Science.gov

Sample records for lacking ganglioside gm3

  1. Physiopathological function of hematoside (GM3 ganglioside)

    PubMed Central

    INOKUCHI, Jin-ichi

    2011-01-01

    Since I was involved in the molecular cloning of GM3 synthase (SAT-I), which is the primary enzyme for the biosynthesis of gangliosides in 1998, my research group has been concentrating on our efforts to explore the physiological and pathological implications of gangliosides especially for GM3. During the course of study, we demonstrated the molecular pathogenesis of type 2 diabetes and insulin resistance focusing on the interaction between insulin receptor and gangliosides in membrane microdomains and propose a new concept: Life style-related diseases, such as type 2 diabetes, are a membrane microdomain disorder caused by aberrant expression of gangliosides. We also encountered an another interesting aspect indicating the indispensable role of gangliosides in auditory system. After careful behavioral examinations of SAT-I knockout mice, their hearing ability was seriously impaired with selective degeneration of the stereocilia of hair cells in the organ of Corti. This is the first observation demonstrating a direct link between gangliosides and hearing functions. PMID:21558756

  2. Physiopathological function of hematoside (GM3 ganglioside).

    PubMed

    Inokuchi, Jin-ichi

    2011-01-01

    Since I was involved in the molecular cloning of GM3 synthase (SAT-I), which is the primary enzyme for the biosynthesis of gangliosides in 1998, my research group has been concentrating on our efforts to explore the physiological and pathological implications of gangliosides especially for GM3. During the course of study, we demonstrated the molecular pathogenesis of type 2 diabetes and insulin resistance focusing on the interaction between insulin receptor and gangliosides in membrane microdomains and propose a new concept: Life style-related diseases, such as type 2 diabetes, are a membrane microdomain disorder caused by aberrant expression of gangliosides. We also encountered an another interesting aspect indicating the indispensable role of gangliosides in auditory system. After careful behavioral examinations of SAT-I knockout mice, their hearing ability was seriously impaired with selective degeneration of the stereocilia of hair cells in the organ of Corti. This is the first observation demonstrating a direct link between gangliosides and hearing functions. PMID:21558756

  3. Cytofluorimetric evaluation of N-glycolylated GM3 ganglioside expression on murine leukocytes.

    PubMed

    Miranda, A; de León, J; Roque-Navarro, L; Fernández, L E

    2011-06-30

    Gangliosides are considered relevant components of lipid rafts at the plasma membrane. Antigen encounter, immunological synapse assembly and signal transduction modify lipid raft composition and distribution on immune system cells. On the contrary of other gangliosides, differential expression of the N-glycolylated variant of GM3 (NGcGM3) on murine leukocytes has received limited attention. In particular, whether cell activation modulates the expression of NGcGM3 on lymphoid and myeloid cells is still unexplored. Availability of the NGcGM3 specific 14F7 MAb allows us to characterize by cytofluorimetric assays the presence of this molecule on resting and activated immune system cells. On T cells, preferential expression of NGcGM3 was detected on CD4(+) single positive thymocytes, peripheral CD4(+) lymphocytes and natural occurring regulatory T cells. In comparison with peritoneal B1 cells, reduced expression of NGcGM3 was observed in peritoneal B2 and splenic B cell subpopulations. Of note, activation of CD4(+) and NK 1.1(+) cells abrogated NGcGM3 expression while LPS-maturated DC increased the ganglioside level at the plasma membrane. Modifications on the presence of NGcGM3 mediated by cell activation did not influence the expression of the N-acetylated variant of GM3 (NAcGM3). In addition to extend previous descriptions of NGcGM3 expression on immunity cell subpopulations, this work highlights the opposite effect of cellular activation over NGcGM3 levels on lymphoid and myeloid cellular series. Obtained results complement the evaluation of a tumor-specific, non-human sialic acid containing ganglioside that has been considered an attractive target for cancer immunotherapy. PMID:21324343

  4. Ganglioside GM3 as a gatekeeper of obesity-associated insulin resistance: Evidence and mechanisms.

    PubMed

    Lipina, Christopher; Hundal, Harinder S

    2015-10-24

    Gangliosides constitute a large family of sialic acid-containing glycosphingolipids which play a key regulatory role in a diverse array of cellular processes, including receptor-associated signalling. Accordingly, the aberrant production of the ganglioside GM3 has been linked to pathophysiological changes associated with obesity, which in turn can lead to metabolic disorders such as insulin resistance and type 2 diabetes mellitus. This review examines the role of GM3 in mediating obesity-induced perturbations in metabolic function, including impaired insulin action. By doing so, we highlight the potential use of therapies targeting GM3 biosynthesis in order to counteract obesity-related metabolic disorders. PMID:26434718

  5. Synthesis and characterization of N-parinaroyl analogs of ganglioside GM3 and de-N-acetyl GM3. Interactions with the EGF receptor kinase

    NASA Technical Reports Server (NTRS)

    Song, W.; Welti, R.; Hafner-Strauss, S.; Rintoul, D. A.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    A specific plasma membrane glycosphingolipid, known as ganglioside GM3, can regulate the intrinsic tyrosyl kinase activity of the epidermal growth factor (EGF) receptor; this modulation is not associated with alterations in hormone binding to the receptor. GM3 inhibits EGF receptor tyrosyl kinase activity in detergent micelles, in plasma membrane vesicles, and in whole cells. In addition, immunoaffinity-purified EGF receptor preparations contain ganglioside GM3 (Hanai et al. (1988) J. Biol. Chem. 263, 10915-10921), implying that the glycosphingolipid is intimately associated with the receptor kinase in cell membranes. Both the nature of this association and the molecular mechanism of kinase inhibition remain to be elucidated. In this report, we describe the synthesis of a fluorescent analog of ganglioside GM3, in which the native fatty acid was replaced with trans-parinaric acid. This glycosphingolipid inhibited the receptor kinase activity in a manner similar to that of the native ganglioside. A modified fluorescent glycosphingolipid, N-trans-parinaroyl de-N-acetyl ganglioside GM3, was also prepared. This analog, like the nonfluorescent de-N-acetyl ganglioside GM3, had no effect on receptor kinase activity. Results from tryptophan fluorescence quenching and steady-state anisotropy measurements in membranes containing these fluorescent probes and the human EGF receptor were consistent with the notion that GM3, but not de-N-acetyl GM3, interacts specifically with the receptor in intact membranes.

  6. Amplified ELISA to detect autoantibodies to N-glycolyl-GM3 ganglioside.

    PubMed

    Iznaga, N; Carr, A; Fernández, L E; Solozabal, J; Núñez, G; Perdomo, Y; Morales, A

    1996-01-01

    Numerous immunochemical methods are now available for the detection of antibodies to gangliosides. An amplified ELISA method for detection of autoantibodies to NGcGM3 ganglioside in the sera of patients with various type of renal diseases was developed. IgM antibodies were found in 39 out of 53 sera of patients using 30 normal healthy blood donor as a negative control. For human IgG conjugate no reactivity to NGcGM3 was seen in the sera. Positive ELISA results were confirmed by TLC-immunostaining using GM3, NGcGM3, NGcGM2 and Standard bovine gangliosides (GM1, GD1a, GD1b and GT1b). All sera were also assayed for reactivity with GM3 in ELISA to determine the line specificity of these antibodies. Based on these results, a protocol for a sensitive and reproducible amplification ELISA system for serum anti-NGcGM3 antibodies in patients with renal or other diseases is presented. The ELISA method described here in appear to be useful adjunt to measure antiNGcGM3 antibodies in sera of patients with various type of renal or other diseases. PMID:16296265

  7. NGcGM3 ganglioside: a privileged target for cancer vaccines.

    PubMed

    Fernandez, Luis E; Gabri, Mariano R; Guthmann, Marcelo D; Gomez, Roberto E; Gold, Silvia; Fainboim, Leonardo; Gomez, Daniel E; Alonso, Daniel F

    2010-01-01

    Active specific immunotherapy is a promising field in cancer research. N-glycolyl (NGc) gangliosides, and particularly NGcGM3, have received attention as a privileged target for cancer therapy. Many clinical trials have been performed with the anti-NGc-containing gangliosides anti-idiotype monoclonal antibody racotumomab (formerly known as 1E10) and the conjugated NGcGM3/VSSP vaccine for immunotherapy of melanoma, breast, and lung cancer. The present paper examines the role of NGc-gangliosides in tumor biology as well as the available preclinical and clinical data on these vaccine products. A brief discussion on the relevance of prioritization of cancer antigens in vaccine development is also included. PMID:21048926

  8. NGcGM3 Ganglioside: A Privileged Target for Cancer Vaccines

    PubMed Central

    Fernandez, Luis E.; Gabri, Mariano R.; Guthmann, Marcelo D.; Gomez, Roberto E.; Gold, Silvia; Fainboim, Leonardo; Gomez, Daniel E.; Alonso, Daniel F.

    2010-01-01

    Active specific immunotherapy is a promising field in cancer research. N-glycolyl (NGc) gangliosides, and particularly NGcGM3, have received attention as a privileged target for cancer therapy. Many clinical trials have been performed with the anti-NGc-containing gangliosides anti-idiotype monoclonal antibody racotumomab (formerly known as 1E10) and the conjugated NGcGM3/VSSP vaccine for immunotherapy of melanoma, breast, and lung cancer. The present paper examines the role of NGc-gangliosides in tumor biology as well as the available preclinical and clinical data on these vaccine products. A brief discussion on the relevance of prioritization of cancer antigens in vaccine development is also included. PMID:21048926

  9. Clostridium botulinum type C hemagglutinin affects the morphology and viability of cultured mammalian cells via binding to the ganglioside GM3.

    PubMed

    Sugawara, Yo; Iwamori, Masao; Matsumura, Takuhiro; Yutani, Masahiro; Amatsu, Sho; Fujinaga, Yukako

    2015-09-01

    Botulinum neurotoxin is conventionally divided into seven serotypes, designated A-G, and is produced as large protein complexes through associations with non-toxic components, such as hemagglutinin (HA) and non-toxic non-HA. These non-toxic proteins dramatically enhance the oral toxicity of the toxin complex. HA is considered to have a role in toxin transport through the intestinal epithelium by carbohydrate binding and epithelial barrier-disrupting activity. Type A and B HAs disrupt E-cadherin-mediated cell adhesion, and, in turn, the intercellular epithelial barrier. Type C HA (HA/C) disrupts the barrier function by affecting cell morphology and viability, the mechanism of which remains unknown. In this study, we identified GM3 as the target molecule of HA/C. We found that sialic acid binding of HA is essential for the activity. It was abolished when cells were pre-treated with an inhibitor of ganglioside synthesis. Consistent with this, HA/C bound to a-series gangliosides in a glycan array. In parallel, we isolated clones resistant to HA/C activity from a susceptible mouse fibroblast strain. These cells lacked expression of ST-I, the enzyme that transfers sialic acid to lactosylceramide to yield GM3. These clones became sensitive to HA/C activity when GM3 was expressed by transfection with the ST-I gene. The sensitivity of fibroblasts to HA/C was reduced by expressing ganglioside synthesis genes whose products utilize GM3 as a substrate and consequently generate other a-series gangliosides, suggesting a GM3-specific mechanism. Our results demonstrate that HA/C affects cells in a GM3-dependent manner. PMID:26077172

  10. Ganglioside GM3 synthase depletion reverses neuropathic pain and small fiber neuropathy in diet-induced diabetic mice

    PubMed Central

    Jayaraj, Nirupa D; Wilson, Heather M; Ren, Dongjun; Flood, Kelsey; Wang, Xiao-Qi; Shum, Andrew; Miller, Richard J; Paller, Amy S

    2016-01-01

    Background Small fiber neuropathy is a well-recognized complication of type 2 diabetes and has been shown to be responsible for both neuropathic pain and impaired wound healing. In previous studies, we have demonstrated that ganglioside GM3 depletion by knockdown of GM3 synthase fully reverses impaired wound healing in diabetic mice. However, the role of GM3 in neuropathic pain and small fiber neuropathy in diabetes is unknown. Purpose Determine whether GM3 depletion is able to reverse neuropathic pain and small fibers neuropathy and the mechanism of the reversal. Results We demonstrate that GM3 synthase knockout and the resultant GM3 depletion rescues the denervation in mouse footpad skin and fully reverses the neuropathic pain in diet-induced obese diabetic mice. In cultured dorsal root ganglia from diet-induced diabetic mice, GM3 depletion protects against increased intracellular calcium influx in vitro. Conclusions These studies establish ganglioside GM3 as a new candidate responsible for neuropathic pain and small fiber neuropathy in diabetes. Moreover, these observations indicate that systemic or topically applied interventions aimed at depleting GM3 may improve both the painful neuropathy and the wound healing impairment in diabetes by protecting against nerve end terminal degeneration, providing a disease-modifying approach to this common, currently intractable medical issue. PMID:27590073

  11. Prognostic Significance of N-Glycolyl GM3 Ganglioside Expression in Non-Small Cell Lung Carcinoma Patients: New Evidences.

    PubMed

    Blanco, Rancés; Domínguez, Elizabeth; Morales, Orlando; Blanco, Damián; Martínez, Darel; Rengifo, Charles E; Viada, Carmen; Cedeño, Mercedes; Rengifo, Enrique; Carr, Adriana

    2015-01-01

    The prognostic role of N-glycolyl GM3 ganglioside (NeuGcGM3) expression in non-small cell lung carcinoma (NSCLC) still remains controversial. In this study, the NeuGcGM3 expression was reevaluated using an increased number of NSCLC cases and the 14F7 Mab (a highly specific IgG1 raised against NeuGcGM3). An immunohistochemical score integrating the percentage of 14F7-positive cells and the intensity of reaction was applied to reassess the relationship between NeuGcGM3 expression, some clinicopathological features, and the overall survival (OS) of NSCLC patients. The double and the triple expression of NeuGcGM3 with the epidermal growth factor receptor (EGFR) and/or its ligand, the epidermal growth factor (EGF), were also evaluated. NeuGcGM3 expression correlates with both S-Phase fraction (p = 0.006) and proliferation index (p = 0.000). Additionally, NeuGcGM3 expression was associated with a poor OS of patients in both univariate (p = 0.020) and multivariate (p = 0.010) analysis. Moreover, the double and/or the triple positivity of tumors to NeuGcGM3, EGFR, and/or EGF permitted us to identify phenotypes of NSCLC with a more aggressive biological behavior. Our results are in agreement with the negative prognostic significance of NeuGcGM3 expression in NSCLC patients. However, standardization of techniques to determine the expression of NeuGcGM3 in NSCLC as well as the implementation of a universal scoring system is recommended. PMID:26634172

  12. Prognostic Significance of N-Glycolyl GM3 Ganglioside Expression in Non-Small Cell Lung Carcinoma Patients: New Evidences

    PubMed Central

    Blanco, Rancés; Domínguez, Elizabeth; Morales, Orlando; Blanco, Damián; Martínez, Darel; Rengifo, Charles E.; Viada, Carmen; Cedeño, Mercedes; Rengifo, Enrique; Carr, Adriana

    2015-01-01

    The prognostic role of N-glycolyl GM3 ganglioside (NeuGcGM3) expression in non-small cell lung carcinoma (NSCLC) still remains controversial. In this study, the NeuGcGM3 expression was reevaluated using an increased number of NSCLC cases and the 14F7 Mab (a highly specific IgG1 raised against NeuGcGM3). An immunohistochemical score integrating the percentage of 14F7-positive cells and the intensity of reaction was applied to reassess the relationship between NeuGcGM3 expression, some clinicopathological features, and the overall survival (OS) of NSCLC patients. The double and the triple expression of NeuGcGM3 with the epidermal growth factor receptor (EGFR) and/or its ligand, the epidermal growth factor (EGF), were also evaluated. NeuGcGM3 expression correlates with both S-Phase fraction (p = 0.006) and proliferation index (p = 0.000). Additionally, NeuGcGM3 expression was associated with a poor OS of patients in both univariate (p = 0.020) and multivariate (p = 0.010) analysis. Moreover, the double and/or the triple positivity of tumors to NeuGcGM3, EGFR, and/or EGF permitted us to identify phenotypes of NSCLC with a more aggressive biological behavior. Our results are in agreement with the negative prognostic significance of NeuGcGM3 expression in NSCLC patients. However, standardization of techniques to determine the expression of NeuGcGM3 in NSCLC as well as the implementation of a universal scoring system is recommended. PMID:26634172

  13. Ganglioside GM3 modulates tumor suppressor PTEN-mediated cell cycle progression--transcriptional induction of p21(WAF1) and p27(kip1) by inhibition of PI-3K/AKT pathway.

    PubMed

    Choi, Hee-Jung; Chung, Tae-Wook; Kang, Sung-Koo; Lee, Young-Choon; Ko, Jeong-Heon; Kim, Jong-Guk; Kim, Cheorl-Ho

    2006-07-01

    The simple ganglioside GM3 has been shown to have anti-proliferative effects in several in vitro and in vivo cancer models. Although the exogenous ganglioside GM3 has an inhibitory effect on cancer cell proliferation, the exact mechanism by which it prevents cell proliferation remains unclear. Previous studies showed that MDM2 is an oncoprotein that controls tumorigenesis through both p53-dependent and p53-independent mechanisms, and tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN), a dual-specificity phosphatase that antagonizes phosphatidylinositol 3-kinase (PI-3K)/AKT signaling, is capable of blocking MDM2 nuclear translocation and destabilizing the MDM2 protein. Results from our current study show that GM3 treatment dramatically increases cyclin-dependent kinase (CDK) inhibitor (CKI) p21(WAF1) expression through the accumulation of p53 protein by the PTEN-mediated inhibition of the PI-3K/AKT/MDM2 survival signaling in HCT116 colon cancer cells. Moreover, the data herein clearly show that ganglioside GM3 induces p53-dependent transcriptional activity of p21(WAF1), as evidenced by the p21(WAF1) promoter-driven luciferase reporter plasmid (full-length p21(WAF1) promoter and a construct lacking the p53-binding sites). Additionally, ganglioside GM3 enhances expression of CKI p27(kip1) through the PTEN-mediated inhibition of the PI-3K/AKT signaling. Furthermore, the down-regulation of the cyclin E and CDK2 was clearly observed in GM3-treated HCT116 cells, but the down-regulation of cyclin D1 and CDK4 was not. On the contrary, suppression of PTEN levels by RNA interference restores the enhanced expression of p53-dependent p21(WAF1) and p53-independent p27(kip1) through inactivating the effect of PTEN on PI-3K/AKT signaling modulated by ganglioside GM3. These results suggest that ganglioside GM3-stimulated PTEN expression modulates cell cycle regulatory proteins, thus inhibiting cell growth. We conclude that ganglioside GM3 represents a

  14. Gangliosides GM1 and GM3 in the Living Cell Membrane Form Clusters Susceptible to Cholesterol Depletion and Chilling

    PubMed Central

    Fujita, Akikazu; Cheng, Jinglei; Hirakawa, Minako; Furukawa, Koichi; Kusunoki, Susumu

    2007-01-01

    Presence of microdomains has been postulated in the cell membrane, but two-dimensional distribution of lipid molecules has been difficult to determine in the submicrometer scale. In the present paper, we examined the distribution of gangliosides GM1 and GM3, putative raft molecules in the cell membrane, by immunoelectron microscopy using quick-frozen and freeze-fractured specimens. This method physically immobilized molecules in situ and thus minimized the possibility of artifactual perturbation. By point pattern analysis of immunogold labeling, GM1 was shown to make clusters of <100 nm in diameter in normal mouse fibroblasts. GM1-null fibroblasts were not labeled, but developed a similar clustered pattern when GM1 was administered. On cholesterol depletion or chilling, the clustering of both endogenous and exogenously-loaded GM1 decreased significantly, but the distribution showed marked regional heterogeneity in the cells. GM3 also showed cholesterol-dependent clustering, and although clusters of GM1 and GM3 were found to occasionally coincide, these aggregates were separated in most cases, suggesting the presence of heterogeneous microdomains. The present method enabled to capture the molecular distribution of lipids in the cell membrane, and demonstrated that GM1 and GM3 form clusters that are susceptible to cholesterol depletion and chilling. PMID:17392511

  15. NEU3 inhibitory effect of naringin suppresses cancer cell growth by attenuation of EGFR signaling through GM3 ganglioside accumulation.

    PubMed

    Yoshinaga, Ayana; Kajiya, Natsuki; Oishi, Kazuki; Kamada, Yuko; Ikeda, Asami; Chigwechokha, Petros Kingstone; Kibe, Toshiro; Kishida, Michiko; Kishida, Shosei; Komatsu, Masaharu; Shiozaki, Kazuhiro

    2016-07-01

    Naringin, which is one of the flavonoids contained in citrus fruits, is well known to possess various healthy functions to humans. It has been reported that naringin suppresses cancer cell growth in vitro and in vivo, although the underlying mechanisms are not fully understood. Recently, the roles of glycoconjugates, such as gangliosides, in cancer cells have been focused because of their regulatory effects of malignant phenotypes. Here, to clarify the roles of naringin in the negative-regulation of cancer cell growth, the alteration of glycoconjugates induced by naringin exposure and its significance on cell signaling were investigated. Human cancer cells, HeLa and A549, were exposed to various concentrations of naringin. Naringin treatment induced the suppression of cell growth toward HeLa and A549 cells accompanied with an increase of apoptotic cells. In naringin-exposed cells, GM3 ganglioside was drastically increased compared to the GM3 content prior to the treatment. Furthermore, naringin inhibited NEU3 sialidase, a GM3 degrading glycosidase. Similarly, NEU3 inhibition activities were also detected by other flavanone, such as hesperidin and neohesperidin dihydrocalcone, but their aglycones showed less inhibitions. Naringin-treated cancer cells showed suppressed EGFR and ERK phosphorylation levels. These results suggest a novel mechanism of naringin in the suppression of cancer cell growth through the alteration of glycolipids. NEU3 inhibitory effect of naringin induced GM3 accumulation in HeLa and A549 cells, leading the attenuation of EGFR/ERK signaling accompanied with a decrease in cell growth. PMID:27105818

  16. Role of tumour-associated N-glycolylated variant of GM3 ganglioside in cancer progression: effect over CD4 expression on T cells.

    PubMed

    de Leòn, Joel; Fernández, Audry; Mesa, Circe; Clavel, Marilyn; Fernández, Luis E

    2006-04-01

    Gangliosides have diverse biological functions including modulation of immune system response. These molecules are differentially expressed on malignant cells compared with the corresponding normal ones and are involved in cancer progression affecting, in different ways, the host's anti-tumour specific immune responses. Although in humans the N-glycolylated variant of GM3 ganglioside is almost exclusively expressed in tumour tissues, the significance of this glycolipid for malignant cell biology remains obscure, while for NAcGM3 strong immune suppressive effects have been reported. The present work demonstrates, for the first time, the capacity of NGcGM3 ganglioside to down-modulate CD4 expression in murine and human T lymphocytes, especially in non-activated T cells. Thirty and tenfold reductions in CD4 expression were induced by purified NGcGM3 ganglioside in murine and human T lymphocytes, respectively. The CD4 complete recovery in these cells occurred after 48 h of ganglioside removal, due to neo-synthesis. Restored T cells kept similar sensitivity to ganglioside-induced CD4 down-modulation after a new challenge. In addition, a clear association between NGcGM3 insertion in lymphocyte plasma membranes and the CD4 down-modulation effect was documented. Notably, a possible role of this ganglioside in tumour progression, taking advantage of the X63 myeloma model, was also outlined. The relevance of these findings, characterizing NGcGM3 as a possible tumour immunesurveillance inhibitor and supporting the reason for its neo-expression in certain human cancers, is contributing to this unique heterophilic ganglioside validation as target for cancer immunotherapy. PMID:16208470

  17. Detection of N-Glycolyl GM3 Ganglioside in Neuroectodermal Tumors by Immunohistochemistry: An Attractive Vaccine Target for Aggressive Pediatric Cancer

    PubMed Central

    Scursoni, Alejandra M.; Galluzzo, Laura; Camarero, Sandra; Lopez, Jessica; Lubieniecki, Fabiana; Sampor, Claudia; Segatori, Valeria I.; Gabri, Mariano R.; Alonso, Daniel F.; Chantada, Guillermo; de Dávila, María Teresa G.

    2011-01-01

    The N-glycolylated ganglioside NeuGc-GM3 has been described in solid tumors such as breast carcinoma, nonsmall cell lung cancer, and melanoma, but is usually not detected in normal human cells. Our aim was to evaluate the presence of NeuGc-GM3 in pediatric neuroectodermal tumors by immunohistochemistry. Twenty-seven archival cases of neuroblastoma and Ewing sarcoma family of tumors (ESFT) were analyzed. Formalin-fixed, paraffin-embedded tumor samples were cut into 5 μm sections. The monoclonal antibody 14F7, a mouse IgG1 that specifically recognizes NeuGc-GM3, and a peroxidase-labeled polymer conjugated to secondary antibodies were used. Presence of NeuGc-GM3 was evident in 23 of 27 cases (85%), with an average of about 70% of positive tumors cells. Immunoreactivity was moderate to intense in most tumors, showing a diffuse cytoplasmic and membranous staining, although cases of ESFT demonstrated a fine granular cytoplasmic pattern. No significant differences were observed between neuroblastoma with and without NMYC oncogene amplification, suggesting that expression of NeuGc-GM3 is preserved in more aggressive cancers. Until now, the expression of N-glycolylated gangliosides in pediatric neuroectodermal tumors has not been investigated. The present study evidenced the expression of NeuGc-GM3 in a high proportion of neuroectodermal tumors, suggesting its potential utility as a specific target of immunotherapy. PMID:21941577

  18. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis.

    PubMed

    Margheri, Francesca; Papucci, Laura; Schiavone, Nicola; D'Agostino, Riccardo; Trigari, Silvana; Serratì, Simona; Laurenzana, Anna; Biagioni, Alessio; Luciani, Cristina; Chillà, Anastasia; Andreucci, Elena; Del Rosso, Tommaso; Margheri, Giancarlo; Del Rosso, Mario; Fibbi, Gabriella

    2015-01-01

    Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid-supported mobile bilayer lipid membranes with raft-like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR-GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1-enriched biomimetic membranes, were validated by identifying a pro-angiogenic activity of GM1-enriched EPCs, based on GM1-dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti-angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar-raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar-raft partitioning of uPAR, as opposed to control and GM3-challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis. PMID:25313007

  19. Differential uPAR recruitment in caveolar-lipid rafts by GM1 and GM3 gangliosides regulates endothelial progenitor cells angiogenesis

    PubMed Central

    Margheri, Francesca; Papucci, Laura; Schiavone, Nicola; D'Agostino, Riccardo; Trigari, Silvana; Serratì, Simona; Laurenzana, Anna; Biagioni, Alessio; Luciani, Cristina; Chillà, Anastasia; Andreucci, Elena; Del Rosso, Tommaso; Margheri, Giancarlo; Del Rosso, Mario; Fibbi, Gabriella

    2015-01-01

    Gangliosides and the urokinase plasminogen activator receptor (uPAR) tipically partition in specialized membrane microdomains called lipid-rafts. uPAR becomes functionally important in fostering angiogenesis in endothelial progenitor cells (EPCs) upon recruitment in caveolar-lipid rafts. Moreover, cell membrane enrichment with exogenous GM1 ganglioside is pro-angiogenic and opposite to the activity of GM3 ganglioside. On these basis, we first checked the interaction of uPAR with membrane models enriched with GM1 or GM3, relying on the adoption of solid-supported mobile bilayer lipid membranes with raft-like composition formed onto solid hydrophilic surfaces, and evaluated by surface plasmon resonance (SPR) the extent of uPAR recruitment. We estimated the apparent dissociation constants of uPAR-GM1/GM3 complexes. These preliminary observations, indicating that uPAR binds preferentially to GM1-enriched biomimetic membranes, were validated by identifying a pro-angiogenic activity of GM1-enriched EPCs, based on GM1-dependent uPAR recruitment in caveolar rafts. We have observed that addition of GM1 to EPCs culture medium promotes matrigel invasion and capillary morphogenesis, as opposed to the anti-angiogenesis activity of GM3. Moreover, GM1 also stimulates MAPKinases signalling pathways, typically associated with an angiogenesis program. Caveolar-raft isolation and Western blotting of uPAR showed that GM1 promotes caveolar-raft partitioning of uPAR, as opposed to control and GM3-challenged EPCs. By confocal microscopy, we have shown that in EPCs uPAR is present on the surface in at least three compartments, respectively, associated to GM1, GM3 and caveolar rafts. Following GM1 exogenous addition, the GM3 compartment is depleted of uPAR which is recruited within caveolar rafts thereby triggering angiogenesis. PMID:25313007

  20. Increased Expression of Simple Ganglioside Species GM2 and GM3 Detected by MALDI Imaging Mass Spectrometry in a Combined Rat Model of Aβ Toxicity and Stroke

    PubMed Central

    Caughlin, Sarah; Hepburn, Jeffrey D.; Park, Dae Hee; Jurcic, Kristina; Yeung, Ken K.-C.; Cechetto, David F.; Whitehead, Shawn N.

    2015-01-01

    The aging brain is often characterized by the presence of multiple comorbidities resulting in synergistic damaging effects in the brain as demonstrated through the interaction of Alzheimer’s disease (AD) and stroke. Gangliosides, a family of membrane lipids enriched in the central nervous system, may have a mechanistic role in mediating the brain’s response to injury as their expression is altered in a number of disease and injury states. Matrix-Assisted Laser Desorption Ionization (MALDI) Imaging Mass Spectrometry (IMS) was used to study the expression of A-series ganglioside species GD1a, GM1, GM2, and GM3 to determine alteration of their expression profiles in the presence of beta-amyloid (Aβ) toxicity in addition to ischemic injury. To model a stroke, rats received a unilateral striatal injection of endothelin-1 (ET-1) (stroke alone group). To model Aβ toxicity, rats received intracerebralventricular (icv) injections of the toxic 25-35 fragment of the Aβ peptide (Aβ alone group). To model the combination of Aβ toxicity with stroke, rats received both the unilateral ET-1 injection and the bilateral icv injections of Aβ₂₅₋₃₅ (combined Aβ/ET-1 group). By 3 d, a significant increase in the simple ganglioside species GM2 was observed in the ischemic brain region of rats who received a stroke (ET-1), with or without Aβ. By 21 d, GM2 levels only remained elevated in the combined Aβ/ET-1 group. GM3 levels however demonstrated a different pattern of expression. By 3 d GM3 was elevated in the ischemic brain region only in the combined Aβ/ET-1 group. By 21 d, GM3 was elevated in the ischemic brain region in both stroke alone and Aβ/ET-1 groups. Overall, results indicate that the accumulation of simple ganglioside species GM2 and GM3 may be indicative of a mechanism of interaction between AD and stroke. PMID:26086081

  1. Prognostic Role of 14F7 Mab Immunoreactivity against N-Glycolyl GM3 Ganglioside in Colon Cancer

    PubMed Central

    Calvo, Adanays; Torres, Griselda; Rengifo, Charles E.; Quintero, Santiago; Arango, María del Carmen; Danta, Debora; Vázquez, José M.; Escobar, Xiomara; Carr, Adriana

    2014-01-01

    Purpose. To assess the prognostic role of 14F7 Mab immunoreactivity, against N-Glycolyl GM3 ganglioside, in patients with colon cancer (CC) and to evaluate the relationship between its expression and clinicopathological features. Methods. Paraffin-embedded specimens were retrospectively collected from 50 patients with CC operated between 2004 and 2008. 14F7 Mab staining was determined by immunohistochemistry technique and its relation with survival and clinicopathologic features was evaluated. Results. The reactivity of 14F7 Mab was detected in all cases. Most cases had high level of immunostaining (70%) that showed statistical correlation with TNM stage (P = 0.025). In univariate survival analysis, level of 14F7 Mab immunoreactivity (P = 0.0078), TNM Stage (P = 0.0007) and lymphovascular invasion (0.027) were significant prognostic factors for overall survival. Among these variables, level of 14F7 Mab immunoreactivity (HR = 0.268; 95% CI  0.078–0.920; P = 0.036) and TNM stage (HR = 0.249; 95% CI 0.066–0.932; P = 0.039) were independent prognostic factors on multivariate analysis. Conclusions. This study is the first approach on the prognostic significance of 14F7 Mab immunoreactivity in patients with colon adenocarcinoma and this assessment might be used in the prognostic estimate of CC, although further studies will be required to validate these findings. PMID:24639871

  2. Tissue Reactivity of the 14F7 Mab Raised against N-Glycolyl GM3 Ganglioside in Tumors of Neuroectodermal, Mesodermal, and Epithelial Origin

    PubMed Central

    Blanco, Rancés; Quintana, Yisel; Blanco, Damián; Cedeño, Mercedes; Rengifo, Charles E.; Frómeta, Milagros; Ríos, Martha; Rengifo, Enrique; Carr, Adriana

    2013-01-01

    The expression of N-glycolylneuraminic acid forming the structure of gangliosides and/or other glycoconjugates (Hanganutziu-Deicher antigen) in human has been considered as a tumor-associated antigen. Specifically, some reports of 14F7 Mab (a highly specific Mab raised against N-glycolyl GM3 ganglioside) reactivity in human tumors have been recently published. Nevertheless, tumors of epithelial origin have been mostly evaluated. The goal of the present paper was to evaluate the immunohistochemical recognition of 14F7 Mab in different human tumors of neuroectodermal, mesodermal, and epithelial origins using an immunoperoxidase staining method. Samples of fetal, normal, and reactive astrocytosis of the brain were also included in the study. In general, nontumoral tissues, as well as, low-grade brain tumors showed no or a limited immunoreaction with 14F7 Mab. Nevertheless, high-grade astrocytomas (III-IV) and neuroblastomas, as well as, sarcomas and thyroid carcinomas were mostly reactive with 14F7. No reaction was evidenced in medulloblastomas and ependymoblastomas. Our data suggest that the expression of N-glycolyl GM3 ganglioside could be related to the aggressive behavior of malignant cells, without depending on the tumor origin. Our data could also support the possible use of N-glycolyl GM3 as a target for both active and passive immunotherapies of malignancies expressing this molecule. PMID:26317019

  3. Immunoreactivity of the 14F7 Mab Raised against N-Glycolyl GM3 Ganglioside in Epithelial Malignant Tumors from Digestive System

    PubMed Central

    Blanco, Rancés; Rengifo, Enrique; Cedeño, Mercedes; Rengifo, Charles E.; Alonso, Daniel F.; Carr, Adriana

    2011-01-01

    The limited expression of N-Glycolyl GM3 (NeuGcGM3) ganglioside in human normal tissues, as well as its presence in melanoma and breast carcinoma using 14F7 Mab (anti-NeuGcGM3), has been previously reported. In this work we evaluated for the first time the 14F7 Mab immunorecognition in some digestive system tumors. Immunohistochemical assays were made with 14F7, followed by anti-mouse biotinylated antibody and ABC/HRP system in normal and pathological human tissues were made. No immunoreaction was evidenced in normal tissues. The reactivity of 14F7 was detected in all adenocarcinomas of the stomach (12/12), colon (12/12), and pancreas (11/11). A finely granular immunorecognition in esophageal tumors (5/15), epidermoid carcinoma of the rectum (5/7), and basaloid carcinoma (4/5) of the latter as well as in hepatocellular carcinoma (13/14) was also observed. Our results are in agreement with the assumption that NeuGcGM3 ganglioside may be considered as target for passive and active immunotherapy in digestive system malignancies expressing this molecule. PMID:21991524

  4. Autoantibodies against ganglioside GM3 are associated with narcolepsy-cataplexy developing after Pandemrix vaccination against 2009 pandemic H1N1 type influenza virus.

    PubMed

    Saariaho, Anna-Helena; Vuorela, Arja; Freitag, Tobias L; Pizza, Fabio; Plazzi, Giuseppe; Partinen, Markku; Vaarala, Outi; Meri, Seppo

    2015-09-01

    Following the mass vaccinations against pandemic influenza A/H1N1 virus in 2009, a sudden increase in juvenile onset narcolepsy with cataplexy (NC) was detected in several European countries where AS03-adjuvanted Pandemrix vaccine had been used. NC is a chronic neurological disorder characterized by excessive daytime sleepiness and cataplexy. In human NC, the hypocretin-producing neurons in the hypothalamus or the hypocretin signaling pathway are destroyed by an autoimmune reaction. Both genetic (e.g. HLA-DQB1*0602) and environmental risk factors (e.g. Pandemrix) contribute to the disease development, but the underlying and the mediating immunological mechanisms are largely unknown. Influenza virus hemagglutinin is known to bind gangliosides, which serve as host cell virus receptors. Anti-ganglioside antibodies have previously been linked to various neurological disorders, like the Guillain-Barré syndrome which may develop after infection or vaccination. Because of these links we screened sera of NC patients and controls for IgG anti-ganglioside antibodies against 11 human brain gangliosides (GM1, GM2, GM3, GM4, GD1a, GD1b, GD2, GD3, GT1a, GT1b, GQ1b) and a sulfatide by using a line blot assay. Samples from 173 children and adolescents were analyzed: 48 with Pandemrix-associated NC, 20 with NC without Pandemrix association, 57 Pandemrix-vaccinated and 48 unvaccinated healthy children. We found that patients with Pandemrix-associated NC had more frequently (14.6%) anti-GM3 antibodies than vaccinated healthy controls (3.5%) (P = 0.047). Anti-GM3 antibodies were significantly associated with HLA-DQB1*0602 (P = 0.016) both in vaccinated NC patients and controls. In general, anti-ganglioside antibodies were more frequent in vaccinated (18.1%) than in unvaccinated (7.3%) individuals (P = 0.035). Our data suggest that autoimmunity against GM3 is a feature of Pandemrix-associated NC and that autoantibodies against gangliosides were induced by Pandemrix vaccination. PMID

  5. Immunoreactivity of the 14F7 Mab Raised against N-Glycolyl GM3 Ganglioside in Primary Lymphoid Tumors and Lymph Node Metastasis

    PubMed Central

    Blanco, Rancés; Blanco, Damián; Quintana, Yisel; Escobar, Xiomara; Rengifo, Charles E.; Osorio, Marta; Gutiérrez, Zailí; Lamadrid, Janet; Cedeño, Mercedes; Frómeta, Milagros; Carr, Adriana; Rengifo, Enrique

    2013-01-01

    The reactivity of the 14F7 Mab, a highly specific IgG1 against N-glycolyl GM3 ganglioside (NeuGcGM3) in normal tissues, lymphomas, lymph node metastasis, and other metastatic sites was assessed by immunohistochemistry. In addition, the effect of chemical fixation on the 14F7 Mab staining using monolayers of P3X63Ag.653 cells was also evaluated. Moreover, the ability of 14F7 to bind NeuGcGM3 ganglioside inducing complement-independent cytotoxicity by a flow cytometry-based assay was measured. The 14F7 Mab was reactive in unfixed, 4% paraformaldehyde, 4% formaldehyde, and acetone fixed cells. Postfixation with acetone did not alter the localization of NeuGcGM3, while the staining with 14F7 Mab was significantly eliminated in both cells fixed and postfixed with methanol but only partially reduced with ethanol. The staining with 14F7 Mab was evidenced in the 89.2%, 89.4%, and 88.9% of lymphomas, lymph node metastasis, and other metastatic sites, respectively, but not in normal tissues. The treatment with 14F7 Mab affected both morphology and membrane integrity of P3X63Ag.653 cells. This cytotoxic activity was dose-dependent and ranged from 24.0 to 84.7% (10–1000 μg/mL) as compared to the negative control. Our data could support the possible use of NeuGcGM3 as target for both active and passive immunotherapy against malignancies expressing this molecule. PMID:24381785

  6. Differential influence of the tumour-specific non-human sialic acid containing GM3 ganglioside on CD4+CD25- effector and naturally occurring CD4+CD25+ regulatory T cells function.

    PubMed

    de León, Joel; Fernández, Audry; Clavell, Marilyn; Labrada, Mayrel; Bebelagua, Yanin; Mesa, Circe; Fernández, Luis E

    2008-04-01

    Increasing evidences suggest that the aberrant expression of certain gangliosides on malignant cells could affect host's anti-tumour-specific immune responses. We have recently documented the relevance of the N-glycolylated variant of GM3 ganglioside (NGcGM3), a tumour-specific non-human sialic acid containing ganglioside, for tumour progression. However, evidences about the implication of host's immunity in NGcGM3-promoted cancer progression had not been obtained previously. In this work, we compared tumour growth of X63 myeloma cells pre-treated or not with an inhibitor of the glucosylceramide synthase enzyme, in wild or CD4+ T cell-depleted BALB/c mice. Results clearly showed a relationship between the agonistic effect of NGcGM3 in tumour growth and the presence of CD4+ T lymphocytes. For the first time, a description of a ganglioside-differential effect over purified CD4+CD25- and naturally occurring regulatory CD4+CD25+ T cells is provided. While NGcGM3 similarly down-modulated the CD4 expression in both cell populations, the inhibitory capacity of the CD4+CD25+ lymphocytes and their proliferation, induced by an anti-CD3 mAb and IL2, were not modified. In a different fashion, a reduction in proliferative capacity and a noteworthy secretion of anti-inflammatory cytokines were detected when CD4+CD25- T cells were cultured in the presence of NGcGM3. Considering the relevance of dendritic cells (DC) on primary activation of T cells, the effect of NGcGM3 over DC differentiation and TLR4-mediated maturation was also assessed. Our results indicate that NGcGM3 contributes to cancer progression mainly by influencing DC and CD4+CD25- T lymphocyte functions, rather than increasing the inhibitory capacity of naturally occurring regulatory T cells. PMID:18310617

  7. Growth inhibition of human lung adenocarcinoma cells by antibodies against epidermal growth factor receptor and by ganglioside GM3: involvement of receptor-directed protein tyrosine phosphatase(s).

    PubMed Central

    Suarez Pestana, E.; Greiser, U.; Sánchez, B.; Fernández, L. E.; Lage, A.; Perez, R.; Böhmer, F. D.

    1997-01-01

    Growth of the EGF receptor-expressing non-small-cell lung carcinoma cell line H125 seems to be at least partially driven by autocrine activation of the resident EGF receptors. Thus, the possibility of an EGF receptor-directed antiproliferative treatment was investigated in vitro using a monoclonal antibody (alpha EGFR ior egf/r3) against the human EGF receptor and gangliosides which are known to possess antiproliferative and anti-tyrosine kinase activity. The moderate growth-inhibitory effect of alpha EGFR ior egf/r3 was strongly potentiated by the addition of monosialoganglioside GM3. Likewise, the combination of alpha EGFR ior egf/r3 and GM3 inhibited EGF receptor autophosphorylation activity in H125 cells more strongly than either agent alone. A synergistic inhibition of EGF receptor autophosphorylation by alpha EGFR ior egf/r3 and GM3 was also observed in the human epidermoid carcinoma cell line A431. In both cell lines, the inhibition of EGF receptor autophosphorylation by GM3 was prevented by pretreatment of the cells with pervanadate, a potent inhibitor of protein tyrosine phosphatases (PTPases). Also, GM3 accelerated EGF receptor dephosphorylation in isolated A431 cell membranes. These findings indicate that GM3 has the capacity to activate EGF receptor-directed PTPase activity and suggest a novel possible mechanism for the regulation of cellular PTPases. Images Figure 5 Figure 6 PMID:9010029

  8. Milk-derived GM(3) and GD(3) differentially inhibit dendritic cell maturation and effector functionalities.

    PubMed

    Brønnum, H; Seested, T; Hellgren, L I; Brix, S; Frøkiaer, H

    2005-06-01

    Gangliosides are complex glycosphingolipids, which exert immune-modulating effects on various cell types. Ganglioside GD(3) and GM(3) are the predominant gangliosides of human breast milk but during the early phase of lactation, the content of GD(3) decreases while GM(3) increases. The biological value of gangliosides in breast milk has yet to be elucidated but when milk is ingested, dietary gangliosides might conceptually affect immune cells, such as dendritic cells (DCs). In this study, we address the in vitro effect of GD(3) and GM(3) on DC effector functionalities. Treatment of bone marrow-derived DCs with GD(3) before lipopolysaccharide-induced maturation decreased the production of interleukin-6 (IL-6), IL-10, IL-12 and tumor necrosis factor-alpha as well as reduced the alloreactivity in mixed leucocyte reaction (MLR). In contrast, only IL-10 and IL-12 productions were significantly inhibited by GM(3,) and the potency of DCs to activate CD4(+) cells in MLR was unaffected by GM(3). However, both gangliosides suppressed expression of CD40, CD80, CD86 and major histocompatibility complex class II on DCs. Because GD(3) overall inhibits DC functionalities more than GM(3), the immune modulating effect of the ganglioside fraction of breast milk might be more prominent in the commencement of lactation during which the milk contains the most GD(3). PMID:15963050

  9. Effect of the β-propiolactone treatment on the adsorption and fusion of influenza A/Brisbane/59/2007 and A/New Caledonia/20/1999 virus H1N1 on a dimyristoylphosphatidylcholine/ganglioside GM3 mixed phospholipids monolayer at the air-water interface.

    PubMed

    Desbat, Bernard; Lancelot, Eloïse; Krell, Tino; Nicolaï, Marie-Claire; Vogel, Fred; Chevalier, Michel; Ronzon, Frédéric

    2011-11-15

    The production protocol of many whole cell/virion vaccines involves an inactivation step with β-propiolactone (BPL). Despite the widespread use of BPL, its mechanism of action is poorly understood. Earlier work demonstrated that BPL alkylates nucleotide bases, but its interaction with proteins has not been studied in depth. In the present study we use ellipsometry to analyze the influence of BPL treatment of two H1N1 influenza strains, A/Brisbane/59/2007 and A/New Caledonia/20/1999, which are used for vaccine production on an industrial scale. Analyses were conducted using a mixed lipid monolayer containing ganglioside GM3, which functions as the viral receptor. Our results show that BPL treatment of both strains reduces viral affinity for the mixed monolayer and also diminishes the capacity of viral domains to self-assemble. In another series of experiments, the pH of the subphase was reduced from 7.4 to 5 to provoke the pH-induced conformational change of hemagglutinin, which occurs following endocytosis into the endosome. In the presence of the native virus the pH decrease caused a reduction in domain size, whereas lipid layer thickness and surface pressure were increased. These observations are consistent with a fusion of the viral membrane with the lipid monolayer. Importantly, this fusion was not observed with adsorbed inactivated virus, which indicates that BPL treatment inhibits the first step of virus-membrane fusion. Our data also indicate that BPL chemically modifies hemagglutinin, which mediates the interaction with GM3. PMID:21981550

  10. Cholera Toxin and Cell Growth: Role of Membrane Gangliosides

    PubMed Central

    Hollenberg, Morley D.; Fishman, Peter H.; Bennett, Vann; Cuatrecasas, Pedro

    1974-01-01

    The binding of cholera toxin to three transformed mouse cell lines derived from the same parent strain, and the effects of the toxin on DNA synthesis and adenylate cyclase activity, vary in parallel with the ganglioside composition of the cells. TAL/N cells of early passage, which contain large quantities of gangliosides GM3, GM2, GM1, and GDla, as well as the glycosyltransferases necessary for the synthesis of these gangliosides, bind the most cholera toxin and are the most sensitive to its action. TAL/N cells of later passage, which lack chemically detectable GM1 and GDla and which have no UDP-Gal:GM2 galactosyltransferase activity, are intermediate in binding and response to the toxin. SVS AL/N cells, which lack GM2 in addition to GM1 and GDla and which have little detectable UDP-GalNAc:GM3N-acetylgalactosaminyltransferase activity, bind the least amount of toxin. The SVS AL/N cells are the least responsive to inhibition of DNA synthesis and stimulation of adenylate cyclase activity by cholera toxin. Gangliosides (especially GM1), which appear to be the natural membrane receptors for cholera toxin, may normally have important roles in the regulation of cell growth and cAMP-mediated responses. PMID:4530298

  11. Synthesis of gangliosides by cultured oligodendrocytes

    SciTech Connect

    Mack, S.R.; Szuchet, S.; Dawson, G.

