flow for nine storm events constituted between 31-84%, and 13-48% of the estimated value respectively. Subsequently, the implications of these observational uncertainties for stormwater best-management practice evaluation, hydrologic modeling, and Total Maximum Daily Load development are considered.

  15. Case study of a fast propagating bacteriogenically induced concrete corrosion in an Austrian sewer system

    NASA Astrophysics Data System (ADS)

    Grengg, Cyrill; Mittermayr, Florian; Baldermann, Andre; Böttcher, Michael; Leis, Albrecht; Koraimann, Günther; Dietzel, Martin

    2015-04-01

    Reaction mechanisms leading to microbially induced concrete corrosion (MICC) are highly complex and often not fully understood. The aim of the present case study is to contribute to a deeper understanding of reaction paths, environmental controls, and corrosion rates related to MICC in a modern Austrian sewer system by introducing an advanced multi proxy approach that comprises gaseous, hydro-geochemical, bacteriological, and mineralogical analyses. Various crucial parameters for detecting alteration features were determined in the field and laboratory, including (i) temperature, pH, alkalinity, chemical compositions of the solutions, (ii) chemical and mineralogical composition of solids, (iii) bacterial analysis, and (iv) concentrations of gaseous H2S, CH4 and CO2 within the sewer pipe atmosphere. An overview of the field site and analytical results, focusing on reaction mechanisms causing the corrosion, as well as possible remediation strategies will be presented.

  16. Association between Gastrointestinal Illness and Precipitation in Areas Impacted by Combined Sewer Systems: Utilizing a Distributed Lag Model

    EPA Science Inventory

    Combined sewer systems collect rainwater runoff, sewage, and industrial wastewater for transit to treatment facilities. With heavy precipitation, volumes can exceed capacity of treatment facilities, and wastewater discharges directly to receiving waters. These combined sewer over...

  17. Design and performance evaluation of a simplified dynamic model for combined sewer overflows in pumped sewer systems

    NASA Astrophysics Data System (ADS)

    van Daal-Rombouts, Petra; Sun, Siao; Langeveld, Jeroen; Bertrand-Krajewski, Jean-Luc; Clemens, François

    2016-07-01

    Optimisation or real time control (RTC) studies in wastewater systems increasingly require rapid simulations of sewer systems in extensive catchments. To reduce the simulation time calibrated simplified models are applied, with the performance generally based on the goodness of fit of the calibration. In this research the performance of three simplified and a full hydrodynamic (FH) model for two catchments are compared based on the correct determination of CSO event occurrences and of the total discharged volumes to the surface water. Simplified model M1 consists of a rainfall runoff outflow (RRO) model only. M2 combines the RRO model with a static reservoir model for the sewer behaviour. M3 comprises the RRO model and a dynamic reservoir model. The dynamic reservoir characteristics were derived from FH model simulations. It was found that M2 and M3 are able to describe the sewer behaviour of the catchments, contrary to M1. The preferred model structure depends on the quality of the information (geometrical database and monitoring data) available for the design and calibration of the model. Finally, calibrated simplified models are shown to be preferable to uncalibrated FH models when performing optimisation or RTC studies.

  18. Laboratory investigation on the performances of baffles for the capture of sewer floatables.

    PubMed

    Campisano, A

    2009-01-01

    The use of baffles in sewer systems enables the capture of floatables, which could be responsible for both malfunctioning of water treatment plants and aesthetic pollution of receiving bodies when discharges through combined sewer overflow devices occur. An experimental contribution to the understanding of capturing processes of floatable elements by means of baffle devices is presented in this paper. Experiments were carried out using different baffle configurations. The limit equilibrium conditions of various types of floatables, i.e the condition beyond which upstream intercepted floatables start to escape the baffle, were investigated. The dimensional analysis was used in order to generalize the results of the experiments and to compare the capturing performances of analysed baffle configurations. PMID:19587399

  19. Real-time control of sewer systems using turbidity measurements.

    PubMed

    Lacour, C; Schütze, M

    2011-01-01

    Real-time control (RTC) of urban drainage systems has been proven useful as a means to reduce pollution by combined sewer overflow discharges. So far, RTC has been investigated mainly with a sole focus on water quantity aspects. However, as measurement techniques for pollution of wastewater are advancing, pollution-based RTC might be of increasing interest. For example, turbidity data sets from an extensive measurement programme in two Paris catchments allow a detailed investigation of the benefits of using pollution-based data for RTC. This paper exemplifies this, comparing pollution-based RTC with flow-based RTC. Results suggest that pollution-based RTC indeed has some potential, particularly when measurements of water-quality characteristics are readily available. PMID:22049758

  20. Factors that influence properties of FOG deposits and their formation in sewer collection systems.

    PubMed

    Iasmin, Mahbuba; Dean, Lisa O; Lappi, Simon E; Ducoste, Joel J

    2014-02-01

    Understanding the formation of Fat, Oil, and Grease (FOG) deposits in sewer systems is critical to the sustainability of sewer collection systems since they have been implicated in causing sewerage blockages that leads to sanitary sewer overflows (SSOs). Recently, FOG deposits in sewer systems displayed strong similarities with calcium-based fatty acid salts as a result of a saponification reaction. The objective of this study was to quantify the factors that may affect the formation of FOG deposits and their chemical and rheological properties. These factors included the types of fats used in FSEs, environmental conditions (i.e. pH and temperature), and the source of calcium in sewer systems. The results of this study showed that calcium content in the calcium based salts seemed to depend on the solubility limit of the calcium source and influenced by pH and temperature conditions. The fatty acid profile of the calcium-based fatty acid salts produced under alkali driven hydrolysis were identical to the profile of the fat source and did not match the profile of field FOG deposits, which displayed a high fraction of palmitic, a long chain saturated fatty acid. It is hypothesized that selective microbial metabolism of fats and/or biologically induced hydrogenation may contribute to the FOG deposit makeup in sewer system. Therefore, selective removal of palmitic in pretreatment processes may be necessary prior to the discharge of FSE wastes into the sewer collection system. PMID:24317022

  1. TYPE A SERVICE AREAS IN THE SANITARY SEWER SYSTEMS, NEUSE RIVER WATERHSED, NC

    EPA Science Inventory

    The North Carolina Rural Economic Development Center (NCREDC) in conjunction with Hobbs, Upchurch & Associates developed the digital Type ``A' Sewer Systems as mapped by individual system owners as required by contract. The data collected will facilitate planning, siting and impa...

  2. TYPE P SERVICE AREAS IN THE SANITARY SEWER SYSTEMS, NEUSE RIVER WATERSHED, NC

    EPA Science Inventory

    The North Carolina Rural Economic Development Center (NCREDC) in conjunction with Hobbs, Upchurch & Associates developed the digital ``P' Sewer System as mapped by individual system owners as required by contract. The data collected will facilitate planning, siting and impact ana...

  3. Optimization of the central automatic control of a small Dutch sewer system

    NASA Astrophysics Data System (ADS)

    Kolechkina, A. G.; Hoes, O. A. C.

    2012-04-01

    A sewer control system was developed in the context of a subsidized project aiming at improvement of surface water quality by control of sewer systems and surface water systems. The project was coordinated by the local water board, "Waterschap Hollandse Delta". Other participants were Delft University of Technology, Deltares and the municipalities Strijen, Cromstrijen, Westmaas, Oud Beijerland and Piershil. As part of the project there were two pilot implementations where a central automatic controller was coupled to the existing SCADA system. For these two pilots the system is now operational. A Dutch urban area in the western part of the Netherlands is usually part of a polder, which is effectively an artificially drained catchment. The urban area itself is split into small subcatchments that manage runoff in different ways. In all cases a large fraction goes into the natural hydrological cycle, but, depending on the design of the local sewer system, a larger or smaller part finds its way into the sewer system. Proper control of this flow is necessary to control surface water quality and to avoid health risks from flow from the sewer into the streets. At each time step the controller switches pumps to distribute the remaining water in the system at the end of the time step over the different subcatchments. The distribution is created based on expert judgment of the relative vulnerability and subcatchment sewer system water quality. It is implemented in terms curves of total system stored volume versus subcatchment stored volume. We describe the process of the adaptation of a controller to two different sewer systems and the understanding of the artificial part of the catchment we gained during this process. In the process of adaptation the type of sewer system (combined foul water and storm water transport or separate foul water and storm water transport) played a major role.

  4. Condition Assessment of Wastewater Collection Systems Using the Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox

    EPA Science Inventory

    The Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox can serve as the foundation of wastewater collection system infrastructure research, among several applications, for analyzing monitored flow data to prioritize where to inspect, monitor, and to assess the performa...

  5. TREATMENT PLANTS IN THE SANITARY SEWER SYSTEMS, NEUSE RIVER WATERSHED, NC

    EPA Science Inventory

    The North Carolina Rural Economic Development Center (NCREDC) in conjunction with Hobbs, Upchurch & Associates developed the digital location and information of sewer treatment plants as mapped by individual system owners as required by contract. The data collected will facilitat...

  6. PIPE NETWORK FOR THE SANITARY SEWER SYSTEMS IN THE NEUSE RIVER WATERSHED, NC

    EPA Science Inventory

    The North Carolina Rural Economic Development Center (NCREDC) in conjunction with Hobbs, Upchurch & Associates developed the digital sewer pipe network as mapped by individual system owners as required by contract. The data collected will facilitate planning, siting and impact an...

  7. PUMPING STATIONS FOR THE SANITARY SEWER SYSTEMS IN THE NEUSE RIVER WATERSHED, NC

    EPA Science Inventory

    The North Carolina Rural Economic Development Center (NCREDC) in conjunction with Hobbs, Upchurch & Associates developed the digital location and information of sewer pumps as mapped by individual system owners as required by contract. The data collected will facilitate planning,...

  8. Separate and combined sewer systems: a long-term modelling approach.

    PubMed

    Mannina, Giorgio; Viviani, Gaspare

    2009-01-01

    Sewer systems convey mostly dry weather flow, coming from domestic and industrial sanitary sewage as well as infiltration flow, and stormwater due to meteoric precipitations. Traditionally, in urban drainage two types of sewer systems are adopted: separate and combined sewers. The former convey dry and wet weather flow separately into two different networks, while the latter convey dry and wet weather flow together. Which is the best solution in terms of cost-benefit analysis still remains a controversial subject. The present study was aimed at comparing the pollution loads discharged to receiving bodies by Wastewater Treatment Plant (WWTP) and Combined Sewer Overflow (CSO) for different kinds of sewer systems (combined and separate). To accomplish this objective, a comparison between the two systems was carried out using results from simulations of catchments characterised by different dimensions, population densities and water supply rate. The analysis was based on a parsimonious mathematical model able to simulate the sewer system as well as the WWTP during both dry and wet weather. The rain series employed for the simulations was six years long. Several pollutants, both dissolved and particulate, were modelled. The results confirmed the uncertainties in the choice of one system versus the other, emphasising the concept that case-by-case solutions have to be undertaken. Further, the compared systems showed different responses in terms of effectiveness in reducing the discharged mass to the RWB in relation to the particular pollutant taken into account. PMID:19657150

  9. Statistical evaluation of a radar rainfall system for sewer system management

    NASA Astrophysics Data System (ADS)

    Vieux, B. E.; Vieux, J. E.

    2005-09-01

    Urban areas are faced with mounting demands for managing waste and stormwater for a cleaner environment. Rainfall information is a critical component in efficient management of urban drainage systems. A major water quality impact affecting receiving waterbodies is the discharge of untreated waste and stormwater during precipitation, termed wet weather flow. Elimination or reduction of wet weather flow in metropolitan sewer districts is a major goal of environmental protection agencies and often requires considerable capital improvements. Design of these improvements requires accurate rainfall data in conjunction with monitored wastewater flow data. Characterizing the hydrologic/hydraulic performance of the sewer using distant rain gauges can cause oversizing and wasted expenditures. Advanced technology has improved our ability to measure accurately rainfall over large areas. Weather radar, when combined with rain gauge measurements, provides detailed information concerning rainfall intensities over specific watersheds. Knowing how much rain fell over contributing areas during specific periods aids in characterizing inflow and infiltration to sanitary and combined sewers, calibration of sewer system models, and in operation of predictive real-time control measures. Described herein is the design of a system for managing rainfall information for sewer system management, along with statistical analysis of 60 events from a large metropolitan sewer district. Analysis of the lower quartile rainfall events indicates that the expected average difference is 25.61%. Upper quartile rainfall events have an expected average difference of 17.25%. Rain gauge and radar accumulations are compared and evaluated in relation to specific needs of an urban application. Overall, the events analyzed agree to within ± 8% based on the median average difference between gauge and radar.

  10. Development and testing of highway storm-sewer flow measurement and recording system

    USGS Publications Warehouse

    Kilpatrick, F.A.; Kaehrle, W.R.; Hardee, Jack; Cordes, E.H.; Landers, M.N.

    1985-01-01

    A comprehensive study and development of measuring instruments and techniques for measuring all components of flow in a storm-sewer drainage system was undertaken by the U.S. Geological Survey under the sponsorship of the Federal Highway Administration. The study involved laboratory and field calibration and testing of measuring flumes, pipe insert meters, weirs, electromagnetic velocity meters as well as the development and calibration of pneumatic-bubbler pressure transducer head measuring systems. Tracer-dilution and acoustic flow meter measurements were used in field verification tests. A single micrologger was used to record data from all the above instruments as well as from a tipping-bucket rain gage and also to activate on command the electromagnetic velocity meter and tracer-dilution systems. (Author 's abstract)

  11. Fractal analysis of urban environment: land use and sewer system

    NASA Astrophysics Data System (ADS)

    Gires, A.; Ochoa Rodriguez, S.; Van Assel, J.; Bruni, G.; Murla Tulys, D.; Wang, L.; Pina, R.; Richard, J.; Ichiba, A.; Willems, P.; Tchiguirinskaia, I.; ten Veldhuis, M. C.; Schertzer, D. J. M.

    2014-12-01

    Land use distribution are usually obtained by automatic processing of satellite and airborne pictures. The complexity of the obtained patterns which are furthermore scale dependent is enhanced in urban environment. This scale dependency is even more visible in a rasterized representation where only a unique class is affected to each pixel. A parameter commonly analysed in urban hydrology is the coefficient of imperviousness, which reflects the proportion of rainfall that will be immediately active in the catchment response. This coefficient is strongly scale dependent with a rasterized representation. This complex behaviour is well grasped with the help of the scale invariant notion of fractal dimension which enables to quantify the space occupied by a geometrical set (here the impervious areas) not only at a single scale but across all scales. This fractal dimension is also compared to the ones computed on the representation of the catchments with the help of operational semi-distributed models. Fractal dimensions of the corresponding sewer systems are also computed and compared with values found in the literature for natural river networks. This methodology is tested on 7 pilot sites of the European NWE Interreg IV RainGain project located in France, Belgium, Netherlands, United-Kingdom and Portugal. Results are compared between all the case study which exhibit different physical features (slope, level of urbanisation, population density...).

  12. Characterization of microflora and transformation of organic matters in urban sewer system.

    PubMed

    Jin, Pengkang; Wang, Bin; Jiao, Ding; Sun, Guangxi; Wang, Baobao; Wang, Xiaochang C

    2015-11-01

    A study was conducted using a pilot sewer system consisting of 35 sequential sections, totalling 1200 m of gravity pipe. Urban sewage flowed into the sewer system at a constant flow rate until it reached physical and microbiological steady states. Microflora in the biofilm that attached to the inner surface along the pipe length were analysed. The organic compositions in both the liquid and gaseous phases of the sewer system were monitored. The results showed that typical fermentation bacteria, such as bacteroidetes and bacillus, were abundant in the system, indicating that the anoxic environment (DO = 0.3 mg/L) was suitable for fermentative bacterial growth. This resulted in a substantial reduction of the chemical oxygen demand (COD) along the pipe length and an increase of the biodegradable oxygen demand/chemical oxygen demand (BOD/COD) ratio from 0.68 at the beginning of the sewer system to 0.84 at the end of the sewer system; this was an indication of a transformation of organic matters from less-biodegradable to more-biodegradable products. Via molecular weight (MW) analysis, it was further identified that the larger organic molecules (MW > 10,000 Da) were transformed into products with smaller molecular weights. Regarding the fermentation products, the concentrations of the volatile fatty acids (VFAs) increased dramatically in the initial 600-m sections and then remained constant for the later sections except for the end section of the sewer; acetic acid was found to be the primary product of the VFAs. Gaseous carbon dioxide (CO2) and methane (CH4) were found to increase along the length of the sewer system, whereas the concentrations of ethanol, lactic acid, and hydrogen (H2) were high at the beginning of the sewer and then decreased in the rear sections of the sewer system. It could thus be concluded that in an urban wastewater sewer system, fermentative microflora could perform important roles in contributing to organic matter removal and

  13. Multi-objective evolutionary optimization for greywater reuse in municipal sewer systems.

    PubMed

    Penn, Roni; Friedler, Eran; Ostfeld, Avi

    2013-10-01

    Sustainable design and implementation of greywater reuse (GWR) has to achieve an optimum compromise between costs and potable water demand reduction. Studies show that GWR is an efficient tool for reducing potable water demand. This study presents a multi-objective optimization model for estimating the optimal distribution of different types of GWR homes in an existing municipal sewer system. Six types of GWR homes were examined. The model constrains the momentary wastewater (WW) velocity in the sewer pipes (which is responsible for solids movement). The objective functions in the optimization model are the total WW flow at the outlet of the neighborhoods sewer system and the cost of the on-site GWR treatment system. The optimization routing was achieved by an evolutionary multi-objective optimization coupled with hydrodynamic simulations of a representative sewer system of a neighborhood located at the coast of Israel. The two non-dominated best solutions selected were the ones having either the smallest WW flow discharged at the outlet of the neighborhood sewer system or the lowest daily cost. In both solutions most of the GWR types chosen were the types resulting with the smallest water usage. This lead to only a small difference between the two best solutions, regarding the diurnal patterns of the WW flows at the outlet of the neighborhood sewer system. However, in the upstream link a substantial difference was depicted between the diurnal patterns. This difference occurred since to the upstream links only few homes, implementing the same type of GWR, discharge their WW, and in each solution a different type of GWR was implemented in these upstream homes. To the best of our knowledge this is the first multi-objective optimization model aimed at quantitatively trading off the cost of local/onsite GW spatially distributed reuse treatments, and the total amount of WW flow discharged into the municipal sewer system under unsteady flow conditions. PMID:23932104

  14. Demonstration of Innovative Sewer System Inspection Technology: SL-RAT

    EPA Science Inventory

    The overall objective of this EPA-funded study was to demonstrate innovative sewer line assessment technologies that are designed for rapid deployment using portable equipment. This study focused on demonstration of technologies that are suitable for smaller diameter pipes (less ...

  15. Coordinated management of combined sewer overflows by means of environmental decision support systems.

    PubMed

    Murla, Damian; Gutierrez, Oriol; Martinez, Montse; Suñer, David; Malgrat, Pere; Poch, Manel

    2016-04-15

    During heavy rainfall, the capacity of sewer systems and wastewater treatment plants may be surcharged producing uncontrolled wastewater discharges and a depletion of the environmental quality. Therefore there is a need of advanced management tools to tackle with these complex problems. In this paper an environmental decision support system (EDSS), based on the integration of mathematical modeling and knowledge-based systems, has been developed for the coordinated management of urban wastewater systems (UWS) to control and minimize uncontrolled wastewater spills. Effectiveness of the EDSS has been tested in a specially designed virtual UWS, including two sewers systems, two WWTP and one river subjected to typical Mediterranean rain conditions. Results show that sewer systems, retention tanks and wastewater treatment plants improve their performance under wet weather conditions and that EDSS can be very effective tools to improve the management and prevent the system from possible uncontrolled wastewater discharges. PMID:26820929

  16. Groundwater infiltration, surface water inflow and sewerage exfiltration considering hydrodynamic conditions in sewer systems.

    PubMed

    Karpf, Christian; Hoeft, Stefan; Scheffer, Claudia; Fuchs, Lothar; Krebs, Peter

    2011-01-01

    Sewer systems are closely interlinked with groundwater and surface water. Due to leaks and regular openings in the sewer system (e.g. combined sewer overflow structures with sometimes reverse pressure conditions), groundwater infiltration and surface water inflow as well as exfiltration of sewage take place and cannot be avoided. In the paper a new hydrodynamic sewer network modelling approach will be presented, which includes--besides precipitation--hydrographs of groundwater and surface water as essential boundary conditions. The concept of the modelling approach and the models to describe the infiltration, inflow and exfiltration fluxes are described. The model application to the sewerage system of the City of Dresden during a flood event with complex conditions shows that the processes of infiltration, exfiltration and surface water inflows can be described with a higher reliability and accuracy, showing that surface water inflow causes a pronounced system reaction. Further, according to the simulation results, a high sensitivity of exfiltration rates on the in-sewer water levels and a relatively low influence of the dynamic conditions on the infiltration rates were found. PMID:21902021

  17. Spatial and temporal variability of bacterial communities within a combined sewer system.

    PubMed

    Jensen, Henriette Stokbro; Sekar, Raju; Shepherd, Will J; Osborn, Andrew M; Tait, Simon; Biggs, Catherine A

    2016-08-01

    This study describes the temporal and spatial variability of bacterial communities within a combined sewer system in England. Sampling was conducted over 9 months in a sewer system with intensive monitoring of hydraulic conditions. The bacterial communities were characterized by 16S rRNA gene-targeted terminal restriction fragment length polymorphism analysis. These data were related to the hydraulic data as well as the sample type, location, and time. Temporal and spatial variation was observed between and within wastewater communities and biofilm communities. The bacterial communities in biofilm were distinctly different from the communities in wastewater and exhibited greater spatial variation, while the wastewater communities exhibited variability between different months of sampling. This study highlights the variation of bacterial communities between biofilm and wastewater, and has shown both spatial and temporal variations in bacterial communities in combined sewers. The temporal variation is of interest for in-sewer processes, for example, sewer odor generation, as field measurements for these processes are often carried out over short durations and may therefore not capture the influence of this temporal variation of the bacterial communities. PMID:27063341

  18. 40 CFR 35.2122 - Approval of user charge system and proposed sewer use ordinance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Approval of user charge system and... Treatment Works § 35.2122 Approval of user charge system and proposed sewer use ordinance. If the project is... obtain the Regional Administrator's approval of its user charge system (§ 35.2140) and proposed...

  19. OVERVIEW OF THE U.S. ENVIRONMENTAL PROTECTION AGENCY'S STORM AND COMBINED SEWER PROGRAM COLLECTION SYSTEM RESEARCH

    EPA Science Inventory

    A state-of-the-art and assessment of the USEPA's Storm and Combined Sewer Program collection system research pertaining to management alternatives for wet- and dry-weather wastewater transport and interception is presented. These include: maintenance; catchbasins; new sewer desig...

  20. Extreme Precipitation and Emergency Room Visits for Gastrointestinal Illness in Areas With and Without Combined Sewer Systems: An Analysis of Massachusetts Data, 2003-2007

    EPA Science Inventory

    Background: Combined sewer overflows (CSOs) occur in combined sewer systems when sewage and stormwater runoff discharge into waterbodies potentially contaminating water sources. CSOs are often caused by heavy precipitation and are expected to increase with increasing extreme pre...

  1. Getting the max out of past investments in sewer systems by using RTC

    NASA Astrophysics Data System (ADS)

    van Heeringen, Klaas-Jan; van Loenen, Arnejan; van Leeuwen, Elgard; van Nooyen, Ronald; van Velzen, Edwin

    2013-04-01

    We discuss a project in which water quality improvements of surface waters are realised by replacing local control of sewer pumps by central control. The paper focuses on the effect of implementation of real-time control in a specific group of sewer systems in the Netherlands, namely the systems that have been upgraded in the past as a result of new standards. Since these upgrades were often solely based on straightforward so-called upgrade rules and theoretical simulation studies, a thorough analysis of the real life systems by means of measurements to study the system performance or calibrate the models was rarely performed. As a result the potential of many systems is not used to the full. Because of the structure of these systems, (suboptimal distribution of storage and pump capacities) the effect of RTC is much larger than would be expected in the case of a completely new design. But because of implementation of RTC, it was required to do this thorough analysis of the sewer systems. This study focuses on the estimation of this additional RTC effect. RTC both improves the return on past investments and provides the benefits of central information and control. The project considered the sewer systems in the Hoeksche Waard area, south of Rotterdam, the Netherlands. Three RTC improvements have been implemented whereby the abovementioned effects have been achieved. There were many technological challenges to overcome during the project, such as relatively high rates of data communication needed for in systems with relatively small storage capacities, connections to multiple types of SCADA and information systems, the integration of meteo forecasts and the RTC backup architecture based on the use of multiple control modes. The potential of the RTC has been proved as such in the HoekscheWaard area. On the basis of this implementation in a typical dutch sewer system, we expect RTC to have the same potential at a national scale.

  2. Measuring Flow Reductions in a Combined Sewer System using Green Infrastructure - abstract

    EPA Science Inventory

    In 2009, the Louisville and Jefferson County Metropolitan Sewer District (MSD) submitted an Integrated Overflow Abatement Plan (IOAP) addressing combined sewer overflows (CSOs) and sanitary sewer overflows. Many of the solutions involve gray infrastructure, such as large, end-of...

  3. An Automated Intelligent Fault Detection System for Inspection of Sewer Pipes

    NASA Astrophysics Data System (ADS)

    Ahrary, Alireza; Kawamura, Yoshinori; Ishikawa, Masumi

    Automation is an important issue in industry, particularly in inspection of underground facilities. This paper describes an intelligent system for automatically detecting faulty areas in a sewer pipe system based on images. The proposed system can detect various types of faults and be implemented in a real time system. The present paper describes system architecture and focuses on two modules of image preprocessing and detection of faulty areas. The proposed approach demonstrates high performance in detection and reduction of time and cost.

  4. REPORT ON COMPUTER TOOLS FOR PREDICTING RAINFALL DERIVED INFILTRATION/INFLOW IN SANITARY SEWER SYSTEMS AND SWMM MODELING FOR SSO CONTROL PLANNING

    EPA Science Inventory

    The Nation's sanitary-sewer infrastructure is aging, with some sewers dating back over 100 years. Nationwide, there are more than 19,500 municipal sanitary-sewer collection systems serving an estimated 150 million people and about 40,000 SSO events per year. Because of concerns o...

  5. Sewer Maintenance Manual.

    ERIC Educational Resources Information Center

    Ontario Ministry of the Environment, Toronto.

    Outlined are practices and procedures that should be followed in order to protect and fully realize the benefits of sewer systems and also to maximize service and minimize inconveniences to the public. Written in practical terms, the manual is designed to be of immediate use to municipal employees and others involved in sewer maintenance…

  6. Transformation of AgCl nanoparticles in a sewer system--A field study.

    PubMed

    Kaegi, Ralf; Voegelin, Andreas; Sinnet, Brian; Zuleeg, Steffen; Siegrist, Hansruedi; Burkhardt, Michael

    2015-12-01

    Silver nanoparticles (Ag-NP) are increasingly used in consumer products and their release during the use phase may negatively affect aquatic ecosystems. Research efforts, so far, have mainly addressed the application and use of metallic Ag(0)-NP. However, as shown by recent studies on the release of Ag from textiles, other forms of Ag, especially silver chloride (AgCl), are released in much larger quantities than metallic Ag(0). In this field study, we report the release of AgCl-NP from a point source (industrial laundry that applied AgCl-NP during a piloting phase over a period of several months to protect textiles from bacterial regrowth) to the public sewer system and investigate the transformation of Ag during its transport in the sewer system and in the municipal wastewater treatment plant (WWTP). During the study period, the laundry discharged ~85 g of Ag per day, which dominated the Ag loads in the sewer system from the respective catchment (72-95%) and the Ag in the digested WWTP sludge (67%). Combined results from electron microscopy and X-ray absorption spectroscopy revealed that the Ag discharged from the laundry to the sewer consisted of about one third AgCl and two thirds Ag2S, both forms primarily occurring as nanoparticles with diameters<100 nm. During the 800 m transport in the sewer channel to the nearby WWTP, corresponding to a travel time of ~30 min, the remaining AgCl was transformed into nanoparticulate Ag2S. Ag2S-NP also dominated the Ag speciation in the digested sludge. In line with results from earlier studies, the very low Ag concentrations measured in the effluent of the WWTP (<0.5 μg L(-1)) confirmed the very high removal efficiency of Ag from the wastewater stream (>95%). PMID:25582606

  7. A review of sulfide emissions in sewer networks: overall approach and systemic modelling.

    PubMed

    Carrera, Lucie; Springer, Fanny; Lipeme-Kouyi, Gislain; Buffiere, Pierre

    2016-01-01

    The problems related to hydrogen sulfide in terms of deterioration of sewer networks, toxicity and odor nuisance have become very clear to the network stakeholders and the public. The hydraulic and (bio)chemical phenomena and parameters controlling sulfide formation, emission and their incidences in sewer networks are very complex. Recent research studies have been developed in gravity and pressure sewers and some transfer models have been published. Nevertheless, the models do not take into account all the physical phenomena influencing the emission process. After summing up the main scientific knowledge concerning the production, oxidation, transfer and emission processes, the present review includes: (i) a synthetic analysis of sulfide and hydrogen sulfide emission models in sewer networks, (ii) an estimation of their limit, (iii) perspectives to improve the modelling approach. It shows that sulfide formation and uptake models still need refinements especially for some phenomena such as liquid to gas mass transfer. Transfer models that have been published so far are purposely simplified and valid for simple systems. More efforts have to be undertaken in order to better understand the mechanisms and the dynamics of hydrogen sulfide production and emission in real conditions. PMID:27003062

  8. Nutrient Input and Dynamics in a Restored Urban Stream Impacted by Mixed Sewer Systems

    NASA Astrophysics Data System (ADS)

    Sikora, M. T.; Elliott, E. M.; Bain, D. J.

    2008-12-01

    Export and retention of nutrients in urban watersheds remains poorly constrained. Available data is often based on studies conducted on large-scale, forested and mixed use watersheds rather than small urbanized systems. Additionally, there is a lack of data on the amount and impact of nutrients introduced into urban waterways as the result of stream-sewer interactions and a varied flow regime. In order to address this knowledge gap, water was sampled during baseflow (bi-weekly from April 2007 to present) and stormflow from a restored urban stream in Pittsburgh, Pennsylvania (USA) impacted by both Sanitary Sewer and Combined Sewer Overflow (SSO and CSO, respectively) networks. Nine Mile Run (NMR), a restored urban stream, drains a 1600 hectare urban watershed characterized as 38% impervious. Analysis of post-restoration water quality data suggests that atmospheric deposition and sewage both contribute nutrient pollution to the stream. We estimate input of atmospheric nitrate deposition to the watershed is 18.96 kg NO3- ha-1yr-1, yet a preliminary nitrogen budget suggests that nitrate export from the basin is consistently higher (~30 kg NO3- ha-1yr-1). Mean baseflow nitrate concentrations are substantially higher during the wetter portions of 2008 (12.07 mg NO3 -/L) as compared to the drier 2007 year (7.3 mg NO3 -/L). This suggests increased stream/sewer interactions during wetter periods. These results document the effect of Sanitary Sewer systems on an urban stream and highlight the challenges inherent in improving urban water quality through physical stream restorations.

  9. A vision-based tool for the control of hydraulic structures in sewer systems

    NASA Astrophysics Data System (ADS)

    Nguyen, L.; Sage, D.; Kayal, S.; Jeanbourquin, D.; Rossi, L.

    2009-04-01

    During rain events, the total amount of the wastewater/storm-water mixture cannot be treated in the wastewater treatment plant; the overflowed water goes directly into the environment (lakes, rivers, streams) via devices called combined sewers overflows (CSOs). This water is untreated and is recognized as an important source of pollution. In most cases, the quantity of overflowed water is unknown due to high hydraulic turbulences during rain events; this quantity is often significant. For this reason, the monitoring of the water flow and the water level is of crucial environmental importance. Robust monitoring of sewer systems is a challenging task to achieve. Indeed, the environment inside sewers systems is inherently harsh and hostile: constant humidity of 100%, fast and large water level changes, corrosive atmosphere, presence of gas, difficult access, solid debris inside the flow. A flow monitoring based on traditional probes placed inside the water (such as Doppler flow meter) is difficult to conduct because of the solid material transported by the flow. Probes placed outside the flow such as ultrasonic water level probes are often used; however the measurement is generally done on only one particular point. Experience has shown that the water level in CSOs during rain events is far from being constant due to hydraulic turbulences. Thus, such probes output uncertain information. Moreover, a check of the data reliability is impossible to achieve. The HydroPix system proposes a novel approach to the monitoring of sewers based on video images, without contact with the water flow. The goal of this system is to provide a monitoring tool for wastewater system managers (end-users). The hardware was chosen in order to suit the harsh conditions of sewers system: Cameras are 100% waterproof and corrosion-resistant; Infra-red LED illumination systems are used (waterproof, low power consumption); A waterproof case contains the registration and communication system. The

  10. Methane emission from sewers.

    PubMed

    Liu, Yiwen; Ni, Bing-Jie; Sharma, Keshab R; Yuan, Zhiguo

    2015-08-15

    Recent studies have shown that sewer systems produce and emit a significant amount of methane. Methanogens produce methane under anaerobic conditions in sewer biofilms and sediments, and the stratification of methanogens and sulfate-reducing bacteria may explain the simultaneous production of methane and sulfide in sewers. No significant methane sinks or methanotrophic activities have been identified in sewers to date. Therefore, most of the methane would be emitted at the interface between sewage and atmosphere in gravity sewers, pumping stations, and inlets of wastewater treatment plants, although oxidation of methane in the aeration basin of a wastewater treatment plant has been reported recently. Online measurements have also revealed highly dynamic temporal and spatial variations in methane production caused by factors such as hydraulic retention time, area-to-volume ratio, temperature, and concentration of organic matter in sewage. Both mechanistic and empirical models have been proposed to predict methane production in sewers. Due to the sensitivity of methanogens to environmental conditions, most of the chemicals effective in controlling sulfide in sewers also suppress or diminish methane production. In this paper, we review the recent studies on methane emission from sewers, including the production mechanisms, quantification, modeling, and mitigation. PMID:25889543

  11. COMBINED-SEWER OVERFLOW CONTROL AND TREATMENT

    EPA Science Inventory

    Combined-sewer overflow (CSO), along with sanitary-sewer overflow and stormwater are significant contributors of contamination to surface waters. During a rain event, the flow in a combined sewer system may exceed the capacity of the intercepting sewer leading to the wastewater t...

  12. A generic methodology for the optimisation of sewer systems using stochastic programming and self-optimizing control.

    PubMed

    Mauricio-Iglesias, Miguel; Montero-Castro, Ignacio; Mollerup, Ane L; Sin, Gürkan

    2015-05-15

    The design of sewer system control is a complex task given the large size of the sewer networks, the transient dynamics of the water flow and the stochastic nature of rainfall. This contribution presents a generic methodology for the design of a self-optimising controller in sewer systems. Such controller is aimed at keeping the system close to the optimal performance, thanks to an optimal selection of controlled variables. The definition of an optimal performance was carried out by a two-stage optimisation (stochastic and deterministic) to take into account both the overflow during the current rain event as well as the expected overflow given the probability of a future rain event. The methodology is successfully applied to design an optimising control strategy for a subcatchment area in Copenhagen. The results are promising and expected to contribute to the advance of the operation and control problem of sewer systems. PMID:25840844

  13. Fuzzy neural network for flow estimation in sewer systems during wet weather.

    PubMed

    Shen, Jun; Shen, Wei; Chang, Jian; Gong, Ning

    2006-02-01

    Estimation of the water flow from rainfall intensity during storm events is important in hydrology, sewer system control, and environmental protection. The runoff-producing behavior of a sewer system changes from one storm event to another because rainfall loss depends not only on rainfall intensities, but also on the state of the soil and vegetation, the general condition of the climate, and so on. As such, it would be difficult to obtain a precise flowrate estimation without sufficient a priori knowledge of these factors. To establish a model for flow estimation, one can also use statistical methods, such as the neural network STORMNET, software developed at Lyonnaise des Eaux, France, analyzing the relation between rainfall intensity and flowrate data of the known storm events registered in the past for a given sewer system. In this study, the authors propose a fuzzy neural network to estimate the flowrate from rainfall intensity. The fuzzy neural network combines four STORMNETs and fuzzy deduction to better estimate the flowrates. This study's system for flow estimation can be calibrated automatically by using known storm events; no data regarding the physical characteristics of the drainage basins are required. Compared with the neural network STORMNET, this method reduces the mean square error of the flow estimates by approximately 20%. Experimental results are reported herein. PMID:16566517

  14. Evaluation of exposure pathways to man from disposal of radioactive materials into sanitary sewer systems

    SciTech Connect

    Kennedy, W.E. Jr.; Parkhurst, M.A.; Aaberg, R.L.; Rhoads, K.C.; Hill, R.L.; Martin, J.B.

    1992-05-01

    In accordance with 10 CFR 20, the US Nuclear Regulatory Commission (NRC) regulates licensees` discharges of small quantities of radioactive materials into sanitary sewer systems. This generic study was initiated to examine the potential radiological hazard to the public resulting from exposure to radionuclides in sewage sludge during its treatment and disposal. Eleven scenarios were developed to characterize potential exposures to radioactive materials during sewer system operations and sewage sludge treatment and disposal activities and during the extended time frame following sewage sludge disposal. Two sets of deterministic dose calculations were performed; one to evaluate potential doses based on the radionuclides and quantities associated with documented case histories of sewer system contamination and a second, somewhat more conservative set, based on theoretical discharges at the maximum allowable levels for a more comprehensive list of 63 radionuclides. The results of the stochastic uncertainty and sensitivity analysis were also used to develop a collective dose estimate. The collective doses for the various radionuclides and scenarios range from 0.4 person-rem for {sup 137}Cs in Scenario No. 5 (sludge incinerator effluent) to 420 person-rem for {sup 137}Cs in Scenario No. 3 (sewage treatment plant liquid effluent). None of the 22 scenario/radionuclide combinations considered have collective doses greater than 1000 person-rem/yr. However, the total collective dose from these 22 combinations was found to be about 2100 person-rem.

  15. Stable isotopes of water as a natural tracer for infiltration into urban sewer systems

    NASA Astrophysics Data System (ADS)

    Kracht, O.; Gresch, M.; de Bénédittis, J.; Prigiobbe, V.; Gujer, W.

    2003-04-01

    An adequate understanding of the hydraulic interaction between leaky sewers and groundwater is essential for the sustainable management of both sewer systems and aquifers in urbanized areas. Undesirable infiltration of groundwater into sewers can contribute over 50% of the total discharge and is detrimental to treatment plant efficiency. On the other hand, in many European cities groundwater surface levels seem to be particularly controlled by the drainage effect of permeable sewer systems. However, nowadays methods for the quantification of these exchange processes are still subject to considerable uncertainties due to their underlying assumptions. The frequently used assumption that the night time minimum in the diurnal wastewater hydrograph is equal to the "parasitic discharge" has to be reconsidered to today's patterns of human life as well as to the long residence time of wastewater in the sewer networks of modern cities. The suitability of stable water isotopes as a natural tracer to differentiate the origin of water in the sewer ("real" wastewater or infiltrating groundwater) is currently investigated in three different catchment areas. The studies are carried out within the framework of the European research project APUSS (Assessing Infiltration and Exfiltration on the Performance of Urban Sewer Systems): 1) The village of Rümlang (Zürich, Switzerland) is predominantly served with drinking water from the Lake Zürich. A large fraction of the lakes water is derived from precipitation in the Alps. This drinking water represents the intrinsic provenience of the wastewater with an δ18O value around -11,5 per mill and δ^2H value around -82 per mill vs. SMOW. In contrast, the local groundwater is originating from precipitation in a moderate altitude of about 450 m above sea level and shows comparatively enriched mean δ18O values of -9,7 per mill and δ^2H values of -70 per mill with only small natural variations. The isotopic separation between these

  16. Estimation of Biological Oxygen Demand and Chemical Oxygen Demand for Combined Sewer Systems Using Synchronous Fluorescence Spectra

    PubMed Central

    Hur, Jin; Lee, Bo-Mi; Lee, Tae-Hwan; Park, Dae-Hee

    2010-01-01

    Real-time monitoring of water quality for sewer system is required for efficient sewer network design because it provides information on the precise loading of pollutant to wastewater treatment facilities and the impact of loading on receiving water. In this study, synchronous fluorescence spectra and its first derivatives were investigated using a number of wastewater samples collected in sewer systems in urban and non-urban areas, and the optimum fluorescence feature was explored for the estimation of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) concentrations of sewer samples. The temporal variations in BOD and COD showed a regular pattern for urban areas whereas they were relatively irregular for non-urban areas. Irrespective of the sewer pipes and the types of the areas, two distinct peaks were identified from the synchronous fluorescence spectra, which correspond to protein-like fluorescence (PLF) and humic-like fluorescence (HLF), respectively. HLF in sewer samples appears to be associated with fluorescent whitening agents. Five fluorescence characteristics were selected from the synchronous spectra and the first-derivatives. Among the selected fluorescence indices, a peak in the PLF region (i.e., Index I) showed the highest correlation coefficient with both BOD and COD. A multiple regression approach based on suspended solid (SS) and Index I used to compensate for the contribution of SS to BOD and COD revealed an improvement in the estimation capability, showing good correlation coefficients of 0.92 and 0.94 for BOD and COD, respectively. PMID:22319257

  17. Septic systems, but not sanitary sewer lines, are associated with elevated estradiol in male frog metamorphs from suburban ponds.

    PubMed

    Lambert, Max R; Giller, Geoffrey S J; Skelly, David K; Bribiescas, Richard G

    2016-06-01

    Suburban neighborhoods are a dominant type of human land use. Many housing regions globally rely on septic systems, rather than sanitary sewers, for wastewater management. There is evidence that septic systems may contaminate waterbodies more than sewer lines. There is also mounting evidence that human activities contaminate waterways with endocrine-disrupting chemicals (EDCs), which alter wildlife sexual development. While endocrine disruption is often associated with intense activities such as agriculture or wastewater treatment plant discharges, recent evidence indicates that endocrine disruption is pervasive in frogs from suburban neighborhoods. In conjunction with other putative EDC sources, one hypothesis is that wastewater is contaminating suburban waterways with EDCs derived from pharmaceuticals or personal care products. Here, we measure estradiol (E2) in metamorphosing green frogs (Rana clamitans) from forested ponds and suburban ponds adjacent to either septic tanks or sanitary sewers. We show that E2 is highest in male frogs from septic neighborhoods and that E2 concentrations are significantly lower in male frogs from forested ponds and from ponds near sewers. These results indicate that septic tanks may be contaminating aquatic ecosystems differently than sewer lines. This pattern contrasts prior work showing no difference in EDC contamination or morphological endocrine disruption between septic and sewer neighborhoods, implying that suburbanization may have varying effects at multiple biological scales like physiology and anatomy. PMID:26795918

  18. Estimation of biological oxygen demand and chemical oxygen demand for combined sewer systems using synchronous fluorescence spectra.