    1981-01-01

    Gangliosides are enriched in the nervous system compared to other tissues. The synthesis of gangliosides by monolayer cultures of isolated oligodendrocytes has not previously been investigated. Cells were labeled with (3H) galactose at preselected times and gangliosides isolated by phase partition, purified, and identified by chromatography. Cultured oligodendrocytes showed selectivity in their synthesis of gangliosides, which was expressed in the type of ganglioside synthesized as well as in the change of incorporation over time in culture. For the first ten days, there was very little incorporation of (3H) galactose in gangliosides, but this was followed by a stimulation of uptake for GM3, GM1/GD3, and GD1 gangliosides, reaching a maximum after approximately 25-30 days in vitro. There was little incorporation into GM2 or trisialogangliosides throughout the life of the cultures. Since oligodendrocytes synthesize extensive membranes during this period, one may speculate that the de novo-synthesized gangliosides are used for membranes.

  12. Mutations in B4GALNT1 (GM2 synthase) underlie a new disorder of ganglioside biosynthesis

    PubMed Central

    Lehman, Anna; Chioza, Barry; Baple, Emma L.; Maroofian, Reza; Cross, Harold; Sreekantan-Nair, Ajith; Priestman, David A.; Al-Turki, Saeed; McEntagart, Meriel E.; Proukakis, Christos; Royle, Louise; Kozak, Radoslaw P.; Bastaki, Laila; Patton, Michael; Wagner, Karin; Coblentz, Roselyn; Price, Joy; Mezei, Michelle; Schlade-Bartusiak, Kamilla; Hurles, Matthew E.

    2013-01-01

    Glycosphingolipids are ubiquitous constituents of eukaryotic plasma membranes, and their sialylated derivatives, gangliosides, are the major class of glycoconjugates expressed by neurons. Deficiencies in their catabolic pathways give rise to a large and well-studied group of inherited disorders, the lysosomal storage diseases. Although many glycosphingolipid catabolic defects have been defined, only one proven inherited disease arising from a defect in ganglioside biosynthesis is known. This disease, because of defects in the first step of ganglioside biosynthesis (GM3 synthase), results in a severe epileptic disorder found at high frequency amongst the Old Order Amish. Here we investigated an unusual neurodegenerative phenotype, most commonly classified as a complex form of hereditary spastic paraplegia, present in families from Kuwait, Italy and the Old Order Amish. Our genetic studies identified mutations in B4GALNT1 (GM2 synthase), encoding the enzyme that catalyzes the second step in complex ganglioside biosynthesis, as the cause of this neurodegenerative phenotype. Biochemical profiling of glycosphingolipid biosynthesis confirmed a lack of GM2 in affected subjects in association with a predictable increase in levels of its precursor, GM3, a finding that will greatly facilitate diagnosis of this condition. With the description of two neurological human diseases involving defects in two sequentially acting enzymes in ganglioside biosynthesis, there is the real possibility that a previously unidentified family of ganglioside deficiency diseases exist. The study of patients and animal models of these disorders will pave the way for a greater understanding of the role gangliosides play in neuronal structure and function and provide insights into the development of effective treatment therapies. PMID:24103911

  13. Mutations in B4GALNT1 (GM2 synthase) underlie a new disorder of ganglioside biosynthesis.

    PubMed

    Harlalka, Gaurav V; Lehman, Anna; Chioza, Barry; Baple, Emma L; Maroofian, Reza; Cross, Harold; Sreekantan-Nair, Ajith; Priestman, David A; Al-Turki, Saeed; McEntagart, Meriel E; Proukakis, Christos; Royle, Louise; Kozak, Radoslaw P; Bastaki, Laila; Patton, Michael; Wagner, Karin; Coblentz, Roselyn; Price, Joy; Mezei, Michelle; Schlade-Bartusiak, Kamilla; Platt, Frances M; Hurles, Matthew E; Crosby, Andrew H

    2013-12-01

    Glycosphingolipids are ubiquitous constituents of eukaryotic plasma membranes, and their sialylated derivatives, gangliosides, are the major class of glycoconjugates expressed by neurons. Deficiencies in their catabolic pathways give rise to a large and well-studied group of inherited disorders, the lysosomal storage diseases. Although many glycosphingolipid catabolic defects have been defined, only one proven inherited disease arising from a defect in ganglioside biosynthesis is known. This disease, because of defects in the first step of ganglioside biosynthesis (GM3 synthase), results in a severe epileptic disorder found at high frequency amongst the Old Order Amish. Here we investigated an unusual neurodegenerative phenotype, most commonly classified as a complex form of hereditary spastic paraplegia, present in families from Kuwait, Italy and the Old Order Amish. Our genetic studies identified mutations in B4GALNT1 (GM2 synthase), encoding the enzyme that catalyzes the second step in complex ganglioside biosynthesis, as the cause of this neurodegenerative phenotype. Biochemical profiling of glycosphingolipid biosynthesis confirmed a lack of GM2 in affected subjects in association with a predictable increase in levels of its precursor, GM3, a finding that will greatly facilitate diagnosis of this condition. With the description of two neurological human diseases involving defects in two sequentially acting enzymes in ganglioside biosynthesis, there is the real possibility that a previously unidentified family of ganglioside deficiency diseases exist. The study of patients and animal models of these disorders will pave the way for a greater understanding of the role gangliosides play in neuronal structure and function and provide insights into the development of effective treatment therapies. PMID:24103911

  14. Genetics Home Reference: GM3 synthase deficiency

    MedlinePlus

    ... GM3 synthase deficiency is characterized by recurrent seizures (epilepsy) and problems with brain development. Within the first ... diagnosis or management of GM3 synthase deficiency: American Epilepsy Society: Find a Doctor Clinic for Special Children ( ...

  15. NGcGM3/VSSP vaccine as treatment for melanoma patients.

    PubMed

    Pérez, Kirenia; Osorio, Marta; Hernández, Julio; Carr, Adriana; Fernández, Luis Enrique

    2013-06-01

    Gangliosides are glycosphingolipids that are present in the plasma membranes of vertebrates and are involved in multiple cellular processes. In the Center of Molecular Immunology an NGcGM3 ganglioside based vaccine has been developed and is conceptualized as a targeted therapy in cancer. NGcGM3/VSSP vaccine had been used as treatment of metastatic melanoma patients and had showed to be safe and immunogenic. The treatment improved antitumoral response or maintain the response obtained with previous onco-specific treatment as chemotherapy. The results indicate that the vaccine improved overall survival of metastatic melanoma patients after first line-chemotherapy. The clinical trial ongoing currently will allow corroborating these results. PMID:23442598

  16. NGcGM3/VSSP vaccine as treatment for melanoma patients

    PubMed Central

    Pérez, Kirenia; Osorio, Marta; Hernández, Julio; Carr, Adriana; Fernández, Luis Enrique

    2013-01-01

    Gangliosides are glycosphingolipids that are present in the plasma membranes of vertebrates and are involved in multiple cellular processes. In the Center of Molecular Immunology an NGcGM3 ganglioside based vaccine has been developed and is conceptualized as a targeted therapy in cancer. NGcGM3/VSSP vaccine had been used as treatment of metastatic melanoma patients and had showed to be safe and immunogenic. The treatment improved antitumoral response or maintain the response obtained with previous onco-specific treatment as chemotherapy. The results indicate that the vaccine improved overall survival of metastatic melanoma patients after first line-chemotherapy. The clinical trial ongoing currently will allow corroborating these results. PMID:23442598

  17. Ganglioside-magnetosome complex formation enhances uptake of gangliosides by cells

    PubMed Central

    Guan, Feng; Li, Xiang; Guo, Jia; Yang, Ganglong; Li, Xiang

    2015-01-01

    Bacterial magnetosomes, because of their nano-scale size, have a large surface-to-volume ratio and are able to carry large quantities of bioactive substances such as enzymes, antibodies, and genes. Gangliosides, a family of sialic acid-containing glycosphingolipids, function as distinctive cell surface markers and as specific determinants in cellular recognition and cell-to-cell communication. Exogenously added gangliosides are often used to study biological functions, transport mechanisms, and metabolism of their endogenous counterparts. Absorption of gangliosides into cells is typically limited by their tendency to aggregate into micelles in aqueous media. We describe here a simple strategy to remove proteins from the magnetosome membrane by sodium dodecyl sulfate treatment, and efficiently immobilize a ganglioside (GM1 or GM3) on the magnetosome by mild ultrasonic treatment. The maximum of 11.7±1.2 µg GM1 and 11.6±1.5 μg GM3 was loaded onto 1 mg magnetosome, respectively. Complexes of ganglioside-magnetosomes stored at 4°C for certain days presented the consistent stability. The use of GM1-magnetosome complex resulted in the greatest enhancement of ganglioside incorporation by cells. GM3-magnetosome complex significantly inhibited EGF-induced phosphorylation of the epidermal growth factor receptor. Both of these effects were further enhanced by the presence of a magnetic field. PMID:26609230

  18. Approaches in the study of ganglioside metabolism

    SciTech Connect

    Tettamanti, G.; Ghidoni, R.; Sonnino, S.; Chigorno, V.; Venerando, B.; Giuliani, A.; Fiorilli, A.

    1984-01-01

    Ganglioside GM1, /sup 3/H-labeled in the sphingosine or terminal galactose moiety was injected into mice and its metabolic fate in the liver was followed. After administration of sphingosine-labeled GM1 all major liver gangliosides (GM3, GM2, GM1, GD1a-NeuAc, NeuG1) became radioactive, the radioactivity residing in all cases on the sphingosine moiety. The specific radioactivity was highest on GM1, followed by GM2, GM3 and GD1a-NeuAc, NeuG1. Several neutral glycosphingolipids and sphingomyelin were also formed. After administration of galactose-labelled GM1 the only radioactive gangliosides present in the liver were GM1 and GD1a-NeuAc, NeuG1, both carrying the radioactivity on the terminal galactose residue, with no formation of labelled neutral glycosphingolipids. Subcellular studies gave clear evidence that GM1, after being taken up by the liver, was mainly degraded to GM2, GM3 and neutral glycosphingolipids at the level of lysosomes. A part of it was sialylated to more complex gangliosides and some of its metabolic by-products were used for the biosynthesis of other sphingolipid species, likely at the level of the Golgi apparatus. All this suggests that exogenous GM1 is introduced in the metabolic routes of endogenous gangliosides and of other sphingolipids, which are operating in the liver.

  19. Anchored and soluble gangliosides contribute to myelosupportivity of stromal cells

    SciTech Connect

    Ziulkoski, Ana L.; Santos, Aline X.S. dos; Andrade, Claudia M.B.; Trindade, Vera M.T.; Daniotti, Jose Luis; Borojevic, Radovan; Guma, Fatima C.R.

    2009-10-09

    Stroma-mediated myelopoiesis depends upon growth factors and an appropriate intercellular microenvironment. Previous studies have demonstrated that gangliosides, produced by hepatic stromal cell types, are required for optimal myelosupportive function. Here, we compared the mielossuportive functions of a bone marrow stroma (S17) and skin fibroblasts (SF) regarding their ganglioside pattern of synthesis and shedding. The survival and proliferation of a myeloid precursor cell (FDC-P1) were used as reporter. Although the ganglioside synthesis of the two stromal cells was similar, their relative content and shedding were distinct. The ganglioside requirement for mielossuportive function was confirmed by the decreased proliferation of FDC-P1 cells in ganglioside synthesis-inhibited cultures and in presence of an antibody to GM3 ganglioside. The distinct mielossuportive activities of the S17 and SF stromata may be related to differences on plasma membrane ganglioside concentrations or to differences on the gangliosides shed and their subsequent uptake by myeloid cells, specially, GM3 ganglioside.

  20. Ganglioside and Non-ganglioside Mediated Host Responses to the Mouse Polyomavirus

    PubMed Central

    Velupillai, Palanivel; Castle, Sherry; Garcea, Robert L.; Benjamin, Thomas

    2015-01-01

    Gangliosides serve as receptors for internalization and infection by members of the polyomavirus family. Specificity is determined by recognition of carbohydrate moieties on the ganglioside by the major viral capsid protein VP1. For the mouse polyomavirus (MuPyV), gangliosides with terminal sialic acids in specific linkages are essential. Although many biochemical and cell culture experiments have implicated gangliosides as MuPyV receptions, the role of gangliosides in the MuPyV-infected mouse has not been investigated. Here we report results of studies using ganglioside-deficient mice and derived cell lines. Knockout mice lacking complex gangliosides were completely resistant to the cytolytic and pathogenic effects of the virus. Embryo fibroblasts from these mice were likewise resistant to infection, and supplementation with specific gangliosides restored infectibility. Although lacking receptors for viral infection, cells from ganglioside-deficient mice retained the ability to respond to the virus. Ganglioside-deficient fibroblasts responded rapidly to virus exposure with a transient induction of c-fos as an early manifestation of a mitogenic response. Additionally, splenocytes from ganglioside-deficient mice responded to MuPyV by secretion of IL-12, previously recognized as a key mediator of the innate immune response. Thus, while gangliosides are essential for infection in the animal, gangliosides are not required for mitogenic responses and innate immune responses to the virus. PMID:26474471

  1. Ganglioside and Non-ganglioside Mediated Host Responses to the Mouse Polyomavirus.

    PubMed

    You, John; O'Hara, Samantha D; Velupillai, Palanivel; Castle, Sherry; Levery, Steven; Garcea, Robert L; Benjamin, Thomas

    2015-10-01

    Gangliosides serve as receptors for internalization and infection by members of the polyomavirus family. Specificity is determined by recognition of carbohydrate moieties on the ganglioside by the major viral capsid protein VP1. For the mouse polyomavirus (MuPyV), gangliosides with terminal sialic acids in specific linkages are essential. Although many biochemical and cell culture experiments have implicated gangliosides as MuPyV receptions, the role of gangliosides in the MuPyV-infected mouse has not been investigated. Here we report results of studies using ganglioside-deficient mice and derived cell lines. Knockout mice lacking complex gangliosides were completely resistant to the cytolytic and pathogenic effects of the virus. Embryo fibroblasts from these mice were likewise resistant to infection, and supplementation with specific gangliosides restored infectibility. Although lacking receptors for viral infection, cells from ganglioside-deficient mice retained the ability to respond to the virus. Ganglioside-deficient fibroblasts responded rapidly to virus exposure with a transient induction of c-fos as an early manifestation of a mitogenic response. Additionally, splenocytes from ganglioside-deficient mice responded to MuPyV by secretion of IL-12, previously recognized as a key mediator of the innate immune response. Thus, while gangliosides are essential for infection in the animal, gangliosides are not required for mitogenic responses and innate immune responses to the virus. PMID:26474471

  2. Enhancement of the immune response to poorly immunogenic gangliosides after incorporation into very small size proteoliposomes (VSSP).

    PubMed

    Estevez, F; Carr, A; Solorzano, L; Valiente, O; Mesa, C; Barroso, O; Sierra, G V; Fernandez, L E

    1999-08-20

    Certain gangliosides are tumor-associated antigens that constitute potential targets for cancer immunotherapy. A major drawback in the design of ganglioside-based cancer vaccines, however, is the poor immunogenicity of these glycolipids. Here we report the immunological and physicochemical properties of very small size proteoliposomes (VSSP) obtained by using anionic detergents to incorporate gangliosides into the outer membrane protein complex (OMPC) of N. meningitidis. VSSP of three different gangliosides, GM3, NGcGM3 and GD3, were tested. These gangliosides differ in level of expression in normal tissues and in immunogenicity in different animal species. We show that the immunization with VSSP in an oil adjuvant consistently induced both IgM and IgG anti-ganglioside antibodies. In the mouse, the anti-ganglioside IgG fraction was not restricted to the typical T-independent isotype IgG3. Unexpectedly, significant levels of the T-dependent IgG1, IgG2a and particularly IgG2b were also found. VSSP-mediated enhancement of the immunogenicity was not restricted to the relatively immunogenic ganglioside GD3, satisfactory immune responses against highly tolerated GM3 and NGcGM3 were also obtained. Similar results were achieved in chickens and monkeys. No reactogenicity was observed even when self-gangliosides were used for immunization. VSSP overcame natural tolerance to gangliosides in an adjuvant dependent fashion. PMID:10501249

  3. Ganglioside Biochemistry

    PubMed Central

    Kolter, Thomas

    2012-01-01

    Gangliosides are sialic acid-containing glycosphingolipids. They occur especially on the cellular surfaces of neuronal cells, where they form a complex pattern, but are also found in many other cell types. The paper provides a general overview on their structures, occurrence, and metabolism. Key functional, biochemical, and pathobiochemical aspects are summarized. PMID:25969757

  4. Gangliosides inhibit the development from monocytes to dendritic cells

    PubMed Central

    WÖLFL, M; BATTEN, W Y; POSOVSZKY, C; BERNHARD, H; BERTHOLD, F

    2002-01-01

    Dendritic cell (DC) development and function is critical in the initiation phase of any antigen-specific immune response against tumours. Impaired function of DC is one explanation as to how tumours escape immunosurveillance. In the presence of various soluble tumour-related factors DC precursors lose their ability to differentiate into mature DC and to activate T cells. Gangliosides are glycosphingolipids shed by tumours of neuroectodermal origin such as melanoma and neuroblastoma. In this investigation we address the question of whether gangliosides suppress the development and function of monocyte-derived DC in vitro. In the presence of gangliosides, the monocytic DC precursors showed increased adherence, cell spreading and a reduced number of dendrites. The expression of MHC class II molecules, co-stimulatory molecules and the GM-CSF receptor (CD116) on the ganglioside-treated DC was significantly reduced. Furthermore, the function of ganglioside-treated DC was impaired as observed in endocytosis, chemotactic and T cell proliferation assays. In contrast to monocytic DC precursors, mature DC were unaffected even when higher doses of gangliosides were added to the culture. With regard to their carbohydrate structure, five different gangliosides (GM2, GM3, GD2, GD3, GT1b), which are typically shed by melanoma and neuroblastoma, were tested for their ability to suppress DC development and function. Suppression was induced by GM2, but not by the other gangliosides. These data suggest that certain gangliosides impair DC precursors, implying a possible mechanism for tumour escape. PMID:12452834

  5. Anti-NeuGcGM3 reactivity: a possible role of natural antibodies and B-1 cells in tumor immunosurveillance.

    PubMed

    Rodriguez-Zhurbenko, Nely; Rabade-Chediak, Maura; Martinez, Darel; Griñan, Tania; Hernandez, Ana Maria

    2015-12-01

    While not naturally expressed in normal human tissues, N-glycolylated (NeuGc) gangliosides are overexpressed in several tumors and have immunosuppressive capacity, which contributes to cancer progression. Naturally occurring antibodies against NeuGcGM3 exist in healthy donors that specifically recognize and kill tumor cells expressing the antigen by complement-dependent and -independent mechanisms, the latter resembling an oncotic necrosis-type of cell death. Both the levels of anti-NeuGcGM3 antibodies in the sera of healthy donors and the percentage of donors with these natural antibodies decrease with age. Our work has shown that anti-NeuGcGM3 antibodies are not detected in the sera of non-small cell lung cancer (NSCLC) patients, compared to age- and sex-matched healthy donors, which have anti-NeuGcGM3. Interestingly, the level of serum total IgM, but not IgG, was significantly lower in cancer patients than in healthy donors. Screening of immortalized mouse splenic and peritoneal-derived hybridomas showed that peritoneal B-1 cells secrete anti-NeuGcGM3 with tumor cytotoxic capacity. Defects in the natural surveillance against tumor antigens could increase the risk of elderly donors developing cancer and affect the capacity of cancer patients to effectively fight against tumor cells. PMID:26214505

  6. Induction of leukocyte infiltration at metastatic site mediates the protective effect of NGcGM3-based vaccine

    PubMed Central

    Labrada, Mayrel; Pablos, Isabel; Prete, Francesca; Hevia, Giselle; Clavell, Marilyn; Benvenuti, Federica; Fernández, Luis E

    2014-01-01

    While the NGcGM3/VSSP vaccine, a preparation consisting in very small sized proteoliposomes (VSSP) obtained by the incorporation of the NGcGM3 ganglioside into the outer membrane protein (OMP) complex of Neisseria meningitides, is currently studied in late stage clinical trials in breast cancer and melanoma patients, mechanisms involved in the vaccine’s antitumor effect are insufficiently understood. Here we have addressed the role of adaptive and innate immune cells in mediating the protective effect of the vaccine. To this aim we selected the 3LL-D122 Lewis lung spontaneous metastasis model. Unexpectedly, inoculation of the vaccine in tumor bearing C57BL/6 mice, either by subcutaneous (sc) or intraperitoneal (ip) routes, induced similar anti-metastatic effect. Regardless the T-independent nature of NGcGM3 ganglioside as antigen, the antimetastatic effect of NGcGM3/VSSP is dependent on CD4+ T cells. In a further step we found that the vaccine was able to promote the increase, maturation, and cytokine secretion of conventional DCs and the maturation of Bone Marrow-derived plasmacytoid DCs. In line with this result the in vivo IFNα serum level in ip vaccinated mice increased as soon as 2h after treatment. On the other hand the infiltration of NK1.1+CD3- and NK1.1+CD3+ cells in lungs of vaccinated mice was significantly increased, compared with the presence of these cells in control animal lungs. In the same way NGcGM3/VSSP mobilized acquired immunity effector cells into the lungs of vaccinated tumor bearing mice. Finally and not less noteworthy, leukocyte infiltration in lungs of tumor bearing mice correlates with vaccine induced inhibition of lung metastization. PMID:25424937

  7. Induction of leukocyte infiltration at metastatic site mediates the protective effect of NGcGM3-based vaccine.

    PubMed

    Labrada, Mayrel; Pablos, Isabel; Prete, Francesca; Hevia, Giselle; Clavell, Marilyn; Benvenuti, Federica; Fernández, Luis E

    2014-01-01

    While the NGcGM3/VSSP vaccine, a preparation consisting in very small sized proteoliposomes (VSSP) obtained by the incorporation of the NGcGM3 ganglioside into the outer membrane protein (OMP) complex of Neisseria meningitides, is currently studied in late stage clinical trials in breast cancer and melanoma patients, mechanisms involved in the vaccine's antitumor effect are insufficiently understood. Here we have addressed the role of adaptive and innate immune cells in mediating the protective effect of the vaccine. To this aim we selected the 3LL-D122 Lewis lung spontaneous metastasis model. Unexpectedly, inoculation of the vaccine in tumor bearing C57BL/6 mice, either by subcutaneous (sc) or intraperitoneal (ip) routes, induced similar anti-metastatic effect. Regardless the T-independent nature of NGcGM3 ganglioside as antigen, the antimetastatic effect of NGcGM3/VSSP is dependent on CD4(+) T cells. In a further step we found that the vaccine was able to promote the increase, maturation, and cytokine secretion of conventional DCs and the maturation of Bone Marrow-derived plasmacytoid DCs. In line with this result the in vivo IFNα serum level in ip vaccinated mice increased as soon as 2h after treatment. On the other hand the infiltration of NK1.1(+)CD3(-) and NK1.1(+)CD3(+) cells in lungs of vaccinated mice was significantly increased, compared with the presence of these cells in control animal lungs. In the same way NGcGM3/VSSP mobilized acquired immunity effector cells into the lungs of vaccinated tumor bearing mice. Finally and not less noteworthy, leukocyte infiltration in lungs of tumor bearing mice correlates with vaccine induced inhibition of lung metastization. PMID:25424937

  8. The tumor antigen N-glycolyl-GM3 is a human CD1d ligand capable of mediating B cell and natural killer T cell interaction.

    PubMed

    Gentilini, M Virginia; Pérez, M Eugenia; Fernández, Pablo Mariano; Fainboim, Leonardo; Arana, Eloísa

    2016-05-01

    The expression of N-glycolyl-monosialodihexosyl-ganglioside (NGcGM3) in humans is restricted to cancer cells; therefore, it is a tumor antigen. There are measurable quantities of circulating anti-NGcGM3 antibodies (aNGcGM3 Abs) in human serum. Interestingly, some people have circulating Ag-specific immunoglobulins G (IgGs) that are capable of complement mediated cytotoxicity against NGcGM3 positive cells, which is relevant for tumor surveillance. In light of the chemical nature of Ag, we postulated it as a candidate ligand for CD1d. Furthermore, we hypothesize that the immune mechanism involved in the generation of these Abs entails cross talk between B lymphocytes (Bc) and invariant natural killer T cells (iNKT). Combining cellular techniques, such as flow cytometry and biochemical assays, we demonstrated that CD1d binds to NGcGM3 and that human Bc present NGcGM3 in a CD1d context according to two alternative strategies. We also showed that paraformaldehyde treatment of cells expressing CD1d affects the presentation. Finally, by co-culturing primary human Bc with iNKT and measuring Ki-67 expression, we detected a reproducible increment in the proliferation of the iNKT population when Ag was on the medium. Our findings identify a novel, endogenous, human CD1d ligand, which is sufficiently competent to stimulate iNKT. We postulate that CD1d-restricted Bc presentation of NGcGM3 drives effective iNKT activation, an immunological mechanism that has not been previously described for humans, which may contribute to understanding aNGcGM3 occurrence. PMID:26969612

  9. Increased catabolism and decreased unsaturation of ganglioside in patients with inflammatory bowel disease

    PubMed Central

    Miklavcic, John J; Hart, Tasha DL; Lees, Gordon M; Shoemaker, Glen K; Schnabl, Kareena L; Larsen, Bodil MK; Bathe, Oliver F; Thomson, Alan BR; Mazurak, Vera C; Clandinin, M Tom

    2015-01-01

    AIM: To investigate whether accelerated catabolism of ganglioside and decreased ganglioside content contribute to the etiology of pro-inflammatory intestinal disease. METHODS: Intestinal mucosa from terminal ileum or colon was obtained from patients with ulcerative colitis or inflammatory Crohn’s disease (n = 11) undergoing bowel resection and compared to control samples of normal intestine from patients with benign colon polyps (n = 6) and colorectal cancer (n = 12) in this observational case-control study. Gangliosides and phospholipids of intestinal mucosa were characterized by class and ceramide or fatty acid composition using liquid chromatography triple-quad mass spectrometry. Content and composition of ganglioside classes GM1, GM3, GD3, GD1a, GT1 and GT3 were compared among subject groups. Content and composition of phospholipid classes phosphatidylcholine (PC) and phosphatidylethanolamine were compared among subject groups. Unsaturation index of individual ganglioside and phospholipid classes was computed and compared among subject groups. Ganglioside catabolism enzymes beta-hexosaminidase A (HEXA) and sialidase-3 (NEU3) were measured in intestinal mucosa using western blot and compared among subject groups. RESULTS: Relative GM3 ganglioside content was 2-fold higher (P < 0.05) in intestine from patients with inflammatory bowel disease (IBD) compared to control intestine. The quantity of GM3 and ratio of GM3/GD3 was also higher in IBD intestine than control tissue (P < 0.05). Control intestine exhibited 3-fold higher (P < 0.01) relative GD1a ganglioside content than IBD intestine. GD3 and GD1a species of ganglioside containing three unsaturated bonds were present in control intestine, but were not detected in IBD intestine. The relative content of PC containing more than two unsaturated bonds was 30% lower in IBD intestine than control intestine (P < 0.05). The relative content of HEXA in IBD intestine was increased 1.7-fold (P < 0.05) and NEU3 was

  10. Ganglioside Regulation of AMPA Receptor Trafficking

    PubMed Central

    Prendergast, Jillian; Umanah, George K.E.; Yoo, Seung-Wan; Lagerlöf, Olof; Motari, Mary G.; Cole, Robert N.; Huganir, Richard L.; Dawson, Ted M.; Dawson, Valina L.

    2014-01-01

    Gangliosides are major cell-surface determinants on all vertebrate neurons. Human congenital disorders of ganglioside biosynthesis invariably result in intellectual disability and are often associated with intractable seizures. To probe the mechanisms of ganglioside functions, affinity-captured ganglioside-binding proteins from rat cerebellar granule neurons were identified by quantitative proteomic mass spectrometry. Of the six proteins that bound selectively to the major brain ganglioside GT1b (GT1b:GM1 > 4; p < 10−4), three regulate neurotransmitter receptor trafficking: Thorase (ATPase family AAA domain-containing protein 1), soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (γ-SNAP), and the transmembrane protein Nicalin. Thorase facilitates endocytosis of GluR2 subunit-containing AMPA-type glutamate receptors (AMPARs) in an ATPase-dependent manner; its deletion in mice results in learning and memory deficits (J. Zhang et al., 2011b). GluR2-containing AMPARs did not bind GT1b, but bound specifically to another ganglioside, GM1. Addition of noncleavable ATP (ATPγS) significantly disrupted ganglioside binding, whereas it enhanced AMPAR association with Thorase, NSF, and Nicalin. Mutant mice lacking GT1b expressed markedly higher brain Thorase, whereas Thorase-null mice expressed higher GT1b. Treatment of cultured hippocampal neurons with sialidase, which cleaves GT1b (and other sialoglycans), resulted in a significant reduction in the size of surface GluR2 puncta. These data support a model in which GM1-bound GluR2-containing AMPARs are functionally segregated from GT1b-bound AMPAR-trafficking complexes. Release of ganglioside binding may enhance GluR2-containing AMPAR association with its trafficking complexes, increasing endocytosis. Disrupting ganglioside biosynthesis may result in reduced synaptic expression of GluR2-contianing AMPARs resulting in intellectual deficits and seizure susceptibility in mice and humans. PMID:25253868

  11. Glycosphingolipid GM3 is Indispensable for Dengue Virus Genome Replication

    PubMed Central

    Wang, Kezhen; Wang, Juanjuan; Sun, Ta; Bian, Gang; Pan, Wen; Feng, Tingting; Wang, Penghua; Li, Yunsen; Dai, Jianfeng

    2016-01-01

    Dengue virus (DENV) causes the most prevalent arthropod-borne viral disease of humans worldwide. Glycosphingolipids (GSLs) are involved in virus infection by regulating various steps of viral-host interaction. However, the distinct role of GSLs during DENV infection remains unclear. In this study, we used mouse melanoma B16 cells and their GSL-deficient mutant counterpart GM95 cells to study the influence of GSLs on DENV infection. Surprisingly, GM95 cells were highly resistant to DENV infection compared with B16 cells. Pretreatment of B16 cells with synthetase inhibitor of GM3, the most abundant GSLs in B16 cells, or silencing GM3 synthetase T3GAL5, significantly inhibited DENV infection. DENV attachment and endocytosis were not impaired in GM95 cells, but DENV genome replication was obviously inhibited in GM95 cells compared to B16 cells. Furthermore, GM3 was colocalized with DENV viral replication complex on endoplasmic reticulum (ER) inside the B16 cells. Finally, GM3 synthetase inhibitor significantly reduced the mortality rate of suckling mice that challenged with DENV by impairing the viral replication in mouse brain. Taken together, these data indicated that GM3 was not required for DENV attachment and endocytosis, however, essential for viral genome replication. Targeting GM3 could be a novel strategy to inhibit DENV infection. PMID:27313500

  12. Anti-ganglioside antibody-induced tumor cell death by loss of membrane integrity.

    PubMed

    Roque-Navarro, Lourdes; Chakrabandhu, Krittalak; de León, Joel; Rodríguez, Sandra; Toledo, Carlos; Carr, Adriana; de Acosta, Cristina Mateo; Hueber, Anne-Odile; Pérez, Rolando

    2008-07-01

    Gangliosides have been involved in multiple cellular processes such as growth, differentiation and adhesion, and more recently as regulators of cell death signaling pathways. Some of these molecules can be considered as tumor-associated antigens, in particular, N-glycolyl sialic acid-containing gangliosides, which are promising candidates for cancer-targeted therapy because of their low expression in normal human tissues. In this study, we provided the molecular and cellular characterization of a novel cell death mechanism induced by the anti-NGcGM3 14F7 monoclonal antibody (mAb) in L1210 murine tumor cell line but not in mouse normal cells (B and CD4(+) T lymphocytes) that expressed the antigen. Impairment of ganglioside synthesis in tumor cells abrogated the 14F7 mAb cytotoxic effect; however, exogenous reincorporation of the ganglioside did not restore tumor cell sensitivity to 14F7 mAb-induced cytotoxicity. 14F7 F(ab')(2) but not Fab fragments retained the cytotoxic capacity of the whole mAb. By contrary, other mAb, which recognizes N-glycolylated gangliosides, did not show any cytotoxic effect. These mAbs showed quite different capacities to bind NGcGM3-positive cell lines measured by binding inhibition experiments. Interestingly, this complement-independent cell death mechanism did not resemble apoptosis, because no DNA fragmentation, caspase activation, or Fas mediation were observed. However, NGcGM3 ganglioside-mediated 14F7 mAb-induced cell death was accompanied by cellular swelling, membrane lesion formation, and cytoskeleton activation, suggesting an oncosis-like phenomenon. This novel mechanism of cell death lets us to support further therapeutic approaches using NGcGM3 as a molecular target for antibody-based cancer immunotherapy. PMID:18645013

  13. Immunogenicity and safety of a NeuGcGM3 based cancer vaccine: Results from a controlled study in metastatic breast cancer patients.

    PubMed

    Mulens, Vladimir; de la Torre, Ana; Marinello, Patricia; Rodríguez, Ronald; Cardoso, Jorge; Díaz, René; O'Farrill, Miguel; Macias, Amparo; Viada, Carmen; Saurez, Giselle; Carr, Adriana; Crombet, Tania; Mazorra, Zaima; Perez, Rolando; Fernandez, Luis Enrique

    2010-09-14

    Increased levels of NeuGc-containing gangliosides have been described in human breast cancer. A controlled Phase II clinical trial was conducted in patients with metastatic breast cancer to evaluate immunogenicity, safety and to identify evidences of biological activity of a cancer vaccine composed by NeuGcGM3 in a proteoliposome of Neisseria meningitidis together with Montanide ISA 51 as adjuvant. After first line chemotherapy, 79 women were randomized 1:1 to receive the vaccine candidate or best supportive care. All patients achieved at least stable disease to the first line therapy for the metastatic condition. Treatment consisted on 5 vaccine doses every 2 weeks and then, monthly re-immunization to complete 15 doses. Vaccination with the NeuGcGM3 based vaccine was safe and the most frequent adverse events consisted on injection site reactions, fever, arthralgia and chills. The vaccine was immunogenic and a sustained increase of both IgG and IgM antibody titters against NGcGM3 was observed after the second vaccination month. Antibodies were able to recognize the NeuGcGM3(+) murine tumor cell line L1210 and the myeloma cell line P3X63. Humoral response was specific since vaccination did not result in Neu-Acetyl GM3 or GM2-antibody response. Hyperimmune sera from vaccinated patients were able to prevent the NeuGcGM3 mediated CD4 down-modulation on T lymphocytes. In the intent to treat analysis, there was a trend toward a survival advantage for the vaccine group and this effect was significant for women bearing non-visceral metastasis. Two phase III clinical studies with this vaccine candidate are ongoing. PMID:20855939

  14. GM3 synthase deficiency due to ST3GAL5 variants in two Korean female siblings: Masquerading as Rett syndrome-like phenotype.

    PubMed

    Lee, Jin Sook; Yoo, Yongjin; Lim, Byung Chan; Kim, Ki Joong; Song, Junghan; Choi, Murim; Chae, Jong-Hee

    2016-08-01

    There have been a few reports of GM3 synthase deficiency since the disease of the ganglioside biosynthetic pathway was first reported in 2004. It is characterized by infantile-onset epilepsy with severe intellectual disability, blindness, cutaneous dyspigmentation, and choreoathetosis. Here we report the cases of two Korean female siblings with ST3GAL5 variants, who presented with a Rett-like phenotype. They had delayed speech, hand stereotypies with a loss of purposeful hand movements, and choreoathetosis, but no clinical seizures. One of them had microcephaly, while the other had small head circumference less than 10th centile. There were no abnormal laboratory findings with the exception of a high lactate level. MECP2/CDKL5/FOXG1 genetic tests with an array comparative genomic hybridization revealed no molecular defects. Through whole-exome sequencing of the proband, we found compound heterozygous ST3GAL5 variants (p.Gly201Arg and p.Cys195Ser), both of which were novel. The siblings were the same compound heterozygotes and their unaffected parents were heterozygous carriers of each variant. Liquid chromatography-mass spectrometry analysis confirmed a low level of GM3 and its downstream metabolites, indicating GM3 synthase deficiency. These cases expanded the clinical and genetic spectrum of the ultra-rare disease, GM3 synthase deficiency with ST3GAL5 variants. © 2016 Wiley Periodicals, Inc. PMID:27232954

  15. Production of multiple brain-like ganglioside species is dispensable for fas-induced apoptosis of lymphoid cells.

    PubMed

    Popa, Iuliana; Therville, Nicole; Carpentier, Stéphane; Levade, Thierry; Cuvillier, Olivier; Portoukalian, Jacques

    2011-01-01

    Activation of an acid sphingomyelinase (aSMase) leading to a biosynthesis of GD3 disialoganglioside has been associated with Fas-induced apoptosis of lymphoid cells. The present study was undertaken to clarify the role of this enzyme in the generation of gangliosides during apoptosis triggered by Fas ligation. The issue was addressed by using aSMase-deficient and aSMase-corrected cell lines derived from Niemann-Pick disease (NPD) patients. Fas cross-linking elicited a rapid production of large amounts of complex a- and b-series species of gangliosides with a pattern and a chromatographic behavior as single bands reminiscent of brain gangliosides. The gangliosides were synthesized within the first ten minutes and completely disappeared within thirty minutes after stimulation. Noteworthy is the observation that GD3 was not the only ganglioside produced. The production of gangliosides and the onset of apoptotic hallmarks occurred similarly in both aSMase-deficient and aSMase-corrected NPD lymphoid cells, indicating that aSMase activation is not accountable for ganglioside generation. Hampering ganglioside production by inhibiting the key enzyme glucosylceramide synthase did not abrogate the apoptotic process. In addition, GM3 synthase-deficient lymphoid cells underwent Fas-induced apoptosis, suggesting that gangliosides are unlikely to play an indispensable role in transducing Fas-induced apoptosis of lymphoid cells. PMID:21629700

  16. Production of Multiple Brain-Like Ganglioside Species Is Dispensable for Fas-Induced Apoptosis of Lymphoid Cells

    PubMed Central

    Carpentier, Stéphane; Levade, Thierry; Cuvillier, Olivier; Portoukalian, Jacques

    2011-01-01

    Activation of an acid sphingomyelinase (aSMase) leading to a biosynthesis of GD3 disialoganglioside has been associated with Fas-induced apoptosis of lymphoid cells. The present study was undertaken to clarify the role of this enzyme in the generation of gangliosides during apoptosis triggered by Fas ligation. The issue was addressed by using aSMase-deficient and aSMase-corrected cell lines derived from Niemann-Pick disease (NPD) patients. Fas cross-linking elicited a rapid production of large amounts of complex a- and b-series species of gangliosides with a pattern and a chromatographic behavior as single bands reminiscent of brain gangliosides. The gangliosides were synthesized within the first ten minutes and completely disappeared within thirty minutes after stimulation. Noteworthy is the observation that GD3 was not the only ganglioside produced. The production of gangliosides and the onset of apoptotic hallmarks occurred similarly in both aSMase-deficient and aSMase-corrected NPD lymphoid cells, indicating that aSMase activation is not accountable for ganglioside generation. Hampering ganglioside production by inhibiting the key enzyme glucosylceramide synthase did not abrogate the apoptotic process. In addition, GM3 synthase-deficient lymphoid cells underwent Fas-induced apoptosis, suggesting that gangliosides are unlikely to play an indispensable role in transducing Fas-induced apoptosis of lymphoid cells. PMID:21629700

  17. Effect of vaccination with N-glycolyl GM3/VSSP vaccine by subcutaneous injection in patients with advanced cutaneous melanoma

    PubMed Central

    Osorio, Marta; Gracia, Elias; Reigosa, Edmundo; Hernandez, Julio; de la Torre, Ana; Saurez, Giselle; Perez, Kirenia; Viada, Carmen; Cepeda, Meylán; Carr, Adriana; Ávila, Yisel; Rodríguez, Migdalia; Fernandez, Luis E

    2012-01-01

    NeuGc-containing gangliosides have been described in melanoma cells and are an attractive target for cancer immunotherapy because they are minimally or not expressed in normal human tissues. Melanoma patients treated with a vaccine based on N-glycolyl gangliosides have shown benefit in progression free survival and overall survival. We conducted a multicenter Phase I/II clinical trial in patients with metastatic cutaneous melanoma treated with the N-gycolyl GM3/very-small-size proteoliposomes vaccine by the subcutaneous route. Selecting the optimal biological dose of the vaccine was the principal objective based on immunogenicity, efficacy, and safety results. Six dose levels were studied and the treatment schedule consisted of five doses administered every 2 weeks and then monthly until 15 doses had been given. Dose levels evaluated were 150, 300, 600, 900, 1200, and 1500 μg with five patients included in each dose level except the 900 μg dose (n = 10). Immunogenicity was determined by antibody titers generated in patients after vaccination. Antitumor effect was measured by response criteria of evaluation in solid tumors and safety was evaluated by common toxicity criteria of adverse events. The vaccine was safe and immunogenic at all doses levels. The most frequent adverse events related to vaccination were mild to moderate injection site reactions and flu-like symptoms. Vaccination induced specific anti-NeuGcGM3 immunoglobulin M and immunoglobulin G antibody responses in all patients. Disease control (objective response or stable disease) was obtained in 38.46% of patients. Global median overall survival was 20.20 months. Two patients achieved overall survival duration of about 4 and 5 years, respectively. The 900 μg dose resulted in overall survival duration of 19.40 months and was selected as the biological optimal dose. PMID:23055778

  18. EXPERIENTIAL FACTORS IN THE EXPRESSION OF HYPERMOTILITY PRODUCED BY INTRADENTATE COLCHICINE: LACK OF EFFECT OF GM1 GANGLIOSIDE ON COLCHICINE-INDUCED LOSS OF GRANULE CELLS AND MOSSY FIBERS (JOURNAL VERSION)

    EPA Science Inventory

    Adult, male Fischer-344 rats were given bilateral injections of 2.5 microgram colchicine or artificial cerebrospinal fluid into caudal and rostral sites of the dentate gyrus of the hippocampus. One group of rats received 21 consecutive daily injections of 20 mg/kg GM1 ganglioside...

  19. Expression of gangliosides on glial and neuronal cells in normal and pathological adult human brain.

    PubMed

    Marconi, Silvia; De Toni, Luca; Lovato, Laura; Tedeschi, Elisa; Gaetti, Luigi; Acler, Michele; Bonetti, Bruno

    2005-12-30

    Few studies have assessed the glycolipid phenotype of glial cells in the human central nervous system (CNS) in situ. We investigated by immunohistochemistry the expression and cellular distribution of a panel of gangliosides (GM1, GM2, acetyl-GM3, GD1a, GD1b, GD2, GD3, GT1b, GQ1b and the A2B5 antibody) in adult, human normal and pathological brain, namely multiple sclerosis (MS) and other neurological diseases (OND). In normal conditions, we found diffuse expression in the white matter of most gangliosides tested, with the exception of acetyl-GM3, GT1b and GQ1b. By double immunofluorescence with phenotypic markers, GM1 and GD1b were preferentially expressed on GFAP+ astrocytes, GD1a on NG2+ oligodendrocyte precursors, A2B5 immunostained both populations, while GD2 was selectively present on mature oligodendrocytes. In the gray matter, only GM1, GD2 and A2B5 were present on neuronal cells. Interestingly, those gangliosides present on astrocytes in normal conditions were preferentially expressed on NG2+ cells in chronic MS lesions and in OND. Selective expression of GT1b upon astrocytes and NG2+ cells was instead observed in MS lesions, but not in OND. The definition of the glycolipid phenotype of CNS glial cells may be useful to identify distinct biological glial subsets and provide insights on the potential autoantigenic role of gangliosides in CNS autoimmune diseases. PMID:16313974

  20. GM3 synthase gene is a novel biomarker for histological classification and drug sensitivity against epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer.

    PubMed

    Noguchi, Mariko; Suzuki, Tomoko; Kabayama, Kazuya; Takahashi, Hiroki; Chiba, Hirofumi; Shiratori, Masanori; Abe, Shosaku; Watanabe, Atsushi; Satoh, Masaaki; Hasegawa, Tadashi; Tagami, Seiichi; Ishii, Atsushi; Saitoh, Masaki; Kaneko, Masanori; Iseki, Ken; Igarashi, Yasuyuki; Inokuchi, Jin-ichi

    2007-10-01

    Expression of gangliosides and alterations in their composition have been observed during cell proliferation and differentiation and in certain cell cycle phases, brain development and cancer malignancy. To investigate the characteristics of GM3 synthase, SAT-I mRNA and ganglioside GM3 expression levels in lung cancer, we examined the expression levels of SAT-I mRNA as well as GM3 in 40 tumor tissues surgically removed from non-small cell lung cancer patients. Adenocarcinoma tissues expressed SAT-I mRNA levels that were significantly higher than those of squamous and other carcinomas (P < 0.0001). Moreover, the SAT-I mRNA levels were high in the bronchioalveolar carcinoma subtype and low in the solid and mucin subtypes of adenocarcinomas (P = 0.049, 0.049 and 0.013, respectively). To clarify the relationship between SAT-I mRNA and epidermal growth factor receptor (EGFR)-tyrosine kinase (TK) inhibitor sensitivity, we carried out drug sensitivity tests for the EGFR-TK inhibitors gefitinib and AG1478 using eight adenocarcinoma cell lines expressing no EGFR mutations. The IC(50) values for gefitinib and AG1478 decreased dramatically with increasing SAT-I mRNA levels (R(2) = 0.81 and 0.59, respectively), representing a wide range of drug sensitivities among adenocarcinoma cell lines. To explore a possible mechanism of how GM3 could enhance the sensitivity to EGFR-TK inhibitors, the SAT-I gene was introduced stably into a GM3-negative clone of murine 3LL lung cancer cells to produce GM3-reconstituted clones. We found an increase in EGFR protein levels and gefitinib sensitivity in GM3-reconstituted cells, suggesting the involvement of GM3 in the turnover of EGFR protein. Therefore, it is highly expected that, by measuring the expression levels of SAT-I mRNA in lung biopsy samples from non-small cell lung cancer patients, enhanced pathological identification and individualized chemotherapeutic strategies can be established for the appropriate use of EGFR-TK inhibitors

  1. Superior Efficacy and Safety of a Nonemulsive Variant of the NGcGM3/VSSP Vaccine in Advanced Breast Cancer Patients

    PubMed Central

    de la Torre, Ana; Pérez, Kirenia; Vega, Aliz M.; Santiesteban, Eduardo; Ruiz, Raiza; Hernández, Leonardo; Durrutí, Dayamí; Viada, Carmen E.; Sánchez, Liset; Álvarez, Mabel; Durán, Yunier; Moreno, Yoisbel G.; Arencibia, Maylén; Cepeda, Meylán; Domecq, Milagros; Cabrera, Leticia; Sánchez, Jorge L.; Hernández, José J.; Valls, Ana R.; Fernández, Luis E.