    PubMed

    Hur, Jin; Lee, Bo-Mi; Lee, Tae-Hwan; Park, Dae-Hee

    2010-01-01

    Real-time monitoring of water quality for sewer system is required for efficient sewer network design because it provides information on the precise loading of pollutant to wastewater treatment facilities and the impact of loading on receiving water. In this study, synchronous fluorescence spectra and its first derivatives were investigated using a number of wastewater samples collected in sewer systems in urban and non-urban areas, and the optimum fluorescence feature was explored for the estimation of biochemical oxygen demand (BOD) and chemical oxygen demand (COD) concentrations of sewer samples. The temporal variations in BOD and COD showed a regular pattern for urban areas whereas they were relatively irregular for non-urban areas. Irrespective of the sewer pipes and the types of the areas, two distinct peaks were identified from the synchronous fluorescence spectra, which correspond to protein-like fluorescence (PLF) and humic-like fluorescence (HLF), respectively. HLF in sewer samples appears to be associated with fluorescent whitening agents. Five fluorescence characteristics were selected from the synchronous spectra and the first-derivatives. Among the selected fluorescence indices, a peak in the PLF region (i.e., Index I) showed the highest correlation coefficient with both BOD and COD. A multiple regression approach based on suspended solid (SS) and Index I used to compensate for the contribution of SS to BOD and COD revealed an improvement in the estimation capability, showing good correlation coefficients of 0.92 and 0.94 for BOD and COD, respectively. PMID:22319257

  19. Impacts and managerial implications for sewer systems due to recent changes to inputs in domestic wastewater - A review.

    PubMed

    Mattsson, Jonathan; Hedström, Annelie; Ashley, Richard M; Viklander, Maria

    2015-09-15

    Ever since the advent of major sewer construction in the 1850s, the issue of increased solids deposition in sewers due to changes in domestic wastewater inputs has been frequently debated. Three recent changes considered here are the introduction of kitchen sink food waste disposers (FWDs); rising levels of inputs of fat, oil and grease (FOG); and the installation of low-flush toilets (LFTs). In this review these changes have been examined with regard to potential solids depositional impacts on sewer systems and the managerial implications. The review indicates that each of the changes has the potential to cause an increase in solids deposition in sewers and this is likely to be more pronounced for the upstream reaches of networks that serve fewer households than the downstream parts and for specific sewer features such as sags. The review has highlighted the importance of educational campaigns directed to the public to mitigate deposition as many of the observed problems have been linked to domestic behaviour in regard to FOGs, FWDs and toilet flushing. A standardized monitoring procedure of repeat sewer blockage locations can also be a means to identify depositional hot-spots. Interactions between the various changes in inputs in the studies reviewed here indicated an increased potential for blockage formation, but this would need to be further substantiated. As the precise nature of these changes in inputs have been found to be variable, depending on lifestyles and type of installation, the additional problems that may arise pose particular challenges to sewer operators and managers because of the difficulty in generalizing the nature of the changes, particularly where retrofitting projects in households are being considered. The three types of changes to inputs reviewed here highlight the need to consider whether or not more or less solid waste from households should be diverted into sewers. PMID:26182992

  20. Graph theoretical stable allocation as a tool for central control of sewer systems

    NASA Astrophysics Data System (ADS)

    van Nooijen, Ronald; Kolechkina, Alla

    2016-04-01

    Dutch sewer networks consist of multiple sub-networks that serve both to collect waste water and as a link in the transport chain of waste water to the Waste Water Treatment Plant. Within sub-networks transport is by gravity driven flow. The sub-networks are linked by pumping stations. If the network of pipes also serves to collect precipitation then the system is called a combined system. For some of these networks it may be beneficial to implement central control. We study whether the graph theoretical concept of stable allocations can be used as a basis for the algorithm underlying such a central conrol system.

  1. Degradation of methanethiol in anaerobic sewers and its correlation with methanogenic activities.

    PubMed

    Sun, Jing; Hu, Shihu; Sharma, Keshab Raj; Ni, Bing-Jie; Yuan, Zhiguo

    2015-02-01

    Methanethiol (MT) is considered one of the predominant odorants in sewer systems. Therefore, understanding MT transformation in sewers is essential to sewer odor assessment and abatement. In this study, we investigated the degradation of MT in laboratory anaerobic sewers. Experiments were carried out in seven anaerobic sewer reactors with biofilms at different stages of development. MT degradation was found to be strongly dependent on the methanogenic activity of sewer biofilms. The MT degradation rate accelerated with the increase of methanogenic activity of sewer biofilms, resulting in MT accumulation (i.e. net production) in sewer reactors with relatively low methanogenic activities, and MT removal in reactors with higher methanogenic activities. A Monod-type kinetic expression was developed to describe MT degradation kinetics in anaerobic sewers, in which the maximum degradation rate was modeled as a function of the maximum methane production rate through a power function. It was also found that MT concentration had a linear relationship with acetate concentration, which may be used for preliminary assessment of MT presence in anaerobic sewers. PMID:25437340

  2. Modelling the effects of on-site greywater reuse and low flush toilets on municipal sewer systems.

    PubMed

    Penn, R; Schütze, M; Friedler, E

    2013-01-15

    On-site greywater reuse (GWR) and installation of water-efficient toilets (WET) reduce urban freshwater demand. Research on GWR and WET has generally overlooked the effects that GWR may have on municipal sewer systems. This paper discusses and quantifies these effects. The effects of GWR and WET, positive and negative, were studied by modelling a representative urban sewer system. GWR scenarios were modelled and analysed using the SIMBA simulation system. The results show that, as expected, the flow, velocity and proportional depth decrease as GWR increases. Nevertheless, the reduction is not evenly distributed throughout the day but mainly occurs during the morning and evening peaks. Examination of the effects of reduced toilet flush volumes revealed that in some of the GWR scenarios flows, velocities and proportional depths in the sewer were reduced, while in other GWR scenarios discharge volumes, velocities and proportional depths did not change. Further, it is indicated that as a result of GWR and installation of WET, sewer blockage rates are not expected to increase significantly. The results support the option to construct new sewer systems with smaller pipe diameters. The analysis shows that as the penetration of GWR systems increase, and with the installation of WET, concentrations of pollutants also increase. In GWR scenarios (when toilet flush volume is not reduced) the increase in pollutant concentrations is lower than the proportional reduction of sewage flow. Moreover, the results show that the spatial distribution of houses reusing GW does not significantly affect the parameters examined. PMID:23220603

  3. Evaluation of hydrogen sulphide concentration and control in a sewer system.

    PubMed

    Oviedo, Eugenio Recio; Johnson, Drew; Shipley, Heather

    2012-06-01

    This study focused on monitoring hydrogen sulphide (dissolved and atmospheric) generation and wastewater volumetric flow in a 21.4 km sewer line of the City of San Antonio, Texas. The results were used to evaluate daily and seasonal trends of atmospheric and dissolved sulphide, and to better apply sulphide control using ferrous sulphate to prevent odour and sewer pipe deterioration. As part of this study, the evaluation of a cost-effective dosing strategy with ferrous sulphate was performed to better control the sulphide contents in wastewater. Dosing studies were performed in the laboratory to find the required ratio of ferrous sulphate for acceptable sulphide removal. The results indicate a 1.25 mole ratio requirement, to reduce sulphide by 93%. Over a typical daily diurnal cycle, necessary dosing rates to maintain sulphide concentrations below 2mg varied between 0 and 36,777 mold(-1) with a daily average rate of 14,438 mol d(-1). If, instead of dosing at the maximum required rate, dosing was matched over the diurnal cycle, chemical savings would amount to 22,339 mold(-1) while achieving sulphide control. The approximate cost of the ferrous sulphate solution dosed is $0.14 per mol and this amount of chemical savings translates into roughly $2923 per day. Actual dosing cost for the hypothetical average day will be $1889 per day. These cost savings can easily recoup the required instrumentation costs to achieve this diurnal dose matching. PMID:22856291

  4. Performance assessment of separate and combined sewer systems in metropolitan areas in Southern China.

    PubMed

    Li, Tian; Zhang, Wei; Feng, Cang; Shen, Jun

    2014-01-01

    To assess the performance of urban drainage systems in metropolitan areas in southern China, 12 urban drainage systems, including nine separate sewer systems (SSSs) and three combined sewer systems (CSSs) were monitored from 2008 to 2012 in Shanghai and Hefei. Illicit connection rates of SSS were determined. The results indicate that serious illicit connections exist for most SSSs. Annual volume balance for two SSSs with serious illicit connection was assessed with a hydraulic model to determine the dry weather overflow volume. Although interception facilities have been implemented in SSSs, for some systems with serious illicit connections, a considerable volume of dry weather overflow still existed. Combined with monitoring of dry/wet weather flow quality, the pollutant load caused by wet/dry weather overflow was quantified. The results revealed that there was no obvious advantage of having SSSs over CSSs in terms of pollutant control. The serious pollution caused by illicit connections and insufficient management occurs in many cities in China. The performance assessment of separate and CSSs in Shanghai and Hefei provides important lessons and practical experience that can be applied to the construction and management of urban drainage system in China as well as other developing countries. PMID:24473315

  5. Continuous measurement of dissolved sulfide in sewer systems.

    PubMed

    Sutherland-Stacey, L; Corrie, S; Neethling, A; Johnson, I; Gutierrez, O; Dexter, R; Yuan, Z; Keller, J; Hamilton, G

    2008-01-01

    Sulfides are particularly problematic in the sewage industry. Hydrogen sulfide causes corrosion of concrete infrastructure, is dangerous at high concentrations and is foul smelling at low concentrations. Despite the importance of sulfide monitoring there is no commercially available system to quantify sulfide in waste water. In this article we report on our use of an in situ spectrometer to quantify bisulfide in waste water and additional analysis with a pH probe to calculate total dissolved sulfide. Our results show it is possible to use existing commercially available and field proven sensors to measure sulfide to mg/l levels continuously with little operator intervention and no sample preparation. PMID:18309215

  6. Remaining Sites Verification Package for the 1607-F3 Sanitary Sewer System, Waste Site Reclassification Form 2006-047

    SciTech Connect

    L. M. Dittmer

    2007-04-26

    The 1607-F3 waste site is the former location of the sanitary sewer system that supported the 182-F Pump Station, the 183-F Water Treatment Plant, and the 151-F Substation. The sanitary sewer system included a septic tank, drain field, and associated pipeline, all in use between 1944 and 1965. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  7. Diurnal fluctuation of indicator microorganisms and intestinal viruses in combined sewer system.

    PubMed

    Kim, W J; Managaki, S; Furumai, H; Nakajima, F

    2009-01-01

    Combined sewer overflow (CSO) has been considered to be a source of pathogenic microorganisms for aquatic environment. For the effective control and treatment of CSOs, the microbial behavior in combined sewer system (CSS) needs to be investigated. In this study, whole-day extensive monitoring of indicator microorganisms and intestinal viruses in dry weather flow (DWF) was conducted at a small residential urban drainage area with CSS. All indicator bacteria represented similar diurnal variations in the two different monitoring campaigns; their concentrations gradually decreased to the minimum at the dawn (around 5 a.m.), increased sharply to the maximum around 7 to 8 a.m., and remained rather constant from noon to midnight. On the other hand, neither coliphages nor intestinal viruses showed any concentration peaks in the morning. The maximum/minimum load ratios ranged from 18 to 42 for total coliforms, fecal coliforms and E. coli, whereas those ratios for coliphages, enteroviruses and noroviruses G2 showed greater values than those for indicator bacteria. These results indicate that the diurnal variation patterns of bacterial and viral concentrations in DWF should be considered, which affect the discharge characteristics of each microorganism and the loads of bacteria and viruses in CSOs significantly vary with the overflow time as well. PMID:19934500

  8. Assessment of flood hazard in a combined sewer system in Reykjavik city centre.

    PubMed

    Hlodversdottir, Asta Osk; Bjornsson, Brynjolfur; Andradottir, Hrund Olof; Eliasson, Jonas; Crochet, Philippe

    2015-01-01

    Short-duration precipitation bursts can cause substantial property damage and pose operational risks for wastewater managers. The objective of this study was to assess the present and possible future flood hazard in the combined sewer system in Reykjavik city centre. The catchment is characterised by two hills separated by a plain. A large portion of the pipes in the aging network are smaller than the current minimum diameter of 250 mm. Runoff and sewer flows were modelled using the MIKE URBAN software package incorporating both historical precipitation and synthetic storms derived from annual maximum rainfall data. Results suggest that 3% of public network manholes were vulnerable to flooding during an 11-year long rainfall sequence. A Chicago Design Storm (CDS) incorporating a 10-minute rainfall burst with a 5-year return period predicted twice as many flooded manholes at similar locations. A 20% increase in CDS intensity increased the number of flooded manholes and surface flood volume by 70% and 80%, respectively. The flood volume tripled if rainfall increase were combined with urban re-development, leading to a 20% increase in the runoff coefficient. Results highlight the need for reducing network vulnerabilities, which include decreased pipe diameters and low or drastically varying pipe grades. PMID:26442488

  9. A catchment-scale groundwater model including sewer pipe leakage in an urban system

    NASA Astrophysics Data System (ADS)

    Peche, Aaron; Fuchs, Lothar; Spönemann, Peter; Graf, Thomas; Neuweiler, Insa

    2016-04-01

    -202. itwh (2002). Modellbeschreibung, Institut für technisch-wissenschaftliche Hydrologie GmbH, Hannover. Karpf, C. & Krebs, P. (2013). Modelling of groundwater infiltration into sewer systems. Urban Water Journal, 10:4, 221-229, DOI: 10.1080/1573062X.2012.724077. Kolditz, O., Bauer, S. et al. (2012). OpenGeoSys: an open source initiative for numerical simulation of thermo-hydro-mechanical/chemical (THM/C) processes in porous media. Env. Earth Sci. 67(2):589-599. Wolf, L., Held, I., Eiswirth, M., & Hötzl, H. (2004). Impact of leaky sewers on groundwater quality. Acta Hydrochimica et Hydrobiologica, 32(4-5), 361-373. doi:10.1002/aheh.200400538. Wolf, L. (2006). Influence of leaky sewer systems on groundwater resources beneath the city of Rastatt, Germany. Dissertation, University of Karlsruhe.

  10. Vacuum Flushing of Sewer Solids

    EPA Science Inventory

    The vacuum sewer and tank cleaning (flushing) technology removes sewer solids from urban drainage systems, such as storage tanks and pipes. This technology is both effective and inexpensive. In addition, it can be considered a true green technology. It operates under atmospheri...

  11. Understanding the Spatial Formation and Accumulation of Fats, Oils & Grease Deposits in the Sewer Collection System

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sanitary sewer overflows are caused by the accumulation of insoluble calcium salts of fatty acids, which are formed by the reaction between fats, oils and grease (FOG) and calcium found in wastewaters. Different sewer structural configurations (i.e., manholes, pipes, wet wells), which vary spatially...

  12. The impacts of climate change and urbanisation on drainage in Helsingborg, Sweden: Combined sewer system

    NASA Astrophysics Data System (ADS)

    Semadeni-Davies, Annette; Hernebring, Claes; Svensson, Gilbert; Gustafsson, Lars-Göran

    2008-02-01

    SummaryAssessment of the potential impact of climate change on water systems has been an essential part of hydrological research over the last couple of decades. However, the notion that such assessments should also include technological, demographic and land use changes is relatively recent. In this study, the potential impacts of climate change and continued urbanisation on waste and stormwater flows in the combined sewer of central Helsingborg, South Sweden, have been assessed using a series of DHI MOUSE simulations run with present conditions as well as two climate change scenarios and three progressive urbanisation storylines. At present, overflows of untreated wastewater following heavy rainfalls are a major source of pollution to the coastal receiving waters and there is a worry that increased rainfall could exacerbate the problem. Sewer flows resulting from different urbanisation storylines were simulated for two 10-year periods corresponding to present (1994-2003) and future climates (nominally 2081-2090). In all, 12 simulations were made. Climate change was simulated by altering a high-resolution rainfall record according to the climate-change signal derived from a regional climate model. Urbanisation was simulated by altering model parameters to reflect current trends in demographics and water management. It was found that city growth and projected increases in precipitation, both together and alone, are set to worsen the current drainage problems. Conversely, system renovation and installation of sustainable urban drainage systems (SUDS) has a positive effect on the urban environment in general and can largely allay the adverse impacts of both urbanisation and climate change.

  13. Degradability of creatinine under sewer conditions affects its potential to be used as biomarker in sewage epidemiology.

    PubMed

    Thai, Phong K; O'Brien, Jake; Jiang, Guangming; Gernjak, Wolfgang; Yuan, Zhiguo; Eaglesham, Geoff; Mueller, Jochen F

    2014-05-15

    Creatinine was proposed to be used as a population normalising factor in sewage epidemiology but its stability in the sewer system has not been assessed. This study thus aimed to evaluate the fate of creatinine under different sewer conditions using laboratory sewer reactors. The results showed that while creatinine was stable in wastewater only, it degraded quickly in reactors with the presence of sewer biofilms. The degradation followed first order kinetics with significantly higher rate in rising main condition than in gravity sewer condition. Additionally, daily loads of creatinine were determined in wastewater samples collected on Census day from 10 wastewater treatment plants around Australia. The measured loads of creatinine from those samples were much lower than expected and did not correlate with the populations across the sampled treatment plants. The results suggested that creatinine may not be a suitable biomarker for population normalisation purpose in sewage epidemiology, especially in sewer catchment with high percentage of rising mains. PMID:24631876

  14. SANITARY SEWER CALCULATION

    SciTech Connect

    Roy D. Clark

    1995-01-13

    This analysis defines and evaluates the surface sanitary sewer system on the North Portal, and addresses the requirements for the collection of sanitary sewage from each of the proposed surface buildings. A sewage treatment system will be defined that meets the needs of the North Portal, conforms to the existing site conditions, and meets the needs of the state and local permitting agencies.

  15. SEWER PIPELINE PERFORMANCE INDICATORS

    EPA Science Inventory

    Wastewater collection systems are an extensive part of the nation's infrastructure. In the United States, approximately 150 million people are served by about 19,000 municipal wastewater collection systems representing about 500,000 miles of sewer pipe (not including privately o...

  16. Evaluation of the Effectiveness of Five Odor Reducing Agents for Sewer System Odors Using an On-Line Total Reduced Sulfur Analyzer

    PubMed Central

    Choi, Il; Lee, Hyunjoo; Shin, Joungdu; Kim, Hyunook

    2012-01-01

    Sewer odors have been a concern to citizens of the Metropolitan Seoul region, which has installed combined sewer systems (CSSs) in 86% of its area. Although a variety of odorants are released from sewers, volatile sulfur compounds (VSCs) have been recognized as major ones. A number of technologies have been proposed to monitor or control odors from sewers. One of the most popular strategies adopted for the control of sewage odor is by applying a commercial odor-reducing agent into the sewer. In this study, the effectiveness of five different commercial odor-reducing agents (i.e., an odor masking agent, an alkaline solution, two microbial agents, and a chemical oxidant) was evaluated by continuously monitoring VSCs released from the sewer with an on-line total reduced sulfur (TRS) analyzer before and after each agent was sprayed into CSSs at five different locations of the city. In short, when the effectiveness of odor treatment was tested in the sewer system using five commercial odor reducing treatments, only the chemical oxidant was good enough to reduce the odor in terms of TRS levels measured before and after the application (p < 0.01). PMID:23223148

  17. Development and implementation of a real-time control strategy for the sewer system of the city of Vienna.

    PubMed

    Fuchs, L; Beeneken, T

    2005-01-01

    The paper describes the realization of a real-time control for the Vienna sewer system. The project is scheduled for completion for 2004. The 3.5 year project comprises all planning stages starting with the recording of data up to the planning of measuring and controlling units. The concrete steps of the planning stages are explained. A measuring system including 25 rainfall measurements, 40 flow measurements and 20 water level measurements is implemented as an online system. This measuring system is designed to achieve two objectives, on the one hand the real-time control and on the other hand the calibration of the model that is used for the hydrodynamic sewer system simulation. The approx. 53,000 pipes have served to generate a coarse network of no more than approx. 2600 pipes. The area data were derived with high accuracy from available aerial photograph interpretations. With simulation runs of a rule-based control software the system operation was examined. A self-learning system will improve the rule basis. A forecasting model that uses weather observation radar will additionally influence the controlling decisions. The findings from the investigations are immediately considered in the planning of measuring and control units. The simulated results for the first phase of implementation, which demonstrate the benefit of RTC for the Vienna sewer system, are explained. PMID:16248195

  18. A case independent approach on the impact of climate change effects on combined sewer system performance.

    PubMed

    Kleidorfer, M; Möderl, M; Sitzenfrei, R; Urich, C; Rauch, W

    2009-01-01

    Design and construction of urban drainage systems has to be done in a predictive way, as the average lifespan of such investments is several decades. The design engineer has to predict many influencing factors and scenarios for future development of a system (e.g. change in land use, population, water consumption and infiltration measures). Furthermore, climate change can cause increased rain intensities which leads to an additional impact on drainage systems. In this paper we compare the behaviour of different performance indicators of combined sewer systems when taking into account long-term environmental change effects (change in rainfall characteristics, change in impervious area and change in dry weather flow). By using 250 virtual case studies this approach is--in principle--a Monte Carlo Simulation in which not only parameter values are varied but the entire system structure and layout is changed in each run. Hence, results are more general and case-independent. For example the consideration of an increase of rainfall intensities by 20% has the same effect as an increase of impervious area of +40%. Such an increase of rainfall intensities could be compensated by infiltration measures in current systems which lead to a reduction of impervious area by 30%. PMID:19759458

  19. Multivariate probability distribution for sewer system vulnerability assessment under data-limited conditions.

    PubMed

    Del Giudice, G; Padulano, R; Siciliano, D

    2016-01-01

    The lack of geometrical and hydraulic information about sewer networks often excludes the adoption of in-deep modeling tools to obtain prioritization strategies for funds management. The present paper describes a novel statistical procedure for defining the prioritization scheme for preventive maintenance strategies based on a small sample of failure data collected by the Sewer Office of the Municipality of Naples (IT). Novelty issues involve, among others, considering sewer parameters as continuous statistical variables and accounting for their interdependences. After a statistical analysis of maintenance interventions, the most important available factors affecting the process are selected and their mutual correlations identified. Then, after a Box-Cox transformation of the original variables, a methodology is provided for the evaluation of a vulnerability map of the sewer network by adopting a joint multivariate normal distribution with different parameter sets. The goodness-of-fit is eventually tested for each distribution by means of a multivariate plotting position. The developed methodology is expected to assist municipal engineers in identifying critical sewers, prioritizing sewer inspections in order to fulfill rehabilitation requirements. PMID:26901717

  20. 300 Area process sewer piping upgrade and 300 Area treated effluent disposal facility discharge to the City of Richland Sewage System, Hanford Site, Richland, Washington

    SciTech Connect

    1995-05-01

    The U.S. Department of Energy (DOE) is proposing to upgrade the existing 300 Area Process Sewer System by constructing and operating a new process sewer collection system that would discharge to the 300 Area Treated Effluent Disposal Facility. The DOE is also considering the construction of a tie-line from the TEDF to the 300 Area Sanitary Sewer for discharging the process wastewater to the City of Richland Sewage System. The proposed action is needed because the integrity of the old piping in the existing 300 Area Process Sewer System is questionable and effluents might be entering the soil column from leaking pipes. In addition, the DOE has identified a need to reduce anticipated operating costs at the new TEDF. The 300 Area Process Sewer Piping Upgrade (Project L-070) is estimated to cost approximately $9.9 million. The proposed work would involve the construction and operation of a new process sewer collection system. The new system would discharge the effluents to a collection sump and lift station for the TEDF. The TEDF is designed to treat and discharge the process effluent to the Columbia River. The process waste liquid effluent is currently well below the DOE requirements for radiological secondary containment and is not considered a RCRA hazardous waste or a State of Washington Hazardous Waste Management Act dangerous waste. A National Pollutant Discharge Elimination, System (NPDES) permit has been obtained from the U.S. Environmental Protection Agency for discharge to the Columbia River. The proposed action would upgrade the existing 300 Area Process Sewer System by the construction and operation of a new combined gravity, vacuum, and pressurized process sewer collection system consisting of vacuum collection sumps, pressure pump stations, and buried polyvinyl chloride or similar pipe. Two buildings would also be built to house a main collection station and a satellite collection station.