    2016-01-01

    NGcGM3 ganglioside is a tumor-specific antigen expressed in human breast tumors. The NGcGM3/VSSP vaccine, consisting in very small-sized proteoliposomes (VSSP) obtained by the incorporation of NGcGM3 into the outer membrane protein complex of Neisseria meningitidis, has been previously tested in a Phase II trial in patients with metastatic breast cancer (MBC) but emulsified with Montanide ISA 51. An Expanded Access study was carried out in MBC patients aiming to find if a nonemulsive formulation of NGcGM3/VSSP, without Montanide ISA 51, could be more safe and effective. A total of 104 patients were vaccinated with the nonemulsive formulation (900 μg), subcutaneously (SC), or with the emulsive formulation (200 μg), intramuscularly (IM). An intent-to-treat analysis of efficacy was performed with all patients, and 93 patients were split off according to the site of metastases (visceral/nonvisceral). Of note, SC-treated patients exhibited a superior median overall survival (OS) than IM-treated patients (23.6 vs. 8.2 months; log rank P = 0.001). Even though in the subset of patients with nonvisceral metastases SC vaccination duplicated the median OS compared to the alternative option (31.6 vs. 16.5 months), this difference did not reach statistical significance (log rank P = 0.118). Curiously, in patients with visceral metastases, the advantage of the nonemulsive formulation was more apparent (median OS 21.0 vs. 6.2 months; log rank P = 0.005). The vaccine was safe for both formulations. PMID:26917965

  2. Superior Efficacy and Safety of a Nonemulsive Variant of the NGcGM3/VSSP Vaccine in Advanced Breast Cancer Patients.

    PubMed

    de la Torre, Ana; Pérez, Kirenia; Vega, Aliz M; Santiesteban, Eduardo; Ruiz, Raiza; Hernández, Leonardo; Durrutí, Dayamí; Viada, Carmen E; Sánchez, Liset; Álvarez, Mabel; Durán, Yunier; Moreno, Yoisbel G; Arencibia, Maylén; Cepeda, Meylán; Domecq, Milagros; Cabrera, Leticia; Sánchez, Jorge L; Hernández, José J; Valls, Ana R; Fernández, Luis E

    2016-01-01

    NGcGM3 ganglioside is a tumor-specific antigen expressed in human breast tumors. The NGcGM3/VSSP vaccine, consisting in very small-sized proteoliposomes (VSSP) obtained by the incorporation of NGcGM3 into the outer membrane protein complex of Neisseria meningitidis, has been previously tested in a Phase II trial in patients with metastatic breast cancer (MBC) but emulsified with Montanide ISA 51. An Expanded Access study was carried out in MBC patients aiming to find if a nonemulsive formulation of NGcGM3/VSSP, without Montanide ISA 51, could be more safe and effective. A total of 104 patients were vaccinated with the nonemulsive formulation (900 μg), subcutaneously (SC), or with the emulsive formulation (200 μg), intramuscularly (IM). An intent-to-treat analysis of efficacy was performed with all patients, and 93 patients were split off according to the site of metastases (visceral/nonvisceral). Of note, SC-treated patients exhibited a superior median overall survival (OS) than IM-treated patients (23.6 vs. 8.2 months; log rank P = 0.001). Even though in the subset of patients with nonvisceral metastases SC vaccination duplicated the median OS compared to the alternative option (31.6 vs. 16.5 months), this difference did not reach statistical significance (log rank P = 0.118). Curiously, in patients with visceral metastases, the advantage of the nonemulsive formulation was more apparent (median OS 21.0 vs. 6.2 months; log rank P = 0.005). The vaccine was safe for both formulations. PMID:26917965

  3. GM3D: interactive three-dimensional gravity and magnetic modeling program (GM3D. REV1 user's guide)

    SciTech Connect

    Maurer, J.; Atwood, J.W.

    1980-10-01

    GM3D has been developed for computering the gravity or magnetic anomaly due to a three-dimensional body, and for plotting the resulting contour map. A complex body may be constructed from several right-rectilinear vertical-sided prisms. The program allows the input and editing of the prism data which are then used to calculate the anomaly map for plotting. Plotting is done on either a Tekronix 4014 graphics terminal, a Statos electrostatic plotter, or a CalComp pen plotter. A terminal plot is also available which can be printed on any terminal and on a line printer. The program is written in FORTRAN IV code and operates on a PRIME 400 computer system. Adaptation of the program to other systems is relatively straightforward.

  4. NGlycolylGM3/VSSP Vaccine in Metastatic Breast Cancer Patients: Results of Phase I/IIa Clinical Trial.

    PubMed

    de la Torre, Ana; Hernandez, Julio; Ortiz, Ramón; Cepeda, Meylán; Perez, Kirenia; Car, Adriana; Viada, Carmen; Toledo, Darién; Guerra, Pedro Pablo; García, Elena; Arboláez, Migdacelys; Fernandez, Luis E

    2012-01-01

    Patients treated with vaccines based on NGlycolil gangliosides have showed benefit in progression free survival and overall survival. These molecules, which have been observed in breast cancer cells, are minimally or not expressed in normal human tissue and have been considered as antigen tumor-specific. For this reason they are very attractive to immunotherapy. A phase I/II clinical trial was carried out in metastatic breast cancer patients with the NGlycolylGM3/VSSP vaccine administered by subcutaneous route. Selecting the optimal biological doses of the vaccine in these patients was the principal objective based on the immunogenicity, efficacy and safety results. Six levels of doses of vaccine were studied. Treatment schedule consisted of five doses every two weeks and then monthly until reaching a fifteenth doses. Doses levels studied were 150, 300, 600, 900, 1200 and 1500 μg. Five patients in each level were included except at the 900 μg dose, in which ten patients were included. Immunogenicity was determined by levels of antibodies generated in patients after vaccination. The response criteria of evaluation in solid tumors (RECIST) was used to evaluate antitumoral effect. Safety was evaluated by Common Toxicity Criteria of Adverse Event (CTCAE). The vaccine administration was safe and immunogenic in all does levels. Most frequent adverse events related to vaccination were mild or moderate and were related to injection site reactions and "flu-like" symptoms. Vaccination induced specific anti-NeuGcGM3 IgM and IgG antibodies responses in all patients. Disease control (objective response or stable disease) was obtained in 72.7% of evaluated patients. Median overall survival was 15.9 months. Two patients of two different dose levels achieved overall survival values of about six years. The dose of 900 μg was selected as biological optimal dose in which overall survival was 28.5 months. PMID:23055739

  5. NGlycolylGM3/VSSP Vaccine in Metastatic Breast Cancer Patients: Results of Phase I/IIa Clinical Trial

    PubMed Central

    de la Torre, Ana; Hernandez, Julio; Ortiz, Ramón; Cepeda, Meylán; Perez, Kirenia; Car, Adriana; Viada, Carmen; Toledo, Darién; Guerra, Pedro Pablo; García, Elena; Arboláez, Migdacelys; Fernandez, Luis E

    2012-01-01

    Patients treated with vaccines based on NGlycolil gangliosides have showed benefit in progression free survival and overall survival. These molecules, which have been observed in breast cancer cells, are minimally or not expressed in normal human tissue and have been considered as antigen tumor-specific. For this reason they are very attractive to immunotherapy. A phase I/II clinical trial was carried out in metastatic breast cancer patients with the NGlycolylGM3/VSSP vaccine administered by subcutaneous route. Selecting the optimal biological doses of the vaccine in these patients was the principal objective based on the immunogenicity, efficacy and safety results. Six levels of doses of vaccine were studied. Treatment schedule consisted of five doses every two weeks and then monthly until reaching a fifteenth doses. Doses levels studied were 150, 300, 600, 900, 1200 and 1500 μg. Five patients in each level were included except at the 900 μg dose, in which ten patients were included. Immunogenicity was determined by levels of antibodies generated in patients after vaccination. The response criteria of evaluation in solid tumors (RECIST) was used to evaluate antitumoral effect. Safety was evaluated by Common Toxicity Criteria of Adverse Event (CTCAE). The vaccine administration was safe and immunogenic in all does levels. Most frequent adverse events related to vaccination were mild or moderate and were related to injection site reactions and “flu-like” symptoms. Vaccination induced specific anti-NeuGcGM3 IgM and IgG antibodies responses in all patients. Disease control (objective response or stable disease) was obtained in 72.7% of evaluated patients. Median overall survival was 15.9 months. Two patients of two different dose levels achieved overall survival values of about six years. The dose of 900 μg was selected as biological optimal dose in which overall survival was 28.5 months. PMID:23055739

  6. Gangliosides as high affinity receptors for tetanus neurotoxin.

    PubMed

    Chen, Chen; Fu, Zhuji; Kim, Jung-Ja P; Barbieri, Joseph T; Baldwin, Michael R

    2009-09-25

    Tetanus neurotoxin (TeNT) is an exotoxin produced by Clostridium tetani that causes paralytic death to hundreds of thousands of humans annually. TeNT cleaves vesicle-associated membrane protein-2, which inhibits neurotransmitter release in the central nervous system to elicit spastic paralysis, but the molecular basis for TeNT entry into neurons remains unclear. TeNT is a approximately 150-kDa protein that has AB structure-function properties; the A domain is a zinc metalloprotease, and the B domain encodes a translocation domain and C-terminal receptor-binding domain (HCR/T). Earlier studies showed that HCR/T bound gangliosides via two carbohydrate-binding sites, termed the lactose-binding site (the "W" pocket) and the sialic acid-binding site (the "R" pocket). Here we report that TeNT high affinity binding to neurons is mediated solely by gangliosides. Glycan array and solid phase binding analyses identified gangliosides that bound exclusively to either the W pocket or the R pocket of TeNT; GM1a bound to the W pocket, and GD3 bound to the R pocket. Using these gangliosides and mutated forms of HCR/T that lacked one or both carbohydrate-binding pocket, gangliosides binding to both of the W and R pockets were shown to be necessary for high affinity binding to neuronal and non-neuronal cells. The crystal structure of a ternary complex of HCR/T with sugar components of two gangliosides bound to the W and R supported the binding of gangliosides to both carbohydrate pockets. These data show that gangliosides are functional dual receptors for TeNT. PMID:19602728

  7. Partial synthesis of ganglioside and lysoganglioside lipoforms as internal standards for MS quantification

    PubMed Central

    Gantner, Martin; Schwarzmann, Günter; Sandhoff, Konrad; Kolter, Thomas

    2014-01-01

    Within recent years, ganglioside patterns have been increasingly analyzed by MS. However, internal standards for calibration are only available for gangliosides GM1, GM2, and GM3. For this reason, we prepared homologous internal standards bearing nonnatural fatty acids of the major mammalian brain gangliosides GM1, GD1a, GD1b, GT1b, and GQ1b, and of the tumor-associated gangliosides GM2 and GD2. The fatty acid moieties were incorporated after selective chemical or enzymatic deacylation of bovine brain gangliosides. For modification of the sphingoid bases, we developed a new synthetic method based on olefin cross metathesis. This method was used for the preparation of a lyso-GM1 and a lyso-GM2 standard. The total yield of this method was 8.7% for the synthesis of d17:1-lyso-GM1 from d20:1/18:0-GM1 in four steps. The title compounds are currently used as calibration substances for MS quantification and are also suitable for functional studies. PMID:25341943

  8. Leukemia-induced bone marrow depression: effects of gangliosides on erythroid cell production.

    PubMed

    Sietsma, H; Kamps, W A; Dontje, B; Hendriks, D; Kok, J W; Vellenga, E; Nijhof, W

    1999-07-01

    Bone marrow depression is a common feature in hematological malignancies or other bone marrow-involving cancers. The mechanism of this hemopoietic suppression resulting in pancytopenia and especially anemia has not been elucidated. Gangliosides can be shed by cancer cells. Therefore, we investigated the effects of exogenously added gangliosides on erythropoiesis in a human and murine in vitro system. A dose-dependent inhibition of murine colony-forming-unit-erythroid (CFU-E) and burst-forming-unit-erythroid (BFU-E) colony growth was observed. Furthermore the maturation of BFU-Es into CFU-Es was inhibited. The inhibition by gangliosides was not abolished by increasing the dose of erythropoietin (10 U/ml). FACS-analysis studies with human CD34+ cells cultured with gangliosides (GM3), erythropoietin (EPO) and stem cell factor (SCF) demonstrated a strong inhibition on cell growth. This resulted in a significantly higher percentage of immature cells (CD34+/GpA-, 24% vs. 3%), and a lower percentage of mature erythroid cells (CD34-/GpA+, 36% vs. 89%). Under these circumstances the effects on erythroid cell growth were much higher than on other cell lineages. The inhibitory effect of gangliosides isolated from acute lymphoblastic leukemic patients on in vitro erythropoiesis suggests that in vivo hemopoietic suppression might have its origin in the gangliosides present and probably shed by the malignant cells in the microenvironment and plasma. Our results show that gangliosides inhibit erythropoiesis in vitro at several stages of development, by a mechanism involving modulation of the maturation of erythroid cells. PMID:10360826

  9. A cytotoxic humanized anti-ganglioside antibody produced in a murine cell line defective of N-glycolylated-glycoconjugates.

    PubMed

    Fernández-Marrero, Yuniel; Roque-Navarro, Lourdes; Hernández, Tays; Dorvignit, Denise; Molina-Pérez, Marively; González, Addys; Sosa, Katya; López-Requena, Alejandro; Pérez, Rolando; de Acosta, Cristina Mateo

    2011-12-01

    Gangliosides containing the N-glycolyl (NGc) form of sialic acid are tumor-associated antigens and promising candidates for cancer therapy. We previously generated the murine 14F7 monoclonal antibody (mAb), specific for the N-glycolyl-GM3 ganglioside (NGcGM3), which induced an oncosis-like type of cell death on malignant cell lines expressing this antigen and recognized breast carcinoma by immunoscintigraphy in cancer patients. As humanization is expected to enhance its use for human cancer therapy, herein we describe the design and generation of two humanized versions of the 14F7 mAb by disrupting potential human T cell epitopes on its variable region. No differences in antigen reactivity or cytotoxic properties were detected among the variants tested and with respect to the chimeric counterpart. Humanized 14F7 genes were transfected into the NGcGM3-expressing NS0 cell line. Therefore, in the industrial scaling-up of the transfectoma in serum-free medium, cell viability was lost due to the cytotoxic effect of the secreted antibody. This shortcoming was solved by knocking down the CMP-N-acetylneuraminic acid hydroxylase enzyme, thus impairing the synthesis of NGc-glycoconjugates. Humanized 14F7 mAb is of potential value for the therapy of NGcGM3-expressing tumors. PMID:21802167

  10. Novel Ganglioside-mediated Entry of Botulinum Neurotoxin Serotype D into Neurons

    SciTech Connect

    Kroken, Abby R.; Karalewitz, Andrew P.-A.; Fu, Zhuji; Kim, Jung-Ja P.; Barbieri, Joseph T.

    2012-02-07

    Botulinum Neurotoxins (BoNTs) are organized into seven serotypes, A-G. Although several BoNT serotypes enter neurons through synaptic vesicle cycling utilizing dual receptors (a ganglioside and a synaptic vesicle-associated protein), the entry pathway of BoNT/D is less well understood. Although BoNT/D entry is ganglioside-dependent, alignment and structural studies show that BoNT/D lacks key residues within a conserved ganglioside binding pocket that are present in BoNT serotypes A, B, E, F, and G, which indicate that BoNT/D-ganglioside interactions may be unique. In this study BoNT/D is shown to have a unique association with ganglioside relative to the other BoNT serotypes, utilizing a ganglioside binding loop (GBL, residues Tyr-1235-Ala-1245) within the receptor binding domain of BoNT/D (HCR/D) via b-series gangliosides, including GT1b, GD1b, and GD2. HCR/D bound gangliosides and entered neurons dependent upon the aromatic ring of Phe-1240 within the GBL. This is the first BoNT-ganglioside interaction that is mediated by a phenylalanine. In contrast, Trp-1238, located near the N terminus of the ganglioside binding loop, was mostly solvent-inaccessible and appeared to contribute to maintaining the loop structure. BoNT/D entry and intoxication were enhanced by membrane depolarization via synaptic vesicle cycling, where HCR/D colocalized with synaptophysin, a synaptic vesicle marker, but immunoprecipitation experiments did not detect direct association with synaptic vesicle protein 2. Thus, BoNT/D utilizes unique associations with gangliosides and synaptic vesicles to enter neurons, which may facilitate new neurotoxin therapies.

  11. Gangliosides of myelosupportive stroma cells are transferred to myeloid progenitors and are required for their survival and proliferation

    PubMed Central

    Ziulkoski, Ana L.; Andrade, Cláudia M. B.; Crespo, Pilar M.; Sisti, Elisa; Trindade, Vera M. T.; Daniotti, Jose L.; Guma, Fátima C. R.; Borojevic, Radovan

    2005-01-01

    In previous studies, we have shown that the myelopoiesis dependent upon myelosupportive stroma required production of growth factors and heparan-sulphate proteoglycans, as well as generation of a negatively charged sialidase-sensitive intercellular environment between the stroma and the myeloid progenitors. In the present study, we have investigated the production, distribution and role of gangliosides in an experimental model of in vitro myelopoiesis dependent upon AFT-024 murine liver-derived stroma. We used the FDC-P1 cell line, which is dependent upon GM-CSF (granulocyte/macrophage colony-stimulating factor) for both survival and proliferation, as a reporter system to monitor bioavailability and local activity of GM-CSF. GM3 was the major ganglioside produced by stroma, but not by myeloid cells, and it was required for optimal stroma myelosupportive function. It was released into the supernatant and selectively incorporated into the myeloid progenitor cells, where it segregated into rafts in which it co-localized with the GM-CSF-receptor α chain. This ganglioside was also metabolized further by myeloid cells into gangliosides of the a and b series, similar to endogenous GM3. In these cells, GM1 was the major ganglioside and it was segregated at the interface by stroma and myeloid cells, partially co-localizing with the GM-CSF-receptor α chain. We conclude that myelosupportive stroma cells produce and secrete the required growth factors, the cofactors such as heparan sulphate proteoglycans, and also supply gangliosides that are transferred from stroma to target cells, generating on the latter ones specific membrane domains with molecular complexes that include growth factor receptors. PMID:16321139

  12. Trans-activity of plasma membrane-associated ganglioside sialyltransferase in mammalian cells.

    PubMed

    Vilcaes, Aldo A; Demichelis, Vanina Torres; Daniotti, Jose L

    2011-09-01

    Gangliosides are acidic glycosphingolipids that contain sialic acid residues and are expressed in nearly all vertebrate cells. They are synthesized at the Golgi complex by a combination of glycosyltransferase activities followed by vesicular delivery to the plasma membrane, where they participate in a variety of physiological as well as pathological processes. Recently, a number of enzymes of ganglioside anabolism and catabolism have been shown to be associated with the plasma membrane. In particular, it was observed that CMP-NeuAc:GM3 sialyltransferase (Sial-T2) is able to sialylate GM3 at the plasma membrane (cis-catalytic activity). In this work, we demonstrated that plasma membrane-integrated ecto-Sial-T2 also displays a trans-catalytic activity at the cell surface of epithelial and melanoma cells. By using a highly sensitive enzyme-linked immunosorbent assay combined with confocal fluorescence microscopy, we observed that ecto-Sial-T2 was able to sialylate hydrophobically or covalently immobilized GM3 onto a solid surface. More interestingly, we observed that ecto-Sial-T2 was able to sialylate GM3 exposed on the membrane of neighboring cells by using both the exogenous and endogenous donor substrate (CMP-N-acetylneuraminic acid) available at the extracellular milieu. In addition, the trans-activity of ecto-Sial-T2 was considerably reduced when the expression of the acceptor substrate was inhibited by using a specific inhibitor of biosynthesis of glycolipids, indicating the lipidic nature of the acceptor. Our findings provide the first direct evidence that an ecto-sialyltransferase is able to trans-sialylate substrates exposed in the plasma membrane from mammalian cells, which represents a novel insight into the molecular events that regulate the local glycosphingolipid composition. PMID:21768099

  13. Trans-activity of Plasma Membrane-associated Ganglioside Sialyltransferase in Mammalian Cells*

    PubMed Central

    Vilcaes, Aldo A.; Demichelis, Vanina Torres; Daniotti, Jose L.

    2011-01-01

    Gangliosides are acidic glycosphingolipids that contain sialic acid residues and are expressed in nearly all vertebrate cells. They are synthesized at the Golgi complex by a combination of glycosyltransferase activities followed by vesicular delivery to the plasma membrane, where they participate in a variety of physiological as well as pathological processes. Recently, a number of enzymes of ganglioside anabolism and catabolism have been shown to be associated with the plasma membrane. In particular, it was observed that CMP-NeuAc:GM3 sialyltransferase (Sial-T2) is able to sialylate GM3 at the plasma membrane (cis-catalytic activity). In this work, we demonstrated that plasma membrane-integrated ecto-Sial-T2 also displays a trans-catalytic activity at the cell surface of epithelial and melanoma cells. By using a highly sensitive enzyme-linked immunosorbent assay combined with confocal fluorescence microscopy, we observed that ecto-Sial-T2 was able to sialylate hydrophobically or covalently immobilized GM3 onto a solid surface. More interestingly, we observed that ecto-Sial-T2 was able to sialylate GM3 exposed on the membrane of neighboring cells by using both the exogenous and endogenous donor substrate (CMP-N-acetylneuraminic acid) available at the extracellular milieu. In addition, the trans-activity of ecto-Sial-T2 was considerably reduced when the expression of the acceptor substrate was inhibited by using a specific inhibitor of biosynthesis of glycolipids, indicating the lipidic nature of the acceptor. Our findings provide the first direct evidence that an ecto-sialyltransferase is able to trans-sialylate substrates exposed in the plasma membrane from mammalian cells, which represents a novel insight into the molecular events that regulate the local glycosphingolipid composition. PMID:21768099

  14. Mass spectrometry of gangliosides in extracranial tumors: Application to adrenal neuroblastoma.

    PubMed

    Robu, Adrian C; Vukelić, Željka; Schiopu, Catalin; Capitan, Florina; Zamfir, Alina D

    2016-09-15

    We report here on the introduction of mass spectrometry (MS) for profiling of native gangliosides from an extracranial tumor. The analytical approach was based on a modern platform combining the superior sensitivity and reproducibility of fully automated chip-based nanoelectrospray ionization (nanoESI) with the high resolution and mass accuracy provided by a hybrid quadrupole time-of-flight (QTOF) instrument. The feasibility of the method for the analysis of gangliosides, which are much less expressed in extracranial tissues, was here tested using as the model substrate an adrenal neuroblastoma (NB) specimen located in the abdominal region of a 2-year-old infant. Under properly optimized conditions, MS profiling revealed information on at least 61 different gangliosides exhibiting heterogeneity of the glycan and lipid compositions. NB was found dominated by species bearing short-chain oligosaccharide cores with a reduced overall Neu5Ac content. By chip-nanoESI MS, preceding findings related to the GD2 role in NB were confirmed. Moreover, the screening experiments offered novel information supporting the possible biomarker role of GM4, GM3, and GM1 ganglioside classes. Structural analysis of GM1(d18:1/18:2) and GD1(d18:0/19:0) possibly tumor-associated markers, carried out by tandem MS (MS/MS) using collision-induced dissociation (CID) at low energies, indicated that both GM1a and GD1b isomers are present in NB. PMID:27311552

  15. New trends in ganglioside chemistry

    SciTech Connect

    Sonnino, S.; Ghidoni, R.; Gazzotti, G.; Acquotti, D.; Tettamanti, G.

    1988-01-01

    New methods have been developed for the preparation of highly purified gangliosides, homogeneous in the saccharide, long chain base, and fatty acid moieties and gangliosides carrying different kinds of labelled probes. Gangliosides, homogeneous in the oligosaccharide portion, were prepared by preparative normal phase HPLC on a Lichrosorb-NH-2 column, using a gradient of acetonitrile-phosphate buffer, pH 5.6, as solvent system. Each class of ganglioside (from monosialo- to tetrasialogangliosides) was then submitted to reversed phase HPLC on a preparative RP-8 column, using acetonitrile-5 mM phosphate buffer, pH 7, as solvent system, to obtain gangliosides homogeneous in the long chain base moiety. Gangliosides containing C18 and C20 sphinganine were prepared by catalytic hydrogenation of the corresponding unsaturated gangliosides. GM1 with homogeneous acyl chain was prepared by alkaline hydrolysis in the presence of tetramethylammonium hydroxide, followed by re-N-acylation, carried out in the presence of dimethylaminopropyl, ethylcarbodiimide and natural fatty acids, or of mixed anhydride of ethylchloroformate and 14C-stearic acid, and re-N-acetylation performed with acetic anhydride or labelled acetic anhydride. The GM1 derivative, de-acetylated at the level of sialic acid, also produced by alkaline treatment of GM1, was submitted to re-N-acetylation with 14C-acetic anhydride to produce specifically 14C-labelled GM1. Re-N-acylation was carried out a) in the presence of dimethylaminopropyl, ethylcarbodiimide and natural fatty acids, b) with mixed anhydride of ethylchloroformate and 14C-stearic acid. After re-N-acylations, re-N-acetylation was performed with acetic anhydride or labelled acetic anhydride. 53 references.

  16. Pathophysiological actions of neuropathy-related anti-ganglioside antibodies at the neuromuscular junction

    PubMed Central

    Plomp, Jaap J; Willison, Hugh J

    2009-01-01

    The outer leaflet of neuronal membranes is highly enriched in gangliosides. Therefore, specific neuronal roles have been attributed to this family of sialylated glycosphingolipids, e.g. in modulation of ion channels and transporters, neuronal interaction and recognition, temperature adaptation, Ca2+ homeostasis, axonal growth, (para)node of Ranvier stability and synaptic transmission. Recent developmental, ageing and injury studies on transgenic mice lacking subsets of gangliosides indicate that gangliosides are involved in maintenance rather than development of the nervous system and that ganglioside family members are able to act in a mutually compensatory manner. Besides having physiological functions, gangliosides are the likely antigenic targets of autoantibodies present in Guillain-Barré syndrome (GBS), a group of neuropathies with clinical symptoms of motor- and/or sensory peripheral nerve dysfunction. Antibody binding to peripheral nerves is thought to either interfere with ganglioside function or activate complement, causing axonal damage and thereby disturbed action potential conduction. The presynaptic motor nerve terminal at the neuromuscular junction (NMJ) may be a prominent target because it is highly enriched in gangliosides and lies outside the blood–nerve barrier, allowing antibody access. The ensuing neuromuscular synaptopathy might contribute to the muscle weakness in GBS patients. Several groups, including our own, have studied the effects of anti-ganglioside antibodies in ex vivo and in vivo experimental settings at mouse NMJs. Here, after providing a background overview on ganglioside synthesis, localization and physiology, we will review those studies, which clearly show that anti-ganglioside antibodies are capable of binding to NMJs and thereby can exert a variety of pathophysiological effects. Furthermore, we will discuss the human clinical electrophysiological and histological evidence produced so far of the existence of a neuromuscular

  17. Synthesis and biological evaluation of several dephosphonated analogues of CMP-Neu5Ac as inhibitors of GM3-synthase.

    PubMed

    Rota, Paola; Cirillo, Federica; Piccoli, Marco; Gregorio, Antonio; Tettamanti, Guido; Allevi, Pietro; Anastasia, Luigi

    2015-10-01

    Previous studies demonstrated that reducing the GM3 content in myoblasts increased the cell resistance to hypoxic stress, suggesting that a pharmacological inhibition of the GM3 synthesis could be instrumental for the development of new treatments for ischemic diseases. Herein, the synthesis of several dephosphonated CMP-Neu5Ac congeners and their anti-GM3-synthase activity is reported. Biological activity testes revealed that some inhibitors almost completely blocked the GM3-synthase activity in vitro and reduced the GM3 content in living embryonic kidney 293A cells, eventually activating the epidermal growth factor receptor (EGFR) signaling cascade. PMID:26397189

  18. Efficient metabolic engineering of GM3 on tumor cells by N-phenylacetyl-D-mannosamine.

    PubMed

    Chefalo, Peter; Pan, Yanbin; Nagy, Nancy; Guo, Zhongwu; Harding, Clifford V

    2006-03-21

    Abnormal carbohydrates expressed on tumor cells, which are termed tumor-associated carbohydrate antigens (TACAs), are potential targets for the development of cancer vaccines. However, immune tolerance to TACAs has severely hindered progress in this area. To overcome this problem, we have developed a novel immunotherapeutic strategy based on synthetic cancer vaccines and metabolic engineering of TACAs on tumor cells. One critical step of this new strategy is metabolic engineering of cancer, namely, to induce expression of an artificial form of a TACA by supplying tumors with an artificial monosaccharide precursor. To identify the proper precursor for this application, N-propionyl, N-butanoyl, N-isobutanoyl, and N-phenylacetyl derivatives of d-mannosamine were synthesized, and their efficiency as biosynthetic precursors in modifying sialic acid and inducing expression of modified forms of GM3 antigen on tumor cells was investigated. For this purpose, tumor cells were incubated with different N-acyl-d-mannosamines, and modified forms of GM3 expressed on tumor cells were analyzed by flow cytometry using antigen-specific antisera. N-Phenylacetyl-d-mannosamine was efficiently incorporated in a time- and dose-dependent manner to bioengineer GM3 expression by several tumor cell lines, including K562, SKMEL-28, and B16-F0. Moreover, these tumor cell lines also exhibited ManPAc-dependent sensitivity to cytotoxicity mediated by anti-PAcGM3 immune serum and complement. These results provide an important validation for this novel therapeutic strategy. Because N-phenylacetyl GM3-protein conjugates are particularly immunogenic, the combination of an N-phenylacetyl GM3 conjugate vaccine with systemic N-phenylacetyl-d-mannosamine treatment is a promising immunotherapy for future development and application to melanoma and other GM3-bearing tumors. PMID:16533056

  19. The biosynthesis of brain gangliosides. Separation of membranes with different ratios of ganglioside sialylating activity to gangliosides.

    PubMed Central

    Landa, C A; Maccioni, H J; Arce, A; Caputto, R

    1977-01-01

    Brain subcellular fractions were analysed for ganglioside-sialylating activity by measuring the incorporation of N-[3H]acetylneuraminic acid from CMP-N-[3H]acetylneuraminic acid into endogenous ganglioside acceptors (endogenous incorporation) and into exogenous lactosyceramide (haematoside synthetase activity). The ratios of endogenous incorporation to gangliosides and of haematoside synthetase to gangliosides for the synaptosomal and mitochondrial fractions from a washed crude mitochondrial fraction were lower than those obtained for other membrane fractions. The differences appear to reflect intrinsic characteristics of each membrane fraction. The results of labelling in vitro and the time course of labelling of gangliosides of the different subcellular fractions in vivo after injection of N-[3H]acetylmannosamine are consistent with the possibility of a subcellular site for synthesis of gangliosides different from that of ganglioside deposition. PMID:606237

  20. Rapid Profiling of Bovine and Human Milk Gangliosides by Matrix-Assisted Laser Desorption/Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Lee, Hyeyoung; An, Hyun Joo; Lerno, Larry A.; German, J. Bruce; Lebrilla, Carlito B.

    2010-01-01

    Gangliosides are anionic glycosphingolipids widely distributed in vertebrate tissues and fluids. Their structural and quantitative expression patterns depend on phylogeny and are distinct down to the species level. In milk, gangliosides are exclusively associated with the milk fat globule membrane. They may participate in diverse biological processes but more specifically to host-pathogen interactions. However, due to the molecular complexities, the analysis needs extensive sample preparation, chromatographic separation, and even chemical reaction, which makes the process very complex and time-consuming. Here, we describe a rapid profiling method for bovine and human milk gangliosides employing matrix-assisted desorption/ionization (MALDI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS). Prior to the analyses of biological samples, milk ganglioside standards GM3 and GD3 fractions were first analyzed in order to validate this method. High mass accuracy and high resolution obtained from MALDI FTICR MS allow for the confident assignment of chain length and degree of unsaturation of the ceramide. For the structural elucidation, tandem mass spectrometry (MS/MS), specifically as collision-induced dissociation (CID) and infrared multiphoton dissociation (IRMPD) were employed. Complex ganglioside mixtures from bovine and human milk were further analyzed with this method. The samples were prepared by two consecutive chloroform/methanol extraction and solid phase extraction. We observed a number of differences between bovine milk and human milk. The common gangliosides in bovine and human milk are NeuAc-NeuAc-Hex-Hex-Cer (GD3) and NeuAc-Hex-Hex-Cer (GM3); whereas, the ion intensities of ganglioside species are different between two milk samples. Kendrick mass defect plot yields grouping of ganglioside peaks according to their structural similarities. Gangliosides were further probed by tandem MS to confirm the compositional and structural assignments

  1. Wisp2/CCN5 up-regulated in the central nervous system of GM3-only mice facilitates neurite formation in Neuro2a cells via integrin-Akt signaling

    SciTech Connect

    Ohkawa, Yuki; Ohmi, Yuhsuke; Tajima, Orie; Yamauchi, Yoshio; Furukawa, Keiko; Furukawa, Koichi

    2011-08-05

    Highlights: {yields} Wisp2/CCN5 was up-regulated in nervous tissues of GM3-only mutant mice. {yields} Wisp2/CCN5 was found in neurons more strongly in the mutant mice. {yields} Wisp2/CCN5 induces Akt phosphorylation via integrins and facilitates neurite formation. {yields} Wisp2/CCN5 conferred resistance to H{sub 2}O{sub 2}-induced apoptosis. {yields} Up-regulation of Wisp2/CCN5 in GM3-only mice seemed for protection of brains from neurodegeneration. -- Abstract: Wisp2/CCN5 belongs to CCN family proteins which are involved in cell proliferation, angiogenesis, tumorigenesis and wound healing. Although a number of studies on the roles of Wisp2/CCN5 in cancers have been reported, no study on the expression and function of Wisp2/CCN5 in the central nervous system has been reported. In this study, we focused on Wisp2/CCN5 that was up-regulated in nervous tissues in GM3-only mice. Over-expression of Wisp2/CCN5 enhanced neurite outgrowth potently after serum withdrawal with increased phosphorylation levels of Akt and ERKs. When cells were cultured with recombinant Wisp2/CCN5 proteins, more and longer neurites were formed than in the controls. Thus, we demonstrated for the first time that Wisp2/CCN5 facilitates neurite formation in a mouse neuroblastoma cell line, Neuro2a. Akt phosphorylation induced by recombinant Wisp2/CCN5 was suppressed after knockdown of integrin {beta}1. Moreover, Wisp2/CCN5-over-expressing cells were resistant to apoptosis induced by H{sub 2}O{sub 2}. These results suggested that secreted Wisp2/CCN5 induces Akt and ERK phosphorylation via integrins, and consequently facilitates neurite formation and conferred resistance to apoptosis. Up-regulation of Wisp2/CCN5 in GM3-only mice should be, therefore, a reaction to protect nervous tissues from neurodegeneration caused by ganglioside deficiency.

  2. In vivo modulation of epidermal growth factor receptor phosphorylation in mice expressing different gangliosides.

    PubMed

    Daniotti, Jose L; Crespo, Pilar M; Yamashita, Tadashi

    2006-12-01

    We studied in this work the in vivo phosphorylation of the epidermal growth factor receptor (EGFr) in skin from knockout mice lacking different ganglioside glycosyltransferases. Results show an enhancement of EGFr phosphorylation, after EGF stimulation, in skin from Sial-T2 knockout and Sial-T2/GalNAc-T double knockout mice as compared with wild-type and Sial-T1 knockout mice. Qualitative analysis of ganglioside composition in mice skin suggest that the increase of EGFr phosphorylation observed in skin from Sial-T2 knockout and Sial-T2/GalNAc-T double knockout mice in response to EGF might not be primary attributed to the expression of GD3 or a-series gangliosides in mice skin. These studies provide, for the first time, an approach for studying the molecular mechanisms involved in the in vivo regulation of EGFr function by gangliosides. PMID:16817235

  3. Glycosylated SV2 and Gangliosides as Dual Receptors for Botulinum Neurotoxin Serotype F

    SciTech Connect

    Fu, Zhuji; Chen, Chen; Barbieri, Joseph T.; Kim, Jung-Ja P.; Baldwin, Michael R.

    2010-02-22

    Botulinum neurotoxin causes rapid flaccid paralysis through the inhibition of acetylcholine release at the neuromuscular junction. The seven BoNT serotypes (A-G) have been proposed to bind motor neurons via ganglioside-protein dual receptors. To date, the structure-function properties of BoNT/F host receptor interactions have not been resolved. Here, we report the crystal structures of the receptor binding domains (HCR) of BoNT/A and BoNT/F and the characterization of the dual receptors for BoNT/F. The overall polypeptide fold of HCR/A is essentially identical to the receptor binding domain of the BoNT/A holotoxin, and the structure of HCR/F is very similar to that of HCR/A, except for two regions implicated in neuronal binding. Solid phase array analysis identified two HCR/F binding glycans: ganglioside GD1a and oligosaccharides containing an N-acetyllactosamine core. Using affinity chromatography, HCR/F bound native synaptic vesicle glycoproteins as part of a protein complex. Deglycosylation of glycoproteins using {alpha}(1-3,4)-fucosidase, endo-{beta}-galactosidase, and PNGase F disrupted the interaction with HCR/F, while the binding of HCR/B to its cognate receptor, synaptotagmin I, was unaffected. These data indicate that the HCR/F binds synaptic vesicle glycoproteins through the keratan sulfate moiety of SV2. The interaction of HCR/F with gangliosides was also investigated. HCR/F bound specifically to gangliosides that contain {alpha}2,3-linked sialic acid on the terminal galactose of a neutral saccharide core (binding order GT1b = GD1a GM3; no binding to GD1b and GM1a). Mutations within the putative ganglioside binding pocket of HCR/F decreased binding to gangliosides, synaptic vesicle protein complexes, and primary rat hippocampal neurons. Thus, BoNT/F neuronal discrimination involves the recognition of ganglioside and protein (glycosylated SV2) carbohydrate moieties, providing a structural basis for the high affinity and specificity of BoNT/F for neurons.

  4. Single cell ganglioside catabolism in primary cerebellar neurons and glia

    PubMed Central

    Essaka, David C.; Prendergast, Jillian; Keithley, Richard B.; Hindsgaul, Ole; Palcic, Monica M.

    2013-01-01

    Cell-to-cell heterogeneity in ganglioside catabolism was determined by profiling fluorescent tetramethylrhodamine-labeled GM1 (TMR-GM1) breakdown in individual primary neurons and glia from the rat cerebellum. Cells isolated from 5–6 day old rat cerebella were cultured for 7 days, and then incubated for 14 h with TMR-GM1. Intact cells were recovered from cultures by mild proteolysis, paraformaldehyde fixed, and subjected to single cell analysis. Individual cells were captured in a capillary, lysed, and the released single-cell contents subjected to capillary electrophoresis with quantitative laser-induced fluorescent detection of the catabolic products. Non-neuronal cells on average took up much more exogenous TMR-GM1 than neuronal cells, and catabolized it more extensively. After 14 h of incubation, non-neuronal cells retained only 14% of the TMR products as GM1 and GM2, compared to >50% for neurons. On average, non-neuronal cells contained 74% of TMR-labeled product as TMR-ceramide, compared to only 42% for neurons. Non-neuronal cells retained seven times as much TMR-GM3 (7%) compared to neuronal cells (1%). To confirm the observed single cell metabolomics, we lysed and compared TMR-GM1 catabolic profiles from mixed neuron/glial cell cultures and from cultures depleted of non-neuronal cells by treatment with the antimitotic agent cytosine arabinoside. The whole culture catabolic profiles were consistent with the average profiles of single neurons and glia. We conclude that the ultrasensitive analytic methods described accurately reflect single cell ganglioside catabolism in different cell populations from the brain. PMID:22407243

  5. Bronchial carcinoid tumor treated with interferon and a new vaccine against NeuGcGM3 antigen expressed in malignant carcinoid cells.

    PubMed

    Alvarez, M C Barroso; Macías, Abraham A; Saurez, Martínez G; Fernández, Molina L E; Lage, Dávila A

    2007-06-01

    A case of a 16-year-old female with a disseminated tumor was reported six years after surgical treatment. In October 1993 the diagnosis of a bronchial carcinoid tumor was made and a left pneumonectomy was performed. No adjuvant treatment was indicated. In May 1999 a relapse was confirmed by cytology, and a treatment with rec-hIFNalpha (10 MU intramuscular, thrice/week) was indicated. Her clinical condition improved, (ECOG 2 to 0), after three months of stable disease at evaluation, up to March 2002 when she developed a progressive disease as documented by abdominal CT scan. The histological block of the primary tumor was sent to the Centre of Molecular Immunology in order to evaluate the recognition of the ganglioside molecule on the tumor by immunohistochemistry, which was informed as positive. In April 2002 we decided to begin a compassionate treatment with the vaccine NGcGM3/VSSP Montanide ISA 51 in combination with rec-hIFNalpha. Since then up to now (56 months after progression with rec-hIFNalpha alone) the patient still has stable disease. In summary, we observed very encouraging results that could support further studies in this type of patients. PMID:17611391

  6. Mice deficient in Neu4 sialidase exhibit abnormal ganglioside catabolism and lysosomal storage.

    PubMed

    Seyrantepe, Volkan; Canuel, Maryssa; Carpentier, Stéphane; Landry, Karine; Durand, Stéphanie; Liang, Feng; Zeng, Jibin; Caqueret, Aurore; Gravel, Roy A; Marchesini, Sergio; Zwingmann, Claudia; Michaud, Jacques; Morales, Carlos R; Levade, Thierry; Pshezhetsky, Alexey V

    2008-06-01

    Mammalian sialidase Neu4, ubiquitously expressed in human tissues, is located in the lysosomal and mitochondrial lumen and has broad substrate specificity against sialylated glycoconjugates. To investigate whether Neu4 is involved in ganglioside catabolism, we transfected beta-hexosaminidase-deficient neuroglia cells from a Tay-Sachs patient with a Neu4-expressing plasmid and demonstrated the correction of storage due to the clearance of accumulated GM2 ganglioside. To further clarify the biological role of Neu4, we have generated a stable loss-of-function phenotype in cultured HeLa cells and in mice with targeted disruption of the Neu4 gene. The silenced HeLa cells showed reduced activity against gangliosides and had large heterogeneous lysosomes containing lamellar structures. Neu4(-/-) mice were viable, fertile and lacked gross morphological abnormalities, but showed a marked vacuolization and lysosomal storage in lung and spleen cells. Lysosomal storage bodies were also present in cultured macrophages preloaded with gangliosides. Thin-layer chromatography showed increased relative level of GD1a ganglioside and a markedly decreased level of GM1 ganglioside in brain of Neu4(-/-) mice suggesting that Neu4 may be important for desialylation of brain gangliosides and consistent with the in situ hybridization data. Increased levels of cholesterol, ceramide and polyunsaturated fatty acids were also detected in the lungs and spleen of Neu4(-/-) mice by high-resolution NMR spectroscopy. Together, our data suggest that Neu4 is a functional component of the ganglioside-metabolizing system, contributing to the postnatal development of the brain and other vital organs. PMID:18270209

  7. Gangliosides of the Vertebrate Nervous System.

    PubMed

    Schnaar, Ronald L

    2016-08-14

    Gangliosides, sialylated glycosphingolipids, found on all vertebrate cells and tissues, are major molecular determinants on the surfaces of vertebrate nerve cells. Composed of a sialylated glycan attached to a ceramide lipid, the same four structures-GM1, GD1a, GD1b, and GT1b-represent the vast majority (>90%) of gangliosides in the brains of all mammals and birds. Primarily found on the outer surface of the plasma membrane with their glycans facing outward, gangliosides associate laterally with each other, sphingomyelin, cholesterol, and select proteins in lipid rafts-the dynamic functional subdomains of the plasma membrane. The functions of gangliosides in the human nervous system are revealed by congenital mutations in ganglioside biosynthetic genes. Mutations in ST3GAL5, which codes for an enzyme early in brain ganglioside biosynthesis, result in an early-onset seizure disorder with profound motor and cognitive decay, whereas mutations in B4GALNT1, a gene encoding a later step, result in hereditary spastic paraplegia accompanied by intellectual deficits. The molecular functions of brain gangliosides include regulation of receptors in the same membrane via lateral (cis) associations and regulation of cell-cell recognition by trans interaction with ganglioside binding proteins on apposing cells. Gangliosides also affect the aggregation of Aβ (Alzheimer's disease) and α-synuclein (Parkinson's Disease). As analytical, biochemical, and genetic tools advance, research on gangliosides promises to reveal mechanisms of molecular control related to nerve and glial cell differentiation, neuronal excitability, axon outgrowth after nervous system injury, and protein folding in neurodegenerative diseases. PMID:27261254

  8. Mice Lacking GD3 Synthase Display Morphological Abnormalities in the Sciatic Nerve and Neuronal Disturbances during Peripheral Nerve Regeneration

    PubMed Central

    Ribeiro-Resende, Victor Túlio; Gomes, Tiago Araújo; de Lima, Silmara; Nascimento-Lima, Maiara; Bargas-Rega, Michele; Santiago, Marcelo Felipe; Reis, Ricardo Augusto de Melo; de Mello, Fernando Garcia

    2014-01-01

    The ganglioside 9-O-acetyl GD3 is overexpressed in peripheral nerves after lesioning, and its expression is correlated with axonal degeneration and regeneration in adult rodents. However, the biological roles of this ganglioside during the regenerative process are unclear. We used mice lacking GD3 synthase (Siat3a KO), an enzyme that converts GM3 to GD3, which can be further converted to 9-O-acetyl GD3. Morphological analyses of longitudinal and transverse sections of the sciatic nerve revealed significant differences in the transverse area and nerve thickness. The number of axons and the levels of myelin basic protein were significantly reduced in adult KO mice compared to wild-type (WT) mice. The G-ratio was increased in KO mice compared to WT mice based on quantification of thin transverse sections stained with toluidine blue. We found that neurite outgrowth was significantly reduced in the absence of GD3. However, addition of exogenous GD3 led to neurite growth after 3 days, similar to that in WT mice. To evaluate fiber regeneration after nerve lesioning, we compared the regenerated distance from the lesion site and found that this distance was one-fourth the length in KO mice compared to WT mice. KO mice in which GD3 was administered showed markedly improved regeneration compared to the control KO mice. In summary, we suggest that 9-O-acetyl GD3 plays biological roles in neuron-glia interactions, facilitating axonal growth and myelination induced by Schwann cells. Moreover, exogenous GD3 can be converted to 9-O-acetyl GD3 in mice lacking GD3 synthase, improving regeneration. PMID:25330147

  9. Mice lacking GD3 synthase display morphological abnormalities in the sciatic nerve and neuronal disturbances during peripheral nerve regeneration.

    PubMed

    Ribeiro-Resende, Victor Túlio; Araújo Gomes, Tiago; de Lima, Silmara; Nascimento-Lima, Maiara; Bargas-Rega, Michele; Santiago, Marcelo Felipe; Reis, Ricardo Augusto de Melo; de Mello, Fernando Garcia

    2014-01-01

    The ganglioside 9-O-acetyl GD3 is overexpressed in peripheral nerves after lesioning, and its expression is correlated with axonal degeneration and regeneration in adult rodents. However, the biological roles of this ganglioside during the regenerative process are unclear. We used mice lacking GD3 synthase (Siat3a KO), an enzyme that converts GM3 to GD3, which can be further converted to 9-O-acetyl GD3. Morphological analyses of longitudinal and transverse sections of the sciatic nerve revealed significant differences in the transverse area and nerve thickness. The number of axons and the levels of myelin basic protein were significantly reduced in adult KO mice compared to wild-type (WT) mice. The G-ratio was increased in KO mice compared to WT mice based on quantification of thin transverse sections stained with toluidine blue. We found that neurite outgrowth was significantly reduced in the absence of GD3. However, addition of exogenous GD3 led to neurite growth after 3 days, similar to that in WT mice. To evaluate fiber regeneration after nerve lesioning, we compared the regenerated distance from the lesion site and found that this distance was one-fourth the length in KO mice compared to WT mice. KO mice in which GD3 was administered showed markedly improved regeneration compared to the control KO mice. In summary, we suggest that 9-O-acetyl GD3 plays biological roles in neuron-glia interactions, facilitating axonal growth and myelination induced by Schwann cells. Moreover, exogenous GD3 can be converted to 9-O-acetyl GD3 in mice lacking GD3 synthase, improving regeneration. PMID:25330147

  10. Unique Ganglioside Recognition Strategies for Clostridial Neurotoxins

    SciTech Connect

    Benson, Marc A.; Fu, Zhuji; Kim, Jung-Ja P.; Baldwin, Michael R.

    2012-03-15

    Botulinum neurotoxins (BoNTs) and tetanus neurotoxin are the causative agents of the paralytic diseases botulism and tetanus, respectively. The potency of the clostridial neurotoxins (CNTs) relies primarily on their highly specific binding to nerve terminals and cleavage of SNARE proteins. Although individual CNTs utilize distinct proteins for entry, they share common ganglioside co-receptors. Here, we report the crystal structure of the BoNT/F receptor-binding domain in complex with the sugar moiety of ganglioside GD1a. GD1a binds in a shallow groove formed by the conserved peptide motif E ... H ... SXWY ... G, with additional stabilizing interactions provided by two arginine residues. Comparative analysis of BoNT/F with other CNTs revealed several differences in the interactions of each toxin with ganglioside. Notably, exchange of BoNT/F His-1241 with the corresponding lysine residue of BoNT/E resulted in increased affinity for GD1a and conferred the ability to bind ganglioside GM1a. Conversely, BoNT/E was not able to bind GM1a, demonstrating a discrete mechanism of ganglioside recognition. These findings provide a structural basis for ganglioside binding among the CNTs and show that individual toxins utilize unique ganglioside recognition strategies.