  1. Loading and removal of PAHs in a wastewater treatment plant in a separated sewer system.

    PubMed

    Ozaki, Noriatsu; Takamura, Yoshihiro; Kojima, Keisuke; Kindaichi, Tomonori

    2015-09-01

    The loading and removal of polycyclic aromatic hydrocarbons (PAHs) were measured and estimated in a wastewater treatment plant in a separated sewer system in a suburban area of Japan. The influent 16 PAHs concentration was 219 ± 210 ng L(-1), whereas the effluent concentration was 43.5 ± 42.5 ng L(-1) (mean ± sd). No clear diurnal or weekly fluctuation was observed. However, evaluation of long-term changes revealed PAH fluctuations continuing for more than 1 week. Half of the PAHs (63%) were biologically or chemically transformed, or vaporized in the treatment plant, while the remainder were discharged with effluent (28%) and excess sludge (9%). Measurement of the per capita loading of the treatment plant revealed values of 142 ± 53 and 28 ± 11 μg person(-1)day(-1) (mean ± 95% confidence interval) for influent and effluent, respectively. Isomer ratio analysis revealed that the PAHs originated from a mixture of petroleum, petroleum combustion, and burning of biomass residues. PMID:26026633

  2. Remote infrared thermal sensing of sewer voids

    NASA Astrophysics Data System (ADS)

    Weil, Gary J.

    1995-05-01

    Many sewers in America's cities are more than 125 years old and are subject to structural failure. In one year alone, St. Louis, Missouri had 4,000 sewer collapses that carried an astronomical repair tag. When a sewer caves in, it often takes the street, sidewalks, and surrounding buildings along with it endangering public health and safety. The ideal situation would be to repair a sewer before such cave-ins occur, as emergency repairs are far more costly than preventive measures. The question addressed by this paper is how to detect unseen problem areas in sewer systems before collapses occur. At the present, progressive sewer administrations may use crawl crews or remote controlled video cameras to inspect sewers at suspected problem locations. This can be extremely costly, dangerous, and not very accurate, as a void around the outside of the sewer is often invisible from within. Thus, even a crawl crew can fail to detect most voids. Sewer districts and independent engineering firms have found infrared thermography, a nondestructive testing method, to be extremely accurate in finding sewer voids, and accompanying pipeline leaks, before they can cause expensive and dangerous problems. Infrared thermography is a non-contact, remote sensing method, with the potential for surveying large areas quickly and efficiently.

  3. MODELS TO ESTIMATE VOLATILE ORGANIC HAZARDOUS AIR POLLUTANT EMISSIONS FROM MUNICIPAL SEWER SYSTEMS

    EPA Science Inventory

    Emissions from municipal sewers are usually omitted from hazardous air pollutant (HAP) emission inventories. This omission may result from a lack of appreciation for the potential emission impact and/or from inadequate emission estimation procedures. This paper presents an analys...

  4. Measuring Flow Reductions in a Combined Sewer System Using Green Infrastructure

    EPA Science Inventory

    A green infrastructure (GI) design approach was used in CSO Basin #130, a 17-acre sewershed in the Butchertown section of Louisville, Kentucky, to reduce combined sewer overflows (CSOs). For the design year, the modeled design was expected to reduce the CSO frequency from 34 to ...

  5. [Sewer gas induced myocardial toxicity].

    PubMed

    Antonelli, Dante; Sabanchiev, Avi; Rosner, Ehud; Turgeman, Yoav

    2014-07-01

    We report the case of a 19 year-old worker who collapsed after acute exposure to sewer gas. He rapidly developed cardiorespiratory failure with electrocardiographic, echocardiographic and laboratory findings of myocardial involvement. The mainstay of the therapy was mainly supportive treatment with a successful outcome. PMID:25189024

  6. Consequential environmental and economic life cycle assessment of green and gray stormwater infrastructures for combined sewer systems.

    PubMed

    Wang, Ranran; Eckelman, Matthew J; Zimmerman, Julie B

    2013-10-01

    A consequential life cycle assessment (LCA) is conducted to evaluate the trade-offs between water quality improvements and the incremental climate, resource, and economic costs of implementing green (bioretention basin, green roof, and permeable pavement) versus gray (municipal separate stormwater sewer systems, MS4) alternatives of stormwater infrastructure expansions against a baseline combined sewer system with combined sewer overflows in a typical Northeast US watershed for typical, dry, and wet years. Results show that bioretention basins can achieve water quality improvement goals (e.g., mitigating freshwater eutrophication) for the least climate and economic costs of 61 kg CO2 eq. and $98 per kg P eq. reduction, respectively. MS4 demonstrates the minimum life cycle fossil energy use of 42 kg oil eq. per kg P eq. reduction. When integrated with the expansion in stormwater infrastructure, implementation of advanced wastewater treatment processes can further reduce the impact of stormwater runoff on aquatic environment at a minimal environmental cost (77 kg CO2 eq. per kg P eq. reduction), which provides support and valuable insights for the further development of integrated management of stormwater and wastewater. The consideration of critical model parameters (i.e., precipitation intensity, land imperviousness, and infrastructure life expectancy) highlighted the importance and implications of varying local conditions and infrastructure characteristics on the costs and benefits of stormwater management. Of particular note is that the impact of MS4 on the local aquatic environment is highly dependent on local runoff quality indicating that a combined system of green infrastructure prior to MS4 potentially provides a more cost-effective improvement to local water quality. PMID:23957532

  7. In-place rehabilitation of process sewers

    SciTech Connect

    Arles, K.R.; Faller, C.C.

    1996-07-01

    The majority of petrochemical manufacturing facilities have thousands of feet of existing underground gravity sewers that convey the site`s industrial wastes to treatment facilities. The integrity of these sewer systems is a serious concern to owners. A potential consequence of leaks is soil and groundwater contamination. Prior to 1992, only two options were available to remedy this situation. The sewer systems could be replaced with either a new dual-walled, monitored underground pipe system via direct bury, or with an above ground pumped system. In 1992, Engineering, in conjunction with several trenchless technology vendors, developed and demonstrated modified relining systems that can rehabilitate existing sewers and result in monitored dual-walled gravity sewer systems. These proven systems have since been enhanced, upgraded, and installed at two operating facilities. With thorough sewer investigation and assessments, industry now has viable, cost effective options to rehabilitate underground chemical process sewers. These upgraded sewer systems provide the environmental security of monitored dual-walled pipe, enhanced flow characteristics, and retain accessibility for maintenance and inspections.

  8. Storm water management in an urban catchment: effects of source control and real-time management of sewer systems on receiving water quality.

    PubMed

    Frehmann, T; Nafo, I; Niemann, A; Geiger, W F

    2002-01-01

    For the examination of the effects of different storm water management strategies in an urban catchment area on receiving water quality, an integrated simulation of the sewer system, wastewater treatment plant and receiving water is carried out. In the sewer system real-time control measures are implemented. As examples of source control measures the reduction of wastewater and the reduction of the amount of impervious surfaces producing storm water discharges are examined. The surface runoff calculation and the simulation of the sewer system and the WWTP are based on a MATLAB/SIMULINK simulation environment. The impact of the measures on the receiving water is simulated using AQUASIM. It can be shown that the examined storm water management measures, especially the source control measures, can reduce the combined sewer overflow volume and the pollutant discharge load considerably. All examined measures also have positive effects on the receiving water quality. Moreover, the reduction of impervious surfaces avoids combined sewer overflow activities, and in consequence prevents pollutants from discharging into the receiving water after small rainfall events. However, the receiving water quality improvement may not be seen as important enough to avoid acute receiving water effects in general. PMID:12380970

  9. Predicting concrete corrosion of sewers using artificial neural network.

    PubMed

    Jiang, Guangming; Keller, Jurg; Bond, Philip L; Yuan, Zhiguo

    2016-04-01

    Corrosion is often a major failure mechanism for concrete sewers and under such circumstances the sewer service life is largely determined by the progression of microbially induced concrete corrosion. The modelling of sewer processes has become possible due to the improved understanding of in-sewer transformation. Recent systematic studies about the correlation between the corrosion processes and sewer environment factors should be utilized to improve the prediction capability of service life by sewer models. This paper presents an artificial neural network (ANN)-based approach for modelling the concrete corrosion processes in sewers. The approach included predicting the time for the corrosion to initiate and then predicting the corrosion rate after the initiation period. The ANN model was trained and validated with long-term (4.5 years) corrosion data obtained in laboratory corrosion chambers, and further verified with field measurements in real sewers across Australia. The trained model estimated the corrosion initiation time and corrosion rates very close to those measured in Australian sewers. The ANN model performed better than a multiple regression model also developed on the same dataset. Additionally, the ANN model can serve as a prediction framework for sewer service life, which can be progressively improved and expanded by including corrosion rates measured in different sewer conditions. Furthermore, the proposed methodology holds promise to facilitate the construction of analytical models associated with corrosion processes of concrete sewers. PMID:26841228

  10. Occurrence and behaviour of 105 active pharmaceutical ingredients in sewage waters of a municipal sewer collection system.

    PubMed

    Lindberg, Richard H; Östman, Marcus; Olofsson, Ulrika; Grabic, Roman; Fick, Jerker

    2014-07-01

    The concentrations and behaviour of 105 different active pharmaceutical ingredients (APIs) in the aqueous phase of sewage water within a municipal sewer collection system have been investigated. Sewage water samples were gathered from seven pump stations (one of which was located within a university hospital) and from sewage water treatment influent and effluent. The targeted APIs were quantified using a multi-residue method based on online solid phase extraction liquid chromatography tandem mass spectrometry. The method was thoroughly validated and complies with EU regulations on sample handling, limits of quantification, quality control and selectivity. 51 APIs, including antibiotics, antidepressants, hypertension drugs, analgesics, NSAIDs and psycholeptics, were found frequently within the sewer collection system. API concentrations and mass flows were evaluated in terms of their frequency of detection, daily variation, median/minimum/maximum/average concentrations, demographic dissimilarities, removal efficiencies, and mass flow profiles relative to municipal sales data. Our results suggest that some APIs are removed from, or introduced to, the aqueous phase of sewage waters within the studied municipal collection system. PMID:24768701

  11. CONTROL OF SEWER OVERFLOWS BY POLYMER INJECTION

    EPA Science Inventory

    In the past, the operator of a sewage collection system has had three alternatives for dealing with overloaded sanitary sewers; ignoring them, diverting them to storm sewers and streams, or pumping to other locations. An EPA-sponsored research program entitled, 'Polymers for Sewe...

  12. SANITARY-SEWER OVERFLOW CONTROL STRATEGY

    EPA Science Inventory

    This paper presents a strategy for the abatement of pollution from storm-generated sanitary-sewer overflows (SSO). Because of the great lengths of sanitary-sewer systems and their associated vast number of house-service laterals or building connections, it is often less expensive...

  13. Vacuum Flushing of Sewer Solids (Slides)

    EPA Science Inventory

    The vacuum sewer and tank cleaning (flushing) technology removes sewer solids from urban drainage systems, such as storage tanks and pipes. This technology is both effective and inexpensive. In addition, it can be considered a true green technology. It operates under atmospheri...

  14. Laboratory Information Systems.

    PubMed

    Henricks, Walter H

    2015-06-01

    Laboratory information systems (LISs) supply mission-critical capabilities for the vast array of information-processing needs of modern laboratories. LIS architectures include mainframe, client-server, and thin client configurations. The LIS database software manages a laboratory's data. LIS dictionaries are database tables that a laboratory uses to tailor an LIS to the unique needs of that laboratory. Anatomic pathology LIS (APLIS) functions play key roles throughout the pathology workflow, and laboratories rely on LIS management reports to monitor operations. This article describes the structure and functions of APLISs, with emphasis on their roles in laboratory operations and their relevance to pathologists. PMID:26065785

  15. Laboratory Information Systems.

    PubMed

    Henricks, Walter H

    2016-03-01

    Laboratory information systems (LISs) supply mission-critical capabilities for the vast array of information-processing needs of modern laboratories. LIS architectures include mainframe, client-server, and thin client configurations. The LIS database software manages a laboratory's data. LIS dictionaries are database tables that a laboratory uses to tailor an LIS to the unique needs of that laboratory. Anatomic pathology LIS (APLIS) functions play key roles throughout the pathology workflow, and laboratories rely on LIS management reports to monitor operations. This article describes the structure and functions of APLISs, with emphasis on their roles in laboratory operations and their relevance to pathologists. PMID:26851660

  16. Assessment of the service performance of drainage system and transformation of pipeline network based on urban combined sewer system model.

    PubMed

    Peng, Hai-Qin; Liu, Yan; Wang, Hong-Wu; Ma, Lu-Ming

    2015-10-01

    In recent years, due to global climate change and rapid urbanization, extreme weather events occur to the city at an increasing frequency. Waterlogging is common because of heavy rains. In this case, the urban drainage system can no longer meet the original design requirements, resulting in traffic jams and even paralysis and post a threat to urban safety. Therefore, it provides a necessary foundation for urban drainage planning and design to accurately assess the capacity of the drainage system and correctly simulate the transport effect of drainage network and the carrying capacity of drainage facilities. This study adopts InfoWorks Integrated Catchment Management (ICM) to present the two combined sewer drainage systems in Yangpu District, Shanghai (China). The model can assist the design of the drainage system. Model calibration is performed based on the historical rainfall events. The calibrated model is used for the assessment of the outlet drainage and pipe loads for the storm scenario currently existing or possibly occurring in the future. The study found that the simulation and analysis results of the drainage system model were reliable. They could fully reflect the service performance of the drainage system in the study area and provide decision-making support for regional flood control and transformation of pipeline network. PMID:26022395

  17. FLUSHING FOR SEWER SEDIMENT, CORROSION, AND POLLUTION CONTROL

    EPA Science Inventory

    This paper overviews causes of combined-sewer deterioration and their heavy pollutant discharges caused by rain events together with a discussion of their control methods. In particular, it covers in-sewer and combined-sewer overflow (CSO) storage-tank-flushing systems for removi...

  18. FLUSHING FOR SEWER SEDIMENT, CORROSION, AND POLLUTION CONTROL

    EPA Science Inventory

    This presentation overviews causes of sewer deterioration and heavy pollutant discharges caused by rain events together with a discussion of their control methods. In particular, it covers in-sewer- and combined sewer overflow- (CSO-) storage-tank-flushing systems for removal of ...

  19. SANITARY SEWER OVERFLOW ANALYSIS AND PLANNING (SSOAP) TOOLBOX

    EPA Science Inventory

    Description: The Nation's sanitary-sewer infrastructure is aging, with some sewers dating back over 100 years. Nationwide, there are more than 19,500 municipal sanitary-sewer collection systems serving an estimated 150 million people and about 40,000 SSO events per year. Becau...

  20. Isolation of heavy metal influx to the Cookeville sanitary sewer system and impact on municipal sludge management

    SciTech Connect

    George, D.B.; Borup, M.B.; Adams, V.D.; Prehn, M.P. )

    1989-04-01

    The city of Cookeville, Tennessee, has been experiencing problems with municipal sludge management. Of particular concern was the high concentration of regulated trace metals in the sludge. Primarily, cadmium limited the amount of sludge which was spread on the available cropland in 1985. The purpose of this project was to determine the major sources of heavy metal influx to the city's sanitary sewer system and the potential effects of heavy metals on sludge management. In general, the findings of the study indicate that city enforcement of existing State of Tennessee and city industrial pretreatment requirements will most likely extend the useful life of the currently available 388 ha land application sites to as much as ten years for certain sites. Cadmium governed the annual sludge application rates to the agricultural land. One plating industry discharged over 90% of the cadmium, copper, nickel, and zinc mass to the sanitary sewer. In addition, during 1986, the average concentration of most of the trace metals monitored in the municipal sludge deceased from levels reported in 1985.

  1. Innovative use of lamella clarifiers for central stormwater treatment in separate sewer systems.

    PubMed

    Weiss, Gebhard

    2014-01-01

    Lamella settlers have been used in the past few years for the sedimentation of particles in wastewater and stormwater applications. A new and very innovative approach for the treatment of stormwater flows is proposed which extends the portfolio of solutions beyond traditional settling tanks. Surface runoff is stored in a sewer or a basin and finally treated in a small but continuously operated lamella clarifier. The low throughput flow will yield good treatment efficiency at a small footprint. The possibilities of using existing storage volume in a storm sewer, as well as the structural flexibility of the arrangement are decisive benefits. As a large operational advantage, the lamellae may be cleaned mechanically, e.g. by pivoting under water. Finally, the flow and the sludge which will be sent to the downstream treatment plant will be minimized. A new comparative simulation method is proposed in order to assess an equivalent degree of stormwater treatment, either by achieving an equal annual volume of treated stormwater or, more directly, an equal amount of spilled pollutant load. The new solution is compared with a traditional settling tank according to current German design rules. Additionally, a case study from a real installation will be presented. PMID:24759518

  2. Dynamics of pollutant discharge in combined sewer systems during rain events: chance or determinism?

    PubMed

    Hannouche, A; Chebbo, G; Joannis, C

    2014-01-01

    A large database of continuous flow and turbidity measurements cumulating data on hundreds of rain events and dry weather days from two sites in Paris (called Quais and Clichy) and one in Lyon (called Ecully) is presented. This database is used to characterize and compare the behaviour of the three sites at the inter-events scale. The analysis is probed through three various variables: total volumes and total suspended solids (TSS) masses and concentrations during both wet and dry weather periods in addition to the contributions of diverse-origin sources to event flow volume and TSS load values. The results obtained confirm the previous findings regarding the spatial consistency of TSS fluxes and concentrations between both sites in Paris having similar land uses. Moreover, masses and concentrations are proven to be correlated between Parisian sites in a way that implies the possibility of some deterministic processes being reproducible from one catchment to another for a particular rain event. The results also demonstrate the importance of the contribution of wastewater and sewer deposits to the total events' loads and show that such contributions are not specific to Paris sewer networks. PMID:24759538

  3. Space-Derived Sewer Monitor

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The QuadraScan Longterm Flow Monitoring System is a second generation sewer monitor developed by American Digital Systems, Inc.'s founder Peter Petroff. Petroff, a former spacecraft instrumentation designer at Marshall Space Flight Center, used expertise based on principles acquired in Apollo and other NASA programs. QuadraScan borrows even more heavily from space technology, for example in its data acquisition and memory system derived from NASA satellites. "One-time" measurements are often plagued with substantial errors due to the flow of groundwater absorbed into the system. These system sizing errors stem from a basic informational deficiency: accurate, reliable data on how much water flows through a sewer system over a long period of time is very difficult to obtain. City officials are turning to "permanent," or long-term sewer monitoring systems. QuadraScan offers many advantages to city officials such as the early warning capability to effectively plan for city growth in order to avoid the crippling economic impact of bans on new sewer connections in effect in many cities today.

  4. A novel approach to model dynamic flow interactions between storm sewer system and overland surface for different land covers in urban areas

    NASA Astrophysics Data System (ADS)

    Chang, Tsang-Jung; Wang, Chia-Ho; Chen, Albert S.

    2015-05-01

    In this study, we developed a novel approach to simulate dynamic flow interactions between storm sewers and overland surface for different land covers in urban areas. The proposed approach couples the one-dimensional (1D) sewer flow model (SFM) and the two-dimensional (2D) overland flow model (OFM) with different techniques depending on the land cover type of the study areas. For roads, pavements, plazas, and so forth where rainfall becomes surface runoff before entering the sewer system, the rainfall-runoff process is simulated directly in the 2D OFM, and the runoff is drained to the sewer network via inlets, which is regarded as the input to 1D SFM. For green areas on which rainfall falls into the permeable ground surface and the generated direct runoff traverses terrain, the deduction rate is applied to the rainfall for reflecting the soil infiltration in the 2D OFM. For flat building roofs with drainage facilities allowing rainfall to drain directly from the roof to sewer networks, the rainfall-runoff process is simulated using the hydrological module in the 1D SFM where no rainfall is applied to these areas in the 2D OFM. The 1D SFM is used for hydraulic simulations in the sewer network. Where the flow in the drainage network exceeds its capacity, a surcharge occurs and water may spill onto the ground surface if the pressure head in a manhole exceeds the ground elevation. The overflow discharge from the sewer system is calculated by the 1D SFM and considered a point source in the 2D OFM. The overland flow will return into the sewer network when it reaches an inlet that connects to an un-surcharged manhole. In this case, the inlet is considered as a point sink in the 2D OFM and an inflow to a manhole in the 1D SFM. The proposed approach was compared to other five urban flood modelling techniques with four rainfall events that had previously recorded inundation areas. The merits and drawbacks of each modelling technique were compared and discussed. Based on the

  5. U.S. EPA Issues Technical Guides and Computer Tools for Sewer Condition and Capacity Assessment

    EPA Science Inventory

    The nation's sanitary sewer infrastructure is aging, with some sewers more than100 years old. Nationwide, there are more than 19,500 municipal sanitary-sewer collection systems serving an estimated 150 million people and about 40,000 sanitary sewer overflow (SSO) events per year...

  6. Advances in Sewer Condition and Capacity Assessment – Development and Applications of EPA SSOAP Toolbox

    EPA Science Inventory

    In the United States, sanitary sewer infrastructure is aging, with some sewers dating back over 100 years. Nationwide, there are more than 19,500 municipal sanitary-sewer collection systems serving an estimated 150 million people and about 40,000 sanitary sewer overflow (SSO) ev...

  7. [Identifying dry-weather flow and pollution load sources of separate storm sewer systems with different degrees of illicit discharge].

    PubMed

    Meng, Ying-ying; Feng, Cang; Li, Tian; Wang, Ling

    2009-12-01

    Dry-weather flow quantity and quality of three representative separate storm sewer systems in Shanghai-H, G, N were studied. Based on survey of operating status of the pumping stations as well as characteristics of the drainage systems, it was obtained that the interception sewage volumes per unit area in the three systems were 3610 m3/(km2 x d), 1550 m3/(km2 x d), 2970 m3/(km2 x d) respectively; the sanitary wastewater included accounted for 25%, 85% and 71% respectively; the interception volume of H was mainly composed of infiltrated underground water, so the dry-weather flow pollution was slighter, and the interception volumes of G, N were both mainly composed of sanitary wastewater, so the dry-weather which were flow pollution was relatively serious. The water characteristics of potential illicit discharge sources of dry-weather which were flow-grey water, black water and underground water were preliminarily explored, so that treating three parameters-LAS/ NH4+ -N, NH4+ -N/K, Mg/K as tracer parameters of grey water, black water and underground water was put forward. Moreover, the water characteristics of grey water and sanitary wastewater including black water were summarized: the feature of grey water was LAS/NH4+ -N > 0.2, NH4+ -N/K <1, and sanitary wastewater was LAS/NH4+ -N < 0.2, NH4+ -N/K >1. Based on the above, the applications of flow chart method and CMBM method in dry-weather flow detection of monitored storm systems were preliminarily discussed, and the results were basically same as that obtained in flow quantity and quality comprehensive analysis. The research results and methods can provide guidance for analysis and diagnosis of dry-weather flow sources and subsequent reconstruction projects in similar separate storm sewer systems at home. PMID:20187382

  8. Remaining Sites Verification Package for the 1607-F4 Sanitary Sewer System, Waste Site Reclassification Form 2004-131

    SciTech Connect

    L. M. Dittmer

    2007-12-03

    The 1607-F4 waste site is the former location of the sanitary sewer system that serviced the former 115-F Gas Recirculation Building. The system included a septic tank, drain field, and associated pipeline that were in use from 1944 to 1965. The 1607-F4 waste site received unknown amounts of sanitary sewage from the 115-F Gas Recirculation Building and may have potentially contained hazardous and radioactive contamination. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed that residual contaminant concentrations are protective of groundwater and the Columbia River.

  9. Indirect sulfur reduction via polysulfide contributes to serious odor problem in a sewer receiving nitrate dosage.

    PubMed

    Liang, Shuang; Zhang, Liang; Jiang, Feng

    2016-09-01

    Nitrate dosing is commonly used to control hydrogen sulfide production in sewer systems. However, quick rebound of the sulfide concentration after nitrate depletion has been observed and results in more serious odor and corrosion problem. To investigate the mechanism of sulfide regeneration in the nitrate-free period, a laboratory-scale sewer reactor was run for 30 days to simulate sulfide production and oxidation with intermittent nitrate addition. The results show that nitrate addition substantially reduced the sulfide concentration, but the produced elemental sulfur was then quickly reduced back to sulfide in nitrate-free periods. This induced more and more sulfide production in the sewer reactor. Elemental sulfur and polysulfide reductions were found in the sewage in nitrate-free periods, showing their contributions to the sulfide regeneration. Through batch tests, polysulfide was confirmed as the key intermediate for accelerating sulfur reduction during the nitrate-free period in the sewer. Sulfide production rates significantly increased by 65% and 59% in the presences of tetrasulfide and sulfur with sulfide, respectively, at the beginning of the test. While polysulfide formation was prevented by the ferrous chloride addition, the sulfur reduction rate remarkably decreased from 12.8 mgS/L-h to 1.8 mgS/L-h. This indicates that direct sulfur reduction was significantly slower than the indirect sulfur reduction via polysulfide; the latter process could be the cause for the quick rebound of the sulfide concentration in the sewer with intermittent nitrate dosing. Thus, the pathways of sulfur transformations in a sewer, both in the presence and absence of nitrate, were proposed. Microbial community analysis results reveal that some common sulfate-reducing bacteria (SRB) genera in sewer sediment were possible sulfur reducers. According to this finding, the effect and strategy of nitrate dosing for hydrogen sulfide control in sewers should be re-evaluated and re

  10. A simple model of flow-rate attenuation in sewer systems. Application to urban stormwater source control

    NASA Astrophysics Data System (ADS)

    Petrucci, Guido; Tassin, Bruno

    2015-03-01

    In urban stormwater management, "soft" solutions are being widely applied, including stormwater source control. However, no specific resource-effective model is available to assess their effects at the city-scale. As a consequence, source control regulations are often based on simplistic hydrologic assumptions. In this paper, we apply a top-down modeling approach to this problem, and we develop a simple model of flow-rate attenuation in the sewer system, using a numerical empirical approach. Then, we apply the model to source control regulations, assessing which type of regulation is more effective depending on relative positions in a catchment. We show that a model requiring only two types of information about a catchment (concentration time and pluviometry) can provide relevant information on source control effectiveness. This information could be helpful, for example, to define a stormwater zoning.

  11. Infrared Thermal Sensing Of Sewer Voids

    NASA Astrophysics Data System (ADS)

    Weil, Gary J.

    1984-03-01

    The deterioration of sewer systems and their associated infrastructure is one of the most serious problems facing city, state, federal, and world authorities. As an example, three large sewer voids in the St. Louis Metropolitan area caused over $2,000,000 in repair costs in only one year. The detection of voids in and around underground sewer lines, as well as the detection of effluent leakages is necessary when determining the priority of structures for repair. At the present time sewer voids are sometimes detected by manual methods which are expensive, time consuming, and not extremely accurate. Most of the time, the void is not detected until the street caves in. Infrared thermography has been found to be capable of detecting voids around underground sewer systems because under certain conditions, temperature differentials exist between various types of materials, effluents, and cavities. This paper describes the problem of deteriorating sewer systems, the field tests used to detect sewer voids, the equipment used in the field tests, the theories used to design the tests, various complicating factors, and anticipated future refinements on the procedure.

  12. Specialized Laboratory Information Systems.

    PubMed

    Dangott, Bryan

    2016-03-01

    Some laboratories or laboratory sections have unique needs that traditional anatomic and clinical pathology systems may not address. A specialized laboratory information system (LIS), which is designed to perform a limited number of functions, may perform well in areas where a traditional LIS falls short. Opportunities for specialized LISs continue to evolve with the introduction of new testing methodologies. These systems may take many forms, including stand-alone architecture, a module integrated with an existing LIS, a separate vendor-supplied module, and customized software. This article addresses the concepts underlying specialized LISs, their characteristics, and in what settings they are found. PMID:26851663

  13. Tracer tests and uncertainty propagation to design monitoring setups in view of pharmaceutical mass flow analyses in sewer systems.

    PubMed

    Klepiszewski, Kai; Venditti, Silvia; Koehler, Christian

    2016-07-01

    The development of a strategic approach to manage pollution of surface waters with pharmaceutical residues is in centre of interest in Europe. In this context a lack of reliable standard procedures for sampling and subsequent assessment of pharmaceutical mass flows in the water cycle has been identified. Authoritative assessment of relevant substance concentrations and flows is essential for environmental risk assessments and reliable efficiency analysis of measures to reduce or avoid emissions of drugs to water systems. Accordingly, a detailed preparation of monitoring campaigns including an accuracy check for the sampling configuration provides important information on the reliability of the gathered data. It finally supports data analysis and interpretation for evaluations of the efficiency of measures as well as for cost benefit assessments. The precision of mass flow balances is expected to be particularly weak when substances with high short-term variations and rare upstream emissions are considered. This is especially true for substance flow analysis in sewers close to source because of expectable highly dynamic flow conditions and emission patterns of pollutants. The case study presented here focusses on the verification of a monitoring campaign in a hospital sewer in Luxembourg. The results highlight the importance for a priori accuracy checks and provide a blueprint for well-designed monitoring campaigns of pharmaceutical trace pollutants on the one hand. On the other hand, the study provides evidence that the defined and applied continuous flow proportional sampling procedure enables a representative monitoring of short-term peak loads of the x-ray contrast media iobitridol close to source. PMID:27110888

  14. SEWER AND TANK SEDIMENT FLUSHING: CASE STUDIES

    EPA Science Inventory

    The objective of the report summarized here is to demonstrate that sewer system and storage tank flushing that reduces sediment deposition and accumulation is of prime importance to optimizing performance, maintaining structural integrity, and minimizing pollution of receiving wa...

  15. Energy Systems Laboratory Groundbreaking

    SciTech Connect

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.

    2011-01-01

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  16. Energy Systems Laboratory Groundbreaking

    ScienceCinema

    Hill, David; Otter, C.L.; Simpson, Mike; Rogers, J.W.;

    2013-05-28

    INL recently broke ground for a research facility that will house research programs for bioenergy, advanced battery systems, and new hybrid energy systems that integrate renewable, fossil and nuclear energy sources. Here's video from the groundbreaking ceremony for INL's new Energy Systems Laboratory. You can learn more about CAES research at http://www.facebook.com/idahonationallaboratory.

  17. Online dissolved methane and total dissolved sulfide measurement in sewers.

    PubMed

    Liu, Yiwen; Sharma, Keshab R; Fluggen, Markus; O'Halloran, Kelly; Murthy, Sudhir; Yuan, Zhiguo

    2015-01-01

    Recent studies using short-term manual sampling of sewage followed by off-line laboratory gas chromatography (GC) measurement have shown that a substantial amount of dissolved methane is produced in sewer systems. However, only limited data has been acquired to date due to the low frequency and short span of this method, which cannot capture the dynamic variations of in-sewer dissolved methane concentrations. In this study, a newly developed online measuring device was used to monitor dissolved methane concentrations at the end of a rising main sewer network, over two periods of three weeks each, in summer and early winter, respectively. This device uses an online gas-phase methane sensor to measure methane under equilibrium conditions after being stripped from the sewage. The data are then converted to liquid-phase methane concentrations according to Henry's Law. The detection limit and range are suitable for sewer application and can be adjusted by varying the ratio of liquid-to-gas phase volume settings. The measurement presented good linearity (R² > 0.95) during field application, when compared to off-line measurements. The overall data set showed a wide variation in dissolved methane concentration of 5-15 mg/L in summer and 3.5-12 mg/L in winter, resulting in a significant average daily production of 24.6 and 19.0 kg-CH₄/d, respectively, from the network with a daily average sewage flow of 2840 m³/day. The dissolved methane concentration demonstrated a clear diurnal pattern coinciding with flow and sulfide fluctuation, implying a relationship with the wastewater hydraulic retention time (HRT). The total dissolved sulfide (TDS) concentration in sewers can be determined simultaneously with the same principle. PMID:25462721

  18. Modeling of the fate of radionuclides in urban sewer systems after contamination due to nuclear or radiological incidents.

    PubMed

    Urso, L; Kaiser, J C; Andersson, K G; Andorfer, H; Angermair, G; Gusel, C; Tandler, R

    2013-04-01

    After an accidental radioactive contamination by aerosols in inhabited areas, the radiation exposure to man is determined by complex interactions between different factors such as dry or wet deposition, different types of ground surfaces, chemical properties of the radionuclides involved and building development as well as dependence on bomb construction e.g. design and geometry. At short-term, the first rainfall is an important way of natural decontamination: deposited radionuclides are washed off from surfaces and in urban areas the resulting contaminated runoff enters the sewer system and is collected in a sewage plant. Up to now the potential exposure caused by this process has received little attention and is estimated here with simulation models. The commercial rainfall-runoff model for urban sewer systems KANAL++ has been extended to include transport of radionuclides from surfaces through the drainage to various discharge facilities. The flow from surfaces is modeled by unit hydrographs, which produce boundary conditions for a system of 1d coupled flow and transport equations in a tube system. Initial conditions are provided by a map of surface contamination which is produced by geo-statistical interpolation of γ-dose rate measurements taking into account the detector environment. The corresponding methodology is implemented in the Inhabited Area Monitoring Module (IAMM) software module as part of the European decision system JRODOS. A hypothetical scenario is considered where a Radiation Dispersal Device (RDD) with Cs-137 is detonated in a small inhabited area whose drainage system is realistically modeled. The transition of deposited radionuclides due to rainfall into the surface runoff is accounted for by different nuclide-specific entrainment coefficients for paved and unpaved surfaces. The concentration of Cs-137 in water is calculated at the nodes of the drainage system and at the sewage treatment plant. The external exposure to staff of the

  19. Influence of characteristics on combined sewer performance.

    PubMed

    Möderl, M; Kleidorfer, M; Rauch, W

    2012-01-01

    Elements of combined sewer systems are among others sub-catchments, junctions, conduits and weirs with or without storage units. The spatial distribution and attributes of all these elements influence both system characteristics and sewer performance. Until today, little work has been done to analyse the influence of such characteristics in a case unspecific approach. In this study, 250 virtual combined sewer systems are analysed by defining groups of systems, which are representative for their different characteristics. The set was created with a further development of the case study generator (CSG), a tool for automatic generation of branched sewer systems. Combined sewer overflow and flooding is evaluated using performance indicators based on hydrodynamic simulations. The analysis of system characteristics, like those presented in this paper, helps researchers to understand coherences and aids practitioners in designing combined sewers. For instance, it was found that characteristics that have a positive influence on emission reduction frequently have a negative influence on flooding avoidance and vice versa. PMID:22797234

  20. Space Food Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; Russo, Dane M. (Technical Monitor)

    2001-01-01

    The Space Food Systems Laboratory (SFSL) is a multipurpose laboratory responsible for space food and package research and development. It is located on-site at Johnson Space Center in Building 17. The facility supports the development of flight food, menus, packaging and food related hardware for Shuttle, International Space Station, and Advanced Life Support food systems. All foods used to support NASA ground tests and/or missions must meet the highest standards before they are 'accepted' for use on actual space flights. The foods are evaluated for nutritional content, sensory acceptability, safety, storage and shelf life, and suitability for use in micro-gravity. The food packaging is also tested to determine its functionality and suitability for use in space. Food Scientist, Registered Dieticians, Packaging Engineers, Food Systems Engineers, and Technicians staff the Space Food Systems Laboratory.

  1. An integrated modelling concept for immission-based management of sewer system, wastewater treatment plant and river.

    PubMed

    Erbe, V; Schütze, M

    2005-01-01

    Today's planning standards deal with the individual urban drainage components (sewer system, wastewater treatment plant and receiving water) separately, i.e. they are often designed and operated as single components. As opposed to this, an integral handling considers the drainage components jointly. This novel approach allows a holistic and more sustainable planning of urban drainage systems. This paper presents an integrated modelling concept. The aim is to analyse fluxes through the total wastewater system and to integrate pollution-based control in the upstream direction, that is, e.g., managing the combined water retention tanks as a function of state variables in the WWTP or the receiving water. All models of the different subsystems are based on the Activated Sludge Model (ASM) concept of IWA, including River Water Quality Model No. 1 (RWOM). Simulations can be done in truly parallel mode using the simulation environment SIMBA. The integrated modelling concept is applied to the river Dhuenn and the urban wastewater system of the municipality of Odenthal (Germany). An optimised operation of the system using RTC proves to be a very effective measure. PMID:16248185

  2. Remaining Sites Verification Package for the 1607-F1 Sanitary Sewer System (124-F-1) and the 100-F-26:8 (1607-F1) Sanitary Sewer Pipelines Waste Sites, Waste Site Reclassification Form 2004-130

    SciTech Connect

    L. M. Dittmer

    2008-03-14

    The 1607-F1 Sanitary Sewer System (124-F-1), consisted of a septic tank, drain field, and associated pipelines that received sanitary waste water from the 1701-F Gatehouse, 1709-F Fire Station, and the 1720-F Administrative Office via the 100-F-26:8 pipelines. The septic tank required remedial action based on confirmatory sampling. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  3. Storm water modeling at Lawrence Livermore National Laboratory

    SciTech Connect

    Veis, Christopher

    1996-05-01

    Storm water modeling is important to Lawrence Livermore National Laboratory (LLNL) for compliance with regulations that govern water discharge at large industrial facilities. Modeling is also done to study trend in contaminants and storm sewer infrastructure. The Storm Water Management Model (SWMM) was used to simulate rainfall events at LLNL. SWMM is a comprehensive computer model for simulation of urban runoff quantity and quality in storm and combined sewer systems. Due to time constraints and ongoing research, no modeling was completed at LLNL. With proper information about the storm sewers, a SWMM simulation of a rainfall event on site would be beneficial to storm sewer analyst.

  4. Application of small community sewer system for improving the quality of the water resource in Korea.

    PubMed

    Myung, G N; Yu, M J

    2003-01-01

    An existing SBR plant in a rural area was retrofitted from a conventional fill-and-draw system to an intermittent-aeration system for additional nitrogen removal. This study indicated that organic and nitrogen removal efficiency was improved over that before the retrofitting. But effluent phosphorus concentration was increased gradually with the operating time. In the latter period of investigation, phosphorus concentration in effluent was higher than influent. It was regarded that an excessively accumulated phosphorus was released again under the anaerobic conditions of the sludge storage tank. The application of the electro-coagulation process was investigated as an alternative method in order to prevent phosphorus from re-releasing. A laboratory test for electro-coagulation indicated that T-P removal was more stable than the biological method only. In addition, it was confirmed that T-N and organic materials as well as T-P were removed simultaneously by the electrochemical reaction in the bioreactor combined with electrolysis by more than the bioreactor only. PMID:14753522

  5. To what extent does variability of historical rainfall series influence extreme event statistics of sewer system surcharge and overflows?

    PubMed

    Schaarup-Jensen, K; Rasmussen, M R; Thorndahl, S

    2009-01-01

    In urban drainage modelling long-term extreme statistics has become an important basis for decision-making e.g. in connection with renovation projects. Therefore it is of great importance to minimize the uncertainties with regards to long-term prediction of maximum water levels and combined sewer overflow (CSO) in drainage systems. These uncertainties originate from large uncertainties regarding rainfall inputs, parameters, and assessment of return periods. This paper investigates how the choice of rainfall time series influences the extreme events statistics of max water levels in manholes and CSO volumes. Traditionally, long-term rainfall series, from a local rain gauge, are unavailable. In the present case study, however, long and local rain series are available. 2 rainfall gauges have recorded events for approximately 9 years at 2 locations within the catchment. Beside these 2 gauges another 7 gauges are located at a distance of max 20 kilometers from the catchment. All gauges are included in the Danish national rain gauge system which was launched in 1976. The paper describes to what extent the extreme events statistics based on these 9 series diverge from each other and how this diversity can be handled, e.g. by introducing an "averaging procedure" based on the variability within the set of statistics. All simulations are performed by means of the MOUSE LTS model. PMID:19587406

  6. City sewer collectors biocorrosion

    NASA Astrophysics Data System (ADS)

    Ksiażek, Mariusz

    2014-12-01

    This paper presents the biocorrosion of city sewer collectors impregnated with special polymer sulphur binders, polymerized sulphur, which is applied as the industrial waste material. The city sewer collectors are settled with a colony of soil bacteria which have corrosive effects on its structure. Chemoautotrophic nitrifying bacteria utilize the residues of halites (carbamide) which migrate in the city sewer collectors, due to the damaged dampproofing of the roadway and produce nitrogen salts. Chemoorganotrophic bacteria utilize the traces of organic substrates and produce a number of organic acids (formic, acetic, propionic, citric, oxalic and other). The activity of microorganisms so enables the origination of primary and secondary salts which affect physical properties of concretes in city sewer collectors unfavourably.

  7. Development and evaluation of a decision-supporting model for identifying the source location of microbial intrusions in real gravity sewer systems.