  11. Phospatidylserine or ganglioside--which of anionic lipids determines the effect of cationic dextran on lipid membrane?

    PubMed

    Hąc-Wydro, Katarzyna; Wydro, Paweł; Cetnar, Andrzej; Włodarczyk, Grzegorz

    2015-02-01

    In this work the influence of cationic polymer, namely diethylaminoethyl DEAE-dextran on model lipid membranes was investigated. This polymer is of a wide application as a biomaterial and a drug carrier and its cytotoxicity toward various cancer cells was also confirmed. It was suggested that anticancer effect of cationic dextran is connected with the binding of the polymer to the negatively charged sialic acid residues overexpressed in cancer membrane. This fact encouraged us to perform the studies aimed at verifying whether the effect of cationic DEAE-dextran on membrane is determined only by the presence of the negatively charged lipid in the system or the kind of anionic lipid is also important. To reach this goal systematic investigations on the effect of dextran on various one-component lipid monolayers and multicomponent hepatoma cell model membranes differing in the level and the kind of anionic lipids (phosphatidylserine, sialic acid-containing ganglioside GM3 or their mixture) were done. As evidenced the results the effect of DEAE-dextran on the model system is determined by anionic lipid-polymer electrostatic interactions. However, the magnitude of the effect of cationic polymer is strongly dependent on the kind of anionic lipid in the model system. Namely, the packing and ordering of the mixtures containing ganglioside GM3 were more affected by DEAE-dextran than phosphatidylserine-containing monolayers. Although the experiments were done on model systems and therefore further studies are highly needed, the collected data may indicate that ganglioside may be important in the differentiation of the effect of cationic dextran on membranes. PMID:25576813

  12. Deciphering the Glycolipid Code of Alzheimer's and Parkinson's Amyloid Proteins Allowed the Creation of a Universal Ganglioside-Binding Peptide

    PubMed Central

    Yahi, Nouara; Fantini, Jacques

    2014-01-01

    A broad range of microbial and amyloid proteins interact with cell surface glycolipids which behave as infectivity and/or toxicity cofactors in human pathologies. Here we have deciphered the biochemical code that determines the glycolipid-binding specificity of two major amyloid proteins, Alzheimer's β-amyloid peptide (Aβ) and Parkinson's disease associated protein α-synuclein. We showed that both proteins interact with selected glycolipids through a common loop-shaped motif exhibiting little sequence homology. This 12-residue domain corresponded to fragments 34-45 of α-synuclein and 5-16 of Aβ. By modulating the amino acid sequence of α-synuclein at only two positions in which we introduced a pair of histidine residues found in Aβ, we created a chimeric α-synuclein/Aβ peptide with extended ganglioside-binding properties. This chimeric peptide retained the property of α-synuclein to recognize GM3, and acquired the capacity to recognize GM1 (an Aβ-inherited characteristic). Free histidine (but not tryptophan or asparagine) and Zn2+ (but not Na+) prevented this interaction, confirming the key role of His-13 and His-14 in ganglioside binding. Molecular dynamics studies suggested that the chimeric peptide recognized cholesterol-constrained conformers of GM1, including typical chalice-shaped dimers, that are representative of the condensed cholesterol-ganglioside complexes found in lipid raft domains of the plasma membrane of neural cells. Correspondingly, the peptide had a particular affinity for raft-like membranes containing both GM1 and cholesterol. The chimeric peptide also interacted with several other gangliosides, including major brain gangliosides (GM4, GD1a, GD1b, and GT1b) but not with neutral glycolipids such as GlcCer, LacCer or asialo-GM1. It could inhibit the binding of Aβ1-42 onto neural SH-SY5Y cells and did not induce toxicity in these cells. In conclusion, deciphering the glycolipid code of amyloid proteins allowed us to create a universal

  13. Monitoring Diabetic Nephropathy by Circulating Gangliosides.

    PubMed

    Ene, Corina Daniela; Penescu, Mircea; Anghel, Amalia; Neagu, Monica; Budu, Vlad; Nicolae, Ilinca

    2016-01-01

    Gangliosides are multifunctional molecules, abundantly expressed in renal cell membrane but also in sera of patients with renal disease. The aim of this study was to quantify the serum levels of sialic acid-ganglioside in patients diagnosed with diabetes for an eventual biomarker stratification of patients with renal complications. We included 35 diabetic patients without metabolic complications, 35 patients with diabetic nephropathy, 35 non-diabetic individuals. We found that sialic acid ganglioside serum level was significantly increased in patients with diabetic nephropathy compared to the level obtained in patients with uncomplicated diabetes and to non-diabetic controls. A statistically significant positive correlation was obtained between serum levels of sialic acid gangliosides, HbA1c, and serum creatinine in patients with diabetes without complications. Moreover positive correlation was found between sialic acid ganglioside and blood glucose, HbA1c, urea, creatinine, microalbuminuria in patients with diabetic nephropathy. We can conclude that serum sialic acid-gangliosides are statistically increased in diabetic nephropathy positively correlated with microalbuminuria. PMID:26359623

  14. Gangliosides, or sialic acid, antagonize ethanol intoxication

    SciTech Connect

    Klemm, W.R.; Boyles, R.; Matthew, J.; Cherian, L.

    1988-01-01

    Because ethanol elicits a dose-dependent hydrolysis of brain sialogangliosides, the authors tested the possibility that injected gangliosides might antagonize intoxicating doses of ethanol. Clear anti-intoxication effects were seen at 24 hr post-injection of mixed mouse-brain gangliosides at 125-130 mg/kg, but not at lower or higher doses. Sleep time was reduced on the order of 50%, and roto-rod agility was significantly enhanced. Sialic acid (SA) similarly antagonized ethanol; however, the precursor of SA, N-acetyl-D-mannosamine, as well as ceramide and asialoganglioside did not.

  15. Changes in ganglioside content affect the binding of Clostridium perfringens epsilon-toxin to detergent-resistant membranes of Madin-Darby canine kidney cells.

    PubMed

    Shimamoto, Seiko; Tamai, Eiji; Matsushita, Osamu; Minami, Junzaburo; Okabe, Akinobu; Miyata, Shigeru

    2005-01-01

    Epsilon-toxin (ET) of Clostridium perfringens, which causes fatal enterotoxemia in ungulates, was previously shown to bind to and form a heptameric pore within the detergent-resistant membranes (DRMs) of MDCK cells. Depletion of cholesterol has also been shown to decrease the cytotoxicity of ET and its heptamerization. In this study, we investigated the effects of changes in sphingolipids, other DRM components of MDCK cells, on the cells' susceptibility to ET. Treatment with fumonisin B1 and PDMP, inhibitors of sphingolipid and glycosphingolipid syntheses, respectively, increased the susceptibility, while D609, a sphingomyelin synthesis inhibitor, had the opposite effect. The exogenous addition of ganglioside G(M1) dramatically decreased the ET binding, heptamerization and cytotoxicity. These effects were shown not to be due to ET binding to G(M1) or to denaturation of ET. We also found that the ET cytotoxicity towards MDCK cells decreased with an increase in culture time. In accordance with the resistance observed for prolonged cultured cells, G(M3), a major ganglioside component, increased and sialidase treatment increased their susceptibility. These results suggest that membrane-anchored sialic acid of G(M3) within DRMs inhibits ET binding, leading to prevention of the heptamerization of ET and cell death. It is also suggested that sialidase produced by this organism aids the targeting of ET to MDCK cells. PMID:15781998

  16. Synthesis of reference standards to enable single cell metabolomic studies of tetramethylrhodamine-labelled ganglioside GM1

    PubMed Central

    Larsson, E. Andreas; Olsson, Ulf; Whitmore, Colin; Martins, Rita; Tettamanti, Guido; Schnaar, Ronald L.; Dovichi, Norman J.; Palcic, Monica M.; Hindsgaul, Ole

    2007-01-01

    Ganglioside GM1 and its seven potential catabolic products: asialo-GM1, GM2, asialo-GM2, GM3, Lac-Cer, Glc-Cer and Cer, were labelled with tetramethylrhodamine (TMR) to permit ultra-sensitive analysis using laser-induced fluorescence (LIF) detection. The preparation involved acylation of the homogenous C18 lyso-forms of GM1, Lac-Cer, Glc-Cer and Cer with the N-hydroxysuccinimide ester of a β-alanine-tethered 6-TMR derivative, followed by conversion of these labelled products using galactosidase, sialidase and sialyltransferase enzymes. The TMR-glycolipd analogs produced are detectable on TLC down to the 1 ng level by naked eye. All 8 compounds could be separated in under 4 minutes in capillary electrophoresis where they could be detected at the zeptomole (ca 1000 molecule) level using LIF. PMID:17069778

  17. Gangliosides trigger inflammatory responses via TLR4 in brain glia.

    PubMed

    Jou, Ilo; Lee, Jee Hoon; Park, Soo Young; Yoon, Hee Jung; Joe, Eun-Hye; Park, Eun Jung

    2006-05-01

    Gangliosides participate in various cellular events of the central nervous system and have been closely implicated in many neuronal diseases. However, the precise molecular mechanisms underlying the pathological activity of gangliosides are poorly understood. Here we report that toll-like receptor 4 (TLR4) may mediate the ganglioside-triggered inflammation in glia, brain resident immune cells. Gangliosides rapidly altered the cell surface expression of TLR4 in microglia and astrocytes within 3 hours. Using TLR4-specific siRNA and a dominant-negative TLR4 gene, we clearly demonstrate the functional importance of TLR4 in ganglioside-triggered activation of glia. Inhibition of TLR4 expression by TLR4-siRNA suppressed nuclear factor (NF)-kappaB-binding activity, NF-kappaB-dependent luciferase activity, and transcription of inflammatory cytokines after exposure to gangliosides. Transient transfection of dominant-negative TLR4 also attenuated NF-kappaB-binding activity and interleukin-6 promoter activity. In contrast, these activities were slightly elevated in cells with wild-type TLR4. In addition, CD14 was required for ganglioside-triggered activation of glia, and lipid raft formation may be associated with ganglioside-stimulated signal propagation. Taken together, these results suggest that TLR4 may provide an explanation for the pathological ability of gangliosides to cause inflammatory conditions in the brain. PMID:16651628

  18. Brain gangliosides in the presenile dementia of Pick.

    PubMed Central

    Kamp, P E; den Hartog Jager, W A; Maathuis, J; de Groot, P A; de Jong, J M; Bolhuis, P A

    1986-01-01

    Histochemical analysis of frontal and temporal lobes from four patients with Pick presenile dementia indicated intracellular and extracellular deposits of gangliosides. Thin layer chromatography of gangliosides disclosed the presence of an unknown ganglioside, a decrease of N-acetylgalactosamine-GDla and an increase of GTla and/or GD2 in white matter of Pick brain. Chromatography of gray matter and quantitation of the sialic acid content yielded results similar to controls. It is suggested that degradation and removal of gangliosides is incomplete in Pick disease. Images PMID:3746324

  19. The Role of Gangliosides in Neurodevelopment

    PubMed Central

    Palmano, Kate; Rowan, Angela; Guillermo, Rozey; Guan, Jian; Mc Jarrow, Paul

    2015-01-01

    Gangliosides are important components of neuronal cell membranes and it is widely accepted that they play a critical role in neuronal and brain development. They are functionally involved in neurotransmission and are thought to support the formation and stabilization of functional synapses and neural circuits required as the structural basis of memory and learning. Available evidence, as reviewed herein, suggests that dietary gangliosides may impact positively on cognitive functions, particularly in the early postnatal period when the brain is still growing. Further, new evidence suggests that the mechanism of action may be through an effect on the neuroplasticity of the brain, mediated through enhanced synaptic plasticity in the hippocampus and nigro-striatal dopaminergic pathway. PMID:26007338

  20. Structural aspects of ganglioside-containing membranes.

    PubMed

    Cantu', Laura; Corti, Mario; Brocca, Paola; Del Favero, Elena

    2009-01-01

    The demand for understanding the physical role of gangliosides in membranes is pressing, due to the high number of diverse and crucial biological functions in which they are involved, needing a unifying thread. To this purpose, model systems including gangliosides have been subject of extensive structural studies. Although showing different levels of complication, all models share the need for simplicity, in order to allow for physico-chemical clarity, so they keep far from the extreme complexity of the true biological systems. Nonetheless, as widely agreed, they provide a basic hint on the structural contribution specific molecules can pay to the complex aggregate. This topic we address in the present review. Gangliosides are likely to play their physical role through metamorphism, cooperativity and demixing, that is, they tend to segregate and identify regions where they can dictate and modulate the geometry and the topology of the structure, and its mechanical properties. Strong three-dimensional organisation and cooperativity are exploited to scale up the local arrangement hierarchically from the nano- to the mesoscale, influencing the overall morphology of the structure. PMID:19063860

  1. Oriented 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine/ganglioside membranes: a Fourier transform infrared attenuated total reflection spectroscopic study. Band assignments; orientational, hydrational, and phase behavior; and effects of Ca2+ binding.

    PubMed Central

    Müller, E; Giehl, A; Schwarzmann, G; Sandhoff, K; Blume, A

    1996-01-01

    Fourier transform infrared (FTIR) attenuated total reflection (ATR) spectroscopy was used to elucidate the hydration behavior and molecular order of phospholipid/ganglioside bilayers. We examined dry and hydrated films of the gangliosides GM1, deacetyl-GM1, lyso-GM1, deacetyllyso-GM1, and GM3 and oriented mixed films of these gangliosides with 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) using polarized light. Analysis of the amide I frequencies reveals that the amide groups are involved in intermolecular interactions via hydrogen bonds of varying strengths. The tilt angle of the acyl chains of the lipids in mixed films was determined as a function of ganglioside structure. Deacetylation of the sialic acid in the headgroup has a stronger influence on the tilt angle than the removal of the ganglioside fatty acid. The phase behavior was examined by FTIR ATR spectroscopy and by differential scanning calorimetry (DSC) measurements on lipid suspensions. At the same molar concentration, lyso-gangliosides have less effect on changes of transition temperature compared to the double-chain analogs. Distinct differences in the amide band shapes were observed between mixtures with lyso-gangliosides and normal double-chain gangliosides. Determined from the dicroic ratio RATR, the orientation of the COO- group in all DMPC/ganglioside mixtures was found to be relatively fixed with respect to the membrane normal. In 4:1 mixtures of DMPC with GM1 and deacetyl-GM1, the binding of Ca2+ leads to a slight decrease in chain tilt in the gel phase, probably caused by a dehydration of the membrane-water interface. In mixtures of DMPC with GM3 and deacetyl-lyso-GM1, a slight increase in chain tilt is observed. The chain tilt in DMPC/lyso-GM1 mixtures is unchanged. Analysis of the COO- band reveals that Ca2+ does not bind to the carboxylate group of the sialic acid of GM1 and deacetyl-GM1, the mixtures in which a decrease in chain tilt was observed. Binding to the sialic acid was

  2. High-throughput imaging method for direct assessment of GM1 ganglioside levels in mammalian cells

    PubMed Central

    Acosta, Walter; Martin, Reid; Radin, David N.; Cramer, Carole L.

    2016-01-01

    GM1-gangliosidosis is an inherited autosomal recessive disorder caused by mutations in the gene GLB1, which encodes acid β-galactosidase (β-gal). The lack of activity in this lysosomal enzyme leads to accumulation of GM1 gangliosides (GM1) in cells. We have developed a high-content-imaging method to assess GM1 levels in fibroblasts that can be used to evaluate substrate reduction in treated GLB1−/− cells [1]. This assay allows fluorescent quantification in a multi-well system which generates unbiased and statistically significant data. Fluorescently labeled Cholera Toxin B subunit (CTXB), which specifically binds to GM1 gangliosides, was used to detect in situ GM1 levels in a fixed monolayer of fibroblasts. This sensitive, rapid, and inexpensive method facilitates in vitro drug screening in a format that allows a high number of replicates using low working volumes. PMID:26958633

  3. High-throughput imaging method for direct assessment of GM1 ganglioside levels in mammalian cells.

    PubMed

    Acosta, Walter; Martin, Reid; Radin, David N; Cramer, Carole L

    2016-03-01

    GM1-gangliosidosis is an inherited autosomal recessive disorder caused by mutations in the gene GLB1, which encodes acid β-galactosidase (β-gal). The lack of activity in this lysosomal enzyme leads to accumulation of GM1 gangliosides (GM1) in cells. We have developed a high-content-imaging method to assess GM1 levels in fibroblasts that can be used to evaluate substrate reduction in treated GLB1(-/-) cells [1]. This assay allows fluorescent quantification in a multi-well system which generates unbiased and statistically significant data. Fluorescently labeled Cholera Toxin B subunit (CTXB), which specifically binds to GM1 gangliosides, was used to detect in situ GM1 levels in a fixed monolayer of fibroblasts. This sensitive, rapid, and inexpensive method facilitates in vitro drug screening in a format that allows a high number of replicates using low working volumes. PMID:26958633

  4. Gangliosides in the Nervous System: Biosynthesis and Degradation

    NASA Astrophysics Data System (ADS)

    Yu, Robert K.; Ariga, Toshio; Yanagisawa, Makoto; Zeng, Guichao

    Gangliosides, abundant in the nervous system, are known to play crucial modulatory roles in cellular recognition, interaction, adhesion, and signal transduction, particularly during early developmental stages. The expression of gangliosides in the nervous system is developmentally regulated and is closely related to the differentiation state of the cell. Ganglioside biosynthesis occurs in intracellular organelles, from which gangliosides are transported to the plasma membrane. During brain development, the ganglioside composition of the nervous system undergoes remarkable changes and is strictly regulated by the activities of glycosyltransferases, which can occur at different levels of control, including glycosyltransferase gene transcription and posttranslational modification. Genes for glycosyltransferase involved in ganglioside biosynthesis have been cloned and classified into families of glycosyltransferases based on their amino acid sequence similarities. The donor and acceptor substrate specificities are determined by enzymatic analysis of the glycosyltransferase gene products. Cell-type specific regulation of these genes has also been studied. Gangliosides are degraded by lysosomal exoglycosidases. The action of these enzymes occurs frequently in cooperation with activator proteins. Several human diseases are caused by defects of degradative enzymes, resulting in massive accumulation of certain glycolipids, including gangliosides in the lysosomal compartment and other organelles in the brain and visceral organs. Some of the representative lysosomal storage diseases (LSDs) caused by the accumulation of lipids in late endosomes and lysosomes will be discussed.

  5. Inhibition of hemopoiesis in vitro by neuroblastoma-derived gangliosides.

    PubMed

    Sietsma, H; Nijhof, W; Dontje, B; Vellenga, E; Kamps, W A; Kok, J W

    1998-11-01

    Hemopoiesis is disturbed in bone marrow-involving cancers like leukemia and neuroblastoma. Shedding of gangliosides by tumor cells may contribute to this tumor-induced bone marrow suppression. We studied in vitro the inhibitory effects of murine neuroblastoma cells (Neuro-2a and C1300) and their gangliosides on hemopoiesis using normal murine hemopoietic progenitor colony-forming assays. Transwell cultured neuroblastoma cells showed a dose-dependent inhibition on hemopoiesis, indicating that a soluble factor was responsible for this effect. Furthermore, the supernatant of Neuro-2a cultured cells inhibited hemopoietic proliferation and differentiation. To determine whether the inhibitory effect was indeed due to shed gangliosides and not, for instance, caused by cytokines, the effect of DL-threo-1 -phenyl-2-decanoylamino-3-morpholino-1-propanol (DL-PDMP) on Neuro-2a cells was studied. DL-PDMP is a potent inhibitor of glucosylceramide synthase, resulting in inhibition of the synthesis and shedding of gangliosides. The initially observed inhibitory effect of supernatant of Neuro-2a cells was abrogated by culturing these cells for 3 days in the presence of 10 microM DL-PDMP. Moreover, gangliosides isolated from Neuro-2a cell membranes inhibited hemopoietic growth. To determine whether the described phenomena in vitro are a reflection of bone marrow suppression occurring in vivo, gangliosides isolated from plasma of neuroblastoma patients were tested for their effects on human hemopoietic progenitor colony-forming assays. These human neuroblastoma-derived gangliosides inhibited normal erythropoiesis (colony-forming unit-erythroid/burst-forming unit-erythroid) and myelopoiesis (colony-forming unit-granulocyte/macrophage) to a higher extent compared with gangliosides isolated from control plasma. Altogether these results suggest that gangliosides shed by neuroblastoma cells inhibit hemopoiesis and may contribute to the observed bone marrow depression in neuroblastoma

  6. Correlations between cytomegalovirus, Epstein-Barr virus, anti-ganglioside antibodies, electrodiagnostic findings and functional status in Guillain-Barré syndrome

    PubMed Central

    Taheraghdam, Aliakbar; Pourkhanjar, Peyman; Talebi, Mahnaz; Bonyadi, Mohammadreza; Pashapour, Ali; Rikhtegar, Reza

    2014-01-01

    Background Due to underlying autoimmune background of Guillain-Barré syndrome (GBS), the possible role of infectious agents cytomegalovirus (CMV) and Epstein-Barr virus (EBV) and also due to association of anti-ganglioside antibodies with GBS, the present study aimed to investigate the associations between serum anti-ganglioside antibodies (AGA) level, type of infection and electrodiagnostic (ED) findings with the severity and three-month functional outcome of patients with GBS. Methods In a prospective study, 30 patients with GBS were selected and before starting the treatment, baseline serum samples of patients were obtained for measuring the serum AGA including the antibodies against GQ1b, GT1b, GD1a, GD1b, GM1, GM2, GM3 and strains of CMV and EBV. All the patients were precisely examined for ED findings. Functional status of patients on admission and three months after admission were recorded according to the modified Rankin scale (mRS). Results The results of patients’ serum assessment revealed that CMV IgM was positive in one patient (3.3%), CMV IgG in 29 patients (96.7%) and EBV IgG in 27 patients (90%). Anti-GM1 was found in 3 patients (10%) and anti-GM3 was found only in one patient (3.3%). However, no statistical significant association was found between the AGA and strain of the disease and ED findings. Conclusion Despite the coexistence of AGA and serum antibodies against CMV and EBV in some GBS patients, there was not clear association in this regard. However, the AGA was positive in patients who suffered from severe phase of the disease. PMID:24800041

  7. Assessment of the Molecular Expression and Structure of Gangliosides in Brain Metastasis of Lung Adenocarcinoma by an Advanced Approach Based on Fully Automated Chip-Nanoelectrospray Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Zamfir, Alina D.; Serb, Alina; Vukeli, Željka; Flangea, Corina; Schiopu, Catalin; Fabris, Dragana; Kalanj-Bognar, Svjetlana; Capitan, Florina; Sisu, Eugen

    2011-12-01

    Gangliosides (GGs), sialic acid-containing glycosphingolipids, are known to be involved in the invasive/metastatic behavior of brain tumor cells. Development of modern methods for determination of the variations in GG expression and structure during neoplastic cell transformation is a priority in the field of biomedical analysis. In this context, we report here on the first optimization and application of chip-based nanoelectrospray (NanoMate robot) mass spectrometry (MS) for the investigation of gangliosides in a secondary brain tumor. In our work a native GG mixture extracted and purified from brain metastasis of lung adenocarcinoma was screened by NanoMate robot coupled to a quadrupole time-of-flight MS. A native GG mixture from an age-matched healthy brain tissue, sampled and analyzed under identical conditions, served as a control. Comparative MS analysis demonstrated an evident dissimilarity in GG expression in the two tissue types. Brain metastasis is characterized by many species having a reduced N-acetylneuraminic acid (Neu5Ac) content, however, modified by fucosylation or O-acetylation such as Fuc-GM4, Fuc-GM3, di- O-Ac-GM1, O-Ac-GM3. In contrast, healthy brain tissue is dominated by longer structures exhibiting from mono- to hexasialylated sugar chains. Also, significant differences in ceramide composition were discovered. By tandem MS using collision-induced dissociation at low energies, brain metastasis-associated GD3 (d18:1/18:0) species as well as an uncommon Fuc-GM1 (d18:1/18:0) detected in the normal brain tissue could be structurally characterized. The novel protocol was able to provide a reliable compositional and structural characterization with high analysis pace and at a sensitivity situated in the fmol range.

  8. GM1 Ganglioside: Past Studies and Future Potential.

    PubMed

    Aureli, Massimo; Mauri, Laura; Ciampa, Maria Grazia; Prinetti, Alessandro; Toffano, Gino; Secchieri, Cynthia; Sonnino, Sandro

    2016-04-01

    Gangliosides (sialic acid-containing glycosphingolipids) are abundant in neurons of all animal species and play important roles in many cell physiological processes, including differentiation, memory control, cell signaling, neuronal protection, neuronal recovery, and apoptosis. Gangliosides also function as anchors or entry points for various toxins, bacteria, viruses, and autoantibodies. GM1, a ganglioside component of mammalian brains, is present mainly in neurons. GM1 is one of the best studied gangliosides, and our understanding of its properties is extensive. Simple and rapid procedures are available for preparation of GM1 as a natural compound on a large scale, or as a derivative containing an isotopic radionuclide or a specific probe. Great research interest in the properties of GM1 arose from the discovery in the early 1970s of its role as receptor for the bacterial toxin responsible for cholera pathogenesis. PMID:25762012

  9. GM1 ganglioside and Alzheimer's disease.

    PubMed

    Yanagisawa, Katsuhiko

    2015-05-01

    Assembly and deposition of amyloid ß-protein (Aß) is an invariable and fundamental event in the pathological process of Alzheimer's disease (AD). To decipher the AD pathogenesis and also to develop disease-modifying drugs for AD, clarification of the molecular mechanism underlying the Aß assembly into amyloid fibrils in the brain has been a crucial issue. GM1-ganglioside-bound Aß (GAß), with unique molecular characteristics such as having an altered conformation and the capability to accelerate Aß assembly, was discovered in an autopsied brain showing early pathological changes of AD in 1995. On the basis of these findings, it was hypothesized that GAß is an endogenous seed for amyloid fibril formation in the AD brain. A body of evidence that supports this GAß hypothesis has been growing over this past 20 years. In this article, seminal GAß studies that have been carried out to date, including recent ones using unique animal models, are reviewed. PMID:25903682

  10. Biosynthesis and transport of gangliosides in peripheral nerve

    SciTech Connect

    Yates, A.J.; Tipnis, U.R.; Hofteig, J.H.; Warner, J.K.

    1984-01-01

    Radiolabelled glucosamine was injected into L-7 dorsal root ganglion (DRG) of rabbits. At several different times after injection DRG, lumbosacral trunks (LST) and sciatic nerves (SN) were removed and gangliosides extracted. Two and 3 weeks after injection the amounts of radioactivity in the ganglioside fractions of LST and SN were significantly higher than at days 1 and 2. The TCA soluble radioactivity decreased dramatically over the same time period. Colchicine prevented the appearance of radiolabelled lipid in LST and SN. From these experiments the authors conclude that some ganglioside is synthesized in the neuronal cell bodies of DRG and transported in the axons of the sciatic nerve. In another experiment the sciatic nerve was transected and ends separated to prevent regeneration. There was no difference in the amount of radiolabelled ganglioside that was isolated from DRG or LST of transected nerves compared with control nerves. The behavior of several potential acid soluble contaminants was studied in several steps used to isolate gangliosides. Of those studied only CMP-NeuAc could cause significant contamination of the final ganglioside preparation.

  11. Association of Anti-GT1a Antibodies with an Outbreak of Guillain-Barré Syndrome and Analysis of Ganglioside Mimicry in an Associated Campylobacter jejuni Strain

    PubMed Central

    Cao, Fangfang; Li, Jianjun; Liu, Hongying; Li, Qun; Meng, Fanliang; Zhang, Jianzhong

    2015-01-01

    An outbreak of Guillain-Barré syndrome (GBS), subsequent to Campylobacter jejuni enteritis, occurred in China in 2007. Serum anti-ganglioside antibodies were measured in GBS patients and controls. Genome sequencing was used to determine the phylogenetic relationship among three C. jejuni strains from a patient with GBS (ICDCCJ07001), a patient with gastroenteritis (ICDCCJ07002) and a healthy carrier (ICDCCJ07004), which were all associated with the outbreak. The ganglioside-like structures of the lipo-oligosaccharides of these strains were determined by mass spectrometry. Seventeen (53%) of the GBS patients had anti-GT1a IgG antibodies. GT1a mimicry was found in the lipo-oligosaccharides of strain ICDCCJ07002 and ICDCCJ07004; but a combination of GM3/GD3 mimics was observed in ICDCCJ07001, although this patient had anti-GT1a IgG antibodies. A single-base deletion in a glycosyltransferase gene caused the absence of GT1a mimicry in ICDCCJ07001. The phylogenetic tree showed that ICDCCJ07002 and ICDCCJ07004 were genetically closer to each other than to ICDCCJ07001. C. jejuni, bearing a GT1a-like lipo-oligosaccharide, might have caused the GBS outbreak and the loss of GT1a mimicry may have helped ICDCCJ07001 to survive in the host. PMID:26197476

  12. Specific ganglioside binding to receptor sites on T lymphocytes that couple to ganglioside-induced decrease of CD4 expression

    SciTech Connect

    Morrison, W.J. ); Offner, H. ); Vandenbark, A.A. )

    1989-01-01

    The binding of different gangliosides to rat T-helper lymphocytes was characterized under conditions that decrease CD4 expression on different mammalian T-helper lymphoctyes. Saturation binding by monosialylated ({sub 3}H)-GM{sub 1} to rat T-lymphocytes was time- and temperature-dependent, had a dissociation constant (K{sub D}) of 2.2 {plus minus} 1.4 {mu}M and a binding capacity near 2 fmoles/cell. Competitive inhibition of ({sup 3}H)- GM{sub 1} binding demonstrated a structural-activity related to the number of unconstrained sialic acid moieties on GM{sub 1}-congeneric gangliosides. A comparison between the results of these binding studies and gangliosides-induced decrease of CD4 expression demonstrated that every aspect of ({sup 3}H)-GM{sub 1} binding concurs with ganglioside modulation of CD4 expression. It is concluded that the specific decrease of CD4 expression induced by pretreatment with gangliosides involves the initial process of gangliosides binding to specific sites on CD4{sup {double dagger}} T-helper lymphocytes.

  13. Antibody Recognition of Cancer-Related Gangliosides and Their Mimics Investigated Using in silico Site Mapping

    PubMed Central

    Agostino, Mark; Yuriev, Elizabeth; Ramsland, Paul A.

    2012-01-01

    Modified gangliosides may be overexpressed in certain types of cancer, thus, they are considered a valuable target in cancer immunotherapy. Structural knowledge of their interaction with antibodies is currently limited, due to the large size and high flexibility of these ligands. In this study, we apply our previously developed site mapping technique to investigate the recognition of cancer-related gangliosides by anti-ganglioside antibodies. The results reveal a potential ganglioside-binding motif in the four antibodies studied, suggesting the possibility of structural convergence in the anti-ganglioside immune response. The structural basis of the recognition of ganglioside-mimetic peptides is also investigated using site mapping and compared to ganglioside recognition. The peptides are shown to act as structural mimics of gangliosides by interacting with many of the same binding site residues as the cognate carbohydrate epitopes. These studies provide important clues as to the structural basis of immunological mimicry of carbohydrates. PMID:22536387

  14. Gangliosides and gangliosidoses: principles of molecular and metabolic pathogenesis.

    PubMed

    Sandhoff, Konrad; Harzer, Klaus

    2013-06-19

    Gangliosides are the main glycolipids of neuronal plasma membranes. Their surface patterns are generated by coordinated processes, involving biosynthetic pathways of the secretory compartments, catabolic steps of the endolysosomal system, and intracellular trafficking. Inherited defects in ganglioside biosynthesis causing fatal neurodegenerative diseases have been described so far almost exclusively in mouse models, whereas inherited defects in ganglioside catabolism causing various clinical forms of GM1- and GM2-gangliosidoses have long been known. For digestion, gangliosides are endocytosed and reach intra-endosomal vesicles. At the level of late endosomes, they are depleted of membrane-stabilizing lipids like cholesterol and enriched with bis(monoacylglycero)phosphate (BMP). Lysosomal catabolism is catalyzed at acidic pH values by cationic sphingolipid activator proteins (SAPs), presenting lipids to their respective hydrolases, electrostatically attracted to the negatively charged surface of the luminal BMP-rich vesicles. Various inherited defects of ganglioside hydrolases, e.g., of β-galactosidase and β-hexosaminidases, and of GM2-activator protein, cause infantile (with tetraparesis, dementia, blindness) and different protracted clinical forms of GM1- and GM2-gangliosidoses. Mutations yielding proteins with small residual catabolic activities in the lysosome give rise to juvenile and adult clinical forms with a wide range of clinical symptomatology. Apart from patients' differences in their genetic background, clinical heterogeneity may be caused by rather diverse substrate specificities and functions of lysosomal hydrolases, multifunctional properties of SAPs, and the strong regulation of ganglioside catabolism by membrane lipids. Currently, there is no treatment available for neuronal ganglioside storage diseases. Therapeutic approaches in mouse models and patients with juvenile forms of gangliosidoses are discussed. PMID:23785136

  15. Molecular Recognition of Gangliosides and Their Potential for Cancer Immunotherapies

    PubMed Central

    Krengel, Ute; Bousquet, Paula A.

    2014-01-01

    Gangliosides are sialic-acid-containing glycosphingolipids expressed on all vertebrate cells. They are primarily positioned in the plasma membrane with the ceramide part anchored in the membrane and the glycan part exposed on the surface of the cell. These lipids have highly diverse structures, not the least with respect to their carbohydrate chains, with N-acetylneuraminic acid (NeuAc) and N-glycolylneuraminic acid (NeuGc) being the two most common sialic-acid residues in mammalian cells. Generally, human healthy tissue is deficient in NeuGc, but this molecule is expressed in tumors and in human fetal tissues, and was hence classified as an onco-fetal antigen. Gangliosides perform important functions through carbohydrate-specific interactions with proteins, for example, as receptors in cell–cell recognition, which can be exploited by viruses and other pathogens, and also by regulating signaling proteins, such as the epidermal growth factor receptor (EGFR) and the vascular endothelial growth factor receptor (VEGFR), through lateral interaction in the membrane. Through both mechanisms, tumor-associated gangliosides may affect malignant progression, which makes them attractive targets for cancer immunotherapies. In this review, we describe how proteins recognize gangliosides, focusing on the molecular recognition of gangliosides associated with cancer immunotherapy, and discuss the importance of these molecules in cancer research. PMID:25101077

  16. Ganglioside Composition in Beef, Chicken, Pork, and Fish Determined Using Liquid Chromatography-High-Resolution Mass Spectrometry.

    PubMed

    Fong, Bertram Y; Ma, Lin; Khor, Geok Lin; van der Does, Yvonne; Rowan, Angela; McJarrow, Paul; MacGibbon, Alastair K H

    2016-08-17

    Gangliosides (GA) are found in animal tissues and fluids, such as blood and milk. These sialo-glycosphingolipids have bioactivities in neural development, the gastrointestinal tract, and the immune system. In this study, a high-performance liquid chromatography-mass spectrometry (HPLC-MS) method was validated to characterize and quantitate the GA in beef, chicken, pork, and fish species (turbot, snapper, king salmon, and island mackerel). For the first time, we report the concentration of GM3, the dominant GA in these foods, as ranging from 0.35 to 1.1 mg/100 g and 0.70 to 5.86 mg/100 g of meat and fish, respectively. The minor GAs measured were GD3, GD1a, GD1b, and GT1b. Molecular species distribution revealed that the GA contained long- to very-long-chain acyl fatty acids attached to the ceramide moiety. Fish GA contained only N-acetylneuraminic acid (NeuAc) sialic acid, while beef, chicken, and pork contained GD1a/b species that incorporated both NeuAc and N-glycolylneuraminic acid (NeuGc) and hydroxylated fatty acids. PMID:27436425

  17. In cellulo examination of a beta-alpha hybrid construct of beta-hexosaminidase A subunits, reported to interact with the GM2 activator protein and hydrolyze GM2 ganglioside.

    PubMed

    Sinici, Incilay; Yonekawa, Sayuri; Tkachyova, Ilona; Gray, Steven J; Samulski, R Jude; Wakarchuk, Warren; Mark, Brian L; Mahuran, Don J

    2013-01-01

    The hydrolysis in lysosomes of GM2 ganglioside to GM3 ganglioside requires the correct synthesis, intracellular assembly and transport of three separate gene products; i.e., the alpha and beta subunits of heterodimeric beta-hexosaminidase A, E.C. # 3.2.1.52 (encoded by the HEXA and HEXB genes, respectively), and the GM2-activator protein (GM2AP, encoded by the GM2A gene). Mutations in any one of these genes can result in one of three neurodegenerative diseases collectively known as GM2 gangliosidosis (HEXA, Tay-Sachs disease, MIM # 272800; HEXB, Sandhoff disease, MIM # 268800; and GM2A, AB-variant form, MIM # 272750). Elements of both of the hexosaminidase A subunits are needed to productively interact with the GM2 ganglioside-GM2AP complex in the lysosome. Some of these elements have been predicted from the crystal structures of hexosaminidase and the activator. Recently a hybrid of the two subunits has been constructed and reported to be capable of forming homodimers that can perform this reaction in vivo, which could greatly simplify vector-mediated gene transfer approaches for Tay-Sachs or Sandhoff diseases. A cDNA encoding a hybrid hexosaminidase subunit capable of dimerizing and hydrolyzing GM2 ganglioside could be incorporated into a single vector, whereas packaging both subunits of hexosaminidase A into vectors, such as adeno-associated virus, would be impractical due to size constraints. In this report we examine the previously published hybrid construct (H1) and a new more extensive hybrid (H2), with our documented in cellulo (live cell- based) assay utilizing a fluorescent GM2 ganglioside derivative. Unfortunately when Tay-Sachs cells were transfected with either the H1 or H2 hybrid construct and then were fed the GM2 derivative, no significant increase in its turnover was detected. In vitro assays with the isolated H1 or H2 homodimers confirmed that neither was capable of human GM2AP-dependent hydrolysis of GM2 ganglioside. PMID:23483939

  18. In Cellulo Examination of a Beta-Alpha Hybrid Construct of Beta-Hexosaminidase A Subunits, Reported to Interact with the GM2 Activator Protein and Hydrolyze GM2 Ganglioside

    PubMed Central

    Sinici, Incilay; Yonekawa, Sayuri; Tkachyova, Ilona; Gray, Steven J.; Samulski, R. Jude; Wakarchuk, Warren; Mark, Brian L.; Mahuran, Don J.

    2013-01-01

    The hydrolysis in lysosomes of GM2 ganglioside to GM3 ganglioside requires the correct synthesis, intracellular assembly and transport of three separate gene products; i.e., the alpha and beta subunits of heterodimeric beta-hexosaminidase A, E.C. # 3.2.1.52 (encoded by the HEXA and HEXB genes, respectively), and the GM2-activator protein (GM2AP, encoded by the GM2A gene). Mutations in any one of these genes can result in one of three neurodegenerative diseases collectively known as GM2 gangliosidosis (HEXA, Tay-Sachs disease, MIM # 272800; HEXB, Sandhoff disease, MIM # 268800; and GM2A, AB-variant form, MIM # 272750). Elements of both of the hexosaminidase A subunits are needed to productively interact with the GM2 ganglioside-GM2AP complex in the lysosome. Some of these elements have been predicted from the crystal structures of hexosaminidase and the activator. Recently a hybrid of the two subunits has been constructed and reported to be capable of forming homodimers that can perform this reaction in vivo, which could greatly simplify vector-mediated gene transfer approaches for Tay-Sachs or Sandhoff diseases. A cDNA encoding a hybrid hexosaminidase subunit capable of dimerizing and hydrolyzing GM2 ganglioside could be incorporated into a single vector, whereas packaging both subunits of hexosaminidase A into vectors, such as adeno-associated virus, would be impractical due to size constraints. In this report we examine the previously published hybrid construct (H1) and a new more extensive hybrid (H2), with our documented in cellulo (live cell- based) assay utilizing a fluorescent GM2 ganglioside derivative. Unfortunately when Tay-Sachs cells were transfected with either the H1 or H2 hybrid construct and then were fed the GM2 derivative, no significant increase in its turnover was detected. In vitro assays with the isolated H1 or H2 homodimers confirmed that neither was capable of human GM2AP-dependent hydrolysis of GM2 ganglioside. PMID:23483939

  19. Serological response patterns of melanoma patients immunized with a GM2 ganglioside conjugate vaccine.

    PubMed

    Kitamura, K; Livingston, P O; Fortunato, S R; Stockert, E; Helling, F; Ritter, G; Oettgen, H F; Old, L J

    1995-03-28

    Gangliosides, such as GM2, GD2, GD3, and 9-O-acetyl GD3, are receiving attention as targets for antibody-based and vaccine-based therapies of melanoma. GM2 appears to be a particularly immunogenic ganglioside in humans, as indicated by the presence of naturally occurring IgM anti-GM2 antibodies in approximately 5% of humans and the fact that immunization with irradiated GM2-expressing melanoma cells or purified GM2 adherent to bacillus Calmette-Guérin elicits GM2 antibodies of low to moderate titers in a high proportion of vaccinated patients. To develop vaccines that consistently induce high titers of IgM as well as IgG anti-GM2 antibodies, vaccines containing GM2 conjugated to keyhole limpet hemocyanin as the carrier protein and QS-21 as the adjuvant have been constructed. The serological response of vaccinated patients was monitored by ELISA using purified GM2 ganglioside for IgM and IgG anti-GM2 antibodies and for GM2 cell surface-reactive antibodies by immune adherence assays and cytotoxic tests (IgM antibodies) and mixed hemadsorption assays (IgG antibodies). The majority of vaccinated patients developed IgM and IgG antibodies detectable by ELISA. In most cases, the results of IgM ELISA correlated with assays for cell surface-reactive IgM antibodies. This was not true for IgG anti-GM2 antibodies, where strong discrepancies were seen between high titers in ELISA and little or no reactivity in mixed hemadsorption tests for cell surface-reactive antibodies. These IgG antibodies (and the less frequent IgM antibodies that show similar discrepancies) may be directed against GM2 determinants that are buried, hidden, or not present on GM2-expressing target cells. With regard to a major objective of ganglioside vaccines--i.e., generation of cytotoxic antibodies--the GM2-keyhole limpet hemocyanin/QS-21 vaccine is clearly superior to the previously tested GM2/bacillus Calmette-Guérin vaccine. However, variability in patient response and lack of persistence of high

  20. GM1 and GM2 gangliosides: recent developments.

    PubMed

    Bisel, Blaine; Pavone, Francesco S; Calamai, Martino

    2014-03-01

    GM1 and GM2 gangliosides are important components of the cell membrane and play an integral role in cell signaling and metabolism. In this conceptual overview, we discuss recent developments in our understanding of the basic biological functions of GM1 and GM2 and their involvement in several diseases. In addition to a well-established spectrum of disorders known as gangliosidoses, such as Tay-Sachs disease, more and more evidence points at an involvement of GM1 in Alzheimer's and Parkinson's diseases. New emerging methodologies spanning from single-molecule imaging in vivo to simulations in silico have complemented standard studies based on ganglioside extraction. PMID:25372744

  1. Targeted Delivery of Immunotoxin by Antibody to Ganglioside GD3: A Novel Drug Delivery Route for Tumor Cells

    PubMed Central

    Torres Demichelis, Vanina; Vilcaes, Aldo A.; Iglesias-Bartolomé, Ramiro; Ruggiero, Fernando M.; Daniotti, Jose L.

    2013-01-01

    Gangliosides are sialic acid-containing glycolipids expressed on plasma membranes from nearly all vertebrate cells. The expression of ganglioside GD3, which plays essential roles in normal brain development, decreases in adults but is up regulated in neuroectodermal and epithelial derived cancers. R24 antibody, directed against ganglioside GD3, is a validated tumor target which is specifically endocytosed and accumulated in endosomes. Here, we exploit the internalization feature of the R24 antibody for the selective delivery of saporin, a ribosome-inactivating protein, to GD3-expressing cells [human (SK-Mel-28) and mouse (B16) melanoma cells and Chinese hamster ovary (CHO)-K1 cells]. This immunotoxin showed a specific cytotoxicity on tumor cells grew on 2D monolayers, which was further evident by the lack of any effect on GD3-negative cells. To estimate the potential antitumor activity of R24-saporin complex, we also evaluated the effect of the immunotoxin on the clonogenic growth of SK-Mel-28 and CHO-K1GD3+ cells cultured in attachment-free conditions. A drastic growth inhibition (>80–90%) of the cell colonies was reached after 3 days of immunotoxin treatment. By the contrary, colonies continue to growth at the same concentration of the immuntoxin, but in the absence of R24 antibody, or in the absence of both immunotoxin and R24, undoubtedly indicating the specificity of the effect observed. Thus, the ganglioside GD3 emerge as a novel and attractive class of cell surface molecule for targeted delivery of cytotoxic agents and, therefore, provides a rationale for future therapeutic intervention in cancer. PMID:23383146

  2. Identification of a Unique Ganglioside Binding Loop within Botulinum Neurotoxins C and D-SA

    SciTech Connect

    Karalewitz, Andrew P.-A.; Kroken, Abby R.; Fu, Zhuji; Baldwin, Michael R.; Kim, Jung-Ja P.; Barbieri, Joseph T.

    2010-09-22

    The botulinum neurotoxins (BoNTs) are the most potent protein toxins for humans. There are seven serotypes of BoNTs (A-G) based on a lack of cross antiserum neutralization. BoNTs utilize gangliosides as components of the host receptors for binding and entry into neurons. Members of BoNT/C and BoNT/D serotypes include mosaic toxins that are organized in D/C and C/D toxins. One D/C mosaic toxin, BoNT/D-South Africa (BoNT/D-SA), was not fully neutralized by immunization with BoNT serotype C or D, which stimulated this study. Here the crystal structures of the receptor binding domains of BoNT/C, BoNT/D, and BoNT/D-SA are presented. Biochemical and cell binding studies show that BoNT/C and BoNT/D-SA possess unique mechanisms for ganglioside binding. These studies provide new information about how the BoNTs can enter host cells as well as a basis for understanding the immunological diversity of these neurotoxins.

  3. Cell growth regulation through GM3-enriched microdomain (glycosynapse) in human lung embryonal fibroblast WI38 and its oncogenic transformant VA13.

    PubMed

    Toledo, Marcos S; Suzuki, Erika; Handa, Kazuko; Hakomori, Senitiroh

    2004-08-13

    Cell growth control mechanisms were studied based on organization of components in glycosphingolipid-enriched microdomain (GEM) in WI38 cells versus their oncogenic transformant VA13 cells. Levels of fibroblast growth factor receptor (FGFR) and cSrc were 4 times and 2-3 times higher, respectively, in VA13 than in WI38 GEM, whereas the level of tetraspanin CD9/CD81 was 3-5 times higher in WI38 than in VA13 GEM. Csk, the physiological inhibitor of cSrc, was present in WI38 but not in VA13 GEM. Functional association of GEM components in control of cell growth in WI38 is indicated by several lines of evidence. (i) Confluent, growth-inhibited WI38 showed a lower degree of FGF-induced MAPK activation than actively growing cells in sparse culture. (ii) The level of inactive cSrc (with Tyr-527 phosphate) was higher in confluent cells than in actively growing cells. Both processes i and ii were inhibited by GM3 since they were enhanced by GM3 depletion with d-threo-1-phenyl-2-palmitoylamino-3-pyrrolidino-1-propanol (P4). (iii) The high level of inactive cSrc associated with growth-inhibited cells was caused by coexisting Csk in WI38 GEM. (iv) Interaction of GM3 with FGFR was demonstrated by binding of GM3 to FGFR in the GEM fraction, as probed with GM3-coated beads, and by confocal microscopy. In contrast to WI38, both cSrc and MAPK in VA13 were strongly activated regardless of FGF stimulation or GM3 depletion by P4. Continuous, constitutive activation of both cSrc and MAPK was due to (i) a much higher level of cSrc and FGFR in VA13 than in WI38 GEM, (ii) their close association/interaction in VA13 GEM as indicated by clear coimmunoprecipitation between cSrc and FGFR, and (iii) the absence of Csk in VA13 GEM, making GEM incapable of inhibiting cSrc activation. PMID:15143068

  4. Exogenous gangliosides may affect methylation mechanisms in neuronal cell cultures

    SciTech Connect

    Ferret, B.; Hubsch, A.; Dreyfus, H.; Massarelli, R. )

    1991-02-01

    Primary neurons in culture from chick embryo cerebral hemispheres were treated with a mixture of gangliosides added to the growth medium (final concentration: 10(-5)M and 10(-8)M) from the 3rd to the 6th day in vitro. Under these conditions methylation processes measured with (3H) and (35S) methionine and (3H)ethanolamine as precursors showed an increased methylation of (3H)ethanolamine containing phospholipids, a correspondent increased conversion of these compounds to (3H)choline containing phospholipids, and a general increased methylation of trichloroacetic acid precipitable macromolecules containing labeled methionine. A small increase in protein synthesis was observed after incubation of neurons with (3H)- and (35S)methionine. This was confirmed after electrophoretic separation of a protein extract with increased 3H- and 35S-labeling in protein bands with moecular weights between 50 and 60 KDaltons. A protein band of about 55 KDaltons appeared to be preferentially labelled when (3H) methionine was the precursor. The treatment with gangliosides increased the incorporation of (methyl-3H) label after incubation of neurons with (3H) methionine, into total DNA and decreased that of total RNA. The treatment of neurons in culture with exogenous gangliosides hence affects differently methylation processes, a finding which may confirm the involvement of gangliosides on the intracellular mediation of neuronal information mechanisms.

  5. Reduced GM1 ganglioside in CFTR-deficient human airway cells results in decreased β1-integrin signaling and delayed wound repair

    PubMed Central

    Itokazu, Yutaka; Pagano, Richard E.; Schroeder, Andreas S.; O'Grady, Scott M.; Limper, Andrew H.

    2014-01-01

    Loss of cystic fibrosis transmembrane conductance regulator (CFTR) function reduces chloride secretion and increases sodium uptake, but it is not clear why CFTR mutation also results in progressive lung inflammation and infection. We previously demonstrated that CFTR-silenced airway cells migrate more slowly during wound repair than CFTR-expressing controls. In addition, CFTR-deficient cells and mouse models have been reported to have altered sphingolipid levels. Here, we investigated the hypothesis that reduced migration in CFTR-deficient airway epithelial cells results from altered sphingolipid composition. We used cell lines derived from a human airway epithelial cell line (Calu-3) stably transfected with CFTR short hairpin RNA (CFTR-silenced) or nontargeting short hairpin RNA (controls). Cell migration was measured by electric cell substrate impedance sensing (ECIS). Lipid analyses, addition of exogenous glycosphingolipids, and immunoblotting were performed. We found that levels of the glycosphingolipid, GM1 ganglioside, were ∼60% lower in CFTR-silenced cells than in controls. CFTR-silenced cells exhibited reduced levels of activated β1-integrin, phosphorylated tyrosine 576 of focal adhesion kinase (pFAK), and phosphorylation of Crk-associated substrate (pCAS). Addition of GM1 (but not GM3) ganglioside to CFTR-silenced cells restored activated β1-integrin, pFAK, and pCAS to near control levels and partially restored (∼40%) cell migration. Our results suggest that decreased GM1 in CFTR-silenced cells depresses β1-integrin signaling, which contributes to the delayed wound repair observed in these cells. These findings have implications for the pathology of cystic fibrosis, where altered sphingolipid levels in airway epithelial cells could result in a diminished capacity for wound repair after injury. PMID:24500283

  6. Recycling of glucosylceramide and sphingosine for the biosynthesis of gangliosides and sphingomyelin in rat liver.

    PubMed Central

    Trinchera, M; Ghidoni, R; Sonnino, S; Tettamanti, G

    1990-01-01

    It was previously shown that sphingomyelin and gangliosides can be biosynthesized starting from sphingosine or sphingosine-containing fragments which originated in the course of GM1 ganglioside catabolism. In the present paper we investigated which fragments were specifically re-used for sphingomyelin and ganglioside biosynthesis in rat liver. At 30 h after intravenous injection of GM1 labelled at the level of the fatty acid ([stearoyl-14C]GM1) or of the sphingosine ([Sph-3H]) moiety, it was observed that radioactive sphingomyelin was formed almost exclusively after the sphingosine-labelled-GM1 administration. This permitted the recognition of sphingosine as the metabolite re-used for sphingomyelin biosynthesis. Conversely, gangliosides more complex than GM1 were similarly radiolabelled after the two treatments, thus ruling out sphingosine re-utilization for ganglioside biosynthesis. For the identification of the lipid fragment re-used for ganglioside biosynthesis, we administered to rats neutral glycosphingolipids (galactosylceramide, glucosylceramide and lactosylceramide) each radiolabelled in the sphingosine moiety or in the terminal sugar residue. Thereafter we compared the formation of radiolabelled gangliosides in the liver with respect to the species administered and the label location. After galactosylceramide was injected, no radiolabelled gangliosides were formed. After the administration of differently labelled glucosylceramide, radiolabelled gangliosides were formed, regardless of the position of the label. After lactosylceramide administration, the ganglioside fraction became more radioactive when the long-chain-base-labelled precursors were used. These results suggest that glucosylceramide, derived from glycosphingolipid and ganglioside catabolism, is recycled for ganglioside biosynthesis. Images Fig. 1. PMID:2241913

  7. Preclinical evaluation of racotumomab, an anti-idiotype monoclonal antibody to N-glycolyl-containing gangliosides, with or without chemotherapy in a mouse model of non-small cell lung cancer

    PubMed Central

    Segatori, Valeria I.; Vazquez, Ana M.; Gomez, Daniel E.; Gabri, Mariano R.; Alonso, Daniel F.

    2012-01-01

    N-glycolylneuraminic acid (NeuGc) is a sialic acid molecule usually found in mammalian cells as terminal constituents of different membrane glycoconjugates such as gangliosides. The NeuGcGM3 ganglioside has been described as a tumor antigen for non-small cell lung cancer (NSCLC) in humans. Racotumomab is an anti-NeuGc-containing gangliosides anti-idiotype monoclonal antibody (mAb) (formerly known as 1E10) that has received attention as a potential active immunotherapy for advanced lung cancer in clinical trials. In this work, we have examined the antitumor activity of racotumomab in combination or not with chemotherapy, using the 3LL Lewis lung carcinoma as a preclinical model of NSCLC in C57BL/6 mice. Vaccination with biweekly doses of racotumomab at 50–200 μg/dose formulated in aluminum hydroxide (racotumomab-alum vaccine) demonstrated a significant antitumor effect against the progression of lung tumor nodules. Racotumomab-alum vaccination exerted a comparable effect on lung disease to that of pemetrexed-based chemotherapy (100 mg/kg weekly). Interestingly, chemo-immunotherapy was highly effective against lung nodules and well-tolerated, although no significant synergistic effect was observed as compared to each treatment alone in the present model. We also obtained evidence on the role of the exogenous incorporation of NeuGc in the metastatic potential of 3LL cells. Our preclinical data provide support for the combination of chemotherapy with the anti-idiotype mAb racotumomab, and also reinforce the biological significance of NeuGc in lung cancer. PMID:23162791

  8. Preclinical evaluation of racotumomab, an anti-idiotype monoclonal antibody to N-glycolyl-containing gangliosides, with or without chemotherapy in a mouse model of non-small cell lung cancer.

    PubMed

    Segatori, Valeria I; Vazquez, Ana M; Gomez, Daniel E; Gabri, Mariano R; Alonso, Daniel F

    2012-01-01

    N-glycolylneuraminic acid (NeuGc) is a sialic acid molecule usually found in mammalian cells as terminal constituents of different membrane glycoconjugates such as gangliosides. The NeuGcGM3 ganglioside has been described as a tumor antigen for non-small cell lung cancer (NSCLC) in humans. Racotumomab is an anti-NeuGc-containing gangliosides anti-idiotype monoclonal antibody (mAb) (formerly known as 1E10) that has received attention as a potential active immunotherapy for advanced lung cancer in clinical trials. In this work, we have examined the antitumor activity of racotumomab in combination or not with chemotherapy, using the 3LL Lewis lung carcinoma as a preclinical model of NSCLC in C57BL/6 mice. Vaccination with biweekly doses of racotumomab at 50-200 μg/dose formulated in aluminum hydroxide (racotumomab-alum vaccine) demonstrated a significant antitumor effect against the progression of lung tumor nodules. Racotumomab-alum vaccination exerted a comparable effect on lung disease to that of pemetrexed-based chemotherapy (100 mg/kg weekly). Interestingly, chemo-immunotherapy was highly effective against lung nodules and well-tolerated, although no significant synergistic effect was observed as compared to each treatment alone in the present model. We also obtained evidence on the role of the exogenous incorporation of NeuGc in the metastatic potential of 3LL cells. Our preclinical data provide support for the combination of chemotherapy with the anti-idiotype mAb racotumomab, and also reinforce the biological significance of NeuGc in lung cancer. PMID:23162791

  9. Anti-ganglioside antibodies are removed from circulation in mice by neuronal endocytosis

    PubMed Central

    Cunningham, Madeleine E.; McGonigal, Rhona; Meehan, Gavin R.; Barrie, Jennifer A.; Yao, Denggao; Halstead, Susan K.

    2016-01-01

    See van Doorn and Jacobs (doi:10.1093/brain/aww078) for a scientific commentary on this article.   In axonal forms of Guillain-Barré syndrome, anti-ganglioside antibodies bind gangliosides on nerve surfaces, thereby causing injury through complement activation and immune cell recruitment. Why some nerve regions are more vulnerable than others is unknown. One reason may be that neuronal membranes with high endocytic activity, including nerve terminals involved in neurotransmitter recycling, are able to endocytose anti-ganglioside antibodies from the cell surface so rapidly that antibody-mediated injury is attenuated. Herein we investigated whether endocytic clearance of anti-ganglioside antibodies by nerve terminals might also be of sufficient magnitude to deplete circulating antibody levels. Remarkably, systemically delivered anti-ganglioside antibody in mice was so avidly cleared from the circulation by endocytosis at ganglioside-expressing plasma membranes that it was rapidly rendered undetectable in serum. A major component of the clearance occurred at motor nerve terminals of neuromuscular junctions, from where anti-ganglioside antibody was retrogradely transported to the motor neuron cell body in the spinal cord, recycled to the plasma membrane, and secreted into the surrounding spinal cord. Uptake at the neuromuscular junction represents a major unexpected pathway by which pathogenic anti-ganglioside antibodies, and potentially other ganglioside binding proteins, are cleared from the systemic circulation and also covertly delivered to the central nervous system. PMID:27017187

  10. Anti-ganglioside antibodies are removed from circulation in mice by neuronal endocytosis.

    PubMed

    Cunningham, Madeleine E; McGonigal, Rhona; Meehan, Gavin R; Barrie, Jennifer A; Yao, Denggao; Halstead, Susan K; Willison, Hugh J

    2016-06-01

    SEE VAN DOORN AND JACOBS DOI101093/BRAIN/AWW078 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE  : In axonal forms of Guillain-Barré syndrome, anti-ganglioside antibodies bind gangliosides on nerve surfaces, thereby causing injury through complement activation and immune cell recruitment. Why some nerve regions are more vulnerable than others is unknown. One reason may be that neuronal membranes with high endocytic activity, including nerve terminals involved in neurotransmitter recycling, are able to endocytose anti-ganglioside antibodies from the cell surface so rapidly that antibody-mediated injury is attenuated. Herein we investigated whether endocytic clearance of anti-ganglioside antibodies by nerve terminals might also be of sufficient magnitude to deplete circulating antibody levels. Remarkably, systemically delivered anti-ganglioside antibody in mice was so avidly cleared from the circulation by endocytosis at ganglioside-expressing plasma membranes that it was rapidly rendered undetectable in serum. A major component of the clearance occurred at motor nerve terminals of neuromuscular junctions, from where anti-ganglioside antibody was retrogradely transported to the motor neuron cell body in the spinal cord, recycled to the plasma membrane, and secreted into the surrounding spinal cord. Uptake at the neuromuscular junction represents a major unexpected pathway by which pathogenic anti-ganglioside antibodies, and potentially other ganglioside binding proteins, are cleared from the systemic circulation and also covertly delivered to the central nervous system. PMID:27017187

  11. Protective effects of exogenous gangliosides on ROS-induced changes in human spermatozoa.

    PubMed

    Gavella, Mirjana; Lipovac, Vaskresenija

    2013-05-01

    This article summarizes the available evidence on the efficacy of gangliosides to reduce the degree of reactive oxygen species (ROS)-mediated damage. The antioxidative efficacy of exogenous gangliosides in protecting different cells encouraged us to examine their ability to protect human spermatozoa. Gangliosides are sialic acid-containing glycosphingolipids with strong amphiphilic character due to the bulky headgroup made of several sugar rings with sialic acid residues and the double-tailed hydrophobic lipid moiety. The amphiphilicity of gangliosides allows them to exist as micelles in aqueous media when they are present at a concentration above their critical micellar concentration. The protective effect of ganglioside micelles on spermatozoa is believed to stem from their ability to scavenge free radicals and prevent their damaging effects. In our study, we particularly focused our attention on the protective effect of ganglioside micelles on DNA in human spermatozoa exposed to cryopreservation. The results indicate that ganglioside micelles can modulate the hydrophobic properties of the sperm membrane to increase tolerance to DNA fragmentation, thus protecting the DNA from cryopreservation-induced damage. Further actions of ganglioside micelles, which were documented by biochemical and biophysical studies, included (i) the modulation of superoxide anion generation by increasing the diffusion barrier for membrane events responsible for signal translocation to the interior of the cell; (ii) the inhibition of iron-catalysed hydroxyl radical formation due to the iron chelation potential of gangliosides; and (iii) inhibition of hydrogen peroxide diffusion across the sperm membrane. PMID:23503425

  12. Zika virus and neurologic autoimmunity: the putative role of gangliosides.

    PubMed

    Anaya, Juan-Manuel; Ramirez-Santana, Carolina; Salgado-Castaneda, Ignacio; Chang, Christopher; Ansari, Aftab; Gershwin, M Eric

    2016-01-01

    An increasing number of severe neurological complications associated with Zika virus (ZIKV), chiefly Guillain-Barré syndrome (GBS) and primary microcephaly, have led the World Health Organization to declare a global health emergency. Molecular mimicry between glycolipids and surface molecules of infectious agents explain most of the cases of GBS preceded by infection, while a direct toxicity of ZIKV on neural cells has been raised as the main mechanism by which ZIKV induces microcephaly. Gangliosides are crucial in brain development, and their expression correlates with neurogenesis, synaptogenesis, synaptic transmission, and cell proliferation. Targeting the autoimmune response to gangliosides may represent an underexploited opportunity to examine the increased incidence of neurological complications related to ZIKV infection. PMID:27001187

  13. Ganglioside storage diseases: on the road to management.

    PubMed

    Seyfried, Thomas N; Rockwell, Hannah E; Heinecke, Karie A; Martin, Douglas R; Sena-Esteves, Miguel

    2014-01-01

    Although the biochemical and genetic basis for the GM1 and GM2 gangliosidoses has been known for decades, effective therapies for these diseases remain in early stages of development. The difficulty with many therapeutic strategies for treating the gangliosidoses comes largely from their inability to remove stored ganglioside once it accumulates in central nervous system (CNS) neurons and glia. This chapter highlights advances made using substrate reduction therapy and gene therapy in reducing CNS ganglioside storage. Information obtained from mouse and feline models provides insight on therapeutic strategies that could be effective in human clinical trials. In addition, information is presented showing how a calorie-restricted diet might facilitate therapeutic drug delivery to the CNS. The development of multiple new therapeutic approaches offers hope that longer-term management of these diseases can be achieved. It is also clear that multiple therapeutic strategies will likely be needed to provide the most complete management. PMID:25151393

  14. Anti-ganglioside anti-idiotypic monoclonal antibody-based cancer vaccine induces apoptosis and antiangiogenic effect in a metastatic lung carcinoma.

    PubMed

    Diaz, Y; Gonzalez, A; Lopez, A; Perez, R; Vazquez, A M; Montero, E

    2009-07-01

    Anti-idiotype monoclonal antibody (mAb) 1E10 was generated by immunizing BALB/c mice with an Ab1 mAb which recognizes NeuGc-containing gangliosides, sulfatides and some tumor antigens. 1E10 mAb induces therapeutic effects in a primary breast carcinoma and a melanoma model. However, the tumor immunity mechanisms have not been elucidated. Here we show that aluminum hydroxide-precipitated 1E10 mAb immunization induced anti-metastatic effect in the 3LL-D122 Lewis Lung carcinoma, a poorly immunogenic and highly metastatic model in C57BL/6 mice. The therapeutic effect was associated to the increment of T cells infiltrating metastases, the reduction of new blood vessels formation and the increase of apoptotic tumor cells in lung nodules. Interestingly, active immunization does not induce measurable antibodies to the 1E10 mAb, the NeuGc-GM3 or tumor cells, which may suggest a different mechanism which has to be elucidated. These findings may support the relevance of this target for cancer biotherapy. PMID:19066887

  15. GM1 Ganglioside Treatment Facilitates Behavioral Recovery from Bilateral Brain Damage

    NASA Astrophysics Data System (ADS)

    Sabel, Bernhard A.; Slavin, Mary D.; Stein, Donald G.

    1984-07-01

    Adult rats with bilateral lesions of the caudate nucleus were treated with GM1 ganglioside. Although animals injected with a control solution were severely impaired in their ability to learn a complex spatial task, those treated with ganglioside were able to learn spatial reversals.

  16. Neuronal expression of GalNAc transferase is sufficient to prevent the age-related neurodegenerative phenotype of complex ganglioside-deficient mice.

    PubMed

    Yao, Denggao; McGonigal, Rhona; Barrie, Jennifer A; Cappell, Joanna; Cunningham, Madeleine E; Meehan, Gavin R; Fewou, Simon N; Edgar, Julia M; Rowan, Edward; Ohmi, Yuhsuke; Furukawa, Keiko; Furukawa, Koichi; Brophy, Peter J; Willison, Hugh J

    2014-01-15

    Gangliosides are widely expressed sialylated glycosphingolipids with multifunctional properties in different cell types and organs. In the nervous system, they are highly enriched in both glial and neuronal membranes. Mice lacking complex gangliosides attributable to targeted ablation of the B4galnt1 gene that encodes β-1,4-N-acetylegalactosaminyltransferase 1 (GalNAc-transferase; GalNAcT(-/-)) develop normally before exhibiting an age-dependent neurodegenerative phenotype characterized by marked behavioral abnormalities, central and peripheral axonal degeneration, reduced myelin volume, and loss of axo-glial junction integrity. The cell biological substrates underlying this neurodegeneration and the relative contribution of either glial or neuronal gangliosides to the process are unknown. To address this, we generated neuron-specific and glial-specific GalNAcT rescue mice crossed on the global GalNAcT(-/-) background [GalNAcT(-/-)-Tg(neuronal) and GalNAcT(-/-)-Tg(glial)] and analyzed their behavioral, morphological, and electrophysiological phenotype. Complex gangliosides, as assessed by thin-layer chromatography, mass spectrometry, GalNAcT enzyme activity, and anti-ganglioside antibody (AgAb) immunohistology, were restored in both neuronal and glial GalNAcT rescue mice. Behaviorally, GalNAcT(-/-)-Tg(neuronal) retained a normal "wild-type" (WT) phenotype throughout life, whereas GalNAcT(-/-)-Tg(glial) resembled GalNAcT(-/-) mice, exhibiting progressive tremor, weakness, and ataxia with aging. Quantitative electron microscopy demonstrated that GalNAcT(-/-) and GalNAcT(-/-)-Tg(glial) nerves had significantly increased rates of axon degeneration and reduced myelin volume, whereas GalNAcT(-/-)-Tg(neuronal) and WT appeared normal. The increased invasion of the paranode with juxtaparanodal Kv1.1, characteristically seen in GalNAcT(-/-) and attributed to a breakdown of the axo-glial junction, was normalized in GalNAcT(-/-)-Tg(neuronal) but remained present in Gal

  17. JAK-STAT signaling mediates gangliosides-induced inflammatory responses in brain microglial cells.

    PubMed

    Kim, Ohn Soon; Park, Eun Jung; Joe, Eun-hye; Jou, Ilo

    2002-10-25

    Neuronal cell membranes are particularly rich in gangliosides, which play important roles in brain physiology and pathology. Previously, we reported that gangliosides could act as microglial activators and are thus likely to participate in many neuronal diseases. In the present study we provide evidence that JAK-STAT inflammatory signaling mediates gangliosides-stimulated microglial activation. Both in rat primary microglia and murine BV2 microglial cells, gangliosides stimulated nuclear factor binding to GAS/ISRE elements, which are known to be STAT-binding sites. Consistent with this, gangliosides rapidly activated JAK1 and JAK2 and induced phosphorylation of STAT1 and STAT3. In addition, gangliosides increased transcription of the inflammation-associated genes inducible nitric-oxide synthase, ICAM-1, and MCP-1, which are reported to contain STAT-binding elements in their promoter regions. AG490, a JAK inhibitor, reduced induction of these genes, nuclear factor binding activity, and activation of STAT1 and -3 in gangliosides-treated microglia. AG490 also inhibited gangliosides-induced release of nitric oxide, an inflammation hallmark. Furthermore, AG490 markedly reduced activation of ERK1/2 MAPK, indicating that ERKs act downstream of JAK-STAT signaling during microglial activation. However, AG490 did not affect activation of p38 MAPK. We also report that the sialic acid residues present on gangliosides may be one of the essential components in activation of JAK-STAT signaling. The present study indicates that JAK-STAT signaling is an early event in gangliosides-induced brain inflammatory responses. PMID:12191995

  18. Prevalence, specificity and functionality of anti-ganglioside antibodies in neuropathy associated with IgM monoclonal gammopathy.

    PubMed

    Stork, Abraham C J; Jacobs, Bart C; Tio-Gillen, Anne P; Eurelings, Marijke; Jansen, Marc D; van den Berg, Leonard H; Notermans, Nicolette C; van der Pol, W-Ludo

    2014-03-15

    IgM antibodies against gangliosides and their complexes were studied in sera from 54 patients with polyneuropathy and IgM monoclonal gammopathy (IgM-PNP) without anti-MAG antibodies. Anti-ganglioside antibodies were found in 19 (35%) patients. Five (9%) patients had antibodies against ganglioside complexes. IgM antibodies against gangliosides activated complement in vitro. Light chain usage was restricted to kappa or lambda in most, but not all patients. In conclusion, anti-ganglioside antibodies in IgM-PNP are common, display pathogenic properties and do not always arise from a monoclonal B cell proliferation. PMID:24529728

  19. Liquid chromatography/electrospray ionisation-tandem mass spectrometry quantification of GM2 gangliosides in human peripheral cells and plasma.

    PubMed

    Fuller, Maria; Duplock, Stephen; Hein, Leanne K; Rigat, Brigitte A; Mahuran, Don J

    2014-08-01

    GM2 gangliosidosis is a group of inherited neurodegenerative disorders resulting primarily from the excessive accumulation of GM2 gangliosides (GM2) in neuronal cells. As biomarkers for categorising patients and monitoring the effectiveness of developing therapies are lacking for this group of disorders, we sought to develop methodology to quantify GM2 levels in more readily attainable patient samples such as plasma, leukocytes, and cultured skin fibroblasts. Following organic extraction, gangliosides were partitioned into the aqueous phase and isolated using C18 solid-phase extraction columns. Relative quantification of three species of GM2 was achieved using LC/ESI-MS/MS with d35GM1 18:1/18:0 as an internal standard. The assay was linear over the biological range, and all GM2 gangliosidosis patients were demarcated from controls by elevated GM2 in cultured skin fibroblast extracts. However, in leukocytes only some molecular species could be used for differentiation and in plasma only one was informative. A reduction in GM2 was easily detected in patient skin fibroblasts after a short treatment with media from normal cells enriched in secreted β-hexosaminidase. This method may show promise for measuring the effectiveness of experimental therapies for GM2 gangliosidosis by allowing quantification of a reduction in the primary storage burden. PMID:24769373

  20. A method for profiling gangliosides in animal tissues using electrospray ionization-tandem mass spectrometry.

    PubMed

    Tsui, Zhao-Chun; Chen, Qi-Rui; Thomas, Michael J; Samuel, Michael; Cui, Zheng

    2005-06-15

    Gangliosides are critical in many functions of mammalian cells but present as a minor lipid component with many molecular species of subtle differences. Conventional strategies for profiling gangliosides suffer from poor reproducibility, low sensitivity, and low-throughput capacity. Prior separation of gangliosides by thin-layer chromatography and/or high-performance liquid chromatography not only was laborious and tedious but also could introduce uneven losses of molecular species. We developed a new strategy of using electrospray ionization-tandem mass spectrometry (ESI-MS/MS) to profile gangliosides with high-throughput potential. This strategy involves three new findings: (i) collision-induced fragmentation of gangliosides gave rise to a common ion of m/z 290, a derivative of N-acetylneuraminic acid; (ii) phospholipids exert a profound suppression of ganglioside detection in ESI-MS/MS to prevent a direct detection in total cellular lipid extracts; and (iii) enrichment of gangliosides in the aqueous phase from total cellular lipid extracts eliminates the damping effect of phospholipids and permits direct precursor scan. PMID:15907870

  1. Direct evidence that ganglioside is an integral component of the thyrotropin receptor.

    PubMed

    Kielczynski, W; Harrison, L C; Leedman, P J

    1991-03-01

    Gangliosides were extracted from purified human and porcine thyrotropin (TSH) receptors (TSH-R) and were detected by probing with an 125I-labeled sialic acid-specific lectin, Limax flavus agglutinin. Gangliosides copurified with human and porcine TSH-R migrated between monosialoganglioside GM1 and disialoganglioside GD1a. Ceramide glycanase digestion of the purified human TSH-R-associated glycolipid confirmed its ganglioside nature. It was resistant to Vibrio cholerae sialidase, which digests all gangliosides except GM1, but was sensitive to Arthrobacter ureafaciens sialidase, which digests all gangliosides including GM1. These findings indicate that the human TSH-R contains ganglioside that belongs to the galactosyl(beta 1----3)-N-acetylgalactosaminyl (beta 1----4)-[N-acetylneuraminyl(alpha 2----3)]galactosyl(beta 1----4) glucosyl(beta 1----1)ceramide (GM1) family. Its intimate association with receptor protein implies a key role for ganglioside in the structure and function of the TSH-R. PMID:2000404

  2. Direct evidence that ganglioside is an integral component of the thyrotropin receptor

    SciTech Connect

    Kielczynski, W.; Harrison, L.C.; Leedman, P.J. )

    1991-03-01

    Gangliosides were extracted from purified human and porcine thyrotropin (TSH) receptors (TSH-R) and were detected by probing with an {sup 125}I-labeled sialic acid-specific lectin, Limax flavus agglutinin. Gangliosides copurified with human and porcine TSH-R migrated between monosialoganglioside GM1 and disialoganglioside GD1a. Ceramide glycanase digestion of the purified human TSH-R-associated glycolipid confirmed its ganglioside nature. It was resistant to Vibrio cholerae sialidase, which digest all gangliosides except GM1, but was sensitive to Arthrobacter ureafaciens sialidase, which digests all gangliosides including GM1. These findings indicate that the human TSH-R contains ganglioside that belongs to the galactosyl({beta}1{r arrow} 3)-N-acetylgalactosaminyl({beta}1{r arrow} 4)-(N-acetylneuraminyl({alpha}2{r arrow} 3))galactosyl({beta}1 {r arrow} 4)glucosyl({beta}1 {r arrow} 1)ceramide (GM1) family. Its intimate association with receptor protein implies a key role for ganglioside in the structure and function of the TSH-R.

  3. Effect of Dietary Complex Lipids on the Biosynthesis of Piglet Brain Gangliosides.

    PubMed

    Reis, Marlon M; Bermingham, Emma N; Reis, Mariza G; Deb-Choudhury, Santanu; MacGibbon, Alastair; Fong, Bertram; McJarrow, Paul; Bibiloni, Rodrigo; Bassett, Shalome A; Roy, Nicole C

    2016-02-17

    Gangliosides, found in mammalian milk, are known for their roles in brain development of the newborn. However, the mechanism involved in the impact of dietary gangliosides on brain metabolism is not fully understood. The impact of diets containing complex lipids rich in milk-derived ganglioside GD3 on the biosynthesis of gangliosides (assessed from the incorporation of deuterium) in the frontal lobe of a piglet model is reported. Higher levels of incorporation of deuterium was observed in the GM1 and GD1a containing stearic acid in samples from piglets fed milk containing 18.2 μg/mL of GD3 compared to that in those fed milk containing 25 μg/mL of GD3. This could suggest that the gangliosides from the diet may be used as a precursor for de novo biosynthesis of brain gangliosides or lead to the reduction of de novo biosynthesis of these gangliosides. This effect was more pronounced in the left compared to that in the right brain hemisphere. PMID:26808587

  4. Alteration of Ganglioside Biosynthesis Responsible for Complex Hereditary Spastic Paraplegia

    PubMed Central

    Boukhris, Amir; Schule, Rebecca; Loureiro, José L.; Lourenço, Charles Marques; Mundwiller, Emeline; Gonzalez, Michael A.; Charles, Perrine; Gauthier, Julie; Rekik, Imen; Acosta Lebrigio, Rafael F.; Gaussen, Marion; Speziani, Fiorella; Ferbert, Andreas; Feki, Imed; Caballero-Oteyza, Andrés; Dionne-Laporte, Alexandre; Amri, Mohamed; Noreau, Anne; Forlani, Sylvie; Cruz, Vitor T.; Mochel, Fanny; Coutinho, Paula; Dion, Patrick; Mhiri, Chokri; Schols, Ludger; Pouget, Jean; Darios, Frédéric; Rouleau, Guy A.; Marques, Wilson; Brice, Alexis; Durr, Alexandra; Zuchner, Stephan; Stevanin, Giovanni

    2013-01-01

    Hereditary spastic paraplegias (HSPs) form a heterogeneous group of neurological disorders. A whole-genome linkage mapping effort was made with three HSP-affected families from Spain, Portugal, and Tunisia and it allowed us to reduce the SPG26 locus interval from 34 to 9 Mb. Subsequently, a targeted capture was made to sequence the entire exome of affected individuals from these three families, as well as from two additional autosomal-recessive HSP-affected families of German and Brazilian origins. Five homozygous truncating (n = 3) and missense (n = 2) mutations were identified in B4GALNT1. After this finding, we analyzed the entire coding region of this gene in 65 additional cases, and three mutations were identified in two subjects. All mutated cases presented an early-onset spastic paraplegia, with frequent intellectual disability, cerebellar ataxia, and peripheral neuropathy as well as cortical atrophy and white matter hyperintensities on brain imaging. B4GALNT1 encodes β-1,4-N-acetyl-galactosaminyl transferase 1 (B4GALNT1), involved in ganglioside biosynthesis. These findings confirm the increasing interest of lipid metabolism in HSPs. Interestingly, although the catabolism of gangliosides is implicated in a variety of neurological diseases, SPG26 is only the second human disease involving defects of their biosynthesis. PMID:23746551

  5. Alteration of ganglioside biosynthesis responsible for complex hereditary spastic paraplegia.

    PubMed

    Boukhris, Amir; Schule, Rebecca; Loureiro, José L; Lourenço, Charles Marques; Mundwiller, Emeline; Gonzalez, Michael A; Charles, Perrine; Gauthier, Julie; Rekik, Imen; Acosta Lebrigio, Rafael F; Gaussen, Marion; Speziani, Fiorella; Ferbert, Andreas; Feki, Imed; Caballero-Oteyza, Andrés; Dionne-Laporte, Alexandre; Amri, Mohamed; Noreau, Anne; Forlani, Sylvie; Cruz, Vitor T; Mochel, Fanny; Coutinho, Paula; Dion, Patrick; Mhiri, Chokri; Schols, Ludger; Pouget, Jean; Darios, Frédéric; Rouleau, Guy A; Marques, Wilson; Brice, Alexis; Durr, Alexandra; Zuchner, Stephan; Stevanin, Giovanni

    2013-07-11

    Hereditary spastic paraplegias (HSPs) form a heterogeneous group of neurological disorders. A whole-genome linkage mapping effort was made with three HSP-affected families from Spain, Portugal, and Tunisia and it allowed us to reduce the SPG26 locus interval from 34 to 9 Mb. Subsequently, a targeted capture was made to sequence the entire exome of affected individuals from these three families, as well as from two additional autosomal-recessive HSP-affected families of German and Brazilian origins. Five homozygous truncating (n = 3) and missense (n = 2) mutations were identified in B4GALNT1. After this finding, we analyzed the entire coding region of this gene in 65 additional cases, and three mutations were identified in two subjects. All mutated cases presented an early-onset spastic paraplegia, with frequent intellectual disability, cerebellar ataxia, and peripheral neuropathy as well as cortical atrophy and white matter hyperintensities on brain imaging. B4GALNT1 encodes β-1,4-N-acetyl-galactosaminyl transferase 1 (B4GALNT1), involved in ganglioside biosynthesis. These findings confirm the increasing interest of lipid metabolism in HSPs. Interestingly, although the catabolism of gangliosides is implicated in a variety of neurological diseases, SPG26 is only the second human disease involving defects of their biosynthesis. PMID:23746551

  6. Cholesterol transfer between lipid vesicles. Effect of phospholipids and gangliosides.

    PubMed Central

    Thomas, P D; Poznansky, M J

    1988-01-01

    The effect of lipid composition on the rate of cholesterol movement between cellular membranes is investigated using lipid vesicles. The separation of donor and acceptor vesicles required for rate measurement is achieved by differential centrifugation so that the lipid effect can be quantified in the absence of a charged lipid generally used for ion-exchange-based separation. The rate of cholesterol transfer from small unilamellar vesicles (SUVs) containing 50 mol% cholesterol to a common large unilamellar vesicle (LUV) acceptor containing 20 mol% cholesterol decreases with increasing mol% of sphingomyelin in the SUVs, while phosphatidylethanolamine and phosphatidylserine have no appreciable effect at physiologically relevant levels. There is a large decrease in rate when phosphatidylethanolamine constitutes 50 mol% of donor phospholipids. Interestingly, gangliosides which have the same hydrocarbon moiety as sphingomyelin exert an opposite effect. The effect of spingomyelin seems to be mediated by its ability to decrease the fluidity of the lipid matrix, while that of gangliosides may arise from a weakening of phosphatidylcholine-cholesterol interactions or from a more favourable (less polar) microenvironment for the desorption of cholesterol provided by the head-group interactions involving sugar residues. If the effect of asymmetric transbilayer distribution of lipids is taken into consideration, the observed composition-dependent rate changes could partly account for the large difference in the rates of cholesterol desorption from the inner and outer layers of plasma membrane. Such rate differences may be responsible for an unequal steady-state distribution of cholesterol among various cellular membranes and lipoproteins. PMID:3390160

  7. Recovery from Experimental Parkinsonism in Primates with GM1 Ganglioside Treatment

    NASA Astrophysics Data System (ADS)

    Schneider, J. S.; Pope, Anne; Simpson, Kimberly; Taggart, James; Smith, M. G.; Distefano, L.

    1992-05-01

    A parkinsonian syndrome can be produced in nonhuman primates by administration of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Parkinsonian-like symptoms induced acutely by MPTP were ameliorated after treatment with GM1 ganglioside, a substance shown to have neurotrophic effects on the damaged dopamine system in rodents. Treatment with GM1 ganglioside also increased striatal dopamine and metabolite levels and enhanced the dopaminergic innervation of the striatum as demonstrated by tyrosine hydroxylase immunohistochemistry. These results suggest that GM1 ganglioside may hold promise as a therapeutic agent for the treatment of Parkinson's disease.

  8. GM1 ganglioside reverses the cognitive deficits induced by MK801 in mice.

    PubMed

    Ni, Yu-Fei; Zhang, Wei; Bao, Xiao-Feng; Wang, Wei; Song, Lu; Jiang, Bo

    2016-08-01

    Cognitive deficits are core symptoms of schizophrenia, but effective treatments are still lacking. Previous studies have reported that the brain-derived neurotrophic factor (BDNF) signaling is closely involved in learning and memory. Monosialotetrahexosylganglioside (GM1) is a ganglioside with wide-ranging pharmacologic effects that enhances the BDNF signaling cascade. This study aimed to assess the effects of GM1 on schizophrenia-related cognitive impairments. A brief disruption of N-methyl-D-aspartate receptors with MK801 was used to generate the animal model for cognitive deficits in schizophrenia. It was found that MK801-treated mice showed significant deficits in memory ability compared with control mice in different behavior tests, and this was accompanied by decreased hippocampal BDNF signaling pathway. Consecutive administration of GM1 fully restored the MK801-induced cognitive deficits and the impaired BDNF signaling in the hippocampus. Furthermore, a BDNF system inhibitor abolished the effects of GM1 in the MK801 model. Taken together, our results show that GM1 could reverse the MK801-induced cognitive deficits, suggesting a potential usefulness of GM1 in treating the schizophrenia-related cognitive impairments. PMID:26960162

  9. Effects of Gangliosides on the Activity of the Plasma Membrane Ca2+-ATPase

    PubMed Central

    Jiang, Lei; Bechtel, Misty D.; Bean, Jennifer L.; Winefield, Robert; Williams, Todd D.; Zaidi, Asma; Michaelis, Elias K.; Michaelis, Mary L.

    2014-01-01

    Control of intracellular calcium concentrations ([Ca2+]i) is essential for neuronal function, and the plasma membrane Ca2+-ATPase (PMCA) is crucial for the maintenance of low [Ca2+]i. We previously reported on loss of PMCA activity in brain synaptic membranes during aging. Gangliosides are known to modulate Ca2+ homeostasis and signal transduction in neurons. In the present study, we observed age-related changes in the ganglioside composition of synaptic plasma membranes. This led us to hypothesize that alterations in ganglioside species might contribute to the age-associated loss of PMCA activity. To probe the relationship between changes in endogenous ganglioside content or composition and PMCA activity in membranes of cortical neurons, we induced depletion of gangliosides by treating neurons with D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP). This caused a marked decrease in the activity of PMCA, which suggested a direct correlation between ganglioside content and PMCA activity. Neurons treated with neuraminidase exhibited an increase in GM1 content, a loss in poly-sialoganglioside content, and a decrease in PMCA activity that was greater than that produced by D-PDMP treatment. Thus, it appeared that poly-sialogangliosides had a stimulatory effect whereas mono-sialogangliosides had the opposite effect. Our observations add support to previous reports of PMCA regulation by gangliosides by demonstrating that manipulations of endogenous ganglioside content and species affect the activity of PMCA in neuronal membranes. Furthermore, our studies suggest that age-associated loss in PMCA activity may result in part from changes in the lipid environment of this Ca2+ transporter. PMID:24434060

  10. Electrospray Ionization Ion Mobility Mass Spectrometry of Human Brain Gangliosides.

    PubMed

    Sarbu, Mirela; Robu, Adrian C; Ghiulai, Roxana M; Vukelić, Željka; Clemmer, David E; Zamfir, Alina D

    2016-05-17

    The progress of ion mobility spectrometry (IMS), together with its association to mass spectrometry (MS), opened new directions for the identification of various metabolites in complex biological matrices. However, glycolipidomics of the human brain by IMS MS represents an area untouched up to now, because of the difficulties encountered in brain sampling, analyte extraction, and IMS MS method optimization. In this study, IMS MS was introduced in human brain ganglioside (GG) research. The efficiency of the method in clinical glycolipidomics was demonstrated on a highly complex mixture extracted from a normal fetal frontal lobe (FL37). Using this approach, a remarkably rich molecular ion pattern was discovered, which proved the presence of a large number of glycoforms and an unpredicted diversity of the ceramide chains. Moreover, the results showed for the first time the occurrence of GGs in the human brain with a much higher degree of sialylation than previously reported. Using IMS MS, the entire series starting from mono- up to octasialylated GGs was detected in FL37. These findings substantiate early clinical reports on the direct correlation between GG sialylation degree and brain developmental stage. Using IMS CID MS/MS, applied here for the first time to gangliosides, a novel, tetrasialylated O-GalNAc modified species with a potential biomarker role in brain development was structurally characterized. Under variable collision energy, a high number of sequence ions was generated for the investigated GalNAc-GQ1(d18:1/18:0) species. Several fragment ions documented the presence of the tetrasialo element attached to the inner Gal, indicating that GalNAc-GQ1(d18:1/18:0) belongs to the d series. PMID:27088833

  11. The Protective Effect of Gangliosides on Lead (Pb)-Induced Neurotoxicity Is Mediated by Autophagic Pathways.

    PubMed

    Meng, Hongtao; Wang, Lan; He, Junhong; Wang, Zhufeng

    2016-01-01

    Lead (Pb) is a ubiquitous environmental and industrial pollutant and can affect intelligence development and the learning ability and memory of children. Therefore, necessary measures should be taken to protect the central nervous system (CNS) from Pb toxicity. Gangliosides are sialic acid-containing glycosphingolipids that are constituents of mammalian cell membranes and are more abundantly expressed in the CNS. Studies have shown that gangliosides constitute a useful tool in the attempt to promote functional recovery of CNS and can reverse Pb-induced impairments of synaptic plasticity in rats. However, the detailed mechanisms have yet to be fully understood. In our present study, we tried to investigate the role of gangliosides in Pb-induced injury in hippocampus neurons and to further confirm the detailed mechanism. Our results show that Pb-induced injuries in the spatial reference memory were associated with a reduction of cell viability and cell apoptosis, and treatment with gangliosides markedly ameliorated the Pb-induced injury by inhibition of apoptosis action. Gangliosides further attenuated Pb-induced the abnormal autophagic process by regulation of mTOR pathways. In summary, our study establishes the efficacy of gangliosides as neuroprotective agents and provides a strong rationale for further studies on the underlying mechanisms of their neuroprotective functions. PMID:27023584

  12. Number of Sialic Acid Residues in Ganglioside Headgroup Affects Interactions with Neighboring Lipids

    PubMed Central

    Frey, Shelli L.; Lee, Ka Yee C.

    2013-01-01

    Monolayers of binary mixtures of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and asialo-(GA1), disialo-(GD1b) and trisialo-(GT1b) gangliosides were used to determine the effect of ganglioside headgroup charge and geometry on its interactions with the neighboring zwitterionic lipid. Surface pressure versus molecular area isotherm measurements along with concurrent fluorescence microscopy of the monolayers at the air-water interface were complemented with atomic force microscopy imaging of monolayers deposited on solid substrates. Results were used to further develop a proposed geometric packing model that the complementary geometry of DPPC and monosialoganglioside GM1 headgroups affects their close molecular packing, inducing condensation of the layer at small mol % of ganglioside. For GA1, GD1b, and GT1b, a similar condensing effect, followed by a fluidizing effect is seen that varies with glycosphingolipid concentration, but results do not directly follow from geometric arguments because less DPPC is needed to condense ganglioside molecules with larger cross-sectional areas. The variations in critical packing mole ratios can be explained by global effects of headgroup charge and resultant dipole moments within the monolayer. Atomic force microscopy micrographs further support the model of ganglioside-induced DPPC condensation with condensed domains composed of a striped phase of condensed DPPC and DPPC/ganglioside geometrically packed complexes at low concentrations. PMID:24047994

  13. Number of sialic acid residues in ganglioside headgroup affects interactions with neighboring lipids.

    PubMed

    Frey, Shelli L; Lee, Ka Yee C

    2013-09-17

    Monolayers of binary mixtures of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and asialo-(GA1), disialo-(GD1b) and trisialo-(GT1b) gangliosides were used to determine the effect of ganglioside headgroup charge and geometry on its interactions with the neighboring zwitterionic lipid. Surface pressure versus molecular area isotherm measurements along with concurrent fluorescence microscopy of the monolayers at the air-water interface were complemented with atomic force microscopy imaging of monolayers deposited on solid substrates. Results were used to further develop a proposed geometric packing model that the complementary geometry of DPPC and monosialoganglioside GM1 headgroups affects their close molecular packing, inducing condensation of the layer at small mol % of ganglioside. For GA1, GD1b, and GT1b, a similar condensing effect, followed by a fluidizing effect is seen that varies with glycosphingolipid concentration, but results do not directly follow from geometric arguments because less DPPC is needed to condense ganglioside molecules with larger cross-sectional areas. The variations in critical packing mole ratios can be explained by global effects of headgroup charge and resultant dipole moments within the monolayer. Atomic force microscopy micrographs further support the model of ganglioside-induced DPPC condensation with condensed domains composed of a striped phase of condensed DPPC and DPPC/ganglioside geometrically packed complexes at low concentrations. PMID:24047994

  14. The Protective Effect of Gangliosides on Lead (Pb)-Induced Neurotoxicity Is Mediated by Autophagic Pathways

    PubMed Central

    Meng, Hongtao; Wang, Lan; He, Junhong; Wang, Zhufeng

    2016-01-01

    Lead (Pb) is a ubiquitous environmental and industrial pollutant and can affect intelligence development and the learning ability and memory of children. Therefore, necessary measures should be taken to protect the central nervous system (CNS) from Pb toxicity. Gangliosides are sialic acid-containing glycosphingolipids that are constituents of mammalian cell membranes and are more abundantly expressed in the CNS. Studies have shown that gangliosides constitute a useful tool in the attempt to promote functional recovery of CNS and can reverse Pb-induced impairments of synaptic plasticity in rats. However, the detailed mechanisms have yet to be fully understood. In our present study, we tried to investigate the role of gangliosides in Pb-induced injury in hippocampus neurons and to further confirm the detailed mechanism. Our results show that Pb-induced injuries in the spatial reference memory were associated with a reduction of cell viability and cell apoptosis, and treatment with gangliosides markedly ameliorated the Pb-induced injury by inhibition of apoptosis action. Gangliosides further attenuated Pb-induced the abnormal autophagic process by regulation of mTOR pathways. In summary, our study establishes the efficacy of gangliosides as neuroprotective agents and provides a strong rationale for further studies on the underlying mechanisms of their neuroprotective functions. PMID:27023584

  15. Combination of ESI and MALDI mass spectrometry for qualitative, semi-quantitative and in situ analysis of gangliosides in brain

    PubMed Central

    Zhang, Yangyang; Wang, Jun; Liu, Jian’an; Han, Juanjuan; Xiong, Shaoxiang; Yong, Weidong; Zhao, Zhenwen

    2016-01-01

    Gangliosides are a family of complex lipids that are abundant in the brain. There is no doubt the investigations about the distribution of gangliosides in brian and the relationship between gangliosides and Alzheimer’s disease is profound. However, these investigations are full of challenges due to the structural complexity of gangliosides. In this work, the method for efficient extraction and enrichment of gangliosides from brain was established. Moreover, the distribution of gangliosides in brain was obtained by matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). It was found that 3-aminoquinoline (3-AQ) as matrix was well-suited for MALDI MS analysis of gangliosides in negative ion mode. In addition, the pretreatment by ethanol (EtOH) cleaning brain section and the addition of ammonium formate greatly improved the MS signal of gangliosides in the brain section when MALDI MSI analysis was employed. The distribution of ganliosides in cerebral cortex, hippocampus and cerebellum was respectively acquired by electrospray ionization (ESI) MS and MALDI MSI, and the data were compared for reliability evaluation of MALDI MSI. Further, applying MALDI MSI technology, the distribution of gangliosides in amyloid precursor protein transgenic mouse brain was obtained, which may provide a new insight for bioresearch of Alzheimer’s disease (AD). PMID:27142336

  16. The biological activity of botulinum neurotoxin type C is dependent upon novel types of ganglioside binding sites.

    PubMed

    Strotmeier, Jasmin; Gu, Shenyan; Jutzi, Stephan; Mahrhold, Stefan; Zhou, Jie; Pich, Andreas; Eichner, Timo; Bigalke, Hans; Rummel, Andreas; Jin, Rongsheng; Binz, Thomas

    2011-07-01

    The seven botulinum neurotoxins (BoNT) cause muscle paralysis by selectively cleaving core components of the vesicular fusion machinery. Their extraordinary activity primarily relies on highly specific entry into neurons. Data on BoNT/A, B, E, F and G suggest that entry follows a dual receptor interaction with complex gangliosides via an established ganglioside binding region and a synaptic vesicle protein. Here, we report high resolution crystal structures of the BoNT/C cell binding fragment alone and in complex with sialic acid. The WY-motif characteristic of the established ganglioside binding region was located on an exposed loop. Sialic acid was co-ordinated at a novel position neighbouring the binding pocket for synaptotagmin in BoNT/B and G and the sialic acid binding site in BoNT/D and TeNT respectively. Employing synaptosomes and immobilized gangliosides binding studies with BoNT/C mutants showed that the ganglioside binding WY-loop, the newly identified sialic acid-co-ordinating pocket and the area corresponding to the established ganglioside binding region of other BoNTs are involved in ganglioside interaction. Phrenic nerve hemidiaphragm activity tests employing ganglioside deficient mice furthermore evidenced that the biological activity of BoNT/C depends on ganglioside interaction with at least two binding sites. These data suggest a unique cell binding and entry mechanism for BoNT/C among clostridial neurotoxins. PMID:21542861

  17. Combination of ESI and MALDI mass spectrometry for qualitative, semi-quantitative and in situ analysis of gangliosides in brain.