    PubMed

    Kim, Minyoung; Choi, Christopher Y; Gerba, Charles P

    2013-09-01

    Assuming a scenario of a hypothetical pathogenic outbreak, we aimed this study at developing a decision-support model for identifying the location of the pathogenic intrusion as a means of facilitating rapid detection and efficient containment. The developed model was applied to a real sewer system (the Campbell wash basin in Tucson, AZ) in order to validate its feasibility. The basin under investigation was divided into 14 sub-basins. The geometric information associated with the sewer network was digitized using GIS (Geological Information System) and imported into an urban sewer network simulation model to generate microbial breakthrough curves at the outlet. A pre-defined amount of Escherichia coli (E. coli), which is an indicator of fecal coliform bacteria, was hypothetically introduced into 56 manholes (four in each sub-basin, chosen at random), and a total of 56 breakthrough curves of E. coli were generated using the simulation model at the outlet. Transport patterns were classified depending upon the location of the injection site (manhole), various known characteristics (peak concentration and time, pipe length, travel time, etc.) extracted from each E. coli breakthrough curve and the layout of sewer network. Using this information, we back-predicted the injection location once an E. coli intrusion was detected at a monitoring site using Artificial Neural Networks (ANNs). The results showed that ANNs identified the location of the injection sites with 57% accuracy; ANNs correctly recognized eight out of fourteen expressions with relying on data from a single detection sensor. Increasing the available sensors within the basin significantly improved the accuracy of the simulation results (from 57% to 100%). PMID:23770478

  8. Assessment of the ecotoxicological risk of combined sewer overflows for an aquatic system using a coupled "substance and bioassay" approach.

    PubMed

    Gooré Bi, Eustache; Monette, Frederic; Gasperi, Johnny; Perrodin, Yves

    2015-03-01

    Very few tools are available for assessing the impact of combined sewer overflows (CSOs) on receiving aquatic environments. The main goal of the study was to assess the ecotoxicological risk of CSOs for a surface aquatic ecosystem using a coupled "substance and bioassay" approach. Wastewater samples from the city of Longueuil, Canada CSO were collected for various rainfall events during one summer season and analyzed for a large panel of substances (n = 116). Four bioassays were also conducted on representative organisms of surface aquatic systems (Pimephales promelas, Ceriodaphnia dubia, Daphnia magna, and Oncorhynchus mykiss). The analytical data did not reveal any ecotoxicological risk for St. Lawrence River organisms, mainly due to strong effluent dilution. However, the substance approach showed that, because of their contribution to the ecotoxicological hazard posed by the effluent, total phosphorus (Ptot), aluminum (Al), total residual chlorine, chromium (Cr), copper (Cu), pyrene, ammonia (N-NH4 (+)), lead (Pb), and zinc (Zn) require more targeted monitoring. While chronic ecotoxicity tests revealed a potential impact of CSO discharges on P. promelas and C. dubia, acute toxicity tests did not show any effect on D. magna or O. mykiss, thus underscoring the importance of chronic toxicity tests as part of efforts aimed at characterizing effluent toxicity. Ultimately, the study leads to the conclusion that the coupled "substance and bioassay" approach is a reliable and robust method for assessing the ecotoxicological risk associated with complex discharges such as CSOs. PMID:25315929

  9. An expert system with radial basis function neural network based on decision trees for predicting sediment transport in sewers.

    PubMed

    Ebtehaj, Isa; Bonakdari, Hossein; Zaji, Amir Hossein

    2016-01-01

    In this study, an expert system with a radial basis function neural network (RBF-NN) based on decision trees (DT) is designed to predict sediment transport in sewer pipes at the limit of deposition. First, sensitivity analysis is carried out to investigate the effect of each parameter on predicting the densimetric Froude number (Fr). The results indicate that utilizing the ratio of the median particle diameter to pipe diameter (d/D), ratio of median particle diameter to hydraulic radius (d/R) and volumetric sediment concentration (C(V)) as the input combination leads to the best Fr prediction. Subsequently, the new hybrid DT-RBF method is presented. The results of DT-RBF are compared with RBF and RBF-particle swarm optimization (PSO), which uses PSO for RBF training. It appears that DT-RBF is more accurate (R(2) = 0.934, MARE = 0.103, RMSE = 0.527, SI = 0.13, BIAS = -0.071) than the two other RBF methods. Moreover, the proposed DT-RBF model offers explicit expressions for use by practicing engineers. PMID:27386995

  10. Purdue Hydrogen Systems Laboratory

    SciTech Connect

    Jay P Gore; Robert Kramer; Timothee L Pourpoint; P. V. Ramachandran; Arvind Varma; Yuan Zheng

    2011-12-28

    The Hydrogen Systems Laboratory in a unique partnership between Purdue University's main campus in West Lafayette and the Calumet campus was established and its capabilities were enhanced towards technology demonstrators. The laboratory engaged in basic research in hydrogen production and storage and initiated engineering systems research with performance goals established as per the USDOE Hydrogen, Fuel Cells, and Infrastructure Technologies Program. In the chemical storage and recycling part of the project, we worked towards maximum recycling yield via novel chemical selection and novel recycling pathways. With the basic potential of a large hydrogen yield from AB, we used it as an example chemical but have also discovered its limitations. Further, we discovered alternate storage chemicals that appear to have advantages over AB. We improved the slurry hydrolysis approach by using advanced slurry/solution mixing techniques. We demonstrated vehicle scale aqueous and non-aqueous slurry reactors to address various engineering issues in on-board chemical hydrogen storage systems. We measured the thermal properties of raw and spent AB. Further, we conducted experiments to determine reaction mechanisms and kinetics of hydrothermolysis in hydride-rich solutions and slurries. We also developed a continuous flow reactor and a laboratory scale fuel cell power generation system. The biological hydrogen production work summarized as Task 4.0 below, included investigating optimal hydrogen production cultures for different substrates, reducing the water content in the substrate, and integrating results from vacuum tube solar collector based pre and post processing tests into an enhanced energy system model. An automated testing device was used to finalize optimal hydrogen production conditions using statistical procedures. A 3 L commercial fermentor (New Brunswick, BioFlo 115) was used to finalize testing of larger samples and to consider issues related to scale up. Efforts

  11. SSOAP - A USEPA Toolbox for Sanitary Sewer Overflow Analysis and Control Planning - Presentation

    EPA Science Inventory

    The United States Environmental Protection Agency (USEPA) has identified a need to use proven methodologies to develop computer tools that help communities properly characterize rainfall-derived infiltration and inflow (RDII) into sanitary sewer systems and develop sanitary sewer...

  12. Environmental compliance Modeling at Lawrence Livermore National Laboratory

    SciTech Connect

    Brandstetter, E.R., LLNL

    1998-02-01

    This paper presents a post-rehabilitation monitoring and modeling study of the sanitary sewer system at Lawrence Livermore National Laboratory (LLNL). The study evaluated effectiveness of sewer system rehabilitation efforts and defined benchmarks for environmental success. A PCSWMM model for the sanitary sewer system was developed and applied to demonstrate the success of a $5 million rehabilitation effort. It determined that rainfall-dependent inflow and infiltration (RDI&I) had been reduced by 88%, and that system upgrades adequately manage predicted peak flows. An ongoing modeling and analysis program currently assists management in evaluating the system`s needs for continuing maintenance and further upgrades. This paper also summarizes a 1989 study that evaluated data collected from December 1, 1988, to January 6, 1989, to determine the adequacy of the LLNL sewer system to accommodate present and future peak flows, and the Sanitary Sewer Rehabilitation (SSR) project, which took place from 1991 through 1995.

  13. FLOCCULATION-FLOTATION AIDS FOR TREATMENT OF COMBINED SEWER OVERFLOWS

    EPA Science Inventory

    The objectives of this study were to investigate the flocculation/flotation characteristics of combined sewer overflow through laboratory and field testing. The concept involves the introduction of chemicals and buoyant flotation aids into the overflow and the subsequent cofloccu...

  14. SSOAP - A TOOLBOX FOR SANITARY SEWER OVERFLOW ANALYSIS AND PLANNING

    EPA Science Inventory

    Rainfall Derived Infiltration and Inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams and can also cause serio...

  15. Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox

    EPA Science Inventory

    Rainfall-derived infiltration and inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby receiving waters and can also ...

  16. DEVELOPMENT OF SANITARY SEWER OVERFLOW ANALYSIS AND PLANNING (SSOAP) TOOLBOX

    EPA Science Inventory

    Rainfall Derived Infiltration and Inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams. RDII can also cause se...

  17. SSOAP - A TOOLBOX FOR SANITARY SEWER OVERFLOW ANALYSIS AND PLANNING

    EPA Science Inventory

    Rainfall Derived Infiltration and Inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams and can also cause seriou...

  18. Review of Sewer Design Criteria and RDII Prediction Methods

    EPA Science Inventory

    Rainfall-derived Infiltration and Inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams and can also cause serio...

  19. Assessment of pollutant load emission from combined sewer overflows based on the online monitoring.

    PubMed

    Brzezińska, Agnieszka; Zawilski, Marek; Sakson, Grażyna

    2016-09-01

    Cities equipped with combined sewer systems discharge during wet weather a lot of pollutants into receiving waters by combined storm overflows (CSOs). According to the Polish legislation, CSOs should be activated no more than ten times per year, but in Lodz, most of the 18 existing CSOs operate much more frequently. To assess the pollutant load emitted by one of the existing CSOs, the sensors for measuring the concentration of total suspended solids (SOLITAX sc) and dissolved chemical oxygen demand (UVAS plus) installed in the overflow chamber as well as two flowmeters placed in the outflow sewer were used. In order to check the data from sensors, laboratory tests of combined wastewater quality were conducted simultaneously. For the analysis of the total pollutant load emitted from the overflow, the raw data was denoised using the Savitzky-Golay method. Comparing the load calculated from the analytical results to online smoothed measurements, negligible differences were found, which confirms the usefulness of applying the sensors in the combined sewer system. Online monitoring of the quantity and quality of wastewater emitted by the combined sewer overflows to water receivers, provides a considerable amount of data very useful for combined sewerage upgrading based on computer modelling, and allows for a significant reduction of laboratory analysis. PMID:27488195

  20. Remaining Sites Verification Package for the 1607-B2 Septic System and 100-B-14:2 Sanitary Sewer System, Waste Site Reclassification Form 2004-006

    SciTech Connect

    L. M. Dittmer

    2007-03-21

    The 100-B-14:2 subsite encompasses the former sanitary sewer feeder lines associated with the 1607-B2 and 1607-B7 septic systems. Feeder lines associated with the 185/190-B building have also been identified as the 100-B-14:8 subsite, and feeder lines associated with the 1607-B7 septic system have also been identified as the 100-B-14:9 subsite. These two subsites have been administratively cancelled to resolve the redundancy. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  1. Dynamic online sewer modelling in Helsingborg.

    PubMed

    Hernebring, C; Jönsson, L E; Thorén, U B; Møller, A

    2002-01-01

    Within the last decade, the sewer system in Helsingborg, Sweden has been rehabilitated in many ways along with the reconstruction of the WWTP Oresundsverket in order to obtain a high degree of nitrogen and phosphorus removal. In that context a holistic view has been applied in order to optimise the corrective measures as seen from the effects in the receiving waters. A sewer catchment model has been used to evaluate several operation strategies and the effect of introducing RTC. Recently, a MOUSE ONLINE system was installed. In this phase the objective is to establish a stable communication with the SCADA system and to generate short-term flow forecasts. PMID:11936663

  2. INNOVATIVE METHODS FOR THE OPTIMIZATION OF GRAVITY STORM SEWER DESIGN

    EPA Science Inventory

    The purpose of this paper is to describe a new method for optimizing the design of urban storm sewer systems. Previous efforts to optimize gravity sewers have met with limited success because classical optimization methods require that the problem be well behaved, e.g. describ...

  3. 7. VIEW TO NORTH SHOWING SEWER CONSTRUCTION IN FOREGROUND AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. VIEW TO NORTH SHOWING SEWER CONSTRUCTION IN FOREGROUND AND BUILDING F IN THE LEFT BACKGROUND. 8X10 black and white gelatin print. United States Coast Guard, Air Station Contract 1247, Sewer System. 1956. - U.S. Coast Guard Air Station San Francisco, 1020 North Access Road, San Francisco, San Francisco County, CA

  4. CONTROL STRATEGY FOR STORM-GENERATED SANITARY-SEWER OVERFLOWS

    EPA Science Inventory

    This paper presents a strategy for the abatement of pollution from storm-generated sanitary-sewer overflows (SSO). Because of the great lengths of sanitary sewer systems, it is often less expensive to use alterantives to sewerline rehabilitation for infiltration/inflow (I/I) and ...

  5. CONTROL STRATEGY FOR STORM-GENERATED SANITARY-SEWER OVERFLOWS

    EPA Science Inventory

    This paper presents a strategy for the abatement of pollution from storm-generated sanitary-sewer overflows (SSO). Because of the great lengths of sanitary-sewer systems and their associated vast number of house-service laterals or building connections, it is often less expensiv...

  6. Control Strategy for Storm-Generated Sanitary Sewer Overflows

    EPA Science Inventory

    This presentation covers a strategy for the abatement of pollution from sanitary-sewer overflows (SSO). Because of the great lengths of sanitary sewer systems, it is often less expensive to use alternatives to sewerline rehabilitation for infiltration/inflow (I/I) and associated ...

  7. 40 CFR 35.935-16 - Sewer use ordinance and evaluation/rehabilitation program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .../rehabilitation program. 35.935-16 Section 35.935-16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Clean Water Act § 35.935-16 Sewer use ordinance and evaluation/rehabilitation program. (a) The grantee... sewer use ordinance, and the grantee is complying with the sewer system evaluation and...

  8. 40 CFR 35.935-16 - Sewer use ordinance and evaluation/rehabilitation program.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .../rehabilitation program. 35.935-16 Section 35.935-16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Clean Water Act § 35.935-16 Sewer use ordinance and evaluation/rehabilitation program. (a) The grantee... sewer use ordinance, and the grantee is complying with the sewer system evaluation and...

  9. 40 CFR 35.935-16 - Sewer use ordinance and evaluation/rehabilitation program.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .../rehabilitation program. 35.935-16 Section 35.935-16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Clean Water Act § 35.935-16 Sewer use ordinance and evaluation/rehabilitation program. (a) The grantee... sewer use ordinance, and the grantee is complying with the sewer system evaluation and...

  10. 40 CFR 35.935-16 - Sewer use ordinance and evaluation/rehabilitation program.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .../rehabilitation program. 35.935-16 Section 35.935-16 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY...-Clean Water Act § 35.935-16 Sewer use ordinance and evaluation/rehabilitation program. (a) The grantee... sewer use ordinance, and the grantee is complying with the sewer system evaluation and...

  11. COMPUTER MODEL ANALYSIS FOR CONTROL PLANNING OF SANITARY-SEWER OVERFLOWS

    EPA Science Inventory

    The Nation's sanitary-sewer infrastructure is aging with some sewers dating back over 100 years. There are more than 19,500 municipal sanitary-sewer collection systems nationwide serving an estimated 150 million people and comprising about 800,000 km (500,000 mi) of municipally ...

  12. From sewer to saviour - targeting the lymphatic system to promote drug exposure and activity.

    PubMed

    Trevaskis, Natalie L; Kaminskas, Lisa M; Porter, Christopher J H

    2015-11-01

    The lymphatic system serves an integral role in fluid homeostasis, lipid metabolism and immune control. In cancer, the lymph nodes that drain solid tumours are a primary site of metastasis, and recent studies have suggested intrinsic links between lymphatic function, lipid deposition, obesity and atherosclerosis. Advances in the current understanding of the role of the lymphatics in pathological change and immunity have driven the recognition that lymph-targeted delivery has the potential to transform disease treatment and vaccination. In addition, the design of lymphatic delivery systems has progressed from simple systems that rely on passive lymphatic access to sophisticated structures that use nanotechnology to mimic endogenous macromolecules and lipid conjugates that 'hitchhike' onto lipid transport processes. Here, we briefly summarize the lymphatic system in health and disease and the varying mechanisms of lymphatic entry and transport, as well as discussing examples of lymphatic delivery that have enhanced therapeutic utility. We also outline future challenges to effective lymph-directed therapy. PMID:26471369

  13. A Review of Advanced Sewer System Design Technologies (WERF Report INFR4SG09d)

    EPA Science Inventory

    Abstract: This document seeks to collect into one place current and new technologies about sewerage system design. The document organizes the information found in the 295 documents that were reviewed into six subject areas: Advanced Onsite Technologies; Alternative Wastewater C...

  14. Extreme Precipitation and Emergency Room Visits for Gastrointestinal Illness in Areas with and without Combined Sewer Systems: An Analysis of Massachusetts Data, 2003–2007

    PubMed Central

    Li, Quanlin; Wang, Shiliang; Messier, Kyle P.; Wade, Timothy J.; Hilborn, Elizabeth D.

    2015-01-01

    Background Combined sewer overflows (CSOs) occur in combined sewer systems when sewage and stormwater runoff are released into water bodies, potentially contaminating water sources. CSOs are often caused by heavy precipitation and are expected to increase with increasing extreme precipitation associated with climate change. Objectives The aim of this study was to assess whether the association between heavy rainfall and rate of emergency room (ER) visits for gastrointestinal (GI) illness differed in the presence of CSOs. Methods For the study period 2003–2007, time series of daily rate of ER visits for GI illness and meteorological data were organized for three exposure regions: a) CSOs impacting drinking water sources, b) CSOs impacting recreational waters, c) no CSOs. A distributed lag Poisson regression assessed cumulative effects for an 8-day lag period following heavy (≥ 90th and ≥ 95th percentile) and extreme (≥ 99th percentile) precipitation events, controlling for temperature and long-term time trends. Results The association between extreme rainfall and rate of ER visits for GI illness differed among regions. Only the region with drinking water exposed to CSOs demonstrated a significant increased cumulative risk for rate (CRR) of ER visits for GI for all ages in the 8-day period following extreme rainfall: CRR: 1.13 (95% CI: 1.00, 1.28) compared with no rainfall. Conclusions The rate of ER visits for GI illness was associated with extreme precipitation in the area with CSO discharges to a drinking water source. Our findings suggest an increased risk for GI illness among consumers whose drinking water source may be impacted by CSOs after extreme precipitation. Citation Jagai JS, Li Q, Wang S, Messier KP, Wade TJ, Hilborn ED. 2015. Extreme precipitation and emergency room visits for gastrointestinal illness in areas with and without combined sewer systems: an analysis of Massachusetts data, 2003–2007. Environ Health Perspect 123:873–879;

  15. A review of the Y-12 Plant discharge of enriched uranium to the sanitary sewer (DEUSS)

    SciTech Connect

    Not Available

    1991-09-01

    The Oak Ridge Y-12 Plant is situated adjacent to the Oak Ridge city limits and is operated by the United States Department of Energy (DOE). The Y-12 Plant is located on 4,860 acres, which is collectively referred to as the Y-12 Plant site. Among the missions for which the facility is in existence are producing nuclear weapons components, supporting weapon design laboratories, and processing special nuclear materials (SNM). The Y-12 Plant is under the regulatory guidance of DOE Order 5400.5 and has complied with the technical requirements governing SNM since its issue. However, an in-depth review with appropriate documentation had not been performed, prior to the effect presented herein, to substantiate this claim. As a result of the solid waste issue, it was determined that other types of waste should be formally reviewed for content with respect to SNM. Therefore, a project was formed to investigate the conveyance of SNM through the sanitary sewer system. It is emphasized that this project addresses only effluent from the sanitary sewer system and not the storm sewer system. The project reviewed sanitary sewer data both for the Y-12 Plant and the Y-12 Plant site.

  16. Integrated operation of sewer system and WWTP by simulation-based control of the WWTP inflow.

    PubMed

    Seggelke, K; Rosenwinkel, K H; Vanrolleghem, P A; Krebs, P

    2005-01-01

    In recent years numerical modelling became a standard procedure to optimise urban wastewater systems design and operation by integration. For dynamic control of the wastewater teatment plant (WWTP) inflow, a model-based predictive concept is introduced aiming at improving the receiving water quality. An on-line simulator running parallel to the real WWTP operation reflects the actual state of operation and provides this model information to a prognosis tool which determines the best option for the WWTP inflow. The investigations showed that it is possible to reduce the NH4-N peak concentrations in the receiving water by dynamic WWTP inflow control based on predictive scenario analysis. PMID:16248196

  17. MANUAL: REAL TIME CONTROL OF COMBINED SEWERS

    EPA Science Inventory

    Managers, engineers, and operators of combined urban sewer systems are faced with difficult problems related to the operation and maintenance of their facilities. In addition to the issues related to the operation and upkeep of the system, many sewerage agencies are facing increa...