    PubMed

    Zhang, Yangyang; Wang, Jun; Liu, Jian'an; Han, Juanjuan; Xiong, Shaoxiang; Yong, Weidong; Zhao, Zhenwen

    2016-01-01

    Gangliosides are a family of complex lipids that are abundant in the brain. There is no doubt the investigations about the distribution of gangliosides in brian and the relationship between gangliosides and Alzheimer's disease is profound. However, these investigations are full of challenges due to the structural complexity of gangliosides. In this work, the method for efficient extraction and enrichment of gangliosides from brain was established. Moreover, the distribution of gangliosides in brain was obtained by matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). It was found that 3-aminoquinoline (3-AQ) as matrix was well-suited for MALDI MS analysis of gangliosides in negative ion mode. In addition, the pretreatment by ethanol (EtOH) cleaning brain section and the addition of ammonium formate greatly improved the MS signal of gangliosides in the brain section when MALDI MSI analysis was employed. The distribution of ganliosides in cerebral cortex, hippocampus and cerebellum was respectively acquired by electrospray ionization (ESI) MS and MALDI MSI, and the data were compared for reliability evaluation of MALDI MSI. Further, applying MALDI MSI technology, the distribution of gangliosides in amyloid precursor protein transgenic mouse brain was obtained, which may provide a new insight for bioresearch of Alzheimer's disease (AD). PMID:27142336

  18. Lacking "Lack": A Reply to Joldersma

    ERIC Educational Resources Information Center

    Marshall, James D.

    2007-01-01

    First I would like to thank Clarence Joldersma for his review of our "Poststructuralism, Philosophy, Pedagogy" (Marshall, 2004-PPP). In particular, I would thank him for his opening sentence: "[t]his book is a response to a lack." It is the notion of a lack, noted again later in his review, which I wish to take up mainly in this response. Rather…

  19. Properties of ganglioside GM1 in phosphatidylcholine bilayer membranes.

    PubMed

    Reed, R A; Shipley, G G

    1996-03-01

    Gangliosides have been shown to function as cell surface receptors, as well as participating in cell growth, differentiation, and transformation. In spite of their multiple biological functions, relatively little is known about their structure and physical properties in membrane systems. The thermotropic and structural properties of ganglioside GM1 alone and in a binary system with 1,2-dipalmitoyl phosphatidylcholine (DPPC) have been investigated by differential scanning calorimetry (DSC) and x-ray diffraction. By DSC hydrated GM1 undergoes a broad endothermic transition TM = 26 degrees C (delta H = 1.7 kcal/mol GM1). X-ray diffraction below (-2 degrees C) and above (51 degrees C) this transition indicates a micellar structure with changes occurring only in the wide angle region of the diffraction pattern (relatively sharp reflection at 1/4.12 A-1 at -2 degrees C; more diffuse reflection at 1/4.41 A-1 at 51 degrees C). In hydrated binary mixtures with DPPC, incorporation of GM1 (0-30 mol%; zone 1) decreases the enthalpy of the DPPC pretransition at low molar compositions while increasing the TM of both the pre- and main transitions (limiting values, 39 and 44 degrees C, respectively). X-ray diffraction studies indicate the presence of a single bilayer gel phase in zone 1 that can undergo chain melting to an L alpha bilayer phase. A detailed hydration study of GM1 (5.7 mol %)/DPPC indicated a conversion of the DPPC bilayer gel phase to an infinite swelling system in zone 1 due to the presence of the negatively charged sialic acid moiety of GM1. At 30-61 mol % GM1 (zone 2), two calorimetric transitions are observed at 44 and 47 degrees C, suggesting the presence of two phases. The lower transition reflects the bilayer gel --> L alpha transition (zone 1), whereas the upper transition appears to be a consequence of the formation of a nonbilayer, micellar or hexagonal phase, although the structure of this phase has not been defined by x-ray diffraction. At > 61 mol % GM

  20. Raft-based interactions of gangliosides with a GPI-anchored receptor.

    PubMed

    Komura, Naoko; Suzuki, Kenichi G N; Ando, Hiromune; Konishi, Miku; Koikeda, Machi; Imamura, Akihiro; Chadda, Rahul; Fujiwara, Takahiro K; Tsuboi, Hisae; Sheng, Ren; Cho, Wonhwa; Furukawa, Koichi; Furukawa, Keiko; Yamauchi, Yoshio; Ishida, Hideharu; Kusumi, Akihiro; Kiso, Makoto

    2016-06-01

    Gangliosides, glycosphingolipids containing one or more sialic acid(s) in the glyco-chain, are involved in various important physiological and pathological processes in the plasma membrane. However, their exact functions are poorly understood, primarily because of the scarcity of suitable fluorescent ganglioside analogs. Here, we developed methods for systematically synthesizing analogs that behave like their native counterparts in regard to partitioning into raft-related membrane domains or preparations. Single-fluorescent-molecule imaging in the live-cell plasma membrane revealed the clear but transient colocalization and codiffusion of fluorescent ganglioside analogs with a fluorescently labeled glycosylphosphatidylinisotol (GPI)-anchored protein, human CD59, with lifetimes of 12 ms for CD59 monomers, 40 ms for CD59's transient homodimer rafts in quiescent cells, and 48 ms for engaged-CD59-cluster rafts, in cholesterol- and GPI-anchoring-dependent manners. The ganglioside molecules were always mobile in quiescent cells. These results show that gangliosides continually and dynamically exchange between raft domains and the bulk domain, indicating that raft domains are dynamic entities. PMID:27043189

  1. Localization and imaging of gangliosides in mouse brain tissue sections by laserspray ionization inlet.

    PubMed

    Richards, Alicia L; Lietz, Christopher B; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2012-07-01

    A new ionization method for the analysis of fragile gangliosides without undesired fragmentation or salt adduction is presented. In laserspray ionization inlet (LSII), the matrix/analyte sample is ablated at atmospheric pressure, and ionization takes place in the ion transfer capillary of the mass spectrometer inlet by a process that is independent of a laser wavelength or voltage. The softness of LSII allows the identification of gangliosides up to GQ1 with negligible sialic acid loss. This is of importance to the field of MS imaging, as undesired fragmentation has made it difficult to accurately map the spatial distribution of fragile ganglioside lipids in tissue. Proof-of-principle structural characterization of endogenous gangliosides using MS(n) fragmentation of multiply charged negative ions on a LTQ Velos and subsequent imaging of the GD1 ganglioside is demonstrated. This is the first report of multiply charged negative ions using inlet ionization. We find that GD1 is detected at higher levels in the mouse cortex and hippocampus compared with the thalamus. In LSII with the laser aligned in transmission geometry relative to the inlet, images were obtained in approximately 60 min using an inexpensive nitrogen laser. PMID:22262808

  2. Localization and imaging of gangliosides in mouse brain tissue sections by laserspray ionization inlet[S

    PubMed Central

    Richards, Alicia L.; Lietz, Christopher B.; Wager-Miller, James; Mackie, Ken; Trimpin, Sarah

    2012-01-01

    A new ionization method for the analysis of fragile gangliosides without undesired fragmentation or salt adduction is presented. In laserspray ionization inlet (LSII), the matrix/analyte sample is ablated at atmospheric pressure, and ionization takes place in the ion transfer capillary of the mass spectrometer inlet by a process that is independent of a laser wavelength or voltage. The softness of LSII allows the identification of gangliosides up to GQ1 with negligible sialic acid loss. This is of importance to the field of MS imaging, as undesired fragmentation has made it difficult to accurately map the spatial distribution of fragile ganglioside lipids in tissue. Proof-of-principle structural characterization of endogenous gangliosides using MSn fragmentation of multiply charged negative ions on a LTQ Velos and subsequent imaging of the GD1 ganglioside is demonstrated. This is the first report of multiply charged negative ions using inlet ionization. We find that GD1 is detected at higher levels in the mouse cortex and hippocampus compared with the thalamus. In LSII with the laser aligned in transmission geometry relative to the inlet, images were obtained in approximately 60 min using an inexpensive nitrogen laser. PMID:22262808

  3. Oligosaccharide-specific receptors for gangliosides in the central nervous system

    SciTech Connect

    Tiemeyer, M.J.

    1989-01-01

    Synthetic ganglioside-derivatized proteins were prepared, radiolabeled, and used as ligands to search for specific receptors on rat brain membranes. Chemical derivatization schemes were designed to covalently link gangliosides (specifically, G{sub T1b}) to bovine serum albumin (BSA) via their ceramide portions leaving the glycolipid oligosaccharides intact and limiting the ability of the ganglioside moiety to interact with brain membranes non-specifically by insertion or hydrophobic adsorption. Following characterization and tyrosine-radioiodination, {sup 125}I-(G{sub T1b}){sub 4} BSA (BSA derivatized with 4 G{sub T1b} moieties/protein molecule), revealed a high affinity and saturable binding site on rat brain membranes. Pretreatment of brain membranes with low concentrations of trypsin blocked binding, consistent with the presence of a proteinaceous ganglioside-receptor. The most potent lipid inhibitors of {sup 125}I-(G{sub T1b}){sub 4}BSA binding were the gangliosides G{sub T1b}, G{sub D1b}, and G{sub Q1b} which share common structural features in their oligosaccharide portions; maximal inhibitory potency required a full length gangliotetraose oligosaccharide core and {alpha}2-8 linked sialic acid.

  4. Evidence that small molecule enhancement of β-hexosaminidase activity corrects the behavioral phenotype in Dutch APP(E693Q) mice through reduction of ganglioside-bound Aβ.

    PubMed

    Knight, E M; Williams, H N; Stevens, A C; Kim, S H; Kottwitz, J C; Morant, A D; Steele, J W; Klein, W L; Yanagisawa, K; Boyd, R E; Lockhart, D J; Sjoberg, E R; Ehrlich, M E; Wustman, B A; Gandy, S

    2015-02-01

    Certain mutant Alzheimer's amyloid-β (Aβ) peptides (that is, Dutch mutant APP(E693Q)) form complexes with gangliosides (GAβ). These mutant Aβ peptides may also undergo accelerated aggregation and accumulation upon exposure to GM2 and GM3. We hypothesized that increasing β-hexosaminidase (β-hex) activity would lead to a reduction in GM2 levels, which in turn, would cause a reduction in Aβ aggregation and accumulation. The small molecule OT1001 is a β-hex-targeted pharmacological chaperone with good bioavailability, blood-brain barrier penetration, high selectivity for β-hex and low cytotoxicity. Dutch APP(E693Q) transgenic mice accumulate oligomeric Aβ as they age, as well as Aβ oligomer-dose-dependent anxiety and impaired novel object recognition (NOR). Treatment of Dutch APP(E693Q) mice with OT1001 caused a dose-dependent increase in brain β-hex levels up to threefold over those observed at baseline. OT1001 treatment was associated with reduced anxiety, improved learning behavior in the NOR task and dramatically reduced GAβ accumulation in the subiculum and perirhinal cortex, both of which are brain regions required for normal NOR. Pharmacological chaperones that increase β-hex activity may be useful in reducing accumulation of certain mutant species of Aβ and in preventing the associated behavioral pathology. PMID:25349165

  5. Nondestructive detection of gangliosides with lipophilic fluorochromes and their employment for preparative high-performance thin-layer chromatography.

    PubMed

    Müthing, J; Heitmann, D

    1993-01-01

    A simple and effective procedure for the isolation and purification of gangliosides by preparative thin-layer chromatography is described. The method is based on nondestructive visualization of gangliosides on silica gel-precoated thin-layer chromatography plates by staining with uncharged lipophilic fluorochromes. Fluorescent dyes were added in low concentrations into the mobile phase (0.002%, w/v) without any interference of the ganglioside separation. After uv localization, the fluorescent zones were scraped off the plate and the silica gel was extracted with chloroform/methanol/water (30/60/8). In the following step fluorochromes were removed from gangliosides containing crude extracts by anion-exchange chromatography on DEAE-Sepharose. After desalting, impurities were removed by Iatrobeads chromatography. The method described offers an easy to handle and successful preparative thin-layer chromatography strategy to obtain pure gangliosides in microgram and miligram quantities. PMID:8434781

  6. 5-Methoxysalicylic Acid Matrix for Ganglioside Analysis with Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Lee, Dongkun; Cha, Sangwon

    2015-03-01

    In this note, we report that high quality ganglioside profiles with minimal loss of sialic acid residues can be obtained in the positive ion mode by using a 5-methoxysalicylic acid (MSA) matrix for matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS). Our results showed that MSA produced much less sialic acid losses from gangliosides than DHB, although MSA and DHB are differ only by their functional groups at their 5-positions (-OH for DHB and -OCH3 for MSA). Furthermore, our data also demonstrated that addition of an alkali metal additive was effective for simplifying ganglioside profiles, but not necessary for stabilizing glycosidic bonds of gangliosides if MSA was used as a matrix. This suggests that MALDI MS with MSA has a potential to gain additional benefits from the positive-ion mode analyses without losing performance in ganglioside profiling.

  7. Cross-Linking Mast Cell Specific Gangliosides Stimulates the Release of Newly Formed Lipid Mediators and Newly Synthesized Cytokines.

    PubMed

    Filho, Edismauro Garcia Freitas; da Silva, Elaine Zayas Marcelino; Zanotto, Camila Ziliotto; Oliver, Constance; Jamur, Maria Célia

    2016-01-01

    Mast cells are immunoregulatory cells that participate in inflammatory processes. Cross-linking mast cell specific GD1b derived gangliosides by mAbAA4 results in partial activation of mast cells without the release of preformed mediators. The present study examines the release of newly formed and newly synthesized mediators following ganglioside cross-linking. Cross-linking the gangliosides with mAbAA4 released the newly formed lipid mediators, prostaglandins D2 and E2, without release of leukotrienes B4 and C4. The effect of cross-linking these gangliosides on the activation of enzymes in the arachidonate cascade was then investigated. Ganglioside cross-linking resulted in phosphorylation of cytosolic phospholipase A2 and increased expression of cyclooxygenase-2. Translocation of 5-lipoxygenase from the cytosol to the nucleus was not induced by ganglioside cross-linking. Cross-linking of GD1b derived gangliosides also resulted in the release of the newly synthesized mediators, interleukin-4, interleukin-6, and TNF-α. The effect of cross-linking the gangliosides on the MAP kinase pathway was then investigated. Cross-linking the gangliosides induced the phosphorylation of ERK1/2, JNK1/2, and p38 as well as activating both NFκB and NFAT in a Syk-dependent manner. Therefore, cross-linking the mast cell specific GD1b derived gangliosides results in the activation of signaling pathways that culminate with the release of newly formed and newly synthesized mediators. PMID:27578923

  8. Cross-Linking Mast Cell Specific Gangliosides Stimulates the Release of Newly Formed Lipid Mediators and Newly Synthesized Cytokines

    PubMed Central

    Zanotto, Camila Ziliotto

    2016-01-01

    Mast cells are immunoregulatory cells that participate in inflammatory processes. Cross-linking mast cell specific GD1b derived gangliosides by mAbAA4 results in partial activation of mast cells without the release of preformed mediators. The present study examines the release of newly formed and newly synthesized mediators following ganglioside cross-linking. Cross-linking the gangliosides with mAbAA4 released the newly formed lipid mediators, prostaglandins D2 and E2, without release of leukotrienes B4 and C4. The effect of cross-linking these gangliosides on the activation of enzymes in the arachidonate cascade was then investigated. Ganglioside cross-linking resulted in phosphorylation of cytosolic phospholipase A2 and increased expression of cyclooxygenase-2. Translocation of 5-lipoxygenase from the cytosol to the nucleus was not induced by ganglioside cross-linking. Cross-linking of GD1b derived gangliosides also resulted in the release of the newly synthesized mediators, interleukin-4, interleukin-6, and TNF-α. The effect of cross-linking the gangliosides on the MAP kinase pathway was then investigated. Cross-linking the gangliosides induced the phosphorylation of ERK1/2, JNK1/2, and p38 as well as activating both NFκB and NFAT in a Syk-dependent manner. Therefore, cross-linking the mast cell specific GD1b derived gangliosides results in the activation of signaling pathways that culminate with the release of newly formed and newly synthesized mediators. PMID:27578923

  9. Gangliosides do not affect ABC transporter function in human neuroblastoma cells.

    PubMed

    Dijkhuis, Anne-Jan; Klappe, Karin; Kamps, Willem; Sietsma, Hannie; Kok, Jan Willem

    2006-06-01

    Previous studies have indicated a role for glucosylceramide synthase (GCS) in multidrug resistance (MDR), either related to turnover of ceramide (Cer) or generation of gangliosides, which modulate apoptosis and/or the activity of ABC transporters. This study challenges the hypothesis that gangliosides modulate the activity of ABC transporters and was performed in two human neuroblastoma cell lines, expressing either functional P-glycoprotein (Pgp) or multidrug resistance-related protein 1 (MRP1). Two inhibitors of GCS, D,L-threo-1-phenyl-2-hexadecanoylamino-3-pyrrolidino-1-propanol (t-PPPP) and N-butyldeoxynojirimycin (NB-dNJ), very efficiently depleted ganglioside content in two human neuroblastoma cell lines. This was established by three different assays: equilibrium radiolabeling, cholera toxin binding, and mass analysis. Fluorescence-activated cell sorting (FACS) analysis showed that ganglioside depletion only slightly and in the opposite direction affected Pgp- and MRP1-mediated efflux activity. Moreover, both effects were marginal compared with those of well-established inhibitors of either MRP1 (i.e., MK571) or Pgp (i.e., GF120918). t-PPPP slightly enhanced cellular sensitivity to vincristine, as determined by 3-[4,5-dimethylthiazol-2-yl]2,5-diphenyl tetrazolium bromide analysis, in both neuroblastoma cell lines, whereas NB-dNJ was without effect. MRP1 expression and its localization in detergent-resistant membranes were not affected by ganglioside depletion. Together, these results show that gangliosides are not relevant to ABC transporter-mediated MDR in neuroblastoma cells. PMID:16547352

  10. Ganglioside GD2 in reception and transduction of cell death signal in tumor cells

    PubMed Central

    2014-01-01

    Background Ganglioside GD2 is expressed on plasma membranes of various types of malignant cells. One of the most promising approaches for cancer immunotherapy is the treatment with monoclonal antibodies recognizing tumor-associated markers such as ganglioside GD2. It is considered that major mechanisms of anticancer activity of anti-GD2 antibodies are complement-dependent cytotoxicity and/or antibody-mediated cellular cytotoxicity. At the same time, several studies suggested that anti-GD2 antibodies are capable of direct induction of cell death of number of tumor cell lines, but it has not been investigated in details. In this study we investigated the functional role of ganglioside GD2 in the induction of cell death of multiple tumor cell lines by using GD2-specific monoclonal antibodies. Methods Expression of GD2 on different tumor cell lines was analyzed by flow cytometry using anti-GD2 antibodies. By using HPTLC followed by densitometric analysis we measured the amount of ganglioside GD2 in total ganglioside fractions isolated from tumor cell lines. An MTT assay was performed to assess viability of GD2-positive and -negative tumor cell lines treated with anti-GD2 mAbs. Cross-reactivity of anti-GD2 mAbs with other gangliosides or other surface molecules was investigated by ELISA and flow cytometry. Inhibition of GD2 expression was achieved by using of inhibitor for ganglioside synthesis PDMP and/or siRNA for GM2/GD2 and GD3 synthases. Results Anti-GD2 mAbs effectively induced non-classical cell death that combined features of both apoptosis and necrosis in GD2-positive tumor cells and did not affect GD2-negative tumors. Anti-GD2 mAbs directly induced cell death, which included alteration of mitochondrial membrane potential, induction of apoptotic volume decrease and cell membrane permeability. This cytotoxic effect was mediated exclusively by specific binding of anti-GD2 antibodies with ganglioside GD2 but not with other molecules. Moreover, the level of GD2

  11. Determination of the absolute configuration of sialic acids in gangliosides from the sea cucumber Cucumaria echinata.

    PubMed

    Kisa, Fumiaki; Yamada, Koji; Miyamoto, Tomofumi; Inagaki, Masanori; Higuchi, Ryuichi

    2007-07-01

    Enantiomeric pairs of sialic acid, D- and L-NeuAc (N-acetylneuraminic acid), were converted to D- and L-arabinose, respectively, by chemical degradation. Using this method, the absolute configuration of the sialic acid residues, NeuAc and NeuGc (N-glycolylneuraminic acid), in the gangliosides from the sea cucumber Cucumaria echinata was determined to be the D-form. Although naturally occurring sialic acids have been believed to be the D-form on the basis of biosynthetic evidence, this is the first report of the determination of the absolute configuration of the sialic acid residues in gangliosides using chemical methods. PMID:17603199

  12. Dissecting the Role of Anti-ganglioside Antibodies in Guillain-Barré Syndrome: an Animal Model Approach.

    PubMed

    Asthana, Pallavi; Vong, Joaquim Si Long; Kumar, Gajendra; Chang, Raymond Chuen-Chung; Zhang, Gang; Sheikh, Kazim A; Ma, Chi Him Eddie

    2016-09-01

    Guillain-Barré syndrome (GBS) is an autoimmune polyneuropathy disease affecting the peripheral nervous system (PNS). Most of the GBS patients experienced neurological symptoms such as paresthesia, weakness, pain, and areflexia. There are also combinations of non-neurological symptoms which include upper respiratory tract infection and diarrhea. One of the major causes of GBS is due largely to the autoantibodies against gangliosides located on the peripheral nerves. Gangliosides are sialic acid-bearing glycosphingolipids consisting of a ceramide lipid anchor with one or more sialic acids attached to a neutral sugar backbone. Molecular mimicry between the outer components of oligosaccharide of gangliosides on nerve membrane and lipo-oligosaccharide of microbes is thought to trigger the autoimmunity. Intra-peritoneal implantation of monoclonal ganglioside antibodies secreting hybridoma into animals induced peripheral neuropathy. Recent studies demonstrated that injection of synthesized anti-ganglioside antibodies raised by hybridoma cells into mice initiates immune response against peripheral nerves, and eventually failure in peripheral nerve regeneration. Accumulating evidences indicate that the conjugation of anti-ganglioside monoclonal antibodies to activating FcγRIII present on the circulating macrophages inhibits axonal regeneration. The activation of RhoA signaling pathways is also involved in neurite outgrowth inhibition. However, the link between these two molecular events remains unresolved and requires further investigation. Development of anti-ganglioside antagonists can serve as targeted therapy for the treatment of GBS and will open a new approach of drug development with maximum efficacy and specificity. PMID:26374552

  13. Specific Synthesis of Neurostatin and Gangliosides O-Acetylated in the Outer Sialic Acids Using a Sialate Transferase

    PubMed Central

    Romero-Ramírez, Lorenzo; García-Álvarez, Isabel; Campos-Olivas, Ramón; Gilbert, Michel; Goneau, Marie-France; Fernández-Mayoralas, Alfonso; Nieto-Sampedro, Manuel

    2012-01-01

    Gangliosides are sialic acid containing glycosphingolipids, commonly found on the outer leaflet of the plasma membrane. O-acetylation of sialic acid hydroxyl groups is one of the most common modifications in gangliosides. Studies on the biological activity of O-acetylated gangliosides have been limited by their scarcity in nature. This comparatively small change in ganglioside structure causes major changes in their physiological properties. When the ganglioside GD1b was O-acetylated in the outer sialic acid, it became the potent inhibitor of astroblast and astrocytoma proliferation called Neurostatin. Although various chemical and enzymatic methods to O-acetylate commercial gangliosides have been described, O-acetylation was nonspecific and produced many side-products that reduced the yield. An enzyme with O-acetyltransferase activity (SOAT) has been previously cloned from the bacteria Campylobacter jejuni. This enzyme catalyzed the acetylation of oligosaccharide-bound sialic acid, with high specificity for terminal alpha-2,8-linked residues. Using this enzyme and commercial gangliosides as starting material, we have specifically O-acetylated the gangliosides’ outer sialic acids, to produce the corresponding gangliosides specifically O-acetylated in the sialic acid bound in alpha-2,3 and alpha-2,8 residues. We demonstrate here that O-acetylation occurred specifically in the C-9 position of the sialic acid. In summary, we present a new method of specific O-acetylation of ganglioside sialic acids that permits the large scale preparation of these modified glycosphingolipids, facilitating both, the study of their mechanism of antitumoral action and their use as therapeutic drugs for treating glioblastoma multiform (GBM) patients. PMID:23226505

  14. Fluorescently-tagged anti-ganglioside antibody selectively identifies peripheral nerve in living animals

    PubMed Central

    Massaad, Cynthia A.; Zhang, Gang; Pillai, Laila; Azhdarinia, Ali; Liu, Weiqiang; Sheikh, Kazim A.

    2015-01-01

    Selective in vivo delivery of cargo to peripheral nervous system (PNS) has broad clinical and preclinical applications. An important applicability of this approach is systemic delivery of fluorescently conjugated ligands that selectively label PNS, which could allow visualization of peripheral nerves during any surgery. We examine the use of an anti-ganglioside monoclonal antibody (mAb) as selective neuronal delivery vector for surgical imaging of peripheral nerves. Systemic delivery of an anti-ganglioside mAb was used for selective intraneuronal/axonal delivery of fluorescent agents to visualize nerves by surgical imaging in living mice. In this study, we show that intact motor, sensory, and autonomic nerve fibers/paths are distinctly labeled following a single nanomolar systemic injection of fluorescently labeled anti-ganglioside mAb. Tissue biodistribution studies with radiolabeled mAb were used to validate neuronal uptake of fluorescently labeled mAb. Implications of this proof of concept study are that fluorescent conjugates of anti-ganglioside mAbs are valuable delivery vectors to visualize nerves during surgery to avoid nerve injury and monitor nerve degeneration and regeneration after injury. These findings support that antibodies, and their derivatives/fragments, can be used as selective neuronal delivery vector for transport of various cargos to PNS in preclinical and clinical settings. PMID:26514366

  15. Beyond gangliosides: Multiple forms of glycan mimicry exhibited by Campylobacter jejuni in its lipooligosaccharide (LOS)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Campylobacter jejuni is well known for synthesizing ganglioside mimics within the glycan component of its lipooligosaccharide (LOS), which have been implicated in triggering Guillain-Barré syndrome (GBS). We now confirm that this pathogen is capable of synthesizing a much broader spectrum of host g...

  16. GM1 Ganglioside is Involved in Epigenetic Activation Loci of Neuronal Cells.

    PubMed

    Tsai, Yi-Tzang; Itokazu, Yutaka; Yu, Robert K

    2016-02-01

    Gangliosides are sialic acid-containing glycosphingolipids that are most abundant in the nerve tissues. The quantity and expression pattern of gangliosides in brain change drastically throughout development and are mainly regulated through stage-specific expression of glycosyltransferase (ganglioside synthase) genes. We previously demonstrated that acetylation of histones H3 and H4 on the N-acetylgalactosaminyltransferase I (GalNAcT, GA2/GM2/GD2/GT2-synthase) gene promoter resulted in recruitment of trans-activation factors. In addition, we reported that epigenetic activation of the GalNAcT gene was also detected as accompanied by an apparent induction of neuronal differentiation in neural stem cells responding to an exogenous supplement of ganglioside GM1. Here, we present evidence supporting the concept that nuclear GM1 is associated with gene regulation in neuronal cells. We found that nuclear GM1 binds acetylated histones on the promoters of the GalNAcT and NeuroD1 genes in differentiated neurons. Our study demonstrates for the first time that GM1 interacts with chromatin via acetylated histones at the nuclear periphery of neuronal cells. PMID:26498762

  17. Ganglioside-Dependent Neural Stem Cell Proliferation in Alzheimer's Disease Model Mice.

    PubMed

    Koon, Noah A; Itokazu, Yutaka; Yu, Robert K

    2015-01-01

    The aggregation and formation of amyloid plaques by amyloid β-peptides (Aβs) is believed to be one of the pathological hallmarks of Alzheimer's disease (AD). Intriguingly, Aβs have also been shown to possess proliferative effects on neural stem cells (NSCs). Many essential cellular processes in NSCs, such as fate determination and proliferation, are heavily influenced by cell surface glycoconjugates, including gangliosides. It has recently been shown that Aβ1-42 alters several key glycosyltransferases and glycosidases. To further define the effects of Aβs and to clarify the potential mechanisms of action of those peptides on NSCs, NSCs were cultured from embryonic brains of the double-transgenic mouse model of AD [B6C3-Tg(APPswe,PSEN1dE9)85Dbo/J] coexpressing mutants of amyloid precursor protein (APPswe) and presenilin1 (PSEN1dE9). We found that Aβs not only promoted cell proliferation but also altered expression of several key glycogenes for glycoconjugate metabolism, such as sialyltransferases II and III (ST-II & -III) in AD NSCs. In addition, we found upregulation of epidermal growth factor receptor and Notch1 intracellular domain. Moreover, the increased expression of ST-II and -III coincided with the elevated levels of c-series gangliosides (A2B5+ antigens) in AD NSCs. Further, we revealed that epidermal growth factor signaling and gangliosides are necessary components on Aβ-stimulated NSC proliferation. Our present study has thus provided a novel mechanism for the upregulation of c-series ganglioside expression and increases in several NSC markers to account for the proliferative effect of Aβs on NSCs in AD mouse brain. These observations support the potential beneficial effects of Aβs and gangliosides in promoting neurogenesis in AD brain. PMID:26699276

  18. Ethylenedioxy-PIP2 oxalate reduces ganglioside storage in juvenile Sandhoff disease mice.

    PubMed

    Arthur, Julian R; Wilson, Michael W; Larsen, Scott D; Rockwell, Hannah E; Shayman, James A; Seyfried, Thomas N

    2013-04-01

    Sandhoff disease is an incurable neurodegenerative disorder caused by mutations in the lysosomal hydrolase β-hexosaminidase. Deficiency in this enzyme leads to excessive accumulation of ganglioside GM2 and its asialo derivative, GA2, in brain and visceral tissues. Small molecule inhibitors of ceramide-specific glucosyltransferase, the first committed step in ganglioside biosynthesis, reduce storage of GM2 and GA2. Limited brain access or adverse effects have hampered the therapeutic efficacy of the clinically approved substrate reduction molecules, eliglustat tartrate and the imino sugar NB-DNJ (Miglustat). The novel eliglustat tartrate analog, 2-(2,3-dihydro-1H-inden-2-yl)-N-((1R,2R)-1-(2,3-dihydrobenzo[b][1, 4]dioxin-6-yl)-1-hydroxy-3-(pyrrolidin-1-yl)propan-2-yl)acetamide (EtDO-PIP2, CCG-203586 or "3h"), was recently reported to reduce glucosylceramide in murine brain. Here we assessed the therapeutic efficacy of 3h in juvenile Sandhoff (Hexb-/-) mice. Sandhoff mice received intraperitoneal injections of phosphate buffered saline (PBS) or 3h (60 mg/kg/day) from postnatal day 9 (p-9) to postnatal day 15 (p-15). Brain weight and brain water content was similar in 3h and PBS-treated mice. 3h significantly reduced total ganglioside sialic acid, GM2, and GA2 content in cerebrum, cerebellum and liver of Sandhoff mice. Data from the liver showed that 3h reduced the key upstream ganglioside precursor (glucosylceramide), providing evidence for an on target mechanism of action. No significant differences were seen in the distribution of cholesterol or of neutral and acidic phospholipids. These data suggest that 3h can be an effective alternative to existing substrate reduction molecules for ganglioside storage diseases. PMID:23417430

  19. Roles of gangliosides in mouse embryogenesis and embryonic stem cell differentiation

    PubMed Central

    Kwak, Dong Hoon; Seo, Byoung Boo; Chang, Kyu Tae

    2011-01-01

    Gangliosides have been suggested to play important roles in various functions such as adhesion, cell differentiation, growth control, and signaling. Mouse follicular development, ovulation, and luteinization during the estrous cycle are regulated by several hormones and cell-cell interactions. In addition, spermatogenesis in seminiferous tubules of adult testes is also regulated by several hormones, including follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and cell-cell interactions. The regulation of these processes by hormones and cell-cell interactions provides evidence for the importance of surface membrane components, including gangliosides. During preimplantation embryo development, a mammalian embryo undergoes a series of cleavage divisions whereby a zygote is converted into a blastocyst that is sufficiently competent to be implanted in the maternal uterus and continue its development. Mouse embryonic stem (mES) cells are pluripotent cells derived from mouse embryo, specifically, from the inner cell mass of blastocysts. Differentiated neuronal cells are derived from mES cells through the formation of embryonic bodies (EBs). EBs recapitulate many aspects of lineage-specific differentiation and temporal and spatial gene expression patterns during early embryogenesis. Previous studies on ganglioside expression during mouse embryonic development (including during in vitro fertilization, ovulation, spermatogenesis, and embryogenesis) reported that gangliosides were expressed in both undifferentiated and differentiated (or differentiating) mES cells. In this review, we summarize some of the advances in our understanding of the functional roles of gangliosides during the stages of mouse embryonic development, including ovulation, spermatogenesis, and embryogenesis, focusing on undifferentiated and differentiated mES cells (neuronal cells). PMID:21654188

  20. Early Supplementation of Phospholipids and Gangliosides Affects Brain and Cognitive Development in Neonatal Piglets123

    PubMed Central

    Liu, Hongnan; Radlowski, Emily C; Conrad, Matthew S; Li, Yao; Dilger, Ryan N; Johnson, Rodney W

    2014-01-01

    Background: Because human breast milk is a rich source of phospholipids and gangliosides and breastfed infants have improved learning compared with formula-fed infants, the importance of dietary phospholipids and gangliosides for brain development is of interest. Objective: We sought to determine the effects of phospholipids and gangliosides on brain and cognitive development. Methods: Male and female piglets from multiple litters were artificially reared and fed formula containing 0% (control), 0.8%, or 2.5% Lacprodan PL-20 (PL-20; Arla Foods Ingredients), a phospholipid/ganglioside supplement, from postnatal day (PD) 2 to PD28. Beginning on PD14, performance in a spatial T-maze task was assessed. At PD28, brain MRI data were acquired and piglets were killed to obtain hippocampal tissue for metabolic profiling. Results: Diet affected maze performance, with piglets that were fed 0.8% and 2.5% PL-20 making fewer errors than control piglets (80% vs. 75% correct on average; P < 0.05) and taking less time to make a choice (3 vs. 5 s/trial; P < 0.01). Mean brain weight was 5% higher for piglets fed 0.8% and 2.5% PL-20 (P < 0.05) than control piglets, and voxel-based morphometry revealed multiple brain areas with greater volumes and more gray and white matter in piglets fed 0.8% and 2.5% PL-20 than in control piglets. Metabolic profiling of hippocampal tissue revealed that multiple phosphatidylcholine-related metabolites were altered by diet. Conclusion: In summary, dietary phospholipids and gangliosides improved spatial learning and affected brain growth and composition in neonatal piglets. PMID:25411030

  1. Constituents of Holothuroidea, 17. Isolation and structure of biologically active monosialo-gangliosides from the sea cucumber Cucumaria echinata.

    PubMed

    Kisa, Fumiaki; Yamada, Koji; Miyamoto, Tomofumi; Inagaki, Masanori; Higuchi, Ryuichi

    2006-07-01

    Three new monosialo-gangliosides, CEG-3 (3), CEG-4 (4), and CEG-5 (5), were obtained, together with two known gangliosides, SJG-1 (1) and CG-1 (2), from the lipid fraction of the chloroform/methanol extract of the sea cucumber Cucumaria echinata. The structures of the new gangliosides were determined on the basis of chemical and spectroscopic evidence to be 1-O-[4-O-acetyl-alpha-L-fucopyranosyl-(1-->11)-(N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (3) and 1-O-[alpha-L-fucopyranosyl-(1-->11)-(N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (4, 5). The ceramide moieties of each compound were composed of heterogeneous sphingosine or phytosphingosine bases, and 2-hydroxy or nonhydroxylated fatty acid units. These gangliosides showed neuritogenic activity toward the rat pheochromocytoma cell line PC-12 in the presence of nerve growth factor. PMID:16819216

  2. Effects of Ganglioside on Working Memory and the Default Mode Network in Individuals with Subjective Cognitive Impairment: A Randomized Controlled Trial.

    PubMed

    Jeon, Yujin; Kim, Binna; Kim, Jieun E; Kim, Bori R; Ban, Soonhyun; Jeong, Jee Hyang; Kwon, Oran; Rhie, Sandy Jeong; Ahn, Chang-Won; Kim, Jong-Hoon; Jung, Sung Ug; Park, Soo-Hyun; Lyoo, In Kyoon; Yoon, Sujung

    2016-01-01

    This randomized, double-blind, placebo-controlled trial examined whether the administration of ganglioside, an active ingredient of deer bone extract, can improve working memory performance by increasing gray matter volume and functional connectivity in the default mode network (DMN) in individuals with subjective cognitive impairment. Seventy-five individuals with subjective cognitive impairment were chosen to receive either ganglioside (330[Formula: see text][Formula: see text]g/day or 660[Formula: see text][Formula: see text]g/day) or a placebo for 8 weeks. Changes in working memory performance with treatment of either ganglioside or placebo were assessed as cognitive outcome measures. Using voxel-based morphometry and functional connectivity analyses, changes in gray matter volume and functional connectivity in the DMN were also assessed as brain outcome measures. Improvement in working memory performance was greater in the ganglioside group than in the placebo group. The ganglioside group, relative to the placebo group, showed greater increases in gray matter volume and functional connectivity in the DMN. A significant relationship between increased functional connectivity of the precuneus and improved working memory performance was observed in the ganglioside group. The current findings suggest that ganglioside has cognitive-enhancing effects in individuals with subjective cognitive impairment. Ganglioside-induced increases in gray matter volume and functional connectivity in the DMN may partly be responsible for the potential nootropic effects of ganglioside. The clinical trial was registered with ClinicalTrials.gov (identifier: NCT02379481). PMID:27109158

  3. The Total Synthesis of Starfish Ganglioside GP3 Bearing a Unique Sialyl Glycan Architecture.

    PubMed

    Goto, Kenta; Sawa, Maki; Tamai, Hideki; Imamura, Akihiro; Ando, Hiromune; Ishida, Hideharu; Kiso, Makoto

    2016-06-01

    The total synthesis of ganglioside GP3, which is found in the starfish Asterina pectinifera, has been accomplished through stereoselective and effective glycosylation reactions. The sialic acid embedded octasaccharide moiety of the target compound was constructed by [4+4] convergent coupling. A tetrasaccharyl donor and acceptor that contained internal sialic acid residues were synthesized with an orthogonally protected N-Troc sialic acid donor as the key common synthetic unit, and they underwent highly stereoselective glycosidation. The resulting sialosides were subsequently transformed into reactive glycosyl acceptors. [4+4] coupling furnished the octasaccharide framework in 91 % yield as a single stereoisomer. Final conjugation of the octasaccharyl donor and glucosyl ceramide acceptor produced the protected target compound in high yield, which underwent global deprotection to successfully deliver ganglioside GP3. PMID:27172064

  4. Anti-amyloidogenic effects of glycosphingolipid synthesis inhibitors occur independently of ganglioside alterations.

    PubMed

    Noel, Anastasia; Ingrand, Sabrina; Barrier, Laurence

    2016-09-01

    Evidence has suggested that ganglioside abnormalities may be linked to the proteolytic processing of amyloid precursor protein (APP) in Alzheimer's disease (AD) and that pharmacological inhibition of ganglioside synthesis may reduce amyloid β-peptide (Aβ) production. In this study, we assessed the usefulness of two well-established glycosphingolipid (GSL) synthesis inhibitors, the synthetic ceramide analog D-PDMP (1-phenyl 2-decanoylamino-3-morpholino-1-propanol) and the iminosugar N-butyldeoxynojirimycin (NB-DNJ or miglustat), as anti-amyloidogenic drugs in a human cellular model of AD. We found that both GSL inhibitors were able to markedly inhibit Aβ production, although affecting differently the APP cleavage. Surprisingly, the L-enantiomer of PDMP, which promotes ganglioside accumulation, acted similarly to D-PDMP to inhibit Aβ production. Concurrently, both D- and L-PDMP strongly and equally reduced the levels of long-chain ceramides. Altogether, our data suggested that the anti-amyloidogenic effects of PDMP agents are independent of the altered cellular ganglioside composition, but may result, at least in part, from their ability to reduce ceramide levels. Moreover, our current study established for the first time that NB-DNJ, a drug already used as a therapeutic for Gaucher disease (a lysosomal storage disorder), was also able to reduce Aβ production in our cellular model. Therefore, our study provides novel information regarding the possibilities to target amyloidogenic processing of APP through modulation of sphingolipid metabolism and emphasizes the potential of the iminosugar NB-DNJ as a disease modifying therapy for AD. PMID:27373967

  5. Imbalance in Fatty-Acid-Chain Length of Gangliosides Triggers Alzheimer Amyloid Deposition in the Precuneus

    PubMed Central

    Oikawa, Naoto; Matsubara, Teruhiko; Fukuda, Ryoto; Yasumori, Hanaki; Hatsuta, Hiroyuki; Murayama, Shigeo; Sato, Toshinori; Suzuki, Akemi; Yanagisawa, Katsuhiko

    2015-01-01

    Amyloid deposition, a crucial event of Alzheimer’s disease (AD), emerges in distinct brain regions. A key question is what triggers the assembly of the monomeric amyloid ß-protein (Aß) into fibrils in the regions. On the basis of our previous findings that gangliosides facilitate the initiation of Aß assembly at presynaptic neuritic terminals, we investigated how lipids, including gangliosides, cholesterol and sphingomyelin, extracted from synaptic plasma membranes (SPMs) isolated from autopsy brains were involved in the Aß assembly. We focused on two regions of the cerebral cortex; precuneus and calcarine cortex, one of the most vulnerable and one of the most resistant regions to amyloid deposition, respectively. Here, we show that lipids extracted from SPMs isolated from the amyloid-bearing precuneus, but neither the amyloid-free precuneus nor the calcarine cortex, markedly accelerate the Aß assembly in vitro. Through liquid chromatography-mass spectrometry of the lipids, we identified an increase in the ratio of the level of GD1b-ganglioside containing C20:0 fatty acid to that containing C18:0 as a cause of the enhanced Aß assembly in the precuneus. Our results suggest that the local glycolipid environment play a critical role in the initiation of Alzheimer amyloid deposition. PMID:25798597

  6. N-butyldeoxygalactonojirimycin reduces brain ganglioside and GM2 content in neonatal Sandhoff disease mice.

    PubMed

    Baek, Rena C; Kasperzyk, Julie L; Platt, Frances M; Seyfried, Thomas N

    2008-05-01

    Sandhoff disease involves the CNS accumulation of ganglioside GM2 and asialo-GM2 (GA2) due to inherited defects in the beta-subunit gene of beta-hexosaminidase A and B (Hexb gene). Accumulation of these glycosphingolipids (GSLs) produces progressive neurodegeneration, ultimately leading to death. Substrate reduction therapy (SRT) aims to decrease the rate of glycosphingolipid (GSL) biosynthesis to compensate for the impaired rate of catabolism. The imino sugar, N-butyldeoxygalactonojirimycin (NB-DGJ) inhibits the first committed step in GSL biosynthesis. NB-DGJ treatment, administered from postnatal day 2 (p-2) to p-5 (600 mg/kg/day)), significantly reduced total brain ganglioside and GM2 content in the Sandhoff disease (Hexb(-/-)) mice, but did not reduce the content of GA2. We also found that NB-DGJ treatment caused a slight, but significant elevation in brain sialidase activity. The drug had no adverse effects on viability, body weight, brain weight, or brain water content in the mice. No significant alterations in neutral lipids or acidic phospholipids were observed in the NB-DGJ-treated Hexb(-/-) mice. Our results show that NB-DGJ is effective in reducing total brain ganglioside and GM2 content at early neonatal ages. PMID:18207611

  7. Isolation of two glycolipid transfer proteins from bovine brain: reactivity toward gangliosides and neutral glycosphingolipids.

    PubMed

    Gammon, C M; Vaswani, K K; Ledeen, R W

    1987-09-22

    Two glycolipid transfer proteins that catalyze the transfer of gangliosides and neutral glycosphingolipids from phosphatidylcholine vesicles to erythrocyte ghosts have been isolated from calf brain. Purification procedures included differential centrifugation, precipitation at pH 5.1, ammonium sulfate precipitation, and gel filtration on Sephadex G-50 and G-75. The final stage employed fast protein liquid chromatography (Mono S), producing two peaks of activity. Apparent purity of the major peak (TP I) was approximately 85-90%, as judged by sodium dodecyl sulfate/urea-polyacrylamide gel electrophoresis. That of the minor fraction (TP II) was less. The major band of both fractions had a molecular mass of approximately 20,000 daltons. Both proteins catalyzed the transfer of ganglioside GM1 as well as asialo-GM1, but transfer protein I was more effective with di- and trisialogangliosides. Transfer protein II appeared to be somewhat more specific for neutral glycolipids in that GA1 was transferred more rapidly than any of the gangliosides; however, lactosylceramide transfer was relatively slow. Neither protein catalyzed transfer of phosphatidylcholine. PMID:3689771

  8. Degradation of gangliosides by the lysosomal sialidase requires an activator protein.

    PubMed

    Fingerhut, R; van der Horst, G T; Verheijen, F W; Conzelmann, E

    1992-09-15

    Lysosomal sialidase, which was formerly believed to degrade only water-soluble substrates but not glycolipids, cleaves ganglioside substrates II3NeuNAc-LacCer, IV3NeuNAc, II3NeuNAc-GgOse4Cer, IV3 NeuNAc, II3(NeuNAc)2-GgOse4Cer when these are dispersed either with an appropriate detergent (taurodeoxycholate) or with the sulfatide activator protein, a physiologic lipid solubilizer required for the lysosomal hydrolysis of other glycolipids by water-soluble hydrolases. In the presence of the activator protein, time and protein dependence were linear within wide limits, while the detergent rapidly inactivated the enzyme. The disialo group of the b-series gangliosides was only poorly attacked by the enzyme when the lipids were dispersed with the activator protein, whereas in the presence of the detergent, they were hydrolyzed as fast as terminal sialic acid residues. With the appropriate assay method, significant ganglioside sialidase activity could be demonstrated in the secondary lysosome fraction of normal skin fibroblasts but not of sialidosis fibroblasts. Our results support the notion that there is only one lysosomal sialidase, which degrades both the water-soluble and the membrane-bound sialyl glycoconjugates. PMID:1396669

  9. Broad neutralization of calcium-permeable amyloid pore channels with a chimeric Alzheimer/Parkinson peptide targeting brain gangliosides.