  18. Importance of anthropogenic climate impact, sampling error and urban development in sewer system design.

    PubMed

    Egger, C; Maurer, M

    2015-04-15

    Urban drainage design relying on observed precipitation series neglects the uncertainties associated with current and indeed future climate variability. Urban drainage design is further affected by the large stochastic variability of precipitation extremes and sampling errors arising from the short observation periods of extreme precipitation. Stochastic downscaling addresses anthropogenic climate impact by allowing relevant precipitation characteristics to be derived from local observations and an ensemble of climate models. This multi-climate model approach seeks to reflect the uncertainties in the data due to structural errors of the climate models. An ensemble of outcomes from stochastic downscaling allows for addressing the sampling uncertainty. These uncertainties are clearly reflected in the precipitation-runoff predictions of three urban drainage systems. They were mostly due to the sampling uncertainty. The contribution of climate model uncertainty was found to be of minor importance. Under the applied greenhouse gas emission scenario (A1B) and within the period 2036-2065, the potential for urban flooding in our Swiss case study is slightly reduced on average compared to the reference period 1981-2010. Scenario planning was applied to consider urban development associated with future socio-economic factors affecting urban drainage. The impact of scenario uncertainty was to a large extent found to be case-specific, thus emphasizing the need for scenario planning in every individual case. The results represent a valuable basis for discussions of new drainage design standards aiming specifically to include considerations of uncertainty. PMID:25644630

  19. Online-simulation of the WWTP to minimise the total emission of WWTP and sewer system.

    PubMed

    Seggelke, K; Rosenwinkel, K H

    2002-01-01

    In this paper, the application of a WWTP-Online-Simulation with the objective to reduce the total emission into the receiving waters is explained. Apart from an introduction and a short description of the possible reduction potentials, first results of the current research project (financed by the German ministry BMBF) are presented. Results of the pilot plant with different experiments of increased stormwater inflow than usual and different control strategies showed the possibility to treat stormwater up to the quadruple dry-weather flow while still meeting the effluent values. However, this is not always guaranteed, and thus a monitoring system with integrated control strategies which is adapted to the load case "stormwater" with prognosis load cases becomes necessary. In the presented example, the simulation (Activated Sludge Model 2d) achieved an excellent match with the measured effluent values of the aeration tank (NH4-N, NO3-N) over a period of several months. The most important prerequisites for good (online-) simulation results are the exact knowledge of the plant and the plausibility and alternative concepts for the measured values in case of sensor failure. PMID:11902459

  20. Benchmarking management of sewer systems: more to learn than cost effectiveness.

    PubMed

    Beenen, A S

    2005-01-01

    Thirty-nine municipalities in the Netherlands conducted a pilot study to develop and try out a methodology to compare the quality of their sewerage management. The participants chose a multidimensional benchmarking with an emphasis on the aim of improving the working processes within sewerage management. A second goal was accountability to the stakeholders. The benchmarking methodology was based as well on analysing data within a "balanced-score-card" system as on intensive exchange of knowledge and experiences. The pilot resulted in a state of the art overview of the quality of sewerage management in the Netherlands. However, above all, it resulted in the shocking fact that the work is carried out in many different ways which cannot be explained by technical reasons or local circumstances. To pinpoint best practices and actually implement these improvements the learning process must continue after the analysis and presentation of the data. A start has been made to form regional specialist networks for further discussion and exchange of experiences. PMID:16477987

  1. Prediction of sulphide build-up in filled sewer pipes.

    PubMed

    Alani, Amir M; Faramarzi, Asaad; Mahmoodian, Mojtaba; Tee, Kong Fah

    2014-08-01

    Millions of dollars are being spent worldwide on the repair and maintenance of sewer networks and wastewater treatment plants. The production and emission of hydrogen sulphide has been identified as a major cause of corrosion and odour problems in sewer networks. Accurate prediction of sulphide build-up in a sewer system helps engineers and asset managers to appropriately formulate strategies for optimal sewer management and reliability analysis. This paper presents a novel methodology to model and predict the sulphide build-up for steady state condition in filled sewer pipes. The proposed model is developed using a novel data-driven technique called evolutionary polynomial regression (EPR) and it involves the most effective parameters in the sulphide build-up problem. EPR is a hybrid technique, combining genetic algorithm and least square. It is shown that the proposed model can provide a better prediction for the sulphide build-up as compared with conventional models. PMID:24956763

  2. Technology Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Brame, Ray; And Others

    This guide contains 43 modules of laboratory activities for technology education courses. Each module includes an instructor's resource sheet and the student laboratory activity. Instructor's resource sheets include some or all of the following elements: module number, course title, activity topic, estimated time, essential elements, objectives,…

  3. An Environmental Innovation: The Sewer Mouse

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the effort to clean up America's waters, there is a little-known complicating factor: because they leak, sewer systems in many American cities are causing rather than preventing pollution of rivers and lakes. Fixing the leaks is difficult because their locations are unknown. Maintenance crews can't tear up a whole city looking for cracks in the pipes; they must first determine which areas are most likely suspects. An aerospace spinoff is providing help in that regard. The problem starts with heavy rains. Rainwater naturally flows into the sewers from streets, but sewage systems are designed to accommodate it. However, they are not designed to handle the additional flow of "groundwater", rain absorbed by the earth which seeps into the sewers through leaks in pipes and sewer walls. After a storm, groundwater seepage can increase the waterflow to deluge proportions, with the result that sewage treatment plants are incapable of processing the swollen flow. When that happens the sluices must be opened, dumping raw sewage into rivers and lakes.

  4. Sulfide and methane production in sewer sediments: Field survey and model evaluation.

    PubMed

    Liu, Yiwen; Tugtas, A Evren; Sharma, Keshab R; Ni, Bing-Jie; Yuan, Zhiguo

    2016-02-01

    Sewer sediment processes have been reported to significantly contribute to overall sulfide and methane production in sewers, at a scale comparable to that of sewer biofilms. The physiochemical and biological characteristics of sewer sediments are heterogeneous; however, the variability of in-sediments sulfide and methane production rates among sewers has not been assessed to date. In this study, five sewer sediment samples were collected from two cities in Australia with different climatic conditions. Batch assays were conducted to determine the rates of sulfate reduction and methane production under different flow velocity (shear stress) conditions as well as under completely mixed conditions. The tests showed substantial and variable sulfate reduction and methane production activities among different sediments. Sulfate reduction and methane production from sewer sediments were confirmed to be areal processes, and were dependent on flow velocity/shear stress. Despite of the varying characteristics and reactions kinetics, the sulfate reduction and methane production processes in all sediments could be well described by a one-dimensional sewer sediment model recently developed based on results obtained from a laboratory sewer sediment reactor. Model simulations indicated that the in-situ contribution of sewer sediment emissions could be estimated without the requirement of measuring the specific sediment characteristics or the sediment depths. PMID:26650449

  5. Assessing the Impacts of Pulp Loading from Non-Dispersible Materials on Downstream Sewer Systems (WERF Report INFR1R14)

    EPA Science Inventory

    Abstract:This study subjected wipes from five different manufacturers to a variety of tests to determine if changes to their physical characteristics occur when introduced into a sewer systemand what effect the shredded material (pulp) has on the downstream sewer. Shredded and no...

  6. Impact of oxygen injection on CH4 and N2O emissions from rising main sewers.

    PubMed

    Ganigué, Ramon; Yuan, Zhiguo

    2014-11-01

    Oxygen injection is a commonly used mitigation strategy for sulfide control in sewers. Methane, a potent greenhouse gas, is also produced in sewers. Oxygen injection may reduce methane generation/emission, but could potentially lead to N2O production due to the development of a nitrifying microbial community. The impact of oxygen dosing for sulfide control in sewers on CH4 and N2O production was assessed in this study in laboratory sewer reactors. Results showed that oxygen injection is able to reduce CH4 formation in sewers, although full control of CH4 was not achieved, likely due to partial oxygen penetration into sewer biofilm. The experimental results also revealed a nitrogen loss of around 5 mN/L. However, no significant N2O accumulation was detected. PMID:24975803

  7. Production Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Gallaway, Ann, Ed.

    This production systems guide provides teachers with learning activities for secondary students. Introductory materials include an instructional planning outline and worksheet, an outline of essential elements, domains and objectives, a course description, and a content outline. The guide contains 30 modules on the following topics: production…

  8. Communication Systems. Laboratory Activities.

    ERIC Educational Resources Information Center

    Sutherland, Barbara, Ed.

    This communication systems guide provides teachers with learning activities for secondary students. Introductory materials include an instructional planning outline and worksheet, an outline of essential elements, a list of objectives, a course description, and a content outline. The guide contains 32 modules on the following topics: story…

  9. An analysis of the Cured-in-Place Pipe (CIPP) subproject of the sanitary sewer rehabilitation project

    SciTech Connect

    Morrow, W.; Siemiatkoski, S.

    1994-01-25

    The comprehensive rehabilitation of the Lawrence Livermore National Laboratory Sanitary Sewer System centers around a Cured-in-Place Pipe project. Driven by regulatory requirements to eliminate the potential for exfiltration, a careful condition assessment of the existing infrastructure was conducted. Under programmatic constraints to maintain continuous operations, the INLINER USA cured-in-place pipe system was selected as the appropriate technology, and the project is currently under contract.

  10. On-line monitoring of methane in sewer air

    PubMed Central

    Liu, Yiwen; Sharma, Keshab R.; Murthy, Sudhir; Johnson, Ian; Evans, Ted; Yuan, Zhiguo

    2014-01-01

    Methane is a highly potent greenhouse gas and contributes significantly to climate change. Recent studies have shown significant methane production in sewers. The studies conducted so far have relied on manual sampling followed by off-line laboratory-based chromatography analysis. These methods are labor-intensive when measuring methane emissions from a large number of sewers, and do not capture the dynamic variations in methane production. In this study, we investigated the suitability of infrared spectroscopy-based on-line methane sensors for measuring methane in humid and condensing sewer air. Two such sensors were comprehensively tested in the laboratory. Both sensors displayed high linearity (R2 > 0.999), with a detection limit of 0.023% and 0.110% by volume, respectively. Both sensors were robust against ambient temperature variations in the range of 5 to 35°C. While one sensor was robust against humidity variations, the other was found to be significantly affected by humidity. However, the problem was solved by equipping the sensor with a heating unit to increase the sensor surface temperature to 35°C. Field studies at three sites confirmed the performance and accuracy of the sensors when applied to actual sewer conditions, and revealed substantial and highly dynamic methane concentrations in sewer air. PMID:25319343

  11. On-line monitoring of methane in sewer air

    NASA Astrophysics Data System (ADS)

    Liu, Yiwen; Sharma, Keshab R.; Murthy, Sudhir; Johnson, Ian; Evans, Ted; Yuan, Zhiguo

    2014-10-01

    Methane is a highly potent greenhouse gas and contributes significantly to climate change. Recent studies have shown significant methane production in sewers. The studies conducted so far have relied on manual sampling followed by off-line laboratory-based chromatography analysis. These methods are labor-intensive when measuring methane emissions from a large number of sewers, and do not capture the dynamic variations in methane production. In this study, we investigated the suitability of infrared spectroscopy-based on-line methane sensors for measuring methane in humid and condensing sewer air. Two such sensors were comprehensively tested in the laboratory. Both sensors displayed high linearity (R2 > 0.999), with a detection limit of 0.023% and 0.110% by volume, respectively. Both sensors were robust against ambient temperature variations in the range of 5 to 35°C. While one sensor was robust against humidity variations, the other was found to be significantly affected by humidity. However, the problem was solved by equipping the sensor with a heating unit to increase the sensor surface temperature to 35°C. Field studies at three sites confirmed the performance and accuracy of the sensors when applied to actual sewer conditions, and revealed substantial and highly dynamic methane concentrations in sewer air.

  12. On-line monitoring of methane in sewer air.

    PubMed

    Liu, Yiwen; Sharma, Keshab R; Murthy, Sudhir; Johnson, Ian; Evans, Ted; Yuan, Zhiguo

    2014-01-01

    Methane is a highly potent greenhouse gas and contributes significantly to climate change. Recent studies have shown significant methane production in sewers. The studies conducted so far have relied on manual sampling followed by off-line laboratory-based chromatography analysis. These methods are labor-intensive when measuring methane emissions from a large number of sewers, and do not capture the dynamic variations in methane production. In this study, we investigated the suitability of infrared spectroscopy-based on-line methane sensors for measuring methane in humid and condensing sewer air. Two such sensors were comprehensively tested in the laboratory. Both sensors displayed high linearity (R(2) > 0.999), with a detection limit of 0.023% and 0.110% by volume, respectively. Both sensors were robust against ambient temperature variations in the range of 5 to 35°C. While one sensor was robust against humidity variations, the other was found to be significantly affected by humidity. However, the problem was solved by equipping the sensor with a heating unit to increase the sensor surface temperature to 35°C. Field studies at three sites confirmed the performance and accuracy of the sensors when applied to actual sewer conditions, and revealed substantial and highly dynamic methane concentrations in sewer air. PMID:25319343

  13. Laboratory evaluation of adhesive systems.

    PubMed

    Barkmeier, W W; Cooley, R L

    1992-01-01

    Adhesive bonding of resin materials to acid-conditioned enamel is a clinically proven technique in preventative, restorative, and orthodontic procedures. Laboratory evaluations of etched-enamel resin bonding have shown excellent bond strengths and the virtual elimination of marginal microleakage. Adhesion to dentin has been more of a challenge. Earlier-generation dentin bonding systems did not yield high bond strengths in the laboratory or prevent marginal microleakage. Newer-generation adhesive systems generally use a dentin conditioner to modify or remove the smear layer and a subsequent application of an adhesive resin bonding agent. Laboratory evaluations of newer systems have shown bond strengths that approach or actually exceed that of etched enamel resin bonding. Bond strengths have improved with the evolution of dentin bonding systems, and microleakage from the cementum/dentin margin has been significantly reduced or prevented with the newer systems. Although laboratory testing of adhesive systems provides a mechanism to screen and compare newly developed systems, clinical trials are essential to document long-term clinical performance. PMID:1470553

  14. The Indiana Laboratory System: Focus on Environmental Laboratories

    PubMed Central

    Hammes, Kara R.; Matheson, Shelley R.; Lovchik, Judith C.

    2013-01-01

    The Indiana State Department of Health (ISDH) Laboratories are working to improve Indiana's state public health laboratory system. Environmental laboratories are key stakeholders in this system, but their needs have been largely unaddressed prior to this project. In an effort to identify and engage these laboratories, the ISDH Laboratories organized and hosted the First Annual Environmental Laboratories Meeting. The focus of this meeting was on water-testing laboratories throughout the state. Meeting objectives included issue identification, disaster recovery response, and communication efforts among system partners. Common concerns included the need for new technology and updated methods, analyst training, certification programs for analysts and sample collectors, electronic reporting, and regulation interpretation and inspection consistency. Now that these issues have been identified, they can be addressed through a combination of laboratory workgroups and collaboration with Indiana's regulatory agencies. Participants were overwhelmingly positive about the meeting's outcomes and were willing to help with future laboratory system improvement projects. PMID:23997304

  15. Wastewater-Enhanced Microbial Corrosion of Concrete Sewers.

    PubMed

    Jiang, Guangming; Zhou, Mi; Chiu, Tsz Ho; Sun, Xiaoyan; Keller, Jurg; Bond, Philip L

    2016-08-01

    Microbial corrosion of concrete in sewers is known to be caused by hydrogen sulfide, although the role of wastewater in regulating the corrosion processes is poorly understood. Flooding and splashing of wastewater in sewers periodically inoculates the concrete surface in sewer pipes. No study has systematically investigated the impacts of wastewater inoculation on the corrosion of concrete in sewers. This study investigated the development of the microbial community, sulfide uptake activity, and the change of the concrete properties for coupons subjected to periodic wastewater inoculation. The concrete coupons were exposed to different levels of hydrogen sulfide under well-controlled conditions in laboratory-scale corrosion chambers simulating real sewers. It was evident that the periodic inoculation induced higher corrosion losses of the concrete in comparison to noninoculated coupons. Instantaneous measurements such as surface pH did not reflect the cumulative corrosion losses caused by long-term microbial activity. Analysis of the long-term profiles of the sulfide uptake rate using a Gompertz model supported the enhanced corrosion activity and greater corrosion loss. The enhanced corrosion rate was due to the higher sulfide uptake rates induced by wastewater inoculation, although the increasing trend of sulfide uptake rates was slower with wastewater. Increased diversity in the corrosion-layer microbial communities was detected when the corrosion rates were higher. This coincided with the environmental conditions of increased levels of gaseous H2S and the concrete type. PMID:27390870

  16. LABORATORY VOICE DATA ENTRY SYSTEM.

    SciTech Connect

    PRAISSMAN,J.L.SUTHERLAND,J.C.

    2003-04-01

    We have assembled a system using a personal computer workstation equipped with standard office software, an audio system, speech recognition software and an inexpensive radio-based wireless microphone that permits laboratory workers to enter or modify data while performing other work. Speech recognition permits users to enter data while their hands are holding equipment or they are otherwise unable to operate a keyboard. The wireless microphone allows unencumbered movement around the laboratory without a ''tether'' that might interfere with equipment or experimental procedures. To evaluate the potential of voice data entry in a laboratory environment, we developed a prototype relational database that records the disposal of radionuclides and/or hazardous chemicals Current regulations in our laboratory require that each such item being discarded must be inventoried and documents must be prepared that summarize the contents of each container used for disposal. Using voice commands, the user enters items into the database as each is discarded. Subsequently, the program prepares the required documentation.

  17. A TOOLBOX FOR SANITARY SEWER OVERFLOW ANALYSIS AND PLANNING (SSOAP) AND APPLICATIONS

    EPA Science Inventory

    Rainfall-derived infiltration and inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in these systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams and the resulting high flows...

  18. A TOOLBOX FOR SANITARY SEWER OVERFLOW ANALYSIS AND PLANNING (SSOAP) AND APPLICATIONS

    EPA Science Inventory

    Rainfall Derived Infiltration and Inflow (RDII) into sanitary sewer systems has long been recognized as a source of operating problems in sewerage systems. RDII is the main cause of sanitary sewer overflows (SSOs) to basements, streets, or nearby streams and can also cause seriou...

  19. Impact of water source management practices in residential areas on sewer networks - a review.

    PubMed

    Marleni, N; Gray, S; Sharma, A; Burn, S; Muttil, N

    2012-01-01

    Prolonged drought which has occurred everywhere around the world has caused water shortages, leading many countries to consider more sustainable practices, which are called source management practices (SMPs) to ensure water availability for the future. SMPs include the practices of water use reduction, potable water substitution and wastewater volume reduction such as water demand management, rainwater harvesting, greywater recycling and sewer mining. Besides the well known advantages from SMPs, they also contribute to the alteration of wastewater characteristics which finally affect the process in downstream infrastructure such as sewerage networks. Several studies have shown that the implementation of SMPs decreases the wastewater flow, whilst increasing its strength. High-strength wastewater can cause sewer problems such as sewer blockage, odour and corrosion. Yet, not all SMPs and their impact on existing sewer networks have been investigated. Therefore, this study reviews some examples of four common SMPs, the wastewater characteristics and the physical and biochemical transformation processes in sewers and the problems that might caused by them, and finally the potential impacts of those SMPs on wastewater characteristics and sewer networks are discussed. This paper provides sewer system managers with an overview of potential impacts on the sewer network due to the implementation of some SMPs. Potential research opportunities for the impact of SMPs on existing sewers are also identified. PMID:22277221

  20. Long-term pollution simulation in combined sewer networks.

    PubMed

    Masse, B; Zug, M; Tabuchi, J P; Tisserand, B

    2001-01-01

    This paper presents results of long term pollution simulations on the example of the sewerage system of Grand-Couronne. This modelling work is part of a study where objective is to develop a method to define the reference flow of a WWTP. The model HYDROWORKS DM has been successfully validated in hydraulics and pollution for the sewer network, for long time simulations. A conceptual model has been built to model the pollution in the tank at the outlet of the combined system. One synthetic year of rain has been used to simulate the working of the "up stream system" of the WWTP (combined sewer + tank + separate sewer + pre-treatments) and has been successfully validated by measurements of the 1998-1999 year. If this paper is focused on the "up stream system", the SIMBA/SIMBAD WWTP model has been successfully calibrated and validated too, and the combination represents a fully validated "Integrated Model" for the sewerage system. PMID:11385878

  1. Sulfide elimination by intermittent nitrate dosing in sewer sediments.

    PubMed

    Liu, Yanchen; Wu, Chen; Zhou, Xiaohong; Zhu, David Z; Shi, Hanchang

    2015-01-01

    The formation of hydrogen sulfide in biofilms and sediments in sewer systems can cause severe pipe corrosions and health hazards, and requires expensive programs for its prevention. The aim of this study is to propose a new control strategy and the optimal condition for sulfide elimination by intermittent nitrate dosing in sewer sediments. The study was carried out based on lab-scale experiments and batch tests using real sewer sediments. The intermittent nitrate dosing mode and the optimal control condition were investigated. The results indicated that the sulfide-intermittent-elimination strategy by nitrate dosing is advantageous for controlling sulfide accumulation in sewer sediment. The oxidation-reduction potential is a sensitive indicator parameter that can reflect the control effect and the minimum N/S (nitrate/sulfide) ratio with slight excess nitrate is necessary for optimal conditions of efficient sulfide control with lower carbon source loss. The optimal control condition is feasible for the sulfide elimination in sewer systems. PMID:25597685

  2. Quantitative assessment of the groundwater-sewer network interaction in Bucharest city (Romania)

    NASA Astrophysics Data System (ADS)

    Boukhemacha, M. A.; Diaconescu, A.; Bica, I.; Gogu, C. R.; Gaitanaru, D.

    2012-04-01

    Groundwater management in urban area must take account of every possible and relevant phenomena arising from the complex interaction between subsurface water, surface water, and urban infrastructure. In Bucharest, the need of the sewer system rehabilitation initiated a study of the interaction between groundwater and the sewer network. Recent conclusions show that the sewer network acts mainly like a drainage system for the groundwater. However, it could be easily proven that several sewer segments located mainly in the unsaturated zone contaminate the groundwater by leakage. The groundwater infiltration in the sewer conduits can cause the decrease of the groundwater level leading to structures instability problems as well as to the increase flow-rates of the sewer system. The last one affects seriously the wastewater treatment plants efficiency. The sewer network leakage cause groundwater pollution and locally could increase the groundwater level triggering buildings instability or other urban operational problems. The current study focuses on the consequences of sealing a part of the sewer system and so disturbing the existing groundwater behavior which may lead to serious consequences. In this framework, the analysis results of a groundwater flow model used to quantify the interaction between the groundwater and the sewer network are presented. The two-layers groundwater flow model simulating the Colentina and Mostistea overlaid sedimentary aquifers covers about 75 km2. Its conceptual model relies on a 3D geological model made by using 23 accurate geological cross-sections of the studied domain. The model set-up and its calibration are done using pumping tests data, groundwater hydraulic heads, and water levels of the sewer system. Infiltration rates into sewers are modeled by applying a modified form of Darcy's law that uses the notion of infiltration factor. This last encompasses the hydraulic conductivity of the clogging layer, the infiltration area and the

  3. SEWER AND TANK SEDIMENT FLUSHING: CASE STUDIES (EPA/600/R-98/157)

    EPA Science Inventory

    Past studies have identified urban combined sewer overflow (CSO) and stormwater runoff as major contributors to the degradation of many urban lakes, streams, and rivers. Sewage solids deposited in combined sewer (CS) systems during dry weather are major contributors to the CSO-po...

  4. Update on the Status of Sanitary Sewer Overflow Analysis and Planning (SSOAP) Toolbox

    EPA Science Inventory

    A properly designed, operated and maintained sanitary sewer system is meant to collect and convey all of the sewage that flows into it to a wastewater treatment plant. However, occasional unintentional discharges of raw sewage from municipal sanitary sewers – called sanitary sewe...