    PubMed

    Di Scala, Coralie; Yahi, Nouara; Flores, Alessandra; Boutemeur, Sonia; Kourdougli, Nazim; Chahinian, Henri; Fantini, Jacques

    2016-02-01

    Growing evidence supports a role for brain gangliosides in the pathogenesis of neurodegenerative diseases including Alzheimer's and Parkinson's. Recently we deciphered the ganglioside-recognition code controlling specific ganglioside binding to Alzheimer's β-amyloid (Aβ1-42) peptide and Parkinson's disease-associated protein α-synuclein. Cracking this code allowed us to engineer a short chimeric Aβ/α-synuclein peptide that recognizes all brain gangliosides. Here we show that ganglioside-deprived neural cells do no longer sustain the formation of zinc-sensitive amyloid pore channels induced by either Aβ1-42 or α-synuclein, as assessed by single-cell Ca(2+) fluorescence microscopy. Thus, amyloid channel formation, now considered a key step in neurodegeneration, is a ganglioside-dependent process. Nanomolar concentrations of chimeric peptide competitively inhibited amyloid pore formation induced by Aβ1-42 or α-synuclein in cultured neural cells. Moreover, this peptide abrogated the intracellular calcium increases induced by Parkinson's-associated mutant forms of α-synuclein (A30P, E46K and A53T). The chimeric peptide also prevented the deleterious effects of Aβ1-42 on synaptic vesicle trafficking and decreased the Aβ1-42-induced impairment of spontaneous activity in rat hippocampal slices. Taken together, these data show that the chimeric peptide has broad anti-amyloid pore activity, suggesting that a common therapeutic strategy based on the prevention of amyloid-ganglioside interactions is a reachable goal for both Alzheimer's and Parkinson's diseases. PMID:26655601

  10. Enhanced capabilities for imaging gangliosides in murine brain with matrix-assisted laser desorption/ionization and desorption electrospray ionization mass spectrometry coupled to ion mobility separation.

    PubMed

    Škrášková, Karolina; Claude, Emmanuelle; Jones, Emrys A; Towers, Mark; Ellis, Shane R; Heeren, Ron M A

    2016-07-15

    The increased interest in lipidomics calls for improved yet simplified methods of lipid analysis. Over the past two decades, mass spectrometry imaging (MSI) has been established as a powerful technique for the analysis of molecular distribution of a variety of compounds across tissue surfaces. Matrix-assisted laser desorption/ionization (MALDI) MSI is widely used to study the spatial distribution of common lipids. However, a thorough sample preparation and necessity of vacuum for efficient ionization might hamper its use for high-throughput lipid analysis. Desorption electrospray ionization (DESI) is a relatively young MS technique. In DESI, ionization of molecules occurs under ambient conditions, which alleviates sample preparation. Moreover, DESI does not require the application of an external matrix, making the detection of low mass species more feasible due to the lack of chemical matrix background. However, irrespective of the ionization method, the final information obtained during an MSI experiment is very complex and its analysis becomes challenging. It was shown that coupling MSI to ion mobility separation (IMS) simplifies imaging data interpretation. Here we employed DESI and MALDI MSI for a lipidomic analysis of the murine brain using the same IMS-enabled instrument. We report for the first time on the DESI IMS-MSI of multiply sialylated ganglioside species, as well as their acetylated versions, which we detected directly from the murine brain tissue. We show that poly-sialylated gangliosides can be imaged as multiply charged ions using DESI, while they are clearly separated from the rest of the lipid classes based on their charge state using ion mobility. This represents a major improvement in MSI of intact fragile lipid species. We additionally show that complementary lipid information is reached under particular conditions when DESI is compared to MALDI MSI. PMID:26922843

  11. Radiometric assay for ganglioside sialidase applied to the determination of the enzyme subcellular location in culture human fibroblasts

    SciTech Connect

    Chigorno, V.; Cardace, G.; Pitto, M.; Sonnino, S.; Ghidoni, R.; Tettamanti, G.

    1986-03-01

    A radiometric method for the assay of ganglioside sialidase in cultured human fibroblasts was set up. As substrate, highly radioactive (1.28 Ci/mmol) ganglioside GD/sub 1a/ isotopically tritium-labeled at carbon C-3 of the long chain base was employed; the liberated, and TLC separated (/sup 3/H)GM/sub 1/ was determined by computer-assisted radiochromatoscanning. Under experimental conditions that provided a low and quite acceptable (4-5%) coefficient of variation, the detection limit of the method was 0.1 nmol of liberated GM/sub 1/, using as low as 10 ..mu..g of fibroblast homogenate as protein. The detection limit could be lowered to 0.02-0.03 nmol, adopting conditions that, however, carried a higher analytical error (coefficient of variation over 10%). The content of ganglioside sialidase in human fibroblasts cultured in 75-cm/sup 2/ plastic flasks was 5.8 -/+ 2.5 (SD) nmol liberated GM/sub 1/ h/sup -1/ mg protein/sup -1/. Subfractionation studies performed on fibroblast homogenate showed that the ganglioside sialidase was mainly associated with the light membrane subfraction that was rich in plasma and intracellular membranes. This subfraction displayed almost no sialidase activity on the artificial substrate 4-methylumbelliferyl-D-N-acetylneuraminic acid. A small but measurable ganglioside sialidase activity was also present in the lysosome-enriched subfraction, which contained a very high sialidase activity on the above artificial substrate.

  12. Gangliosides are functional nerve cell ligands for myelin-associated glycoprotein (MAG), an inhibitor of nerve regeneration

    PubMed Central

    Vyas, Alka A.; Patel, Himatkumar V.; Fromholt, Susan E.; Heffer-Lauc, Marija; Vyas, Kavita A.; Dang, Jiyoung; Schachner, Melitta; Schnaar, Ronald L.

    2002-01-01

    Myelin-associated glycoprotein (MAG) binds to the nerve cell surface and inhibits nerve regeneration. The nerve cell surface ligand(s) for MAG are not established, although sialic acid-bearing glycans have been implicated. We identify the nerve cell surface gangliosides GD1a and GT1b as specific functional ligands for MAG-mediated inhibition of neurite outgrowth from primary rat cerebellar granule neurons. MAG-mediated neurite outgrowth inhibition is attenuated by (i) neuraminidase treatment of the neurons; (ii) blocking neuronal ganglioside biosynthesis; (iii) genetically modifying the terminal structures of nerve cell surface gangliosides; and (iv) adding highly specific IgG-class antiganglioside mAbs. Furthermore, neurite outgrowth inhibition is mimicked by highly multivalent clustering of GD1a or GT1b by using precomplexed antiganglioside Abs. These data implicate the nerve cell surface gangliosides GD1a and GT1b as functional MAG ligands and suggest that the first step in MAG inhibition is multivalent ganglioside clustering. PMID:12060784

  13. Cyclostomes Lack Clustered Protocadherins.

    PubMed

    Ravi, Vydianathan; Yu, Wei-Ping; Pillai, Nisha E; Lian, Michelle M; Tay, Boon-Hui; Tohari, Sumanty; Brenner, Sydney; Venkatesh, Byrappa

    2016-02-01

    The brain, comprising billions of neurons and intricate neural networks, is arguably the most complex organ in vertebrates. The diversity of individual neurons is fundamental to the neuronal network complexity and the overall function of the vertebrate brain. In jawed vertebrates, clustered protocadherins provide the molecular basis for this neuronal diversity, through stochastic and combinatorial expression of their various isoforms in individual neurons. Based on analyses of transcriptomes from the Japanese lamprey brain and sea lamprey embryos, genome assemblies of the two lampreys, and brain expressed sequence tags of the inshore hagfish, we show that extant jawless vertebrates (cyclostomes) lack the clustered protocadherins. Our findings indicate that the clustered protocadherins originated from a nonclustered protocadherin in the jawed vertebrate ancestor, after the two rounds of whole-genome duplication. In the absence of clustered protocadherins, cyclostomes might have evolved novel molecules or mechanisms for generating neuronal diversity which remains to be discovered. PMID:26545918

  14. VAN method lacks validity

    NASA Astrophysics Data System (ADS)

    Jackson, David D.; Kagan, Yan Y.

    Varotsos and colleagues (the VAN group) claim to have successfully predicted many earthquakes in Greece. Several authors have refuted these claims, as reported in the May 27,1996, special issue of Geophysical Research Letters and a recent book, A Critical Review of VAN [Lighthill 1996]. Nevertheless, the myth persists. Here we summarize why the VAN group's claims lack validity.The VAN group observes electrical potential differences that they call “seismic electric signals” (SES) weeks before and hundreds of kilometers away from some earthquakes, claiming that SES are somehow premonitory. This would require that increases in stress or decreases in strength cause the electrical variations, or that some regional process first causes the electrical signals and then helps trigger the earthquakes. Here we adopt their notation SES to refer to the electrical variations, without accepting any link to the quakes.

  15. Constituents of ophiuroidea. 1. Isolation and structure of three ganglioside molecular species from the brittle star Ophiocoma scolopendrina.

    PubMed

    Inagaki, M; Shibai, M; Isobe, R; Higuchi, R

    2001-12-01

    Three ganglioside molecular species, OSG-0 (1), OSG-1 (2), and OSG-2 (3) have been obtained from the polar lipid fraction of the chloroform/methanol extract of the brittle star Ophiocoma scolopendrina. The structures of these gangliosides have been determined on the basis of chemical and spectroscopic evidence as 1-O-[(N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (1), 1-O-[8-O-sulfo-(N-acetyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyll-ceramide (2) and 1-O-[(N-glycolyl-alpha-D-neuraminosyl)-(2-->8)-(N-acetyl- and N-glycolyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (3). The ceramide moieties were composed of heterogeneous unsubstituted fatty acid, 2-hydroxy fatty acid and phytosphingosine units. Compounds 2 and 3 represent new ganglioside molecular species. PMID:11767069

  16. Ganglioside GD1a promotes oocyte maturation, furthers preimplantation development, and increases blastocyst quality in pigs.

    PubMed

    Kim, Jin-Woo; Park, Hyo-Jin; Chae, Sung-Kyu; Ahn, Jae-Hyun; DO, Geon-Yeop; Choo, Young-Kug; Park, Joung Jun; Jung, Bae Dong; Kim, Sun-Uk; Chang, Kyu-Tae; Koo, Deog-Bon

    2016-06-17

    Gangliosides are key lipid molecules required for the regulation of cellular processes such as proliferation, differentiation, and cell signaling, including signaling of epidermal growth factor receptor (EGFR). Epidermal growth factor (EGF) has long been considered a potential regulator of meiotic and cytoplasmic maturation in mammalian oocytes. However, there is no report on the direct effect of ganglioside GD1a in porcine oocyte maturation. In this study, we first investigated a functional link between GD1a and meiotic maturation during in vitro maturation (IVM) of porcine embryos. Moreover, we confirmed the effect of exogenous GD1a treatment on blastocyst development, quality, and fertilization rate in early embryonic development. First, we observed that the protein level of ST3GAL2, a GD1a synthesizing enzyme, significantly increased (P < 0.01) in cumulus-oocyte-complexes (COCs) during IVM progress. The proportion of arrested germinal vesicles (GV) increased in oocytes treated with EGF+GD1a (41.6 ± 1.5%) at the IVM I stage. Upon completion of meiotic maturation, the proportion of metaphase II (M II) was significantly higher (P < 0.05) in the EGF+GD1a (89.9 ± 3.6%) treated group. After IVF, the percentage of penetrated oocytes was significantly higher (P < 0.05) in the EGF+GD1a (89.1 ± 2.3%) treated group than in the control group. Furthermore, exogenous GD1a treatment improved the developmental competence and quality of blastocysts during preimplantation embryo development stage. These results suggest that ganglioside GD1a may play an important role in IVM mechanisms of porcine maturation capacity. Furthermore, our findings will be helpful for better promoting the embryo development and blastocyst quality in pigs. PMID:26860251

  17. Condensing and Fluidizing Effects of Ganglioside GM1 on Phospholipid Films

    PubMed Central

    Frey, Shelli L.; Chi, Eva Y.; Arratia, Cristóbal; Majewski, Jaroslaw; Kjaer, Kristian; Lee, Ka Yee C.

    2008-01-01

    Mixed monolayers of the ganglioside GM1 and the lipid dipalmitoylphosphatidlycholine (DPPC) at air-water and solid-air interfaces were investigated using various biophysical techniques to ascertain the location and phase behavior of the ganglioside molecules in a mixed membrane. The effects induced by GM1 on the mean molecular area of the binary mixtures and the phase behavior of DPPC were followed for GM1 concentrations ranging from 5 to 70 mol %. Surface pressure isotherms and fluorescence microscopy imaging of domain formation indicate that at low concentrations of GM1 (<25 mol %), the monolayer becomes continually more condensed than DPPC upon further addition of ganglioside. At higher GM1 concentrations (>25 mol %), the mixed monolayer becomes more expanded or fluid-like. After deposition onto a solid substrate, atomic force microscopy imaging of these lipid monolayers showed that GM1 and DPPC pack cooperatively in the condensed phase domain to form geometrically packed complexes that are more ordered than either individual component as evidenced by a more extended total height of the complex arising from a well-packed hydrocarbon tail region. Grazing incidence x-ray diffraction on the DPPC/GM1 binary mixture provides evidence that ordering can emerge when two otherwise fluid components are mixed together. The addition of GM1 to DPPC gives rise to a unit cell that differs from that of a pure DPPC monolayer. To determine the region of the GM1 molecule that interacts with the DPPC molecule and causes condensation and subsequent expansion of the monolayer, surface pressure isotherms were obtained with molecules modeling the backbone or headgroup portions of the GM1 molecule. The observed concentration-dependent condensing and fluidizing effects are specific to the rigid, sugar headgroup portion of the GM1 molecule. PMID:18192361

  18. Condensing and fluidizing effects of ganglioside GM1 on phospholipid films.

    PubMed

    Frey, Shelli L; Chi, Eva Y; Arratia, Cristóbal; Majewski, Jaroslaw; Kjaer, Kristian; Lee, Ka Yee C

    2008-04-15

    Mixed monolayers of the ganglioside G(M1) and the lipid dipalmitoylphosphatidlycholine (DPPC) at air-water and solid-air interfaces were investigated using various biophysical techniques to ascertain the location and phase behavior of the ganglioside molecules in a mixed membrane. The effects induced by G(M1) on the mean molecular area of the binary mixtures and the phase behavior of DPPC were followed for G(M1) concentrations ranging from 5 to 70 mol %. Surface pressure isotherms and fluorescence microscopy imaging of domain formation indicate that at low concentrations of G(M1) (<25 mol %), the monolayer becomes continually more condensed than DPPC upon further addition of ganglioside. At higher G(M1) concentrations (>25 mol %), the mixed monolayer becomes more expanded or fluid-like. After deposition onto a solid substrate, atomic force microscopy imaging of these lipid monolayers showed that G(M1) and DPPC pack cooperatively in the condensed phase domain to form geometrically packed complexes that are more ordered than either individual component as evidenced by a more extended total height of the complex arising from a well-packed hydrocarbon tail region. Grazing incidence x-ray diffraction on the DPPC/G(M1) binary mixture provides evidence that ordering can emerge when two otherwise fluid components are mixed together. The addition of G(M1) to DPPC gives rise to a unit cell that differs from that of a pure DPPC monolayer. To determine the region of the G(M1) molecule that interacts with the DPPC molecule and causes condensation and subsequent expansion of the monolayer, surface pressure isotherms were obtained with molecules modeling the backbone or headgroup portions of the G(M1) molecule. The observed concentration-dependent condensing and fluidizing effects are specific to the rigid, sugar headgroup portion of the G(M1) molecule. PMID:18192361

  19. Fucosyl-GM1a, an endoglycoceramidase-resistant ganglioside of porcine brain.

    PubMed

    Xu, Xu; Monjusho, Hatsumi; Inagaki, Masanori; Hama, Yoichiro; Yamaguchi, Kuniko; Sakaguchi, Keishi; Iwamori, Masao; Okino, Nozomu; Ito, Makoto

    2007-01-01

    The use of bovine brain has been prohibited in many countries because of the world-wide prevalence of mad cow disease, and thus porcine brain is expected to be a new source for the preparation of gangliosides. Here, we report the presence of a ganglioside in porcine brain which is strongly resistant to hydrolysis by endoglycoceramidase, an enzyme capable of cleaving the glycosidic linkage between oligosaccharides and ceramides of various glycosphingolipids. Five major gangliosides (designated PBG-1, 2, 3, 4, 5) were extracted from porcine brain by Folch's partition, followed by mild alkaline hydrolysis and PBA column chromatography. We found that PBG-2, but not the others, was strongly resistant to hydrolysis by the enzyme. After the purification of PBG-2 with Q-Sepharose, Silica gel 60 and Prosep-PB chromatographies, the structure of PBG-2 was determined by GC, GC-MS, FAB-MS and NMR spectroscopy as Fucalpha1-2Galbeta1-3GalNAcbeta1-4(NeuAcalpha2-3)Galbeta1-4Glcbeta1-1'Cer (fucosyl-GM1a). The ceramide was mainly composed of C18:0 and C20:0 fatty acids and d18:1 and d20:1 sphingoid bases. The apparent kcat/Km for fucosyl-GM1a was found to be 30 times lower than that for GM1a, indicating that terminal fucosylation makes GM1a resistant to hydrolysis by the enzyme. This report indicates the usefulness of endoglycoceramidase to prepare fucosyl-GM1a from porcine brain. PMID:17167042

  20. Ganglioside GD1a promotes oocyte maturation, furthers preimplantation development, and increases blastocyst quality in pigs

    PubMed Central

    KIM, Jin-Woo; PARK, Hyo-Jin; CHAE, Sung-Kyu; AHN, Jae-Hyun; DO, Geon-Yeop; CHOO, Young-Kug; PARK, Joung Jun; JUNG, Bae Dong; KIM, Sun-Uk; CHANG, Kyu-Tae; KOO, Deog-Bon

    2016-01-01

    Gangliosides are key lipid molecules required for the regulation of cellular processes such as proliferation, differentiation, and cell signaling, including signaling of epidermal growth factor receptor (EGFR). Epidermal growth factor (EGF) has long been considered a potential regulator of meiotic and cytoplasmic maturation in mammalian oocytes. However, there is no report on the direct effect of ganglioside GD1a in porcine oocyte maturation. In this study, we first investigated a functional link between GD1a and meiotic maturation during in vitro maturation (IVM) of porcine embryos. Moreover, we confirmed the effect of exogenous GD1a treatment on blastocyst development, quality, and fertilization rate in early embryonic development. First, we observed that the protein level of ST3GAL2, a GD1a synthesizing enzyme, significantly increased (P < 0.01) in cumulus-oocyte-complexes (COCs) during IVM progress. The proportion of arrested germinal vesicles (GV) increased in oocytes treated with EGF+GD1a (41.6 ± 1.5%) at the IVM I stage. Upon completion of meiotic maturation, the proportion of metaphase II (M II) was significantly higher (P < 0.05) in the EGF+GD1a (89.9 ± 3.6%) treated group. After IVF, the percentage of penetrated oocytes was significantly higher (P < 0.05) in the EGF+GD1a (89.1 ± 2.3%) treated group than in the control group. Furthermore, exogenous GD1a treatment improved the developmental competence and quality of blastocysts during preimplantation embryo development stage. These results suggest that ganglioside GD1a may play an important role in IVM mechanisms of porcine maturation capacity. Furthermore, our findings will be helpful for better promoting the embryo development and blastocyst quality in pigs. PMID:26860251

  1. Specific tritium labeling of gangliosides at the 3-position of sphingosines.

    PubMed

    Ghidoni, R; Sonnino, S; Masserini, M; Orlando, P; Tettamanti, G

    1981-11-01

    GM1 and GD1a gangliosides, treated with 2,3-dichloro-5,6-dicyano benzoquinone (DDQ) in the presence of Triton X-100 and in a toluene medium were specifically oxidized at the 3-position of sphingosine. The maximum reaction yield (65%) was obtained after 40 hours at 37 degrees C with the following molar ratio of reactants: ganglioside-Triton X-100-DDQ 1:70:125. The formation of the 3-keto derivatives of GM1 and GD1a was demonstrated by: a) the appearance of a sharp peak at 1700 cm-1 and of a broad band at 1250 cm-1 (typical of allylic ketones and of carbonyl groups, respectively) in the infra-red spectrum; b) the appearance of an absorption maximum at 230 nm, identical to that featured by 3-keto-cerebrosides, in the ultraviolet spectrum; c) the degradation of long chain bases during the process of release from gangliosides and derivatization for analysis by gas-liquid chromatography (expected for long chain bases carrying a keto group in the 3-position); and d) the quantitative transformation of 3-keto-GM1 and 3-keto-GD1a to GM1 and GD1a, respectively, upon NaBH4 reduction. Reduction of 3-keto-GM1 and 3-keto-GD1a with [3H]-NaBH4 produced 3H-labeled GM1 and GD1a. [3H]GM1 and [3H]GD1a maintained the same carbohydrate and fatty acid composition of the original GM1 and GD1a, and did not contain any saturated long chain bases. Direct proof that the label was at C-3 of long chain bases was given by reoxidation with DDQ, which completely removed the label, and by ozonolysis, after which label was retained on the oligosaccharide-containing fragment. More than 99% of incorporated radioactivity was carried by the long chain bases. The radiochemical purity of labeled gangliosides was greater than 95% and the specific radioactivity was 1.25 and 1.28 Ci/m mol for [3H]GM1 and [3H]GD1a, respectively. PMID:7320638

  2. Specific tritium labeling of gangliosides at the 3-position of sphingosines

    SciTech Connect

    Ghidoni, R.; Sonnino, S.; Masserini, M.; Orlando, P.; Tettamanti, G.

    1981-11-01

    GM1 and GD1a gangliosides, treated with 2,3-dichloro-5,6-dicyano benzoquinone (DDQ) in the presence of Triton X-100 and in a toluene medium were specifically oxidized at the 3-position of sphingosine. The maximum reaction yield (65%) was obtained after 40 hours at 37 degrees C with the following molar ratio of reactants: ganglioside-Triton X-100-DDQ 1:70:125. The formation of the 3-keto derivatives of GM1 and GD1a was demonstrated by: a) the appearance of a sharp peak at 1700 cm-1 and of a broad band at 1250 cm-1 (typical of allylic ketones and of carbonyl groups, respectively) in the infra-red spectrum; b) the appearance of an absorption maximum at 230 nm, identical to that featured by 3-keto-cerebrosides, in the ultraviolet spectrum; c) the degradation of long chain bases during the process of release from gangliosides and derivatization for analysis by gas-liquid chromatography (expected for long chain bases carrying a keto group in the 3-position); and d) the quantitative transformation of 3-keto-GM1 and 3-keto-GD1a to GM1 and GD1a, respectively, upon NaBH4 reduction. Reduction of 3-keto-GM1 and 3-keto-GD1a with (/sup 3/H)-NaBH4 produced /sup 3/H-labeled GM1 and GD1a. (/sup 3/H)GM1 and (/sup 3/H)GD1a maintained the same carbohydrate and fatty acid composition of the original GM1 and GD1a, and did not contain any saturated long chain bases. Direct proof that the label was at C-3 of long chain bases was given by reoxidation with DDQ, which completely removed the label, and by ozonolysis, after which label was retained on the oligosaccharide-containing fragment. More than 99% of incorporated radioactivity was carried by the long chain bases. The radiochemical purity of labeled gangliosides was greater than 95% and the specific radioactivity was 1.25 and 1.28 Ci/m mol for (/sup 3/H)GM1 and (/sup 3/H)GD1a, respectively.

  3. UVB-irradiated keratinocytes induce melanoma-associated ganglioside GD3 synthase gene in melanocytes via secretion of tumor necrosis factor α and interleukin 6.

    PubMed

    Miyata, Maiko; Ichihara, Masatoshi; Tajima, Orie; Sobue, Sayaka; Kambe, Mariko; Sugiura, Kazumitsu; Furukawa, Koichi; Furukawa, Keiko

    2014-03-01

    Although expression of gangliosides and their synthetic enzyme genes in malignant melanomas has been well studied, that in normal melanocytes has been scarcely analyzed. In particular, changes in expression levels of glycosyltransferase genes responsible for ganglioside synthesis during evolution of melanomas from melanocytes are very important to understand roles of gangliosides in melanomas. Here, expression of glycosyltransferase genes related to the ganglioside synthesis was analyzed using RNAs from cultured melanocytes and melanoma cell lines. Quantitative RT-PCR revealed that melanomas expressed high levels of mRNA of GD3 synthase and GM2/GD2 synthase genes and low levels of GM1/GD1b synthase genes compared with melanocytes. As a representative exogenous stimulation, effects of ultraviolet B (UVB) on the expression levels of 3 major ganglioside synthase genes in melanocytes were analyzed. Although direct UVB irradiation of melanocytes caused no marked changes, culture supernatants of UVB-irradiated keratinocytes (HaCaT cells) induced definite up-regulation of GD3 synthase and GM2/GD2 synthase genes. Detailed examination of the supernatants revealed that inflammatory cytokines such as TNFα and IL-6 enhanced GD3 synthase gene expression. These results suggest that inflammatory cytokines secreted from UVB-irradiated keratinocytes induced melanoma-associated ganglioside synthase genes, proposing roles of skin microenvironment in the promotion of melanoma-like ganglioside profiles in melanocytes. PMID:24548412

  4. Gangliosides and ceramides change in a mouse model of blast induced traumatic brain injury.

    PubMed

    Woods, Amina S; Colsch, Benoit; Jackson, Shelley N; Post, Jeremy; Baldwin, Kathrine; Roux, Aurelie; Hoffer, Barry; Cox, Brian M; Hoffer, Michael; Rubovitch, Vardit; Pick, Chaim G; Schultz, J Albert; Balaban, Carey

    2013-04-17

    Explosive detonations generate atmospheric pressure changes that produce nonpenetrating blast induced "mild" traumatic brain injury (bTBI). The structural basis for mild bTBI has been extremely controversial. The present study applies matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging to track the distribution of gangliosides in mouse brain tissue that were exposed to very low level of explosive detonations (2.5-5.5 psi peak overpressure). We observed major increases of the ganglioside GM2 in the hippocampus, thalamus, and hypothalamus after a single blast exposure. Moreover, these changes were accompanied by depletion of ceramides. No neurological or brain structural signs of injury could be inferred using standard light microscopic techniques. The first source of variability is generated by the Latency between blast and tissue sampling (peak intensity of the blast wave). These findings suggest that subtle molecular changes in intracellular membranes and plasmalemma compartments may be biomarkers for biological responses to mild bTBI. This is also the first report of a GM2 increase in the brains of mature mice from a nongenetic etiology. PMID:23590251

  5. Deficiency of ganglioside GM1 correlates with Parkinson's disease in mice and humans.

    PubMed

    Wu, Gusheng; Lu, Zi-Hua; Kulkarni, Neil; Ledeen, Robert W

    2012-10-01

    Several studies have successfully employed GM1 ganglioside to treat animal models of Parkinson's disease (PD), suggesting involvement of this ganglioside in PD etiology. We recently demonstrated that genetically engineered mice (B4galnt1(-/-) ) devoid of GM1 acquire characteristic symptoms of this disorder, including motor impairment, depletion of striatal dopamine, selective loss of tyrosine hydroxylase-expressing neurons, and aggregation of α-synuclein. The present study demonstrates similar symptoms in heterozygous mice (HTs) that express only partial GM1 deficiency. Symptoms were alleviated by administration of L-dopa or LIGA-20, a membrane-permeable analog of GM1 that penetrates the blood-brain barrier and accesses intracellular compartments. Immunohistochemical analysis of paraffin sections from PD patients revealed significant GM1 deficiency in nigral dopaminergic neurons compared with age-matched controls. This was comparable to the GM1 deficiency of HT mice and suggests that GM1 deficiency may be a contributing factor to idiopathic PD. We propose that HT mice with partial GM1 deficiency constitute an especially useful model for PD, reflecting the actual pathophysiology of this disorder. The results point to membrane-permeable analogs of GM1 as holding promise as a form of GM1 replacement therapy. PMID:22714832

  6. Influence of GM1 gangliosides on the growth of cultured rat embryonic serotonergic neurons.

    PubMed

    Marlier, L; Poulat, P; König, N; Drian, M J; Privat, A

    1989-01-01

    GM1 gangliosides were added to the medium of cultured raphe neurons enriched in the serotonergic phenotype in order to study their influence on biochemical and morphological growth parameters of serotonergic neurons. After 2 days of culture in the presence of GM1, specific uptake of serotonin measured by scintillation counting exhibited a moderate but significant increase for a GM1 concentration of 5 X 10(-8) M. Morphological parameters of 5-HT neurons were measured after immunocytochemical staining with specific serotonin antiserum, and digitalization of immunoreactive cells. Eight parameters were studied; for concentrations of 5 X 10(-8) and 10(-7) M of GM1, the absolute neuritic field area and the total length of the segments were significantly increased, whereas the number of neuritic segments, and their mean length were not modified. We conclude that GM1 ganglioside has a significant influence on the growth of serotonergic neurons. Moreover, electron microscopy showed, on treated cultures, a dramatic increase of the number of spicules all along the neuron's process, suggesting that GM1 could act by modifying the attachment of cells to their substrate. The possible molecular mechanisms of the action of GM1 are discussed. PMID:2603760

  7. Alterations in cholesterol and ganglioside GM1 content of lipid rafts in platelets from patients with Alzheimer disease.

    PubMed

    Liu, Li; Zhang, Ke; Tan, Liang; Chen, Yu-Hua; Cao, Yun-Peng

    2015-01-01

    The aim of this study was to investigate the changes in the protein, cholesterol, and ganglioside GM1 content of lipid rafts in platelets from patients with Alzheimer disease (AD), and identify potential blood biomarkers of the disease. A total of 31 Chinese patients with AD and 31 aged-matched control subjects were selected. Lipid rafts were isolated from platelets using Optiprep gradient centrifugation. The protein content of lipid rafts was evaluated using Micro BCA assay, the cholesterol content using molecular probes, ganglioside GM1 content using colorimetry and dot-blotting analysis. The results showed that the cholesterol and ganglioside GM1 content of lipid rafts from platelets was significantly higher in patients with AD than aged-matched control subjects, whereas the protein content of lipid rafts did not show any differences between the 2 groups. These results indicate that the increases in the cholesterol and ganglioside GM1 content of lipid rafts from the platelets of patients with AD might serve as a biochemical adjunct to the clinical diagnosis of AD. PMID:24759545

  8. Effects of Detergents on the Redistribution of Gangliosides and GPI-anchored Proteins in Brain Tissue Sections

    PubMed Central

    Heffer-Lauc, Marija; Viljetiæ, Barbara; Vajn, Katarina; Schnaar, Ronald L.; Lauc, Gordan

    2008-01-01

    SUMMARY Gangliosides and glycosylphosphatidylinositol (GPI)-anchored proteins contain lipid tails that tether them to the outer side of the cell membrane. This mode of association with the cell membrane enables them to take part in the organization of lipid rafts, but it also permits gangliosides and GPI-anchored proteins to be actively released from one cell and inserted into the membrane of another cell. Recently, we reported that under conditions of lipid raft isolation, Triton X-100 causes significant redistribution of both gangliosides and GPI-anchored proteins. Aiming to find a less disruptive detergent, we evaluated the effects of CHAPS, Saponin, deoxycholic acid, Trappsol, Tween 20, Triton X-100, Brij 96V, Brij 98, and SDS on brain tissue sections. At room temperature, all detergents (1% concentration) extracted significant amounts of both gangliosides and Thy-1. At 4C, the extraction was weaker, but Triton X-100, CHAPS, and deoxycholic acid caused significant redistribution of GD1a and Thy-1 from gray matter into the white matter. Both redistribution and extraction were significantly augmented when sections were incubated with detergents in the presence of primary antibodies. Of the nine tested detergents, none is the ideal choice. However, Brij 96V appears to be able to sufficiently reveal myelin epitopes while causing the least amount of artifacts. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials. PMID:17409378

  9. UVB-irradiated keratinocytes induce melanoma-associated ganglioside GD3 synthase gene in melanocytes via secretion of tumor necrosis factor α and interleukin 6

    SciTech Connect

    Miyata, Maiko; Ichihara, Masatoshi; Tajima, Orie; Sobue, Sayaka; Kambe, Mariko; Sugiura, Kazumitsu; Furukawa, Koichi; Furukawa, Keiko

    2014-03-07

    Highlights: • Melanocytes showed low ST8SIA1 and high B3GALT4 levels in contrast with melanomas. • Direct UVB irradiation of melanocytes did not induce ganglioside synthase genes. • Culture supernatants of UVB-irradiated keratinocytes induced ST8SIA1 in melanocytes. • TNFα and IL-6 secreted from keratinocytes enhanced ST8SIA1 expression in melanocytes. • Inflammatory cytokines induced melanoma-related ST8SIA1 in melanocytes. - Abstract: Although expression of gangliosides and their synthetic enzyme genes in malignant melanomas has been well studied, that in normal melanocytes has been scarcely analyzed. In particular, changes in expression levels of glycosyltransferase genes responsible for ganglioside synthesis during evolution of melanomas from melanocytes are very important to understand roles of gangliosides in melanomas. Here, expression of glycosyltransferase genes related to the ganglioside synthesis was analyzed using RNAs from cultured melanocytes and melanoma cell lines. Quantitative RT-PCR revealed that melanomas expressed high levels of mRNA of GD3 synthase and GM2/GD2 synthase genes and low levels of GM1/GD1b synthase genes compared with melanocytes. As a representative exogenous stimulation, effects of ultraviolet B (UVB) on the expression levels of 3 major ganglioside synthase genes in melanocytes were analyzed. Although direct UVB irradiation of melanocytes caused no marked changes, culture supernatants of UVB-irradiated keratinocytes (HaCaT cells) induced definite up-regulation of GD3 synthase and GM2/GD2 synthase genes. Detailed examination of the supernatants revealed that inflammatory cytokines such as TNFα and IL-6 enhanced GD3 synthase gene expression. These results suggest that inflammatory cytokines secreted from UVB-irradiated keratinocytes induced melanoma-associated ganglioside synthase genes, proposing roles of skin microenvironment in the promotion of melanoma-like ganglioside profiles in melanocytes.

  10. Sialidase-mediated depletion of GM2 ganglioside in Tay-Sachs neuroglia cells.

    PubMed

    Igdoura, S A; Mertineit, C; Trasler, J M; Gravel, R A

    1999-06-01

    Tay-Sachs disease is a severe, inherited disease of the nervous system caused by accumulation of the brain lipid GM2 ganglioside. Mouse models of Tay-Sachs disease have revealed a metabolic bypass of the genetic defect based on the more potent activity of the enzyme sialidase towards GM2. To determine whether increasing the level of sialidase would produce a similar effect in human Tay-Sachs cells, we introduced a human sialidase cDNA into neuroglia cells derived from a Tay-Sachs fetus and demonstrated a dramatic reduction in the accumulated GM2. This outcome confirmed the reversibility of GM2 accumulation and opens the way to pharmacological induction or activation of sialidase for the treatment of human Tay-Sachs disease. PMID:10332044

  11. Sialylated intravenous immunoglobulin suppress anti-ganglioside antibody mediated nerve injury.

    PubMed

    Zhang, Gang; Massaad, Cynthia A; Gao, Tong; Pillai, Laila; Bogdanova, Nataliia; Ghauri, Sameera; Sheikh, Kazim A

    2016-08-01

    The precise mechanisms underlying the efficacy of intravenous immunoglobulin (IVIg) in autoimmune neurological disorders including Guillain-Barré syndrome (GBS) are not known. Anti-ganglioside antibodies have been reported to be pathogenic in some variants of GBS, and we have developed passive transfer animal models to study anti-ganglioside antibody mediated-endoneurial inflammation and associated neuropathological effects and to evaluate the efficacy of new therapeutic approaches. Some studies indicate that IVIg's anti-inflammatory activity resides in a minor sialylated IVIg (sIVIg) fractions and is dependent on an innate Th2 response via binding to a specific ICAM3-grabbing nonintegrin related 1 receptor (SIGN-R1). Therefore the efficacy of IVIg, IVIg fractions with various IgG Fc sialylation status, and the involvement of Th2 pathway were examined in one of our animal model of antibody-mediated inhibition of axonal regeneration. We demonstrate that both IVIg and sIVIg ameliorated anti-glycan antibody mediated-pathological effect, whereas, the unsialylated fractions of IVIg were not beneficial in our model. Tenfold lower doses of sIVIg compared to whole IVIg provided equivalent efficacy in our studies. Moreover, we found that whole IVIg and sIVIg significantly upregulates the gene expression of IL-33, which itself can provide protection from antibody-mediated nerve injury in our model. Our results support that the SIGN-R1-Th2 pathway is involved in the anti-inflammatory effects of IVIg on endoneurium in our model and elements of this pathway including IL-33 can provide novel therapeutics in inflammatory neuropathies. PMID:27208700

  12. Guillain–Barré syndrome and anti-ganglioside antibodies: a clinician-scientist’s journey

    PubMed Central

    YUKI, Nobuhiro

    2012-01-01

    Guillain–Barré syndrome (GBS) is the most frequent cause of acute flaccid paralysis. Having seen my first GBS patient in 1989, I have since then dedicated my time in research towards understanding the pathogenesis of GBS. Along with several colleagues, we identified IgG autoantibodies against ganglioside GM1 in two patients with GBS subsequent to Campylobacter jejuni enteritis. We proceeded to demonstrate molecular mimicry between GM1 and bacterial lipo-oligosaccharide of C. jejuni isolated from a patient with GBS. Our group then established a disease model for GBS by sensitization with GM1 or GM1-like lipo-oligosaccharide. With this, a new paradigm that carbohydrate mimicry can cause autoimmune disorders was demonstrated, making GBS the first proof of molecular mimicry in autoimmune disease. Patients with Fisher syndrome, characterized by ophthalmoplegia and ataxia, can develop the disease after an infection by C. jejuni. We showed that the genetic polymorphism of C. jejuni sialyltransferase, an enzyme essential to the biosynthesis of ganglioside-like lipo-oligosaccharides determines whether patients develop GBS or Fisher syndrome. This introduces another paradigm that microbial genetic polymorphism can determine the clinical phenotype of human autoimmune diseases. Similarities between the clinical presentation of Fisher syndrome and Bickerstaff brainstem encephalitis have caused debate as to whether they are in fact the same disease. We demonstrated that IgG anti-GQ1b antibodies were common to both, suggesting that they are part of the same disease spectrum. We followed this work by clarifying the nosological relationship between the various clinical presentations within the anti-GQ1b antibody syndrome. In this review, I wanted to share my journey from being a clinician to a clinician-scientist in the hopes of inspiring younger clinicians to follow a similar path. PMID:22850724

  13. Electrokinetic and electrostatic properties of bilayers containing gangliosides GM1, GD1a, or GT1. Comparison with a nonlinear theory.

    PubMed Central

    McDaniel, R V; Sharp, K; Brooks, D; McLaughlin, A C; Winiski, A P; Cafiso, D; McLaughlin, S

    1986-01-01

    We formed vesicles from mixtures of egg phosphatidylcholine (PC) and the gangliosides GM1, GD1a, or GT1 to model the electrokinetic properties of biological membranes. The electrophoretic mobilities of the vesicles are similar in NaCl, CsCl, and TMACl solutions, suggesting that monovalent cations do not bind significantly to these gangliosides. If we assume the sialic acid groups on the gangliosides are located some distance from the surface of the vesicle and the sugar moieties exert hydrodynamic drag, we can describe the mobility data in 1, 10, and 100 mM monovalent salt solutions with a combination of the Navier-Stokes and nonlinear Poisson-Boltzmann equations. The values we assume for the thickness of the ganglioside head group and the location of the charge affect the theoretical predictions markedly, but the Stokes radius of each sugar and the location of the hydrodynamic shear plane do not. We obtain a reasonable fit to the mobility data by assuming that all ganglioside head groups project 2.5 nm from the bilayer and all fixed charges are in a plane 1 nm from the bilayer surface. We tested the latter assumption by estimating the surface potentials of PC/ganglioside bilayers using four techniques: we made 31P nuclear magnetic resonance, fluorescence, electron spin resonance, and conductance measurements. The results are qualitatively consistent with our assumption. PMID:3697476

  14. When Lack of Evidence Is Evidence of Lack.

    PubMed

    Pickering, Neil

    2015-12-01

    In their recent article "A Gentle Ethical Defence of Homeopathy," Levy, Gadd, Kerridge, and Komesaroff use the claim that "lack of evidence is not equivalent to evidence of lack" as a component of their ethical defence of homeopathy. In response, this article argues that they cannot use this claim to shore up their ethical arguments. This is because it is false. PMID:26631232

  15. Sialic Acids in the Brain: Gangliosides and Polysialic Acid in Nervous System Development, Stability, Disease, and Regeneration

    PubMed Central

    Gerardy-Schahn, Rita; Hildebrandt, Herbert

    2014-01-01

    Every cell in nature carries a rich surface coat of glycans, its glycocalyx, which constitutes the cell's interface with its environment. In eukaryotes, the glycocalyx is composed of glycolipids, glycoproteins, and proteoglycans, the compositions of which vary among different tissues and cell types. Many of the linear and branched glycans on cell surface glycoproteins and glycolipids of vertebrates are terminated with sialic acids, nine-carbon sugars with a carboxylic acid, a glycerol side-chain, and an N-acyl group that, along with their display at the outmost end of cell surface glycans, provide for varied molecular interactions. Among their functions, sialic acids regulate cell-cell interactions, modulate the activities of their glycoprotein and glycolipid scaffolds as well as other cell surface molecules, and are receptors for pathogens and toxins. In the brain, two families of sialoglycans are of particular interest: gangliosides and polysialic acid. Gangliosides, sialylated glycosphingolipids, are the most abundant sialoglycans of nerve cells. Mouse genetic studies and human disorders of ganglioside metabolism implicate gangliosides in axon-myelin interactions, axon stability, axon regeneration, and the modulation of nerve cell excitability. Polysialic acid is a unique homopolymer that reaches >90 sialic acid residues attached to select glycoproteins, especially the neural cell adhesion molecule in the brain. Molecular, cellular, and genetic studies implicate polysialic acid in the control of cell-cell and cell-matrix interactions, intermolecular interactions at cell surfaces, and interactions with other molecules in the cellular environment. Polysialic acid is essential for appropriate brain development, and polymorphisms in the human genes responsible for polysialic acid biosynthesis are associated with psychiatric disorders including schizophrenia, autism, and bipolar disorder. Polysialic acid also appears to play a role in adult brain plasticity

  16. Construction of a hybrid β-hexosaminidase subunit capable of forming stable homodimers that hydrolyze GM2 ganglioside in vivo.

    PubMed

    Tropak, Michael B; Yonekawa, Sayuri; Karumuthil-Melethil, Subha; Thompson, Patrick; Wakarchuk, Warren; Gray, Steven J; Walia, Jagdeep S; Mark, Brian L; Mahuran, Don

    2016-01-01

    Tay-Sachs or Sandhoff disease result from mutations in either the evolutionarily related HEXA or HEXB genes encoding respectively, the α- or β-subunits of β-hexosaminidase A (HexA). Of the three Hex isozymes, only HexA can interact with its cofactor, the GM2 activator protein (GM2AP), and hydrolyze GM2 ganglioside. A major impediment to establishing gene or enzyme replacement therapy based on HexA is the need to synthesize both subunits. Thus, we combined the critical features of both α- and β-subunits into a single hybrid µ-subunit that contains the α-subunit active site, the stable β-subunit interface and unique areas in each subunit needed to interact with GM2AP. To facilitate intracellular analysis and the purification of the µ-homodimer (HexM), CRISPR-based genome editing was used to disrupt the HEXA and HEXB genes in a Human Embryonic Kidney 293 cell line stably expressing the µ-subunit. In association with GM2AP, HexM was shown to hydrolyze a fluorescent GM2 ganglioside derivative both in cellulo and in vitro. Gene transfer studies in both Tay-Sachs and Sandhoff mouse models demonstrated that HexM expression reduced brain GM2 ganglioside levels. PMID:26966698

  17. Construction of a hybrid β-hexosaminidase subunit capable of forming stable homodimers that hydrolyze GM2 ganglioside in vivo

    PubMed Central

    Tropak, Michael B; Yonekawa, Sayuri; Karumuthil-Melethil, Subha; Thompson, Patrick; Wakarchuk, Warren; Gray, Steven J; Walia, Jagdeep S; Mark, Brian L; Mahuran, Don

    2016-01-01

    Tay-Sachs or Sandhoff disease result from mutations in either the evolutionarily related HEXA or HEXB genes encoding respectively, the α- or β-subunits of β-hexosaminidase A (HexA). Of the three Hex isozymes, only HexA can interact with its cofactor, the GM2 activator protein (GM2AP), and hydrolyze GM2 ganglioside. A major impediment to establishing gene or enzyme replacement therapy based on HexA is the need to synthesize both subunits. Thus, we combined the critical features of both α- and β-subunits into a single hybrid µ-subunit that contains the α-subunit active site, the stable β-subunit interface and unique areas in each subunit needed to interact with GM2AP. To facilitate intracellular analysis and the purification of the µ-homodimer (HexM), CRISPR-based genome editing was used to disrupt the HEXA and HEXB genes in a Human Embryonic Kidney 293 cell line stably expressing the µ-subunit. In association with GM2AP, HexM was shown to hydrolyze a fluorescent GM2 ganglioside derivative both in cellulo and in vitro. Gene transfer studies in both Tay-Sachs and Sandhoff mouse models demonstrated that HexM expression reduced brain GM2 ganglioside levels. PMID:26966698

  18. Sialyllactose in Viral Membrane Gangliosides Is a Novel Molecular Recognition Pattern for Mature Dendritic Cell Capture of HIV-1

    PubMed Central

    Contreras, F.-Xabier; Rodriguez-Plata, Maria T.; Glass, Bärbel; Erkizia, Itziar; Prado, Julia G.; Casas, Josefina; Fabriàs, Gemma; Kräusslich, Hans-Georg; Martinez-Picado, Javier

    2012-01-01

    HIV-1 is internalized into mature dendritic cells (mDCs) via an as yet undefined mechanism with subsequent transfer of stored, infectious virus to CD4+ T lymphocytes. Thus, HIV-1 subverts a DC antigen capture mechanism to promote viral spread. Here, we show that gangliosides in the HIV-1 membrane are the key molecules for mDC uptake. HIV-1 virus-like particles and liposomes mimicking the HIV-1 lipid composition were shown to use a common internalization pathway and the same trafficking route within mDCs. Hence, these results demonstrate that gangliosides can act as viral attachment factors, in addition to their well known function as cellular receptors for certain viruses. Furthermore, the sialyllactose molecule present in specific gangliosides was identified as the determinant moiety for mDC HIV-1 uptake. Thus, sialyllactose represents a novel molecular recognition pattern for mDC capture, and may be crucial both for antigen presentation leading to immunity against pathogens and for succumbing to subversion by HIV-1. PMID:22545022

  19. Prospective study on anti‐ganglioside antibodies in childhood Guillain–Barré syndrome

    PubMed Central

    Schessl, J; Koga, M; Funakoshi, K; Kirschner, J; Muellges, W; Weishaupt, A; Gold, R; Korinthenberg, R

    2007-01-01

    Background Antiganglioside antibodies have been reported to play a part in the pathophysiology of Guillain–Barré syndrome (GBS). Aims To investigate the prevalence and correlation of anti‐ganglioside antibodies with clinical data in children with GBS in a multicentre clinical trial. Methods Immunoglobin (Ig)G and IgM to GM1, GM1b, GD1a, GalNAc–GD1a, GD1b, GT1a, and GQ1b were measured by ELISA in sera obtained before treatment. In addition, serological testing for Campylobacter jejuni was carried out. In parallel, a group of adults with GBS and a control group of children without GBS or other inflammatory diseases were evaluated. Results Sera from 63 children with GBS, 36 adults with GBS and 41 children without GBS were evaluated. Four of the children with GBS showed positive IgG to GM1, in one case combined with anti‐GalNAc–GD1a and in one with anti‐GD1b. Two others showed isolated positive IgG to GD1b and GT1a. One showed increased anti‐GalNAc–GD1a IgM. In 5 of the 63 children, serological evidence of a recent infection with C jejuni was found, and this correlated significantly with the raised antibodies (p = 0.001). In the control group without GBS, no child showed positive IgG, but one showed anti‐GalNAc–GD1a IgM. Compared with the adults with GBS, the frequency of antibodies in children was insignificantly lower. In our study, patients with positive antibodies did not show a more severe GBS course or worse outcome than those who were seronegative, and we could not show an increased incidence of axonal dysfunction. Conclusions In some children with GBS, one can detect raised IgG against various gangliosides, similar to that in adults. A recent infection with C jejuni is markedly associated with the presence of these antibodies. However, in contrast with what has been reported in adults, in this study we were unable to show a negative effect of these findings on the clinical course. PMID:16920757

  20. Large alterations in ganglioside and neutral glycosphingolipid patterns in brains from cases with infantile neuronal ceroid lipofuscinosis/polyunsaturated fatty acid lipidosis.

    PubMed

    Svennerholm, L; Fredman, P; Jungbjer, B; Månsson, J E; Rynmark, B M; Boström, K; Hagberg, B; Norén, L; Santavuori, P

    1987-12-01

    Lipid composition was studied on cerebral tissue from nine children who had died of a progressive encephalopathy called the infantile form of neuronal ceroid lipofuscinosis (INCL) or polyunsaturated fatty acid lipidosis (PFAL). In the terminal stage of the disease, the concentrations of all lipid classes were found to be significantly reduced in the cerebral and cerebellar cortex and white matter. The concentration of gangliosides of the cerebral cortex was 15% and that of cerebrosides (galactosylceramide) in white matter 0.2-5% of the normal values for the children's ages. The reduction of gangliosides mainly affected those of the gangliotetraose series, particularly GD1a. The fatty acids of the linolenic acid series were strongly reduced in ethanolamine and serine phosphoglycerides. A very large increase up to 100-fold of oligoglycosphingolipids of the globo series and two fucose-containing lipids of the neolacto series was found in the forebrain of the three advanced cases examined. The brain tissue also contained very high concentrations of mono-, di-, and trisialogangliosides of the lacto and neolacto series, gangliosides with type 1 chain dominating. The structures of the gangliosides were tentatively identified by gas chromatography-mass spectrometry and monoclonal antibodies with carefully determined epitope specificity. The gangliosides and neutral glycosphingolipids had very similar fatty acid composition, consisting of about 40% stearic acid and 40% C24-acids. PMID:3681296

  1. Interaction of liposomes composed of phospholipids, GM1 ganglioside and cholesterol with human keratinocytes in culture.

    PubMed

    Pitto, M; Palestini, P; Ferraretto, A; Marazzi, M; Donati, V; Falcone, L; Masserini, M

    1999-04-01

    We studied the possibility of supplementing human keratinocytes with exogenous lipids (phospholipids, sphingolipids and cholesterol) and evaluated their influence on cell proliferation, using cells cultured in vitro. Experiments carried out with liposomes composed of cholesterol/GM1 ganglioside and different phospholipids (5:1.5:10, M/M/M), showed that liposomes associated with cells more efficiently when they contained soya lecithin. The treatment with liposomes made of the ternary mixture did not modify the rate of cell proliferation, as assessed by the incorporation of [3H]-thymidine. In contrast, the proliferation rate strongly decreased (65% with respect to the control) using the same liposomes without GM1. Experiments carried out with GM1 alone showed a strong stimulation of the proliferation rate (144% with respect to the control). Fluorescence dequenching experiments, carried out with the probe octadecyl rhodamine B chloride, showed that fusion was the main mechanism of liposome-cell interaction. Metabolic studies established that exogenously administered GM1--either embedded in liposomes or as a pure glycolipid dispersion--led to the production of several products, including ceramide. Altogether, these results show that different, opposing effects can be exerted on cell proliferation by the administration of lipids, separately or in mixtures, to human keratinocytes, and indicate the importance of a correct formulation for supplementing human keratinocytes with exogenous lipids. PMID:10335921

  2. Membrane lipids regulate ganglioside GM2 catabolism and GM2 activator protein activity.

    PubMed

    Anheuser, Susi; Breiden, Bernadette; Schwarzmann, Günter; Sandhoff, Konrad

    2015-09-01

    Ganglioside GM2 is the major lysosomal storage compound of Tay-Sachs disease. It also accumulates in Niemann-Pick disease types A and B with primary storage of SM and with cholesterol in type C. Reconstitution of GM2 catabolism with β-hexosaminidase A and GM2 activator protein (GM2AP) at uncharged liposomal surfaces carrying GM2 as substrate generated only a physiologically irrelevant catabolic rate, even at pH 4.2. However, incorporation of anionic phospholipids into the GM2 carrying liposomes stimulated GM2 hydrolysis more than 10-fold, while the incorporation of plasma membrane stabilizing lipids (SM and cholesterol) generated a strong inhibition of GM2 hydrolysis, even in the presence of anionic phospholipids. Mobilization of membrane lipids by GM2AP was also inhibited in the presence of cholesterol or SM, as revealed by surface plasmon resonance studies. These lipids also reduced the interliposomal transfer rate of 2-NBD-GM1 by GM2AP, as observed in assays using Förster resonance energy transfer. Our data raise major concerns about the usage of recombinant His-tagged GM2AP compared with untagged protein. The former binds more strongly to anionic GM2-carrying liposomal surfaces, increases GM2 hydrolysis, and accelerates intermembrane transfer of 2-NBD-GM1, but does not mobilize membrane lipids. PMID:26175473

  3. Lyso-GM2 ganglioside: a possible biomarker of Tay-Sachs disease and Sandhoff disease.

    PubMed

    Kodama, Takashi; Togawa, Tadayasu; Tsukimura, Takahiro; Kawashima, Ikuo; Matsuoka, Kazuhiko; Kitakaze, Keisuke; Tsuji, Daisuke; Itoh, Kohji; Ishida, Yo-Ichi; Suzuki, Minoru; Suzuki, Toshihiro; Sakuraba, Hitoshi

    2011-01-01

    To find a new biomarker of Tay-Sachs disease and Sandhoff disease. The lyso-GM2 ganglioside (lyso-GM2) levels in the brain and plasma in Sandhoff mice were measured by means of high performance liquid chromatography and the effect of a modified hexosaminidase (Hex) B exhibiting Hex A-like activity was examined. Then, the lyso-GM2 concentrations in human plasma samples were determined. The lyso-GM2 levels in the brain and plasma in Sandhoff mice were apparently increased compared with those in wild-type mice, and they decreased on intracerebroventricular administration of the modified Hex B. The lyso-GM2 levels in plasma of patients with Tay-Sachs disease and Sandhoff disease were increased, and the increase in lyso-GM2 was associated with a decrease in Hex A activity. Lyso-GM2 is expected to be a potential biomarker of Tay-Sachs disease and Sandhoff disease. PMID:22205997

  4. Effects of Methylprednisolone And Ganglioside GM-1 on a Spinal Lesion: A Functional Analysis

    PubMed Central

    Carvalho, Márcio Oliveira Penna; de Barros Filho, Tarcisio Eloy Pessoa; Tebet, Marcos Antonio

    2008-01-01

    OBJECTIVES The pharmacological effects of methylprednisolone (MP) and ganglioside GM-1 on spinal injuries have been thoroughly investigated, but only a few studies have evaluated the interaction between these two drugs. METHODS Twenty-four Wistar rats were subjected to contusive injury of the spinal cord produced by the NYU system. These animals were divided into four groups: group I was injected with MP; group II was injected with GM-1; group III was injected with MP together with GM-1; and group control received physiological serum. The animals were evaluated with regard to their recovery of locomotive function by means of the BBB test on the second, seventh and fourteenth days after receiving the contusive injury to the spinal cord. They were sacrificed on the fourteenth day. RESULTS This study demonstrated that the MP and GM-1 groups presented functional results that were better than those of the control group, although the enhanced recovery of group II (GM-1) relative to the control group was not statistically significant (p>0.05). The most notable recovery of locomotive function was observed in the group that received MP alone (p<0.05). The group that received MP together with GM-1 presented results that were better than those of the control group (p<0.05). CONCLUSION Administration of methylprednisolone alone or with GM-1 was shown to be effective for recovery of locomotive function. Combined administration of these drugs resulted in better outcomes than administration of methylprednisolone alone. PMID:18568249

  5. Bis(monoacylglycero)phosphate and ganglioside GM1 spontaneously form small homogeneous vesicles at specific concentrations.

    PubMed

    Chebukati, Janetricks N; Goff, Philip C; Frederick, Thomas E; Fanucci, Gail E

    2010-04-01

    The morphology and size of hydrated lipid dispersions of bis(monoacylglycero)phosphate (BMP) mixed with varying mole percentages of the ganglioside GM1 were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Electron paramagnetic resonance (EPR) spectroscopy of these same mixtures, doped at 0.5 mol% with doxyl labeled lipids, was used to investigate acyl-chain packing. Results show that for 20-30% GM1, hydrated BMP:GM1 mixtures spontaneously form small spherical vesicles with diameters approximately 100 nm and a narrow size distribution profile. For other concentrations of GM1, hydrated dispersions with BMP have non-spherical shapes and heterogeneous size profiles, with average vesicle diameters>400 nm. All samples were prepared at pH 5.5 to mimic the lumen acidity of the late endosome where BMP is an essential component of intraendosomal vesicle budding, lipid sorting and trafficking. These findings indicate that GM1 and BMP under a limited concentration range spontaneously form small vesicles of homogeneous size in an energy independent manner without the need of protein templating. Because BMP is essential for intraendosomal vesicle formation, these results imply that lipid-lipid interactions may play a critical role in the endosomal process of lipid sorting and trafficking. PMID:20206128

  6. Anti-GM2 ganglioside antibodies are a biomarker for acute canine polyradiculoneuritis

    PubMed Central

    Bianchi, Ezio; Dondi, Maurizio; Penderis, Jacques; Cappell, Joanna; Burgess, Karl; Matiasek, Kaspar; McGonigal, Rhona; Willison, Hugh J.

    2016-01-01

    Acute canine polyradiculoneuritis (ACP) is considered to be the canine equivalent of the human peripheral nerve disorder Guillain-Barré syndrome (GBS); an aetiological relationship, however, remains to be demonstrated. In GBS, anti-glycolipid antibodies (Abs) are considered as important disease mediators. To address the possibility of common Ab biomarkers, the sera of 25 ACP dogs, 19 non-neurological, and 15 epileptic control dogs were screened for IgG Abs to 10 glycolipids and their 1 : 1 heteromeric complexes using combinatorial glycoarrays. Anti-GM2 ganglioside Abs were detected in 14/25 ACP dogs, and anti-GA1 Abs in one further dog. All controls except for one were negative for anti-glycolipid Abs. In this cohort of cases and controls, the glycoarray screen reached a diagnostic sensitivity of 60% and a specificity of 97%; a lower sensitivity (32%) was reported using a conventional glycolipid ELISA. To address the possible pathogenic role for anti-GM2 Abs in ACP, we identified GM2 in canine sciatic nerve by both mass spectrometry and thin layer chromatography overlay. In immunohistological studies, GM2 was localized predominantly to the abaxonal Schwann cell membrane. The presence of anti-GM2 Abs in ACP suggests that it may share a similar pathophysiology with GBS, for which it could thus be considered a naturally occurring animal model. PMID:23521648

  7. [Serum IgG antibodies to GD1a and GM1 gangliosides in elderly people].

    PubMed

    Kolyovska, V

    2016-01-01

    Nowadays, the percentage of elderly people in society grows. Good nutrition and medical care help older people to have a normal life over 80 to 90 years. In the last ten years it is of critical importance to establish the clinical significance of serum IgG anti-GD1a and anti-GM1 ganglioside antibodies as potential biomarkers for neuronal damage in neurodegenerative diseases and immune-mediated neuropathies and demyelination. In the current study, the diagnostic values of IgG anti-GD1a and anti-GM1 antibodies were determined by the ELISA method in serum samples of 18 elderly patients (71-91 years). Significantly elevated serum IgG anti-GD1a and anti-GM1 antibodies titers were detected only in patients over 80 years. These data suggest that the immune-mediated neuropathies, neurodegeneration and demyelination in healthy elderly occur after 80 years old. Therefore, IgG anti-GD1a and anti-GM1 antibodies can serve as biomarkers, showing the nervous system dysfunction. PMID:26973195

  8. Bis(monoacylglycero)phosphate and ganglioside GM1 spontaneously form small homogeneous vesicles at specific concentrations

    SciTech Connect

    Chebukati, Janetricks N.; Goff, Philip C.; Frederick, Thomas E.; Fanucci, Gail E.

    2010-04-09

    The morphology and size of hydrated lipid dispersions of bis(monoacylglycero)phosphate (BMP) mixed with varying mole percentages of the ganglioside GM1 were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Electron paramagnetic resonance (EPR) spectroscopy of these same mixtures, doped at 0.5 mol% with doxyl labeled lipids, was used to investigate acyl-chain packing. Results show that for 20-30% GM1, hydrated BMP:GM1 mixtures spontaneously form small spherical vesicles with diameters {approx}100 nm and a narrow size distribution profile. For other concentrations of GM1, hydrated dispersions with BMP have non-spherical shapes and heterogeneous size profiles, with average vesicle diameters >400 nm. All samples were prepared at pH 5.5 to mimic the lumen acidity of the late endosome where BMP is an essential component of intraendosomal vesicle budding, lipid sorting and trafficking. These findings indicate that GM1 and BMP under a limited concentration range spontaneously form small vesicles of homogeneous size in an energy independent manner without the need of protein templating. Because BMP is essential for intraendosomal vesicle formation, these results imply that lipid-lipid interactions may play a critical role in the endosomal process of lipid sorting and trafficking.

  9. Complement Factor H and Simian Virus 40 bind the GM1 ganglioside in distinct conformations.

    PubMed

    Blaum, Bärbel S; Frank, Martin; Walker, Ross C; Neu, Ursula; Stehle, Thilo

    2016-05-01

    Mammalian cell surfaces are decorated with a variety of glycan chains that orchestrate development and defense and are exploited by pathogens for cellular attachment and entry. While glycosidic linkages are, in principle, flexible, the conformational space that a given glycan can sample is subject to spatial and electrostatic restrictions imposed by its overall chemical structure. Here, we show how the glycan moiety of the GM1 ganglioside, a branched, monosialylated pentasaccharide that serves as a ligand for various proteins, undergoes differential conformational selection in its interactions with different lectins. Using STD NMR and X-ray crystallography, we found that the innate immune regulator complement Factor H (FH) binds a previously not reported GM1 conformation that is not compatible with the GM1-binding sites of other structurally characterized GM1-binding lectins such as the Simian Virus 40 (SV40) capsid. Molecular dynamics simulations of the free glycan in explicit solvent on the 10 μs timescale reveal that the FH-bound conformation nevertheless corresponds to a minimum in the Gibbs free energy plot. In contrast to the GM1 conformation recognized by SV40, the FH-bound GM1 conformation is associated with poor NOE restraints, explaining how it escaped(1)H-(1)H NOE-restrained modeling in the past and highlighting the necessity for ensemble representations of glycan structures. PMID:26715202

  10. Lyso-GM2 Ganglioside: A Possible Biomarker of Tay-Sachs Disease and Sandhoff Disease

    PubMed Central

    Kodama, Takashi; Togawa, Tadayasu; Tsukimura, Takahiro; Kawashima, Ikuo; Matsuoka, Kazuhiko; Kitakaze, Keisuke; Tsuji, Daisuke; Itoh, Kohji; Ishida, Yo-ichi; Suzuki, Minoru; Suzuki, Toshihiro; Sakuraba, Hitoshi

    2011-01-01

    To find a new biomarker of Tay-Sachs disease and Sandhoff disease. The lyso-GM2 ganglioside (lyso-GM2) levels in the brain and plasma in Sandhoff mice were measured by means of high performance liquid chromatography and the effect of a modified hexosaminidase (Hex) B exhibiting Hex A-like activity was examined. Then, the lyso-GM2 concentrations in human plasma samples were determined. The lyso-GM2 levels in the brain and plasma in Sandhoff mice were apparently increased compared with those in wild-type mice, and they decreased on intracerebroventricular administration of the modified Hex B. The lyso-GM2 levels in plasma of patients with Tay-Sachs disease and Sandhoff disease were increased, and the increase in lyso-GM2 was associated with a decrease in Hex A activity. Lyso-GM2 is expected to be a potential biomarker of Tay-Sachs disease and Sandhoff disease. PMID:22205997

  11. Design, Synthesis, and Biological Evaluation of Ganglioside Hp-s1 Analogues Varying at Glucosyl Moiety.

    PubMed

    Hung, Jung-Tung; Yeh, Chun-Hong; Yang, Shih-An; Lin, Chiu-Ya; Tai, Hung-Ju; Shelke, Ganesh B; Reddy, Daggula Mallikarjuna; Yu, Alice L; Luo, Shun-Yuan

    2016-08-17

    Ganglioside Hp-s1 is isolated from the ovary of sea urchin Diadema setosum. It exhibited better neuritogenic activity than GM1 in pheochromocytoma 12 cells. To explore the roles of glucosyl moiety of Hp-s1 in contributing to the neurogenic activity, we developed feasible procedures for synthesis of Hp-s1 analogues (2a-2f). The glucosyl moiety of Hp-s1 was replaced with α-glucose, α-galactose, β-galactose, α-mannose, and β-mannose, and their biological activities on SH-SY5Y cells and natural killer T (NKT) cells were evaluated. We found that the orientation of C-2 hydroxyl group at glucosyl moiety of Hp-s1 plays an important role to induce neurite outgrowth of SH-SY5Y cells. Surprisingly, compound 2d could activate NKT cells to produce interleukin 2, although it did not show great activity on neurite outgrowth of SH-SY5Y cells. In general, the Hp-s1 might be considered as a lead compound for the development of novel drugs aimed at modulating the activity of neuronal cells. PMID:27276519

  12. Radioiodinated ganglioside G/sub M1/: A potential tracer for neurological studies

    SciTech Connect

    Zalutsky, M.R.; Gallagher, P.; Magistretti, P.L.; Ghidoni, R.

    1985-05-01

    Ganglioside G/sub M1/ is a glycosphingolipid which appears to be involved in the regeneration of damaged neuronal tissue. In addition, it is being investigated clinically in the treatment of various neuropathies. If labeled with the appropriate isotope, G/sub M1/ might be useful as a probe of these processes, particularly if it accumulates preferentially in cerebral infarcts. The G/sub M1/ -tyr derivative was labeled with I-125 in 75% yield using the Iodogen method and at micellar concentration was isolated using gel chromatography. Binding of I-125 (G/sub M1/ -tyr) to rat neuronal membranes was measured at concentrations of 5,50, and 500 nM. The amount bound (8,26, and 158 pmol/gm membrane) was similar to that reported for H-3(G/sub M1/). The biodistribution of I-125(G/sub M1/ -tyr) in mice at both micellar and monomeric concentrations was also similar to that of H-3(G/sub M1/). However, at monomeric concentrations, thyroid uptake of I-125 was about 10 times higher than at micellar concentrations, suggesting differential dehalogenation of the two forms. Initial studies in the gerbil stroke model suggest that the uptake of I-125(G/sub M1/ -tyr) in damaged brain is twice that in normal tissue.

  13. Human monoclonal IgM with autoantibody activity against two gangliosides (GM1 and GD1b) in a patient with motor neuron syndrome.

    PubMed Central

    Jauberteau, M O; Gualde, N; Preud'Homme, J L; Rigaud, M; Gil, R; Vallat, J M; Baumann, N

    1990-01-01

    Small amounts of oligoclonal immunoglobulins were detected by Western blotting in the serum from a patient with motor neuron syndrome. The prominent one, a monoclonal IgM lambda, reacted strongly with the gangliosides GM1 and GD1b and more weakly with asialo GM1, as shown by immunoenzymatic staining of thin-layer chromatograms of gangliosides, ELISA on purified glycolipid coats and immunoadsorption with purified GM1. Affinity-chromatography with purified GM1 resulted in the purification of monoclonal IgM lambda. This purified IgM and its Fab fragments showed the same pattern of reactivity with gangliosides as that observed with whole serum. Such monoclonal IgM could be responsible for motor neuron diseases in some patients with overt or barely detectable monoclonal gammopathies. Images Fig. 2 Fig. 3 PMID:2357844

  14. Ganglioside GD3 Is Required for Neurogenesis and Long-Term Maintenance of Neural Stem Cells in the Postnatal Mouse Brain

    PubMed Central

    Wang, Jing; Cheng, Allison; Wakade, Chandramohan

    2014-01-01

    The maintenance of a neural stem cell (NSC) population in mammalian postnatal and adult life is crucial for continuous neurogenesis and neural repair. However, the molecular mechanism of how NSC populations are maintained remains unclear. Gangliosides are important cellular membrane components in the nervous system. We previously showed that ganglioside GD3 plays a crucial role in the maintenance of the self-renewal capacity of NSCs in vitro. Here, we investigated its role in postnatal and adult neurogenesis in GD3-synthase knock-out (GD3S-KO) and wild-type mice. GD3S-KO mice with deficiency in GD3 and the downstream b-series gangliosides showed a progressive loss of NSCs both at the SVZ and the DG of the hippocampus. The decrease of NSC populations in the GD3S-KO mice resulted in impaired neurogenesis at the granular cell layer of the olfactory bulb and the DG in the adult. In addition, defects of the self-renewal capacity and radial glia-like stem cell outgrowth of postnatal GD3S-KO NSCs could be rescued by restoration of GD3 expression in these cells. Our study demonstrates that the b-series gangliosides, especially GD3, play a crucial role in the long-term maintenance NSC populations in postnatal mouse brain. Moreover, the impaired neurogenesis in the adult GD3S-KO mice led to depression-like behaviors. Thus, our results provide convincing evidence linking b-series gangliosides deficiency and neurogenesis defects to behavioral deficits, and support a crucial role of gangliosides in the long-term maintenance of NSCs in adult mice. PMID:25297105

  15. Lysosomal dysfunction in a mouse model of Sandhoff disease leads to accumulation of ganglioside-bound amyloid-β peptide.

    PubMed

    Keilani, Serene; Lun, Yi; Stevens, Anthony C; Williams, Hadis N; Sjoberg, Eric R; Khanna, Richie; Valenzano, Kenneth J; Checler, Frederic; Buxbaum, Joseph D; Yanagisawa, Katsuhiko; Lockhart, David J; Wustman, Brandon A; Gandy, Sam

    2012-04-11

    Alterations in the lipid composition of endosomal-lysosomal membranes may constitute an early event in Alzheimer's disease (AD) pathogenesis. In this study, we investigated the possibility that GM2 ganglioside accumulation in a mouse model of Sandhoff disease might be associated with the accumulation of intraneuronal and extracellular proteins commonly observed in AD. Our results show intraneuronal accumulation of amyloid-β peptide (Aβ)-like, α-synuclein-like, and phospho-tau-like immunoreactivity in the brains of β-hexosaminidase knock-out (HEXB KO) mice. Biochemical and immunohistochemical analyses confirmed that at least some of the intraneuronal Aβ-like immunoreactivity (iAβ-LIR) represents amyloid precursor protein C-terminal fragments (APP-CTFs) and/or Aβ. In addition, we observed increased levels of Aβ40 and Aβ42 peptides in the lipid-associated fraction of HEXB KO mouse brains, and intraneuronal accumulation of ganglioside-bound Aβ (GAβ) immunoreactivity in a brain region-specific manner. Furthermore, α-synuclein and APP-CTFs and/or Aβ were found to accumulate in different regions of the substantia nigra, indicating different mechanisms of accumulation or turnover pathways. Based on the localization of the accumulated iAβ-LIR to endosomes, lysosomes, and autophagosomes, we conclude that a significant accumulation of iAβ-LIR may be associated with the lysosomal-autophagic turnover of Aβ and fragments of APP-containing Aβ epitopes. Importantly, intraneuronal GAβ immunoreactivity, a proposed prefibrillar aggregate found in AD, was found to accumulate throughout the frontal cortices of postmortem human GM1 gangliosidosis, Sandhoff disease, and Tay-Sachs disease brains. Together, these results establish an association between the accumulation of gangliosides, autophagic vacuoles, and the intraneuronal accumulation of proteins associated with AD. PMID:22496568

  16. Gangliosides inhibit bee venom melittin cytotoxicity but not phospholipase A{sub 2}-induced degranulation in mast cells

    SciTech Connect

    Nishikawa, Hirofumi; Kitani, Seiichi

    2011-05-01

    Sting accident by honeybee causes severe pain, inflammation and allergic reaction through IgE-mediated anaphylaxis. In addition to this hypersensitivity, an anaphylactoid reaction occurs by toxic effects even in a non-allergic person via cytolysis followed by similar clinical manifestations. Auto-injectable epinephrine might be effective for bee stings, but cannot inhibit mast cell lysis and degranulation by venom toxins. We used connective tissue type canine mast cell line (CM-MC) for finding an effective measure that might inhibit bee venom toxicity. We evaluated degranulation and cytotoxicity by measurement of {beta}-hexosaminidase release and MTT assay. Melittin and crude bee venom induced the degranulation and cytotoxicity, which were strongly inhibited by mono-sialoganglioside (G{sub M1}), di-sialoganglioside (G{sub D1a}) and tri-sialoganglioside (G{sub T1b}). In contrast, honeybee venom-derived phospholipase A{sub 2} induced the net degranulation directly without cytotoxicity, which was not inhibited by G{sub M1}, G{sub D1a} and G{sub T1b}. For analysis of distribution of G{alpha}{sub q} and G{alpha}{sub i} protein by western blotting, lipid rafts were isolated by using discontinuous sucrose gradient centrifuge. Melittin disrupted the localization of G{alpha}{sub q} and G{alpha}{sub i} at lipid raft, but gangliosides stabilized the rafts. As a result from this cell-based study, bee venom-induced anaphylactoid reaction can be explained with melittin cytotoxicity and phospholipase A{sub 2}-induced degranulation. Taken together, gangliosides inhibit the effect of melittin such as degranulation, cytotoxicity and lipid raft disruption but not phospholipase A{sub 2}-induced degranulation in mast cells. Our study shows a potential of gangliosides as a therapeutic tool for anaphylactoid reaction by honeybee sting.

  17. Ganglioside GM2 mediates migration of tumor cells by interacting with integrin and modulating the downstream signaling pathway.

    PubMed

    Kundu, Manjari; Mahata, Barun; Banerjee, Avisek; Chakraborty, Sohini; Debnath, Shibjyoti; Ray, Sougata Sinha; Ghosh, Zhumur; Biswas, Kaushik

    2016-07-01

    The definitive role of ganglioside GM2 in mediating tumor-induced growth and progression is still unknown. Here we report a novel role of ganglioside GM2 in mediating tumor cell migration and uncovered its mechanism. Data shows differential expression levels of GM2-synthase as well as GM2 in different human cancer cells. siRNA mediated knockdown of GM2-synthase in CCF52, A549 and SK-RC-26B cells resulted in significant inhibition of tumor cell migration as well as invasion in vitro without affecting cellular proliferation. Over-expression of GM2-synthase in low-GM2 expressing SK-RC-45 cells resulted in a consequent increase in migration thus confirming the potential role GM2 and its downstream partners play in tumor cell migration and motility. Further, treatment of SK-RC-45 cells with exogenous GM2 resulted in a dramatic increase in migratory and invasive capacity with no change in proliferative capacity, thereby confirming the role of GM2 in tumorigenesis specifically by mediating tumor migration and invasion. Gene expression profiling of GM2-synthase silenced cells revealed altered expression of several genes involved in cell migration primarily those controlling the integrin mediated signaling. GM2-synthase knockdown resulted in decreased phosphorylation of FAK, Src as well as Erk, while over-expression and/or exogenous GM2 treatment caused increased FAK and Erk phosphorylation respectively. Again, GM2 mediated invasion and Erk phosphorylation is blocked in integrin knockdown SK-RC-45 cells, thus confirming that GM2 mediated migration and phosphorylation of Erk is integrin dependent. Finally, confocal microscopy suggested co-localization while co-immunoprecipitation and surface plasmon resonance (SPR) confirmed direct interaction of membrane bound ganglioside, GM2 with the integrin receptor. PMID:27066976

  18. Therapeutic Strategies for Human IgM Antibodies Directed at Tumor-Associated Ganglioside Antigens: Discoveries Made During the Morton Era and Future Directions.

    PubMed

    Jones, Peter C; Irie, Reiko F

    2016-01-01

    Tumor-associated gangliosides have been investigated for their potential as antigenic targets for more than 35 years, culminating in the recent Food and Drug Administration approval of dinutuximab (Unituxin), an IgG antibody targeted against GD2, for the treatment of neuroblastoma in children. This review is focused on discoveries and development of therapeutic approaches involving human IgM antibodies directed against gangliosides, which occurred over the past 40 years at University of California-Los Angeles and the John Wayne Cancer Institute, where Dr. Donald Morton led the surgical oncology department until his death. PMID:27481004

  19. [Brown-Vialetto-Van Laere syndrome: a case with anti-ganglioside GM1 antibodies and literature review].

    PubMed

    Sztajzel, R; Kohler, A; Reichart, M; Djientcheu, V P; Chofflon, M; Magistris, M R

    1998-01-01

    We report the case of a woman suffering from progressive bulbopontine paralysis in whose the first symptom, bilateral hypoacousia, began in childhood. This clinical picture is that of the Brown-Vialetto-Van Laere (BVVL) syndrome. Anti-ganglioside GM1 antibodies were moderately elevated in this patient. Intravenous immunoglobulins produced little benefit. The main clinical characteristics of 29 BVVL patients reported in literature are reviewed, and the pathological significance of anti-GM1 antibodies is discussed in the context of this disorder. PMID:9773026

  20. Protection against Experimental Stroke by Ganglioside GM1 Is Associated with the Inhibition of Autophagy

    PubMed Central

    Li, Li; Tian, Jinghua; Long, Mitchell King-Wei; Chen, Yong; Lu, Jianfei; Zhou, Changman; Wang, Tianlong

    2016-01-01

    Ganglioside GM1, which is particularly abundant in the central nervous system (CNS), is closely associated with the protection against several CNS disorders. However, controversial findings have been reported on the role of GM1 following ischemic stroke. In the present study, using a rat middle cerebral artery occlusion (MCAO) model, we investigated whether GM1 can protect against ischemic brain injury and whether it targets the autophagy pathway. GM1 was delivered to Sprague-Dawley male rats at 3 doses (25 mg/kg, 50 mg/kg, 100 mg/kg) by intraperitoneal injection soon after reperfusion and then once daily for 2 days. The same volume of saline was given as a control. Tat–Beclin-1, a specific autophagy inducer, was administered by intraperitoneal injection at 24 and 48 hours post-MCAO. Infarction volume, mortality and neurological function were assessed at 72 hours after ischemic insult. Immunofluorescence and Western blotting were performed to determine the expression of autophagy-related proteins P62, LC3 and Beclin-1 in the penumbra area. No significant changes in mortality and physiological variables (heart rate, blood glucose levels and arterial blood gases) were observed between the different groups. However, MCAO resulted in enhanced conversion of LC3-I into LC3-II, P62 degradation, high levels of Beclin-1, a large area infarction (26.3±3.6%) and serious neurobehavioral deficits. GM1 (50 mg/kg) treatment significantly reduced the autophagy activation, neurobehavioral dysfunctions, and infarction volume (from 26.3% to 19.5%) without causing significant adverse side effects. However, this biological function could be abolished by Tat–Beclin-1. In conclusion: GM1 demonstrated safe and robust neuroprotective effects that are associated with the inhibition of autophagy following experimental stroke. PMID:26751695

  1. Colocalization of the ganglioside G(M1) and cholesterol detected by secondary ion mass spectrometry.

    PubMed

    Lozano, Mónica M; Liu, Zhao; Sunnick, Eva; Janshoff, Andreas; Kumar, Krishna; Boxer, Steven G

    2013-04-17

    The characterization of the lateral organization of components in biological membranes and the evolution of this arrangement in response to external triggers remain a major challenge. The concept of lipid rafts is widely invoked; however, direct evidence of the existence of these ephemeral entities remains elusive. We report here the use of secondary ion mass spectrometry (SIMS) to image the cholesterol-dependent cohesive phase separation of the ganglioside GM1 into nano- and microscale assemblies in a canonical lipid raft composition of lipids. This assembly of domains was interrogated in a model membrane system composed of palmitoyl sphingomyelin (PSM), cholesterol, and an unsaturated lipid (dioleoylphosphatidylcholine, DOPC). Orthogonal isotopic labeling of every lipid bilayer component and monofluorination of GM1 allowed generation of molecule specific images using a NanoSIMS. Simultaneous detection of six different ion species in SIMS, including secondary electrons, was used to generate ion ratio images whose signal intensity values could be correlated to composition through the use of calibration curves from standard samples. Images of this system provide the first direct, molecule specific, visual evidence for the colocalization of cholesterol and GM1 in supported lipid bilayers and further indicate the presence of three compositionally distinct phases: (1) the interdomain region; (2) micrometer-scale domains (d > 3 μm); (3) nanometer-scale domains (d = 100 nm to 1 μm) localized within the micrometer-scale domains and the interdomain region. PSM-rich, nanometer-scale domains prefer to partition within the more ordered, cholesterol-rich/DOPC-poor/GM1-rich micrometer-scale phase, while GM1-rich, nanometer-scale domains prefer to partition within the surrounding, disordered, cholesterol-poor/PSM-rich/DOPC-rich interdomain phase. PMID:23514537

  2. Ganglioside, disialosyl globopentaosylceramide (DSGb5), enhances the migration of renal cell carcinoma cells.

    PubMed

    Kawasaki, Yoshihide; Ito, Akihiro; Kakoi, Narihiko; Shimada, Shuichi; Itoh, Jun; Mitsuzuka, Koji; Arai, Yoichi

    2015-01-01

    About one third of renal cell carcinoma (RCC) patients exhibit metastasis upon initial presentation. However, the molecular basis for RCC metastasis is not fully understood. A ganglioside, disialosyl globopentaosylceramide (DSGb5), was originally isolated from RCC tissue extracts, and its expression is correlated with RCC metastatic potential. DSGb5 is synthesized by GalNAc α2,6-sialyltransferase VI (ST6GalNAcVI) and is expressed on the surface of RCC cells. Importantly, DSGb5 binds to sialic acid-binding Ig-like lectin-7 (Siglec-7) expressed on natural killer (NK) cells, thereby inhibiting NK-cell cytotoxicity. However, the role of DSGb5 in RCC progression remains obscure. To address this issue, we used ACHN cells derived from malignant pleural effusion of a patient with metastatic RCC. Using the limiting dilution method, we isolated three independent clones with different DSGb5 expression levels. Comparison of these clones indicated that the cloned cells with high DSGb5 expression levels exhibited greater migration potential, compared to the clone with low DSGb5 expression levels. In contrast, DSGb5 expression levels exerted no significant effect on cell proliferation. We then established the ACHN-derived cell lines that stably expressed siRNA against ST6GalNAcVI mRNA or control siRNA. Importantly, the ST6GalNAcVI-knockdown cells expressed low levels of DSGb5. We thus demonstrated the significantly decreased migration potential of the ST6GalNAcVI-knockdown cells with low DSGb5 expression levels, compared to the control siRNA-transfected cells expressing high DSGb5 levels, but no significant difference in the cell proliferation. Thus, DSGb5 expression may ensure the migration of RCC cells. We propose that DSGb5 expressed on RCC cells may determine their metastatic capability. PMID:25864532

  3. Ganglioside GQ1b induces dopamine release through the activation of Pyk2.

    PubMed

    Zhang, Zhao; Chu, Shi-Feng; Mou, Zheng; Gao, Yan; Wang, Zhen-Zhen; Wei, Gui-Ning; Chen, Nai-Hong

    2016-03-01

    Growing evidence indicates that GQ1b, one of the gangliosides members, contributes to synaptic transmission and synapse formation. Previous studies have shown that GQ1b could enhance depolarization induced neurotransmitter release, while the role of GQ1b in asynchronous release is still largely unknown. Here in our result, we found low concentration of GQ1b, but not GT1b or GD1b (which were generated from GQ1b by plasma membrane-associated sialidases), evoked asynchronous dopamine (DA) release from both clonal rat pheochromocytoma PC12 cells and rat striatal slices significantly. The release peaked at 2min after GQ1b exposure, and lasted for more than 6min. This effect was caused by the enhancement of intracellular Ca(2+) and the activation of Pyk2. Inhibition of Pyk2 by PF-431396 (a dual inhibitor of Pyk2 and FAK) or Pyk2 siRNA abolished DA release induced by GQ1b. Moreover, Pyk2 Y402, but not other tyrosine site, was phosphorylated at the peaking time. The mutant of Pyk2 Y402 (Pyk2-Y402F) was built to confirm the essential role of Y402 activation. Further studies revealed that activated Pyk2 stimulated ERK1/2 and p-38, while only the ERK1/2 activation was indispensable for GQ1b induced DA release, which interacted with Synapsin I directly and led to its phosphorylation, then depolymerization of F-actin, thus contributed to DA release. In conclusion, low concentration of GQ1b is able to enhance asynchronous DA release through Pyk2/ERK/Synapsin I/actin pathway. Our findings provide new insights into the role of GQ1b in neuronal communication, and implicate the potential application of GQ1b in neurological disorders. PMID:26704905

  4. GM1 Ganglioside in Parkinson’s Disease: Pilot Study of Effects on Dopamine Transporter Binding

    PubMed Central

    Schneider, Jay S.; Cambi, Franca; Gollomp, Stephen M.; Kuwabara, Hiroto; Brašić, James R.; Leiby, Benjamin; Sendek, Stephanie; Wong, Dean F.

    2015-01-01

    Objective GM1 ganglioside has been suggested as a treatment for Parkinson’s disease (PD), potentially having symptomatic and disease modifying effects. The current pilot imaging study was performed to examine effects of GM1 on dopamine transporter binding, as a surrogate measure of disease progression, studied longitudinally. Methods Positron emission tomography (PET) imaging data were obtained from a subset of subjects enrolled in a delayed start clinical trial of GM1 in PD1: 15 Early-start (ES) subjects, 14 Delayed-start (DS) subjects, and 11 Comparison (standard-of-care) subjects. Treatment subjects were studied over a 2.5 year period while Comparison subjects were studied over 2 years. Dynamic PET scans were performed over 90 minutes following injection of [11C]methylphenidate. Regional values of binding potential (BPND) were analyzed for several striatal volumes of interest. Results Clinical results for this subset of subjects were similar to those previously reported for the larger study group. ES subjects showed early symptomatic improvement and slow symptom progression over the study period. DS and Comparison subjects were initially on the same symptom progression trajectory but diverged once DS subjects received GM1 treatment. Imaging results showed significant slowing of BPND loss in several striatal regions in GM1-treated subjects and in some cases, an increased BPND in some striatal regions was detected after GM1 use. Interpretation Results of this pilot imaging study provide additional data to suggest a potential disease modifying effect of GM1 on PD. These results need to be confirmed in a larger number of subjects. PMID:26099170

  5. Changes in GM1 ganglioside content and localization in cholestatic rat liver.

    PubMed

    Jirkovská, Marie; Majer, Filip; Smídová, Jaroslava; Stríteský, Jan; Shaik, Gouse Mohiddin; Dráber, Petr; Vítek, Libor; Marecek, Zdenek; Smíd, Frantisek

    2007-07-01

    (Glyco)sphingolipids (GSL) are believed to protect the cell against harmful environmental factors by increasing the rigidity of plasma membrane. Marked decrease of membrane fluidity in cholestatic hepatocytes was described but the role of GSL therein has not been investigated so far. In this study, localization in hepatocytes of a representative of GSL, the GM1 ganglioside, was compared between of rats with cholestasis induced by 17alpha-ethinylestradiol (EE) and vehicle propanediol treated or untreated animals. GM1 was monitored by histochemical reaction employing cholera toxin B-subunit. Our findings in normal rat liver tissue showed that GM1 was localized in sinusoidal and canalicular hepatocyte membranes in both peripheral and intermediate zones of the hepatic lobules, and was nearly absent in central zones. On the contrary, in EE-treated animals GM1 was also expressed in central lobular zones. Moreover, detailed densitometry analysis at high magnification showed greater difference of GM1 expression between sinusoidal surface areas and areas of adjacent cytoplasm, caused as well by increased sinusoidal staining in central lobular zone as by decreased staining in cytoplasm in peripheral zone. These differences correlated with serum bile acids as documented by linear regression analyses. Both GM1 content and mRNA corresponding to GM1-synthase remained unchanged in livers; the enhanced expression of GM1 at sinusoidal membrane thus seems to be due to re-distribution of cellular GM1 at limited biosynthesis and could be responsible for protection of hepatocytes against harmful effects of bile acids accumulated during cholestasis. PMID:17333356

  6. A sensitive fluorescence-based assay for monitoring GM2 ganglioside hydrolysis in live patient cells and their lysates.

    PubMed

    Tropak, Michael B; Bukovac, Scott W; Rigat, Brigitte A; Yonekawa, Sayuri; Wakarchuk, Warren; Mahuran, Don J

    2010-03-01

    Enzyme enhancement therapy, utilizing small molecules as pharmacological chaperones, is an attractive approach for the treatment of lysosomal storage diseases that are associated with protein misfolding. However, pharmacological chaperones are also inhibitors of their target enzyme. Thus, a major concern with this approach is that, despite enhancing protein folding within, and intracellular transport of the functional mutant enzyme out of the endoplasmic reticulum, the chaperone will continue to inhibit the enzyme in the lysosome, preventing substrate clearance. Here we demonstrate that the in vitro hydrolysis of a fluorescent derivative of lyso-GM2 ganglioside, like natural GM2 ganglioside, is specifically carried out by the beta-hexosaminidase A isozyme, requires the GM2 activator protein as a co-factor, increases when the derivative is incorporated into anionic liposomes and follows similar Michaelis-Menten kinetics. This substrate can also be used to differentiate between lysates from normal and GM2 activator-deficient cells. When added to the growth medium of cells, the substrate is internalized and primarily incorporated into lysosomes. Utilizing adult Tay-Sachs fibroblasts that have been pre-treated with the pharmacological chaperone Pyrimethamine and subsequently loaded with this substrate, we demonstrate an increase in both the levels of mutant beta-hexosaminidase A and substrate-hydrolysis as compared to mock-treated cells. PMID:19917668

  7. Lacking power impairs executive functions.

    PubMed

    Smith, Pamela K; Jostmann, Nils B; Galinsky, Adam D; van Dijk, Wilco W

    2008-05-01

    Four experiments explored whether lacking power impairs executive functioning, testing the hypothesis that the cognitive presses of powerlessness increase vulnerability to performance decrements during complex executive tasks. In the first three experiments, low power impaired performance on executive-function tasks: The powerless were less effective than the powerful at updating (Experiment 1), inhibiting (Experiment 2), and planning (Experiment 3). Existing research suggests that the powerless have difficulty distinguishing between what is goal relevant and what is goal irrelevant in the environment. A fourth experiment established that the executive-function impairment associated with low power is driven by goal neglect. The current research implies that the cognitive alterations arising from powerlessness may help foster stable social hierarchies and that empowering employees may reduce costly organizational errors. PMID:18466404

  8. Constituents of Holothuroidea, 18. Isolation and structure of biologically active disialo- and trisialo-gangliosides from the sea cucumber Cucumaria echinata.

    PubMed

    Kisa, Fumiaki; Yamada, Koji; Miyamoto, Tomofumi; Inagaki, Masanori; Higuchi, Ryuichi

    2006-09-01

    Three new disialo- and trisialo-gangliosides, CEG-6 (6), CEG-8 (8), and CEG-9 (9), were obtained, together with one known ganglioside, HLG-3 (7), from the lipid fraction of the chloroform/methanol extract of the sea cucumber Cucumaria echinata. The structures of the new gangliosides were determined on the basis of chemical and spectroscopic evidence to be 1-O-[alpha-L-fucopyranosyl-(1-->11)-(N-glycolyl-alpha-D-neuraminosyl)-(2-->4)-(N-acetyl-alpha-D-neuraminosyl)-(2-->6)-beta-D-glucopyranosyl]-ceramide (6) and 1-O-[(N-glycolyl-D-neuraminosyl)-(2-->11)-(N-glycolyl-D-neuraminosyl)-(2-->4)-(N-acetyl-D-neuraminosyl)-(2-->6)-D-glucopyranosyl]-ceramide (8, 9). The ceramide moieties of each compound were composed of an homogeneous sphingosine or phytosphingosine base and heterogeneous 2-hydroxy or nonhydroxylated fatty acid units. These gangliosides showed neuritogenic activity toward the rat pheochromocytoma cell line PC-12 in the presence of nerve growth factor. PMID:16946538

  9. Synthesis and aggregative properties of GM1 ganglioside (IV3Neu5AcGgOse4Cer) containing D-(+)-2-hydroxystearic acid.

    PubMed

    Sonnino, S; Acquotti, D; Cantu, L; Chigorno, V; Valsecchi, M; Casellato, R; Masserini, M; Corti, M; Allevi, P; Tettamanti, G

    1994-02-01

    GM1 ganglioside containing a hydroxylated fatty acid moiety, GM1(OH), was synthesized starting from lyso-GM1 and D-(+)-2-hydroxystearic acid. The aggregative, geometrical and distribution properties of GM1(OH) were compared with those of stearic acid containing GM1 ganglioside; laser light scattering measurements, differential scanning calorimetry and fluorescence spectroscopy were used. GM1 and GM1(OH) are present in solution as micelles with a hydrodynamic radius of 58.7 and 60.0 A, and molecular mass of 470 and 570 kDa, respectively. The surface area occupied by the monomer of GM1(OH) at the lipid-water interface of the aggregate was calculated to be 117 A2, which is 3 A2 lower than that determined for GM1. Proton NMR analyses of GM1 and GM1(OH) suggest different three-dimensional structures at the ganglioside lipid-water interface. Both GM1(OH) and GM1 inserted into dipalmitoylphosphatidylcholine (DPPC) vesicles undergo segregation phenomena, with the formation of ganglioside-enriched microdomains, but GM1(OH) shows a higher degree of dispersion in the DPPC matrix and exerts a lower rigidifying effect than does GM1. PMID:8181107

  10. Comparative lipidomic analysis of mouse and human brain with Alzheimer disease.

    PubMed

    Chan, Robin B; Oliveira, Tiago G; Cortes, Etty P; Honig, Lawrence S; Duff, Karen E; Small, Scott A; Wenk, Markus R; Shui, Guanghou; Di Paolo, Gilbert

    2012-01-20

    Lipids are key regulators of brain function and have been increasingly implicated in neurodegenerative disorders including Alzheimer disease (AD). Here, a systems-based approach was employed to determine the lipidome of brain tissues affected by AD. Specifically, we used liquid chromatography-mass spectrometry to profile extracts from the prefrontal cortex, entorhinal cortex, and cerebellum of late-onset AD (LOAD) patients, as well as the forebrain of three transgenic familial AD (FAD) mouse models. Although the cerebellum lacked major alterations in lipid composition, we found an elevation of a signaling pool of diacylglycerol as well as sphingolipids in the prefrontal cortex of AD patients. Furthermore, the diseased entorhinal cortex showed specific enrichment of lysobisphosphatidic acid, sphingomyelin, the ganglioside GM3, and cholesterol esters, all of which suggest common pathogenic mechanisms associated with endolysosomal storage disorders. Importantly, a significant increase in cholesterol esters and GM3 was recapitulated in the transgenic FAD models, suggesting that these mice are relevant tools to study aberrant lipid metabolism of endolysosomal dysfunction associated with AD. Finally, genetic ablation of phospholipase D(2), which rescues the synaptic and behavioral deficits of an FAD mouse model, fully normalizes GM3 levels. These data thus unmask a cross-talk between the metabolism of phosphatidic acid, the product of phospholipase D(2), and gangliosides, and point to a central role of ganglioside anomalies in AD pathogenesis. Overall, our study highlights the hypothesis generating potential of lipidomics and identifies novel region-specific lipid anomalies potentially linked to AD pathogenesis. PMID:22134919