  5. Combined sewer overflow: A management study. Technical report

    SciTech Connect

    Reilly, A.

    1988-01-01

    This project is part of the National Network for Environmental Management Studies under the auspices of the Office of Cooperative Environmental Management of the U.S. Environmental Protection Agency. In many older cities in the U.S., the capacity of the combined sewer is exceeded on a daily basis due to both-wet weather storm surges and increased volumes of waste generated by new development. As a result, billions of gallons of untreated sewage are discharged on an annual basis into the nation's marine bays and estuaries in episodes called 'combined sewer overflow.' There are two primary reasons for the increasing frequency and severity of overflow episodes: the population of cities in coastal areas are growing at rates that far exceed the ability of the sewer infrastructure to accommodate them; the built-in inefficiencies of the original design of the combined sewer are being exploited by many municipalities to compensate for the increased volumes of sewage associated with the growth in population. Because each combined sewer, the area that it drains, and the receiving water into which it discharges constitutes a unique system, a management strategy should be site-specific. The document proposes a framework within which a site-specific and cost-effective management strategy may be formulated. By necessity, the emphasis is on providing tools and methods rather than explicit solutions.

  6. Remote Infrared Thermal Sensing of Sewer Voids, Four-Year Update

    NASA Astrophysics Data System (ADS)

    Weil, Gary J.

    1988-01-01

    When a sewer caves in, it often takes the street, sidewalks, and surrounding buildings along for the ride. These collapses endanger public health and safety. Repairing a sewer before such a cave-in is obviously the preferred method. Emergency repairs cost far more than prevention measures - often millions of dollars more. Many combined sewers in the St. Louis area, as in many of America's cities, are more than 125 years old and are subject to structural failure. In 1981 alone, St. Louis had 4,000 sewer collapses and an astronomical repair bill. These and similar problems have been described as "a crisis of national proportions. The question addressed by this paper is how to detect unseen problem areas in sewer systems before they give way. At the present, progressive sewer administrations may use crawl crews to inspect sewers when problems are suspected. This can be extremely costly and dangerous, and a void around the outside of the sewer is often invisible from within. Thus, even a crawl crew can fail to detect most voids. Infrared Thermography has been found by sewer districts and independent evaluation engineering firms to be an extremely accurate method of finding sewer voids, before they can cause expensive and dangerous problems. This technique uses a non-contact, remote sensing method, with the potential for surveying large areas quickly and efficiently. This paper reviews our initial paper presented to The International Society for Optical Engineering in October of 1983 and presents an update of our experience, both successes and failures, in several large-scale void detection projects. Infrared Thermographic techniques of non-destructive testing will have major implications for cities and for the engineering profession because it promises to make the crisis of infrastructure repair and rehabilitation more manageable. Intelligent, systematic use of this relatively low cost void detection method, Infrared Thermography, may revolutionize the way sewer

  7. Calibration Transfer Between a Bench Scanning and a Submersible Diode Array Spectrophotometer for In Situ Wastewater Quality Monitoring in Sewer Systems.

    PubMed

    Brito, Rita S; Pinheiro, Helena M; Ferreira, Filipa; Matos, José S; Pinheiro, Alexandre; Lourenço, Nídia D

    2016-03-01

    Online monitoring programs based on spectroscopy have a high application potential for the detection of hazardous wastewater discharges in sewer systems. Wastewater hydraulics poses a challenge for in situ spectroscopy, especially when the system includes storm water connections leading to rapid changes in water depth, velocity, and in the water quality matrix. Thus, there is a need to optimize and fix the location of in situ instruments, limiting their availability for calibration. In this context, the development of calibration models on bench spectrophotometers to estimate wastewater quality parameters from spectra acquired with in situ instruments could be very useful. However, spectra contain information not only from the samples, but also from the spectrophotometer generally invalidating this approach. The use of calibration transfer methods is a promising solution to this problem. In this study, calibration models were developed using interval partial least squares (iPLS), for the estimation of total suspended solids (TSS) and chemical oxygen demand (COD) in sewage from Ultraviolet-visible spectra acquired in a bench scanning spectrophotometer. The feasibility of calibration transfer to a submersible, diode array equipment, to be subsequently operated in situ, was assessed using three procedures: slope and bias correction (SBC); single wavelength standardization (SWS) on mean spectra; and local centering (LC). The results showed that SBC was the most adequate for the available data, adding insignificant error to the base model estimates. Single wavelength standardization was a close second best, potentially more robust, and independent of the base iPLS model. Local centering was shown to be inadequate for the samples and instruments used. PMID:26798079

  8. Comparison of core sampling and visual inspection for assessment of concrete sewer pipe condition.

    PubMed

    Stanić, N; de Haan, C; Tirion, M; Langeveld, J G; Clemens, F H L R

    2013-01-01

    Sewer systems are costly to construct and even more costly to replace, requiring proper asset management. Sewer asset management relies to a large extent on available information. In sewer systems where pipe corrosion is the dominant failure mechanism, visual inspection by closed circuit television (CCTV) and core sampling are among the methods mostly applied to assess sewer pipe condition. This paper compares visual inspection and drill core analysis in order to enhance further understanding of the limitations and potentials of both methods. Both methods have been applied on a selected sewer reach in the city of The Hague, which was reportedly subject to pipe corrosion. Results show that both methods, visual inspection and core sampling, are associated with large uncertainties and that there is no obvious correlation between results of visual inspection and results of drill core analysis. PMID:23752377

  9. Molecular survey of concrete sewer biofilm microbial communities.

    PubMed

    Santo Domingo, Jorge W; Revetta, Randy P; Iker, Brandon; Gomez-Alvarez, Vicente; Garcia, Jarissa; Sullivan, John; Weast, James

    2011-10-01

    The microbial composition of concrete biofilms within wastewater collection systems was studied using molecular assays. SSU rDNA clone libraries were generated from 16 concrete surfaces of manholes, a combined sewer overflow, and sections of a corroded sewer pipe. Of the 2457 sequences analyzed, α-, β-, γ-, and δ-Proteobacteria represented 15%, 22%, 11%, and 4% of the clones, respectively. β-Proteobacteria (47%) sequences were more abundant in the pipe crown than any of the other concrete surfaces. While 178 to 493 Operational Taxonomic Units (OTUs) were associated with the different concrete samples, only four sequences were shared among the different clone libraries. Bacteria implicated in concrete corrosion were found in the clone libraries while archaea, fungi, and several bacterial groups were also detected using group-specific assays. The results showed that concrete sewer biofilms are more diverse than previously reported. A more comprehensive molecular database will be needed to better study the dynamics of concrete biofilms. PMID:21981064

  10. SEWER INFILTRATION AND INFLOW CONTROL PRODUCT AND EQUIPMENT GUIDE

    EPA Science Inventory

    The report lists and discusses new and existing equipment, materials, and practices available to prevent the entry of unwanted water into the sewer system from infiltration and inflow, and thereby needlessly usurping the capacity of the sewerage system. The report has six section...

  11. COTTAGE FARM COMBINED SEWER DETENTION AND CHLORINATION STATION, CAMBRIDGE, MASSACHUSETTS

    EPA Science Inventory

    The Cottage Farm Detention and Chlorination Station was placed in operation by the Metropolitan District Commission on April 29, 1971. The station, located in Cambridge, Massachusetts, diverts and treats combined sewage flows from the Charles River Valley sewer system (15,600 acr...

  12. Road Transportable Analytical Laboratory (RTAL) system

    SciTech Connect

    Finger, S.M.

    1995-10-01

    The goal of the Road Transportable Analytical Laboratory (RTAL) Project is the development and demonstration of a system to meet the unique needs of the DOE for rapid, accurate analysis of a wide variety of hazardous and radioactive contaminants in soil, groundwater, and surface waters. This laboratory system has been designed to provide the field and laboratory analytical equipment necessary to detect and quantify radionuclides, organics, heavy metals and other inorganic compounds. The laboratory system consists of a set of individual laboratory modules deployable independently or as an interconnected group to meet each DOE site`s specific needs.

  13. Groundwater and stream E. coli concentrations in coastal plain watersheds served by onsite wastewater and a municipal sewer treatment system.

    PubMed

    Humphrey, Charles; Finley, Algernon; O'Driscoll, Michael; Manda, Alex; Iverson, Guy

    2015-01-01

    The goal of this study was to determine if onsite wastewater treatment systems (OWS) were influencing groundwater and surface water Escherichia coli concentrations in a coastal plain watershed. Piezometers for groundwater monitoring were installed at four residences served by OWS and five residences served by a municipal wastewater treatment system (MWS). The residences were located in two different, but nearby (<3 km), watersheds. Effluent from the four septic tanks, groundwater from piezometers, and the streams draining the OWS and MWS watersheds were sampled on five dates between September 2011 and May 2012. Groundwater E. coli concentrations and specific conductivity were elevated within the flow path of the OWS and near the stream, relative to other groundwater sampling locations in the two watersheds. Groundwater discharge in the OWS watershed could be a contributor of E. coli to the stream because E. coli concentrations in groundwater at the stream bank and in the stream were similar. Stream E. coli concentrations were higher for the OWS in relation to MWS watersheds on each sampling date. Water quality could be improved by ensuring OWS are installed and operated to maintain adequate separation distances to water resources. PMID:26540548

  14. Valuing information for sewer replacement decisions.

    PubMed

    van Riel, Wouter; Langeveld, Jeroen; Herder, Paulien; Clemens, François

    2016-01-01

    Decision-making for sewer asset management is partially based on intuition and often lacks explicit argumentation, hampering decision transparency and reproducibility. This is not to be preferred in light of public accountability and cost-effectiveness. It is unknown to what extent each decision criterion is appreciated by decision-makers. Further insight into this relative importance improves understanding of decision-making of sewer system managers. As such, a digital questionnaire (response ratio 43%), containing pairwise comparisons between 10 relevant information sources, was sent to all 407 municipalities in the Netherlands to analyse the relative importance and assess whether a shared frame of reasoning is present. Thurstone's law of comparative judgment was used for analysis, combined with several consistency tests. Results show that camera inspections were valued highest, while pipe age was considered least important. The respondents were pretty consistent per individual and also showed consistency as a group. This indicated a common framework of reasoning among the group. The feedback of the group showed, however, the respondents found it difficult to make general comparisons without having a context. This indicates decision-making in practice is more likely to be steered by other mechanisms than purely combining information sources. PMID:27533854

  15. Identifiability analysis in conceptual sewer modelling.

    PubMed

    Kleidorfer, M; Leonhardt, G; Rauch, W

    2012-01-01

    For a sufficient calibration of an environmental model not only parameter sensitivity but also parameter identifiability is an important issue. In identifiability analysis it is possible to analyse whether changes in one parameter can be compensated by appropriate changes of the other ones within a given uncertainty range. Parameter identifiability is conditional to the information content of the calibration data and consequently conditional to a certain measurement layout (i.e. types of measurements, number and location of measurement sites, temporal resolution of measurements etc.). Hence the influence of number and location of measurement sites on the number of identifiable parameters can be investigated. In the present study identifiability analysis is applied to a conceptual model of a combined sewer system aiming to predict the combined sewer overflow emissions. Different measurement layouts are tested and it can be shown that only 13 of the most sensitive catchment areas (represented by the model parameter 'effective impervious area') can be identified when overflow measurements of the 20 highest overflows and the runoff to the waste water treatment plant are used for calibration. The main advantage of this method is very low computational costs as the number of required model runs equals the total number of model parameters. Hence, this method is a valuable tool when analysing large models with a long runtime and many parameters. PMID:22864432

  16. Power Systems Integration Laboratory (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Power Systems Integration Laboratory at the Energy Systems Integration Facility. At NREL's Power Systems Integration Laboratory in the Energy Systems Integration Facility (ESIF), research focuses on developing and testing large-scale distributed energy systems for grid-connected, stand-alone, and microgrid applications. The laboratory can accommodate large power system components such as inverters for photovoltaic (PV) and wind systems, diesel and natural gas generators, battery packs, microgrid interconnection switchgear, and vehicles. Closely coupled with the research electrical distribution bus at the ESIF, the Power Systems Integration Laboratory will offer power testing capability of megawatt-scale DC and AC power systems, as well as advanced hardware-in-the-loop and model-in-the-loop simulation capabilities. Thermal heating and cooling loops and fuel also allow testing of combined heating/cooling and power systems (CHP).

  17. Demonstration of an Innovative Large-Diameter Sewer Rehabilitation Technology in Houston, Texas - slides

    EPA Science Inventory

    While sewer renewal technologies currently being used for the repair, replacement and/or rehabilitation of deteriorating wastewater collection systems are generally effective, there is still room for improvement of existing technologies and for the development of new technologies...

  18. Demonstration of an Innovative Large-Diameter Sewer Rehabilitation Technology in Houston, Texas

    EPA Science Inventory

    While sewer renewal technologies currently being used for the repair, replacement and/or rehabilitation of deteriorating wastewater collection systems are generally effective, there is still room for improvement of existing technologies and for the development of new technologies...

  19. USING VISUAL PLUMES PREDICTIONS TO MODULATE COMBINED SEWER OVERFLOW (CSO) RATES

    EPA Science Inventory

    High concentrations of pathogens and toxic residues in creeks and rivers can pose risks to human health and ecological systems. Combined Sewer Overflows (CSOs) discharging into these watercourses often contribute significantly to elevating pollutant concentrations during wet weat...

  20. MANAGEMENT AND CONTROL OF COMBINED SEWER OVERFLOWS

    EPA Science Inventory

    The paper gives a basic overview of the U.S. government's involvements in developing countermeasures for the abatement of combined sewer overflow pollution. batement or prevention of pollution stormwater runoff and combined sewer overflows is one of the most challenging areas in ...

  1. Commissioning Ventilated Containment Systems in the Laboratory

    SciTech Connect

    Not Available

    2008-08-01

    This Best Practices Guide focuses on the specialized approaches required for ventilated containment systems, understood to be all components that drive and control ventilated enclosures and local exhaust systems within the laboratory. Geared toward architects, engineers, and facility managers, this guide provides information about technologies and practices to use in designing, constructing, and operating operating safe, sustainable, high-performance laboratories.

  2. Impervious surfaces and sewer pipe effects on stormwater runoff temperature

    NASA Astrophysics Data System (ADS)

    Sabouri, F.; Gharabaghi, B.; Mahboubi, A. A.; McBean, E. A.

    2013-10-01

    The warming effect of the impervious surfaces in urban catchment areas and the cooling effect of underground storm sewer pipes on stormwater runoff temperature are assessed. Four urban residential catchment areas in the Cities of Guelph and Kitchener, Ontario, Canada were evaluated using a combination of runoff monitoring and modelling. The stormwater level and water temperature were monitored at 10 min interval at the inlet of the stormwater management ponds for three summers 2009, 2010 and 2011. The warming effect of the ponds is also studied, however discussed in detail in a separate paper. An artificial neural network (ANN) model for stormwater temperature was trained and validated using monitoring data. Stormwater runoff temperature was most sensitive to event mean temperature of the rainfall (EMTR) with a normalized sensitivity coefficient (Sn) of 1.257. Subsequent levels of sensitivity corresponded to the longest sewer pipe length (LPL), maximum rainfall intensity (MI), percent impervious cover (IMP), rainfall depth (R), initial asphalt temperature (AspT), pipe network density (PND), and rainfall duration (D), respectively. Percent impervious cover of the catchment area (IMP) was the key parameter that represented the warming effect of the paved surfaces; sensitivity analysis showed IMP increase from 20% to 50% resulted in runoff temperature increase by 3 °C. The longest storm sewer pipe length (LPL) and the storm sewer pipe network density (PND) are the two key parameters that control the cooling effect of the underground sewer system; sensitivity analysis showed LPL increase from 345 to 966 m, resulted in runoff temperature drop by 2.5 °C.

  3. Quality of local control for simple sewer networks

    NASA Astrophysics Data System (ADS)

    Kolechkina, Alla; van Nooijen, Ronald

    2016-04-01

    Combined sewer networks, where both foul water and storm water are transported through the same system, tend to develop into complex networks due to expansion of towns and villages. The transport capacity of these systems is always limited, so occasional controlled spills into surface water, combined sewer overflows (CSO), are part of the normal operating procedure. Occasionally the ideas and rules present in the original design are not respected when the system is extended to cover a larger area. One way to deal with this problem is to implement central control. Another is to add pipes and hardware to bring the extended system into line with the original rules and ideas. We show that for a design rule often followed in the Netherlands, local control does quite well as long as the rule is respected and there are no large variations in precipitation intensity over the area covered by the system.

  4. Rapid detection of sewer defects and blockages using acoustic-based instrumentation.

    PubMed

    Ali, M T Bin; Horoshenkov, K V; Tait, S J

    2011-01-01

    Sewer flooding incidents in the UK are being increasingly associated with the presence of blockages. Blockages are difficult to deal with as although there are locations where they are more likely to occur, they do occur intermittently. In order to manage sewer blockage pro-actively sewer managers need to be able to identify the location of blockages promptly. Traditional closed-circuit television (CCTV) inspection technologies are slow and relatively expensive so are not well suited to the rapid inspection of a network. This is needed if managers are to be able to address sewer blockages proactively. This paper reports on the development of an acoustic-based sensor. The sensor was tested in a full scale sewer pipe in the laboratory and it was shown that it is able to find blockages and identify structural aspects of a sewer pipe such as a manhole and lateral connection. Analysis of the received signal will locate a blockage and also provide information on its character. The measurement is very rapid and objective and so inspections can be carried out at much faster rates than using existing CCTV technologies. PMID:22335114

  5. Remaining Sites Verification Package for the 100-F-31, 144-F Sanitary Sewer System, Waste Site Reclassification Form 2006-033

    SciTech Connect

    L. M. Dittmer

    2006-08-24

    The 100-F-31 waste site is a former septic system that supported the inhalation laboratories, also referred to as the 144-F Particle Exposure Laboratory (132-F-2 waste site), which housed animals exposed to particulate material. The 100-F-31 waste site has been remediated to achieve the remedial action objectives specified in the Remaining Sites ROD. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  6. Inventory Systems Laboratory. Final Report.

    ERIC Educational Resources Information Center

    Naddor, Eliezer

    Four computer programs to aid students in understanding inventory systems, constructing mathematical inventory models, and developing optimal decision rules are presented. The program series allows a user to set input levels, simulates the behavior of major variables in inventory systems, and provides performance measures as output. Inventory…

  7. NASA Laboratory telerobotic manipulator control system architecture

    NASA Technical Reports Server (NTRS)

    Rowe, J. C.; Butler, P. L.; Glassell, R. L.; Herndon, J. N.

    1991-01-01

    In support of the National Aeronautics and Space Administration (NASA) goals to increase the utilization of dexterous robotic systems in space, the Oak Ridge National Laboratory (ORNL) has developed the Laboratory Telerobotic Manipulator (LTM) system. It is a dexterous, dual-arm, force reflecting teleoperator system with robotic features for NASA ground-based research. This paper describes the overall control system architecture, including both the hardware and software. The control system is a distributed, modular, and hierarchical design with flexible expansion capabilities for future enhancements of both the hardware and software.

  8. Skylab food system laboratory support

    NASA Technical Reports Server (NTRS)

    Sanford, D.

    1974-01-01

    A summary of support activities performed to ensure the quality and reliability of the Skylab food system design is reported. The qualification test program was conducted to verify crew compartment compatibility, and to certify compliance of the food system with nutrition, preparation, and container requirements. Preflight storage requirements and handling procedures were also determined. Information on Skylab food items was compiled including matters pertaining to serving size, preparation information, and mineral, calorie, and protein content. Accessory hardware and the engraving of food utensils were also considered, and a stowage and orientation list was constructed which takes into account menu use sequences, menu items, and hardware stowage restrictions. A food inventory system was established and food thermal storage tests were conducted. Problems and comments pertaining to specific food items carried onboard the Skylab Workshop were compiled.

  9. Energy Systems Fabrication Laboratory (Fact Sheet)

    SciTech Connect

    Not Available

    2011-10-01

    This fact sheet describes the purpose, lab specifications, applications scenarios, and information on how to partner with NREL's Energy Systems Fabrication Laboratory at the Energy Systems Integration Facility. The Energy Systems Fabrication Laboratory at NREL's Energy Systems Integration Facility (ESIF) manufactures components for fuel cells and electrochemical cells using a variety of manufacturing techniques. Fabricated components include catalysts, thin-film and gas diffusion electrodes, and membrane electrode assemblies (MEAs). The laboratory supports NREL's fuel cell and electrochemical cell related research. The main focus of the laboratory is to provide support for fuel cell research that is performed in adjacent laboratories. The laboratory enables NREL to manufacture fuel cells in-house using, for example, experimental catalyst developed at NREL. It further enables the creation of MEAs containing artificial defects required for the systematic study of performance and lifetime effects and the evaluation of in-house and externally developed quality control diagnostics for high volume production of fuel cell. Experiments performed in the laboratory focus mainly on the development of alternative fuel cell manufacturing methods.

  10. A software-based sensor for combined sewer overflows.

    PubMed

    Leonhardt, G; Fach, S; Engelhard, C; Kinzel, H; Rauch, W

    2012-01-01

    A new methodology for online estimation of excess flow from combined sewer overflow (CSO) structures based on simulation models is presented. If sufficient flow and water level data from the sewer system is available, no rainfall data are needed to run the model. An inverse rainfall-runoff model was developed to simulate net rainfall based on flow and water level data. Excess flow at all CSO structures in a catchment can then be simulated with a rainfall-runoff model. The method is applied to a case study and results show that the inverse rainfall-runoff model can be used instead of missing rain gauges. Online operation is ensured by software providing an interface to the SCADA-system of the operator and controlling the model. A water quality model could be included to simulate also pollutant concentrations in the excess flow. PMID:22864433